Science.gov

Sample records for aluminum foils interpreting

  1. Process for anodizing aluminum foil

    SciTech Connect

    Ball, J.A.; Scott, J.W.

    1984-11-06

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80/sup 0/ C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V.

  2. Chromic acid anodizing of aluminum foil

    NASA Technical Reports Server (NTRS)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  3. Effects of Aluminum Foil Packaging on Elemental Analysis of Bone.

    PubMed

    Lewis, Lyniece; Christensen, Angi M

    2016-03-01

    Burned skeletal material is often very fragile and at high risk for fragmentation during packaging and transportation. One method that has been suggested to protect bones in these cases is to carefully wrap them in aluminum foil. Traces of aluminum, however, are known to transfer from foil packaging materials to food products. If such transfer occurs between aluminum foil and bones, it could interfere with subsequent chemical, elemental and isotopic analyses, which are becoming more common in forensic anthropological investigations. This study examined aluminum levels in bones prior to and following the use of aluminum foil packaging and storage for a 6-week period. Results indicate no significant change in the detected levels of aluminum (p > 0.05), even when packaged in compromised foil and exposed to elevated temperatures. Aluminum foil can therefore continue to be recommended as a packaging medium without affecting subsequent chemical examinations. PMID:27404616

  4. Microstructure and Mechanical Properties of AA1235 Aluminum Foil Stocks Produced Directly from Electrolytic Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yu, Kun; Wen, Li; Yao, Sujuan; Dai, Yilong; Wang, Zhifeng

    2016-02-01

    A new process is developed to obtain high-quality AA1235 aluminum foil stocks and to replace the traditional manufacture process. During the new manufacture process, AA1235 aluminum sheets are twin-roll casted directly through electrolytic aluminum melt (EAM), and subsequently the sheets are processed into aluminum foil stocks by cold rolling and annealing. Microstructure and mechanical properties of the AA1235 aluminum sheets produced through such new process are investigated in each state by optimal microscope, scanning electron microscopy, X-ray diffraction, orientation imaging microscopy, transmission electron microscopy, etc. The results show that compared with the traditional AA1235 aluminum foil stocks produced through re-melted aluminum melt (RAM), the amount of impurities is decreased in the EAM aluminum foil stocks. The EAM aluminum foil stock obtains less β-FeSiAl5 phases, but more α-Fe2SiAl8 phases. The elongation of EAM aluminum foil stocks is improved significantly owing to more cubic orientation. Especially, the elongation value of the EAM aluminum foil stocks is approximately 25 pct higher than that of the RAM aluminum foil stocks. As a result, the EAM aluminum foil stocks are at an advantage in increasing the processing performance for the aluminum foils during subsequent processes.

  5. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays.

    PubMed

    Biring, Sajal; Tsai, Kun-Tong; Sur, Ujjal Kumar; Wang, Yuh-Lin

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment. PMID:21730530

  6. Carbon-Fiber/Epoxy Tube Lined With Aluminum Foil

    NASA Technical Reports Server (NTRS)

    Gernet, Nelson J.; Kerr, Gregory K.

    1995-01-01

    Carbon-fiber/epoxy composite tube lined with welded aluminum foil useful as part of lightweight heat pipe in which working fluid ammonia. Aluminum liner provides impermeability for vacuum seal, to contain ammonia in heat pipe, and to prevent flow of noncondensable gases into heat pipe. Similar composite-material tubes lined with foils also incorporated into radiators, single- and two-phase thermal buses, tanks for storage of cryogenic materials, and other plumbing required to be lightweight.

  7. Laser shock microforming of aluminum foil with fs laser

    NASA Astrophysics Data System (ADS)

    Ye, Yunxia; Feng, Yayun; Xuan, Ting; Hua, Xijun; Hua, Yinqun

    2014-12-01

    Laser shock microforming of Aluminum(Al) foil through fs laser has been researched in this paper. The influences of confining layer, clamping method and impact times on induced dent depths were investigated experimentally. Microstructure of fs laser shock forming Al foil was observed through Transmission electron microscopy (TEM). Under the condition of tightly clamping, the dent depths increase with impact times and finally tend to saturating. Another new confining layer, the main component of which is polypropylene, was applied and the confining effect of it is better because of its higher impedance. TEM results show that dislocation is one of the main deformation mechanisms of fs laser shock forming Al foil. Specially, most of dislocations exist in the form of short and discrete dislocation lines. Parallel straight dislocation slip line also were observed. We analyzed that these unique dislocation arrangements are due to fs laser-induced ultra high strain rate.

  8. Using Aluminum Foil to Record Structures in Sedimentary Rock.

    ERIC Educational Resources Information Center

    Metz, Robert

    1982-01-01

    Aluminum foil can be used to make impressions of structures preserved in sedimentary rock. The impressions can be projected onto a screen, photographed, or a Plaster of Paris model can be made from them. Impressions of ripple marks, mudcracks, and raindrop impressions are provided in photographs illustrating the technique. (Author/JN)

  9. Electrospray ionization with aluminum foil: A versatile mass spectrometric technique.

    PubMed

    Hu, Bin; So, Pui-Kin; Yao, Zhong-Ping

    2014-03-19

    In this study, we developed a novel electrospray ionization (ESI) technique based on household aluminum foil (Al foil) and demonstated the desirable features and applications of this technique. Al foil can be readily cut and folded into desired configuration for effective ionization and for holding sample solution in bulk to allowing acquisition of durable ion signals. The present technique was demonstrated to be applicable in analysis of a wide variety of samples, ranging from pure chemical and biological compounds, e.g., organic compounds and proteins, to complex samples in liquid, semi-solid, and solid states, e.g., beverages, skincare cream, and herbal medicines. The inert, hydrophobic and impermeable surface of Al foil allows convenient and effective on-target extraction of solid samples and on-target sample clean-up, i.e., removal of salts and detergents from proteins and peptides, extending ESI device from usually only for sample loading and ionization to including sample processing. Moreover, Al foil is an excellent heat-conductor and highly heat-tolerant, permitting direct monitoring of thermal reactions, e.g., thermal denaturation of proteins. Overall, the present study showed that Al-foil ESI could be an economical and versatile method that allows a wide range of applications. PMID:24594810

  10. Physical vapor deposited aluminum foils from high energy density physics experiments

    SciTech Connect

    Barthell, B.L.; Anderson, W.E.; Gomez, V.M.; Henneke, B.F.; Moore, J.E.; Reeves, G.A.; Salazar, M.A.; Townsend, J.D.

    1995-09-01

    Fabrication of cylindrical aluminum load foils and graded thickness aluminum vacuum opening switch foils is described. Load foils are vaporized by joule heating and imploded by J {times} B forces to stagnate on axis and create soft x-rays. Plasma flow switch foils are mounted to shunt the vacuum power flow channel of a coaxial gun and are vaporized by joule heating. The resultant graded density plasma is magnetically driven down the annular power flow channel. Opening switch action occurs when the shunt plasma crosses a load slot in the center conductor. These foil components have been used in both the Pegasus and Procyon experiments.

  11. 75 FR 1596 - Grant of Authority for Subzone Status, Reynolds Packaging LLC (Aluminum Foil Liner Stock...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... Register (74 FR 14956, 4-2-2009) and the application has been processed pursuant to the FTZ Act and the... (Aluminum Foil Liner Stock), Louisville, Kentucky Pursuant to its authority under the Foreign-Trade Zones... to the Board for authority to establish a special-purpose subzone at the aluminum foil liner...

  12. Interpretation of aluminum-alloy weld radiography

    NASA Technical Reports Server (NTRS)

    Duren, P. C.; Risch, E. R.

    1971-01-01

    Report proposes radiographic terminology standardization which allows scientific interpretation of radiographic films to replace dependence on individual judgement and experience. Report includes over 50 photographic pages where radiographs of aluminum welds with defects are compared with prepared weld sections photomacrographs.

  13. Study on the measuring method of aluminum foil for ultrasonic cleaning machine

    NASA Astrophysics Data System (ADS)

    Sun, Junzhong; Ao, Chenyang; Zhang, Haipeng; Wang, Kuoting

    2013-03-01

    To the question that it was hard to measure and verify the design rationality of the performance parameters for the ultrasonic cleaning machine, the measuring technology was presented by aluminum foil, and it analyzed feasibility and an area assessment method for the measurement method by aluminum foil. The corrosion degree of the aluminum foil was also put forward. It was demonstrated by the experimental study that this measurement method by aluminum foil could realize the study on the time characteristics of the ultrasonic cleaning machine, selection of the frequency mode of action and study on the temperature characteristics, which provided an effective data support and experimental verification for the performance parameters design of the ultrasonic cleaning machine.

  14. Thermally-induced stresses in graphite-epoxy tubes coated with aluminum foil

    NASA Technical Reports Server (NTRS)

    Knott, Tamara W.; Hyer, M. W.

    1989-01-01

    Thermally-induced stresses in the foil, adhesive, and graphite-epoxy layers of composite tubes with aluminum foil bonded to the inner and outer surface are computed. The thermal effects are due to a temperature decrease from the processing temperature of the material to a temperature felt to represent the space environment, the intended operating environment of the tubes. Tubes fabricated from T300/934 and P75s/934 material systems are considered. The results indicate that the presence of the foil and adhesive have no detrimental effect on the stresses in the tube.

  15. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    SciTech Connect

    Kuznetsov, P. V.; Vlasov, I. V.; Sklyarova, E. A.; Smekalina, T. V.

    2015-10-27

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability.

  16. Quantitative analysis of the damping of magnet oscillations by eddy currents in aluminum foil

    NASA Astrophysics Data System (ADS)

    Muiznieks, Andris; Dudareva, Inese

    2012-09-01

    This paper considers damped rotational oscillations about the vertical axis of a cylindrical permanent magnet that is horizontally suspended by a vertical inelastic thread. The damping of the oscillations is caused by eddy currents induced in aluminum foil that is placed horizontally below the magnet. A simplified mathematical model of the damped oscillations is proposed and verified by experiment qualitatively and quantitatively. It is shown that the relative energy loss during one oscillation depends linearly on the number of layers of aluminum foil and on the oscillation period. To measure the relative changes of the oscillation amplitude, a magnetic field sensor and data collection interface are used.

  17. TRUNK SPROUTING AND GROWTH OF CITRUS AS AFFECTED BY NAA, ALUMINUM FOIL, AND PLASTIC TRUNK WRAPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spring 1999, a commercial NAA (1-naphthaleneacetic acid) preparation for trunk sprout inhibition was compared to a corrugated plastic trunk wrap, aluminum foil wrap, bimonthly hand-removal of sprouts, use of NAA preparation plus bimonthly hand-removal when sprouts appeared, and a non-treated cont...

  18. Numerical simulation of the experiment of electrical explosion of aluminum foil

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.

    2015-11-01

    Numerical simulation of the experiment of Korobenko et al (2007 Phys. Rev. B 75 064208) in strongly coupled plasma of aluminum have been fulfilled. The results of numerical simulation and the experiment are compared. It is established that the hydrodynamic flows in the experiment can be assumed one-dimensional. The elastic-plastic effects in the dynamics of aluminum foil are also insignificant. The focus in the modeling is devoted to the study of the dynamics of the thermodynamic states of aluminum and their spatial homogeneity. It is emphasized the strong influence of the thermal conductivity for such experiments.

  19. Thrust Generation with Low-Power Continuous-Wave Laser and Aluminum Foil Interaction

    SciTech Connect

    Horisawa, Hideyuki; Sumida, Sota; Funaki, Ikkoh

    2010-05-06

    The micro-newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-newtons when the laser power was 20 W, or about 0.75 N/MW. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control of the thrust even under the low-intensity level.

  20. TOF-SIMS Analysis of Crater Residues from Wild 2 Cometary on Stardust Aluminum Foil

    NASA Technical Reports Server (NTRS)

    Leutner, Jan; Stephan, Thomas; Kearsley, T.; Horz, Friedrich; Flynn, George J.; Sandford, Scott A.

    2006-01-01

    Impact residues of cometary particles on aluminum foils from the Stardust mission were investigated with TOF-SIMS for their elemental and organic composition. The residual matter from comet 81P/Wild 2 shows a wide compositional range, from nearly monomineralic grains to polymict aggregates. Despite the comparably small analyzed sample volume, the average element composition of the investigated residues is similar to bulk CI chondritic values. Analysis of organic components in impact residues is complicated, due to fragmentation and alteration of the compounds during the impact process and by the presence of contaminants on the aluminum foils. Nevertheless, polycyclic aromatic hydrocarbons (PAHs) that are unambiguously associated with the impact residues were observed, and thus are most likely of cometary origin.

  1. Analysis of Cometary Dust Impact Residues in the Aluminum Foil Craters of Stardust

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Kearsley, A. T.; Vicenzi, E. P.; Teslich, N.; Dai, Z. R.; Rost, D.; Horz, F.; Bradley, J. P.

    2007-01-01

    In January 2006, the sample return capsule from NASA s Stardust spacecraft successfully returned to Earth after its seven year mission to comet Wild-2. While the principal capture medium for comet dust was low-density graded silica aerogel, the 1100 series aluminum foil (approximately 100 m thick) which wrapped around the T6064 aluminum frame of the sample tray assembly (STA) contains micro-craters that constitute an additional repository for Wild-2 dust. Previous studies of similar craters on spacecraft surfaces, e.g. the Long Duration Exposure Facility (LDEF), have shown that impactor material can be preserved for elemental and mineralogical characterization, although the quantity of impact residue in Stardust craters far exceeds previous missions. The degree of shock-induced alteration experienced by the Wild-2 particles impacting on foil will generally be greater than for those captured in the low-density aerogel. However, even some of the residues found in LDEF craters showed not only survival of crystalline silicates but even their solar flare tracks, which are extremely fragile structures and anneal at around 600 C. Laboratory hypervelocity experiments, using analogues of Wild-2 particles accelerated into flight-grade foils under conditions close to those of the actual encounter, showed retention of abundant projectile residues at the Stardust encounter velocity of 6.1 km/s. During the preliminary examination (PE) of the returned foils, using optical and electron microscopy studies, a diverse range in size and morphologies of micro-craters was identified. In this abstract we consider the state of residue preservation in a diverse range of craters with respect to their elemental composition and inferred mineralogy of the original projectiles.

  2. Investigation of various criteria for evaluation of aluminum thin foil ''smart sensors'' images

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Eremin, A. V.; Lyubutin, P. S.; Burkov, M. V.

    2014-10-01

    Various criteria for processing of aluminum foil ''smart sensors'' images for fatigue evaluation of carbon fiber reinforced polymer (CFRP) were analyzed. There are informative parameters used to assess image quality and surface relief and accordingly to characterize the fatigue damage state of CFRP. The sensitivity of all criteria to distortion influences, particularly, to Gaussian noise, blurring and JPEG compression was investigated. The main purpose of the research is related to the search of informative parameters for fatigue evaluation, which are the least sensitive to different distortions.

  3. Initiation of a discharge channel in water by means of electrical explosion of aluminum foil

    NASA Astrophysics Data System (ADS)

    Sil'nikov, M. V.; Krivosheev, S. I.; Kulakov, K. S.; Kulakov, S. L.

    2013-12-01

    This paper reports the results of an experimental investigation into initiation of the electric discharge in service water by means of explosion of aluminum foil having various mass and dimensions. The electric discharge was formed in a chamber with a movable wall (the piston). As an electric energy storage, the capacitor bank having the capacity C = 200-600 μF with charging voltage U 0 = 2-5 kV (stored energy Q 0 = 0.4-7.5 kJ) and the rate of rise of the discharging current dI/ dt = (3-4) × 109 A/s. The results of experiments showed that destruction (loss of conductivity) of foil occurs at the value of the integral of the current density h j = (0.3-0.65) × 109 (A2/cm4)/s. The stage of the repeated breakdown in the electric discharge occurs when the value of the intensity of the electric field along the discharge channel is of E rb ≥ 50 V/mm. Geometric dimensions and mass of the initiating conductor that provide the maximum efficiency of conversion of the value of Q 0 into kinetic energy of the piston have been determined.

  4. Application of aluminum foil for ``strain sensing'' at fatigue damage evaluation of carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Panin, Sergey; Burkov, Mikhail; Lyubutin, Pavel; Altukhov, Yurii

    2014-01-01

    Surface layer of a loaded solid is an individual structural level of deformation that was shown numerously within concept of physical mesomechanics. This gives rise to advance in its deformation development under loading as well as allows using this phenomenon to sense the strain induced structure changes. It is of specific importance for composite materials since they are highly heterogeneous while estimating their mechanical state is a topical applied problem. Fatigue tests of carbon fiber composite specimens were carried out for cyclic deformation estimation with the use of strain sensors made of thin (80 μm) aluminum foil glued to the specimen's surface. The surface images were captured by DSLR camera mounted onto an optical microscope. Strain relief to form during cyclic loading was numerically estimated using different parameters: dispersion, mean square error, universal image quality index, fractal dimension and energy of Fourier spectrum. The results are discussed in view of deformation mismatch in thin foil and bulk specimen and are offered to be applied for the development of Structural Health Monitoring (SHM) approach.

  5. Classroom Foils

    ERIC Educational Resources Information Center

    Pafford, William N.

    1970-01-01

    Aluminum foil, because of its characteristics, can be used for many elementary science activities: demonstrating Archimedes Principle, how to reduce cohesion, reflection and mirror effect, fuse action, condensation, friction, and as containers and barriers. (BR)

  6. A new method for determining the efficiency of large-area beta sources constructed from anodized aluminum foils.

    PubMed

    Stanga, D; Maringer, F J; Ionescu, E

    2011-01-01

    A new method has been developed for determining the efficiency of large-area beta sources in anodized aluminum foils using transmission measurements. The method was applied to the efficiency measurement of a (90)Sr-(90)Y large-area reference source. Measurement results show that the method can provide efficiency values for (90)Sr-(90)Y reference sources with standard uncertainties smaller than 2.9%, which are far below the limit of 10% required by ISO 8769. PMID:20817476

  7. Radiative heating of plastic-tamped aluminum foil by x rays from a foam-buffered hohlraum.

    PubMed

    Zhang, Jiyan; Yang, Jiamin; Xu, Yan; Yang, Guohong; Ding, Yaonan; Yan, Jun; Yuan, Jianmin; Ding, Yongkun; Zheng, Zhijian; Zhao, Yang; Hu, Zhimin

    2009-01-01

    The time dependence of the x-ray absorption of aluminum samples heated with intense radiation sources from a foam-buffered gold hohlraum has been studied in this work. Hydrodynamic simulations were used to illustrate the plasma conditions in the plastic-tamped aluminum foils contained in this type of hohlraum. Experiments were conducted to measure the K -shell x-ray absorption spectra of the aluminum sample. With densities taken from the hydrodynamic simulations, electron temperatures were then inferred by fitting the measured absorption spectra with detailed-term-accounting calculations. The inferred temperatures have a maximum of about 93eV and were found to agree within 25% with the simulated results at times after 1ns , indicating that the use of foam shields, together with a compact cavity, has created a clean and high-temperature radiation source preferable to opacity measurements. PMID:19257142

  8. Fabrication and icing property of superhydrophilic and superhydrophobic aluminum surfaces derived from anodizing aluminum foil in a sodium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Meirong; Liu, Yuru; Cui, Shumin; Liu, Long; Yang, Min

    2013-10-01

    An aluminum foil with a rough surface was first prepared by anodic treatment in a neutral aqueous solution with the help of pitting corrosion of chlorides. First, the hydrophobic Al surface (contact angle around 79°) became superhydrophilic (contact angle smaller than 5°) after the anodizing process. Secondly, the superhydrophilic Al surface became superhydrophobic (contact angle larger than 150°) after being modified by oleic acid. Finally, the icing property of superhydrophilic, untreated, and superhydrophobic Al foils were investigated in a refrigerated cabinet at -12 °C. The mean total times to freeze a water droplet (6 μL) on the three foils were 17 s, 158 s and 1604 s, respectively. Thus, the superhydrophilic surface accelerates the icing process, while the superhydrophobic surface delays the process. The main reason for this transition might mainly result from the difference of the contact area of the water droplet with Al substrate: the increase in contact area with Al substrate will accelerate the heat conduct process, as well as the icing process; the decrease in contact area with Al substrate will delay the heat conduct process, as well as the icing process. Compared to the untreated Al foil, the contact area of the water droplet with the Al substrate was higher on superhydrophilic surface and smaller on the superhydrophobic surface, which led to the difference of the heat transfer time as well as the icing time.

  9. On-line measurements of proton beam current from a PET cyclotron using a thin aluminum foil

    NASA Astrophysics Data System (ADS)

    Ghithan, S.; do Carmo, S. J. C.; Ferreira Marques, R.; Fraga, F. A. F.; Simões, H.; Alves, F.; Crespo, P.

    2013-07-01

    The number of cyclotrons capable of accelerating protons to about 20 MeV is increasing throughout the world. Originally aiming at the production of positron emission tomography (PET) radionuclides, some of these facilities are equipped with several beam lines suitable for scientific research. Radiobiology, radiophysiology, and other dosimetric studies can be performed using these beam lines. In this work, we measured the Bragg peak of the protons from a PET cyclotron using a stacked target consisting of several aluminum foils interleaved with polyethylene sheets, readout by in-house made transimpedance electronics. The measured Bragg peak is consistent with simulations performed using the SRIM/TRIM simulation toolkit. Furthermore, we report on experimental results aiming at measuring proton beam currents down to 10 pA using a thin aluminum foil (20-μm-thick). The aluminum was chosen for this task because it is radiation hard, it has low density and low radiation activity, and finally because it is easily available at negligible cost. This method allows for calculating the dose delivered to a target during an irradiation with high efficiency, and with minimal proton energy loss and scattering.

  10. Microstructures and Mechanical Properties of Laser Penetration Welding Joint With/Without Ni-Foil in an Overlap Steel-on-Aluminum Configuration

    NASA Astrophysics Data System (ADS)

    Chen, Shuhai; Huang, Jihua; Ma, Ke; Zhao, Xingke; Vivek, Anupam

    2014-06-01

    The microstructures and mechanical properties of laser penetration welding joints with/without Ni-foil in an overlap steel-on-aluminum configuration were investigated. The interfacial structure between fusion zone and aluminum alloy without Ni-foil consists of FeAl/FeAl3. After the Ni-foil is added, the interfacial structure transforms into Ni1.1Al0.9/FeAl3, and the molten pool of aluminum alloy is expanded, which leads to the formation of the NiAl3 between Ni-foil and the molten pool. A banded structure composed of β(Fe, Ni)Al appears whether the joints are made with/without Ni-foil over the reaction zone. It was found that the Ni-foil enhanced tensile property of the joint, expanded usable processing parameters, and decreased microhardness of the intermetallic compounds. The enhancement of mechanical properties is attributed to the improvement of the toughness of the joint made by Ni-foil.

  11. Evaluation of chromic acid anodized aluminum foil coated composite tubes for the Space Station truss structure

    NASA Technical Reports Server (NTRS)

    Dursch, Harry W.; Slemp, Wayne S.

    1988-01-01

    This paper describes the development and evaluation of chromic acid anodized (CAA) Al foil as a protective and thermal control coating for graphite/epoxy tubes designed for the Space Station truss structure. Special consideration is given to the development of solar-absorptance and thermal-emittance properties required of Al foil, the development of CAA parameters necessary to achieve these optical properties, and the atomic oxygen and UV testing of CAA Al foil. Results showed that 0.003-in CAA Al foil cocured or secondary bonded to graphite/epoxy tubes with thin epoxy film adhesive retains excellent bond strength and provides a superior protective and thermal control coating to the LEO environment. Processes were developed for CAA Al foils long enough to continuously wrap the 23-ft-long diagonal struts of the Space Station truss structure. Specifications are presented for the processes of chromic acid anodizing of Al foil and for the bonding of anodized Al foil to graphite/epoxy tubes.

  12. Investigation of the crater-like microdefects induced by laser shock processing with aluminum foil as absorbent layer

    NASA Astrophysics Data System (ADS)

    Ye, Y. X.; Xuan, T.; Lian, Z. C.; Feng, Y. Y.; Hua, X. J.

    2015-06-01

    This paper reports that 3D crater-like microdefects form on the metal surface when laser shock processing (LSP) is applied. LSP was conducted on pure copper block using the aluminum foil as the absorbent material and water as the confining layer. There existed the bonding material to attach the aluminum foil on the metal target closely. The surface morphologies and metallographs of copper surfaces were characterized with 3D profiler, the optical microscopy (OM) or the scanning electron microscopy (SEM). Temperature increases of metal surface due to LSP were evaluated theoretically. It was found that, when aluminum foil was used as the absorbent material, and if there existed air bubbles in the bonding material, the air temperatures within the bubbles rose rapidly because of the adiabatic compression. So at the locations of the air bubbles, the metal materials melted and micromelting pool formed. Then under the subsequent expanding of the air bubbles, a secondary shock wave was launched against the micromelting pool and produced the crater-like microdefects on the metal surface. The temperature increases due to shock heat and high-speed deformation were not enough to melt the metal target. The temperature increase induced by the adiabatic compression of the air bubbles may also cause the gasification of the metal target. This will also help form the crater-like microdefects. The results of this paper can help to improve the surface quality of a metal target during the application of LSP. In addition, the results provide another method to fabricate 3D crater-like dents on metal surface. This has a potential application in mechanical engineering.

  13. [Use of aluminum foil baths for embedding biological materials in epoxide resins].

    PubMed

    Agaev, Iu M; Merkulov, V A

    1975-11-01

    The baths intended for embedding the biological material into epoxide resins are made of aluminium foil, 0.1 mm thick, cut in the form of rectangles (13 X 18 mm). The rectangular foil plates are placed on a soft microporous rubber separator 30--40 mm thick and by means of a form with the base equal to 5 X 10 mm the baths are pressed down by 4 mm deep. The baths are stuck to the paper stripes by rubber cement to ensure easy handling and numeration. In the process of embedding and polymerization the paper stripes having the baths are placed in the exsiccator with P2O5 and thermostate on special aluminium stands. PMID:775710

  14. SIMS Studies of Allende Projectiles Fired into Stardust-type Aluminum Foils at 6 km/s

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Stadermann, Frank J.; Stephan, Thomas; Floss, Christine; Leitner, Jan; Marhas, Kuljeet; Horz, Friedrich

    2006-01-01

    We have explored the feasibility of C-, N-, and O-isotopic measurements by NanoSIMS and of elemental abundance determinations by TOF-SIMS on residues of Allende projectiles that impacted Stardust-type aluminum foils in the laboratory at 6 km/s. These investigations are part of a consortium study aimed at providing the foundation for the characterization of matter associated with micro-craters that were produced during the encounter of the Stardust space probe with comet 81P/Wild 2. Eleven experimental impact craters were studied by NanoSIMS and eighteen by TOF-SIMS. Crater sizes were between 3 and 190 microns. The NanoSIMS measurements have shown that the crater morphology has only a minor effect on spatial resolution and on instrumental mass fractionation. The achievable spatial resolution is always better than 200 nm, and C- and O-isotopic ratios can be measured with a precision of several percent at a scale of several 100 nm, the typical size of presolar grains. This clearly demonstrates that presolar matter, provided it survives the impact into the aluminum foil partly intact, is recognizable even if embedded in material of Solar System origin. TOF-SIMS studies are restricted to materials from the crater rim. The element ratios of the major rockforming elements in the Allende projectiles are well characterized by the TOF-SIMS measurements, indicating that fractionation of those elements during impact can be expected to be negligible. This permits information on the type of impactor material to be obtained. For any more detailed assignments to specific chondrite groups, however, information on the abundances of the light elements, especially C, is crucial.

  15. Prediction and characterization of heat-affected zone formation due to neighboring nickel-aluminum multilayer foil reaction

    SciTech Connect

    Adams, David P.; Hirschfeld, Deidre A.; Hooper, Ryan J.; Manuel, Michelle V.

    2015-09-01

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Much of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To enhance the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of evaluating new foil-substrate combinations for screening and optimization. The model is experimentally validated using a commercially available Ni-Al multilayer foils and different alloys.

  16. Analytical Scanning and Transmission Electron Microscopy of Laboratory Impacts on Stardust Aluminium Foils: Interpreting Impact Crater Morphology and the Composition of Impact Residues.

    SciTech Connect

    Kearsley, A T; Graham, G A; Burchell, M J; Cole, M J; Dai, Z R; Teslich, N; Chater, R; Wozniakiewicz, P A; Spratt, J; Jones, G

    2006-10-19

    The known encounter velocity (6.1kms{sup -1}) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild 2 has allowed realistic simulation of dust collection in laboratory experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminium foil components of the Stardust collector. In this report we present information on crater gross morphology, the pre-existing major and trace element composition of the foil, geometrical issues for energy dispersive X-ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density and composition for particles impacted upon the Stardust aluminium foils.

  17. SEM-EDS Analyses of Small Craters in Stardust Aluminum Foils: Implications for the Wild-2 Dust Distribution

    NASA Technical Reports Server (NTRS)

    Borg, J.; Horz, F.; Bridges, J. C.; Burchell, M. J.; Djouadi, Z.; Floss, C.; Graham, G. A.; Green, S. F.; Heck, P. R.; Hoppe, P.; Huth, J.; Kearsley, A; Leroux, H.; Marhas, K.; Stadermann, F. J.; Teslich, N.

    2007-01-01

    Aluminium foils were used on Stardust to stabilize the aerogel specimens in the modular collector tray. Part of these foils were fully exposed to the flux of cometary grains emanating from Wild 2. Because the exposed part of these foils had to be harvested before extraction of the aerogel, numerous foil strips some 1.7 mm wide and 13 or 33 mm long were generated during Stardusts's Preliminary Examination (PE). These strips are readily accommodated in their entirety in the sample chambers of modern SEMs, thus providing the opportunity to characterize in situ the size distribution and residue composition - employing EDS methods - of statistically more significant numbers of cometary dust particles compared to aerogel, the latter mandating extensive sample preparation. We describe here the analysis of nearly 300 impact craters and their implications for Wild 2 dust.

  18. Impact Welding of Aluminum to Copper and Stainless Steel by Vaporizing Foil Actuator: Effect of Heat Treatment Cycles on Mechanical Properties and Microstructure

    NASA Astrophysics Data System (ADS)

    Vivek, Anupam; Hansen, Steven; Benzing, Jake; He, Mei; Daehn, Glenn

    2015-10-01

    This work studies the mechanical property effect of microstructure on impact welds of aluminum alloy AA6061 with both copper alloy Cu 110 and stainless steel AISI 304. AA6061-T6 and T4 temper aluminum sheets of 1 mm thickness were launched toward copper and stainless steel targets using the vaporizing foil actuator technique. Flyer plate velocities, measured via photonic Doppler velocimetry, were observed to be approximately 800 m/s. The welded aluminum-copper samples were subjected to instrumented peel testing, microhardness testing, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The welded joints exhibited cracks through their continuous intermetallic layers. The cracks were impeded upon encountering a ductile metallic wave. The welds created with T6 temper flyer sheets were found to have smaller intermetallic-free and wavy interface regions as compared to those created with T4 temper flyer sheets. Peel strength tests of the two weld combinations resulted in failure along the interface in the case of the T6 flyer welds, while the failure generally occurred in the parent aluminum for the T4 temper flyer welds. Half of the T4 flyer welds were subjected to aging for 18 h at 433 K (160 °C) to convert the aluminum sheet to the T6 condition. Although the aged flyer material did not attain the hardness of the as-received T6 material, it was found to be significantly stronger than the T4 material. These welds retained their strength after the aging process, and diffusion across the interface was minimal. The welded aluminum-stainless steel samples were analyzed on a more basic level than aluminum-copper samples, but were found to exhibit similar results.

  19. Foil implosion studies on PEGASUS

    SciTech Connect

    Cochrane, J.C.; Bartsch, R.R.; Begay, F.; Kruse, H.W.; Oona, H.; Parker, J.V.; Turchi, P.J.

    1989-01-01

    PEGASUS is a 1.5 MJ capacitor bank facility used in the Los Alamos Trailmaster foil implosion program. The experiments on this facility are to serve as a diagnostic testbed and foil physics benchmark for foil implosions with explosive generators as drivers. During the first year of operation, foil implosions have been driven by discharging the bank directly into a very thin Aluminum 2500 /angstrom/ thick free-standing foil without any pulse sharpening techniques; so-called ''direct drive.''These direct drive experiments have served as initial tests to optimize bank performance and foil implosion experimental techniques. The results to date are presented below. 1 ref., 2 figs.

  20. Aluminum Foils of the Stardust Interstellar Collector: The Challenge of Recognizing Micrometer-sized Impact Craters made by Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Westphal, A. J.; Burchell, M. J.; Zolensky, Michael E.

    2008-01-01

    Preliminary Examination (PE) of the Stardust cometary collector revealed material embedded in aerogel and on aluminium (Al) foil. Large numbers of sub-micrometer impact craters gave size, structural and compositional information. With experience of finding and analyzing the picogram to nanogram mass remains of cometary particles, are we now ready for PE of the Interstellar (IS) collector? Possible interstellar particle (ISP) tracks in the aerogel are being identified by the stardust@home team. We are now assessing challenges facing PE of Al foils from the interstellar collector.

  1. A review of computer aided interpretation technology for the evaluation of radiographs of aluminum welds

    NASA Technical Reports Server (NTRS)

    Lloyd, J. F., Sr.

    1987-01-01

    Industrial radiography is a well established, reliable means of providing nondestructive structural integrity information. The majority of industrial radiographs are interpreted by trained human eyes using transmitted light and various visual aids. Hundreds of miles of radiographic information are evaluated, documented and archived annually. In many instances, there are serious considerations in terms of interpreter fatigue, subjectivity and limited archival space. Quite often it is difficult to quickly retrieve radiographic information for further analysis or investigation. Methods of improving the quality and efficiency of the radiographic process are being explored, developed and incorporated whenever feasible. High resolution cameras, digital image processing, and mass digital data storage offer interesting possibilities for improving the industrial radiographic process. A review is presented of computer aided radiographic interpretation technology in terms of how it could be used to enhance the radiographic interpretation process in evaluating radiographs of aluminum welds.

  2. XUV radiography measurements of direct drive imprint in thin aluminum foils using a Ge x-ray laser on Vulcan

    SciTech Connect

    Kalantar, D.H.; Demir, A.; Key, M.H.

    1996-03-29

    One key aspect for high gain direct drive inertial confinement fusion is the imprint of perturbations in the outer surface of a capsule due to nonuniformities in the direct laser illumination of the capsule. Direct drive implosions are achieved by uniformly irradiating the outside surface of a hollow spherical capsule that contains a layer of fusionable D-T on its inner surface. The intensity of laser irradiation is down with a low intensity ``foot`` at 10{sup 13} W/cm{sup 2} for several nanoseconds before it builds up to more than 10{sup 15} W/cm{sup 2} during the main drive portion of the pulse. Laser ablation of the capsule surface produces a high pressure that accelerates the capsule shell radially inward in a spherical implosion. During this acceleration, perturbations due to surface roughness and due to imprint from spatial nonuniformities in the laser irradiation undergo Rayleigh-Taylor growth, potentially severely degrading performance. Our interest is in studying the imprint process and subsequent Rayleigh-Taylor growth of perturbations in a foil target that is irradiated by a low intensity laser speckle pattern. Previous experiments have been done to study laser imprint with an x-ray laser backlighter at the Nova laser using 0.35 micrometer laser irradiation of a 3 micrometer Si foil. In these experiments we irradiated a 2 micrometer thick Al foil with 0.53 micrometer laser light at 2-8 {times} 10{sup 12} W/cm{sup 2} using the Vulcan laser. We used a Ge x-ray laser as an XUV backlighter to measure the modulation in optical depth of the foil on a CCD during the initial imprint phase and after Rayleigh-Taylor growth with different laser smoothing schemes. 4 refs., 6 figs.

  3. Fabrication, performance, and figure metrology of epoxy-replicated aluminum foils for hard x-ray focusing multilayer-coated segmented conical optics

    NASA Astrophysics Data System (ADS)

    Jimenez-Garate, Mario A.; Craig, William W.; Hailey, Charles J.; Christensen, Finn E.; Hussain, Ahsen M.

    2000-11-01

    We fabricated x-ray mirrors for hard x-ray (>= 10 keV) telescopes using multilayer coatings and an improved epoxy- replicated aluminum foil (ERAF) nonvacuum technology. The ERAF optics have approximately 1 arcmin axial figure half- power diameter (HPD) and passed environmental testing. Reflectivity measurements at 8 keV on ERAFs with and without multilayer coatings show a 4.4 to 4.8 angstroms room mean square microroughness for correlation lengths

  4. Foil Artists

    ERIC Educational Resources Information Center

    Szekely, George

    2010-01-01

    Foil can be shaped into almost anything--it is the all-purpose material for children's art. Foil is a unique drawing surface. It reflects, distorts and plays with light and imagery as young artists draw over it. Foil permits quick impressions of a model or object to be sketched. Foil allows artists to track their drawing moves, seeing the action…

  5. Laboratory Simulation of Impacts upon Aluminum Foils of the Stardust Spacecraft: Calibration of Dust Particle Size from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Burchell, M. J.; Horz, F.; Cole, M. J.; Schwandt, C. S.

    2006-01-01

    Metallic aluminium alloy foils exposed on the forward, comet-facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminium alloy to record hypervelocity impacts as bowl-shaped craters offers an opportunistic substrate for recognition of impacts by particles of a wide potential size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild 2, with a known and constant spacecraft-particle relative velocity and effective surface-perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration programme we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well-documented particle size range from 10 microns to nearly 100 microns. Light gas gun buckshot firings of these particles at approximately 6km s)exp -1) onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild 2, independent of the active impact detector instruments aboard the Stardust spacecraft.

  6. Synthesis of VACNFs on Aluminum Foil and Their Transfer to PDMS while Maintaining Alignment and Impalefection Functionality

    SciTech Connect

    Railsback, Justin; Pearce, Ryan; Sarac, Mehmet; ANDERSON, BRYAN; McKnight, Timothy E; Tracy, Joseph B; Melechko, Anatoli

    2013-01-01

    Vertically aligned carbon nanofibers (VACNFs) are synthesized on 3003 aluminum substrates by direct current plasma enhanced chemical vapor deposition. Chemically synthesized nickel nanoparticles were used as the catalyst for growth. The silicon containing coating (SiNx) typically produced when VACNFs are grown on silicon was produced by adding silicon microparticles prior to growth. The fiber array was transferred to PDMS by spin casting a layer on the grown substrates, curing the PDMS, and etching away the aluminum in KOH. Energy dispersive x-ray spectroscopy, scanning electron microscopy, and fluorescence microscopy data are provided. The free standing array in PDMS was then loaded with pVENUS-C1 plasmid and human brain microcapillary endothelial cells (HCMECHBMEC)/d3 cells were successfully impalefected with the plasmid.

  7. Submicron, unbacked, shaped metal foils

    SciTech Connect

    Duchane, D.V.; Barthell, B.L.

    1983-01-01

    A method was developed to produce unbacked, shaped metal foils in sub-micron thicknesses. This process utilizes a temporary substrate consisting of a water-soluble polymer film as a base for the electron-beam deposition of the metal layer. After formation of the metal foil, the polymer is removed by immersion of the assembly in water. Unbacked metal-foil cylinders as thin as 0.17 ..mu..m with extremely smooth, wrinkle-free surfaces have been produced by this technique. Polyvinyl alcohol was an excellent substrate. Aluminum foils were produced.

  8. Vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Tong, Linyue; Skorenko, Kenneth H.; Faucett, Austin C.; Boyer, Steven M.; Liu, Jian; Mativetsky, Jeffrey M.; Bernier, William E.; Jones, Wayne E.

    2015-11-01

    Laminar composite electrodes are prepared for application in supercapacitors using a catalyzed vapor-phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on the surface of commercial carbon coated aluminum foil. These highly electrically conducting polymer films provide for rapid and stable power storage per gram at room temperature. The chemical composition, surface morphology and electrical properties are characterized by Raman spectroscopy, scanning electron microscopy (SEM), and conducting atomic force microscopy (C-AFM). A series of electrical measurements including cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy are also used to evaluate electrical performance. The processing temperature of VPP shows a significant effect on PEDOT morphology, the degree of orientation and its electrical properties. The relatively high temperature leads to high specific area and large conductive domains of PEDOT layer which benefits the capacitive behavior greatly according to the data presented. Since the substrate is already highly conductive, the PEDOT based composite can be used as electrode materials directly without adding current collector. By this simple and efficient process, PEDOT based composites exhibit specific capacitance up to 134 F g-1 with the polymerization temperature of 110 °C.

  9. Shrink tape technique for heat-forming aluminum substrates for thin foil x-ray mirrors and the Neutron Star Interior Composition Explorer x-ray concentrators

    NASA Astrophysics Data System (ADS)

    Balsamo, Erin; Gendreau, Keith; Okajima, Takashi; Soong, Yang; Serlemitsos, Peter; Jalota, Lalit; Kenyon, Steven; Spartana, Nicholas; Fickau, David; Koenecke, Richard

    2016-01-01

    Consistent improvements in the design and fabrication of thin-foil, epoxy-replicated x-ray mirrors for astronomical telescopes have yielded increasingly higher quality and more precise astrophysical data. The Neutron Star Interior Composition Explorer (NICER) x-ray timing mission optics continues this tradition and introduces design elements that promise even more accurate measurements and precise astrophysical parameters. The singly reflecting concentrators have a curved axial profile to improve photon concentration and a sturdy full shell structure for enhanced module stability. These design elements introduced the challenge of reliably forming mirror substrates at an acceptable production rate. By developing a technique using heat shrink tape to compress and conform thin aluminum mirror substrates to shaping mandrels, production rate improved with successful fabrication. The technique's efficiency was analyzed by measuring hundreds of substrate profiles postforming, performance testing completely assembled concentrators composed of every size substrate, and comparing the results to simulated fabrication scenarios. On average, the profiles were copied within 4.6±3.7%. These measurements and the overall success of NICER's optics, via ground calibration, have shown that the heat-shrink tape method is reliable, repeatable, and could be used in future missions to increase production rate and improve performance.

  10. Aluminum and Young Artists.

    ERIC Educational Resources Information Center

    Anderson, Thomas

    1980-01-01

    The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)

  11. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    NASA Astrophysics Data System (ADS)

    Hooper, R. J.; Davis, C. G.; Johns, P. M.; Adams, D. P.; Hirschfeld, D.; Nino, J. C.; Manuel, M. V.

    2015-06-01

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.

  12. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    DOE PAGESBeta

    Hooper, R. J.; Davis, C. G.; Johns, P. M.; Adams, D. P.; Hirschfeld, D.; Nino, J. C.; Manuel, M. V.

    2015-06-26

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical modelmore » for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.« less

  13. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    SciTech Connect

    Hooper, R. J.; Davis, C. G.; Johns, P. M.; Adams, D. P.; Hirschfeld, D.; Nino, J. C.; Manuel, M. V.

    2015-06-26

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.

  14. Foil bearings

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1993-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  15. A MODERN INTERPRETATION OF THE BARNEY DIAGRAM FOR ALUMINUM SOLUBILITY IN TANK WASTE

    SciTech Connect

    REYNOLDS JG; REYNOLDS DA

    2009-12-16

    Experimental and modeling studies of aluminum solubility in Hanford tank waste have been developed and refined for many years in efforts to resolve new issues or develop waste treatment flowsheets. The earliest of these studies was conducted by G. Scott Barney, who performed solubility studies in highly concentrated electrolyte solutions to support evaporator campaign flowsheets in the 1970's. The 'Barney Diagram', a term still widely used at Hanford today, suggested gibbsite ({gamma}-Al(OH){sub 3}) was much more soluble in tank waste than in simple sodium hydroxide solutions. These results, which were highly surprising at the time, continue to be applied to new situations where aluminum solubility in tank waste is of interest. Here, we review the history and provide a modern explanation for the large gibbsite solubility observed by Barney, an explanation based on basic research that has been performed and published in the last 30 years. This explanation has both thermodynamic and kinetic aspects. Thermodynamically, saturated salt solutions stabilize soluble aluminate species that are minor components in simple sodium hydroxide solutions. These species are the aluminate dimer and the sodium-aluminate ion-pair. Ion-pairs must be present in the Barney simulants because calculations showed that there was insufficient space between the highly concentrated ions for a water molecule. Thus, most of the ions in the simulants have to be ion-paired. Kinetics likely played a role as well. The simulants were incubated for four to seven days, and more recent data indicate that this was unlikely sufficient time to achieve equilibrium from supersaturation. These results allow us to evaluate applications of the Barney results to current and future tank waste issues or flowsheets.

  16. Foil Electron Multiplier

    DOEpatents

    Funsten, Herbert O.; Baldonado, Juan R.; Dors, Eric E.; Harper, Ronnie W.; Skoug, Ruth M.

    2006-03-28

    An apparatus for electron multiplication by transmission that is designed with at least one foil having a front side for receiving incident particles and a back side for transmitting secondary electrons that are produced from the incident particles transiting through the foil. The foil thickness enables the incident particles to travel through the foil and continue on to an anode or to a next foil in series with the first foil. The foil, or foils, and anode are contained within a supporting structure that is attached within an evacuated enclosure. An electrical power supply is connected to the foil, or foils, and the anode to provide an electrical field gradient effective to accelerate negatively charged incident particles and the generated secondary electrons through the foil, or foils, to the anode for collection.

  17. Steel Foil Improves Performance Of Blasting Caps

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Perry, Ronnie; Schimmel, Morry L.

    1990-01-01

    Blasting caps, which commonly include deep-drawn aluminum cups, give significantly higher initiation performance by application of steel foils on output faces. Steel closures 0.005 in. (0.13 mm) thick more effective than aluminum. Caps with directly bonded steel foil produce fragment velocities of 9,300 ft/s (2.8 km/s) with large craters and unpredictable patterns to such degree that no attempts made to initiate explosions. Useful in military and aerospace applications and in specialized industries as mining and exploration for oil.

  18. Tight, Flat, Smooth, Ultrathin Metal Foils for Locating Synchrotron Beams

    NASA Astrophysics Data System (ADS)

    Jolivet, Connie S.; Stoner, John O.

    2007-01-01

    It is often desired to locate a synchrotron x-ray beam precisely in space with minimal disturbance of its spatial profile and spectral content. This can be done by passing the beam through an ultrathin, flat, smooth metal foil having well-defined composition, preferably a single chemical element such as chromium, titanium or aluminum. Localized fluorescence of the foil at characteristic x-ray lines where the x-ray beam passes through the foil serves to locate the beam in two dimensions. Use of two such foils along the beam direction locates the x-ray beam spatially and identifies precisely its direction. The accuracy of determining these parameters depends in part upon high uniformity in the thickness of the foil(s), good planarity, and smoothness of the foil(s). In practice, several manufacturing steps to produce a foil must be carried out with precision. The foil must be produced on a smooth removable substrate in such a way that its thickness (or areal density) is as uniform as possible. The foil must be fastened to a support ring that maintains the foil's surface quality, and it must be then stretched onto a frame that produces the desired mirror flatness. These steps are illustrated and some of the parameters specifying the quality of the resulting foils are identified.

  19. Foil changing apparatus

    DOEpatents

    Crist, Charles E.; Ives, Harry C.; Leifeste, Gordon T.; Miller, Robert B.

    1988-01-01

    A self-contained hermetically sealed foil changer for advancing a portion of foil web into a position normal to the path of a high energy particle beam. The path of the beam is defined generally by an aperture plate and cooperating axially movable barrel such that the barrel can be advanced toward the plate thereby positioning a portion of the foil across the beam path and sealing the foil between the barrel and the plate to form a membrane across said beam path. A spooling apparatus contained in the foil changer permits selectively advancing a fresh supply of foil across the beam path without breaking the foil changer seal.

  20. Foil Panel Mirrors for Nonimaging Applications

    NASA Technical Reports Server (NTRS)

    Kuyper, D. J.; Castillo, A. A.

    1984-01-01

    Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.

  1. Theoretical interpretation of the vacuum ultraviolet reflectance of liquid helium and of the absorption spectra of helium microbubbles in aluminum

    NASA Astrophysics Data System (ADS)

    Lucas, A. A.; Vigneron, J. P.; Donnelly, S. E.; Rife, J. C.

    1983-09-01

    The position and width of the helium resonance line 11S0-->21P1 are calculated for a high-density helium fluid. The theory aims at understanding the reflectivity data of Surko et al. for the low-temperature liquid-vapor interface and the absorption data of Rife et al. for room-temperature, high-pressure helium bubbles in aluminum. The theoretical ingredients of the model are (i) the long-range dipole interaction of an excited 2P atom with the rest of the fluid and with the metal substrate; (ii) the short-range Pauli pseudorepulsion arising from orthogonalization of the 2p-electron wave function with the 1s ground-state orbital of neighboring atoms; (iii) a statistical treatment of the high-density fluid based either on the experimentally measured radial pair distribution function of low-T liquid He, or on the Percus-Yevick distribution function of hard spheres and the theoretical equation of state of Young et al. for the He fluid in the bubbles; (iv) the standard static line-broadening theory to calculate the effect of Pauli repulsion on the line shapes. The theory provides a reasonably accurate understanding of the observed spectra in both the liquid and high-density gas, and can serve as a sound basis for interpretation of vacuum ultraviolet spectra in other gas-metal combinations.

  2. Bonded Invar Clip Removal Using Foil Heaters

    NASA Technical Reports Server (NTRS)

    Pontius, James T.; Tuttle, James G.

    2009-01-01

    A new process uses local heating and temperature monitoring to soften the adhesive under Invar clips enough that they can be removed without damaging the composite underneath or other nearby bonds. Two 1x1 in. (approx.2.5x2.5 cm), 10-W/sq in. (approx.1.6-W/sq cm), 80-ohm resistive foil Kapton foil heaters, with pressure-sensitive acrylic adhesive backing, are wired in parallel to a 50-V, 1-A limited power supply. At 1 A, 40 W are applied to the heater pair. The temperature is monitored in the clip radius and inside the tube, using a dual thermocouple readout. Several layers of aluminum foil are used to speed the heat up, allowing clips to be removed in less than five minutes. The very local heating via the foil heaters allows good access for clip removal and protects all underlying and adjacent materials.

  3. Apparatus and process for ultrasonic seam welding stainless steel foils

    DOEpatents

    Leigh, Richard W.

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  4. Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

    SciTech Connect

    Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J; Foster, N J; Teslich, N

    2009-12-10

    New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.

  5. Effect of Smoked Foil Thickness and Location on Detonation Initiation

    NASA Astrophysics Data System (ADS)

    Chung, K. M.; Wen, C. S.

    Smoked foil has been employed to visualize triple point pattern (or cell width), indicating detonation phenomena. However, the aluminum sheet also corresponds to sudden contraction in a smooth tube. It might induce early trigger on detonation initiation and result in a reduction in deflagration-to-detonation transition (DDT) run-up distance. Test results showed the thickness of aluminum sheet of less than 1.3 mm is required to eliminate the effect of smoked foil. A reduction in Xdtt is observed when the thickness of aluminum sheet increases.

  6. Method of forming a thin unbacked metal foil

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    In a method of forming a thin (<2 .mu.m) unbacked metal foil having a desired curviplanar shape, a soluble polymeric film, preferably comprising polyvinyl alcohol, is formed on a supporting structure having a shape that defines the desired shape of the foil product. A layer of metal foil is deposited onto one side of the soluble film, preferably by vacuum vapor deposition. The metallized film is then immersed in a suitable solvent to dissolve the film and thereby leave the metal foil as an unbacked metal foil element mounted on the supporting structure. Aluminum foils less than 0.2 .mu.m (2,000 .ANG.) thick and having an areal density of less than 54 .mu.g/cm.sup.2 have been obtained.

  7. Carbon stripper foils used in the Los Alamos PSR

    SciTech Connect

    Borden, M.J.; Plum, M.A.; Sugai, I.

    1997-12-01

    Carbon stripper foils produced by the modified controlled ACDC arc discharge method (mCADAD) at the Institute for Nuclear Study have been tested and used for high current 800-MeV beam production in the Proton Storage Ring (PSR) since 1993. Two foils approximately 110 {mu}g/cm{sup 2} each are sandwiched together to produce an equivalent 220 {mu}g/cm{sup 2} foil. The foil sandwitch is supported by 4-5 {mu}m diameter carbon filters attached to an aluminum frame. These foils have survived as long as five months during PSR normal beam production of near 70 {mu}A average current on target. Typical life-times of other foils vary from seven to fourteen days with lower on-target average current. Beam loss data also indicate that these foils have slower shrinkage rates than standard foils. Equipment has been assembled and used to produce foils by the mCADAD method at Los Alamos. These foils will be tested during 1997 operation.

  8. Compliant Foil Seal Investigations

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret; Delgado, Irebert

    2003-01-01

    NASA Glenn Research Center has been working with Mohawk Innovative Technology, Inc. (MiTi) to develop a Compliant Foil Seal for use in gas turbine engines. MiTi was awarded phase I and phase II SBIR contracts to analyze, develop, and test foil seals. As part of the Phase II contract, MiTi delivered an 8.5 inch diameter foil seal to NASA GRC for testing. Today I will be presenting some results of testing the 8.5 inch foil seal at NASA.

  9. Foil Face Seal Testing

    NASA Technical Reports Server (NTRS)

    Munson, John

    2009-01-01

    In the seal literature you can find many attempts by various researchers to adapt film riding seals to the gas turbine engine. None have been successful, potential distortion of the sealing faces is the primary reason. There is a film riding device that does accommodate distortion and is in service in aircraft applications, namely the foil bearing. More specifically a foil thrust bearing. These are not intended to be seals, and they do not accommodate large axial movement between shaft & static structure. By combining the 2 a unique type of face seal has been created. It functions like a normal face seal. The foil thrust bearing replaces the normal primary sealing surface. The compliance of the foil bearing allows the foils to track distortion of the mating seal ring. The foil seal has several perceived advantages over existing hydrodynamic designs, enumerated in the chart. Materials and design methodology needed for this application already exist. Also the load capacity requirements for the foil bearing are low since it only needs to support itself and overcome friction forces at the antirotation keys.

  10. Surface treatment using metal foil liner

    NASA Technical Reports Server (NTRS)

    Garvey, Ray

    1989-01-01

    A metal foil liner can be used to seal large area surfaces. Characteristics of the two-layer foil liner are discussed. Micrographs for foil-to-foil, foil-to-composite, visible seams, and hidden seams are examined.

  11. Beam-foil spectroscopy

    SciTech Connect

    Berry, H.G.; Hass, M.

    1982-01-01

    A brief survey of some applications of beam-foil spectroscopy is presented. Among the topics covered are lifetime and magnetic moment measurements, nuclear alignment, and polarized light production. (AIP)

  12. SNS Injection Foil Experience

    SciTech Connect

    Cousineau, Sarah M; Galambos, John D; Kim, Sang-Ho; Ladd, Peter; Luck, Chris; Peters, Charles C; Polsky, Yarom; Shaw, Robert W; Macek, Robert James; Raparia, Deepak; Plum, Michael A

    2010-01-01

    The Spallation Neutron Source comprises a 1 GeV, 1.4 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H0 excited states created during the H charge exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we will detail these and other interesting failure mechanisms, and describe the improvements we have made to mitigate them.

  13. Interpretation of observations made using local electrochemical impedance mapping (LEIM) on organic coated aluminum alloy 2024-T3

    NASA Astrophysics Data System (ADS)

    Mierisch, Amber Menemsha

    2001-08-01

    Local Electrochemical Impedance Mapping (LED4) was used to investigate local underfilm corrosion of organic coated (epoxy, polyurethane, vinyl) aluminum alloy 2024- T3 substrates immersed in chloride solutions. Several interesting features in LEIM were observed that would provide insight into the local breakdown processes of coated metals if they reflected actual electrochemical phenomena. Contribution to measurements from' artifact or quantities unrelated to breakdown, and the general effect of the dielectric layer on LEIM, were evaluated by comparison of analytical and numerical modeling to LEIM of fabricated electrodes. An equipotential disk was used to model underfilm corrosion. The fields calculated for these models were correlated with LEIM of both bare and coated fabricated electrodes (Au, Pt, Al, Cu). Numerical modeling predicted that a dielectric layer would dull edge effects and severely dampen the magnitude of the field emanating from the substrate surface. A salt film beneath the coating was predicted to have no significant effect on the field. LEIM of coated disk electrodes showed no evidence of the underfilm electrode with two exceptions: (1)underfilm corrosion occurring on pure aluminum, and (2)a copper electrode, which has a very active surface. The discrepancy between modeling and experimental results of coated systems prompted further experimental investigation to isolate the roles of current density and coating defects. Blisters were created on coated gold samples by placing NaCl and AlCl3 salt islands beneath the coating for various coating and substrate configurations. LEIM recorded a peak in admittance only over an acidic blister in polyurethane where local hydrolysis had occurred. It was determined that one of two criteria is required to measure electrochemical activity through a film: (1)the substrate must be actively corroding to produce a current density sufficient to generate a measurable field, or (2)a low resistivity defect must exist

  14. Development of thin foils for use in generating neutral particle beams

    SciTech Connect

    Aaron, W.S.; Zevenbergen, L.A.; Adair, H.L.; Culpepper, C.A.; McCulla, W.H.; Nolan, T.A.; Hughes, M.R.

    1986-01-01

    The Isotope Research Materials Laboratory (IRML) was requested to prepare large-area, ultrathin aluminum and carbon foils for use in beam neutralization experiments. There were two major parts to this request. The first was to immediately provide a number of 5-cm-dia foils 5 to 20 ..mu..g/cm/sup 2/ thick for use in experiments at the Fusion Materials Irradiation Test (FMIT) facility and at Argonne National Laboratory (ANL). The second, longer-term request was to develop methods to prepare 25-cm x 25-cm, 10-..mu..g/cm/sup 2/ aluminum neutralizer foils. Both parts of the request have been successfully met.

  15. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  16. Design and validation of novel scattering foils for modulated electron radiation therapy.

    PubMed

    Connell, T; Seuntjens, J

    2014-05-21

    Modulated Electron Radiation Therapy (MERT) continues to be an area of interest to various groups, however, the scattering foils used in beam flattening have not been optimized for this modality. In this work, the feasibility of novel scattering foils specifically designed for MERT is investigated using Monte Carlo methods. Different designs based on foil material, shape and thickness were analyzed. It was shown that low atomic number materials such as aluminum were optimal, while shaped foils such as those employed in current dual foil designs were not necessary. Aluminum foil thickness between 0.36 mm and 1.50 mm were capable of sufficiently broadening beams with energies between 12 MeV and 20 MeV respectively, with beams of lower energies receiving sufficient scatter from the treatment head components and air scatter. Finally, custom foils were manufactured based upon previously simulated designs and were placed into the beamline of a 2100 EX accelerator, and showed excellent agreement between the simulated and measured PDDs and profiles. Custom foils achieved higher dose rates on the central axis compared to the clinical foils by factors of 5.4, 4.9 and 4.5 for 12 MeV, 16 MeV and 20 MeV, respectively. PMID:24743426

  17. Design and validation of novel scattering foils for modulated electron radiation therapy

    NASA Astrophysics Data System (ADS)

    Connell, T.; Seuntjens, J.

    2014-05-01

    Modulated Electron Radiation Therapy (MERT) continues to be an area of interest to various groups, however, the scattering foils used in beam flattening have not been optimized for this modality. In this work, the feasibility of novel scattering foils specifically designed for MERT is investigated using Monte Carlo methods. Different designs based on foil material, shape and thickness were analyzed. It was shown that low atomic number materials such as aluminum were optimal, while shaped foils such as those employed in current dual foil designs were not necessary. Aluminum foil thickness between 0.36 mm and 1.50 mm were capable of sufficiently broadening beams with energies between 12 MeV and 20 MeV respectively, with beams of lower energies receiving sufficient scatter from the treatment head components and air scatter. Finally, custom foils were manufactured based upon previously simulated designs and were placed into the beamline of a 2100 EX accelerator, and showed excellent agreement between the simulated and measured PDDs and profiles. Custom foils achieved higher dose rates on the central axis compared to the clinical foils by factors of 5.4, 4.9 and 4.5 for 12 MeV, 16 MeV and 20 MeV, respectively.

  18. Summary of recent experiments on focusing of target-normal-sheath-accelerated proton beam with a stack of conducting foils

    SciTech Connect

    Ni, P. A.; Alexander, N.; Barnard, J. J.; Lund, S. M.

    2014-05-15

    We present a summary of recent experiments on focusing of laser target-normal-sheath-accelerated (TNSA) proton beam with a stack of thin conducting foils. The experiments were performed using the Phelix laser (GSI-Darmstadt) and the Titan laser, Lawrence Livermore National Laboratory. The phenomena consistent with self-collimation (or weak self-focusing) of TNSA protons were experimentally observed for the first time at the Phelix laser user facility, in a specially engineered structure ('lens') consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. Follow up experiments using the Titan laser obtained results consistent with the collimation/focusing observed in the initial experiments using the Phelix. The Titan experiments employed improved, 25 μm- and 50 μm-gap targets and the new fine mesh diagnostic. All the experiments were carried out in a “passive environment,” i.e., no external fields were applied, and no neutralization plasma or injection of secondary charged particles was imposed. A plausible interpretation of the observed phenomena is that the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the conducting foils inhibits radial expansion of the beam.

  19. Compliant Foil Seal Investigations

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret; Delgado, Irebert

    2004-01-01

    Room temperature testing of an 8.5 inch diameter foil seal was conducted in the High Speed, High Temperature Turbine Seal Test Rig at the NASA Glenn Research Center. The seal was operated at speeds up to 30,000 rpm and pressure differentials up to 75 psid. Seal leakage and power loss data will be presented and compared to brush seal performance. The failure of the seal and rotor coating at 30,000 rpm and 15 psid will be presented and future development needs discussed.

  20. Rhenium-Foil Witness Cylinders

    NASA Technical Reports Server (NTRS)

    Knight, B. L.

    1992-01-01

    Cylindrical portion of wall of combustion chamber replaced with rhenium foil mounted on holder. Rhenium oxidizes without melting, indicating regions of excess oxidizer in combustion-chamber flow. Rhenium witness foils also useful in detecting excess oxygen and other oxidizers at temperatures between 2,000 and 3,600 degrees F in burner cores of advanced gas-turbine engines.

  1. Consequences of FOIL for Undergraduates

    ERIC Educational Resources Information Center

    Koban, Lori; Sisneros-Thiry, Simone

    2015-01-01

    FOIL is a well-known mnemonic that is used to find the product of two binomials. We conduct a large sample (n = 252) observational study of first-year college students and show that while the FOIL procedure leads to the accurate expansion of the product of two binomials for most students who apply it, only half of these students exhibit conceptual…

  2. Instabilities in foil implosions and the effect of radiation output

    SciTech Connect

    Oona, H.; Peterson, D.L.; Goforth, J.H.

    1995-08-01

    One of the aims of the Athena program at the Los Alamos National Laboratory is the generation of a high fluence of soft x-rays from the thermalization of an radially imploding foil. In the experiments in Athena program, a large axial current is passed through a cylindrical aluminum foil. Under the action of the Lorentz force, the resulting plasma accelerates toward the axis, thermalizes, and produces a fast soft x-ray pulse with a blackbody temperature up to several hundred electron volts. In order that there be the maximum power compression and the highest x-ray fluence and temperature, the plasma stagnation on axis must occur very promptly. This requires that the imploding plasma be as thin and symmetric as possible. A serious problem in the thermalization process is the formation of instabilities in the plasma due to the self-magnetic field that governs the implosion of foil. A large diagnostic effort was developed to capture the details of the implosion and instability growth in several foil implosion experiments. In this report, we will present visible light images and x-ray data designed to study the effects of foil mass, current, and initial perturbations on the instability growth during foil implosion. Representative data is presented from several experiments using the Pegasus capacitor bank system and the explosively driven Procyon system. These experiments are labeled Peg 25 and Peg 33 for the Pegasus experiments and PDD1, PDD2 and PRF0 for the Procyon experiments. In these experiments, all foils had radii of 5 centimeters but varied in mass and initial conditions. Experimental data from several shots were compared with each other and to a radiation magnetohydrodynamic (RMHD) computation and described in a separate paper.

  3. Large-area beryllium metal foils

    NASA Astrophysics Data System (ADS)

    Stoner, J. O., Jr.

    1997-02-01

    To manufacture beryllium filters having diameters up to 82 mm and thicknesses in the range 0.1-1 μm, it was necessary to construct apparatus in which the metal could safely be evaporated, and then to find an acceptable substrate and evaporation procedure. The metal was evaporated resistively from a tantalum dimple boat mounted in a baffled enclosure that could be placed in a conventional vacuum bell jar, obviating the need for a dedicated complete vacuum system. Substrates were 102 mm × 127 mm × 0.05 mm cleaved mica sheets, coated with 0.1 μm of NaCl, then with approximately 50 μg/cm 2 of cellulose nitrate. These were mounted on poly(methyl methacrylate) sheets 3 mm thick that were in turn clamped to a massive aluminum block for thermal stability. Details of the processes for evaporation, float off, and mounting are given, and the resulting foils described.

  4. FULL SIZE U-10MO MONOLITHIC FUEL FOIL AND FUEL PLATE FABRICATION-TECHNOLOGY DEVELOPMENT

    SciTech Connect

    G. A. Moore; J-F Jue; B. H. Rabin; M. J. Nilles

    2010-03-01

    Full-size U10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer too the foil is applied using a hot co-rolling process. Aluminum clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy.

  5. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si-xTi Foils as Active Interlayer

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-02-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si-xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  6. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si- xTi Foils as Active Interlayer

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-06-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si- xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  7. Consequences of FOIL for undergraduates

    NASA Astrophysics Data System (ADS)

    Koban, Lori; Sisneros-Thiry, Simone

    2015-02-01

    FOIL is a well-known mnemonic that is used to find the product of two binomials. We conduct a large sample (n = 252) observational study of first-year college students and show that while the FOIL procedure leads to the accurate expansion of the product of two binomials for most students who apply it, only half of these students exhibit conceptual understanding of the procedure. We generalize this FOIL dichotomy and show that the ability to transfer a mathematical property from one context to a less familiar context is related to both procedural success and attitude towards math.

  8. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a

  9. Production of large screen-mounted aluminium neutralizer foils

    NASA Astrophysics Data System (ADS)

    Stoner, John O.

    1989-10-01

    In order to convert large-diameter beams of H - to neutral H atoms, aluminum foils having a diameter of 90 cm or more and an areal density of typically 8-12 μg/cm 2 have been proposed. Production of such foils, uniform in thickness to ±20% or better and mounted on thin wire grids, has been accomplished by careful control of substrate preparation, parting-agent application, spatial location of coating filaments, floating speed and temperature, and pickup procedure. Lexan (TM) polycarbonate substrates have been used, because of their uniformity of surface quality. Evaporated NaCl has been used as the parting agent, and an alloy containing 1% silicon rather than pure aluminum has been used as the foil material for greater strength and reliability. To obtain coated areas sufficiently large and uniform, substrates having dimensions of 1.2 m × 1.2 m have been used. A specially configured water tank having a volume of 3.2 m 3 has been built to accept such large substrates. Floating has been done in chilled water to improve its stability, minimize variations in surface tension, and to prevent the development of air bubbles on immersed surfaces. Fractional coverage of better than 95% on meshes having unsupported diameters of greater than 90 cm can now be obtained on a routine basis.

  10. Direct drive foil implosion experiments on Pegasus II

    SciTech Connect

    Cochrane, J.C.; Bartsch, R.R.; Benage, J.F.; Forman, P.R.; Gribble, R.F.; Hockaday, M.Y.P.; Hockaday, R.G.; Ladish, J.S.; Oona, H.; Parker, J.V.; Shlachter, J.S.; Wysocki, F.J.

    1993-05-01

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos Above Ground Experiments (AGEX) program. The goal of the program is to produce an intense (>100 TW) source of soft x-rays from the thermalization of the KE of a 1 to 10 MJ collapsing plasma source. The radiation pulse should have a maximum duration of several tens of nanoseconds and will be used in the study of fusion conditions and material properties. This paper addresses z-pinch experiments done on a capacitor bank where the radiating plasma source is formed by an imploding annular aluminum foil driven by the J {times} B forces generated by the current flowing through the foil.

  11. Method for fabricating uranium foils and uranium alloy foils

    DOEpatents

    Hofman, Gerard L.; Meyer, Mitchell K.; Knighton, Gaven C.; Clark, Curtis R.

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  12. Low absorptance porcelain-on-aluminum coating

    NASA Technical Reports Server (NTRS)

    Leggett, H.

    1979-01-01

    Porcelain thermal-control coating for aluminum sheet and foil has solar absorptance of 0.22. Specially formulated coating absorptance is highly stable, changing only 0.03 after 1,000 hours of exposure to simulated sunlight and can be applied by standard commercial methods.

  13. Lithium-6 foil neutron detector

    SciTech Connect

    Young, C.A.

    1982-12-21

    A neutron detection apparatus is provided which includes a selected number of flat surfaces of lithium-6 foil, and which further includes a gas mixture in contact with each of the flat surfaces for selectively reacting to charged particles emitted by or radiated from the lithium foil. A container is provided to seal the lithium foil and the gas mixture in a volume from which water vapor and atmospheric gases are excluded, the container having one or more walls which are transmissive to neutrons. Monitoring equipment in contact with the gas mixture detects reactions taking place in the gas mixture, and, in response to such reactions, provides notice of the flux of neutrons passing through the volume of the detector.

  14. SELECTIVE ABSORBER COATED FOILS FOR SOLAR COLLECTORS

    SciTech Connect

    Lampert, Carl M.

    1980-04-01

    Solar absorber metal foils are discussed in terms of materials and basic processing science. Also included is the use of finished heavy sheet stock for direct fabrication of solar collector panels. Both the adhesives and bonding methods for foils and sheet are surveyed. Developmental and representative commercial foils are used as illustrative examples. As a result it was found that foils can compete economically with batch plating but are limited by adhesive temperature stability. Also absorber foils are very versatile and direct collector fabrication from heavy foils appears very promising.

  15. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, D.M.; Holt, J.B.

    1996-02-13

    A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  16. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, Daniel M.; Holt, Joseph B.

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  17. Reactive multilayer synthesis of hard ceramic foils and films

    SciTech Connect

    Makowiecki, D.M.; Holt, J.B.

    1993-12-31

    Disclosed is method for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. Method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  18. Model calculations of extreme ultraviolet gain from laser-irradiated aluminium foils

    NASA Astrophysics Data System (ADS)

    Pert, G. J.; Tallents, G. J.

    1981-05-01

    Calculations are presented on the development of gain in expanding aluminum plasmas produced by the irradiation of thin foil targets with laser radiation. The atomic physics of the expanding aluminum plasma is also considered together with the question of whether such plasmas can indeed be generated by laser irradiation of foil targets. Two-dimensional fluid code calculations are discussed to demonstrate that the model used in the atomic calculations gives a reasonable representation of the expanding laser plasma. It is pointed out that the development of the hydrogen-like ion recombination laser as an X-ray laser requires the use of ions with Z of about 25. Laser action with aluminum at 38.7 A would be an encouraging step towards X-ray laser action, being about mid-way between the current carbon fiber experiments at 182 A and true X-ray laser action at about 10 A.

  19. Carbon foils for space plasma instrumentation

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Ebert, R. W.; Funsten, H. O.

    2016-05-01

    Carbon foils have been successfully used for several decades in space plasma instruments to detect ions and neutral atoms. These instruments take advantage of two properties of the particle-foil interaction: charge conversion of neutral atoms and/or secondary electron emission. This interaction also creates several adverse effects for the projectile exiting the foil, such as angular scattering and energy straggling, which usually act to reduce the sensitivity and overall performance of an instrument. The magnitude of these effects mainly varies with the incident angle, energy, and mass of the incoming projectile and the foil thickness. In this paper, we describe these effects and the properties of the interaction. We also summarize results from recent studies with graphene foils, which can be made thinner than carbon foils due to their superior strength. Graphene foils may soon replace carbon foils in space plasma instruments and open new opportunities for space research in the future.

  20. Force Generation by Flapping Foils

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P. R.; Donnelly, M.

    1996-11-01

    Aquatic animals like fish use flapping caudal fins to produce axial and cross-stream forces. During WW2, German scientists had built and tested an underwater vehicle powered by similar flapping foils. We have examined the forces produced by a pair of flapping foils. We have examined the forced produced by a pair of flapping foils attached to the tail end of a small axisymmetric cylinder. The foils operate in-phase (called waving), or in anti-phase (called clapping). In a low-speed water tunnel, we have undertaken time-dependent measurements of axial and cross-stream forces and moments that are exerted by the vortex shedding process over the entire body. Phase-matched LDV measurements of vorticity-velocity vectors, as well as limited flow visualization of the periodic vortex shedding process have also been carried out. The direction of the induced velocity within a pair of shed vortices determines the nature of the forces produced, viz., thrust or drag or cross-stream forces. The clapping mode produces a widely dispersed symmetric array of vortices which results in axial forces only (thrust and rag). On the other hand, the vortex array is staggered in the waving mode and cross-stream (maneuvering) forces are then generated.

  1. How Thin Is Foil? Applying Density to Find the Thickness of Aluminum Foil

    ERIC Educational Resources Information Center

    Concannon, James P.

    2011-01-01

    In this activity, I show how high school students apply their knowledge of density to solve an unknown variable, such as thickness. Students leave this activity with a better understanding of density, the knowledge that density is a characteristic property of a given substance, and the ways density can be measured. (Contains 4 figures and 1 table.)

  2. Passive Thermal Management of Foil Bearings

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J. (Inventor)

    2015-01-01

    Systems and methods for passive thermal management of foil bearing systems are disclosed herein. The flow of the hydrodynamic film across the surface of bearing compliant foils may be disrupted to provide passive cooling and to improve the performance and reliability of the foil bearing system.

  3. Extended foil capacitor with radially spoked electrodes

    DOEpatents

    Foster, James C.

    1990-01-01

    An extended foil capacitor has a conductive disk electrically connected in oncrushing contact to the extended foil. A conductive paste is placed through spaces between radial spokes on the disk to electrically and mechanically connect the extended foil to the disk.

  4. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  5. Characterization of thin-foil ultracold neutron detectors

    NASA Astrophysics Data System (ADS)

    Sallaska, A. L.; Hoedl, S.; Garcia, A.; Melconian, D.; Young, A. R.; Geltenbort, P.; Sjue, S. K. L.; Holley, A. T.

    2009-05-01

    We have fabricated ultracold neutron detectors that consist of silicon charged particle detectors coupled with thin nickel foils coated with either natural LiF or 10B implanted into vanadium. The foils convert neutrons into energetic, readily detectable, charged particles which are in turn detected by silicon detectors. The detectors were tested at the Institut Laue-Langevin with a gravitational spectrometer. From a rigorous Monte Carlo simulation of the experiment, the minimum detection cutoff velocities (effective potentials) were determined to be 309±17 cm/s ( 49.8±2.7 neV) for LiF and 367±39 cm/s ( 70.3±7.5 neV) for 10B/V. Although the result for LiF is consistent with expectations, the result for 10B/V is significantly higher. We interpret this discrepancy as due to contamination. We also show that while a thicker foil is more efficient for ultracold neutron detection, a thinner foil is more ideal for determining the cutoff velocity.

  6. Shock compression response of highly reactive Ni + Al multilayered thin foils

    NASA Astrophysics Data System (ADS)

    Kelly, Sean C.; Thadhani, Naresh N.

    2016-03-01

    The shock-compression response of Ni + Al multilayered thin foils is investigated using laser-accelerated thin-foil plate-impact experiments over the pressure range of 2 to 11 GPa. The foils contain alternating Ni and Al layers (parallel but not flat) of nominally 50 nm bilayer spacing. The goal is to determine the equation of state and shock-induced reactivity of these highly reactive fully dense thin-foil materials. The laser-accelerated thin-foil impact set-up involved combined use of photon-doppler-velocimetry to monitor the acceleration and impact velocity of an aluminum flyer, and VISAR interferometry was used to monitor the back free-surface velocity of the impacted Ni + Al multilayered target. The shock-compression response of the Ni + Al target foils was determined using experimentally measured parameters and impedance matching approach, with error bars identified considering systematic and experimental errors. Meso-scale CTH shock simulations were performed using real imported microstructures of the cross-sections of the multilayered Ni + Al foils to compute the Hugoniot response (assuming no reaction) for correlation with their experimentally determined equation of state. It was observed that at particle velocities below ˜150 m/s, the experimentally determined equation of state trend matches the CTH-predicted inert response and is consistent with the observed unreacted state of the recovered Ni + Al target foils from this velocity regime. At higher particle velocities, the experimentally determined equation of state deviates from the CTH-predicted inert response. A complete and self-sustained reaction is also seen in targets recovered from experiments performed at these higher particle velocities. The deviation in the measured equation of state, to higher shock speeds and expanded volumes, combined with the observation of complete reaction in the recovered multilayered foils, confirmed via microstructure characterization, is indicative of the occurrence

  7. Low-aluminum content iron-aluminum alloys

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  8. Fracture of boron filaments in an aluminum matrix.

    NASA Technical Reports Server (NTRS)

    Steele, J. H.; Herring, H. W.

    1972-01-01

    The B-Al composite specimens tested in this study were fabricated by diffusion bonding of 1230 aluminum foil and boron filaments placed in alternate layers, using an acrylic resin solution to maintain filament spacing. The specimens were put under tensile stresses parallel to the filaments, and filament fracture was monitored acoustically under loads. Fracture of specimens under loads was caused by break propagation with a characteristic wedge-type fragmentation pattern indicating its direction. The aluminum foil matrix of the specimens failed by ductile shear type fracture after the break of the filaments.

  9. Foil support structure for large electron guns

    SciTech Connect

    Brucker, J.P.; Rose, E.A.

    1993-08-01

    This paper describes a novel support structure for a vacuum diode used to pump a gaseous laser with an electron beam. Conventional support structures are designed to hold a foil flat and rigid. This new structure takes advantage of the significantly greater strength of metals in pure tension, utilizing curved shapes for both foil and support structure. The shape of the foil is comparable to the skin of a balloon, and the shape of the support structures is comparable to the cables of a suspension bridge. This design allows a significant reduction in foil thickness and support structure mass, resulting in a lower electron-beam loss between diode and laser gas. In addition, the foil is pre-formed in the support structure at pressures higher than operating pressure. Therefore, the foil is operated far from the yield point. Increased reliability is anticipated.

  10. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    SciTech Connect

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-03-01

    Understanding fuel foil mechanical properties, and fuel / cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel – cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel / cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results.

  11. Efficiency and lifetime of carbon foils

    SciTech Connect

    Chou, W.; Kostin, M.; Tang, Z.; /Fermilab

    2006-11-01

    Charge-exchange injection by means of carbon foils is a widely used method in accelerators. This paper discusses two critical issues concerning the use of carbon foils: efficiency and lifetime. An energy scaling of stripping efficiency was suggested and compared with measurements. Several factors that determine the foil lifetime--energy deposition, heating, stress and buckling--were studied by using the simulation codes MARS and ANSYS.

  12. Technical Development Path for Foil Gas Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2008-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  13. Free Surface and Flapping Foil Interactions

    NASA Astrophysics Data System (ADS)

    Ananthakrishnan, Palaniswamy

    2014-11-01

    Flapping foils for station-keeping of a near-surface body in a current is analyzed using a finite-difference method based on boundary-fitted coordinates. The foils are hinge-connected to the aft of the body and subject to pitch oscillation. Results are obtained for a range of Strouhal number, Froude number, unsteady frequency parameter τ, Reynolds number and the depth of foil submergence. Results show that at low Strouhal number (St < 0 . 1) and sub-critical unsteady parameter τ < 0 . 25 , the flapping generates drag instead of thrust. At high Strouhal number and super-critical value of the unsteady parameter (τ > 0 . 25) flapping generates high thrust with low efficiency. Thrust and efficiency are found to decrease with decreasing submergence depth of the foil. At the critical τ = 0 . 25 and shallow submergence of the foil, the standing wave generated above the foil continues to grow until breaking; both the thrust and efficiency of the foil are reduced at the critical τ. The necessary conditions for optimal thrust generation by a flapping foil underneath the free surface are found to be (i) Strouhal number in the range from 0.25 to 0.35, (ii) unsteady parameter τ > 0 . 25 and (iii) the maximum angle of attack less than 15° for the flat-plate foil. Supported by the US Office of Naval Research through the Naval Engineering Education Center (NEEC) Consortium of the University of Michigan, Ann Arbor.

  14. Damage areas due to impact craters on LDEF aluminum panels

    NASA Technical Reports Server (NTRS)

    Coombs, Cassandra R.; Atkinson, Dale R.; Allbrooks, Martha; Wagner, J. D.

    1992-01-01

    Because of its exposure time and total exposed surface area, the LDEF provides a unique opportunity to analyze the effects of the natural and man-made particle populations in low earth orbit (LEO). This study concentrated on collecting and analyzing measurements of impact craters from seven painted aluminum surfaces at different locations on the satellite. These data are being used to: (1) update the current theoretical micrometeoroid and debris models for LEO; (2) characterize the effects of the LEO micrometeoroid and debris environment of satellite components and designs; (3) help assess the probability of collision between spacecraft in LEO and already resident debris and the survivability of those spacecraft that must travel through, or reside in, LEO; and (4) help define and evaluate future debris mitigation and disposal methods. Measurements were collected from one aluminum experiment tray cover (Bay C-12), two aluminum grapple plates (Bays C-01, C-10), and four aluminum experiment sun-shields (Bay E-09), all of which were coated with thermal paint. These measurements were taken at the Facility for Optical Interpretation of Large Surfaces (FOILS) Lab at JSC. Virtually all features greater than 0.2 mm in diameter possessed a spall zone in which all of the paint was removed from the aluminum surface, and which varied in size from 2-5 crater diameters. The actual craters vary from central pits without raised rims to morphologies more typical of craters formed in aluminum under hypervelocity impact conditions for larger features. Most craters exhibit a shock zone that varies in size from approximately 1-20 crater diameters. In general, only the outermost layer of paint was affected by this impact-related phenomenon, with several impacts possessing ridge-like structures encircling the area in which this outer-most paint layer was removed. Overall, there were no noticeable penetrations or bulges on the underside of the trays. One tray from the E-09 bay exhibited a

  15. Initial experimental evidence of self-collimation of TNSA proton beam in a stack of conducting foils

    NASA Astrophysics Data System (ADS)

    Ni, Pavel

    2013-10-01

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated (TNSA) protons was experimentally observed for the first time, in a specially engineered structure (``lens'') consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a ``passive environment,'' i.e. no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt ``PHELIX'' laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the ``Helmholtzzentrum für Schwerionenforschung-GSI'' in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 MeV at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a LINAC or synchrotron, medical therapy, materials processing, etc.

  16. Foil bearing lubrication theory including compressibility effects

    NASA Technical Reports Server (NTRS)

    Gorla, Rama Subba Reddy; Catalano, Daniel A.

    1987-01-01

    An analysis is presented to determine the film thickness in a foil bearing. Using the Reynolds equation and including the compressibility effects of the gas, an equation was developed applicable to the film thickness in a foil bearing. The bearing was divided into three regions, namely, the entrance region, middle region and exit region. Solutions are obtained for the film thickness in each region.

  17. Hot foil transducer skin friction sensor

    NASA Technical Reports Server (NTRS)

    Vranas, T. (Inventor)

    1982-01-01

    The device utilizes foil transducers with only one edge exposed to the fluid flow. The surfaces are polished producing a foil transducer that does not generate turbulence while sufficiently thick to carry the required electrical current for high temperature fluid flow. The assembly utilizes a precut layered metal sandwich with attached electrodes eliminating a need for welding and individual sensor calibration.

  18. Barrier Foil Heating Simulations Using LASNEX

    SciTech Connect

    Ho, D D

    2002-03-12

    It is necessary to place a barrier foil in front of the X-ray converter target to prevent the backstreaming ions. This research note presents the simulations of foil heating using the latest EOS tables. LASNEX simulations are carried out using both DARHT-II and ETA-II beam parameters. Results for all the foils studied here, using the DARHT-II beam parameters, show that the integrated line density along the axis at the end of the 4th pulse remains essentially unchanged even if the foils are heated by beams with relatively small beam spot sizes. The temperature can reach up to 3000 C on graphite foil but can only reach several hundred degree Celsius on Mylar foil. Simulations also show that ETA-II beam can create a ''burn-through'' hole on all the foils except graphite and diamond foils, which may require pre-heat. The threshold beam spot size required for hole formation will be compared with LASNEX simulation for the purpose of code verification.

  19. Nuclear Propulsion using Thin Foiled Fuel

    NASA Astrophysics Data System (ADS)

    Takahashi, H.

    1998-11-01

    A new way to produce plasma for nuclear propulsion is proposed. A thin foiled fuel can be used for converting fission energy to propulsion energy efficiently. The fission products coming out of the thin foil directly ionize the hydrogen molecules which are used for propulsion. Thus very small portion of fission energy deposited in the thin foil, and integrity of the thin foiled fuel can be maintained even in high nuclear power. Fuel material with large thermal fission cross-section is preferable to make thin foiled fuel and the heat deposition in the foil can be reduced. To get high power from the foiled fuel assembly, thermal neutrons which are created out from the assembly can be supplied, or the assembly itself can create the high intensity thermal neutrons by self-multiplication. A flexible design of a highly efficient nuclear propulsion system can be made. The thickness of the foil and the maintenance of the thermo-mechanical integrity can be determined from the fission cross-section and the slowing down power for fission products. The talk discusses the issues related to heat removal from the assembly.

  20. A Preliminary Foil Gas Bearing Performance Map

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2006-01-01

    Recent breakthrough improvements in foil gas bearing load capacity, high temperature tribological coatings and computer based modeling have enabled the development of increasingly larger and more advanced Oil-Free Turbomachinery systems. Successful integration of foil gas bearings into turbomachinery requires a step wise approach that includes conceptual design and feasibility studies, bearing testing, and rotor testing prior to full scale system level demonstrations. Unfortunately, the current level of understanding of foil gas bearings and especially their tribological behavior is often insufficient to avoid developmental problems thereby hampering commercialization of new applications. In this paper, a new approach loosely based upon accepted hydrodynamic theory, is developed which results in a "Foil Gas Bearing Performance Map" to guide the integration process. This performance map, which resembles a Stribeck curve for bearing friction, is useful in describing bearing operating regimes, performance safety margins, the effects of load on performance and limiting factors for foil gas bearings.

  1. Experimental research of the fine foil explosion dynamics

    NASA Astrophysics Data System (ADS)

    Zhigalin, A. S.; Rousskikh, A. G.; Oreshkin, V. I.; Chaikovsky, S. A.; Ratakhin, N. A.; Kuznetsov, V. V.

    2014-11-01

    The work is devoted to studying of substances properties at high specific deposit energy using double-frame pulsed backlighting system. The high specific deposit energy was reached at electrical conductor explosion (ECE). Fast mode of ECE was investigated. Fine foils of aluminum, cooper, titanium and nickel were used as conductors. Experiments were carried out on the experimental complex consisting of three current generators. The first generator WEG-' was used for explosion of the fine conductors. This generator represents fast capacitor with capacity 250 nF, which was charged to voltage 10 to 30 kV. The investigated conductor was mounted in special holder and the foil contacts with the electrodes were soldered. Two other generators - radiographs XPG-1 and G2 with x-pinch load were used two frame X-ray backlighting imaging. The generators current pulses had amplitude 300 kA and rising time 180 ns with a low inductance load. Four crossed molybdenum wires with diameter of 25 μm were used to form an x-pinch. Using of the x-pinches soft x-ray radiation the images of exploded foil were registered with temporal resolution of 2 ns. The images were detected by a photo film located behind the filter. The x-ray imaging, together with the measurements of the current flowing through a conductor and voltage on the exploded conductor had allowed inferring of the energy deposited into the conductor, delay time of the bubbles formation relative to the moment of current- cutoff and the time dependence of the vapor bubbles quantity.

  2. Short-pulse high intensity laser thin foil interaction

    NASA Astrophysics Data System (ADS)

    Audebert, Patrick

    2003-10-01

    The technology of ultrashort pulse laser generation has progressed to the point that optical pulses larger than 10 J, 300 fs duration or shorter are routinely produced. Such pulses can be focused to intensities exceeding 10^18 W/cm^2. With high contrast pulses, these focused intensities can be used to heat solid matter to high temperatures with minimal hydrodynamic expansion, producing an extremely high energy-density state of matter for a short period of time. This high density, high temperature plasma can be studied by x-ray spectroscopy. We have performed experiments on thin foils of different elements under well controlled conditions at the 100 Terawatt laser at LULI to study the characteristics X-ray emission of laser heated solids. To suppress the ASE effect, the laser was frequency doubled. S-polarized light with a peak intensity of 10^19W/cm^2 was used to minimize resonance absorption. To decrease the effect of longitudinal temperature gradients very thin (800 μ) aluminum foil targets were used. We have also studied the effect of radial gradient by limiting the measured x-ray emission zone using 50μ or 100μ pinhole on target. The spectra, in the range 7-8Å, were recorded using a conical crystal spectrometer coupled to a 800 fs resolution streak camera. A Fourier Domain Interferometry (FDI) of the back of the foil was also performed providing a measurement of the hydrodynamic expansion as function of time for each shot. To simulate the experiment, we used the 1D hydrodynamic code FILM with a given set of plasma parameter (ρ, Te) as initial conditions. The X-ray emission was calculated by post processing hydrodynamic results with a collisional-radiative model which uses super-configuration average atomic data. The simulation reproduces the main features of the experimental time resolved spectrum.

  3. Effects of the foil flatness on the stress-strain characteristics of U10Mo alloy based monolithic mini-plates

    SciTech Connect

    Hakan Ozaltun; Pavel Medvedev

    2014-11-01

    The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate from RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.

  4. Aluminum Analysis.

    ERIC Educational Resources Information Center

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  5. Aluminum Hydroxide

    MedlinePlus

    ... penicillamine (Cuprimine, Depen), prednisone (Deltasone, Orasone), products containing iron, tetracycline (Sumycin, Tetracap, and others), ticlopidine (Ticlid), and vitamins.be aware that aluminum hydroxide may interfere with other medicines, making them less effective. Take your other medications 1 ...

  6. Assembly Methods for Etched Foil Regenerators

    NASA Astrophysics Data System (ADS)

    Mitchell, Matthew P.

    2004-06-01

    Etched foil appears to offer substantial advantages over other regenerator materials, especially for annular regenerators. However, assembly of etched foil regenerators has been difficult because etching regenerator patterns in foil is most satisfactorily accomplished using pieces too small for a complete, spiral-wrapped regenerator. Two techniques have been developed to deal with that problem: For spiral-wrapped regenerators, a new technique for joining pieces of foil using tabs has been successfully employed. The joints are no thicker than the parent material. The tabs substantially fill the holes into which they are locked, virtually eliminating any undesired leak path through the regenerator. The holes constitute breaks in the conductive path through the regenerator. A patent is pending. An alternate method is to insert pieces of foil in a cylindrical housing one at a time. An inflatable bladder presses each newly-inserted piece of foil against the previous layer until both edges slip past each other and contact the previously-installed piece. When the bladder is deflated, the natural springiness of the foil causes the cut edges to seek the wall and meet each other in a butt joint. A patent on the method has been issued; a patent on the resulting regenerator is pending.

  7. Producing carbon stripper foils containing boron

    SciTech Connect

    Stoner, J. O. Jr.

    2012-12-19

    Parameters being actively tested by the accelerator community for the purpose of extending carbon stripper foil lifetimes in fast ion beams include methods of deposition, parting agents, mounting techniques, support (fork) materials, and inclusion of alloying elements, particularly boron. Specialized production apparatus is required for either sequential deposition or co-deposition of boron in carbon foils. A dual-use vacuum evaporator for arc evaporation of carbon and electron-beam evaporation of boron and other materials has been built for such development. Production of both carbon and boron foils has begun and improvements are in progress.

  8. Application of foil bearings to helium turbocompressor

    SciTech Connect

    Chen, H.Ming; Howarth, R.; Bernard, Geren; Theilacker, Jay C.; Soyars, William M.; /Fermilab

    2001-01-01

    Hydrodynamic gas-lubricated foil bearings are ideal for machinery that operates at high speed or in extreme-temperature environments. As motors and generators run at higher speeds with more torque capacity, the need for commonly available, robust, high-speed, low-loss foil bearings is clear. This paper presents an application example of the successful replacement of a tape-type bearing for a bump-type bearing in a helium turbocompressor. Both bearing types are described, as are the steps involved in design and fabrication of the bump bearing, and results of comparison tests between the original and replacement bearings. Methods to analyze bump-type foil bearings with commercially available software are reviewed to further emphasize the inherent simplicity of these bearings. By providing the engineering community with the understanding needed to successfully apply foil bearings, the authors hope that the benefits and true potential of this technology will finally be realized.

  9. MUPLEX: a compact multi-layered polymer foil collector for micrometeoroids and orbital debris

    SciTech Connect

    Kearsley, A T; Graham, G A; Burchell, M J; Taylor, E A; Drolshagen, G; Chater, R J; McPhail, D

    2004-10-04

    Detailed studies of preserved hypervelocity impact residues on spacecraft multi-layer insulation foils have yielded important information about the flux of small particles from different sources in low-Earth orbit. We have extended our earlier research on impacts occurring in LEO to design and testing of a compact capture device. MULPEX (MUlti-Layer Polymer EXperiment) is simple, cheap to build, lightweight, of no power demand, easy to deploy, and optimized for the efficient collection of impact residue for analysis on return to Earth. The capture medium is a stack of very thin (8 micron and 40 micron) polyimide foils, supported on poly-tetrafluoroethylene sheet frames, surrounded by a protective aluminum casing. The uppermost foil has a very thin metallic coating for thermal protection and resistance to atomic oxygen and ultra-violet exposure. The casing provides a simple detachable interface for deployment on the spacecraft, facing into the desired direction for particle collection. On return to the laboratory, the stacked foils are separated for examination in a variable pressure scanning electron microscope, without need for surface coating. Analysis of impact residue is performed using energy dispersive X-ray spectrometers. Our laboratory experiments, utilizing buck-shot firings of analogues to micrometeoroids (35-38 micron olivine) and space debris (4 micron alumina and 1mm stainless steel) in a light gas gun, have shown that impact residue is abundant within the foil layers, and preserves a record of the impacting particle, whether of micrometer or millimeter dimensions. Penetrations of the top foil are easily recognized, and act as a proxy for dimensions of the penetrating particle. Impact may cause disruption and melting, but some residue retains sufficient crystallographic structure to show clear Raman lines, diagnostic of the original mineral.

  10. X-ray absorption spectroscopy measurements of thin foil heating by Z-pinch radiation.

    PubMed

    MacFarlane, J J; Bailey, J E; Chandler, G A; Deeney, C; Douglas, M R; Jobe, D; Lake, P; Nash, T J; Nielsen, D S; Spielman, R B; Wang, P; Woodruff, P

    2002-10-01

    Absorption spectroscopy measurements of the time-dependent heating of thin foils exposed to intense z-pinch radiation sources are presented. These measurements and their analysis provide valuable benchmarks for, and insights into, the radiative heating of matter by x-ray sources. Z-pinch radiation sources with peak powers of up to 160 TW radiatively heated thin plastic-tamped aluminum foils to temperatures approximately 60 eV. The foils were located in open slots at the boundary of z-pinch hohlraums surrounding the pinch. Time-resolved Kalpha satellite absorption spectroscopy was used to measure the evolution of the Al ionization distribution, using a geometry in which the pinch served as the backlighter. The time-dependent pinch radius and x-ray power were monitored using framing camera, x-ray diode array, and bolometer measurements. A three-dimensional view factor code, within which one-dimensional (1D) radiation-hydrodynamics calculations were performed for each surface element in the view factor grid, was used to compute the incident and reemitted radiation flux distribution throughout the hohlraum and across the foil surface. Simulated absorption spectra were then generated by postprocessing radiation-hydrodynamics results for the foil heating using a 1D collisional-radiative code. Our simulated results were found to be in good general agreement with experimental x-ray spectra, indicating that the spectral measurements are consistent with independent measurements of the pinch power. We also discuss the sensitivity of our results to the spectrum of the radiation field incident on the foil, and the role of nonlocal thermodynamic equilibrium atomic kinetics in affecting the spectra. PMID:12443339

  11. Effects of the shape of the foil corners on the irradiation performance of U10Mo alloy based monolithic mini-plates

    SciTech Connect

    Ozaltun, Hakan; Medvedev, Pavel G

    2015-06-01

    Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners.

  12. U-Mo Foil/Cladding Interactions in Friction Stir Welded Monolithic RERTR Fuel Plates

    SciTech Connect

    D.D. Keiser; J.F. Jue; C.R. Clark

    2006-10-01

    Interaction between U-Mo fuel and Al has proven to dramatically impact the overall irradiation performance of RERTR dispersion fuels. It is of interest to better understand how similar interactions may affect the performance of monolithic fuel plates, where a uranium alloy fuel is sandwiched between aluminum alloy cladding. The monolithic fuel plate removes the fuel matrix entirely, which reduces the total surface area of the fuel that is available to react with the aluminum and moves the interface between the fuel and cladding to a colder region of the fuel plate. One of the major fabrication techniques for producing monolithic fuel plates is friction stir welding. This paper will discuss the interactions that can occur between the U-Mo foil and 6061 Al cladding when applying this fabrication technique. It has been determined that the time at high temperatures should be limited as much as is possible during fabrication or any post-fabrication treatment to reduce as much as possible the interactions between the foil and cladding. Without careful control of the fabrication process, significant interaction between the U-Mo foil and Al alloy cladding can result. The reaction layers produced from such interactions can exhibit notably different morphologies vis-à-vis those typically observed for dispersion fuels.

  13. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  14. Study of iron and aluminum binding to Suwannee River fulvic acid using absorbance and fluorescence spectroscopy: comparison of data interpretation based on NICA-Donnan and Stockholm humic models.

    PubMed

    Yan, Mingquan; Benedetti, Marc F; Korshin, Gregory V

    2013-09-15

    This study examined the evolution of absorbance and fluorescence spectra of standard Suwannee River fulvic acid (SRFA) induced by its interactions with iron and aluminum. The results show that changes of SRFA absorbance are associated with a consistent response of the carboxylic and phenolic functional groups to iron and aluminum forming bonds with these groups, and their deprotonation induced by such binding. The observed changes of SRFA absorbance were quantified via the use of DSlope325-375 parameter that determines the behavior of the slope of logarithms of SRFA absorbance in the range of wavelengths 325-375 nm in the presence of varying concentrations of iron or aluminum. DSlope325-375 values were correlated linearly with the concentration of SRFA-bound iron and aluminum determined using either NICA-Donnan or Stockholm Humic Model (SHM) but the correlation was stronger for the former model (R(2) > 0.98). The slopes of these correlations were similar for both iron and aluminum concentrations <10.0 μM and at a wide pH range. Fluorescence of SRFA was responsive to metal binding but it changed less consistently in the presence of the examined metals, especially in the case of aluminum. The combination of these techniques can help explore in more detail manifestations of DOM site specificity at realistically low concentrations of DOM and metal ions. PMID:23850210

  15. Double cathode experiments using radial foil configurations on the COBRA generator

    NASA Astrophysics Data System (ADS)

    Pang, B. H.; Gorenstein, A. Y.; Kim, J. E.; Gourdain, P.-A.; Hammer, D. A.; Kusse, B. R.

    2010-11-01

    As part of the Laboratory of Plasma Studies at Cornell University, our research group has been investigating the dynamics and the collision of plasma bubbles formed by the explosion of metallic foils. A 100-ns rise time 1MA current runs through an aluminum foil, five micron thick, stretched horizontally onto the anode of the COBRA pulsed power generator. Cathode contacts consist of two hollow stainless pins equally spaced about the center of the foil. The parameters of this experiment include the spacing (3 mm) and inclination of the cathode pins (parallel or at a 45 degree angle). During the explosion, plasma bubbles are formed around each pin. As the bubbles grow and collide, interesting features appear in both experiments. For the parallel cathode configuration, a plasma plume forms above the center between the two bubbles before collision occurs. The plume resembles a twisted helix. For the slanted cathode configuration a plasma sheet forms when the two bubbles collide, and possibly a shock front is formed after the collision. The sheet extends inside a vertical plane just above the foil geometrical center. The electron density of this plasma sheet is approximately 5x10^18 cm-3, and its velocity is below 150 km/s.

  16. Adhesive force assisted imprinting of soft solid polymer films by flexible foils.

    PubMed

    Mukherjee, Rabibrata; Sharma, Ashutosh; Gonuguntla, Manoj; Patil, Ganesh K

    2008-07-01

    We report a simple, rapid, room temperature, pressure-less and large area (approximately cm2) imprinting technique for high fidelity patterning of soft solid polymer films and surfaces like cross-linked polydimethylsiloxane (PDMS) and polyacrylamide (PAA) based hydrogels, both on planar and curved surfaces. The key element of the method is the use of patterned thin flexible foils that readily and rapidly attain a conformal contact with soft (shear modulus < 0.1 MPa) solid surfaces because of adhesive interfacial interactions. The conformal contact is established at all length scales by bending of the foil at scales larger than the feature size, in conjunction with the spontaneous elastic deformations of the surface on the scale of the features. For example, we used the protective aluminum foils of commercial data storage discs, both with or without data stored, for micron and sub-micron pattern transfer. The patterns are made permanent by UV-ozone treatment (for PDMS) or by controlled drying (for hydrogels). Interestingly, elastic contact imprinting of very thin (< 300 nm) films results in about 50% miniaturization of the original foil feature sizes. Complex two dimensional patterns could also be formed even by using a simple one dimensional master by multiple imprinting. The technique can be particularly useful for the bulk nano applications requiring routine fabrication of templates, for example, in the study of confined chemistry phenomena, nanofluidics, bio-MEMS, micro-imprinting, optical coatings and controlled dewetting. PMID:19051887

  17. Aluminum phosphide

    Integrated Risk Information System (IRIS)

    Aluminum phosphide ; CASRN 20859 - 73 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  18. Cryostat with Foil and MLI

    SciTech Connect

    Hwang, Peter K.F.; Gung, Chen-yu

    2005-10-06

    Induction cores are used to accelerate heavy ion beam array, which are built around the outer diameter of the cryostat housing the superconducting quadruple array. Compact cryostat is highly desirable to reduce the cost of the induction cores. Recent experiences in fabrication of a cryostat for single beam transport revealed that it is possible to reduce the spacing in the cryostat vacuum jacket by using low-emissivity thermal insulation material instead of conventional MLI. However, it is labor-intensive to install the new type of insulation as compared with using MLI. It is promising to build a cost-effective compact cryostat for quadruple magnet array for heavy ion beam array transport by using low-emissivity material combined with conventional MLI as radiation insulation. A matrix of insulation designs and tests will be performed as the feasibility study and for the selection of the optimal thermal insulation as the Phase I work. The selected mixed insulation will be used to build prototype compact cryostats in the Phase II project, which are aiming for housing quadruple doublet array. In this STTR phase I study, a small cryostat has been designed and built to perform calorimetric characterization of the heat load in a liquid helium vessel insulated with a vacuum layer with a nominal clearance of 3.5 mm. The vacuum clearance resembled that used in the warm-bore beam tube region in a prototype cryostat previously built for the heavy ion beam transport experiment. The vacuum clearance was geometrically restricted with a heater shell with the temperature controlled at near 300 K. Various combinations of radiation and thermal shields were installed in the tight vacuum clearance for heat load measurements. The measured heat loads are reported and compared with previous test result using a compact vacuum layer. Further developments of the thermal insulations used in the present study are discussed. The compact cryostat with foil and MLI insulation may be used in the

  19. Charge-induced reversible bending in nanoporous alumina-aluminum composite

    NASA Astrophysics Data System (ADS)

    Cheng, Chuan; Ngan, A. H. W.

    2013-05-01

    Upon electrical charging, reversible bending was found in nanoporous anodic alumina-aluminum foil composites, as directly observed by an optical microscope and detected by in situ nanoindentation. The bending is thought to be the result of charge-induced surface stresses in the nanoporous alumina. The results suggest the possibility of a type of composite foil materials for applications as micro-scale actuators to transform electrical energy into mechanical energy.

  20. Positron annihilation study of vacancy-type defects in Al single crystal foils with the tweed structures across the surface

    SciTech Connect

    Kuznetsov, Pavel; Cizek, Jacub Hruska, Petr; Anwad, Wolfgang; Bordulev, Yuri; Lider, Andrei; Laptev, Roman; Mironov, Yuri

    2015-10-27

    The vacancy-type defects in the aluminum single crystal foils after a series of the cyclic tensions were studied using positron annihilation. Two components were identified in the positron lifetime spectra associated with the annihilation of free positrons and positrons trapped by dislocations. With increasing number of cycles the dislocation density firstly increases and reaches a maximum value at N = 10 000 cycles but then it gradually decreases and at N = 70 000 cycles falls down to the level typical for the virgin samples. The direct evidence on the formation of a two-phase system “defective near-surface layer/base Al crystal” in aluminum foils at cyclic tension was obtained using a positron beam with the variable energy.

  1. Status of Genesis Mo-Pt Foils

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Allton, J. H.; Burnett, D. S.; Butterworth, A. L.; Caffee, M. W.; Clark, B.; Jurewicz, A. J. G.; Komura, K.; Westphal, A. J.; Welten, K. C.

    2005-01-01

    A total of 8,000 sq cm of Mo-coated Pt foils were exposed to solar wind for 884 days by the Genesis mission. Solar wind ions were captured in the surface of the Mo. Our objective is the measurement of long-lived radionuclides, such as Be-10, Al-26, Cl-36, and Mn-53, and short-lived radionuclides, such as Na-22 and Mn-54, in the captured sample of solar wind. The expected flux of these nuclides in the solar wind is 100 atom/sq cm yr or less. The hard landing of the SRC (Sample Return Capsule) at UTTR (Utah Test and Training Range) has resulted in contaminated and crumpled foils. Here we present a status report and revised plan for processing the foils.

  2. Two High-Temperature Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.

  3. Sensitivity of LDEF foil analyses using ultra-low background germanium vs. large NaI(Tl) multidimensional spectrometers

    NASA Technical Reports Server (NTRS)

    Reeves, James H.; Arthur, Richard J.; Brodzinski, Ronald L.

    1993-01-01

    Cobalt foils and stainless steel samples were analyzed for induced Co-60 activity with both an ultra-low background germanium gamma-ray spectrometer and with a large NaI(Tl) multidimensional spectrometer, both of which use electronic anticoincidence shielding to reduce background counts resulting from cosmic rays. Aluminum samples were analyzed for Na-22. The results, in addition to the relative sensitivities and precisions afforded by the two methods, are presented.

  4. Diffusion of hydrogen in zirconium foil

    SciTech Connect

    Schur, D.V.; Pishuk, V.K.; Adejev, V.M.; Zaginaichenko, S.Y.

    1998-12-31

    The authors of present research have used in experiments the atomic hydrogen and metallic foil 25--30 {micro}m thick. It has been supposed that these technical operations will permit excluding the influence of surface and diffusional processes on the rate of Me-H interaction. The series of experiments have been carried out and they confirm this assumption. It has been shown that hydrogenation reaction of zirconium foil in atomic hydrogen conforms to the topochemical model of volume segregation of interaction product, and the rate of its flow is independent of the surface processes and hydrogen diffusion in volume.

  5. Method of high-density foil fabrication

    DOEpatents

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  6. Compressor ported shroud for foil bearing cooling

    DOEpatents

    Elpern, David G.; McCabe, Niall; Gee, Mark

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  7. Thrust augmentation in tandem flapping foils by foil-wake interaction

    NASA Astrophysics Data System (ADS)

    Anderson, Erik; Lauder, George

    2006-11-01

    Propulsion by pitching and heaving airfoils and hydrofoils has been a focus of much research in the field of biologically inspired propulsion. Organisms that use this sort of propulsion are self-propelled, so it is difficult to use standard experimental metrics such as thrust and drag to characterize performance. We have constructed a flapping foil robot mounted in a flume on air-bearings that allows for the determination of self-propelled speed as a metric of performance. We have used a pair of these robots to examine the impact of an upstream flapping foil on a downstream flapping foil as might apply to tandem fins of a swimming organism or in-line swimming of schooling organisms. Self-propelled speed and a force transducer confirmed significant thrust augmentation for particular foil-to-foil spacings, phase differences, and flapping frequencies. Flow visualization shows the mechanism to be related to the effective angle of attack of the downstream foil due to the structure of the wake of the upstream foil. This confirms recent computational work and the hypotheses by early investigators of fish fluid dynamics.

  8. Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils

    SciTech Connect

    Ni, P. A.; Bieniosek, F. M.; Logan, B. G.; Lund, S. M.; Barnard, J. J.; Bellei, C.; Cohen, R. H.; McGuffey, C.; Beg, F. N.; Kim, J.; Alexander, N.; Aurand, B.; Brabetz, C.; Neumayer, P.; Roth, M.

    2013-08-15

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure (“lens”) consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a “passive environment,” i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt “PHELIX” laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the “Helmholtzzentrum für Schwerionenforschung–GSI” in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc.

  9. Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils

    NASA Astrophysics Data System (ADS)

    Ni, P. A.; Lund, S. M.; McGuffey, C.; Alexander, N.; Aurand, B.; Barnard, J. J.; Beg, F. N.; Bellei, C.; Bieniosek, F. M.; Brabetz, C.; Cohen, R. H.; Kim, J.; Neumayer, P.; Roth, M.; Logan, B. G.

    2013-08-01

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure ("lens") consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a "passive environment," i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt "PHELIX" laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the "Helmholtzzentrum für Schwerionenforschung-GSI" in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc.

  10. Spallation Neutron Source SNS Diamond Stripper Foil Development

    SciTech Connect

    Shaw, Robert W; Plum, Michael A; Wilson, Leslie L; Feigerle, Charles S.; Borden, Michael J.; Irie, Y.; Sugai, I; Takagi, A

    2007-01-01

    Diamond stripping foils are under development for the SNS. Freestanding, flat 300 to 500 {micro}g/cm{sup 2} foils as large as 17 x 25 mm{sup 2} have been prepared. These nano-textured polycrystalline foils are grown by microwave plasma-assisted chemical vapor deposition in a corrugated format to maintain their flatness. They are mechanically supported on a single edge by a residual portion of their silicon growth substrate; fine foil supporting wires are not required for diamond foils. Six foils were mounted on the SNS foil changer in early 2006 and have performed well in commissioning experiments at reduced operating power. A diamond foil was used during a recent experiment where 15 {micro}C of protons, approximately 64% of the design value, were stored in the ring. A few diamond foils have been tested at LANSCE/PSR, where one foil was in service for a period of five months (820 C of integrated injected charge) before it was replaced. Diamond foils have also been tested in Japan at KEK (640 keV H{sup -}) where their lifetimes slightly surpassed those of evaporated carbon foils, but fell short of those for Sugai's new hybrid boron carbon (HBC) foils.

  11. Low-cost foil metallization using arc discharge for passivated emitter and rear solar cells

    NASA Astrophysics Data System (ADS)

    Kurimoto, Yuji; Yamasaki, Ichiro

    2016-04-01

    For the cost reduction of passivated emitter and rear cells (PERC), we propose a new rear contact formation method, in which an aluminum foil and an arc discharge system are used. The arc discharge system consists of inexpensive parts and does not contain any sophisticated part such as a laser ablation apparatus. Therefore, this system can save the cost of the rear contact forming process. We applied this technique to a test production of PERC. It is found that the arc discharge system can provide a similar performance to that attained by a conventional PERC production method.

  12. Thermal Sensitive Foils in Physics Experiments

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  13. Hydrogen and Palladium Foil: Two Classroom Demonstrations

    ERIC Educational Resources Information Center

    Klotz, Elsbeth; Mattson, Bruce

    2009-01-01

    In these two classroom demonstrations, students observe the reaction between H[subscript 2] gas and Pd foil. In the first demonstration, hydrogen and palladium combine within one minute at 1 atm and room temperature to yield the non-stoichiometric, interstitial hydride with formula close to the maximum known value, PdH[subscript 0.7]. In the…

  14. Indium Foil Serves As Thermally Conductive Gasket

    NASA Technical Reports Server (NTRS)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  15. 6Li foil thermal neutron detector

    SciTech Connect

    Ianakiev, Kiril D; Swinhoe, Martyn T; Favalli, Andrea; Chung, Kiwhan; Macarthur, Duncan W

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  16. Strong field electrodynamics of a thin foil

    SciTech Connect

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Bulanov, Stepan S.; Rykovanov, Sergey G.; Pegoraro, Francesco

    2013-12-15

    Exact solutions describing the nonlinear electrodynamics of a thin double layer foil are presented. These solutions correspond to a broad range of problems of interest for the interaction of high intensity laser pulses with overdense plasmas, such as frequency upshifting, high order harmonic generation, and high energy ion acceleration.

  17. The Fluid Foil: The Seventh Simple Machine

    ERIC Educational Resources Information Center

    Mitts, Charles R.

    2012-01-01

    A simple machine does one of two things: create a mechanical advantage (lever) or change the direction of an applied force (pulley). Fluid foils are unique among simple machines because they not only change the direction of an applied force (wheel and axle); they convert fluid energy into mechanical energy (wind and Kaplan turbines) or vice versa,…

  18. Identification of Possible Interstellar Dust Impact Craters on Stardust Foil I033N,1

    NASA Astrophysics Data System (ADS)

    Ansari, A.; ISPE Team; 29,000 Stardust@home Dusters

    2011-12-01

    The Interstellar Dust Collector onboard NASA's Stardust Mission - the first to return solid extraterrestrial material to Earth from beyond the Moon - was exposed to the interstellar dust stream for a total of 229 days prior to the spacecraft's return in 2006 [1]. Aluminum foils and aerogel tiles on the collector may have captured the first samples of contemporary interstellar dust. Interstellar Preliminary Examination (ISPE) focuses in part on crater identification and analysis of residue within the craters to determine the nature and origin of the impacting particles. Thus far, ISPE has focused on nine foils and found a total of 20 craters. The number density of impact craters on the foils exceeds by far estimates made from interstellar flux calculations [2]. To identify craters, foil I1033N,1 was scanned with the Field Museum's Evo 60 Scanning Electron Microscope (SEM) at a resolution of 52 nm/pixel with a 15 kV and 170-240 pA beam. Contamination was monitored according to the ISPE protocol: four 4 μm × 3 μm areas of C layers of different thicknesses on a Stardust-type Al foil were irradiated 20 times for 50 s each, while the C and Al signals were recorded with energy-dispersive X-ray spectroscopy (EDS). The C/Al ratio did not increase after 20 repetitions on each of the four areas. The same experiment repeated 7 months later yielded identical results. Thus, analysis with the SEM results in no detectable contamination. Crater candidates were manually selected from SEM images, then reimaged at higher resolution (17 nm/pixel) in order to eliminate false detections. The foil was then sent to Washington University for Auger Nanoprobe elemental analysis of crater 11_175 (diam. 1.1 μm), and to the Naval Research Laboratory for focused ion beam work and transmission electron microscopy and EDS. Twelve crater candidates (diam. 0.28 - 1.1 μm), both elliptical and circular, were identified. The number density of craters on foil 1033N is 15.8 cm^-2. Auger measurements

  19. Satellite and Opacity Effects on Resonance Line Shapes Produced from Short-Pulse Laser Heated Foils

    SciTech Connect

    Shepherd, R; Audebert, P; Chen, H-K; Fournier, K B; Peyreusse, O; Moon, S; Lee, R W; Price, D; Klein, L; Gauthier, J C; Springer, P

    2002-12-03

    We measure the He-like, time-resolved emission from thin foils consisting of 250 {angstrom} of carbon-250 {angstrom} of aluminum and 500 {angstrom} aluminum illuminated with a 150 fs laser pulse at an intensity of 1 x 10{sup 19} W/cm{sup 2}. Dielectronic satellite contributions to the 1s{sup 2}-1s2p({sup 1}P), 1s{sup 2}-1s3p({sup 1}P), and 1s{sup 2}1s4p({sup 1}P) line intensities are modeled using the configuration averaged code AVERROES and is found to be significant for all three resonance lines. The contribution of opacity broadening is inferred from the data and found to be significant only in the 1s{sup 2}-1s2p({sup 1}P).

  20. Liquid Oxygen Rotating Friction Ignition Testing of Aluminum and Titanium with Monel and Inconel for Rocket Engine Propulsion System Contamination Investigation

    NASA Technical Reports Server (NTRS)

    Peralta, S.; Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    Metallic contaminant was found in the liquid oxygen (LOX) pre-valve screen of the shuttle main engine propulsion system on two orbiter vehicles. To investigate the potential for an ignition, NASA Johnson Space Center White Sands Test Facility performed (modified) rotating friction ignition testing in LOX. This testing simulated a contaminant particle in the low-pressure oxygen turbo pump (LPOTP) and the high-pressure oxygen turbo pump (HPOTP) of the shuttle main propulsion system. Monel(R) K-500 and Inconel(R) 718 samples represented the LPOTP and HPOTP materials. Aluminum foil tape and titanium foil represented the contaminant particles. In both the Monel(R) and Inconel(R) material configurations, the aluminum foil tape samples did not ignite after 30 s of rubbing. In contrast, all of the titanium foil samples ignited regardless of the rubbing duration or material configuration. However, the titanium foil ignitions did not propagate to the Monel and Inconel materials.

  1. Hierarchical structural nanopore arrays fabricated by pre-patterning aluminum using nanosphere lithography.

    PubMed

    Wang, Xinnan; Xu, Shuping; Cong, Ming; Li, Haibo; Gu, Yuejiao; Xu, Weiqing

    2012-04-10

    A highly ordered and hierarchical structural nanopore array is fabricated via anodizing a pre-patterned aluminum foil under an optimized voltage. A pre-patterned hexagonal nanoindentation array on an aluminum substrate is prepared via the nanosphere lithography method. This pattern leads to an elaborate nanochannel structure with seven nanopores in each nanoindentation after anodization treatment. The structure achieved in our study is new, interesting, and likely to be applied in photonic devices. PMID:22315204

  2. Optical and electrical performance of commercially manufactured large GEM foils

    NASA Astrophysics Data System (ADS)

    Posik, M.; Surrow, B.

    2015-12-01

    With interest in large area GEM foils increasing and CERN being the only main distributor, keeping up with the demand for GEM foils will be difficult. Thus the commercialization of GEMs is being established by Tech-Etch of Plymouth, MA, USA using single-mask techniques. We report here on the first of a two step quality verification of the commercially produced 10×10 cm2 and 40×40 cm2 GEM foils, which includes characterizing their electrical and geometrical properties. We have found that the Tech-Etch foils display excellent electrical properties, as well as uniform and consistent hole diameters comparable to established foils produced by CERN.

  3. Nuclear target foil fabrication for the Romano Event

    SciTech Connect

    Weed, J.W.; Romo, J.G. Jr.; Griggs, G.E.

    1984-06-19

    The Vacuum Processes Lab, of LLNL's M.E. Dept. - Material Fabrication Division, was requested to provide 250 coated Parylene target foils for a nuclear physics experiment titled the ROMANO Event. Due to the developmental nature of some of the fabrication procedures, approximately 400 coated foils were produced to satisfy the event's needs. The foils were used in the experiment as subkilovolt x-ray, narrow band pass filters, and wide band ultraviolet filters. This paper is divided into three sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, and (3) foil and substrate inspections.

  4. Interaction experiments using thin-foil-discharge warm-dense plasma

    NASA Astrophysics Data System (ADS)

    Hasegawa, Jun; Hirai, Satoshi; Katagiri, Ken; Yonaha, Masanao; Fukuda, Hitoshi; Oguri, Yoshiyuki; Ogawa, Masao; Murakami, Takeshi

    2007-07-01

    We developed a thin-foil-discharge (TFD) plasma target for beam-plasma interaction experiments. A discharge current of several tens of kilo-amperes rapidly heated and ionized a thin aluminum foil of sub- to several micrometers thick. The target areal density seen by projectiles was expected to be almost constant during several hundred nanoseconds from the ignition of the discharge because the size of the thin foil was chosen to be much larger than the cross-section of the incident beam. The optical observation of the plasma using a fast framing camera showed that the TFD plasma expanded one-dimensionally in the early stage of the discharge. We determined the plasma density and temperature from the observed plasma thickness and the deposited electrical power with equation-of-state data. A one-dimensional plasma expansion model was developed and used to examine the expected plasma parameters under various initial conditions. We also performed beam-plasma interaction experiments with fully stripped ions of 4.3 MeV/u. The energy loss of silicon ions was measured as a function of time by the TOF method.

  5. Carbon stripper foils for heavy-ion accelerators

    SciTech Connect

    Thomas, G.E.

    1980-01-01

    Carbon stripper foils have for many years been successfully used with accelerators because they yield higher average charge states than gas strippers. However, with the development of heavy ion accelerators and the resulting use of heavier ions, the carbon stripper foil lifetimes are greatly reduced. Even when using the new foils changer systems, which typically contain two hundred foils or more, it becomes necessary to have frequent accelerator shutdowns for foil reloading. The rate of experiment interruption makes it clear a new approach is necessary to increase foil lifetimes. Several techniques have been tried with varying degrees of success to strengthen these foils so that they will last longer; the most successful one reported a lifetime increase of the order of a factor of 30 over foils produced in the conventional manner. Methods of producing various types of foils will be presented, a discussion will be given on theories for foil breakage, and some new ideas will be introduced for further increasing foil lifetimes.

  6. Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils.

    SciTech Connect

    Graham, G A; Teslich, N; Dai, Z R; Bradley, J P; Kearsley, A T; Horz, F

    2005-11-04

    The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 {micro}m thick) that are wrapped around the sample tray assembly. Soda lime spheres ({approx}49 {micro}m in diameter) have been accelerated with a Light Gas Gun into flight-grade Al foils at 6.35 km s{sup -1} to simulate the capture of cometary debris. The experimental craters have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover ''pure'' melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.

  7. Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Teslich, N.; Dai, Z. R.; Bradley, J. P.; Kearsley, A. T.; Horz, F.

    2006-01-01

    The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 micrometers thick) that are wrapped around the sample tray assembly. Soda lime spheres (approximately 49 m in diameter) have been accelerated with a light-gas-gun into flight-grade Al foils at 6.35 km s(sup -1) to simulate the potential capture of cometary debris. The preserved crater penetrations have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact penetration. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover pure melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.

  8. Impact of GEM foil hole geometry on GEM detector gain

    NASA Astrophysics Data System (ADS)

    Karadzhinova, A.; Nolvi, A.; Veenhof, R.; Tuominen, E.; Hæggström, E.; Kassamakov, I.

    2015-12-01

    Detailed 3D imaging of Gas Electron Multiplier (GEM) foil hole geometry was realized. Scanning White Light Interferometry was used to examine six topological parameters of GEM foil holes from both sides of the foil. To study the effect of the hole geometry on detector gain, the ANSYS and Garfield ++ software were employed to simulate the GEM detector gain on the basis of SWLI data. In particular, the effective gain in a GEM foil with equally shaped holes was studied. The real GEM foil holes exhibited a 4% lower effective gain and 6% more electrons produced near the exit electrode of the GEM foil than the design anticipated. Our results indicate that the GEM foil hole geometry affects the gain performance of GEM detectors.

  9. Formation of Anodic Aluminum Oxide with Branched and Meshed Pores.

    PubMed

    Kim, Byeol; Lee, Jin Seok

    2016-06-01

    Anodic aluminum oxide (AAO), with a self-ordered hexagonal array, is important for various applications in nanofabrication including as the fabrication of nanotemplates and other nanostructures. With the consideration, there have been many efforts to control the characteristic parameters of porous anodic alumina by adjustment of the anodizing conditions such as the electrolyte, temperature, applied potential, and Al purity. In particular, impurities in Al are changing the morphology of an alumina film; however, the formation mechanism has not yet been explained. In this work, we anodized a high purity (99.999%, Al(high)) and low purity (99.8%, Al(low)) aluminum foil by a two-step anodization process in an oxalic acid solution or phosphoric acid. It was found that the purity of aluminum foil has influenced the morphology of the alumina film resulting in branched and meshed pores. Also, electrochemical analysis indicated that the branched and meshed pores in the low-purity Al foil formed by the presence of impurities. Impurities act as defects and change the general growth mechanism for pore formation by inducing an electric field imbalance during anodization. This work contributes to the research field of topographical chemistry and applied fields including nanofabrication. PMID:27427755

  10. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  11. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  12. FoilSim: Basic Aerodynamics Software Created

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth A.

    1999-01-01

    FoilSim is interactive software that simulates the airflow around various shapes of airfoils. The graphical user interface, which looks more like a video game than a learning tool, captures and holds the students interest. The software is a product of NASA Lewis Research Center s Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program (HPCCP).This airfoil view panel is a simulated view of a wing being tested in a wind tunnel. As students create new wing shapes by moving slider controls that change parameters, the software calculates their lift. FoilSim also displays plots of pressure or airspeed above and below the airfoil surface.

  13. Relativistic Electron Transport Through Carbon Foils

    NASA Astrophysics Data System (ADS)

    Seliger, M.; Takasi, K.; Reinhold, C. O.; Takabayashi, Y.; Ito, T.; Komaki, K.; Azuma, T.; Yamazaki, Y.; Yamazaki, Y.

    We present a theoretical study of convoy electron emission resulting from transmission of relativistic 390 MeV/amu Ar17+ ions through carbon foils of various thicknesses. Our approach is based on a Langevin equation describing the random walk of the electron initially bound to the argon nucleus and later in the continuum. The calculated spectra of ejected electrons in the forward direction exhibit clear signatures of multiple scattering and are found to be in good agreement with recent experimental data.

  14. Optofluidic dye laser in a foil.

    PubMed

    Vannahme, Christoph; Christiansen, Mads Brøkner; Mappes, Timo; Kristensen, Anders

    2010-04-26

    First order distributed feedback optofluidic dye lasers embedded in a 350 microm thick TOPAS((R)) foil are demonstrated. They are designed in order to give high output pulse energies. Microfluidic channels and first order distributed feedback gratings are fabricated in parallel by thermal nanoimprint into a 100 microm foil. The channels are closed by thermal bonding with a 250 microm thick foil and filled with 5.10(-3) mol/l Pyrromethene 597 in benzyl alcohol. The fluid forms a liquid core single mode slab waveguide of 1.6 microm height on a nanostructured grating area of 0.5 x 0.5 mm(2). This results in a large gain volume. Two grating periods of 185 nm and 190 nm yield single mode laser light emission at 566 nm and 581 nm respectively. High emitted pulse energies of more than 1 microJ are reported. Stable operation for more than 25 min at 10 Hz pulse repetition rate is achieved. PMID:20588775

  15. Brazing Inconel 625 Using the Copper Foil

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang; Wang, Cheng-Yen; Shiue, Ren-Kae

    2013-12-01

    Brazing Inconel 625 (IN-625) using the copper foil has been investigated in this research. The brazed joint is composed of nanosized CrNi3 precipitates and Cr/Mo/Nb/Ni quaternary compound in the Cu/Ni-rich matrix. The copper filler 50 μm in thickness is enough for the joint filling. However, the application of Cu foil 100 μm in thickness has little effect on the shear strength of the brazed joint. The specimen brazed at 1433 K (1160 °C) for 1800 seconds demonstrates the best shear strength of 470 MPa, and its fractograph is dominated by ductile dimple fracture with sliding marks. Decreasing the brazing temperature slightly decreases the shear strength of the brazed joint due to the presence of a few isolated solidification shrinkage voids smaller than 15 μm. Increasing the brazing temperature, especially for the specimen brazed at 1473 K (1200 °C), significantly deteriorates the shear strength of the joint below 260 MPa because of coalescence of isothermal solidification shrinkage voids in the joint. The Cu foil demonstrates potential in brazing IN-625 for industrial application.

  16. Microstructural Features in Aged Erbium Tritide Foils

    SciTech Connect

    Gelles, David S.; Brewer, L. N.; Kotula, Paul G.; Cowgill, Donald F.; Busick, C. C.; Snow, C. S.

    2008-01-01

    Aged erbium tritide foil specimens are found to contain five distinctly different microstructural features. The general structure was of large columnar grains of ErT2. But on a fine scale, precipitates believed to be erbium oxy-tritides and helium bubbles could be identified. The precipitate size was in the range of ~10 nm and the bubbles were of an unusual planar shape on {111} planes with an invariant thickness of ~1 nm and a diameter on the order of 10 nm. Also, an outer layer containing no fine precipitate structure and only a few helium bubbles was present on foils. This layer is best described as a denuded zone which probably grew during aging in air. Finally, large embedded Er2O3 particles were found at low density and non-uniformly distributed, but sometimes extending through the thickness of the foil. A failure mechanism allowing the helium to escape is suggested by observed cracking between bubbles closer to end of life.

  17. Optical quality assurance of GEM foils

    NASA Astrophysics Data System (ADS)

    Hildén, T.; Brücken, E.; Heino, J.; Kalliokoski, M.; Karadzhinova, A.; Lauhakangas, R.; Tuominen, E.; Turpeinen, R.

    2015-01-01

    An analysis software was developed for the high aspect ratio optical scanning system in the Detector Laboratory of the University of Helsinki and the Helsinki Institute of Physics. The system is used e.g. in the quality assurance of the GEM-TPC detectors being developed for the beam diagnostics system of the SuperFRS at future FAIR facility. The software was tested by analyzing five CERN standard GEM foils scanned with the optical scanning system. The measurement uncertainty of the diameter of the GEM holes and the pitch of the hole pattern was found to be 0.5 μm and 0.3 μm, respectively. The software design and the performance are discussed. The correlation between the GEM hole size distribution and the corresponding gain variation was studied by comparing them against a detailed gain mapping of a foil and a set of six lower precision control measurements. It can be seen that a qualitative estimation of the behavior of the local variation in gain across the GEM foil can be made based on the measured sizes of the outer and inner holes.

  18. Design for aluminum recycling

    SciTech Connect

    Not Available

    1993-10-01

    This article describes the increasing use of aluminum in automobiles and the need to recycle to benefit further growth of aluminum applications by assuring an economical, high-quality source of metal. The article emphasizes that coordination of material specifications among designers can raise aluminum scrap value and facilitate recycling. Applications of aluminum in automobile construction are discussed.

  19. Foil changer for the Chalk River superconducting cyclotron

    SciTech Connect

    Hoffmann, C.R.; Kilborn, R.I.; Mouris, J.E.; Proulx, D.R.; Weaver, J.F.

    1985-10-01

    Capture of an injected beam in the Chalk River superconducting cyclotron requires that a carbon stripping foil be accurately placed in a dee to intercept the incoming beam. Foil radial position must be precisely adjustable and foils must be easily replaced. A foil changing apparatus has been designed, built and tested to meet these requirements. The main components are a supply magazine, a transport system, and unloading and loading mechanisms. The magazine is on top of the cyclotron. It holds 300 foils and can be isolated from machine vacuum for refilling. Each foil is mounted on a stainless steel frame. A stainless steel roller chain fitted with 33 copper sleeves (shrouds) carries foils, one per shroud, down a dee stem to the midplane. A 12-bit absolute optical shaft encoder senses foil position. To replace a foil a shroud is positioned at the top of the cyclotron, a foil is removed, and another is transferred from the magazine to the empty shroud. Three stepping motors and associated electronics provide mechanical drive and are interfaced with a CAMAC control system.

  20. Formation of a pinched electron beam and an intense x-ray source in radial foil rod-pinch diodes

    NASA Astrophysics Data System (ADS)

    Sorokin, S. A.

    2016-04-01

    Low-impedance rod-pinch diode experiments were performed on the MIG generator at Institute of High Current Electronics using an aluminum foil placed between concentric electrodes of a rod-pinch diode. The J × B force accelerates the foil plasma in the axial and radial directions. After the foil plasma is pushed beyond the tip of the rod, a vacuum gap and a pinched electron beam form. The anode and cathode plasmas expansion and the following plasmas sweeping up by the J × B force can result in repetitive gap formations and closures, which are evident in the several successive intense x-ray pulses. A 0.7-mm-size point-like x-ray source was realized using a 1-mm-diameter tungsten rod, tapered to a point over the last 10 mm. The results of experiments show that the foil-shorted rod-pinch diode configuration has the potential to form low-impedance diodes, to shorten x-ray pulse duration and to realize submillimeter spot-size x-ray sources.

  1. The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2001-01-01

    Foil air bearing load capacity tests were conducted to investigate if a solid lubricant coating applied to the surface of the bearing's top foil can function as a break-in coating. Two foil coating materials, a conventional soft polymer film (polyimide) and a hard ceramic (alumina), were independently evaluated against as-ground and worn (run-in) journals coated with NASA PS304, a high-temperature solid lubricant composite coating. The foil coatings were evaluated at journal rotational speeds of 30,000 rpm and at 25 C. Tests were also performed on a foil bearing with a bare (uncoated) nickel-based superalloy top foil to establish a baseline for comparison. The test results indicate that the presence of a top foil solid lubricant coating is effective at increasing the load capacity performance of the foil bearing. Compared to the uncoated baseline, the addition of the soft polymer coating on the top foil increased the bearing load coefficient by 120% when operating against an as-ground journal surface and 85 percent against a run-in journal surface. The alumina coating increased the load coefficient by 40% against the as-ground journal but did not have any affect when the bearing was operated with the run-in journal. The results suggest that the addition of solid lubricant films provide added lubrication when the air film is marginal indicating that as the load capacity is approached foil air bearings transition from hydrodynamic to mixed and boundary lubrication.

  2. High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication.

    PubMed

    Biring, Sajal; Tsai, Kun-Tong; Sur, Ujjal Kumar; Wang, Yuh-Lin

    2008-09-01

    A high fidelity electrochemical replication technique for the rapid fabrication of Al nanostructures with 10 nm lateral resolution has been successfully demonstrated. Aluminum is electrodeposited onto a lithographically patterned Si master using a non-aqueous organic hydride bath of aluminum chloride and lithium aluminum hydride at room temperature. Chemical pretreatment of the Si surface allows a clean detachment of the replicated Al foil from the master, permitting its repetitive use for mass replication. This high throughput technique opens up new possibilities in the fabrication of Al-related nanostructures, including the growth of long range ordered anodic alumina nanochannel arrays. PMID:21828842

  3. Fabrication and evaluation of low fiber content alumina fiber/aluminum composites

    NASA Technical Reports Server (NTRS)

    Hack, J. E.; Strempek, G. C.

    1980-01-01

    The mechanical fabrication of low volume percent fiber, polycrystalline alumina fiber reinforced aluminum composites was accomplished. Wire preform material was prepared by liquid-metal infiltration of alumina fiber bundles. The wires were subsequently encapsulated with aluminum foil and fabricated into bulk composite material by hot-drawing. Extensive mechanical, thermal and chemical testing was conducted on preform and bulk material to develop a process and material data base. In addition, a preliminary investigation of mechanical forming of bulk alumina fiber reinforced aluminum composite material was conducted.

  4. Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2010-01-01

    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.

  5. Foil perforation particulate impact records on LDEF MAP AO023: Incident mass distributions

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Sullivan, K.

    1991-01-01

    An array of multiple foils varying from 1.5 to 3.0 microns exposed on Long Duration Exposure Facility's (LEDF's) geocentrically stabilized exposure platform provides perforation distributions which relate to particulate flux mass distributions and impact velocity in LDEF's orbital reference frame. The application of physical modeling enables a preliminary separation into orbital and interplanetary components, both of which have differing velocities and hence penetration effectiveness. Thin foil hypervelocity calibration data and parametric penetration formulae developed to relate target hole diameter to projectile dimensions are critically examined and a new formula offered for the ballistic limit situation. Incorporating projectile density, target density, and target strength and dimensional scaling from submicron particulates to centimeter scale data, it contrast very significantly with previous formulae in the interpretation of space impact data. Perforation flux distributions for the leading, trailing, and space pointing faces and associated mass distributions for the two populations are presented.

  6. Magnetohydrodynamic modelling of exploding foil initiators

    NASA Astrophysics Data System (ADS)

    Neal, William

    2015-06-01

    Magnetohydrodynamic (MHD) codes are currently being developed, and used, to predict the behaviour of electrically-driven flyer-plates. These codes are of particular interest to the design of exploding foil initiator (EFI) detonators but there is a distinct lack of comparison with high-fidelity experimental data. This study aims to compare a MHD code with a collection of temporally and spatially resolved diagnostics including PDV, dual-axis imaging and streak imaging. The results show the code's excellent representation of the flyer-plate launch and highlight features within the experiment that the model fails to capture.

  7. Modelling Metamorphism by Abstract Interpretation

    NASA Astrophysics Data System (ADS)

    Dalla Preda, Mila; Giacobazzi, Roberto; Debray, Saumya; Coogan, Kevin; Townsend, Gregg M.

    Metamorphic malware apply semantics-preserving transformations to their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extract metamorphic signatures from these malware. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics, and that regular metamorphism can be modelled as finite state automata abstraction of the phase semantics.

  8. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    SciTech Connect

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As a result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  9. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    DOE PAGESBeta

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less

  10. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ˜600 kA with ˜200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  11. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents.

    PubMed

    Yager-Elorriaga, D A; Steiner, A M; Patel, S G; Jordan, N M; Lau, Y Y; Gilgenbach, R M

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ∼600 kA with ∼200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines. PMID:26628134

  12. Thermal conductance of pressed metallic contacts augmented with Indium foil or Apiezon-N (tm) grease at liquid helium temperatures

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Spivak, Alan L.

    1993-01-01

    The thermal conductance of pressed contacts which have been augmented with Indium foil or Apiezon-N (tm) grease was measured over the temperature range of 1.6 to 6.0 K, with applied forces from 22 N to 670 N. The sample pairs were fabricated from OFHC copper, 6061-T6 aluminum, free-machining brass, and 304 stainless steel. Although the thermal conductance was found to increase with increasing applied contact force, the force dependence was less than in earlier work. The addition of Indium foil or Apiezon-NT grease between the contact surfaces resulted in an improvement over uncoated surfaces ranging from a factor of approximately 3 for stainless steel to an order of magnitude for copper contacts.

  13. [Foil bandages--a modern method of covering wounds].

    PubMed

    Sedlarik, K M; Hájek, M

    1994-04-01

    Single-layer foil bandages which belong to the group of so-called occlusive bandaging materials were originally developed from incision foils. Due to their semipermeability theses bandages permit only restricted evaporation of water from the wound and thus maintain its surface constantly slightly wet. They can be used for longer periods and are thus more economical. Although foil bandages are suitable only for some types of wounds, they have great advantages. Wounds dressed with these foil bandages can be easily and frequently checked and offer wounds excellent antimicrobial protection. PMID:8085186

  14. Characterization of U-Mo Foils for AFIP-7

    SciTech Connect

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  15. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, Paul T.; Fisher, Robert W.; Hosking, Floyd M.; Zanner, Frank J.

    1996-01-01

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  16. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  17. Mounting stripper foils on forks for maximum lifetime

    NASA Astrophysics Data System (ADS)

    Jolivet, Connie S.; Stoner, John O.

    2008-06-01

    While research and development continue to produce forms of carbon for longer lasting stripper foils, relatively little attention has been paid to other factors that affect their survival in use. It becomes apparent that the form of carbon is only part of the issue. Specific mounting methods increase the lifetimes of carbon stripper foils. These methods are determined in part by the specific use and carbon type for a foil. With careful handling, appropriate adhesive, and slack mounting, premature breakage can be avoided. Foil lifetimes are then primarily affected by less easily controlled factors such as high-temperature expansion, shrinkage and evaporation.

  18. SNS STRIPPER FOIL FAILURE MODES AND THEIR CURES

    SciTech Connect

    Galambos, John D; Luck, Chris; Plum, Michael A; Shaw, Robert W; Ladd, Peter; Raparia, Deepak; Macek, Robert James; Kim, Sang-Ho; Peters, Charles C; Polsky, Yarom

    2010-01-01

    The diamond stripper foils in use at the Spallation Neutron Source worked successfully with no failures until May 3, 2009, when we started experiencing a rash of foil system failures after increasing the beam power to ~840 kW. The main contributors to the failures are thought to be 1) convoy electrons, stripped from the incoming H beam, that strike the foil bracket and may also reflect back from the electron catcher, and 2) vacuum breakdown from the charge developed on the foil by secondary electron emission. In this paper we will detail these and other failure mechanisms, and describe the improvements we have made to mitigate them.

  19. Ti foil light in the ATA (Advanced Test Accelerator) beam

    SciTech Connect

    Slaughter, D.R.; Chong, Y.P.; Goosman, D.R.; Rule, D.W.; Fiorito, R.B.

    1987-09-01

    An experiment is in progress to characterize the visible light produced when a Ti foil is immersed in the ATA 2 kA, 43 MeV beam. Results obtained to date indicate that the optical condition of the foil surface is a critical determinant of these characteristics, with a very narrow angular distribution obtained when a highly polished and flat foil is used. These data are consistent with the present hypothesis that the light is produced by transition radiation. Incomplete experiments to determine the foil angle dependence of the detected light and its polarization are summarized and remaining experiments are described.

  20. Development of full shell foil x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Balsamo, Erin; Gendreau, Keith C.; Arzoumanian, Zaven; Jalota, Lalit; Kenyon, Steven J.; Fickau, David; Spartana, Nicholas; Hahne, Devin; Koenecke, Richard; Soong, Yang; Serlemitsos, Peter; Okajima, Takashi; Campion, Robert; Detweiler, Louis

    2012-09-01

    NICER will use full shell aluminum foil X-ray mirrors, similar to those that are currently being developed for the optics to be used for the XACT sounding rocket mission. Similar X-ray optics have been produced at Goddard Space Flight Center since the late 1970's. The mirror geometry used in the past and on some present missions consists of concentric quadrant shell mirrors with a conical approximation to the Wolter 1 geometry. For XACT, we are developing the next generation of these optics. Two innovations introduced in the mirrors are complete shells with a curve is in the reflectors' profile to produce a sharper focus than a conical approximation. X-ray imagers, such as those of Suzaku, ASCA, GEMS, and Astro-H require two reflections. Since XACT and NICER are using the optics as X-ray concentrators rather than full imaging optics, only one set of reflections is necessary. The largest shell in the NICER concentrator is 10cm diameter. Small diameter optics benefit from the rigidity of the full shell design. Also, the simplified support hardware reduced mass, which increases the effective area per unit mass. With 56 optics on NICER, each consisting of 24 full shell mirrors, an effective production process is needed for efficient manufacture of these mirrors. This production process is based on heritage techniques but modified for these new mirrors. This paper presents the production process of the innovative full shell optics and also results of optical and X-ray tests of the integrated optics.

  1. Collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Gil, J. M.; Rodriguez, R.; Rubiano, J. G.; Mendoza, M. A.; Martel, P.; Minguez, E.; Suzuki-Vidal, F.; Lebedev, S. V.; Swadling, G. F.; Burdiak, G.; Pickworth, L. A.; Skidmore, J.

    2015-12-01

    A computational investigation based on collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet.

  2. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    SciTech Connect

    Smitherman, D.P.

    1998-04-01

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}m aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.

  3. Interpretive Experiments

    ERIC Educational Resources Information Center

    DeHaan, Frank, Ed.

    1977-01-01

    Describes an interpretative experiment involving the application of symmetry and temperature-dependent proton and fluorine nmr spectroscopy to the solution of structural and kinetic problems in coordination chemistry. (MLH)

  4. Method of making porous conductive supports for electrodes. [by electroforming and stacking nickel foils

    NASA Technical Reports Server (NTRS)

    Schaer, G. R. (Inventor)

    1973-01-01

    Porous conductive supports for electrochemical cell electrodes are made by electroforming thin corrugated nickel foil, and by stacking pieces of the corrugated foil alternatively with pieces of thin flat nickel foil. Corrugations in successive corrugated pieces are oriented at different angles. Adjacent pieces of foil are bonded by heating in a hydrogen atmosphere and then cutting the stack in planes perpendicular to the foils.

  5. Actinide Foil Production for MPACT Research

    SciTech Connect

    Beller, Denis

    2012-10-30

    Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systems are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U

  6. Continuous Casting for Aluminum Sheet: a Product Perspective

    NASA Astrophysics Data System (ADS)

    Sanders, Robert E.

    2012-02-01

    Continuous casting processes have been used successfully for more than 50 years to reduce the cost of manufacturing a variety of aluminum rolled products. Approximately 25% of North American flat-rolled sheet and foil is sourced from twin-roll cast or slab cast processes. Twin roll-casters provide a cost-effective solution for producing foil and light-gauge sheet from relatively low-alloyed aluminum (1xxx and 8xxx alloys). Slab casters, particularly Hazelett twin-belt machines, are well utilized in the production of 3xxx or 5xxx painted building products which require moderate strength and good corrosion resistance. Both foil and painted sheet are cost-sensitive commodity products with well-known metallurgical and quality requirements. There have been extensive trials and modest successes with continuous cast can stock and automotive sheet. However, they have not been widely adopted commercially due to generally lower levels of surface quality and formability compared with sheet produced from scalped direct chill (DC) cast ingot. The metallurgical requirements for can and auto sheet are considered in more detail with emphasis on the microstructural features which limit their application, e.g., particle distribution, grain size, and texture. Looking forward, slab casting offers the most viable opportunity for producing strong (i.e., higher alloy content), formable structural auto sheet with acceptable surface quality.

  7. Simulations of Foils Irradiated by Finite Laser Spots

    NASA Astrophysics Data System (ADS)

    Phillips, Lee

    2006-10-01

    Recent proposed designs (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities with lower laser energies combined with higher irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) that may lead, for example, to the generation of fast electrons. The proposed use of a 248 nm KrF laser is expected to minimize LPI, and this is being studied by experiments on NRL's NIKE laser. Here we report on simulations aimed at designing and interpreting these experiments. The 2d simulations employ a modification of the FAST code to ablate plasma from CH and DT foils using laser pulses with arbitrary spatial and temporal profiles. These include the customary hypergaussian NIKE profile, gaussian profiles, and combinations of these. The simulations model the structure of the ablating plasma and the absorption of the laser light, providing parameters for design of the experiment and indicating where the relevant LPI (two-plasmon, Raman) may be observed.

  8. Gas Foil Bearing Misalignment and Unbalance Effects

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2008-01-01

    The effects of misalignment and unbalance on gas foil bearings are presented. The future of U.S. space exploration includes plans to conduct science missions aboard space vehicles, return humans to the Moon, and place humans on Mars. All of these endeavors are of long duration, and require high amounts of electrical power for propulsion, life support, mission operations, etc. One potential source of electrical power of sufficient magnitude and duration is a nuclear-fission-based system. The system architecture would consist of a nuclear reactor heat source with the resulting thermal energy converted to electrical energy through a dynamic power conversion and heat rejection system. Various types of power conversion systems can be utilized, but the Closed Brayton Cycle (CBC) turboalternator is one of the leading candidates. In the CBC, an inert gas heated by the reactor drives a turboalternator, rejects excess heat to space through a heat exchanger, and returns to the reactor in a closed loop configuration. The use of the CBC for space power and propulsion is described in more detail in the literature (Mason, 2003). In the CBC system just described, the process fluid is a high pressure inert gas such as argon, krypton, or a helium-xenon mixture. Due to the closed loop nature of the system and the associated potential for damage to components in the system, contamination of the working fluid is intolerable. Since a potential source of contamination is the lubricant used in conventional turbomachinery bearings, Gas Foil Bearings (GFB) have high potential for the rotor support system. GFBs are compliant, hydrodynamic journal and thrust bearings that use a gas, such as the CBC working fluid, as their lubricant. Thus, GFBs eliminate the possibility of contamination due to lubricant leaks into the closed loop system. Gas foil bearings are currently used in many commercial applications, both terrestrial and aerospace. Aircraft Air Cycle Machines (ACMs) and ground

  9. Fabrication of stainless steel foil utilizing chromized steel strip

    NASA Astrophysics Data System (ADS)

    Loria, Edward A.

    1980-10-01

    Stainless steel foil has properties which are, in many respects, unmatched by alternative thin films. The high strength to weight ratio and resistance to corrosion and oxidation at elevated temperatures are generally advantageous. The aerospace and automotive industries have used Type 430 and 304 foil in turbine engine applications. Foil around 2 mils (5.1 × 10-3 cm) thick has been appropriate for the recuperator or heat exchanger and this product has also been used in honeycomb and truss-core structures. Further, such foil has been employed as a wrap to protect tool steel parts from contamination during heat treating. A large part of the high cost of producing stainless steel foil by rolling is due to the complicated and expensive rolling mill and annealing equipment involved. A method will be described which produces (solid) stainless steel foil from chromized (coated) steel which can be cheaper than the conventional processing stainless steel, such as Type 430, from ingot to foil. Also, the material is more ductile and less work hardenable during processing to foil and consequently intermediate annealing treatments are eliminated and scrap losses minimized.

  10. Foil fabrication for the ROMANO event. Revision 1

    SciTech Connect

    Romo, J.G. Jr.; Weed, J.W.; Griggs, G.E.; Brown, T.G.; Tassano, P.L.

    1984-06-13

    The Vacuum Processes Lab (VPL), of LLNL's M.E. Dept. - Material Fabrication Division (MFD), conducted various vacuum related support activities for the ROMANO nuclear physics experiment. This report focuses on the foil fabrication activities carried out between July and November 1983 for the ROMANO event. Other vacuum related activities for ROMANO, such as outgassing tests of materials, are covered in separate documentation. VPL was asked to provide 270 coated Parylene foils for the ROMANO event. However, due to the developmental nature of some of the procedures, approximately 400 coated foils were processed. In addition, VPL interacted with MFD's Plastics Shop to help supply Parylene substrates to other organizations (i.e., LBL and commercial vendors) which had also been asked to provide coated foils for ROMANO. The purposes of this report are (A) to document the processes developed and the techniques used to produce the foils, and (B) to suggest future directions. The report is divided into four sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, (3) calibration foil fabrication, and (4) foil and substrate inspections.

  11. Insulating effectiveness of self-spacing dimpled foil

    NASA Technical Reports Server (NTRS)

    Bond, J. A.

    1972-01-01

    Experimental data are graphed for determining conductive heat losses of multilayer insulation as function of number of foil layers. Foil was 0.0051 cm thick Nb, 1% Zr refractory alloy, dimpled to 0.0254 cm with approximately 28 dimples/sq cm. Heat losses were determined at 0.1 microtorr between 700 and 1089 K.

  12. Process for producing molybdenum foil and collapsible tubing

    NASA Technical Reports Server (NTRS)

    Bretts, G. R.; Gavert, R. B.; Groschke, G. F.

    1971-01-01

    Manufacturing process produces molybdenum foil 0.002 cm thick and 305 m long, and forms foil into high-strength, thin-walled tubing which can be flattened for storage on a spool. Desirable metal properties include high thermal conductivity stiffness, yield and tensile stress, and low thermal expansion coeffecient.

  13. Dynamic responses of a two-dimensional flapping foil motion

    NASA Astrophysics Data System (ADS)

    Lu, Xi-Yun; Liao, Qin

    2006-09-01

    The investigation of a flapping foil, which is used as a basic mode of the flapping-based locomotion in insects, birds, and fish, is performed by solving the Navier-Stokes equations numerically. In this Brief Communication we provide insight into the understanding of dynamics of a flapping foil. A critical flapping Reynolds number based on the flapping frequency and amplitude, above which a forward flapping movement occurs, is predicted. The dynamics of the flapping foil are analyzed in two dynamic responses, i.e., an oscillatory movement and a steady movement, which depend on the density ratio between the foil and the surrounded fluid. The steady movement response is related to the forward flapping motion. The Strouhal number that governs a vortex shedding for the forward flapping foil is calculated and lies in the range where flying and swimming animals will be likely to tune for high propulsive efficiency.

  14. Freezing enhancement around a horizontal tube using copper foil disks

    NASA Astrophysics Data System (ADS)

    Sugawara, M.; Komatsu, Y.; Takahashi, Y.; Beer, H.

    2011-12-01

    Freezing of water saturated in circumferentially arranged copper foils around a cooling tube is studied experimentally and numerically. The copper foils need not to be welded to the cooling tube but are merely placed around the tube so that the freezing system is easily arranged. Copper foils greatly enhance freezing compared with that of a bare tube, even with a small copper volume fraction in the freezing system. Numerical calculations by means of a continuum model predict well freezing enhancement. The effect of the copper foils is also considered numerically for the melting process in order to compare with freezing. It is seen that copper foils contribute more to the melting enhancement than to the increase of the freezing rate.

  15. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOEpatents

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  16. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  17. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  18. Bombarding insulating foils with highly energetic ions

    NASA Astrophysics Data System (ADS)

    Lanzanò, G.; de Filippo, E.; Hagmann, S.; Rothard, H.; Volant, C.

    Insulating (MYLAR), semi-insulating (MYLAR-Au) and conducting foils have been bombarded by very energetic 64 MeV u-1 78Kr32+ ions. The velocity spectra of fast electrons emitted in the backward and forward directions have been measured and analyzed as a function of the elapsed time in the run. A shift of binary encounter and convoy electrons emitted in the forward direction toward lower velocities has been observed with insulating targets. No such shift occurs with metallic targets. The surface potential evolves with time (i.e. ion fluence) both at forward and backward emission angle. It is shown that strong bulk charging of insulating targets leads to a positive potential as high as 9 kV before charge breakdown.

  19. Preparation of selenium coatings onto beryllium foils

    SciTech Connect

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-09-01

    A technique for preparing selenium films onto 50.8 microns thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. Profilometry measurements of the coatings indicate deposit thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 microns. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable thin film controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV. 15 references, 3 figures.

  20. Foil Gas Thrust Bearings for High-Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    Edmonds, Brian; DellaCorte, Christopher; Dykas, Brian

    2010-01-01

    A methodology has been developed for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs, supporting continued development of oil-free turbomachinery. A bearing backing plate is first machined and surface-ground to produce flat and parallel faces. Partial-arc slots needed to retain the foil components are then machined into the plate by wire electrical discharge machining. Slot thicknesses achievable by a single wire pass are appropriate to accommodate the practical range of foil thicknesses, leaving a small clearance in this hinged joint to permit limited motion. The backing plate is constructed from a nickel-based superalloy (Inconel 718) to allow heat treatment of the entire assembled bearing, as well as to permit hightemperature operation. However, other dimensionally stable materials, such as precipitation-hardened stainless steel, can also be used for this component depending on application. The top and bump foil blanks are cut from stacks of annealed Inconel X-750 foil by the same EDM process. The bump foil has several azimuthal slits separating it into five individual bump strips. This configuration allows for variable bump spacing, which helps to accommodate the effects of the varying surface velocity, thermal crowning, centrifugal dishing, and misalignment. Rectangular tabs on the foil blanks fit into the backing plate slots. For this application, a rather traditional set of conventionally machined dies is selected, and bump foil blanks are pressed into the dies for forming. This arrangement produces a set of bump foil dies for foil thrust bearings that provide for relatively inexpensive fabrication of various bump configurations, and employing methods and features from the public domain.

  1. High strain rate metalworking with vaporizing foil actuator: Control of flyer velocity by varying input energy and foil thickness

    SciTech Connect

    Vivek, A. Hansen, S. R.; Daehn, Glenn S.

    2014-07-15

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Doppler velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment.

  2. Performing Interpretation

    ERIC Educational Resources Information Center

    Kothe, Elsa Lenz; Berard, Marie-France

    2013-01-01

    Utilizing a/r/tographic methodology to interrogate interpretive acts in museums, multiple areas of inquiry are raised in this paper, including: which knowledge is assigned the greatest value when preparing a gallery talk; what lies outside of disciplinary knowledge; how invitations to participate invite and disinvite in the same gesture; and what…

  3. Interpreting Evidence.

    ERIC Educational Resources Information Center

    Munsart, Craig A.

    1993-01-01

    Presents an activity that allows students to experience the type of discovery process that paleontologists necessarily followed during the early dinosaur explorations. Students are read parts of a story taken from the "American Journal of Science" and interpret the evidence leading to the discovery of Triceratops and Stegosaurus. (PR)

  4. Interpreting Metonymy.

    ERIC Educational Resources Information Center

    Pankhurst, Anne

    1994-01-01

    This paper examines some of the problems associated with interpreting metonymy, a figure of speech in which an attribute or commonly associated feature is used to name or designate something. After defining metonymy and outlining the principles of metonymy, the paper explains the differences between metonymy, synecdoche, and metaphor. It is…

  5. Modification of base-side {sup 99}MO production processes for LEU metal-foil targets.

    SciTech Connect

    Vandegrift, G. F.; Leonard, R. A.; Aase, S.; Sedlet, J.; Koma, Y.; Conner, C.; Clark, C. R.; Meyer, M. K.

    1999-09-30

    Argonne National Laboratory is cooperating with the National Atomic Energy Commission of the Argentine Republic (CNEA) to convert their {sup 99}Mo production process, which uses high enriched uranium (HEU), to low-enriched uranium (LEU), The program is multifaceted; however, discussed in this paper are (1) results of laboratory experiments to develop means for substituting LEU metal-foil targets into the current process and (2) preparation of uranium-alloy or uranium-metal/aluminum-dispersion targets. Although {sup 99}Mo production is a multi-step process, the first two steps (target dissolution and primary molybdenum recovery) are by far the most important in the conversion. Commonly, once molybdenum is separated from the bulk of the uranium, the remainder of the process need not be modified. Our results show that up to this point in our study, conversion of the CNEA process to LEU appears viable.

  6. Combined proton acceleration from foil targets by ultraintense short laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Yu, Tongpu; Ge, Xulei; Yang, Su; Wei, Wenqing; Yuan, Tao; Liu, Feng; Chen, Min; Liu, Jingquan; Li, Yutong; Yuan, Xiaohui; Sheng, Zhengming; Zhang, Jie

    2016-04-01

    Proton emission from solid foil targets irradiated by relativistically intense femtosecond laser pulses is studied experimentally. Broad plateaus in energy spectra are measured from micron-thick targets when the incident laser pulses have relatively low intensity contrasts. It is proposed that such proton spectra can be attributed to the combined processes of laser-driven collisionless shock acceleration and target normal sheath acceleration. Simple analytic estimation and two-dimensional particle-in-cell simulations are performed, which support our interpretation. The obtained plateau-shape spectrum may also serve as an effective tool to diagnose the plasma state and verify the ion acceleration mechanisms in laser-solid interactions.

  7. Foil x-ray mirrors for astronomical observations: still an evolving technology

    NASA Astrophysics Data System (ADS)

    Serlemitsos, Peter J.; Soong, Yang; Okajima, Takashi; Hahne, Devin J.

    2010-07-01

    Foil X-ray mirrors, introduced by the Goddard X-ray Group in the late 1970s, were envisioned as an interim and complementary approach toward increased sensitivity for small inexpensive astronomical instruments. The extreme light weight nature of these mirrors dovetailed beautifully with Japan's small payload missions, leading to several collaborative, earth orbiting observatories, designed primarily for spectroscopy, of which SUZAKU is still in earth orbit. ASTRO-H is the latest joint instrument with Japan, presently in the implementation phase. At Goddard, some 30 years after we introduced them, we are involved with four separate flight instruments utilizing foil X-ray mirrors, a good indication that this technology is here to stay. Nevertheless, an improved spatial resolution will be the most welcomed development by all. The task of preparing upwards of 1000 reflectors, then assembling them into a single mirror with arcmin resolution remains a formidable one. Many, performance limiting approximations become necessary when converting commercial aluminum sheets into 8 quadrant segments, each with ~200 nested conical, ~4Å surface reflectors, which are then assembled into a single mirror. In this paper we will dscribe the mirror we are presently involved with, slated for the Goddard high resolution imaging X-ray spectrometer (SXS) onboard ASTRO-H. Improved spatial resolution will be an important enhancement to the science objectives from this instrument. We are accordingly pursuing and will briefly describe in this paper several design and reflector assembly modifications, aimed toward that goal.

  8. Foil X-Ray Mirrors for Astronomical Observations: Still an Evolving Technology

    NASA Technical Reports Server (NTRS)

    Serlemitsos, Peter J.; Soong, Yang; Okajima, Takashi; Hahne, Devin J.

    2011-01-01

    Foil X-ray mirrors, introduced by the Goddard X-ray Group in the late 1970s, were envisioned as an interim and complementary approach toward increased sensitivity for small inexpensive astronomical instruments. The extreme light weight nature of these mirrors dovetailed beautifully with Japan's small payload missions, leading to several collaborative, earth orbiting observatories, designed primarily for spectroscopy, of which SUZAKU is still in earth orbit. ASTRO-H is the latest joint instrument with Japan, presently in the implementation phase. At Goddard, some 30 years after we introduced them, we are involved with four separate flight instruments utilizing foil X-ray mirrors, a good indication that this technology is here to stay. Nevertheless, an improved spatial resolution will be the most welcomed development by all. The task of preparing upwards of 1000 reflectors, then assembling them into a single mirror with arcmin resolution remains a formidable one. Many, performance limiting approximations become necessary when converting commercial aluminum sheets into 8 quadrant segments, each with approximately 200 nested conical, approximately 4Angstrom surface reflectors, which are then assembled into a single mirror. In this paper we will describe the mirror we are presently involved with, slated for the Goddard high resolution imaging X-ray spectrometer (SXS) onboard ASTRO-H. Improved spatial resolution will be an important enhancement to the science objectives from this instrument. We are accordingly pursuing and will briefly describe in this paper several design and reflector assembly modifications, aimed toward that goal.

  9. Oxidation and melting of aluminum nanopowders.

    PubMed

    Trunov, Mikhaylo A; Umbrajkar, Swati M; Schoenitz, Mirko; Mang, Joseph T; Dreizin, Edward L

    2006-07-01

    Recently, nanometer-sized aluminum powders became available commercially, and their use as potential additives to propellants, explosives, and pyrotechnics has attracted significant interest. It has been suggested that very low melting temperatures are expected for nanosized aluminum powders and that such low melting temperatures could accelerate oxidation and trigger ignition much earlier than for regular, micron-sized aluminum powders. The objective of this work was to investigate experimentally the melting and oxidation behavior of nanosized aluminum powders. Powder samples with three different nominal sizes of 44, 80, and 121 nm were provided by Nanotechnologies Inc. The particle size distributions were measured using small-angle X-ray scattering. Melting was studied by differential scanning calorimetry where the powders were heated from room temperature to 750 degrees C in an argon environment. Thermogravimetric analysis was used to measure the mass increase indicative of oxidation while the powders were heated in an oxygen-argon gas mixture. The measured melting curves were compared to those computed using the experimental particle size distributions and thermodynamic models describing the melting temperature and enthalpy as functions of the particle size. The melting behavior predicted by different models correlated with the experimental observations only qualitatively. Characteristic stepwise oxidation was observed for all studied nanopowders. The observed oxidation behavior was well interpreted considering the recently established kinetics of oxidation of micron-sized aluminum powders. No correlation was found between the melting and oxidation of aluminum nanopowders. PMID:16805619

  10. Aluminum: Recycling of Aluminum Dross/Saltcake

    SciTech Connect

    Blazek, S.

    1999-01-29

    As this NICE3 publication details, the objective of this project is to commercialize the process technology to eliminate all landfill waste associated with black dross and saltcake generated from aluminum recycling in the United States.

  11. Producing Foils From Direct Cast Titanium Alloy Strip

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  12. Pigmented foils for radiative cooling and condensation irrigation

    SciTech Connect

    Nilsson, T.M.J.; Vargas, W.E.; Niklasson, G.A.

    1994-12-31

    This paper reports on the development of pigmented polyethylene foils for radiative cooling. The optical properties of the foils were optimized for applications in day-time radiative cooling and water condensation. The authors first study highly scattering foils used as convection shields. These cover foils combine a high solar reflectance and a high transmittance in the atmospheric window region in the infrared. Different pigment materials were studied and ZnS was the only one that could prevent heating of an underlying blackbody at noon, with the sun in its zenith. A 400 {micro}m thick ZnS pigmented polyethylene foil with a pigment volume fraction of 0.15 was tested in Tanzania. At noon the observed temperature of the covered blackbody was only 1.5 K above the ambient. Secondly, they study the potential for condensation of water in an arid region. Pigmented foils for this purpose should combine a high solar reflectance and a high infrared emittance, in order to promote condensation by the radiative cooling effect. Titanium dioxide is a fairly good infrared emitter, but the emittance can be improved by using a mixture of TiO{sub 2} and BaSO{sub 4} pigments or only employing a composite SiO{sub 2}/TiO{sub 2}. Field tests with a 390 {micro}m thick polyethylene foil with TiO{sub 2} and BaSO{sub 4} pigments gave encouraging results.

  13. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  14. Interpretive Medicine

    PubMed Central

    Reeve, Joanne

    2010-01-01

    Patient-centredness is a core value of general practice; it is defined as the interpersonal processes that support the holistic care of individuals. To date, efforts to demonstrate their relationship to patient outcomes have been disappointing, whilst some studies suggest values may be more rhetoric than reality. Contextual issues influence the quality of patient-centred consultations, impacting on outcomes. The legitimate use of knowledge, or evidence, is a defining aspect of modern practice, and has implications for patient-centredness. Based on a critical review of the literature, on my own empirical research, and on reflections from my clinical practice, I critique current models of the use of knowledge in supporting individualised care. Evidence-Based Medicine (EBM), and its implementation within health policy as Scientific Bureaucratic Medicine (SBM), define best evidence in terms of an epistemological emphasis on scientific knowledge over clinical experience. It provides objective knowledge of disease, including quantitative estimates of the certainty of that knowledge. Whilst arguably appropriate for secondary care, involving episodic care of selected populations referred in for specialist diagnosis and treatment of disease, application to general practice can be questioned given the complex, dynamic and uncertain nature of much of the illness that is treated. I propose that general practice is better described by a model of Interpretive Medicine (IM): the critical, thoughtful, professional use of an appropriate range of knowledges in the dynamic, shared exploration and interpretation of individual illness experience, in order to support the creative capacity of individuals in maintaining their daily lives. Whilst the generation of interpreted knowledge is an essential part of daily general practice, the profession does not have an adequate framework by which this activity can be externally judged to have been done well. Drawing on theory related to the

  15. Mechanical properties of micro- and nanocrystalline diamond foils

    PubMed Central

    Lodes, M. A.; Kachold, F. S.; Rosiwal, S. M.

    2015-01-01

    Diamond coating of suitable template materials and subsequent delamination allows for the manufacturing of free-standing diamond foil. The evolution of the microstructure can be influenced by secondary nucleation via control of process conditions in the hot-filament chemical vapour deposition process. Bending tests show extraordinarily high strength (more than 8 GPa), especially for diamond foils with nanocrystalline structure. A detailed fractographic analysis is conducted in order to correlate measured strength values with crack-initiating defects. The size of the failure causing flaw can vary from tens of micrometres to tens of nanometres, depending on the diamond foil microstructure as well as the loading conditions. PMID:25713455

  16. Material compatibility evaluation for liquid oxygen turbopump fluid foil bearings

    NASA Technical Reports Server (NTRS)

    Stoltzfus, J. M.; Dees, J.; Gu, A.; Dolan, F.

    1992-01-01

    Three series of tests were carried out on three polymer-coated Inconel substrate materials, Teflon S, polyimide bonded graphite fluoride (PBGF), and Teflon, which are considered for use in fluid foil bearings for a liquid oxygen turbopump. All the candidate materials passed the liquid oxygen frictional heating test. During the gaseous oxygen frictional heating test, all coatings wore off before ignition occured. Both Teflon S and PBGF coated foils passed 100 start/stop cycles against chrome-plated Inconel 718 shaft in the direct foil bearing lift-off simulation test in liquid oxygen.

  17. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  18. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  19. Hermetic packaging of drugs: optimized sealing of foil pouches.

    PubMed

    Auslander, D E; Gilbert, S G

    1976-07-01

    Factors affecting the sealing of foil packages were studied in the sealing of foil packages were studied in three laboratories. The relationship of sealing temperature (with machine speed and pressure kept constant) to the incidence of defective packages was determined. The maximum acceptable limit for defective pouches was 1%. Three tests were employed to detect defects: vacuum-dye, seal strength, and pressurized ammonia vapor. Only the last was sensitive enough to determine the optimum sealing conditions. This test also was capable of detecting leakage sites. Replacement of the cellophane layer of the foil laminate with polyvinylidene chloride-coated polyester improved the barrier properties of the package. PMID:957113

  20. Mechanical properties of micro- and nanocrystalline diamond foils.

    PubMed

    Lodes, M A; Kachold, F S; Rosiwal, S M

    2015-03-28

    Diamond coating of suitable template materials and subsequent delamination allows for the manufacturing of free-standing diamond foil. The evolution of the microstructure can be influenced by secondary nucleation via control of process conditions in the hot-filament chemical vapour deposition process. Bending tests show extraordinarily high strength (more than 8 GPa), especially for diamond foils with nanocrystalline structure. A detailed fractographic analysis is conducted in order to correlate measured strength values with crack-initiating defects. The size of the failure causing flaw can vary from tens of micrometres to tens of nanometres, depending on the diamond foil microstructure as well as the loading conditions. PMID:25713455

  1. Method of fabricating a uranium-bearing foil

    SciTech Connect

    Gooch, Jackie G.; DeMint, Amy L.

    2012-04-24

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  2. On the performance of hybrid foil-magnetic bearings

    SciTech Connect

    Heshmat, H.; Chen, H.M.; Walton, J.F. II.

    2000-01-01

    Recent technological advancements make hybridization of the magnetic and foil bearing both possible and extremely attractive. Operation of the foil/magnetic bearings takes advantage of the strengths of each individual bearing while minimizing each others weaknesses. In this paper one possible hybrid foil and magnetic bearing arrangement is investigated and sample design and operating parameters are presented. One of the weaknesses of the foil bearings, like any hydrodynamic bearing, is that contact between the foil bearing and the shaft occurs at rest or at very low speeds and it has low load carrying capacity at low speed. For high speed applications, AMBs are, however, vulnerable to rotor-bending or structural resonances that can easily saturate power amplifiers and make the control system unstable. Since the foil bearing is advantageous for high speed operation with a higher load carrying capacity, and the magnetic bearing is so in low speed range, it is a natural evolution to combine them into a hybrid bearing system thus utilizing the advantages of both. To take full advantage of the foil and magnetic elements comprising a hybrid bearing, it is imperative that the static and dynamic characteristics of each bearing be understood. This paper describes the development of a new analysis technique that was used to evaluate the performance of a class of gas-lubricated journal bearing. Unlike conventional approaches, the solution of the governing hydrodynamic equations dealing with compressible fluid is coupled with the structural resiliency of the bearing surface. The distribution of the fluid film thickness and pressures, as well as the shear stresses in a finite-width journal bearing, are computed. Using the Finite Element (FE) method, the membrane effect of an elastic top foil was evaluated and included in the overall analytical procedure. Influence coefficients were generated to address the elasticity effects of combined top foil and elastic foundation on the

  3. Functional multi-band THz meta-foils

    PubMed Central

    Wu, Jianfeng; Moser, Herbert O.; Xu, Su; Jian, Linke; Banas, Agnieszka; Banas, Krzysztof; Chen, Hongsheng; Bettiol, Andrew A.; Breese, Mark B. H.

    2013-01-01

    In this paper, we present the first experimental demonstration of double- and triple-band negative refraction index meta-foils in the terahertz (THz) region. Multi-band meta-foils constructed by multi-cell S-string resonators in a single structure exhibit simultaneously negative permittivity and negative permeability responses at multiple frequencies. The phenomena are confirmed by numerical simulations and Fourier transform infrared spectroscopy measurements. The flexible, freestanding multi-band meta-foils provide a promising candidate for the development of multi-frequency THz materials and devices. PMID:24346309

  4. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect

    Schulthess, Jason

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  5. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2009-12-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  6. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2010-03-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  7. Synchronization and Phase Dynamics of Oscillating Foils

    NASA Astrophysics Data System (ADS)

    Finkel, Cyndee L.

    In this work, a two-dimensional model representing the vortices that animals produce, when they are ying/swimming, was constructed. A D{shaped cylinder and an oscillating airfoil were used to mimic these body{shed and wing{generated vortices, respectively. The parameters chosen are based on the Reynolds numbers similar to that which is observed in nature (˜10 4). In order to imitate the motion of ying/swimming, the entire system was suspended into a water channel from frictionless air{bearings. The position of the apparatus in the channel was regulated with a linear, closed loop PI controller. Thrust/drag forces were measured with strain gauges and particle image velocimetry (PIV) was used to examine the wake structure that develops. The Strouhal number of the oscillating airfoil was compared to the values observed in nature as the system transitions between the accelerated and steady states. The results suggest that self-regulation restricts the values of the Strouhal number to a certain range where no other external sensory input is necessary. As suggested by previous work, this self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. The limit cycles were used to examine the synchronous conditions due to the coupling of the foil and wake vortices. Noise is a factor that can mask details of the synchronization. In order to control its effect, we study the locking conditions using an analytic technique that only considers the phases. Our results show that the phase locking indices are dependent on the Strouhal value as it converges to a frequency locking ratio of ≃0:5. This indicates that synchronization occurs during cruising between the motion of the foil and the measured thrust/drag response of the uid forces. The results suggest that Strouhal number selection in steady forward natural swimming and ying is the result of a limit cycle process and not actively controlled by an organism. An implication of this is

  8. Aspects of aluminum toxicity

    SciTech Connect

    Hewitt, C.D.; Savory, J.; Wills, M.R. )

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  9. [Determination of Arsenic in Food Package Aluminum by Ultrasound Assisted Solid Phase Extraction/ICP-AES].

    PubMed

    Qin, Wen-xia; Gong, Qi; Li, Min; Deng, Li-xin; Mo, Li-shu; Li, Yan-lin

    2015-04-01

    Determination of arsenic in pure aluminum by inductively coupled plasma atomic emission spectrometry was interfered by aluminum matrix. The experiment showed that when the mass concentration of Al was greater than or equal to 5 000 times the As in the test solution, the measurement error was greater than 5%. In order to eliminate the interference, strong acid cation exchange fiber (SACEF) was used as solid phase extraction agent to adsorb Al(3+). The extraction conditions included amount of SACEF, extraction time, temperature and pH were investigated. The optimal extraction conditions were that 0.9000 g SACEF was used to extract the aluminum from the sample solution of pH 2.0 at 55 °C for 5 min with the ultrasonic assist, and in this case, the arsenic in the form of arsenic acid was not extracted and left in the solution for the determination. The results showed that after treating 10. 00 mL test solution containing 1.00 µg arsenic and 20.0 mg aluminum, arsenic did not lose. The mass concentration of residual aluminum in the raffinate was about 2,000 times the As, which had not interfered the determination of arsenic. The detection limit (3 s) was 0.027 µg · mL(-1) and quantification limit (10 s) was 0.0091 µg · mL(-1). The proposed method was successfully applied to the separation and determination of arsenic in the synthetic samples, the aluminum cans and the barbecue aluminum foil. Recovery was in the range of 98.3%-105% and RSD (n = 3) was in the range of 0.1%-4.3%. The results showed that the content of arsenic in the aluminum cans and the aluminum barbecue foil was below the limited value of national standard (GB/T 3190-2008). PMID:26197599

  10. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  11. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  12. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    SciTech Connect

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-07-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives.

  13. A new low-melting-point aluminum braze

    SciTech Connect

    Jacobson, D.M.; Humpston, G.; Sangha, S.P.S.

    1996-08-01

    Most high-strength aluminum engineering alloys cannot be joined by brazing because they either degrade or melt at the temperature at which commercially available aluminum brazes are used. Previous efforts to develop aluminum brazing filler metal alloys with a significantly reduced melting point have tended to be frustrated by poor mechanical properties of the alloys, corrosion of the joints or the high cost, toxicity or volatility of the constituent materials. This paper describes the development and assessment of a new brazing alloy with a composition of 73Al-20Cu-2Ni-55I (wt-%), which has been designed to overcome these limitations. A joining process has been devised for fluxless brazing of aluminum engineering alloys using the new filler metal for use in both inert gas and vacuum furnaces. The production of ductile foil preforms and roll-clad base metals is described together with preliminary results of mechanical property assessments and corrosion resistance trials. These results are highly encouraging and point to promising new applications for aluminum brazing technology.

  14. Method of high-speed process study in experiments with thin foils heated by high-brightness laser radiation

    NASA Astrophysics Data System (ADS)

    Koutsenko, A. V.; Lebo, Ivan G.; Matzveiko, A. A.; Mikhailov, Yu. A.; Rozanov, Vladislav B.; Sklizkov, G. V.; Starodub, A. N.

    1999-06-01

    The results of the experiments at the installation 'PICO' with thin foils heating by laser radiation pulses of nanosecond duration are reported. The Al foils with thickness in the range from 3 (mu) up to 40 (mu) where used as a targets. The flux density was varied from 1013 W/cm2 to 1014 W/cm2. The sharp dependence of the portion of laser energy passed through the target on foil thickness was observed. This phenomena was accompanied by relatively small decrease of the passed radiation pulse duration. The anomalously high speed burning through of thin foil was observed in these experiments and the conclusion on possible mechanism of this phenomena has been done on the base of comparison of experimental data with theoretical calculations. The observed phenomena can be interpreted on the base of conjecture about the local burning through of a target in the small areas at the target surface with much more values of flux density than average one and following laser radiation self-focusing and formation of 'hot spots.'

  15. Meteoroids and space debris hypervelocity impact penetrations in LDEF map foils compared with hydrocode simulations

    NASA Astrophysics Data System (ADS)

    Tanner, W. G.; McDonnell, J. A. M.; Yano, H.; Fitzgerald, H. J.; Gardner, D. J.

    The continued analyses of penetrating impacts on MAP foils of Aluminium and Brass have produced data for several LDEF faces, i.e., Space, West, and East. These data have immediate bearing on the interpretation and design of devices to detect the penetration of a thin metallic film by a dust grain which have been tested both in the laboratory and in space. A crucial component of the analysis has been the theoretical calculation utilizing CTH, a Sandia National Laboratory Hydrodynamic computer code /1/ to assess the parameters of the hypervelocity penetration event. In particular theoretical hydrodynamic calculations have been conducted to simulate the hypervelocity impact event where various cosmic dust grain candidates, e.g., density = 0.998, 2.700, 7.870 (gm/cm^3), and velocities, i.e., 7 - 16 km/s, have been utilized to reproduce the events. Theoretical analyses of hypervelocity impact events will be reported which span an extensive matrix of values for velocity, density and size. Through a comparison between LDEF MAP foil measurements and CTH hydrocode calculations these analyses will provide an interpretation of the most critical parameters measured for space returned materials, i.e., for thin films, the diameter of the penetration hole, D_h, and for semi-infinite targets, the depth-to-diameter ratio of craters, D_c/T_c. An immediate consequence of a comparison of CTH calculations with space exposed materials will be an enhancement of the coherent model developed by UKC-USS researchers to describe penetration dynamics associated with LDEF MAP foils.

  16. Monte Carlo techniques for scattering foil design and dosimetry in total skin electron irradiations.

    PubMed

    Ye, Sung-Joon; Pareek, Prem N; Spencer, Sharon; Duan, Jun; Brezovich, Ivan A

    2005-06-01

    Total skin electron irradiation (TSEI) with single fields requires large electron beams having good dose uniformity, dmax at the skin surface, and low bremsstrahlung contamination. To satisfy these requirements, energy degraders and scattering foils have to be specially designed for the given accelerator and treatment room. We used Monte Carlo (MC) techniques based on EGS4 user codes (BEAM, DOSXYZ, and DOSRZ) as a guide in the beam modifier design of our TSEI system. The dosimetric characteristics at the treatment distance of 382 cm source-to-surface distance (SSD) were verified experimentally using a linear array of 47 ion chambers, a parallel plate chamber, and radiochromic film. By matching MC simulations to standard beam measurements at 100 cm SSD, the parameters of the electron beam incident on the vacuum window were determined. Best match was achieved assuming that electrons were monoenergetic at 6.72 MeV, parallel, and distributed in a circular pattern having a Gaussian radial distribution with full width at half maximum = 0.13 cm. These parameters were then used to simulate our TSEI unit with various scattering foils. Two of the foils were fabricated and experimentally evaluated by measuring off-axis dose uniformity and depth doses. A scattering foil, consisting of a 12 x 12 cm2 aluminum plate of 0.6 cm thickness and placed at isocenter perpendicular to the beam direction, was considered optimal. It produced a beam that was flat within +/-3% up to 60 cm off-axis distance, dropped by not more than 8% at a distance of 90 cm, and had an x-ray contamination of <3%. For stationary beams, MC-computed dmax, Rp, and R50 agreed with measurements within 0.5 mm. The MC-predicted surface dose of the rotating phantom was 41% of the dose rate at dmax of the stationary phantom, whereas our calculations based on a semiempirical formula in the literature yielded a drop to 42%. The MC simulations provided the guideline of beam modifier design for TSEI and estimated the

  17. Characterization of Electrodeposited Technetium on Gold Foil

    SciTech Connect

    Mausolf, Edward; Poineau, Frederic; Hartmann, Thomas; Droessler, Janelle; Czerwinski, Ken

    2011-11-17

    The reduction and electrodeposition of TcO{sub 4}{sup -} on a smooth gold foil electrode with an exposed area of 0.25 cm{sup 2} was performed in 1 M H{sub 2}SO{sub 4} supporting electrolyte using bulk electrolysis with a constant current density of 1.0 A/cm{sup 2} at a potential of -2.0 V. Significant hydrogen evolution accompanied the formation of Tc deposits. Tc concentrations consisted of 0.01 M and 2 x 10{sup -3} M and were electrodeposited over various times. Deposited fractions of Tc were characterized by powder x-ray diffraction, x-ray absorption fine structure spectroscopy, and scanning electron microscopy with the capability to measure semiquantitative elemental compositions by energy-dispersive x-ray emission spectroscopy. Results indicate the presence of Tc metal on all samples as the primary electrodeposited constituent for all deposition times and Tc concentrations. Thin films of Tc have been observed followed by the formation of beads that are removable by scratching. After 2000, the quantity of Tc removed from solution and deposited was 0.64 mg Tc per cm{sup 2}. The solution, after electrodeposition, showed characteristic absorbances near 500 nm corresponding to hydrolyzed Tc(IV) produced during deposition of Tc metal. No detectable Tc(IV) was deposited to the cathode.

  18. Indium foil with beryllia washer improves transistor heat dissipation

    NASA Technical Reports Server (NTRS)

    Hilliard, J.; John, J. E. A.

    1964-01-01

    Indium foil, used as an interface material in transistor mountings, greatly reduces the thermal resistance of beryllia washers. This method improves the heat dissipation of power transistors in a vacuum environment.

  19. Stratification in Al and Cu foils exploded in vacuum

    SciTech Connect

    Baksht, R. B.; Rousskikh, A. G.; Zhigalin, A. S.; Artyomov, A. P.; Oreshkin, V. I.

    2015-10-15

    An experiment with exploding foils was carried out at a current density of 0.7 × 10{sup 8} A/cm{sup 2} through the foil with a current density rise rate of about 10{sup 15} A/cm{sup 2} s. To record the strata arising during the foil explosions, a two-frame radiographic system was used that allowed tracing the dynamics of strata formation within one shot. The original striation wavelength was 20–26 μm. It was observed that as the energy deposition to a foil stopped, the striation wavelength increased at a rate of ∼(5–9) × 10{sup 3} cm/s. It is supposed that the most probable reason for the stratification is the thermal instability that develops due to an increase in the resistivity of the metal with temperature.

  20. Positron annihilation lifetime spectroscopy study of Kapton thin foils

    NASA Astrophysics Data System (ADS)

    Kanda, G. S.; Ravelli, L.; Löwe, B.; Egger, W.; Keeble, D. J.

    2016-01-01

    Variable energy positron annihilation lifetime spectroscopy (VE-PALS) experiments on polyimide material Kapton are reported. Thin Kapton foils are widely used in a variety of mechanical, electronic applications. PALS provides a sensitive probe of vacancy-related defects in a wide range of materials, including open volume in polymers. Varying the positron implantation energy enables direct measurement of thin foils. Thin Kapton foils are also commonly used to enclose the positron source material in conventional PALS measurements performed with unmoderated radionuclide sources. The results of depth-profiled positron lifetime measurements on 7.6 μm and 25 μm Kapton foils are reported and determine a dominant 385(1) ps lifetime component. The absence of significant nanosecond lifetime component due to positronium formation is confirmed.

  1. The transonic multi-foil Augmentor-Wing

    NASA Technical Reports Server (NTRS)

    Farbridge, J. E.; Smith, R. C.

    1977-01-01

    The paper describes the development of a transonic blown multi-foil Augmentor-Wing airfoil section that has a thickness/chord (t/c) value of 0.18. In comparison with an unblown single-foil supercritical section of the same overall t/c the new multi-foil section is characterized by an increased drag rise Mach number, increased buffet boundaries, and a reduction in 'effective' drag due to blowing. Potential advantages of the Augmentor-Wing are considered and the testing of three high-speed models in a trisonic pressurized wind tunnel (possessing a two-dimensional transonic insert) is discussed. The data indicate that a very thick wing is feasible since separations toward the rear of the main foil can be controlled both by shroud location and augmentor blowing.

  2. Coherent multiple-foil x-ray transition radiation

    SciTech Connect

    Moran, M.J.; Chang, B.; Schneider, M.B.

    1993-08-25

    Intense x-ray transition radiation can be generated when relativistic electrons pass through a multiple-foil target. When the foil spacing is periodic, the transition radiation can be spatially coherent with respect to the target period. The spatial coherence can be evident in the spectra and angular distributions of transition radiation from such targets. A series of experiments has measured coherent transition radiation distributions from multiple-foil targets (up to six foils) with spacings of 50 {mu}m and 100 {mu}m. The electron energy was about 75 MeV and the photon energies were about 200 eV. Agreement between calculation and experimental data is excellent.

  3. Stratification in Al and Cu foils exploded in vacuum

    NASA Astrophysics Data System (ADS)

    Baksht, R. B.; Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.; Artyomov, A. P.

    2015-10-01

    An experiment with exploding foils was carried out at a current density of 0.7 × 108 A/cm2 through the foil with a current density rise rate of about 1015 A/cm2 s. To record the strata arising during the foil explosions, a two-frame radiographic system was used that allowed tracing the dynamics of strata formation within one shot. The original striation wavelength was 20-26 μm. It was observed that as the energy deposition to a foil stopped, the striation wavelength increased at a rate of ˜(5-9) × 103 cm/s. It is supposed that the most probable reason for the stratification is the thermal instability that develops due to an increase in the resistivity of the metal with temperature.

  4. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  5. Evidence of muonium formation using thin gold foils in vacuum

    NASA Technical Reports Server (NTRS)

    Barnett, B. A.; Chang, C. Y.; Steinberg, P.; Yodh, G. B.; Orr, H. D.; Carroll, J. B.; Eckhause, M.; Kane, J. R.; Spence, C. B.; Hsieh, C. S.

    1977-01-01

    The production of thermal muonium in a vacuum region has been investigated using an array of 200 thin (about 1000 A thick) gold foils exposed to a stopping positive-muon beam. By examining the observed time dependence of the positive-muon decay spectra in various transverse magnetic field, it is estimated that the lower limit of the probability of muonium formation by these gold foils placed in vacuum was 0.28 plus or minus 0.05.

  6. Two-Dimensional Dynamic Simulation of a Continuous Foil Bearing

    NASA Technical Reports Server (NTRS)

    Braun, M. Jack; Choy, F. K.; Dzodzo, Milorad; Hsu, J.

    1996-01-01

    In this paper, the two dimensional(radial and circumferential) transient Navier-Stokes equations are used to solve the hydrodynamic problem in conjunction with the time dependent motion of the journal, and the deformable, spring supported foil. The elastic deformation of the foil and its supports are simulated by a finite element model. The time-dependent Navier-Stokes formulation is used to solve for the interaction between the fluid lubricant, the motion of the journal and the deformable foil boundary. The steady state, the quasi-transient and the full transient dynamic simulation of the foil-fluid journal interaction are examined on a comparative basis. For the steady state simulation, the fluid lubricant pressures are evaluated for a particular journal position, by means of an iterative scheme until convergence is achieved in both the fluid pressures and the corresponding foil deformation. For the quasi-transient case, the transient motion of the journal is calculated using a numerical integration scheme for the velocity and displacement of the journal. The deformation of the foil is evaluated through numerical iteration in feedback mode with the fluid film pressure generated by the journal motion until convergence at every time step is achieved. For the full transient simulation, a parallel real-time integration scheme is used to evaluate simultaneously the new journal position and the new deformed shape of the foil at each time step. The pressure of the fluid lubricant is iterated jointly with the corresponding journal position and the deformed foil geometry until convergence is achieved. A variable time-stepping Newmark-Beta integration procedure is used to evaluate the transient dynamics at each time step of the bearing.

  7. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUM

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, has a dual functionality of simultaneously decomposing both reductively- and oxidatively-degradable contaminants. In this work, the use of bifunctional aluminum for the degradation of methyl te...

  8. Studies on aluminum neurotoxicity

    SciTech Connect

    Cho, S.

    1988-01-01

    This work reports the inhibitory effects of aluminum on glucose-6-phosphate dehydrogenase (G6PD) from yeast and brains. The aluminum contents and several enzyme activities in aluminum-fed rat brain homogenates were compared with those in age-matched control groups. The concentration of aluminum in the homogenates of the aluminum-fed groups were twice of that of the controls. Acetylcholinesterase activities were the same as in both groups but hexokinase and G6PD activities in the aluminum-fed group were about 73% and 70% of the control, respectively. Further studies on the inhibitory effects of aluminum on G6PD were performed with the enzymes purified from human and pig brains. Two forms of G6PD isozymes were purified from human and pig brain by ammonium sulfate fractionation, hydroxylapatite chromatography, affinity chromatography with NADP-agarose and Blue-Sepharose CL-6B, and gel filtration with Sephadex S-300. The two forms of isozymes (isozyme I and II), purified to be homogeneous, had a molecular weight of 220,000, and composed of 4 subunits of molecular weight of 57,000. HPLC peptide maps of tryptic digests and amino acid analyses of the isozymes showed extensive homologies between the isozymes. Interestingly, only the isozyme II in human and pig brain were active with 6-phosphogluconate as a substrate. No such an activity was found in isozyme I. Aluminum inactivated G6PD activity of the human and pig brain isozyme I and isozyme II without affecting the 6-phosphogluconate dehydrogenase activity of the isozyme II. Circular dichroism studies showed that the binding of aluminum to G6PD induced a decrease in {alpha}-helix and {beta}-sheet and a increase in random coil. Therefore it is suggested that inactivation of G6PD by aluminum is due to the conformational change induced by aluminum binding.

  9. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tin-coated lead foil capsules for wine bottles... lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one... covering applied over the cork and neck areas) on wine bottles to prevent insect infestation, as a...

  10. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tin-coated lead foil capsules for wine bottles. 189... lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one... covering applied over the cork and neck areas) on wine bottles to prevent insect infestation, as a...

  11. Induction Bonding of Prepreg Tape and Titanium Foil

    NASA Technical Reports Server (NTRS)

    Messier, Bernadette C.; Hinkley, Jeffrey A.; Johnston, Norman J.

    1998-01-01

    Hybrid structural laminates made of titanium foil and carbon fiber reinforced polymer composite offer a potential for improved performance in aircraft structural applications. To obtain information needed for the automated fabrication of hybrid laminates, a series of bench scale tests were conducted of the magnetic induction bonding of titanium foil and thermoplastic prepreg tape. Foil and prepreg specimens were placed in the gap of a toroid magnet mounted in a bench press. Several magnet power supplies were used to study power at levels from 0.5 to 1.75 kW and frequencies from 50 to 120 kHz. Sol-gel surface-treated titanium foil, 0.0125 cm thick, and PIXA/IM7 prepreg tape were used in several lay-up configurations. Data were obtained on wedge peel bond strength, heating rate, and temperature ramp over a range of magnet power levels and frequencies at different "power-on" times for several magnet gap dimensions. These data will be utilized in assessing the potential for automated processing. Peel strengths of foil-tape bonds depended on the maximum temperature reached during heating and on the applied pressure. Maximum peel strengths were achieved at 1.25kW and 8OkHz. Induction heating of the foil appears to be capable of good bonding up to 10 plies of tape. Heat transfer calculations indicate that a 20-40 C temperature difference exists across the tape thickness during heat-up.

  12. Instability studies in radial foil configurations on the COBRA generator

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.; Greenly, J. B.; Hammer, D. A.; Knapp, P. F.; Kusse, B. R.; Pikuz, S. A.; Schrafel, P. C.; Shelkovenko, T. C.

    2010-11-01

    Radial foil configurations prove to be a very simple experimental set up to study high energy density plasmas. A 5-micron thin metallic foil lies flat over a stretcher which is connected to the anode of a pulsed power generator such as COBRA (1MA, 100 ns current rise time). The cathode contacts the foil at its geometrical center using a hollow stainless steel pin. As the foil ablates, JxB forces lift the foil leading to the formation a plasma bubble surrounding a central plasma column, which is a z-pinch. Force densities on this column should increase considerably as the initial pin diameter is diminished and we expect plasma properties to change accordingly. Based only on pin diameter considerations, radial foil explosions could produce magnetic pressures ranging from 160 kbar (for 2-mm pins) to 2.5 Mbar (for 0.5-mm pins). However, as the cathode diameter diminishes, instabilities appear earlier in the discharge, preventing the z-pinch implosion to occur at maximum current, de facto limiting plasma parameters. We investigate the cause of these instabilities, the possible means to reduce plasma instabilities and to improve plasma performances.

  13. Propulsion of a flexible foil in a fluid

    NASA Astrophysics Data System (ADS)

    Venkatraman, Kartik; Chaithanya, Ravi

    2008-11-01

    The dynamic properties such as time dependent pressure loading, free stream velocity, and local acceleration of the hydrofoil determine the instantaneous deformation of a flexible foil. The present work is concerned with the effect of structural dynamic terms and inertia loads on a flexible foil undergoing large amplitude rigid body harmonic wave-like motion in an unsteady potential flow. The hydrofoil structural dynamics is modeled as an Euler-Bernoulli beam finite element. The unsteady fluid dynamic force is evaluated using a numerical discrete vortex implementation of an unsteady incompressible potential flow model. The hydrofoil is fixed at its leading edge and it moves with velocity parallel to its length in the undeformed state. The propulsion of the hydro-elastic system is studied in terms of the mass ratio of the foil and the fluid, as well as its structural flexibility. It is shown that the thrust coefficient and propulsive efficiency of the flexible foil decreases with increase in structural flexibility. We made a comparison of the effect of structural flexibility on the thrust coefficient and propulsive efficiency considering models of the oscillating foil with inertia and without inertia effects present. Detailed parametric studies of the effect of different parameters on propulsion of the foil were made. Including inertia loads and structural dynamic terms significantly affect the propulsive efficiency and thrust coefficient.

  14. Globally shed wakes for three distinct retracting foil geometries

    NASA Astrophysics Data System (ADS)

    Steele, Stephanie; Triantafyllou, Michael

    2015-11-01

    In quickly retracting foils at an angle of attack, the boundary layer vorticity along with the added mass energy is immediately and globally shed from the body into the surrounding fluid. The deposited vorticity quickly reforms into lasting vortex structures, which could be used for purposes such as manipulating or exploiting the produced flow structures by additional bodies in the fluid. The globally shed wake thus entrains the added mass energy provided by the initially moving body, reflected by the value of the circulation left in the wake. In studying experimentally as well as numerically this phenomenon, we find that the three different tested geometries leave behind distinct wakes. Retracting a square-ended foil is undesirable because the deposited wake is complicated by three-dimensional ring vorticity effects. Retracting a tapered, streamlined-tipped foil is also undesirable because the shape-changing aspect of the foil geometry actually induces energy recovery back to the retracting foil, leaving a less energetic globally shed wake. Finally, a retracting hollow foil geometry avoids both of these detrimental effects, leaving relatively simple, yet energetic, vortex structures in the wake.

  15. FeN foils by nitrogen ion-implantation

    SciTech Connect

    Jiang, Yanfeng; Wang, Jian-Ping; Al Mehedi, Md; Fu, Engang; Wang, Yongqiang

    2014-05-07

    Iron nitride samples in foil shape (free standing, 500 nm in thickness) were prepared by a nitrogen ion-implantation method. To facilitate phase transformation, the samples were bonded on the substrate followed by a post-annealing step. By using two different substrates, single crystal Si and GaAs, structural and magnetic properties of iron nitride foil samples prepared with different nitrogen ion fluences were characterized. α″-Fe{sub 16}N{sub 2} phase in iron nitride foil samples was obtained and confirmed by the proposed approach. A hard magnetic property with coercivity up to 780 Oe was achieved for the FeN foil samples bonded on Si substrate. The feasibility of using nitrogen ion implantation techniques to prepare FeN foil samples up to 500 nm thickness with a stable martensitic phase under high ion fluences has been demonstrated. A possible mechanism was proposed to explain this result. This proposed method could potentially be an alternative route to prepare rare-earth-free FeN bulk magnets by stacking and pressing multiple free-standing thick α″-Fe{sub 16}N{sub 2} foils together.

  16. Aluminum: Reducing chloride emissions from aluminum production

    SciTech Connect

    Simon, P.

    1999-09-29

    Reynolds Metals Company (RMC), with assistance from a NICE{sup 3} grant, is developing for commercialization a closed-loop control process that greatly reduces chlorine emissions and increases plant efficiency while maintaining metal quality. The process still utilizes chlorine to remove impurities during aluminum processing, but is more effective than current methods. With the new technology chlorine in the stack is monitored and input chlorine is adjusted continuously. This optimization of chlorine use results in substantially less waste because less chlorine has to be bought or produced by aluminum manufacturers. This innovation is a significant improvement over conventional aluminum treatments, in which chlorine is injected in a more costly and wasteful manner. By the year 2010, the new technology has the potential to reduce the energy it takes to create chlorine by 8.4 billion Btu per year and to cut greenhouse gas emissions by 1,377 tons per year.

  17. Picosecond time-resolved X-ray absorption spectroscopy of ultrafast aluminum plasmas.

    PubMed

    Audebert, P; Renaudin, P; Bastiani-Ceccotti, S; Geindre, J-P; Chenais-Popovics, C; Tzortzakis, S; Nagels-Silvert, V; Shepherd, R; Matsushima, I; Gary, S; Girard, F; Peyrusse, O; Gauthier, J-C

    2005-01-21

    We have used point-projection K-shell absorption spectroscopy to infer the ionization and recombination dynamics of transient aluminum plasmas. Two femtosecond beams of the 100 TW laser at the LULI facility were used to produce an aluminum plasma on a thin aluminum foil (83 or 50 nm), and a picosecond x-ray backlighter source. The short-pulse backlighter probed the aluminum plasma at different times by adjusting the delay between the two femtosecond driving beams. Absorption x-ray spectra at early times are characteristic of a dense and rather homogeneous plasma. Collisional-radiative atomic physics coupled with hydrodynamic simulations reproduce fairly well the measured average ionization as a function of time. PMID:15698184

  18. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    SciTech Connect

    Tashlykova-Bushkevich, Iya I.

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  19. Aluminum space frame technology

    SciTech Connect

    Birch, S.

    1994-01-01

    This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.

  20. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are also…

  1. Cast aluminum denture base.

    PubMed

    Barco, M T; Dembert, M L

    1987-08-01

    The laboratory procedures for a cast aluminum base denture have been presented. If an induction casting machine is not available, the "two-oven technique" works well, provided the casting arm is kept spinning manually for 4 minutes after casting. If laboratory procedures are executed precisely and with care, the aluminum base denture can be cast with good results. PMID:3305884

  2. Is the Aluminum Hypothesis Dead?

    PubMed Central

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  3. Prompt Reaction of Aluminum in Detonating Explosives

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2005-07-01

    The potential of aluminum reaction to boost detonation energy has been studied for decades, most recently spurred by the availability of nanometer-sized particles. A review of the literature provides perspective for a recent study with the small-scale shock reactivity test. In this test, <1/2-g samples in confinement are shock loaded on one end, and the output at the other end dents a soft witness block. One test series had 0.3 g of HMX mixed with various forms of aluminum added in amounts of up to 25% of the total sample mass, with the deepest dent for H-5 aluminum occuring at 15%. Test results on ammonium perchlorate mixed with H-5 aluminum were consistent with the peak in detonation velocity reported in Combustion and Flame by Price in 1973 on similar mixtures. One outcome of this study is a new interpretation for the participation of aluminum in large scale gap tests on plastic-bonded explosives, which was discussed by Bernecker at this meeting in 1987.

  4. The aluminum smelting process.

    PubMed

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  5. Aluminum structural applications

    SciTech Connect

    Lucas, G.

    1996-05-01

    Extensive research by aluminum producers and automakers in the 1980s resulted in the development of technologies that enable building of aluminum cars that meet and exceed all the expectations of today`s drivers and passengers, yet weigh several hundred pounds less than their steel counterparts. The Acura NSX sports car, the Audi A8, and the Jaguar XJ220 have all been introduced. Ford has built 40 aluminum-intensive automobiles based on the Taurus/Sable for test purposes, and General Motors recently announced an aluminum-structured electric vehicle. The design flexibility that aluminum allows is shown by these examples. Each uses a somewhat different technology that is particularly suited to the vehicle and its market.

  6. The Aluminum Smelting Process

    PubMed Central

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  7. SU-E-T-151: Enhanced Radiation Attenuation with Multi-Layer Foils

    SciTech Connect

    Warmington, L; Watanabe, Y

    2014-06-01

    Purpose: To evaluate the effect of increasing the number of thin high Z foils on the dose enhancement and the overall radiation attenuation with a 24MV photon beam. Methods: DOSXYZnrc was used to perform Monte Carlo simulations of multi-layer lead foil configurations. The foil size was 7cm x 7cm. and the foil thickness was adjusted to give a combined thickness of 1mm. The number of foils used was 4, 6, 8, and 10. The separation between foils was also varied from 3 to 9 mm. The Mohan 24MV energy spectrum was used as a photon source. The field size was 5cm x 5cm and SSD was 100 cm. The phantom size was 16cm × 16cm × 28cm. The number of histories ranged from 1 to 2 billion. The percentage difference of the dose between the medium with foils and the homogeneous water was computed along the beam axis. The minimum dose enhancement and the change of integrated dose between the foils were determined. Results: Increasing the number of foils resulted in a decrease in the minimum dose enhancement. The highest dose region occurred in the last section for the 4 and 6 foil cases, whereas the 8 and 10 foil configurations showed the maximum dose region towards the center of the foil group. Increasing the number of foils increased the total integrated dose between foils. For example, the total integrated dose increase between the first and the last foils with a 3mm foil separation were 34.2, 43.4, 57.4, and 64.7% for 4, 6, 8 and 10 foils, respectively. Conclusion: This work showed the degree of dose enhancement around multiple thin lead foils. The results suggest that the total attenuation of photon beam can be increased by increasing the number of foils with a fixed total foil thickness.

  8. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  9. Evidence of Short-Range Screening in Shock-Compressed Aluminum Plasma

    SciTech Connect

    Garcia Saiz, E.; Kohanoff, J.; Sahoo, S.; Shabbir Naz, G.; Riley, D.; Gregori, G.; Khattak, F. Y.; Bandyopadhyay, S.; Notley, M.; Weber, R. L.

    2008-08-15

    We have investigated the angular variation in elastic x-ray scattering from a dense, laser-shock-compressed aluminum foil. A comparison of the experiment with simulations using an embedded atom potential in a molecular dynamics simulation shows a significantly better agreement than simulations based on an unscreened one-component plasma model. These data illustrate, experimentally, the importance of screening for the dense plasma static structure factor.

  10. Neutron Diffraction Measurement of Residual Stresses, Dislocation Density and Texture in Zr-bonded U-10Mo ''Mini'' Fuel Foils and Plates

    SciTech Connect

    Brown, Donald W.; Okuniewski, M. A.; Sisneros, Thomas A.; Clausen, Bjorn; Moore, G. A.; Balogh, L

    2014-08-07

    Aluminum clad monolithic uranium 10 weight percent molybdenum (U-10Mo) fuel plates are being considered for conversion of several research and test nuclear reactors from high-enriched to low-enriched uranium fuel due to the inherently high density of fissile material. Comprehensive neutron diffraction measurements of the evolution of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the HIP procedure significantly reduces the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stresses in the clad fuel plate do not depend strongly on the final processing step of the bare foil prior to HIP bonding. Rather, the residual stresses are dominated by the thermal expansion mismatch of the constituent materials of the fuel plate.

  11. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terry; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Wood, Gary; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM (electric discharge machining). During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90% random fiber currently used in small 100 W Stirling space-power convertors in the Reynolds Number range of interest (50-100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6-9%; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to

  12. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM. During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90 percent random fiber currently used in small approx.100 W Stirling space-power convertors-in the Reynolds Number range of interest (50 to 100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6 to 9 percent; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C

  13. Improvement of polysilicon solar cells by aluminum diffusion

    SciTech Connect

    Sundaresan, R.; Burk, D.E.; Fossum, J.G.

    1982-09-01

    Experimental results are presented that imply potential improvements afforded by aluminum diffusion in both bulk and thin-film polysilicon solar cells. With regard to bulk cells, gettering of intragrain defects by high-temperature aluminum diffusion, i.e., Al-Si alloying, is suggested. With regard to thin-film cells, substantial grain-boundary passivation by low-temperature aluminum diffusion (from the front surface) is indicated, and evaluated using EBIC measurements interpreted via numerical analysis of the underlying carrier transport problem. The actual benefit of the grain-boundary passivation to the open-circuit voltage of a thin-film cell is discussed.

  14. High energy X-ray diffraction measurement of residual stresses in a monolithic aluminum clad uranium–10 wt% molybdenum fuel plate assembly

    SciTech Connect

    D. W. Brown; M. A. Okuniewski; J. D. Almer; L. Balogh; B. Clausen; J. S. Okasinski; B. H. Rabin

    2013-10-01

    Residual stresses are expected in monolithic, aluminum clad uranium 10 wt% molybdenum (U–10Mo) nuclear fuel plates because of the large mismatch in thermal expansion between the two bonded materials. The full residual stress tensor of the U–10Mo foil in a fuel plate assembly was mapped with 0.1 mm resolution using high-energy (86 keV) X-ray diffraction. The in-plane stresses in the U–10Mo foil are strongly compressive, roughly -250 MPa in the longitudinal direction and -140 MPa in the transverse direction near the center of the fuel foil. The normal component of the stress is weakly compressive near the center of the foil and tensile near the corner. The disparity in the residual stress between the two in-plane directions far from the edges and the tensile normal stress suggest that plastic deformation in the aluminum cladding during fabrication by hot isostatic pressing also contributes to the residual stress field. A tensile in-plane residual stress is presumed to be present in the aluminum cladding to balance the large in-plane compressive stresses in the U–10Mo fuel foil, but cannot be directly measured with the current technique due to large grain size.

  15. Enhancement of Lyman-. alpha. radiation following foil-induced dissociation of fast ionic hydrogen clusters H sub n sup +

    SciTech Connect

    Farizon, M.; Clouvas, A.; de Castro Faria, N.V.; Farizon-Mazuy, B.; Gaillard, M.J.; Gerlic, E. ); Denis, A.; Desesquelles, J.; Ouerdane, Y. )

    1991-01-01

    We have measured the Lyman-{alpha} radiation following foil breakup of hydrogen ionic clusters H{sub {ital n}}{sup +} ({ital n}=2 and {ital n}=3 to 61, odd) with velocities above and around the Bohr velocity. An enhancement of this radiation was observed and could reach a factor of 3 with respect to the proton case of the same velocity. Cluster mass number, velocity, and thickness dependences of the relative population of the 2{ital p} state in hydrogen fragments following H{sub {ital n}}{sup +} foil dissociation have been extracted. A specific collective effect on the 2{ital p}-state hydrogen has been observed and interpreted in terms of charge-exchange processes.

  16. Clinical biochemistry of aluminum

    SciTech Connect

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  17. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  18. Misalignment in Gas Foil Journal Bearings: An Experimental Study

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2008-01-01

    As gas foil journal bearings become more prevalent in production machines, such as small gas turbine propulsion systems and microturbines, system-level performance issues must be identified and quantified in order to provide for successful design practices. Several examples of system-level design parameters that are not fully understood in foil bearing systems are thermal management schemes, alignment requirements, balance requirements, thrust load balancing, and others. In order to address some of these deficiencies and begin to develop guidelines, this paper presents a preliminary experimental investigation of the misalignment tolerance of gas foil journal bearing systems. Using a notional gas foil bearing supported rotor and a laser-based shaft alignment system, increasing levels of misalignment are imparted to the bearing supports while monitoring temperature at the bearing edges. The amount of misalignment that induces bearing failure is identified and compared to other conventional bearing types such as cylindrical roller bearings and angular contact ball bearings. Additionally, the dynamic response of the rotor indicates that the gas foil bearing force coefficients may be affected by misalignment.

  19. Foil dissociation of fast molecular ions into atomic excited states

    SciTech Connect

    Berry, H.G.; Gay, T.J.; Brooks, R.L.

    1980-01-01

    The intensity and polarizations of light emitted from atomic excited states of dissociated molecular ions were measured. The dissociations are induced when fast molecular ions (50 to 500 keV/amu) are transmitted through thin carbon foils. A calculation of multiple scattering and the Coulomb explosion gives the average internuclear separation of the projectile at the foil surface. Experimentally, the foil thickness is varied to give varying internuclear separations at the foil surface and observe the consequent variation in light yield and optical polarization. Using HeH/sup +/ projectiles, factors of 1 to 5 enhancements of the light yields from n = 3, /sup 1/ /sup 3/P,D states of He I and some He II and H I emissions were observed. The results can be explained in terms of molecular level crossings which provide mixings of the various final states during dissociation of the molecular ions at the exit surface. They suggest a short range surface interaction of the electron pick-up followed by a slow molecular dissociation. Alignment measurements confirm the essential features of the model. Observations of Lyman ..cap alpha.. emission after dissociation of H/sub 2//sup +/ amd H/sub 3//sup +/ show rapid variations in light yield for small internuclear separations at the foil surface.

  20. Iridium and tantalum foils for spaceflight neutron dosimetry.

    NASA Technical Reports Server (NTRS)

    English, R. A.; Liles, E. D.

    1972-01-01

    Description of a two-foil system of iridium and tantalum which can measure thermal and intermediate energy neutrons at flux densities of 1 neutron/sq cm-sec over a ten-day lunar mission (1,000,000 neutrons/sq cm). The foils are chemically inert and nontoxic, weigh less than 1 g each, and require only routine gamma pulse height analysis for activation measurement. Detection of fluences below 1,000,000 neutrons/sq cm are achieved for counts of foil activity made as late as two months following neutron exposure. Tantalum foils flown in Apollo 11 indicated a mean dose equivalent to the astronauts of less than 16 mrem from thermal plus intermediate energy neutrons, while nuclear emulsion track analysis indicated approximately 17 mrem from neutrons of energy greater than 0.6 MeV. Iridium foils flown on Apollo 12 indicated dose equivalents of 1.8 to 2.8 mrem from thermal neutrons, excluding tissue thermalized SNAP-27 neutrons.

  1. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  2. The survivability of phyllosilicates and carbonates impacting Stardust Al foils: Facilitating the search for cometary water

    NASA Astrophysics Data System (ADS)

    Wozniakiewicz, Penelope J.; Ishii, Hope A.; Kearsley, Anton T.; Bradley, John P.; Price, Mark. C.; Burchell, Mark J.; Teslich, Nick; Cole, Mike J.

    2015-11-01

    Comet 81P/Wild 2 samples returned by NASA's Stardust mission provide an unequalled opportunity to study the contents of, and hence conditions and processes operating on, comets. They can potentially validate contentious interpretations of cometary infrared spectra and in situ mass spectrometry data: specifically the identification of phyllosilicates and carbonates. However, Wild 2 dust was collected via impact into capture media at ~6 km s-1, leading to uncertainty as to whether these minerals were captured intact, and, if subjected to alteration, whether they remain recognizable. We simulated Stardust Al foil capture conditions using a two-stage light-gas gun, and directly compared transmission electron microscope analyses of pre- and postimpact samples to investigate survivability of lizardite and cronstedtite (phyllosilicates) and calcite (carbonate). We find the phyllosilicates do not survive impact as intact crystalline materials but as moderately to highly vesiculated amorphous residues lining resultant impact craters, whose bulk cation to Si ratios remain close to that of the impacting grain. Closer inspection reveals variation in these elements on a submicron scale, where impact-induced melting accompanied by reducing conditions (due to the production of oxygen scavenging molten Al from the target foils) has resulted in the production of native silicon and Fe- and Fe-Si-rich phases. In contrast, large areas of crystalline calcite are preserved within the calcite residue, with smaller regions of vesiculated, Al-bearing calcic glass. Unambiguous identification of calcite impactors on Stardust Al foil is therefore possible, while phyllosilicate impactors may be inferred from vesiculated residues with appropriate bulk cation to Si ratios. Finally, we demonstrate that the characteristic textures and elemental distributions identifying phyllosilicates and carbonates by transmission electron microscopy can also be observed by state-of-the-art scanning electron

  3. Flapping Instability of Two Tandem Flexible Foils in Uniform Axial Flow

    NASA Astrophysics Data System (ADS)

    Gurugubelli, Pardha Saradhi; Jaiman, Rajeev Kumar; Chua, Cassey

    2015-11-01

    We present a numerical analysis on the stability and coupled dynamics of two tandem flexible foils clamped at their leading edges in a uniform axial flow. The flexible foils considered for this study correspond to the fixed-point stable regime of the single flexible foil where the flexible foil aligns itself in the flow direction with no significant trailing edge oscillations. A high-order nonlinear coupled solver based on the variational formulation has been considered for analyzing the effects of gap between the foils on the stability and coupled behaviour of both the upstream and downstream foils. As a function of decreasing gap, it is observed that the tandem foil configuration is more prone to flapping instability than its single flexible foil counterpart. The evolution of the instability for the downstream foil shows two distinct dynamical scenarios: (i) only the downstream foil exhibits flapping motion and (ii) both the upstream and the downstream foils perform flapping. With the aid of a rigid foil in the upstream of a flexible foil, we further present a detailed analysis on the effects of the upstream wake and vortex shedding on the stability and flapping dynamics of the downstream foil.

  4. Advances in aluminum anodizing

    NASA Technical Reports Server (NTRS)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  5. Walnut Hulls Clean Aluminum

    NASA Technical Reports Server (NTRS)

    Colberg, W. R.; Gordon, G. H.; Jackson, C. H.

    1984-01-01

    Hulls inflict minimal substrate damage. Walnut hulls found to be best abrasive for cleaning aluminum surfaces prior to painting. Samples blasted with walnut hulls showed no compressive stress of surface.

  6. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  7. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  8. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  9. Light weight aluminum optics

    NASA Astrophysics Data System (ADS)

    Catura, R. C.; Vieira, J. R.

    1985-09-01

    Light weight mirror blanks were fabricated by dip-brazing a core of low mass aluminum foam material to thin face sheets of solid aluminum. The blanks weigh 40% of an equivalent size solid mirror and were diamond turned to provide reflective surfaces. Optical interferometry was used to assess their dimensional stability over 7 months. No changes in flatness are observed (to the sensitivity of the measurements of a half wavelength of red light).

  10. Nanowire LEDs grown directly on flexible metal foil

    NASA Astrophysics Data System (ADS)

    May, Brelon J.; Sarwar, A. T. M. Golam; Myers, Roberto C.

    2016-04-01

    Using molecular beam epitaxy, self-assembled AlGaN nanowires are grown directly on Ta and Ti foils. Scanning electron microscopy shows that the nanowires are locally textured with the underlying metallic grains. Photoluminescence spectra of GaN nanowires grown on metal foils are comparable to GaN nanowires grown on single crystal Si wafers. Similarly, photoluminescence lifetimes do not vary significantly between these samples. Operational AlGaN light emitting diodes are grown directly on flexible Ta foil with an electroluminescence peak emission of ˜350 nm and a turn-on voltage of ˜5 V. These results pave the way for roll-to-roll manufacturing of solid state optoelectronics.

  11. Model-Based Optimization for Flapping Foil Actuation

    NASA Astrophysics Data System (ADS)

    Izraelevitz, Jacob; Triantafyllou, Michael

    2014-11-01

    Flapping foil actuation in nature, such as wings and flippers, often consist of highly complex joint kinematics which present an impossibly large parameter space for designing bioinspired mechanisms. Designers therefore often build a simplified model to limit the parameter space so an optimum motion trajectory can be experimentally found, or attempt to replicate exactly the joint geometry and kinematics of a suitable organism whose behavior is assumed to be optimal. We present a compromise: using a simple local fluids model to guide the design of optimized trajectories through a succession of experimental trials, even when the parameter space is too large to effectively search. As an example, we illustrate an optimization routine capable of designing asymmetric flapping trajectories for a large aspect-ratio pitching and heaving foil, with the added degree of freedom of allowing the foil to move parallel to flow. We then present PIV flow visualizations of the optimized trajectories.

  12. Dynamics of a heaving flexible foil in a uniform flow

    NASA Astrophysics Data System (ADS)

    Paraz, Florine; Eloy, Christophe; Schouveiler, Lionel

    2012-11-01

    Most aerial and aquatic animals produce thrust using flapping flexible appendages. The performances of such propulsion systems are strongly related to the appendages dynamics, in particular to the amplitude of the trailing edge motion and to the vortical patterns produced. A better understanding of this mode of propulsion requires to investigate the dynamics of the flexible appendages, as a response to harmonic forcing. In this context, experiments are performed with flexible foils immersed in the uniform flow of a water channel. A harmonic heaving motion, that is transverse to the foil, is then imposed to its leading edge. The response of the foil likely results from the resonance between the forcing and the natural modes of vibration. Experimental results are compared with a two-dimensional model assuming a zero-thickness flexible sheet of infinite span immersed in a potential flow.

  13. An experimental and theoretical study of structural damping in compliant foil bearings

    NASA Technical Reports Server (NTRS)

    Ku, C.-P. Roger

    1994-01-01

    This paper describes an experimental investigation into the dynamic characteristics of corrugated foil (bump foil) strips used in compliant surface foil bearings. This study provided and opportunity to quantify the structural damping of bump foil strips. The experimental data were compared to results obtained by a theoretical model developed earlier. The effects of bearing design parameters, such as static loads, dynamic displacement amplitudes, bump configurations, pivot locations, surface coatings, and lubricant were also evaluated. An understanding of the dynamic characteristics of bump foil strips resulting from this work offers designers a means for enhancing the design of high-performance compliant foil bearings.

  14. Measurements of Escaping Fast Particles Using a Thin-Foil Charge Collector

    SciTech Connect

    Jarvis, Owen N.; Belle, Pieter van; Hone, Malcolm A.; Sadler, Guy J.; Whitfield, G.A.H.; Cecil, F. Edward; Darrow, Douglass S.; Esposito, Basilio

    2001-01-15

    Two screened, thin-foil charge collectors were mounted just beyond the plasma edge at an outboard position (below midplane) in the Joint European Torus to detect lost alpha particles during the 1997 high fusion power D-T experiments. No convincing observations of alpha-particle collection were obtained, possibly because of the low level of alpha-particle losses but more probably because the positioning of the detector was not ideal for the high fusion power discharges that were run at high plasma current and toroidal field. Under such conditions, alpha particles on escaping orbits leading toward the detector are highly likely to be intercepted by the nearby poloidal limiter. Moreover, a small alpha-particle signal would have been obscured by interference from a large and unexpected signal attributed here to fast neutrals, leaving the plasma and ionizing in the low density scrape-off region outside the plasma boundary. The interpretation of this unexpected signal is discussed. In all probability, it will also be encountered in any future attempts to detect lost alpha particles in a current measuring detector unless suitable precautions are taken, e.g., provision of a thin first foil to remove light charged particles with energies below {approx}0.5 MeV.

  15. High Temperature Performance Evaluation of a Compliant Foil Seal

    NASA Technical Reports Server (NTRS)

    Salehi, Mohsen; Heshmat, Hooshang; Walton, James F., II

    2001-01-01

    The key points to be gleaned from the effort reported herein are that the CFS (Compliant Foil Seal) has been demonstrated in conjunction with a foil bearing in a small gas turbine simulator at temperatures as high as 1000 F and outperformed a comparable brush seal. Having demonstrated the feasibility of the CFS, it would appear that this new seal design has application potential in a wide range of machines. What remains is to demonstrate performance at higher pressure ratios, consistent performance at large rotor excursions and the ability to manufacture the seal in much larger sizes exceeding by an order of magnitude that which has been tested to date.

  16. Method and apparatus for tensile testing of metal foil

    NASA Technical Reports Server (NTRS)

    Wade, O. W. (Inventor)

    1976-01-01

    A method for obtaining accurate and reproducible results in the tensile testing of metal foils in tensile testing machines is described. Before the test specimen are placed in the machine, foil side edges are worked until they are parallel and flaw free. The specimen are also aligned between and secured to grip end members. An aligning apparatus employed in the method is comprised of an alignment box with a longitudinal bottom wall and two upright side walls, first and second removable grip end members at each end of the box, and a means for securing the grip end members within the box.

  17. Surface plasma wave excitation via laser irradiated overdense plasma foil

    SciTech Connect

    Kumar, Pawan; Tripathi, V. K.

    2012-04-09

    A laser irradiated overdense plasma foil is seen to be susceptible to parametric excitation of surface plasma wave (SPW) and ion acoustic wave (IAW) on the ion plasma period time scale. The SPW is localised near the front surface of the foil while IAW extends upto the rear. The evanescent laser field and the SPW exert a ponderomotive force on electrons driving the IAW. The density perturbation associated with the latter beats with the laser induced oscillatory electron velocity to drive the SPW. At relativistic laser intensity, the growth rate is of the order of ion plasma frequency.

  18. Similarities and differences between the solar wind light noble gas compositions determined on Apollo 15 SWC foils and on NASA Genesis targets

    NASA Astrophysics Data System (ADS)

    Vogel, N.; Bochsler, P.; Bühler, F.; Heber, V. S.; Grimberg, A.; Baur, H.; Horstmann, M.; Bischoff, A.; Wieler, R.

    2015-10-01

    We compare the solar wind (SW) He, Ne, and Ar compositions collected during the Apollo Solar Wind Composition (SWC) experiments (1969-1972; Al- & Pt-foils) and the Genesis mission (2002-2004; so-called DOS targets considered here). While published SW 20Ne/22Ne and 36Ar/38Ar ratios of both data sets agree, differences exist in the 4He/3He, 4He/20Ne, and 20Ne/36Ar ratios. However, 20Ne/36Ar ratios from Apollo-16 Pt-foils, exclusively adopted as SW values by the SWC team, are consistent with the Genesis results. We investigate if the differences indicate a variability of the SW over the course of about 30 yr, or systematic biases of the two data sets, which were collected in different environments and measured several decades apart in different laboratories (University of Bern; ETH Zurich). New measurements of Apollo-15 SWC aluminum foils in Zurich generally agree with the original measurements performed in Bern. Zurich samples show slightly lower 4He concentrations suggesting a few percent of diffusive loss of 4He during storage of the foils. A 3% difference between the He isotopic ratios measured in Bern and in Zurich possibly represents an analytical bias between the laboratories. The low SW 4He/20Ne and 20Ne/36Ar ratios in Apollo-15 Al-foils compared to Genesis data are consistent with a mixture of Genesis-like SW and noble gases from small amounts of lunar dust. Our data suggest that the mean SW He, Ne, and Ar isotopic and elemental compositions have not significantly changed between the overall Apollo and Genesis mission collection periods.

  19. Effect of oxygen barrier coatings on oxidation and embrittlement of Ti-6Al-2Sn-4Zr-2Mo foil in heat shield applications

    NASA Technical Reports Server (NTRS)

    Clark, R. K.; Unnam, J.; Wiedemann, K. E.

    1986-01-01

    Because of the loss of ductility with exposure to oxidizing conditions, long time applications of titanium alloys have been limited to temperatures below 700 K and short time applications have been limited to temperatures below 815 K. Oxygen barrier coatings for shielding Ti-6Al-2Sn-4Zr-2Mo alloy from oxidation during exposure to high temperatures were studied using foil gage specimens. The coatings included micrometer-thick sputtered SiO2 and chemical-vapor-deposited silicate layers both with and without an aluminum basecoat. The oxidation rates and resistance to embrittlement of the coated specimens were significantly better than those of the uncoated specimens.

  20. Measurement of H{sup {minus}}, H{sup 0}, and H{sup +} yields produced by foil stripping of 800-MeV H{sup {minus}} ions

    SciTech Connect

    Gulley, M.S.; Keating, P.B.; Bryant, H.C.; MacKerrow, E.P.; Miller, W.A.; Rislove, D.C.; Cohen, S.; Donahue, J.B.; Fitzgerald, D.H.; Frankle, S.C.; Funk, D.J.; Hutson, R.L.; Macek, R.J.; Plum, M.A.; Stanciu, N.G.; van Dyck, O.B.; Wilkinson, C.A.; Planner, C.W.

    1996-05-01

    Measurements of H{sup {minus}} stripping and H{sup 0} excited-state production for a wide range of foil thicknesses and experimental conditions are reported. An 800-MeV H{sup {minus}} beam was passed through carbon or aluminum oxide foils of thicknesses ranging from 10 to 550 {mu}g/cm{sup 2} and the excited states produced were analyzed by field stripping in a special magnet downstream of the foil. The foil thicknesses were independently determined. The H{sup 0} atoms emerging in excited states with {ital n}{approx_gt}2 can be stripped to protons in fields of up to 1.3 T. The yield of excited states as a function of foil thickness and the cross sections for the various interactions are presented. The cross-section ratio of double to single ionization of H{sup {minus}} in carbon is found to be (1.8{plus_minus}0.9){percent}. {copyright} {ital 1996 The American Physical Society.}

  1. Aluminum, parathyroid hormone, and osteomalacia

    SciTech Connect

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  2. Design, Fabrication and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2007-01-01

    Foil gas bearings are self-acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost top foil layer traps a gas pressure film that supports a load while a layer or layers underneath provide an elastic foundation. Foil bearings are used in many lightly loaded, high-speed turbo-machines such as compressors used for aircraft pressurization, and small micro-turbines. Foil gas bearings provide a means to eliminate the oil system leading to reduced weight and enhanced temperature capability. The general lack of familiarity of the foil bearing design and manufacturing process has hindered their widespread dissemination. This paper reviews the publicly available literature to demonstrate the design, fabrication and performance testing of both first and second generation bump style foil bearings. It is anticipated that this paper may serve as an effective starting point for new development activities employing foil bearing technology.

  3. Energy harvesting through flow-induced oscillations of a foil

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Zhu, Qiang

    2009-12-01

    By using a Navier-Stokes model, we examine a novel flow energy harvesting device consisting of a flapping foil mounted on a damper (representing the power generator) and a rotational spring. Self-induced and self-sustained flapping motions, including a heaving motion h(t ) and a pitching motion α(t ), are excited by an incoming flow and power extraction is achieved from the heaving response. Depending upon the configuration of the system and the mechanical parameters (e.g., the location of the pitching axis and the stiffness of the rotational spring), four different responses are recorded: (i) the foil remains stable in its initial position (α =0 and h =0); (ii) periodic pitching (around α =0) and heaving motions are excited; (iii) the foil undergoes irregular motions characterized by switching between oscillations around two pitching angles; and (iv) the foil rotates to a position with an angle to the incoming flow and oscillates around it. The existence of response (ii) suggests the feasibility of controllable and stable flow energy extraction by this device. Through numerical simulations with a Navier-Stokes model we have determined combinations of geometric and mechanical parameters to achieve this response. The corresponding energy harvesting capacity and efficiency are predicted.

  4. Tribalism as a Foiled Factor of Africa Nation-Building

    ERIC Educational Resources Information Center

    Okogu, J. O.; Umudjere, S. O.

    2016-01-01

    This paper tends to examine tribalism as a foiled factor on Africa nation-building and proffers useful tips to salvaging the Africa land from this deadly social problem. Africans in times past had suffered enormous attacks, injuries, losses, deaths, destruction of properties and human skills and ideas due to the presence of tribalistic views in…

  5. The Visualization of Infrared Radiation Using Thermal Sensitive Foils

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek

    2013-01-01

    This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…

  6. Laser-induced structure formation on stretched polymer foils

    SciTech Connect

    Bityurin, Nikita; Arnold, Nikita; Baeuerle, Dieter; Arenholz, Enno

    2007-04-15

    Noncoherent structures that develop during UV laser ablation of stretched semicrystalline polymer foils are a very general phenomenon. A thermodynamic model based on stress relaxation within the modified layer of the polymer surface describes the main features of the observed phenomena, and, in particular, the dependence of the period of structures on laser wavelength, fluence, and number of laser pulses.

  7. Foil Bearing Starting Considerations and Requirements for Rotorcraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2009-01-01

    Foil gas bearings under development for rotorcraft-sized, hot core engine applications have been susceptible to damage from the slow acceleration and rates typically encountered during the pre-ignition stage in conventional engines. Recent laboratory failures have been assumed to be directly linked to operating foil bearings below their lift-off speed while following conventional startup procedures for the engines. In each instance, the continuous sliding contact between the foils and shaft was believed to thermally overload the bearing and cause the engines to fail. These failures highlight the need to characterize required acceleration rates and minimum operating speeds for these applications. In this report, startup experiments were conducted with a large, rotorcraft engine sized foil bearing under moderate load and acceleration rates to identify the proper start procedures needed to avoid bearing failure. The results showed that a bearing under a 39.4 kPa static load can withstand a modest acceleration rate of 500 rpm/s and excessive loitering below the bearing lift-off speed provided an adequate solid lubricant is present.

  8. Validation of calculated self-shielding factors for Rh foils

    NASA Astrophysics Data System (ADS)

    Jaćimović, R.; Trkov, A.; Žerovnik, G.; Snoj, L.; Schillebeeckx, P.

    2010-10-01

    Rhodium foils of about 5 mm diameter were obtained from IRMM. One foil had thickness of 0.006 mm and three were 0.112 mm thick. They were irradiated in the pneumatic transfer system and in the carousel facility of the TRIGA reactor at the Jožef Stefan Institute. The foils were irradiated bare and enclosed in small cadmium boxes (about 2 g weight) of 1 mm thickness to minimise the perturbation of the local neutron flux. They were co-irradiated with 5 mm diameter and 0.2 mm thick Al-Au (0.1%) alloy monitor foils. The resonance self-shielding corrections for the 0.006 and 0.112 mm thick samples were calculated by the Monte Carlo simulation and amount to about 10% and 60%, respectively. The consistency of measurements confirmed the validity of self-shielding factors. Trial estimates of Q0 and k0 factors for the 555.8 keV gamma line of 104Rh were made and amount to 6.65±0.18 and (6.61±0.12)×10 -2, respectively.

  9. Secret in the Margins: Rutherford's Gold Foil Experiment

    ERIC Educational Resources Information Center

    Aydin, Sevgi; Hanuscin, Deborah L.

    2011-01-01

    In this article, the authors describe a lesson that uses the 5E Learning Cycle to help students not only understand the atomic model but also how Ernest Rutherford helped develop it. The lesson uses Rutherford's gold foil experiment to focus on three aspects of the nature of science: the empirical nature of science, the tentativeness of scientific…

  10. Proton acceleration from short pulse lasers interacting with ultrathin foil

    NASA Astrophysics Data System (ADS)

    Petrov, George; McGuffey, Christopher; Thomas, Alec; Krushelnick, Karl; Beg, Farhat

    2015-11-01

    Two-dimensional particle-in-cell simulations using 50 nm Si3N4 and DLC foils are compared to published experimental data of proton acceleration from ultra-thin foils (<1 μm) irradiated by short pulse lasers (30-50 fs), and some underlying physics issues pertinent to proton acceleration have been addressed. 2D particle-in-cell simulations show that the maximum proton energy scales as I2/3, stronger than Target Normal Sheath Acceleration for thick foils (>1 μm), which is typically between I1/3 and I1/2. Published experimental data were found to depend primarily on the laser energy and scale as E2/3. The different scaling laws for thick (>1 μm) and ultra-thin (<1 μm) foils are explained qualitatively as transitioning from Target Normal Sheath Acceleration to more advanced acceleration schemes such as Radiation-Induced Transparency and Radiation Pressure Acceleration regimes. This work was performed with the support of the Air Force Office of Scientific Research under grant FA9550-14-1-0282.

  11. Modified Monkman-Grant relationship for austenitic stainless steel foils

    NASA Astrophysics Data System (ADS)

    Osman Ali, Hassan; Tamin, Mohd Nasir

    2013-02-01

    Characteristics of creep deformation for austenitic stainless steel foils are examined using the modified Monkman-Grant equation. A series of creep tests are conducted on AISI 347 steel foils at 700 °C and different stress levels ranging from 54 to 221 MPa. Results showed that at lower stress levels below 110 MPa, the creep life parameters ɛ, ɛr, tr can be expressed using the modified Monkman-Grant equation with exponent m'= 0.513. This indicates significant deviation of the creep behavior from the first order reaction kinetics theory for creep (m' = 1.0). The true tertiary creep damage in AISI 347 steel foil begins after 65.9% of the creep life of the foil has elapsed at stress levels above 150 MPa. At this high stress levels, Monkman-Grant ductility factor λ' saturates to a value of 1.3 with dislocation-controlled deformation mechanisms operating. At low stress levels, λ' increases drastically (λ'=190 at 54 MPa) when slow diffusion-controlled creep is dominant.

  12. Foil bearing performance in liquid nitrogen and liquid oxygen

    NASA Technical Reports Server (NTRS)

    Genge, Gary G.; Saville, Marshall; Gu, Alston

    1993-01-01

    Space transfer vehicles and other power and propulsion systems require long-life turbopumps. Rolling-element bearings used in current turbopumps do not have sufficient life for these applications. Process fluid foil bearings have established long life, with exceptional reliability, over a wide range of temperatures and fluids in many high-speed turbomachinery applications. However, actual data on bearing performance in cryogenic fluids has been minimal. The National Aeronautics and Space Administration (NASA) and AlliedSignal Aerospace Systems and Equipment (ASE) have attempted to characterize the leaf-type compliant foil bearing in oxygen and nitrogen. The work performed under a joint internal research and development program between Marshall Space Flight Center (MSFC) and ASE demonstrated that the foil bearing has load capacities of at least 266 psi in liquid oxygen and 352 psi in liquid nitrogen. In addition, the bearing demonstrated a direct damping coefficient of 40 to 50 lb-sec/in. with a damping ratio of .7 to 1.4 in. liquid nitrogen using a bearing sized for upper-stage turbopumps. With the results from this testing and the years of successful use in air cycle machines and other applications, leaf-type compliant foil bearings are ready for testing in liquid oxygen turbopumps.

  13. Evaluation of Alumina-Forming Austenitic Foil for Advanced Recuperators

    SciTech Connect

    Pint, Bruce A; Brady, Michael P; Yamamoto, Yukinori; Santella, Michael L; Maziasz, Philip J; Matthews, Wendy

    2011-01-01

    A corrosion- and creep-resistant austenitic stainless steel has been developed for advanced recuperator applications. By optimizing the Al and Cr contents, the alloy is fully austenitic for creep strength while allowing the formation of a chemically stable external alumina scale at temperatures up to 900 C. An alumina scale eliminates long-term problems with the formation of volatile Cr oxy-hydroxides in the presence of water vapor in exhaust gas. As a first step in producing foil for primary surface recuperators, three commercially cast heats have been rolled to 100 m thick foil in the laboratory to evaluate performance in creep and oxidation testing. Results from initial creep testing are presented at 675 C and 750 C, showing excellent creep strength compared with other candidate foil materials. Laboratory exposures in humid air at 650 800 C have shown acceptable oxidation resistance. A similar oxidation behavior was observed for sheet specimens of these alloys exposed in a modified 65 kW microturbine for 2871 h. One composition that showed superior creep and oxidation resistance has been selected for the preparation of a commercial batch of foil. DOI: 10.1115/1.4002827

  14. Large deflection analysis of a tension-foil bearing

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1996-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are as follows: rolling or sliding contact within the bearing has life-limiting consequences; and REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's. CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contacts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exist for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. Recently, a new tension-foil bearing configuration has been proposed for turbomachinery applications.

  15. ALUMINUM RECLAMATION BY ACIDIC EXTRACTION OF ALUMINUM-ANODIZING SLUDGES

    EPA Science Inventory

    Extraction of aluminum-anodizing sludges with sulfuric acid was examined to determine the potential for production of commercial-strength solutions of aluminum sulfate, that is liquid alum. The research established kinetic and stoichiometric relationships and evaluates product qu...

  16. Electrochemical Stability of Carbon Fibers Compared to Metal Foils as Current Collectors for Lithium-Ion Batteries

    SciTech Connect

    Martha, Surendra K; Dudney, Nancy J; Kiggans, Jim; Nanda, Jagjit

    2012-01-01

    The electrochemical behaviors of highly conductive, fully-graphitic, semi-graphitic and non-graphitic carbon fibers were studied as the cathode current collectors of lithium batteries in standard electrolyte (alkyl carbonate/LiPF6) solutions and compared to bare aluminum (Al). All of these current collectors demonstrate a stable electrochemical behavior within the potential range of 2.5 to 5 V, due to passivation by surface films. Carbon fibers have comparable electrochemical stability of Al and may be used in place Al foil. While the carbon fibers do not contribute any irreversible or extra capacity when they are cycled below 4.5 V, for fully-graphitic and semi-graphitic fibers PF6 intercalation and deintercalation into the carbon fiber may occur when they are cycled at high potentials >4.5 V.

  17. Time-Of-Flight Mass Spectrometry of Laser Exploding Foil Initiated PETN Samples

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario

    2015-06-01

    We report the results of time-of-flight mass spectrometry (TOFMS) measurements of the gaseous products of thin film PETN samples reacting in-vacuo. The PETN sample spots are produced by masked physical vapor deposition of PETN onto a first-surface aluminum mirror. A pulsed laser beam imaged through the soda lime glass mirror substrate converts the aluminum layer into a high-temperature high-pressure plasma which initiates chemical reactions in the overlying PETN sample. We had previously proposed to exploit differences in gaseous product chemical identities and molecular velocities to provide a chemically-based diagnostic for distinguishing between ``detonation-like'' and deflagration responses. Briefly: we expect in-vacuum detonations to produce hyperthermal (v ~ 10 km/s) thermodynamically-stable products such as N2, CO2, and H2O, and for deflagrations to produce mostly reaction intermediates, such as NO and NO2, with much slower molecular velocities - consistent with the expansion-quenched thermal decomposition of PETN. We observe primarily slow reaction intermediates (NO2, CH2NO3) at low laser pulse energies, the appearance of NO at intermediate laser pulse energies, and the appearance of hyperthemal CO/N2 at mass 28 amu at the highest laser pulse energies. However, these results are somewhat ambiguous, as the NO, NO2, and CH2NO3 intermediates persist and all species become hyperthermal at the higher laser pulse energies. Also, the purported CO/N2 signal at 28 amu may be contaminated by silicon ablated from the glass mirror substrate. We plan to mitigate these problems in future experiments by adopting the ``Buelow'' sample configuration which employs an intermediate foil barrier to shield the energetic material from the laser and the laser driven plasma. [RW PA#4930

  18. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tin-coated lead foil capsules for wine bottles... Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one or both sides with a thin...

  19. Ink-jet printed colorimetric gas sensors on plastic foil

    NASA Astrophysics Data System (ADS)

    Courbat, Jerome; Briand, Danick; de Rooij, Nico F.

    2010-08-01

    An all polymeric colorimetric gas sensor with its associated electronics for ammonia (NH3) detection targeting low-cost and low-power applications is presented. The gas sensitive layer was inkjet printed on a plastic foil. The use of the foil directly as optical waveguide simplified the fabrication, made the device more cost effective and compatible with large scale fabrication techniques, such as roll to roll processes. Concentrations of 500 ppb of NH3 in nitrogen with 50% of RH were measured with a power consumption of about 868 μW in an optical pulsed mode of operation. Such sensors foresee applications in the field of wireless systems, for environmental and safety monitoring. The fabrication of the planar sensor was based on low temperature processing. The waveguide was made of PEN or PET foil and covered with an ammonia sensitive layer deposited by inkjet printing, which offered a proper and localized deposition of the film. The influence of the substrate temperature and its surface pretreatment were investigated to achieve the optimum deposition parameters for the printed fluid. To improve the light coupling from the light source (LED) to the detectors (photodiodes), polymeric micro-mirrors were patterned in an epoxy resin. With the printing of the colorimetric film and additive patterning of polymeric micro-mirrors on plastic foil, a major step was achieved towards the implementation of full plastic selective gas sensors. The combination with printed OLED and PPD would further lead to an integrated all polymeric optical transducer on plastic foil fully compatible with printed electronics processes.

  20. Phases in lanthanum-nickel-aluminum alloys

    SciTech Connect

    Mosley, W.C.

    1992-01-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.

  1. Exploring Mbar shock conditions and isochorically heated aluminum at the MEC end station of the LCLS

    SciTech Connect

    Fletcher, L. B.; Lee, H. J.; SLAC, aff; Barbrel, B.; Gauthier, M.; Galtier, E.; Nagler, B.; Doppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; White, T.; Gregori, G.; Wei, M.; Falcone, R. W.; Heimann, P.; Zastrau, U.; Hastings, J. B.; Glenzer, S. H.

    2015-02-05

    Recent experiments performed at the Matter in Extreme Conditions end station (MEC) of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using Velocity Interferometer System for Any Reflector (VISAR) have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  2. Aluminum for plasmonics.

    PubMed

    Knight, Mark W; King, Nicholas S; Liu, Lifei; Everitt, Henry O; Nordlander, Peter; Halas, Naomi J

    2014-01-28

    Unlike silver and gold, aluminum has material properties that enable strong plasmon resonances spanning much of the visible region of the spectrum and into the ultraviolet. This extended response, combined with its natural abundance, low cost, and amenability to manufacturing processes, makes aluminum a highly promising material for commercial applications. Fabricating Al-based nanostructures whose optical properties correspond with theoretical predictions, however, can be a challenge. In this work, the Al plasmon resonance is observed to be remarkably sensitive to the presence of oxide within the metal. For Al nanodisks, we observe that the energy of the plasmon resonance is determined by, and serves as an optical reporter of, the percentage of oxide present within the Al. This understanding paves the way toward the use of aluminum as a low-cost plasmonic material with properties and potential applications similar to those of the coinage metals. PMID:24274662

  3. Improvements in Fabrication of Elastic Scattering Foils Used to Measure Neutron Yield by the Magnetic Recoil Spectrometer

    DOE PAGESBeta

    Reynolds, H. G.; Schoff, M. E.; Farrell, M. P.; Gatu Johnson, M.; Bionta, R. M.; Frenje, J. A.

    2016-08-01

    The magnetic recoil spectrometer uses a deuterated polyethylene polymer (CD2) foil to measure neutron yield in inertial confinement fusion experiments. Higher neutron yields in recent experiments have resulted in primary signal saturation in the detector CR-39 foils, necessitating the fabrication of thinner CD2 foils than established methods could provide. A novel method of fabricating deuterated polymer foils is described. The resulting foils are thinner, smoother, and more uniform in thickness than the foils produced by previous methods. Here, these new foils have successfully been deployed at the National Ignition Facility, enabling higher neutron yield measurements than previous foils, with nomore » primary signal saturation.« less

  4. Terahertz radiation generation by nonlinear mixing of two laser beams over a thin foil

    NASA Astrophysics Data System (ADS)

    Chauhan, Santosh; Parashar, J.

    2015-07-01

    Terahertz radiation generation via nonlinear mixing of two laser beams incident over a thin metal foil is explored. The lasers exert a ponderomotive force on the electrons of metal foil at beat frequency which lies in the terahertz range. The metal foil acts as antenna, producing terahertz radiations, highly directional in nature.

  5. Terahertz radiation generation by nonlinear mixing of two laser beams over a thin foil

    SciTech Connect

    Chauhan, Santosh; Parashar, J.

    2015-07-31

    Terahertz radiation generation via nonlinear mixing of two laser beams incident over a thin metal foil is explored. The lasers exert a ponderomotive force on the electrons of metal foil at beat frequency which lies in the terahertz range. The metal foil acts as antenna, producing terahertz radiations, highly directional in nature.

  6. Development of the carbon foils as charge strippers for high-intensity uranium ion beams

    NASA Astrophysics Data System (ADS)

    Hasebe, Hiroo; Kuboki, Hironori; Okuno, Hiroki; Fukunishi, Nobuhisa; Kamigaito, Osamu; Imao, Hiroshi; Goto, Akira; Kase, Masayuki

    2011-11-01

    carbon foil (C-foil) is commonly used as a charge stripper in the heavy-ion accelerators. Since 2005, the polymer-coated carbon foils (PCC-foils) have been fabricated at Nishina Center to prepare larger and thicker C-foils than those previously used as charge strippers. However, the multi-layer PCC-foils did not have sufficiently long life-time. Since August 2009, a new magnetron sputtering system is used to fabricate a thick C-foil. The foils coated with polymer are used as strippers. Life-times of the new single-layer PCC-foils under the uranium beam were measured in two configurations: at the first one a small piece of C-foil was attached to a fixed holder and in the second one a large C-foil was attached to a "rotating-cylinder stripper" device. The properties of the new single-layer PCC-foils and the results of the life-time measurements are reported in this contribution.

  7. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  8. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  9. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  10. Aluminum Hydroxide and Magnesium Hydroxide

    MedlinePlus

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  11. Oxidation kinetics of aluminum diboride

    NASA Astrophysics Data System (ADS)

    Whittaker, Michael L.; Sohn, H. Y.; Cutler, Raymond A.

    2013-11-01

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3-B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments.

  12. Shock experiments and numerical simulations on low energy portable electrically exploding foil accelerators

    NASA Astrophysics Data System (ADS)

    Saxena, A. K.; Kaushik, T. C.; Gupta, Satish C.

    2010-03-01

    Two low energy (1.6 and 8 kJ) portable electrically exploding foil accelerators are developed for moderately high pressure shock studies at small laboratory scale. Projectile velocities up to 4.0 km/s have been measured on Kapton flyers of thickness 125 μm and diameter 8 mm, using an in-house developed Fabry-Pérot velocimeter. An asymmetric tilt of typically few milliradians has been measured in flyers using fiber optic technique. High pressure impact experiments have been carried out on tantalum, and aluminum targets up to pressures of 27 and 18 GPa, respectively. Peak particle velocities at the target-glass interface as measured by Fabry-Pérot velocimeter have been found in good agreement with the reported equation of state data. A one-dimensional hydrodynamic code based on realistic models of equation of state and electrical resistivity has been developed to numerically simulate the flyer velocity profiles. The developed numerical scheme is validated against experimental and simulation data reported in literature on such systems. Numerically computed flyer velocity profiles and final flyer velocities have been found in close agreement with the previously reported experimental results with a significant improvement over reported magnetohydrodynamic simulations. Numerical modeling of low energy systems reported here predicts flyer velocity profiles higher than experimental values, indicating possibility of further improvement to achieve higher shock pressures.

  13. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Gao, Zeng; Niu, Jitai

    2016-06-01

    Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.

  14. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  15. RECLAMATION OF ALUMINUM FINISHING SLUDGES

    EPA Science Inventory

    The research study of the reclamation of aluminum-anodizing sludges was conducted in two sequential phases focused on enhanced dewatering of aluminum-anodizing sludges to produce commercial-strength solutions of aluminum sulfate, i.e., liquid alum. The use of high-pressure (14 to...

  16. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  17. Measuring Sub-micron Size Fractionated Particulate Matter on Aluminum Impactor Disks

    SciTech Connect

    Buchholz, B A; Zermeno, P; Hwang, H; Young, T M

    2009-07-28

    Sub-micron sized airborne particulate matter is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to size fractionate particulate matter (PM) into six size fractions and deposit it on specially designed high purity thin aluminum disks. The MOUDI separated PM into fractions 56-100 nm, 100-180 nm, 180-320 nm, 320-560 nm, 560-1000 nm, and 1000-1800 nm. Since MOUDI have low flow rates, it takes several days to collect sufficient carbon on 47 mm foil disks. The small carbon mass (20-200 microgram C) and large aluminum substrate ({approx}25 mg Al) presents several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for {sup 14}C-AMS analysis of PM deposited on Al impact foils.

  18. Measuring Submicron-Sized Fractionated Particulate Matter on Aluminum Impactor Disks

    PubMed Central

    Buchholz, Bruce A.; Zermeño, Paula; Hwang, Hyun-Min; Young, Thomas M.; Guilderson, Thomas P.

    2011-01-01

    Sub-micron sized airborne particulate matter (PM) is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to fractionate PM into six size fractions and deposit it on specially designed high purity thin aluminum disks. The MOUDI separated PM into fractions 56–100 nm, 100–180 nm, 180–320 nm, 320–560 nm, 560–1000 nm, and 1000–1800 nm. Since the MOUDI has a low flow rate (30 L/min), it takes several days to collect sufficient carbon on 47 mm foil disks. The small carbon mass (20–200 microgram C) and large aluminum substrate (~25 mg Al) present several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for 14C-AMS analysis of PM deposited on Al impact foils. PMID:22228915

  19. Measuring Submicron-Sized Fractionated Particulate Matter on Aluminum Impactor Disks.

    PubMed

    Buchholz, Bruce A; Zermeño, Paula; Hwang, Hyun-Min; Young, Thomas M; Guilderson, Thomas P

    2010-08-01

    Sub-micron sized airborne particulate matter (PM) is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to fractionate PM into six size fractions and deposit it on specially designed high purity thin aluminum disks. The MOUDI separated PM into fractions 56-100 nm, 100-180 nm, 180-320 nm, 320-560 nm, 560-1000 nm, and 1000-1800 nm. Since the MOUDI has a low flow rate (30 L/min), it takes several days to collect sufficient carbon on 47 mm foil disks. The small carbon mass (20-200 microgram C) and large aluminum substrate (~25 mg Al) present several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for (14)C-AMS analysis of PM deposited on Al impact foils. PMID:22228915

  20. Dual scattering foil design for poly-energetic electron beams.

    PubMed

    Kainz, K K; Antolak, J A; Almond, P R; Bloch, C D; Hogstrom, K R

    2005-03-01

    The laser wakefield acceleration (LWFA) mechanism can accelerate electrons to energies within the 6-20 MeV range desired for therapy application. However, the energy spectrum of LWFA-generated electrons is broad, on the order of tens of MeV. Using existing laser technology, the therapeutic beam might require a significant energy spread to achieve clinically acceptable dose rates. The purpose of this work was to test the assumption that a scattering foil system designed for a mono-energetic beam would be suitable for a poly-energetic beam with a significant energy spread. Dual scattering foil systems were designed for mono-energetic beams using an existing analytical formalism based on Gaussian multiple-Coulomb scattering theory. The design criterion was to create a flat beam that would be suitable for fields up to 25 x 25 cm2 at 100 cm from the primary scattering foil. Radial planar fluence profiles for poly-energetic beams with energy spreads ranging from 0.5 MeV to 6.5 MeV were calculated using two methods: (a) analytically by summing beam profiles for a range of mono-energetic beams through the scattering foil system, and (b) by Monte Carlo using the EGS/BEAM code. The analytic calculations facilitated fine adjustments to the foil design, and the Monte Carlo calculations enabled us to verify the results of the analytic calculation and to determine the phase-space characteristics of the broadened beam. Results showed that the flatness of the scattered beam is fairly insensitive to the width of the input energy spectrum. Also, results showed that dose calculated by the analytical and Monte Carlo methods agreed very well in the central portion of the beam. Outside the useable field area, the differences between the analytical and Monte Carlo results were small but significant, possibly due to the small angle approximation. However, these did not affect the conclusion that a scattering foil system designed for a mono-energetic beam will be suitable for a poly

  1. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  2. Mechanisms of aluminum tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity limits agricultural productivity over much of the world’s arable land by inhibiting root growth and development. Affected plants have difficulty in acquiring adequate water and nutrition from their soil environments and thus have stunted shoot development and diminished yield....

  3. Maize aluminum tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is one of the most economically important food crops grown on acid soils, where aluminum (Al) toxicity greatly limits crop yields. Considerable variation for Al tolerance exists in maize, and this variation has been exploited for many years by plant breeders to enhance maize Al tolerance. Curr...

  4. Aluminum-ferricyanide battery

    SciTech Connect

    Marsh, C.; Licht, S.L.

    1993-11-29

    A battery capable of producing high current densities with high charge capacity is described which includes an aluminum anode, a ferricyanide electrolyte and a second electrode capable of reducing ferricyanide electrolyte which is either dissolved in an alkaline solution or alkaline seawater solution. The performance of the battery is enhanced by high temperature and high electrolyte flow rates.

  5. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  6. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  7. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  8. REMOVAL OF ALUMINUM COATINGS

    DOEpatents

    Peterson, J.H.

    1959-08-25

    A process is presented for dissolving aluminum jackets from uranium fuel elements without attack of the uranium in a boiling nitric acid-mercuric nitrate solution containing up to 50% by weight of nitrtc acid and mercuric nitrate in a concentration of between 0.05 and 1% by weight.

  9. Building an aluminum car

    SciTech Connect

    Ashley, S.

    1994-05-01

    This article examines the increasing use of aluminum in automobiles to decrease weight and consequently increase fuel economy. The topics of the article include federal fuel economy goals, the development of optimum body structure and manufacturing techniques, comparison with steel, cost of materials, weight reduction and recycling of materials.

  10. Thermal effects on the clearance and stiffness of foil journal bearings for a Brayton cycle turboalternator

    NASA Technical Reports Server (NTRS)

    Eshel, A.

    1972-01-01

    An analysis of foil journal bearings for a NASA Brayton Cycle Unit (BRU) is presented. The study represents an extension of previous work in that it includes the effects of thermal expansion of foil-bearing components, as well as an improved model of the influence of foil flexure. The results presented give the bearing film thickness, the bearing stiffness, and the foil tension as functions of the operating temperatures and the elasto-hydrodynamic and geometrical parameters pertinent to the design of BRU foil bearings. A computer program for the evaluation of design data and for parametric studies is included.

  11. Quasi-static analysis of foil journal bearings for a Brayton cycle turboalternator

    NASA Technical Reports Server (NTRS)

    Eshel, A.

    1974-01-01

    A quasi-static analysis is presented for foil journal bearings designed for a NASA Brayton Cycle Turboalternator. Included in the analysis are effects of 'slack' (due to flexural rigidity of the foil), of frictionally restrained extension of the foil-length in contact with cylindrical guides, of fluid inertia and compressibility, and of thermal expansion of rotor, foil and supporting structure. Comparisons are made with results of early experiments performed by Licht (1968, 1969) and recent data of Licht and Branger (1973). Variatons of film thickness, foil tension and bearing stiffness are presented graphically as functions of pertinent parameters for the case of operation in zero-gravity environment.

  12. Development of carbon foils with a thickness of up to 600 μg/cm 2

    NASA Astrophysics Data System (ADS)

    Kindler, Birgit; Hartmann, Willi; Hübner, Annett; Lommel, Bettina; Steiner, Jutta

    2010-02-01

    Carbon foils are applied as stripper for the heavy-ion accelerator as well as targets in different experiments at GSI. Carbon foils in a thickness range 5-100 μg/cm 2 are routinely produced with good homogeneity and excellent durability. Foils thicker than 100 μg/cm 2 used to be purchased. To overcome problems that emerged and intensified in some applications we started to advance our own carbon production towards higher thickness. We describe the production of carbon foils up to a thickness of 600 μg/cm 2, report on first tests as stripper foils and as targets, and discuss our future plans.

  13. Mesoporous aluminum phosphite

    SciTech Connect

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-08-15

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S{sup +}I{sup -} surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N{sub 2} adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  14. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  15. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.

  16. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  17. Lifetime dependence of nitrided carbon stripper foils on sputter angle during N+ ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Sugai, I.; Oyaizu, M.; Takeda, Y.; Kawakami, H.; Kawasaki, K.; Hattori, T.; Kadono, T.

    2015-09-01

    We fabricated high-lifetime thin nitride carbon stripper (NCS) foils with high nitrogen contents using ion-beam sputtering with reactive nitrogen gas and investigated the dependence of their lifetimes on the sputter angle. The nitrogen in carbon foils plays a critical role in determining their lifetime. Therefore, in order to investigate the effects of the nitrogen level in NCS foils on foil lifetime, we measured the sputtering yield for different sputter angles at a sputtering voltage of 10 kV while using carbon-based targets. We also measured the nitrogen-to-carbon thickness ratios of the foils using Rutherford backscattering spectrometry. The foils made at a sputter angle of 15° using a glassy amorphous carbon target exhibited an average increase of 200-fold in lifetime when compared to commercially available foils.

  18. Non-uniformity effects of the inter-foil distance on GEM detector performance

    NASA Astrophysics Data System (ADS)

    Yan, Huang; Han, YI; Zhi-Gang, Xiao; Zhao, Zhang; Wen-Jing, Cheng; Li-Ming, Lü; Wei-Hua, Yan; Ren-Sheng, Wang; Hong-Jie, Li; Yan, Zhang; Li-Min, Duan; Rong-Jiang, Hu; Chen-Gui, Lu; He-Run, Yang; Peng, Ma; Hai-Yan, Gao

    2016-04-01

    The non-uniformity effect of the inter-foil distance has been studied using a gaseous electron multiplication (GEM) detector with sensitive area of 50mm × 50mm. A gradient of the inter-foil distance is introduced by using spacers with different heights at the two ends of the foil gap. While the cluster size and the intrinsic spatial resolution show insignificant dependence on the inter-foil distance, the gain exhibits an approximately linear dependence on the inter-foil distance. From the slope, a quantitative relationship between the change of the inter-foil distance and the change of the gain is derived, which can be used as a method to evaluate the non-uniformity of the foil gap in the application of large-area GEM detectors. Supported by National Natural Science Foundation of China (11375094, U1332207, 11120101004), and by Tsinghua University Initiative Scientific Research Program

  19. Temperature Measurements at Material Interfaces with Thin-Foil Gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike J.; Chapman, David J.; Proud, William G.

    2009-12-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  20. Temperature measurements at material interfaces with thin-foil gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike; Chapman, David; Proud, William

    2009-06-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  1. Underlying principle of efficient propulsion in flexible plunging foils

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Jue; He, Guo-Wei; Zhang, Xing

    2014-12-01

    Passive flexibility was found to enhance propulsive efficiency in swimming animals. In this study, we numerically investigate the roles of structural resonance and hydrodynamic wake resonance in optimizing efficiency of a flexible plunging foil. The results indicates that (1) optimal efficiency is not necessarily achieved when the driving frequency matches the structural eigenfrequency; (2) optimal efficiency always occurs when the driving frequency matches the wake resonant frequency of the time averaged velocity profile. Thus, the underlying principle of efficient propulsion in flexible plunging foil is the hydrodynamic wake resonance, rather than the structural resonance. In addition, we also found that whether the efficiency can be optimized at the structural resonant point depends on the strength of the leading edge vortex relative to that of the trailing edge vortex. The result of this work provides new insights into the role of passive flexibility in flapping-based propulsion.

  2. Electrostatic adhesion of polymer particles to a foil electrode

    NASA Astrophysics Data System (ADS)

    Ziteng, Li; Praeger, Matthew; Smallwood, Jeremy; Lewin, Paul

    2015-10-01

    The SPABRINK EU project requires temporary adhesion of coloured solid “ink” particles to a surface, for later recovery and reuse. This is achieved through the use of dielectrophoretic force under the control of a voltage applied to an interdigitated electrode pattern on the polymer foil. One concern is the ability to hold particles under vibration conditions. In this paper we present an experimental study of the adhesion of 50-300 μm polymer particles to an experimental interdigitated electrode structure on flexible polymer foil. Powder loss as a function of calibrated displacement and applied voltage to the electrodes are presented. This is compared with theoretical results obtained by modelling adhesion using Pohl's equation in terms of an “adhesion factor”. Some difficulties in directly comparing experimental and modelling results are discussed.

  3. Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2007-01-01

    Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.

  4. Plasma flow switch and foil implosion experiments on Pegasus II

    SciTech Connect

    Cochrane, J.C.; Bartsch, R.R.; Benage, J.R.; Forman, P.R.; Gribble, R.F.; Ladish, J.S.; Oona, H.; Parker, J.V.; Scudder, D.W.; Shlachter, J.S.; Wysocki, F.J.

    1993-01-01

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos AGEX (Above Ground EXperiments) program. A goal of the program is to produce an intense (> 100 TW) source of soft x-rays from the thermalization of the kinetic energy of a 1 to 10 MJ plasma implosion. The radiation pulse should have a maximum duration of several 10's of nanoseconds and will be used in the study of fusion conditions and material properties. The radiating plasma source will be generated by the thermalization of the kinetic energy of an imploding cylindrical, thin, metallic foil. This paper addresses experiments done on a capacitor bank to develop a switch (plasma flow switch) to switch the bank current into the load at peak current. This allows efficient coupling of bank energy into foil kinetic energy.

  5. Plasma flow switch and foil implosion experiments on Pegasus II

    SciTech Connect

    Cochrane, J.C.; Bartsch, R.R.; Benage, J.R.; Forman, P.R.; Gribble, R.F.; Ladish, J.S.; Oona, H.; Parker, J.V.; Scudder, D.W.; Shlachter, J.S.; Wysocki, F.J.

    1993-07-01

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos AGEX (Above Ground EXperiments) program. A goal of the program is to produce an intense (> 100 TW) source of soft x-rays from the thermalization of the kinetic energy of a 1 to 10 MJ plasma implosion. The radiation pulse should have a maximum duration of several 10`s of nanoseconds and will be used in the study of fusion conditions and material properties. The radiating plasma source will be generated by the thermalization of the kinetic energy of an imploding cylindrical, thin, metallic foil. This paper addresses experiments done on a capacitor bank to develop a switch (plasma flow switch) to switch the bank current into the load at peak current. This allows efficient coupling of bank energy into foil kinetic energy.

  6. Fabrication of microcoined metal foil Rayleigh-Taylor targets

    NASA Astrophysics Data System (ADS)

    Randall, Greg; Vecchio, James; Fitzsimmons, Paul; Knipping, Jack; Wall, Don; Vu, Matthew; Giraldez, Emilio; Remington, Tane; Blue, Brent; Farrell, Michael; Nikroo, Abbas

    2013-03-01

    Rippled metal foils are currently sought for high strain rate material strength studies. For example, the growth of these ripples by the Rayleigh-Taylor instability after a laser-induced ramped compression yields strength behavior at extremely high strain rate. Because metals of interest (iron, tantalum, steel, etc.) typically cannot be diamond turned, we employ a microcoining process to imprint the ~ 5 μm deep by ~ 50 μm long ripples into the metal surface. The process consists of nitriding a steel die, diamond turning the die, and then pressing the die into a polished metal foil of choice (Seugling et al., Proc EUSPEN Int. Conference, 2010). This work details recent process developments, characterization techniques, and important physics for fabrication of these rippled metal targets.

  7. Energy loss of 132Xe-ions in thin foils

    NASA Astrophysics Data System (ADS)

    Trzaska, W. H.; Knyazheva, G. N.; Perkowski, J.; Andrzejewski, J.; Khlebnikov, S. V.; Kozulin, E. M.; Lyapin, V. G.; Malkiewicz, T.; Mutterer, M.

    2009-10-01

    The energy loss of 132Xe-ions in C, Al, Ni, Ag, Lu, Au, Pb and Th foils was measured in the energy range from 0.1 to 5 MeV/u using the TOF-E method. The results are compared with previously published data and with the predictions of several computer codes. They include theoretical codes: PASS, CASP, semi-empirical programs: SRIM, LET and the Hubert table predictions.

  8. Nickel foil microcantilevers for magnetic manipulation and localized heating

    PubMed Central

    Gaitas, Angelo; McNaughton, Brandon H.

    2014-01-01

    Cellular manipulation has been investigated by a number of techniques. In this manuscript nickel foil microcantilevers were used for magnetophoresis and manipulation of microparticles and magnetically labeled HeLa cells. The cantilevers were also used for localized heating in liquid, reaching biologically relevant temperatures. This work aims to develop cantilevers for sample enrichment, manipulation, and thermal applications, offering an inexpensive and versatile solution compatible with standard tools in research and clinical diagnostic testing, such as microwell plates. PMID:25541581

  9. The investigation of electrolytic surface roughening for PCB copper foil

    NASA Astrophysics Data System (ADS)

    Lee, Shuo-Jen; Liu, Chao-Kai

    2013-10-01

    This study is the application of the principle of electrochemical. The anodic dissolution has no concentration polarization. Hence, electrolyte life is substantially increased. The waste copper is high in ion concentration with a recovery value. As compared with the current PCB chemical pre-treatment method, it may have advantages of cost-saving, improvement of overall efficiency, reduction of production costs and reduction of the amount of waste generated. In the development of the copper foil for electrochemical roughening process, the use of electrolysis reaction affects the copper surface dissolution to form a unique bump coarsening. It will increase in the surface area of the copper foil to improve dry film solder mask and the adhesion between the copper surfaces. Four electrolytes, two neutral salts and two acids, were selected to explore the best of the electrolytic roughening parameters of temperature, time and voltage. The surface roughness and the surface morphology of the copper foil were measured before and after the electrolytic surface roughening. Finally, after repeated experiments, electrolytes A and B copper generates obvious inter-granular corrosion, resulting in a rough surface similar to the chemical pre-treatment. On the other hands, the surface morphology resulted from electrolytes C and D appears more like pitting. Both electrolytic could generate surface roughness of Ra 0.3 um roughened copper surface higher than industrial standard.

  10. Thin-foil reflection gratings for Constellation-X

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Akilian, Mireille; Chang, Chih-Hao; Forest, Craig R.; Joo, Chulmin; Lapsa, Andrew; Montoya, Juan C.; Schattenburg, Mark L.

    2004-10-01

    The Reflection Grating Spectrometer (RGS) on Constellation-X is designed to supply astronomers with high spectral resolution in the soft x-ray band from 0.25 to 2 keV. High resolution, large collecting area and low mass at grazing incidence require very flat and thin grating substrates, or thin-foil optics. Thin foils typically have a diameter-to-thickness ratio of 200 or higher and as a result very low stiffness. This poses a number of technological challenges in the areas of shaping, handling, positioning, and mounting of such optics. The most minute forces (gravity sag, friction, thermal mismatch with optic mount, etc.) can lead to intolerable deformations and limit figure metrology repeatability. We present results of our efforts in the manipulation and metrology of suitable grating substrates, utilizing a novel low-stress foil holder with friction-reducing flexures. A large number of reflection gratings is needed to achieve the required collecting area. We have employed nanoimprint lithography (NIL) - which uses imprint films as thin as 100 nm or less - for the high-fidelity and low-stress replication from 100 mm diameter saw-tooth grating masters.

  11. Structure and mechanical properties of foils made of nanocrystalline beryllium

    NASA Astrophysics Data System (ADS)

    Zhigalina, O. M.; Semenov, A. A.; Zabrodin, A. V.; Khmelenin, D. N.; Brylev, D. A.; Lizunov, A. V.; Nebera, A. L.; Morozov, I. A.; Anikin, A. S.; Orekhov, A. S.; Kuskova, A. N.; Mishin, V. V.; Seryogin, A. V.

    2016-07-01

    The phase composition and structural features of (45-90)-μm-thick foils obtained from nanocrystalline beryllium during multistep thermomechanical treatment have been established using electron microscopy, electron diffraction, electron backscattering diffraction, and energy-dispersive analysis. This treatment is shown to lead to the formation of a structure with micrometer- and submicrometer-sized grains. The minimum average size of beryllium grains is 352 nm. The inclusions of beryllium oxide (BeO) of different modifications with tetragonal (sp. gr. P42/ mnm) and hexagonal (sp. gr. P63/ mmc) lattices are partly ground during deformation to a size smaller than 100 nm and are located along beryllium grain boundaries in their volume, significantly hindering migration during treatment. The revealed structural features of foils with submicrometer-sized crystallites provide the thermal stability of their structural state. Beryllium with this structure is a promising material for X-ray instrument engineering and for the production of ultrathin (less than 10 μm) vacuum-dense foils with very high physicomechanical characteristics.

  12. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  13. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  14. Low-energy multiple-Coulomb scattering in thick foils

    SciTech Connect

    Morrill, S.M.

    1984-01-01

    Angular and energy distributions were taken using proton and ..cap alpha..-particle beams of energies 2 to 10 MeV incident on a variety of thick foils. Foils were chosen from commonly used materials and to span the periodic table. Foil thicknesses were chosen which resulted in approximately 20-60% energy losses. The lower-energy experiments were done using the Brigham Young University 4-MeV Van de Graaff accelerator while the higher-energy experiments were performed using the Triangle Universities Nuclear Laboratory (TUNL) tandem Van de Graaff. Angular distributions are characterized by the angles at which the distribution had dropped to the 1/e, 1/10, and 1/100 points of their initial values. Energy distributions are characterized by the mean energy and the width of the energy-straggling distribution of the emerging particle. Comparisons are made to the appropriate theories including the angular distribution theory of Nigam, Sundaresan, and Wu (NSW), and the straggling theory of Bethe. Improvements to the NSW method by using an effective energy and effective nuclear charge are discussed.

  15. Low-Energy Multiple-Coulomb Scattering in Thick Foils.

    NASA Astrophysics Data System (ADS)

    Morrill, Steven M.

    Angular and energy distributions were taken using proton and alpha-particle beams of energies 2--10 MeV incident on a variety of thick foils. Foils were chosen from commonly used materials and to span the periodic table. Foil thicknesses were chosen which resulted in approximately 20--60% energy losses. The lower-energy experiments were done using the Brigham Young University 4-MeV Van de Graaff accelerator while the higher-energy experiments were performed using the Triangle Universities Nuclear Laboratory (TUNL) tandem Van de Graaff. Angular distributions were characterized by the angles at which the distribution had dropped to the 1/e, 1/10, and 1/100 points of their initial values. Energy distributions were characterized by the mean energy and the width of the energy straggling distribution of the emerging particle. Comparisons were made to the appropriate theories including the angular distribution theory of Nigam, Sundaresan, and Wu (NSW), and the straggling theory of Bethe. Improvements to the NSW method by using an effective energy and effective nuclear charge were discussed.

  16. Flow energy harvesting -- another application of the biomimetic flapping foils

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Peng, Zhangli

    2009-11-01

    Imitating fish fins and insect wings, flapping foils are usually used for biomimetic propulsion. Theoretical studies and experiments have demonstrated that through specific combinations of heaving and pitching motions, these foils can also extract energy from incoming wind or current. Compared with conventional flow energy harvesting devices based upon rotating turbines, this novel design promises mitigated impact upon the environment. To achieve the required motions, existing studies focus on hydrodynamic mode coupling, in which a periodic pitching motion is activated and a heaving motion is then generated by the oscillating lifting force. Energy extraction is achieved through a damper in the heaving direction (representing the generator). This design involves a complicated control and activation system. In addition, there is always the possibility that the energy required to activate the system exceeds the energy recovered by the generator. We have discovered that a much simpler device without activation, a 2DOF foil mounted on a rotational spring and a damper undergoing flow-induced motions can achieve stable flow energy harvesting. Using Navier-Stokes simulations we predicted different behaviors of the system during flow-induced vibrations and identified the specific requirements to achieve controllable periodic motions essential for stable energy harvesting. The energy harvesting capacity and efficiency were also determined.

  17. Comparison of EXAFS Foil Spectra from Around the World

    SciTech Connect

    Kelly, S. D.; Bare, S. R.; Greenlay, N.; Azevedo, G.; Balasubramanian, M.; Barton, D.; Chattopadhyay, S.; Fakra, S.; Johannessen, B.; Newville, M.; Pena, J.; Pokrovski, G. S; Proux, O.; Priolkar, K.; Ravel, B.; Webb, S. M.

    2010-07-16

    The EXAFS spectra of Cu and Pd foil from many different beamlines and synchrotrons are compared to address the dependence of the amplitude reduction factor (S{sub 0}{sup 2}) on beamline specific parameters. Even though S{sub 0}{sup 2} is the same parameter as the EXAFS coordination number, the value for S{sub 0}{sup 2} is given little attention, and is often unreported. The S{sub 0}{sup 2} often differs for the same material due to beamline and sample attributes, such that no importance is given to S{sub 0}{sup 2}-values within a general range of 0.7 to 1.1. EXAFS beamlines have evolved such that it should now be feasible to use standard S{sub 0}{sup 2} values for all EXAFS measurements of a specific elemental environment. This would allow for the determination of the imaginary energy (Ei) to account for broadening of the EXAFS signal rather than folding these errors into an effective S{sub 0}{sup 2}-value. To test this concept, we model 11 Cu-foil and 6 Pd-foil EXAFS spectra from around the world to compare the difference in S{sub 0}{sup 2}- and Ei-values.

  18. Ultrafast short-range disordering of femtosecond-laser-heated warm dense aluminum.

    PubMed

    Leguay, P M; Lévy, A; Chimier, B; Deneuville, F; Descamps, D; Fourment, C; Goyon, C; Hulin, S; Petit, S; Peyrusse, O; Santos, J J; Combis, P; Holst, B; Recoules, V; Renaudin, P; Videau, L; Dorchies, F

    2013-12-13

    We have probed, with time-resolved x-ray absorption near-edge spectroscopy (XANES), a femtosecond-laser-heated aluminum foil with fluences up to 1  J/cm2. The spectra reveal a loss of the short-range order in a few picoseconds. This time scale is compared with the electron-ion equilibration time, calculated with a two-temperature model. Hydrodynamic simulations shed light on complex features that affect the foil dynamics, including progressive density change from solid to liquid (∼10  ps). In this density range, quantum molecular dynamics simulations indicate that XANES is a relevant probe of the ionic temperature. PMID:24483671

  19. Grain structure of thin electrodeposited and rolled copper foils

    SciTech Connect

    Merchant, H.D. . E-mail: HarishMerchant@aol.com; Liu, W.C.; Giannuzzi, L.A.; Morris, J.G.

    2004-12-15

    Planar and cross-section light optical and transmission electron microscopy (TEM) and X-ray diffraction analysis have been used to characterize the technologically relevant thin copper films and foils. The grain structure and grain orientation of (i) 1-15 {mu}m deposit on the polyimide (PI) substrate (ii) 5-35 {mu}m free-standing foil and (iii) 200 {mu}m sheet prepared by the industrial scale rolling or electrodeposit process have been examined. It is shown that the rolled foil structure is highly anisotropic due to grain stretching during rolling; the pancaked grains circumscribe a dislocation cell substructure. Thermal exposure in the 423-453 K range results in full anneal softening, while initiating the polygonization of cellular substructure, the formation of new large grains by discontinuous recrystallization and the transformation of the near <111> deformation textures into the near <100> anneal textures. The texture transformation is facilitated when the oxygen content of copper is reduced from the normal 100-400 ppm level or when a low level silver ({approx}200 ppm) addition is made to copper. Depending upon the electrodeposition conditions or the nature of additives introduced in the electrolyte, it is possible to develop an electrodeposit with (a) a truly equiaxed, fine, twin-free, randomly oriented grain structure or (b) a relatively coarse grain structure, accompanied by extensive twinning, z (growth)-direction grain extension, columnar grain morphology and strong <220> crystallographic texture. Between (a) and (b), it is possible to tailor the processing to obtain a mix of fine and coarse grains, a large fraction of random orientation component (weak near <220> textures), moderate twinning, and vestiges of columnar grain morphology and z-direction grain extension. The anneal softening is not accompanied by significant grain structure modification or by texture change; somewhat above the softening temperature, an in situ grain growth ensues. For both

  20. Aluminum permanganate battery

    SciTech Connect

    Marsh, C.; Licht, S.L.

    1993-11-30

    A battery is provided comprising an aluminum anode, an aqueous solution of permanganate as the cathodic species and a second electrode capable of reducing permanganate. Such a battery system is characterized by its high energy density and low polarization losses when operating at high temperatures in a strong caustic electrolyte, i.e., high concentration of hydroxyl ions. A variety of anode and electrocatalyst materials are suitable for the efficient oxidation-reduction process and are elucidated.

  1. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    PubMed

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices. PMID:20356280

  2. Aluminum Carbothermic Technology

    SciTech Connect

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major

  3. Ultrasonic Additive Manufacturing: Weld Optimization for Aluminum 6061, Development of Scarf Joints for Aluminum Sheet Metal, and Joining of High Strength Metals

    NASA Astrophysics Data System (ADS)

    Wolcott, Paul J.

    Ultrasonic additive manufacturing (UAM) is a low temperature, solid-state manufacturing process that enables the creation of layered, solid metal structures with designed anisotropies and embedded materials. As a low temperature process, UAM enables the creation of active composites containing smart materials, components with embedded sensors, thermal management devices, and many others. The focus of this work is on the improvement and characterization of UAM aluminum structures, advancing the capabilities of ultrasonic joining into sheet geometries, and examination of dissimilar material joints using the technology. Optimized process parameters for Al 6061 were identified via a design of experiments study indicating a weld amplitude of 32.8 synum and a weld speed of 200 in/min as optimal. Weld force and temperature were not significant within the levels studied. A methodology of creating large scale builds is proposed, including a prescribed random stacking sequence and overlap of 0.0035 in. (0.0889 mm) for foils to minimize voids and maximize mechanical strength. Utilization of heat treatments is shown to significantly increase mechanical properties of UAM builds, within 90% of bulk material. The applied loads during the UAM process were investigated to determine the stress fields and plastic deformation induced during the process. Modeling of the contact mechanics via Hertzian contact equations shows that significant stress is applied via sonotrode contact in the process. Contact modeling using finite element analysis (FEA), including plasticity, indicates that 5000 N normal loads result in plastic deformation in bulk aluminum foil, while at 3000 N no plastic deformation occurs. FEA studies on the applied loads during the process, specifically a 3000 N normal force and 2000 N shear force, show that high stresses and plastic deformation occur at the edges of a welded foil, and base of the UAM build. Microstructural investigations of heat treated foils confirms

  4. Extracting aluminum from dross tailings

    NASA Astrophysics Data System (ADS)

    Amer, A. M.

    2002-11-01

    Aluminum dross tailings, an industrial waste, from the Egyptian Aluminium Company (Egyptalum) was used to produce two types of alums: aluminum-sulfate alum [itAl2(SO4)3.12H2O] and ammonium-aluminum alum [ (NH 4)2SO4AL2(SO4)3.24H2O]. This was carried out in two processes. The first process is leaching the impurities using diluted H2SO4 with different solid/liquid ratios at different temperatures to dissolve the impurities present in the starting material in the form of solute sulfates. The second process is the extraction of aluminum (as aluminum sulfate) from the purifi ed aluminum dross tailings thus produced. The effects of temperature, time of reaction, and acid concentration on leaching and extraction processes were studied. The product alums were analyzed using x-ray diffraction and thermal analysis techniques.

  5. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  6. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  7. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  8. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  9. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  10. Quasicrystalline particulate reinforced aluminum composite

    SciTech Connect

    Anderson, I.E.; Biner, S.B.; Sordelet, D.J.; Unal, O.

    1997-07-01

    Particulate reinforced aluminum and aluminum alloy composites are rapidly emerging as new commercial materials for aerospace, automotive, electronic packaging and other high performance applications. However, their low processing ductility and difficulty in recyclability have been the key concern. In this study, two composite systems having the same aluminum alloy matrix, one reinforced with quasicrystals and the other reinforced with the conventional SiC reinforcements were produced with identical processing routes. Their processing characteristics and tensile mechanical properties were compared.

  11. Cathodic phenomena in aluminum electrowinning

    NASA Astrophysics Data System (ADS)

    Bouteillon, J.; Poignet, J. C.; Rameau, J. J.

    1993-02-01

    Although aluminum is one of the world's highest production-volume primary metals, it is particularly costly to produce for a variety of factors, not the least of which are the expenses associated with electrolytic reduction. Based on the scale of global aluminum processing, even minor improvements in the electrowinning technology can result in significant savings of resources. Thus, from this perspective, the following reviews recent studies of cathodic phenomena in aluminum electrowinning.

  12. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  13. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  14. Beam Loss due to Foil Scattering in the SNS Accumulator Ring

    SciTech Connect

    Holmes, Jeffrey A; Plum, Michael A

    2012-01-01

    In order to better understand the contribution of scattering from the primary stripper foil to losses in the SNS ring, we have carried out calculations using the ORBIT Code aimed at evaluating these losses. These calculations indicate that the probability of beam loss within one turn following a foil hit is ~1.8 10-8 , where is the foil thickness in g/cm2, assuming a carbon foil. Thus, for a typical SNS stripper foil of thickness = 390 g/cm2, the probability of loss within one turn of a foil hit is ~7.0 10-6. This note describes the calculations used to arrive at this result, presents the distribution of these losses around the SNS ring, and compares the calculated results with observed ring losses for a well-tuned production beam.

  15. Measurement of the radon diffusion through a nylon foil for different air humidities

    SciTech Connect

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-17

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  16. Measurement of the radon diffusion through a nylon foil for different air humidities

    NASA Astrophysics Data System (ADS)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-01

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  17. Laser welding of aluminum alloys

    SciTech Connect

    Leong, K.H.; Sabo, K.R.; Sanders, P.G.; Spawr, W.J.

    1997-03-01

    Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

  18. Mineral of the month: aluminum

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2005-01-01

    Aluminum is the second most abundant metallic element in Earth’s crust after silicon. Even so, it is a comparatively new industrial metal that has been produced in commercial quantities for little more than 100 years. Aluminum is lightweight, ductile, malleable and corrosion resistant, and is a good conductor of heat and electricity. Weighing about one-third as much as steel or copper per unit of volume, aluminum is used more than any other metal except iron. Aluminum can be fabricated into desired forms and shapes by every major metalworking technique to add to its versatility.

  19. Analysis of cartilage-polydioxanone foil composite grafts.

    PubMed

    Kim, James H; Wong, Brian

    2013-12-01

    This study presents an analytical investigation into the mechanical behavior of a cartilage-polydioxanone (PDS) plate composite grafts. Numerical methods are used to provide a first-order, numerical model of the flexural stiffness of a cartilage-PDS graft. Flexural stiffness is a measure of resistance to bending and is inversely related to the amount of deformation a structure may experience when subjected to bending forces. The cartilage-PDS graft was modeled as a single composite beam. Using Bernoulli-Euler beam theory, a closed form equation for the theoretical flexural stiffness of the composite graft was developed. A parametric analysis was performed to see how the flexural properties of the composite model changed with varying thicknesses of PDS foil. The stiffness of the cartilage-PDS composite using 0.15-mm-thick PDS was four times higher than cartilage alone. The composite with a 0.5-mm-thick PDS graft was only 1.7 times stiffer than the composite with the 0.15-mm-thick PDS graft. Although a thicker graft material will yield higher flexural stiffness for the composite, the relationship between composite stiffness and PDS thickness is nonlinear. After a critical point, increments in graft thickness produce gradually smaller improvements in flexural stiffness. The small increase in stiffness when using the thicker PDS foils versus the 0.15 mm PDS foil may not be worth the potential complications (prolonged foreign body reaction, reduction in nutrient diffusion to cartilage) of using thicker artificial grafts. PMID:24327249

  20. The effect of displacement cascades on small helium bubbles in aluminum and gold

    SciTech Connect

    Donnelly, S.E.; Valizadeh, R.; Vishnyakov, V.; Birtcher, R.C.; Templier, C.

    1994-12-01

    The evolution of individual helium bubbles in thin foils of gold and aluminum irradiated with 400 keV Ar+ and 200 keV Xe+ has been followed with in-situ transmission electron microscopy for a comparison between the effects of dilute (Al) and dense (Au) collision cascades. Bubble shrinkage in Al has been attributed to direct displacement of the gas out of the bubbles. Effects in Au, include the disappearance and Brownian motion of bubbles under irradiation, and are consistent with thermal spike processes seen in molecular dynamics simulations.

  1. Synthetic Graphene Grown by Chemical Vapor Deposition on Copper Foils

    NASA Astrophysics Data System (ADS)

    Chung, Ting Fung; Shen, Tian; Cao, Helin; Jauregui, Luis A.; Wu, Wei; Yu, Qingkai; Newell, David; Chen, Yong P.

    2013-04-01

    The discovery of graphene, a single layer of covalently bonded carbon atoms, has attracted intense interest. Initial studies using mechanically exfoliated graphene unveiled its remarkable electronic, mechanical and thermal properties. There has been a growing need and rapid development in large-area deposition of graphene film and its applications. Chemical vapor deposition on copper has emerged as one of the most promising methods in obtaining large-scale graphene films with quality comparable to exfoliated graphene. In this paper, we review the synthesis and characterizations of graphene grown on copper foil substrates by atmospheric pressure chemical vapor deposition. We also discuss potential applications of such large-scale synthetic graphene.

  2. Laser Proton acceleration from mass limited silicon foils

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Kraft, S.; Richter, T.; Metzkes, J.; Bussmann, M.; Schramm, U.; Sauerbrey, R.; Cowan, T. E.; Fuchs, J.; Buffechoux, S.

    2009-11-01

    We present recent studies on laser proton acceleration experiments using mass limited silicon targets. Small micro machined silicon foils with 2 μm thickness and 20x20 μm2 to 100x100μm2 size mounted on very tiny stalks were shot with the 100 TW LULI Laser (long pulse 150 fs) and with the new 150 TW DRACO Laser facility (short pulse 30 fs) of the Research Centre Dresden-Rossendorf. The experiments were carried out using high contrast levels. Proton spectra have been measured with magnetic spectrometers and radio chromic film stacks.

  3. Promising HE for explosive welding of thin metallic foils

    NASA Astrophysics Data System (ADS)

    Deribas, A. A.; Mikhaylov, A. L.; Titova, N. N.; Zocher, Marvin A.

    2012-03-01

    Experimental results are presented on the development of a high explosive (HE) suitable for the welding of thin metallic foils. The explosive is formed from a mixture of brisant HE (RDX or PETN) and an inert material, namely sodium bicarbonate. Sodium bicarbonate releases a rather large quantity of gas during decomposition, the effects of which are discussed. Measurements of detonation velocity and critical thickness for specific mixture combinations are presented. It is shown that particle size (of the RDX or PETN component) has a significant effect upon detonation velocity and critical thickness. Compositions were developed which have a stable detonation velocity ~2 km/s with a layer thickness ~ 2 mm.

  4. Prediction of Gas Lubricated Foil Journal Bearing Performance

    NASA Technical Reports Server (NTRS)

    Carpino, Marc; Talmage, Gita

    2003-01-01

    This report summarizes the progress in the first eight months of the project. The objectives of this research project are to theoretically predict the steady operating conditions and the rotor dynamic coefficients of gas foil journal bearings. The project is currently on or ahead of schedule with the development of a finite element code that predicts steady bearing performance characteristics such as film thickness, pressure, load, and drag. Graphical results for a typical bearing are presented in the report. Project plans for the next year are discussed.

  5. Standardizable method for testing foil-substrate adherence

    NASA Astrophysics Data System (ADS)

    Schell, Karel J.; Klinker, Han; van Renesse, Rudolf L.

    2002-04-01

    An increasing number of currencies is provided with an Optically Variable Device (OVD) as a counterfeit deterrent. The device is adhered to the substrate by a hot melt adhesive. Adherence is generally tested with an adhesive tape, a practical test that sufficed up to now. Nevertheless, the question may be raised if a method can be developed with a better discriminating power as well as a larger potential for standardization. A feasibility test with the IGT printability tester, using a high viscosity pick up oil, shows promising results. This paper presents the testing method, shows a few preliminary results and discusses these results with respect to the foil application method.

  6. Optical observations of molecular dissociation in thin foils

    SciTech Connect

    Berry, H.G.; Gay, T.J.; Brooks, R.L.

    1981-01-01

    We have measured the intensity and polarizations of light emitted from atomic excited states of dissociated molecular ions. Using HeH/sup +/ projectiles, we have observed factors of 1 to 5 enhancements of the light from n=3, /sup 1/ /sup 3/P,D states of He I and some He II and H I emissions. Observations of Lyman-..cap alpha.. emission after dissociation of H/sub 2//sup +/ and H/sub 3//sup +/ show rapid variations in light yield for small internuclear separations at the foil surface.

  7. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  8. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  9. Comprehensive Interpretive Planning.

    ERIC Educational Resources Information Center

    Kohen, Richard; Sikoryak, Kim

    1999-01-01

    Discusses interpretive planning and provides information on how to maximize a sense of ownership shared by managers, staff, and other organizational shareholders. Presents practical and effective plans for providing interpretive services. (CCM)

  10. Critical properties of aluminum.

    PubMed

    Bhatt, Divesh; Jasper, Ahren W; Schultz, Nathan E; Siepmann, J Ilja; Truhlar, Donald G

    2006-04-01

    Gibbs ensemble Monte Carlo calculations are performed using a validated embedded-atom potential to obtain the vapor-liquid coexistence curve for elemental aluminum in good agreement with available experimental data up to the boiling point. These calculations are then extended to make a reliable prediction of the critical temperature, pressure, and density of Al, which have previously been known only with very large uncertainties. This demonstrates the ability of modern simulations to predict fundamental physical properties that are extremely difficult to measure directly. PMID:16568986

  11. Comparison of carbon stripper foils under operational conditions at the Los Alamos proton storage ring

    SciTech Connect

    Spickerman, Thomas; Borden, Michael J; Macek, Robert J; Sugai, Isao

    2008-01-01

    At the 39{sup th} ICFA Advanced Beam Dynamics Workshop HB 2006 and the 23{sup rd} INTDS World Conference we reported on first results of a test of nanocrystalline diamond foils developed at ORNL under operational conditions at the Los Alamos Proton Storage Ring (PSR). We have continued these tests during the 2006 and 2007 run cycles and have been able to compare the diamond foils with the foils that are normally in use in PSR, which were originally developed by Sugai at KEK. We have gathered valuable information regarding foil lifetime, foil related beam losses and electron emission at the foil. Additional insight was gained under unusual beam conditions where the foiIs are subjected to higher temperatures. In the 2007 run cycle we also tested a Diamond-like-Carbon foil developed at TRIUMF. A Hybrid-Boron-Carbon foil, also developed by Sugai, is presently in use with the PSR production beam. We will summarize our experience with these different foil types.

  12. Role of induced vortex interaction in a semi-active flapping foil based energy harvester

    NASA Astrophysics Data System (ADS)

    Wu, J.; Chen, Y. L.; Zhao, N.

    2015-09-01

    The role of induced vortex interaction in a semi-active flapping foil based energy harvester is numerically examined in this work. A NACA0015 airfoil, which acts as an energy harvester, is placed in a two-dimensional laminar flow. It performs an imposed pitching motion that subsequently leads to a plunging motion. Two auxiliary smaller foils, which rotate about their centers, are arranged above and below the flapping foil, respectively. As a consequence, the vortex interaction between the flapping foil and the rotating foil is induced. At a Reynolds number of 1100 and the position of the pitching axis at one-third chord, the effects of the distance between two auxiliary foils, the phase difference between the rotating motion and the pitching motion as well as the frequency of pitching motion on the power extraction performance are systematically investigated. It is found that compared to the single flapping foil, the efficiency improvement of overall power extraction for the flapping foil with two auxiliary foils can be achieved. Based on the numerical analysis, it is indicated that the enhanced power extraction, which is caused by the increased lift force, thanks to the induced vortex interaction, directly benefits the efficiency enhancement.

  13. Hydrodynamics of foils swimming in a side-by-side configuration

    NASA Astrophysics Data System (ADS)

    Dewey, Peter; Moored, Keith; Quinn, Daniel; Smits, Alexander

    2013-11-01

    Experimental and computational results are presented on a pair of hydrofoils undergoing pitch oscillations in a side-by-side configuration. The time-averaged forces and propulsive efficiency are independently measured for each foil for a range of separation distances and oscillation phase differentials between the two foils. The results are compared to an isolated foil to determine if the presence of a second foil can yield an improvement to the propulsive characteristics of the system. While the exact performance of the side-by-side foils is strongly dependent on the separation distance and phase differential between the foils, it is found that under certain configurations an enhancement in net thrust is achieved by the presence of a second foil. The wake patterns shed by the foils as they oscillate are also examined and compared to the propulsive characteristics. A series of four stable wake configurations are observed that depend on the phase differential between the foils. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-08-1-0642.

  14. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    PubMed

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. PMID:27431039

  15. Effects of heat treatment on U–Mo fuel foils with a zirconium diffusion barrier

    SciTech Connect

    Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.; Keiser, Dennis D.

    2015-05-01

    A monolith fuel design based on U–Mo alloy has been selected as the fuel type for conversion of the United States’ high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U–Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U–Mo foil during fabrication alters the microstructure of both the U–10Mo fuel meat and the U–Mo/Zr interface. This work studied the effects of post-rolling annealing treatment on the microstructure of the co-rolled U–Mo fuel meat and the U–Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U–Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ~9, ~13, and ~20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U–Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U–Mo coupon homogenization. The phases in the Zr/U–Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.

  16. Effects of heat treatment on U-Mo fuel foils with a zirconium diffusion barrier

    NASA Astrophysics Data System (ADS)

    Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.; Keiser, Dennis D.

    2015-05-01

    A monolith fuel design based on U-Mo alloy has been selected as the fuel type for conversion of the United States' high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U-Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U-Mo foil during fabrication alters the microstructure of both the U-10Mo fuel meat and the U-Mo/Zr interface. This work studied the effects of post-rolling annealing treatment on the microstructure of the co-rolled U-Mo fuel meat and the U-Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U-Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ∼9, ∼13, and ∼20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U-Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U-Mo coupon homogenization. The phases in the Zr/U-Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.

  17. Journalists as Interpretive Communities.

    ERIC Educational Resources Information Center

    Zelizer, Barbie

    1993-01-01

    Proposes viewing journalists as members of an interpretive community (not a profession) united by its shared discourse and collective interpretations of key public events. Applies the frame of the interpretive community to journalistic discourse about two events central for American journalists--Watergate and McCarthyism. (SR)

  18. Interpreting. NETAC Teacher Tipsheet.

    ERIC Educational Resources Information Center

    Darroch, Kathy; Marshall, Liza

    This tipsheet explains that an interpreter's role is to facilitate communication and convey all auditory and signed information so that individuals with and without hearing may fully interact. It outlines the common types of services provided by interpreters, and discusses principles guiding the professional behaviors of interpreters. When working…

  19. Using medical interpreters.

    PubMed

    Hart, Dionne; Bowen, Juan; DeJesus, Ramona; Maldonado, Alejandro; Jiwa, Fatima

    2010-04-01

    Research has demonstrated that appropriate use of interpreters in clinical encounters improves outcomes and decreases adverse events. This article reviews both the medical reasons for working with trained medical interpreters and the related laws, and offers practical tips for working effectively with interpreters. PMID:20481167

  20. Interpreting. PEPNet Tipsheet

    ERIC Educational Resources Information Center

    Darroch, Kathleen

    2010-01-01

    An interpreter's role is to facilitate communication and convey all auditory and signed information so that both hearing and deaf individuals may fully interact. The common types of services provided by interpreters are: (1) American Sign Language (ASL) Interpretation--a visual-gestural language with its own linguistic features; (2) Sign Language…

  1. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    SciTech Connect

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  2. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    SciTech Connect

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-09-17

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnel requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.

  3. Fission fragment assisted reactor concept for space propulsion: Foil reactor

    NASA Technical Reports Server (NTRS)

    Wright, Steven A.

    1991-01-01

    The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures.

  4. A simple method for the measurement of reflective foil emissivity

    NASA Astrophysics Data System (ADS)

    Ballico, M. J.; van der Ham, E. W. M.

    2013-09-01

    Reflective metal foil is widely used to reduce radiative heat transfer within the roof space of buildings. Such foils are typically mass-produced by vapor-deposition of a thin metallic coating onto a variety of substrates, ranging from plastic-coated reinforced paper to "bubble-wrap". Although the emissivity of such surfaces is almost negligible in the thermal infrared, typically less than 0.03, an insufficiently thick metal coating, or organic contamination of the surface, can significantly increase this value. To ensure that the quality of the installed insulation is satisfactory, Australian building code AS/NZS 4201.5:1994 requires a practical agreed method for measurement of the emissivity, and the standard ASTM-E408 is implied. Unfortunately this standard is not a "primary method" and requires the use of specified expensive apparatus and calibrated reference materials. At NMIA we have developed a simple primary technique, based on an apparatus to thermally modulate the sample and record the apparent modulation in infra-red radiance with commercially available radiation thermometers. The method achieves an absolute accuracy in the emissivity of approximately 0.004 (k=2). This paper theoretically analyses the equivalence between the thermal emissivity measured in this manner, the effective thermal emissivity in application, and the apparent emissivity measured in accordance with ASTM-E408.

  5. A simple method for the measurement of reflective foil emissivity

    SciTech Connect

    Ballico, M. J.; Ham, E. W. M. van der

    2013-09-11

    Reflective metal foil is widely used to reduce radiative heat transfer within the roof space of buildings. Such foils are typically mass-produced by vapor-deposition of a thin metallic coating onto a variety of substrates, ranging from plastic-coated reinforced paper to 'bubble-wrap'. Although the emissivity of such surfaces is almost negligible in the thermal infrared, typically less than 0.03, an insufficiently thick metal coating, or organic contamination of the surface, can significantly increase this value. To ensure that the quality of the installed insulation is satisfactory, Australian building code AS/NZS 4201.5:1994 requires a practical agreed method for measurement of the emissivity, and the standard ASTM-E408 is implied. Unfortunately this standard is not a 'primary method' and requires the use of specified expensive apparatus and calibrated reference materials. At NMIA we have developed a simple primary technique, based on an apparatus to thermally modulate the sample and record the apparent modulation in infra-red radiance with commercially available radiation thermometers. The method achieves an absolute accuracy in the emissivity of approximately 0.004 (k=2). This paper theoretically analyses the equivalence between the thermal emissivity measured in this manner, the effective thermal emissivity in application, and the apparent emissivity measured in accordance with ASTM-E408.

  6. Hydrodynamics of a biologically inspired tandem flapping foil configuration

    NASA Astrophysics Data System (ADS)

    Akhtar, Imran; Mittal, Rajat; Lauder, George V.; Drucker, Elliot

    2007-05-01

    Numerical simulations have been used to analyze the effect that vortices, shed from one flapping foil, have on the thrust of another flapping foil placed directly downstream. The simulations attempt to model the dorsal-tail fin interaction observed in a swimming bluegill sunfish. The simulations have been carried out using a Cartesian grid method that allows us to simulate flows with complex moving boundaries on stationary Cartesian grids. The simulations indicate that vortex shedding from the upstream (dorsal) fin is indeed capable of increasing the thrust of the downstream (tail) fin significantly. Vortex structures shed by the upstream dorsal fin increase the effective angle-of-attack of the flow seen by the tail fin and initiate the formation of a strong leading edge stall vortex on the downstream fin. This stall vortex convects down the surface of the tail and the low pressure associated with this vortex increases the thrust on the downstream tail fin. However, this thrust augmentation is found to be quite sensitive to the phase relationship between the two flapping fins. The numerical simulations allows us to examine in detail, the underlying physical mechanism for this thrust augmentation.

  7. Aluminum Nanoholes for Optical Biosensing.

    PubMed

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation--which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports--the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  8. The Benefits of Aluminum Windows.

    ERIC Educational Resources Information Center

    Goyal, R. C.

    2002-01-01

    Discusses benefits of aluminum windows for college construction and renovation projects, including that aluminum is the most successfully recycled material, that it meets architectural glass deflection standards, that it has positive thermal energy performance, and that it is a preferred exterior surface. (EV)

  9. Primary Aluminum Plants Worldwide - 1998

    USGS Publications Warehouse

    1999-01-01

    The 1990 U.S. Bureau of Mines publication, Primary Aluminum Plants Worldwide, has been updated and is now available. The 1998 USGS edition of Primary Aluminum Plants Worldwide is published in two parts. Part I—Detail contains information on individual primary smelter capacity, location, ownership, sources of energy, and other miscellaneous information. Part II—Summary summarizes the capacity data by country

  10. Lost-Soap Aluminum Casting.

    ERIC Educational Resources Information Center

    Mihalow, Paula

    1980-01-01

    Lost-wax casting in sterling silver is a costly experience for the average high school student. However, this jewelry process can be learned at no cost if scrap aluminum is used instead of silver, and soap bars are used instead of wax. This lost-soap aluminum casting process is described. (Author/KC)

  11. Boron carbide-aluminum cermets

    SciTech Connect

    Halverson, D.C.

    1986-09-03

    We have developed boron carbide-aluminum cermets by means of thermodynamic, kinetic, and processing studies. Our research indicates that boron carbide-aluminum cermets offer ''tailorable'' microstructures with designable properties through process control. This new class of cermets has the potential to become a very important material with wide industrial applications.

  12. Aluminum Nanoholes for Optical Biosensing

    PubMed Central

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  13. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    SciTech Connect

    Regalado, W. Perez; Chertov, A. M.; Maev, R. Gr.

    2010-02-22

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  14. Interpreting Abstract Interpretations in Membership Equational Logic

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Rosu, Grigore

    2001-01-01

    We present a logical framework in which abstract interpretations can be naturally specified and then verified. Our approach is based on membership equational logic which extends equational logics by membership axioms, asserting that a term has a certain sort. We represent an abstract interpretation as a membership equational logic specification, usually as an overloaded order-sorted signature with membership axioms. It turns out that, for any term, its least sort over this specification corresponds to its most concrete abstract value. Maude implements membership equational logic and provides mechanisms to calculate the least sort of a term efficiently. We first show how Maude can be used to get prototyping of abstract interpretations "for free." Building on the meta-logic facilities of Maude, we further develop a tool that automatically checks and abstract interpretation against a set of user-defined properties. This can be used to select an appropriate abstract interpretation, to characterize the specified loss of information during abstraction, and to compare different abstractions with each other.

  15. Channeling of aluminum in silicon

    SciTech Connect

    Wilson, R.G.; Hopkins, C.G.

    1985-05-15

    A systematic study of channeling of aluminum in the silicon crystal is reported. Depth distributions measured by secondary ion mass spectrometry are reported for 40-, 75-, and 150-keV aluminum channeled in the <100> and <110> directions of silicon. The profile dependence on alignment angle is shown for 150-keV aluminum in the <110> of silicon. Aluminum has low electronic stopping in silicon and corresponding deep channeled profiles are observed for aligned implants and deep channeling tails are observed on random implants. The maximum channeling range for 150-keV Al in <100> silicon is about 2.8 ..mu..m and is about 6.4 ..mu..m in <110> silicon. Some ions will reach the maximum channeling range even for 2/sup 0/ misalignment. Many of the deep channeling tails and ''supertails'' reported in earlier literature can be explained by the normal channeling of aluminum in silicon.

  16. Pitching-motion-activated flapping foil near solid walls for power extraction: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Wu, J.; Qiu, Y. L.; Shu, C.; Zhao, N.

    2014-08-01

    A numerical investigation on the power extraction of a pitching-motion-activated flapping foil near solid walls is performed by using an immersed boundary-lattice Boltzmann method in this study. The flapping motions of the foil include a forced pitching component and an induced plunging component. The foil is placed either near a solid wall or between two parallel plane walls. Compared to previous work on the flapping foil for power extraction, the effect of the walls is first considered in this work. At a Reynolds number of 1100 and with the position of the foil pitching axis at third chord, the influences of the mechanical parameters (such as damping coefficient and spring constant) of the foil, the amplitude and frequency of the pitching motion and the clearance between the foil pitching axis and the wall on the power extraction performance of the flapping foil are systematically evaluated. Compared to the situation of free stream, the power extraction performance of the foil near the wall is improved. For given amplitude and frequency, as the clearance decreases the net power extraction efficiency improves. Moreover, as the foil is placed near one wall, there is a transverse shift to the plunging motion that consequently weakens the improvement of net power extraction efficiency. In contrast, the shift can be significantly eliminated as the foil is placed between two walls, which can further improve the net power extraction efficiency. In addition, it is found that the efficiency improvement is essentially from the increased power extraction, which is due to the generation of high lift force.

  17. Aluminum Zintl anion moieties within sodium aluminum clusters

    SciTech Connect

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H. E-mail: kiran@mcneese.edu; Schnöckel, Hansgeorg; Eichhorn, Bryan W.; Lee, Mal-Soon; Jena, P.; Kandalam, Anil K. E-mail: kiran@mcneese.edu; Kiran, Boggavarapu E-mail: kiran@mcneese.edu

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  18. Aluminum Zintl anion moieties within sodium aluminum clusters

    NASA Astrophysics Data System (ADS)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Schnöckel, Hansgeorg; Eichhorn, Bryan W.; Lee, Mal-Soon; Jena, P.; Kandalam, Anil K.; Kiran, Boggavarapu; Bowen, Kit H.

    2014-02-01

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium-aluminum cluster anions, NamAln-, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  19. Aluminum Zintl anion moieties within sodium aluminum clusters.

    PubMed

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Schnöckel, Hansgeorg; Eichhorn, Bryan W; Lee, Mal-Soon; Jena, P; Kandalam, Anil K; Kiran, Boggavarapu; Bowen, Kit H

    2014-02-01

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium-aluminum cluster anions, Na(m)Al(n)(-), were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams. PMID:24511934

  20. First principles pseudopotential calculations on aluminum and aluminum alloys

    SciTech Connect

    Davenport, J.W.; Chetty, N.; Marr, R.B.; Narasimhan, S.; Pasciak, J.E.; Peierls, R.F.; Weinert, M.

    1993-12-31

    Recent advances in computational techniques have led to the possibility of performing first principles calculations of the energetics of alloy formation on systems involving several hundred atoms. This includes impurity concentrations in the 1% range as well as realistic models of disordered materials (including liquids), vacancies, and grain boundaries. The new techniques involve the use of soft, fully nonlocal pseudopotentials, iterative diagonalization, and parallel computing algorithms. This approach has been pioneered by Car and Parrinello. Here the authors give a review of recent results using parallel and serial algorithms on metallic systems including liquid aluminum and liquid sodium, and also new results on vacancies in aluminum and on aluminum-magnesium alloys.

  1. Synthesis of CdTe thin films on flexible metal foil by electrodeposition

    NASA Astrophysics Data System (ADS)

    Luo, H.; Ma, L. G.; Xie, W. M.; Wei, Z. L.; Gao, K. G.; Zhang, F. M.; Wu, X. S.

    2016-04-01

    CdTe thin films have been deposited onto the Mo foil from aqueous acidic bath via electrodeposition method with water-soluble Na2TeO3 instead of the usually used TeO2. X-ray diffraction studies indicate that the CdTe thin films are crystallized in zinc-blende symmetry. The effect of tellurite concentration on the morphology of the deposited thin film is investigated. In such case, the Cd:Te molar ratios in the films are both stoichiometric at different tellurite concentrations. In addition, the reduction in tellurite concentration leads to the porous thin film and weakens the crystallinity of thin film. The island growth model is used to interpret the growth mechanism of CdTe. The bandgap of the CdTe thin films is assigned to be 1.49 eV from the UV-Vis spectroscopy measurement, which is considered to serve as a promising candidate for the heterojunction solar cells.

  2. Prism Foil from an LCD Monitor as a Tool for Teaching Introductory Optics

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Gojkosek, Mihael

    2011-01-01

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and…

  3. Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Procházka, Pavel; Mach, Jindřich; Bischoff, Dominik; Lišková, Zuzana; Dvořák, Petr; Vaňatka, Marek; Simonet, Pauline; Varlet, Anastasia; Hemzal, Dušan; Petrenec, Martin; Kalina, Lukáš; Bartošík, Miroslav; Ensslin, Klaus; Varga, Peter; Čechal, Jan; Šikola, Tomáš

    2014-05-01

    Synthesis of graphene by chemical vapor deposition is a promising route for manufacturing large-scale high-quality graphene for electronic applications. The quality of the employed substrates plays a crucial role, since the surface roughness and defects alter the graphene growth and cause difficulties in the subsequent graphene transfer. Here, we report on ultrasmooth high-purity copper foils prepared by sputter deposition of Cu thin film on a SiO2/Si template, and the subsequent peeling off of the metallic layer from the template. The surface displays a low level of oxidation and contamination, and the roughness of the foil surface is generally defined by the template, and was below 0.6 nm even on a large scale. The roughness and grain size increase occurred during both the annealing of the foils, and catalytic growth of graphene from methane (≈1000 °C), but on the large scale still remained far below the roughness typical for commercial foils. The micro-Raman spectroscopy and transport measurements proved the high quality of graphene grown on such foils, and the room temperature mobility of the graphene grown on the template stripped foil was three times higher compared to that of one grown on the commercial copper foil. The presented high-quality copper foils are expected to provide large-area substrates for the production of graphene suitable for electronic applications.

  4. Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition.

    PubMed

    Procházka, Pavel; Mach, Jindřich; Bischoff, Dominik; Lišková, Zuzana; Dvořák, Petr; Vaňatka, Marek; Simonet, Pauline; Varlet, Anastasia; Hemzal, Dušan; Petrenec, Martin; Kalina, Lukáš; Bartošík, Miroslav; Ensslin, Klaus; Varga, Peter; Čechal, Jan; Šikola, Tomáš

    2014-05-01

    Synthesis of graphene by chemical vapor deposition is a promising route for manufacturing large-scale high-quality graphene for electronic applications. The quality of the employed substrates plays a crucial role, since the surface roughness and defects alter the graphene growth and cause difficulties in the subsequent graphene transfer. Here, we report on ultrasmooth high-purity copper foils prepared by sputter deposition of Cu thin film on a SiO2/Si template, and the subsequent peeling off of the metallic layer from the template. The surface displays a low level of oxidation and contamination, and the roughness of the foil surface is generally defined by the template, and was below 0.6 nm even on a large scale. The roughness and grain size increase occurred during both the annealing of the foils, and catalytic growth of graphene from methane (≈1000 °C), but on the large scale still remained far below the roughness typical for commercial foils. The micro-Raman spectroscopy and transport measurements proved the high quality of graphene grown on such foils, and the room temperature mobility of the graphene grown on the template stripped foil was three times higher compared to that of one grown on the commercial copper foil. The presented high-quality copper foils are expected to provide large-area substrates for the production of graphene suitable for electronic applications. PMID:24739598

  5. Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates

    SciTech Connect

    Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.

    2015-09-03

    Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected by the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.

  6. Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates

    DOE PAGESBeta

    Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.

    2015-09-03

    Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected bymore » the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.« less

  7. Foil Cooling for the Rep-Rated Electron Beam Pumped Electra Laser

    NASA Astrophysics Data System (ADS)

    Giuliani, J. L.; Hegeler, F.; Wolford, M. F.; Abdel-Khalik, S.

    2005-10-01

    The Electra program at the Naval Research Laboratory is developing the science and technologies for implementation of krypton-fluoride (KrF) lasers in inertial fusion energy. Large aperture KrF lasers are pumped by electron beams which transit a foil separating the gas target at >=1 atm pressure from the vacuum diode. A fraction of the beam energy is deposited in the foil and thus long term (>=10^8 shots), rep-rated (5 Hz) operation requires active cooling of the foil to prevent thermal yield relaxation and cycling fatigue. This paper will report on experimental data and theoretical analysis of two diverse approaches to foil thermal management: convective and conductive cooling. Convective turbulent cooling has been operational on the Electra main amp through the use of oscillating louvers within a gas recirculator containing the pumped lasing region. At 5 Hz the foil temperature (Tf) can be maintained at ˜400 ^oC for a 1 mil SS foil. Conduction cooling provides the simplest configuration with only the need for water channels in the ribs of the hibachi. For a 1 mil Al foil, Tf is predicted to be ˜140 ^oC at 5 Hz. Comparison of experimental and theoretical results and advanced foil materials will be discussed.

  8. Feasibility development program LEU-foil plate type target for the production of Mo-99

    SciTech Connect

    Allen, C.W.; Butler, R.A.; Jarousse, C.; Falgoux, J.L.

    2008-07-15

    The University of Missouri Research Reactor and AREVA-CERCA have recently signed a Memorandum of Understanding to cooperate in a program to determine the feasibility of manufacturing a prototype LEU-foil target in a plate geometry for the production of molybdenum-99. The concept of a plate type target consists of transitioning Argonne National Laboratory's existing LEU-foil annular target design from a concentric tube geometry to a plate geometry. The objectives of the feasibility determination are: 1) Evaluate the structural integrity and geometric stability of a foil plate target during irradiation and post-irradiation by finite element analysis modeling. 2) Evaluate the heat transfer characteristics of a foil plate target with respect to thermal contact resistance at the foil / plate interfaces. 3) Determine the economics of manufacturing an LEU-foil plate target in comparison to that of a LEU dispersion plate type target on a commercial scale basis. 4) Determine the most effective and efficient method of disassembling the target to remove the foil component of the target for chemical processing. The results of the structural and thermal analyses will be used to determine if a comprehensive set of Safety Case documentation can be developed to support the irradiation and disassembly of a 'mini' (i.e., small scale) LEU-foil plate target as a trial demonstration. (author)

  9. Aluminum plasmonic photocatalysis

    PubMed Central

    Hao, Qi; Wang, Chenxi; Huang, Hao; Li, Wan; Du, Deyang; Han, Di; Qiu, Teng; Chu, Paul K.

    2015-01-01

    The effectiveness of photocatalytic processes is dictated largely by plasmonic materials with the capability to enhance light absorption as well as the energy conversion efficiency. Herein, we demonstrate how to improve the plasmonic photocatalytic properties of TiO2/Al nano-void arrays by overlapping the localized surface plasmon resonance (LSPR) modes with the TiO2 band gap. The plasmonic TiO2/Al arrays exhibit superior photocatalytic activity boasting an enhancement of 7.2 folds. The underlying mechanisms concerning the radiative energy transfer and interface energy transfer processes are discussed. Both processes occur at the TiO2/Al interface and their contributions to photocatalysis are evaluated. The results are important to the optimization of aluminum plasmonic materials in photocatalytic applications. PMID:26497411

  10. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    SciTech Connect

    Renaudin, P.; Blancard, C.; Cosse, P.; Faussurier, G.; Lecherbourg, L.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-02

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  11. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    NASA Astrophysics Data System (ADS)

    Renaudin, P.; Lecherbourg, L.; Blancard, C.; Cossé, P.; Faussurier, G.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  12. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  13. Aluminum toxicity. Hematological effects.

    PubMed

    Mahieu, S; del Carmen Contini, M; Gonzalez, M; Millen, N; Elias, M M

    2000-01-01

    Sequential effects of intoxication with aluminum hydroxide (Al) (80 mg/Kg body weight, i.p., three times a week), were studied on rats from weaning and up to 28 weeks. The study was carried out on hematological and iron metabolism-related parameters on peripheral blood, at the end of the 1st, 2nd, 3rd, 4th, 5th and 6th months of exposure. As it was described that hematotoxic effects of Al are mainly seen together with high levels of uremia, renal function was measured at the same periods. The animals treated developed a microcytosis and was accompanied by a decrease in mean corpuscular hemoglobin (MCH). Significantly lower red blood cell counts (RBC million/microl) were found in rats treated during the 1st month. These values matched those obtained for control rats during the 2nd month. From the 3rd month onwards, a significant increase was observed as compared to control groups, and the following values were obtained by the 6th month: (T) 10.0 +/- 0.3 versus (C) 8.7 +/- 0.2 (million/microl). Both MCH and mean corpuscular volume (MCV) were found to be significantly lower in groups treated from the 2nd month. At the end of the 6th month the following values were found: MCH (T) 13.3 +/- 0.1 versus (C) 16.9 +/- 0.3 (pg); MCV (T) 42.1 +/- 0.7 versus (C) 51.8 +/- 0.9 (fl). Al was found responsible for lower serum iron concentration levels and in the percentage of transferrin saturation. Thus, although microcytic anemia constitutes an evidence of chronic aluminum exposure, prolonged exposure could lead to a recovery of hematocrit and hemoglobin concentration values with an increase in red cell number. Nevertheless, both microcytosis and the decrease of MCH would persist. These modifications took place without changes being observed in the renal function during the observation period. PMID:10643868

  14. Aluminum: Industry of the future

    SciTech Connect

    1998-11-01

    For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

  15. Foil assisted replica molding for fabrication of microfluidic devices and their application in vitro.

    PubMed

    Micheal, Issac J; Vidyasagar, Aditya J; Bokara, Kiran Kumar; Mekala, Naveen Kumar; Asthana, Amit; Rao, Ch Mohan

    2014-10-01

    We present a simple, rapid, benchtop, Foil Assisted Rapid Molding (FARM) method for the fabrication of microfluidic devices. This novel technique involves the use of aluminium foil, pen and an X-Y plotter to create semi-circular or plano-concave, shallow microchannels. It is an easy do-it-yourself (DIY) technique for creating a microfluidic device in three simple steps: (1) create a channel design using the CAD software, (2) plot the patterns on aluminium foil and (3) use the reverse of the engraved foil as a mold to create microfluidic devices. In this report, we present a detailed study of the proposed method by varying a range of parameters such as foil thickness, tip material, and tip sizes and by investigating their effect on the creation of channels with varying geometry. Furthermore, we demonstrated the cytocompatibility of these devices in vitro. PMID:25102283

  16. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  17. Design, fabrication, and performance of foil journal bearing for the brayton rotating unit

    NASA Technical Reports Server (NTRS)

    Licht, L.; Branger, M.

    1973-01-01

    Foil bearings were designed and manufactured to replace pivoted-shoe journal bearings in an existing Brayton Cycle turbo-alternator-compressor. The design of this unconventional rotor support was accomplished within the constraints and space limitations imposed by the present machine, and the substitution of foil bearings was effected without changes or modification other machine components. A housing and a test rig were constructed to incorporate the new foil-bearing support into a unified assemble with an air-driven rotor and the gimbal-mounted thrust bearing, seals, and shrouds of an actual Brayton Rotating Unit. The foil bearing required no external pressure source, and stable self-acting rotation was achieved at all speeds up to 43,200 rpm. Excellent wipe-wear characteristics of the foil bearing permitted well over 1000 start-stop cycles with no deterioriation of performance in the entire speed range.

  18. Transmission Electron Microscopy of Cometary Residues from Micron-Sized Craters in the Stardust Al-Foils

    NASA Technical Reports Server (NTRS)

    Leroux, Hugues; Stroud, Rhonda M.; Dai, Zu Rong; Graham, Giles A.; Troadec, David; Bradley, John P.; Teslich, Nick; Borg, Janet; Kearsley, Anton T.; Horz, Friedrich

    2008-01-01

    We report Transmission Electron Microscopy (TEM) investigations of micro-craters that originated from hypervelocity impacts of comet 81P/Wild 2 dust particles on the aluminium foil of the Stardust collector. The craters were selected by Scanning Electron Microscopy (SEM) and then prepared by Focused Ion Beam (FIB) milling techniques in order to provide electron transparent cross-sections for TEM studies. The crater residues contain both amorphous and crystalline materials in varying proportions and compositions. The amorphous component is interpreted as resulting from shock melting during the impact and the crystalline phases as relict minerals. The latter show evidence for shock metamorphism. Based on the residue morphology and the compositional variation, the impacting particles are inferred to have been dominated by mixtures of submicron olivine, pyroxene and Fe-sulfide grains, in agreement with prior results of relatively coarse-grained mineral assemblages in the aerogel collector.

  19. Conical foil x-ray mirrors: performance and projections.

    PubMed

    Serlemitsos, P J

    1988-04-15

    For the past decade, we have been developing at Goddard conical grazing incidence mirrors in an effort to increase the sensitivity and resolution of astronomical observations in the iron K spectral band around 7 keV. Tightly packed conical foils give us the option of trading some imaging capability for light weight, large throughput, and low cost, all crucial requirements at the higher energies where grazing angles become very small. Nearing the completion of the broad band x-ray telescope for NASA's SHEAL II mission, we have decided important design and fabrication issues including reflector substrate material and supports and most techniques for reflector preparation, mirror assembly, and alignment. We will review the design, fabrication, status, and performance of our present mirrors. Future applications along with prospects for improved spatial resolution for these mirrors will be discussed. PMID:20531595

  20. Multilayer roll bonded aluminium foil: processing, microstructure and flow stress

    SciTech Connect

    Barlow, C.Y.; Nielsen, P.; Hansen, N

    2004-08-02

    Bulk aluminium has been produced by warm-rolling followed by cold-rolling of commercial purity (99% purity) aluminium foil. The bonding appeared perfect from observation with the naked eye, light and transmission electron microscopy. By comparison with bulk aluminium of similar purity (AA1200) rolled to a similar strain (90%RA), the roll-bonded metal showed a much higher density of high-angle grain boundaries, similar strength and improved thermal stability. This study has implications for a number of applications in relation to the processing of aluminium. Roll bonding is of interest as a method for grain size refinement; oxide-containing materials have increased strength, enhanced work-hardening behaviour, and exhibit alterations in recrystallisation behaviour. The behaviour of the hard oxide film is of interest in aluminium processing, and has been investigated by characterising the size and distribution of oxide particles in the roll-bonded samples.

  1. Visualization of terahertz surface waves propagation on metal foils

    PubMed Central

    Wang, Xinke; Wang, Sen; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Yan, Haitao; Ye, Jiasheng; Zhang, Yan

    2016-01-01

    Exploitation of surface plasmonic devices (SPDs) in the terahertz (THz) band is always beneficial for broadening the application potential of THz technologies. To clarify features of SPDs, a practical characterization means is essential for accurately observing the complex field distribution of a THz surface wave (TSW). Here, a THz digital holographic imaging system is employed to coherently exhibit temporal variations and spectral properties of TSWs activated by a rectangular or semicircular slit structure on metal foils. Advantages of the imaging system are comprehensively elucidated, including the exclusive measurement of TSWs and fall-off of the time consumption. Numerical simulations of experimental procedures further verify the imaging measurement accuracy. It can be anticipated that this imaging system will provide a versatile tool for analyzing the performance and principle of SPDs. PMID:26729652

  2. Flow structures in the wake of heaving and pitching foils

    NASA Astrophysics Data System (ADS)

    Najdzin, Derek; Pardo, Enrique; Leftwich, Megan C.; Bardet, Philippe M.

    2012-11-01

    A 10-bar mechanism drives a cambering hydrofoil in an oscillatory heaving and pitching motion that replicates the flapping motion of a dolphin tail. The mechanism sits on a force-balance with six strain gages that together measure the forces and moments experienced by the fin during an oscillation. Planar Laser-Induced Fluorescence is used to image the flow structures created downstream of the cambering fin for a range of Reynolds and Strouhal numbers. The images are taken in the mid-plane, parallel to the bottom of the water tunnel. These results are compared to a rigid foil at matching conditions to investigate the role of camber changes during the flapping cycle.

  3. Visualization of terahertz surface waves propagation on metal foils.

    PubMed

    Wang, Xinke; Wang, Sen; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Yan, Haitao; Ye, Jiasheng; Zhang, Yan

    2016-01-01

    Exploitation of surface plasmonic devices (SPDs) in the terahertz (THz) band is always beneficial for broadening the application potential of THz technologies. To clarify features of SPDs, a practical characterization means is essential for accurately observing the complex field distribution of a THz surface wave (TSW). Here, a THz digital holographic imaging system is employed to coherently exhibit temporal variations and spectral properties of TSWs activated by a rectangular or semicircular slit structure on metal foils. Advantages of the imaging system are comprehensively elucidated, including the exclusive measurement of TSWs and fall-off of the time consumption. Numerical simulations of experimental procedures further verify the imaging measurement accuracy. It can be anticipated that this imaging system will provide a versatile tool for analyzing the performance and principle of SPDs. PMID:26729652

  4. Performance and lifetime of solar mirror foils in space

    SciTech Connect

    Fink, D.; Biersack, J.P.; Staedele, M.

    1985-01-01

    The results of a Monte Carlo computer analysis of the long term effects of space radiation on the surfaces of giant orbiting mirrors are presented. The mirrors, thin surfaced and made of substances like, e.g., Mylar and Hostephan, which are polymers, would reflect solar radiation to earth and be of a size equivalent to that of the area they would illumine. Possible applications are the warming of cities, melting of icebergs in shipping lanes and the illumination of solar power plants. Attention was focused on the changes produced in the reflective surface by solar wind particle bombardment. It was found that an Al covering at least 0.1 mm thick would be needed for protection. Nevertheless, the surface would be destroyed by blistering and foil carbonization within 10 yr and would then require replacement. 12 references.

  5. Foil-like manganin gauges for dynamic high pressure measurements

    NASA Astrophysics Data System (ADS)

    Duan, Zhuoping; Liu, Yan; Pi, Aiguo; Huang, Fenglei

    2011-07-01

    Foil-like manganin gauges with a variety of shapes used in different ranges of pressure for the one-dimensional strain mode and axisymmetric strain mode were designed for measuring the detonation pressures of explosives and high shock pressure in materials. In the stress range of 0-53.5 GPa, the pressure-piezoresistance relationships of the manganin gauges were calibrated by the light gas gun and the planar lens of explosive. The piezoresistance coefficients were obtained in different ranges of pressure. To verify the coefficients, the detonation pressure (CJ pressure) of TNT explosive was measured by the manganin gauges, which give similar CJ pressure values to those reported by Zhang et al (2009 Detonation Physics (Beijing: Ordnance Industry Press)) with the maximum relative deviation being less than 3%.

  6. Deposition of selenium coatings on beryllium foils. Revision 1

    SciTech Connect

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-01-01

    A technique for preparing selenium films on 50.8 micrometers thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. A water-cooled enclosure was used to minimize contamination of the vacuum system and to reduce the exposure of personnel to toxic and obnoxious materials. Profilometry measurements of the coatings indicated selenium thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 micrometers. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable deposition controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV.

  7. An Innovative Method for Manufacturing Gamma-TiAl Foil

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Saqib, Mohammad; Alexa, Joel A.

    2003-01-01

    The manufacture and entrance into service of thin gage gamma-TiAl product has been hampered by the inherent low room temperature ductility of the material. In the present study a new approach was explored for the efficient manufacture of gamma-TiAl foil with improved ductility. The objective was to produce a very clean material (low interstitial content) with a highly refined, homogeneous microstructure placed in a fully lamellar condition. The processing route involved the use of RF plasma spray deposition of pre-alloyed powders, followed by consolidation via vacuum hot pressing and heat treatment. The approach took advantage of a deposition process which included no electrodes, no binders and high cooling rates. Results and discussion of the work performed to date are presented.

  8. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  9. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  10. Plasma Source Ion Implantation of Aluminum and Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Walter, Kevin Carl

    Three plasma source ion implantation (PSII) schemes applied to three aluminum systems have been studied. Pure aluminum, and aluminum alloys 7075 (Al-Cu-Mg-Zn) and A390 (Al-17Si-Cu-Fe) were (1) argon ion sputter-cleaned and nitrogen-implanted, (2) nitrogen-implanted without sputter -cleaning, and (3) argon-implanted. Nitrogen implantation was performed with the goal of modifying the surface properties by transformation of the surface to aluminum-nitride. Argon implantation was performed with the goal of modifying the surface properties by inducing radiation damage. All implantation schemes were accomplished using a glow discharge mode of the PSII process. Implanted surfaces were investigated using Auger depth profiling and Transmission Electron Microscopy. The profiles indicated a stoichiometric layer, ~ 0.15 μm thick, of AlN on the nitrogen-implanted samples. Electron microscopy confirmed the complete conversion of the aluminum surface to AlN. Knoop microhardness tests showed an increase in surface hardness, especially at low loads. The improvements were independent of prior sputter-cleaning and were approximately equal for the studied aluminum systems. Pin-on-disk wear tests were conducted using a ruby stylus and isopropanol lubrication. Argon implantation decreased the wear resistance of pure aluminum and 7075. Nitrogen implantation improved the wear rates by a factor of ~10 for pure aluminum and 7075. These improvements were independent of prior sputter-cleaning. The coefficient of friction was not significantly influenced by the implantation schemes. Due to a coarse microstructure, tribological tests of ion-implanted A390 were inconclusive. Corrosion studies performed in a 3.5 wt% NaCl solution (seawater) indicated nitrogen implantation gave pure aluminum improved corrosion resistance. The improvement is due to the complete conversion of the aluminum surface to AlN. Because of pre-existing precipitates, the corrosion properties of 7075 and A390 were not

  11. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  12. Oxidation kinetics of aluminum diboride

    SciTech Connect

    Whittaker, Michael L.; Sohn, H.Y.; Cutler, Raymond A.

    2013-11-15

    The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time

  13. Prosody and Interpretation

    ERIC Educational Resources Information Center

    Erekson, James A.

    2010-01-01

    Prosody is a means for "reading with expression" and is one aspect of oral reading competence. This theoretical inquiry asserts that prosody is central to interpreting text, and draws distinctions between "syntactic" prosody (for phrasing) and "emphatic" prosody (for interpretation). While reading with expression appears as a criterion in major…

  14. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  15. Centralised interpretation of electrocardiograms.

    PubMed Central

    Macfarlane, P W; Watts, M P; Lawrie, T D; Walker, R S

    1977-01-01

    A system was devised so that a peripheral hospital could transmit electrocardiograms (ECGs) to a central computer for interpretation. The link that transmits both ECGs and reports is provided by the telephone network. Initial results showed that telephone transmission did not significantly affect the accuracy of the ECG interpretation. The centralised computer programme could be much more widely used to provide ECG interpretations. A telephone link would not be justified in health centres, where the demand for ECGs is fairly small, but ECGs recorded at a health centre can be sent to the computer for interpretation and returned the next day. The most cost-effective method of providing computer interpretation for several health centres in a large city would be to have a portable electrocardiograph and transmission facilities, which could be moved from centre to centre. PMID:319866

  16. Chrome - Free Aluminum Coating System

    NASA Technical Reports Server (NTRS)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  17. Aluminum laser welding optimization

    NASA Astrophysics Data System (ADS)

    Chmelíčková, Hana; Halenka, Viktor; Lapšanská, Hana; Havelková, Martina

    2007-04-01

    Pulsed Nd:YAG laser with maximal power 150 W is used in our laboratory to cut, drill and weld metal and non-metal thin materials to thickness 2 mm. Welding is realized by fixed processing head or movable fiber one with beam diameter 0,6 mm in focus plane. Welding of stainless and low-carbon steel was tested before and results are publicized and used in practice. Now the goal of our experiment was optimization of process parameters for aluminum that has other physical properties than steels, lower density, higher heat conductivity and surface reflexivity. Pure alumina specimen 0,8 mm and Al-Mg-Si alloy 0,5 mm prepared for butt welds. Problem with surface layer of Al IIO 3 was overcome by sanding and chemical cleaning with grinding paste. Critical parameters for good weld shape are specimen position from beam focus plane, pulse length and energy, pulse frequency and the motion velocity that determines percentage of pulse overlap. Argon as protective gas was used with speed 6 liters per second. Thermal distribution in material can be modeled by numerical simulation. Software tool SYSWELD makes possible to fit laser as surface heat source, define weld geometry, and make meshing of specimen to finite elements and compute heat conduction during process. Color isotherms, vectors, mechanical deformations and others results can be study in post-processing.

  18. Anodized aluminum on LDEF

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  19. Managing aluminum phosphide poisonings

    PubMed Central

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-01-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO4, coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management. PMID:21887030

  20. Managing aluminum phosphide poisonings.

    PubMed

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-07-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO(4), coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management. PMID:21887030