Science.gov

Sample records for aluminum reduction cell

  1. Aluminum reduction cell electrode

    DOEpatents

    Goodnow, Warren H.; Payne, John R.

    1982-01-01

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB.sub.2, for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints.

  2. Aluminum reduction cell electrode

    DOEpatents

    Goodnow, W.H.; Payne, J.R.

    1982-09-14

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

  3. Aluminum reduction cell electrode

    DOEpatents

    Payne, John R.

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces.

  4. Aluminum reduction cell electrode

    DOEpatents

    Payne, J.R.

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

  5. Process simulation of aluminum reduction cells

    SciTech Connect

    Tabsh, I.; Dupuis, M.; Gomes, A.

    1996-10-01

    A program was developed to model the dynamic behavior of an aluminum reduction cell. The program simulates the physical process by solving the heat and mass balance equations that characterize the behavior of eleven chemical species in the system. It also models operational events (such as metal tapping, anode change, etc.) and the process control logic including various alumina feeding policies and anode effect quenching. The program is a PC based Windows{reg_sign} application that takes full advantage of the Windows user interface. This paper describes the implementation of the process model and the control logic. Various results using the simulation are compared to measured data.

  6. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2016-06-01

    ABSTRACT There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  7. Testing and Characterization of Anode Current in Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Wang, Yongliang; Tie, Jun; Sun, Shuchen; Tu, Ganfeng; Zhang, Zhifang; Zhao, Rentao

    2016-06-01

    Anode current is an important parameter in the aluminum reduction process, but to test the anode current accurately is difficult at present. This study tested the individual anode current using the fiber-optic current sensor. The testing results show that this method can effectively avoid the interference of the electromagnetic field, and the current is measured with high precision which error is less than 1 pct. In the paper, the test currents under different cell conditions, including anode changing, metal tapping, abnormal current, and anode effect, are investigated using the method of time-domain and frequency-domain analysis, and the simulation method is also combined to investigate the cell conditions. The results prove that different cell conditions will show different anode current characteristics, and the individual current can monitor the cell conditions, especially the localized cell conditions. Some abnormal cell conditions can be found through anode current rather than cell voltage. The anode current can also be used for early detection of anode effect.

  8. Low temperature aluminum reduction cell using hollow cathode

    DOEpatents

    Brown, Craig W.; Frizzle, Patrick B.

    2002-08-20

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.

  9. Final report on DSA methods for monitoring alumina in aluminum reduction cells with cermet anodes

    NASA Astrophysics Data System (ADS)

    Windisch, C. F., Jr.

    1992-04-01

    The Sensors Development Program was conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy, Office of Industrial Processes. The work was performed in conjunction with the Inert Electrodes Program at PNL. The objective of the Sensors Development Program in FY 1990 through FY 1992 was to determine whether methods based on digital signal analysis (DSA) could be used to measure alumina concentration in aluminum reduction cells. Specifically, this work was performed to determine whether useful correlations exist between alumina concentration and various DSA-derived quantification parameters, calculated for current and voltage signals from laboratory and field aluminum reduction cells. If appropriate correlations could be found, then the quantification parameters might be used to monitor and, consequently, help control the alumina concentration in commercial reduction cells. The control of alumina concentration is especially important for cermet anodes, which have exhibited instability and excessive wear at alumina concentrations removed from saturation.

  10. Two-dimensional model of flows and interface instability in aluminum reduction cells

    NASA Astrophysics Data System (ADS)

    Zikanov, Oleg; Sun, Haijun; Ziegler, Donald

    2003-11-01

    We derive a two-dimensional model for the melt flows and interface instability in aluminum reduction cells. The model is based on the de St. Venant shallow water equations and incorporates the essential features of the system such as the magnetohydrodynamic instability mechanism and nonlinear coupling between the flows and interfacial waves. The model is applied to verify a recently proposed theory that explains the instability through the interaction between perturbations of horizontal electric currents in the aluminum layer and the imposed vertical magnetic field. We investigate the role of other factors, in particular, background melt flows and magnetic field perturbations.

  11. Non-consumable anode and lining for aluminum electrolytic reduction cell

    DOEpatents

    Beck, Theodore R.; Brooks, Richard J.

    1994-01-01

    An oxidation resistant, non-consumable anode, for use in the electrolytic reduction of alumina to aluminum, has a composition comprising copper, nickel and iron. The anode is part of an electrolytic reduction cell comprising a vessel having an interior lined with metal which has the same composition as the anode. The electrolyte is preferably composed of a eutectic of AlF.sub.3 and either (a) NaF or (b) primarily NaF with some of the NaF replaced by an equivalent molar amount of KF or KF and LiF.

  12. A Review of Alumina Feeding and Dissolution Factors in Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Lavoie, Pascal; Taylor, Mark P.; Metson, James B.

    2016-05-01

    Modern aluminum reduction cells use point feeding technology to replenish alumina as it is consumed by the electrolytic process. The dissolution of alumina has become increasingly difficult to control as the cell sizes and electrolysis intensity have increased. The mass of alumina added per unit time is now much higher than a decade ago, and must take place within a smaller electrolyte mixing volume. In order to replenish the alumina concentration evenly, the alumina needs to be delivered, dispersed, dissolved, and distributed throughout the reduction cell. The dissolution itself follows a 4-step process that can be limited by a multitude of factors. The status of the research on each of these factors is reviewed in the present paper. Although research in laboratory cells has been conducted many times, and the impact of many factors on dissolution has been measured, published observations of alumina feeding on industrial cells are very sparse, especially regarding the dissolution dynamics in the space-time domain and the impact of the feeder hole condition. The present paper therefore presents a qualitative model of the factors governing alumina dissolution in industrial cells and offers the hypothesis that maintenance of the feeder hole condition is central to ensuring alumina dissolution and prevention of sludging.

  13. A Review of Alumina Feeding and Dissolution Factors in Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Lavoie, Pascal; Taylor, Mark P.; Metson, James B.

    2016-08-01

    Modern aluminum reduction cells use point feeding technology to replenish alumina as it is consumed by the electrolytic process. The dissolution of alumina has become increasingly difficult to control as the cell sizes and electrolysis intensity have increased. The mass of alumina added per unit time is now much higher than a decade ago, and must take place within a smaller electrolyte mixing volume. In order to replenish the alumina concentration evenly, the alumina needs to be delivered, dispersed, dissolved, and distributed throughout the reduction cell. The dissolution itself follows a 4-step process that can be limited by a multitude of factors. The status of the research on each of these factors is reviewed in the present paper. Although research in laboratory cells has been conducted many times, and the impact of many factors on dissolution has been measured, published observations of alumina feeding on industrial cells are very sparse, especially regarding the dissolution dynamics in the space-time domain and the impact of the feeder hole condition. The present paper therefore presents a qualitative model of the factors governing alumina dissolution in industrial cells and offers the hypothesis that maintenance of the feeder hole condition is central to ensuring alumina dissolution and prevention of sludging.

  14. A cylindrical model for rotational MHD instabilities in aluminum reduction cells

    NASA Astrophysics Data System (ADS)

    Munger, David; Vincent, Alain

    2008-08-01

    Large-scale horizontal vortices associated with deformations of the aluminum-electrolyte interface have been observed in operating aluminum reduction cells as well as in physical and numerical models. To expose their importance, we analyze a particular class of magnetohydrodynamic (MHD) interfacial instabilities which are induced by rotation. As we focus on a single vortex, a cylindrical geometry is preferred. Two analytical models are proposed. In a first model based on the MHD shallow-water approximation, we consider a vortex that has a solid rotation profile to obtain a wave equation and a dispersion relation. A more realistic second model includes a viscous rotation profile and the treatment of the base-state interface deformation. Energetics of the flow gives further insight on how an initial perturbation evolves as an oscillatory or a non-oscillatory instability, depending on the direction of rotation. We find that the mechanism at the very origin of these instabilities is neither due to a shear between the two layers—and are therefore not Kelvin Helmholtz instabilities—nor simply due to magnetic force alone, but rather to the indirect action of the centripetal pressure due to the rotation induced by magnetic force.

  15. Numerical Simulation of Current Distribution in Cathode Carbon Block of an Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Tao, Wenju; Li, Tuofu; Wang, Zhaowen; Gao, Bingliang; Shi, Zhongning; Hu, Xianwei; Cui, Jianzhong

    2015-11-01

    Cathode carbon block wear is the main limiting factor for the lifetime of aluminum reduction cells. The wear rate is enhanced by current density. In this article, the current distribution at the surface of carbon block was calculated using a thermoelectric coupled model. Then the effects of effective length ( l e), height of the cathode carbon block ( h c), and width and height of the collector ( w b and h b) on current distribution were investigated. The results show that l e has a great effect on the current distribution. With l e decreasing, the maximum current density increases rapidly and shifts toward the cell center. When the l e decreases from 1.67 m to 1.51 m, the maximum current density increases by 57.9%. Moreover, the maximum current density will be reduced with increasing h c or h b × w b. For h b × w b = 180 mm × 180 mm2, the maximum current density is reduced by 27.8%. However, increasing h c or h b × w b will decrease the temperature in the cathode carbon block. The results of this study may provide the database optimization of cell operation and design.

  16. Final report on DSA methods for monitoring alumina in aluminum reduction cells with cermet anodes. Inert Electrodes Program

    SciTech Connect

    Windisch, C.F. Jr.

    1992-04-01

    The Sensors Development Program was conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy, Office of Industrial Processes. The work was performed in conjunction with the Inert Electrodes Program at PNL. The objective of the Sensors Development Program in FY 1990 through FY 1992 was to determine whether methods based on digital signal analysis (DSA) could be used to measure alumina concentration in aluminum reduction cells. Specifically, this work was performed to determine whether useful correlations exist between alumina concentration and various DSA-derived quantification parameters, calculated for current and voltage signals from laboratory and field aluminum reduction cells. If appropriate correlations could be found, then the quantification parameters might be used to monitor and, consequently, help control the alumina concentration in commercial reduction cells. The control of alumina concentration is especially important for cermet anodes, which have exhibited instability and excessive wear at alumina concentrations removed from saturation.

  17. Final report on the application of chaos theory to an alumina sensor for aluminum reduction cells

    SciTech Connect

    Williford, R.E.; Windisch, C.F. Jr.

    1992-03-01

    Four chaos-related digital signal analysis (DSA) methods were applied to the analysis of voltage and current signals collected from aluminum electrolysis cells. Two separate data bases were analyzed: bench-scale laboratory experiments and a pilot-scale test. The objective was to assess the feasibility of using these types of data and analysis methods as the basis for a non-intrusive sensor to measure the alumina content in the electrolysis bath. This was the first time chaos theory approaches have been employed to analyze aluminum electrolysis cells.

  18. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  19. Effect of Anode Change on Heat Transfer and Magneto-hydrodynamic Flow in Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Li, Baokuan; Fafard, Mario

    2016-02-01

    In order to explore the impact of anode replacement on heat transfer and magneto-hydrodynamic flow in aluminum smelting cells, a transient three-dimensional coupled mathematical model has been developed. With a steady state magnetic field, an electrical potential approach was used to obtain electromagnetic fields. Joule heating and Lorentz force, which were the source terms in the energy and momentum equations, were updated at each iteration. The phase change of molten electrolyte (bath) was modeled by an enthalpy-based technique in which the mushy zone was treated as a porous medium with porosity equal to the liquid fraction. A reasonable agreement between the test data and simulated results was achieved. Under normal conditions, the bath at the middle of the cell is hotter, while becoming colder at the four corners. Due to the heat extracted from the bath, the temperature of the new cold anode increases over time. The temperature of the bath under the new cold anode therefore quickly drops, resulting in a decrease of the electrical conductivity. More Joule effect is created. In addition, the bath under the new cold anode gradually freezes and flows more slowly. The temperature of the new anode located at the middle of the cell rises faster because of the warmer bath. It is easier to eliminate the effect of anode change when it occurs in the middle of the cell.

  20. Performance analysis of ORC power generation system with low-temperature waste heat of aluminum reduction cell

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqi; Zhou, Naijun; Jing, Guo

    Performance of organic Rankine cycle (ORC) system to recover low-temperature waste heat from aluminum reduction cell was analyzed. The temperature of waste heat is 80°C-200°C and the flow rate is 3×105m3/h. The pinch temperature difference between waste heat and working fluids is 10°C. The results show that there is optimal evaporating temperature for maximum net power under the same pinch point. For heat source temperature range of 80°C-140°C and 150°C-170°C, the working fluid given biggest net power is R227ea and R236fa, respectively. When the temperature is higher than 180°C, R236ea generates the biggest net power. The variation of heat source temperature has important effect on net power. When the temperature decreases 10%, the net power will deviate 30% from the maximum value.

  1. Impact of the Usage of a Slotted Cathode Carbon Block on Thermoelectric Field in an Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Tao, Wenju; Li, Tuofu; Wang, Zhaowen; Gao, Bingliang; Shi, Zhongning; Hu, Xianwei; Cui, Jianzhong

    2015-05-01

    The horizontal current in a metal pad of an aluminum reduction cell is critical because of its effect on the fluctuation of the metal pad. In this study, a novel cathode with a slotted cathode carbon block was proposed to decrease the horizontal current. The effects of the slotted cathode carbon block on the horizontal and vertical currents in the metal pad, cathode voltage, and temperature distribution in the cathode were calculated using the finite-element method. The results show that the slotted cathode carbon has great potential to decrease the horizontal current. When the length of slot b equals 400 mm, the maximum horizontal current density decreased by 50.4%. However, the cathode voltage in the cathode with the slotted cathode carbon was ~43 mV higher than that in a conventional cell, and the temperature in the slotted cathode carbon was slightly higher than that in a conventional carbon cell. Moreover, with increasing length of slot b, the maximum horizontal and vertical currents in the metal pad moved toward the cell center. The result of this study may provide the database in understanding the effect of the slotted cathode carbon on cell.

  2. Final report on the application of chaos theory to an alumina sensor for aluminum reduction cells. Inert Electrodes Program

    SciTech Connect

    Williford, R.E.; Windisch, C.F. Jr.

    1992-03-01

    Four chaos-related digital signal analysis (DSA) methods were applied to the analysis of voltage and current signals collected from aluminum electrolysis cells. Two separate data bases were analyzed: bench-scale laboratory experiments and a pilot-scale test. The objective was to assess the feasibility of using these types of data and analysis methods as the basis for a non-intrusive sensor to measure the alumina content in the electrolysis bath. This was the first time chaos theory approaches have been employed to analyze aluminum electrolysis cells.

  3. The economics of inert anodes and wettable cathodes for aluminum reduction cells

    NASA Astrophysics Data System (ADS)

    Keniry, Jeff

    2001-05-01

    Estimating the impact of inert-anode and wettable-cathode technologies on smelter costs must be speculative because no such technologies have yet been commercialized. Even so, some broad conclusions can be drawn about the economic merit of inert anodes in retrofit and greenfield smelter scenarios. Study suggests that retrofitting inert anodes to existing prebake cells generates insufficient economic benefit to justify this objective. Drained cathode cells offer potential for energy savings coupled with increased production, provided that the cell life is greater than three years. Unlocking the potential value of both inert anode and wettable cathode materials will require their use in vertical electrode configurations, where the impact on operating costs and, particularly, capital costs, is expected to be significant. To be economically and technically viable, vertical electrode cells will require wear rates of less than approximately 5 mm per year on the inert electrode surfaces, much less than has so far been reported.

  4. A Nonlinear Shallow-Water Model Combined with Gas Bubble Effect for Melt Flows and Interface Instability in Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Xu, Yujie; Zhang, Hongliang; Li, Jie; Lai, Yanqing

    2013-11-01

    A nonlinear shallow-water model combined with the effect of anode gas bubbles was derived for the melt flows and interface instability in aluminum reduction cells. Both the electromagnetic forces and the drag forces between the bath and gas bubbles, as the main driven forces for the melt flows, were taken into account in this model. A comparative numerical study was carried out using both the model considering the bubble and the model without considering the bubble. The results show the effect of the bubble cannot be neglected in a fluid dynamics analysis for the aluminum reduction cell. The bath flow, induced by the motion of bubbles, presents a series of small eddies rather than large eddies as the metal flow pattern shows. The horizontal drag forces between the bath and the bubbles in the bath layer enlarge the deformation of the metal-bath interface, to some extent, but have a positive influence on stabilizing the metal-bath interface perturbations.

  5. Impact of the Usage of a Slotted Collector Bar on Thermoelectric Field in a 300-kA Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Tao, Wenju; Wang, Li; Wang, Zhaowen; Gao, Bingliang; Shi, Zhongning; Hu, Xianwei; Cui, Jianzhong

    2015-02-01

    The horizontal current in a metal pad is critical because of its effect on the aluminum reduction cell current efficiency and energy consumption. A type of slotted collector bar was considered to have great potential to reduce the horizontal current. The effects of the slotted collector bar on the horizontal current in the metal pad, current, and temperature distribution in the cathode carbon and collector bar were simulated using the finite-element method. The results show that the maximum current at the middle of the metal pad decreases from 11,940 A m-2 to 9490 A m-2 and the peak of current density (the maximum current density) shifts toward the cell side. Moreover, the maximum horizontal current and average horizontal current at the middle of the metal pad in the cell with slotted collector bar decreases by ~50% and 50.9%, respectively. However, the cathode voltage in the cathode with the slotted collector bar is ~53 mV higher than that in the conventional cell, and the temperature in the slotted collector bar is higher than that in the conventional cathode. The results of this study may provide the database in understanding the effect of the slotted collector bar on cell.

  6. Effects of aluminum on the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in the dentate gyrus of D-galactose-treated mice via increasing oxidative stress.

    PubMed

    Nam, Sung Min; Kim, Jong Whi; Yoo, Dae Young; Kim, Woosuk; Jung, Hyo Young; Choi, Jung Hoon; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung

    2016-06-30

    Aluminum (Al) accumulation increases with aging, and long-term exposure to Al is regarded as a risk factor for Alzheimer's disease. In this study, we investigated the effects of Al and/or D-galactose on neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons in the hippocampal dentate gyrus. AlCl3 (40 mg/kg/day) was intraperitoneally administered to C57BL/6J mice for 4 weeks. In addition, vehicle (physiological saline) or D-galactose (100 mg/kg) was subcutaneously injected to these mice immediately after AlCl3 treatment. Neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons were detected using the relevant marker for each cell type, including nestin, Ki67, doublecortin, and NeuN, respectively, via immunohistochemistry. Subchronic (4 weeks) exposure to Al in mice reduced neural stem cells, proliferating cells, and differentiating neuroblasts without causing any changes to mature neurons. This Al-induced reduction effect was exacerbated in D-galactose-treated mice compared to vehicle-treated adult mice. Moreover, exposure to Al enhanced lipid peroxidation in the hippocampus and expression of antioxidants such as Cu, Zn- and Mn-superoxide dismutase in D-galactose-treated mice. These results suggest that Al accelerates the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in D-galactose-treated mice via oxidative stress, without inducing loss in mature neurons. PMID:26243606

  7. Effects of aluminum on the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in the dentate gyrus of D-galactose-treated mice via increasing oxidative stress

    PubMed Central

    Nam, Sung Min; Kim, Jong Whi; Yoo, Dae Young; Kim, Woosuk; Jung, Hyo Young; Choi, Jung Hoon; Hwang, In Koo; Seong, Je Kyung

    2016-01-01

    Aluminum (Al) accumulation increases with aging, and long-term exposure to Al is regarded as a risk factor for Alzheimer's disease. In this study, we investigated the effects of Al and/or D-galactose on neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons in the hippocampal dentate gyrus. AlCl3 (40 mg/kg/day) was intraperitoneally administered to C57BL/6J mice for 4 weeks. In addition, vehicle (physiological saline) or D-galactose (100 mg/kg) was subcutaneously injected to these mice immediately after AlCl3 treatment. Neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons were detected using the relevant marker for each cell type, including nestin, Ki67, doublecortin, and NeuN, respectively, via immunohistochemistry. Subchronic (4 weeks) exposure to Al in mice reduced neural stem cells, proliferating cells, and differentiating neuroblasts without causing any changes to mature neurons. This Al-induced reduction effect was exacerbated in D-galactose-treated mice compared to vehicle-treated adult mice. Moreover, exposure to Al enhanced lipid peroxidation in the hippocampus and expression of antioxidants such as Cu, Zn- and Mn-superoxide dismutase in D-galactose-treated mice. These results suggest that Al accelerates the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in D-galactose-treated mice via oxidative stress, without inducing loss in mature neurons. PMID:26243606

  8. Method And Reactor For Production Of Aluminum By Carbothermic Reduction Of Alumina

    DOEpatents

    Aune, Jan Arthur; Johansen, Kai

    2004-10-19

    A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.

  9. Physical chemistry of carbothermic reduction of aluminum: Final report

    SciTech Connect

    Elliott, J.F.

    1989-06-16

    A program of study of carbothermic reduction of aluminum was undertaken to investigate the underlying physical chemistry of reactions and processes. The primary goal of the research was to establish the physicochemical basis by the use of which it may be possible to develop schemes for the production of aluminum by direct carbothermic reduction, thus avoiding the use of electrochemical means such as is exemplified by the Hall-Heroult process. One task of the program was to propose one or more possible schemes, and a specific challenge in the investigation was to determine whether or not a process based on the counter-current shaft furnace could possibly be practical for the production of aluminum. In such a furnace, combustion of a carbonaceous fuel would provide heat required in the process, and carbon would also serve as the reducing agent as is the case for the production of crude iron in the iron blast furnace. 15 refs., 22 figs., 24 tabs.

  10. Cancer Risks in Aluminum Reduction Plant Workers

    PubMed Central

    Labrèche, France

    2014-01-01

    Objective and Methods: This review examines epidemiological evidence relating to cancers in the primary aluminum industry where most of what is known relates to Söderberg operations or to mixed Söderberg/prebake operations. Results and Conclusions: Increased lung and bladder cancer risks have been reported in Söderberg workers from several countries, but not in all. After adjustment for smoking, these cancer risks still increase with cumulative exposure to benzo(a)pyrene, used as an index of coal tar pitch volatiles exposure. Limited evidence has been gathered in several cohorts for an increased risk of tumors at other sites, including stomach, pancreas, rectum/rectosigmoid junction, larynx, buccal cavity/pharynx, kidney, brain/nervous system, prostate, and lymphatic/hematopoietic tissues (in particular non-Hodgkin lymphoma, Hodgkin disease, and leukemia). Nevertheless, for most of these tumor sites, the relationship with specific exposures has not been demonstrated clearly and further follow-up of workers is warranted. PMID:24806725

  11. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  12. Aluminum low temperature smelting cell metal collection

    DOEpatents

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  13. Ultrahigh-Efficiency Aluminum Production Cells

    SciTech Connect

    2009-11-01

    This factsheet describes a research project to develop a commercially viable inert anode aluminum electrolysis cell technology. Accompanying enabling technologies will also be developed, including a wetted cathode design and a novel low-temperature electrolyte.

  14. Experimental Study of the Morphology and Dynamics of Gas-Laden Layers Under the Anodes in an Air-Water Model of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Vékony, Klára; Kiss, László I.

    2012-10-01

    The bubble layer formed under an anode and the bubble-induced flow play a significant role in the aluminum electrolysis process. The bubbles covering the anode bottom reduce the efficient surface that can carry current. In our experiments, we filmed and studied the bubble layer under the anode in a real-size air-water electrolysis cell model. Three different flow regimes were found depending on the gas generation rate. The covering factor was found to be proportional to the gas generation rate and inversely proportional to the angle of inclination. A correlation between the average height of the entire bubble layer and the position under the anode was determined. From this correlation and the measured contact sizes, the volume of the accumulated gas was calculated. The sweeping effect of large bubbles was observed. Moreover, the small bubbles under the inner edge of the anode were observed to move backward as a result of the escape of huge gas pockets, which means large momentum transport occurs in the bath.

  15. Aluminum doping improves silicon solar cells

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Aluminum doped silicon solar cells with resistivities in the 10- to 20-ohm centimeter range have broad spectral response, high efficiency and long lifetimes in nuclear radiation environments. Production advantages include low material rejection and increased production yields, and close tolerance control.

  16. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  17. High energy density aluminum-oxygen cell

    NASA Technical Reports Server (NTRS)

    Rudd, E. J.; Gibbons, D. W.

    1993-01-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  18. High energy density aluminum-oxygen cell

    NASA Astrophysics Data System (ADS)

    Rudd, E. J.; Gibbons, D. W.

    1993-11-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  19. High Energy Density aluminum/oxygen cell

    NASA Astrophysics Data System (ADS)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  20. 77 FR 2677 - National Emission Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants'' is being extended for 12 days. DATES: Comments. The public comment period for the proposed rule published December 6, 2011, (76 FR... Aluminum Reduction Plants; Extension of Comment Period AGENCY: Environmental Protection Agency...

  1. Alumina reduction cell

    SciTech Connect

    Tabereaux, A.T.; Gunnip, F.L.

    1987-06-16

    An alumina reduction cell is described having a cathode and an anode. The anode is formed of a carbonaceous paste and baked during operation of cell and the anode having rows of anode pins on opposing faces. The pins are positioned by passing the pins through openings in anode channels vertically stacked along the opposing faces of the anode. The lowermost row of anode pins carries current through the anode; the improvement positions the anode pins passing through along a line of constant current distribution in the anode.

  2. LABORATORY FEASIBILITY STUDIES FOR THE FLUIDIZED-BED COMBUSTION OF SPENT POTLINING FROM ALUMINUM REDUCTION

    EPA Science Inventory

    The report gives results of a preliminary assessment of the technical feasibility and environmental acceptability of a fluidized-bed combustion (FBC) process for the disposal of spent potlining waste from the aluminum reduction process. Technical efforts included: (1) differentia...

  3. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    SciTech Connect

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  4. Fabrication and characterization of aluminum nitride/boron nitride nanocomposites by carbothermal reduction and nitridation of aluminum borate powders.

    PubMed

    Kusunose, Takafumi; Sakayanagi, Nobuaki; Sekino, Tohru; Ando, Yoichi

    2008-11-01

    In order to fabricate aluminum nitride/boron nitride (AIN/BN) nanocomposites by pressureless sintering, the present study investigated the synthesis of AIN-BN nanocomposite powders by carbothermal reduction and nitridation of aluminum borate powders. Homogeneous mixtures of alumina (Al2O3), boric acid (H3BO3), and carbon powder were used to synthesize AIN/BN nanocomposite powders containing 10 and 20 vol% BN. Aluminum borate was produced by reacting Al2O3 and B2O3 above 800 degrees C, and AIN and turbostratic BN (t-BN) were produced by reacting aluminum borate with carbon powder and nitrogen gas at 1500 degrees C. Carbothermal reduction followed by nitridation yielded an AIN/BN nanocomposite powder composed of nanosized AIN and t-BN. By pressureless sintering nanocomposite AIN/BN powders containing 5 wt% Y22O3, AIN/BN nanocomposites were obtained without compromising the high thermal conductivity and high hardness. PMID:19198315

  5. Improvement of polysilicon solar cells by aluminum diffusion

    SciTech Connect

    Sundaresan, R.; Burk, D.E.; Fossum, J.G.

    1982-09-01

    Experimental results are presented that imply potential improvements afforded by aluminum diffusion in both bulk and thin-film polysilicon solar cells. With regard to bulk cells, gettering of intragrain defects by high-temperature aluminum diffusion, i.e., Al-Si alloying, is suggested. With regard to thin-film cells, substantial grain-boundary passivation by low-temperature aluminum diffusion (from the front surface) is indicated, and evaluated using EBIC measurements interpreted via numerical analysis of the underlying carrier transport problem. The actual benefit of the grain-boundary passivation to the open-circuit voltage of a thin-film cell is discussed.

  6. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  7. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  8. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    SciTech Connect

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  9. Assessment of geothermal energy as a power source for US aluminum reduction plants

    SciTech Connect

    Enderlin, W.I.; Blahnik, D.E.; Davis, A.E.; Jacobson, J.J.; Schilling, A.H.; Weakley, S.A.

    1980-02-01

    The technical and economic feasibility of using hydrothermal resources as a primary power source for both existing and future aluminum reduction plants in the United States is explored. Applicable hydrothermal resources that should be considered by the aluminum industry for this purpose were identified and evaluated. This work also identified the major institutional parameters to be considered in developing geothermal energy resources for aluminum industry use. Based on the findings of this study, it appears technically and economically feasible to power existing aluminum reduction plants in the Pacific Northwest using electricity generated at Roosevelt Hot Springs, Utah. It may also be feasible to power existing plants located on the Gulf Coast from Roosevelt Hot Springs, depending on the cost of transmitting the power.

  10. Reduction of Annealing Times for Energy Conservation in Aluminum

    SciTech Connect

    Anthony D. Rollett; Hasso Weiland; Mohammed Alvi; Abhijit Brahme

    2005-08-31

    Carnegie Mellon University was teamed with the Alcoa Technical Center with support from the US Dept. of Energy (Office of Industrial Technology) and the Pennsylvania Technology Investment Authority (PTIA) to make processing of aluminum less costly and more energy efficient. Researchers in the Department of Materials Science and Engineering have investigated how annealing processes in the early stages of aluminum processing affect the structure and properties of the material. Annealing at high temperatures consumes significant amounts of time and energy. By making detailed measurements of the crystallography and morphology of internal structural changes they have generated new information that will provide a scientific basis for shortening processing times and consuming less energy during annealing.

  11. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    DOEpatents

    Dawless, Robert K.; Ray, Siba P.; Hosler, Robert B.; Kozarek, Robert L.; LaCamera, Alfred F.

    2000-01-01

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  12. Aluminum chloride and membrane potentials of barley root cells

    SciTech Connect

    Etherton, B.; Shane, M.

    1986-04-01

    Aluminum chloride at pH 4 hyperpolarizes the membrane potentials of barley root epidermal cells. The authors tested to see whether this hyperpolarization could be caused by an aluminum induced alteration of the permeability of the membrane to potassium or sodium ions by measuring the effect of .04 mM aluminum ions (the Ca/sup + +/ conc. was 0.1 mM) on the membrane potential changes induced by changing the potassium or sodium concentrations in the medium bathing the roots. Aluminum ions did not change the magnitude of potassium or sodium induced changes in membrane potentials but significantly altered the rates of potassium and sodium induced changes of the potential. The results indicate that aluminum ions did not change sodium or potassium ion permeabilities of barley root cells.

  13. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  14. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  15. Compensating bladder cancer victims employed in aluminum reduction plants.

    PubMed

    Armstrong, B; Tremblay, C; Theriault, G

    1988-10-01

    A criterion for eligibility to compensation is sought for bladder cancer cases among workers in the aluminum smelting industry. Probability that a case of bladder cancer was caused by occupational exposure can be estimated from a relationship derived from results of epidemiologic studies. Because the effects of occupational exposure and smoking apparently combine multiplicatively, this probability is independent of whether a case patient smoked. Estimated probabilities of causation have been used in a criterion for eligibility to compensation by the Quebec workers' compensation board. Workers with cancer for whom the upper 95% confidence limit of the probability of causation is at least 50% are compensated. This implies a minimum cumulative exposure to benzo[a]pyrene (concentration in micrograms per cubic meter times duration in years) of 19 micrograms/m3 years. Possible alternative approaches to compensation are discussed. PMID:2976422

  16. Mechanical behavior of open cell aluminum foams

    NASA Astrophysics Data System (ADS)

    Zhou, Jikou

    Open cell metallic foams are relatively new materials with increasingly applications due to their attractive combinations of physical, chemical, mechanical and optical properties. Since plastic deformation in the struts involves dislocation motion, dislocation slip bands are used to track the initiation/propagation and locations of plastic deformation in individual struts. We find that the onset of plastic deformation in struts is far beyond the observable strut/cell shape changes, and both plastic bending and buckling are strut deformation modes. To measure the strut mechanical properties, an existing micro-scale tensile tester was updated to test the individual struts extracted from foams using electro-discharged machining. The micro-tensile testing results show that the foam struts are typically more ductile and one time stronger than the corresponding fully dense alloy. To integrate the measured strut and foam properties, a four-strut structure unit is identified as a structural representative of the open cell foam structure. Based on the observed strut deformation modes, mechanics analysis is performed on the structure unit to predict the foam stiffness and strength. The predictions are in good agreement with the measured data, suggesting the significance of the studies on the foam strut properties and deformation. This model also predicts the bounds of the foam strengths. Under cyclic compression, foams fail due to damage accumulation in individual struts, in which surface cracks initiate and grow. At low stress levels, surface cracks are formed in multiple struts that are distributed across the foam block. This results in an abrupt strain jump due to the crush of foam block, upon foam failure. To meet applications requirements, open cell aluminum foams are usually annealed or strengthened. The studies are carried out in the foams in the as-fabricated (F), annealed (O) and T6-strengthed (T6) conditions. We find that annealing and T6 strengthening

  17. Mortality of aluminum reduction plant workers, 1950 through 1977

    SciTech Connect

    Gibbs, G.W.

    1985-10-01

    The mortality experience of 5,406 men (cohort I) employed at one aluminum smelter on Jan. 1, 1950, and 485 men employed at a second plant (cohort II) on January 1, 1951, is reported. For each man, the total number of years of exposure to tars, the number of years since first exposure to tars, and an index of exposure to tars expressed in tar-years were calculated. More than 99% of the men in the first cohort and 98% of the men in the second cohort were traced. Of the 1539 men in cohort I who were deceased as of December 31, 1977, death certificates were obtained for 1432 (93%). Of the 92 men in cohort II who were deceased as of December 31, 1977, death certificates were obtained for 80 (87%). The results showed that men in cohort I died of the following causes at approximately the same rate as or less frequently than men of similar age in the Province of Quebec: tuberculosis; circulatory disease; hypertensive heart disease; trauma; leukemia and aleukemia; and malignant neoplasms of the pancreas, genital organs, brain, intestine, and rectum and other abdominal areas. There were no deaths from pneumoconiosis or Alzheimer's disease. Although the observed and expected numbers of deaths in some of the cause-of-death categories were small, men in cohort I died of the following causes more frequently than did men of similar age in the Province of Quebec: respiratory disease; pneumonia and bronchitis; malignant neoplasms (all sites); malignant neoplasms of the stomach and esophagus, bladder, and lung; other malignant neoplasms; Hodgkin's disease; and other hypertensive disease. Mortality from malignant neoplasms of the bladder and lung was meaningfully related to numbers of tar-years and of years of exposure. Exposure-response relationships were less clear for malignant neoplasms of the esophagus and stomach and for other malignancies.

  18. Entropic Heat Effects in Aluminum Electrolysis Cells with Inert Anodes

    NASA Astrophysics Data System (ADS)

    Solheim, Asbjørn

    2016-04-01

    While the overall energy requirement for the aluminum electrolysis is well known and can be calculated from readily available thermodynamic data, the distribution of the different types of energy to the anode, the cathode, and the electrolyte is not straightforward. The present attempt is based on the application of activity data including partial entropies on the electrode reactions in a cell operating with inert anodes. The calculations indicate that the cell reaction implies a relatively strong cooling of the anode, a moderate heating of the cathode, and a moderate cooling of the electrolyte. The mass- and heat transfer coefficients at the anode in a cell with inert anodes were estimated. The electrolyte at the anode will be higher in aluminum fluoride, lower in alumina, and colder than the bulk of the electrolyte. The cooling and heating effects are only marginally different from the situation prevailing in traditional aluminum electrolysis cells with carbon anodes.

  19. Changes in litter near an aluminum reduction plant

    USGS Publications Warehouse

    Beyer, W.N.; Fleming, W.J.; Swineford, D.

    1987-01-01

    Litter was collected from eight sites at distances as far as 33 km from an AI reduction plant in western Tennessee. As a result of an accumulation of fine litter (< 4.75 mm) the weight of the litter per unit area was abnormally high at the two sites within 2 km of the plant. Compared to litter collected far from the plant, it had a lower fiber content, was more sapric, and was less acid. Fluoride emissions from the plant were suggested as the probable cause of litter changes. Concentrations of water-extractable and acid-extractable F- in the litter, the 0- to 5-cm soil layer, and the 5- to 15-cm soil layer were strongly correlated with distance from the plant. Total acid-extractable F- in the litter and upper 15 cm of soil was about 41 times as much at the closest site (700 mg/kg) as at the most distant sites (12 and 16 mg/kg). In a bioassay of litter from our study sites, woodlice (Porcellio scaber Latr.) had an abnormally high mortality in litter that contained 440 mg/kg or more of acid-extractable F-. However, when F- was added as NaF to litter, a significant increase in mortality was observed only in treatments exceeding 800 mg/kg. The decrease in the rate of decomposition of the litter might eventually induce a deficiency of soil macronutrients, but none was detected.

  20. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  1. Characterization of anode stub corrosion in Hall reduction cells

    SciTech Connect

    Wang, X.; Peterson, R.D.

    1996-10-01

    Mild steel is widely used as a structural material in the aluminum smelting industry. In prebaked-anode reduction cells, the stability of the steel used as an anode stub against high temperature oxidation and corrosion is very important with regard to its full service life and maintaining aluminum purity. This paper deals with the accelerated corrosion of the steel material used as anode stubs in the presence of the sulfur-containing anode gases. Oxidized scale and the interface region of the oxidation reaction zone in a stub from a reduction cell were fully examined using SEM and X-ray diffraction. The sulfur from the bath and the anode carbon, released as SO{sub 2}, plays an important role in accelerating the anode stub corrosion process. A sulfidation-oxidation corrosion mechanism is proposed to support the corrosion phenomena observed on the steel anode pieces.

  2. Long-term testing and evaluation of cathode components in a commercial aluminum cell

    SciTech Connect

    Gee, J.T.; Tucker, K.W; Joo, L.A.; Stewart, D.V.; Alcorn, T.; Tabereaux, A.

    1989-08-01

    Since 1886, essentially all primary aluminum has been produced in Hall-Heroult electrolytic cells which electrochemically reduce alumina to the metal in an energy/capital intensive process. Nearly five per cent of the electrical energy generated in the United States is consumed in this Hall-Heroult process, at the rate of 6--8 kwh/lb of aluminum produced. It has been in the aluminum industry's interest for the past several decades to utilize titanium diboride in some capacity as the cell cathode, either with conventional consumable carbon anodes or ultimately with nonconsumable, inert anodes. Eventual achievement of either or both of these goals will represent a technological breakthrough and make possible a significant reduction in the energy requirement to produce aluminum. The overall objective and achievement of this program was to better define the technical and economic viability of graphite-containing titanium diboride materials in low-cost shapes for use as cathodes in aluminum electrolytic cells as a precursor to subsequent demonstration and commercial application. Included are mathematical models for the prediction of cost-reducing cathode shapes, optimizing ratios of electrode areas, voltage reduction, and the effect on current efficiency from reduced anode-cathode distance. As part of the program, cathode shapes were produced using proprietary material processing technologies. Long-term commercial and medium-term pilot cell operations for data acquisition and cathode longevity determinations were completed, as were analyses of as-fabricated and as-tested cathodes, development of possible failure mechanisms, development of cathode holder/anode stops and an assessment of energy savings and technical/economic viability.

  3. Silicon diffusion in aluminum for rear passivated solar cells

    SciTech Connect

    Urrejola, Elias; Peter, Kristian; Plagwitz, Heiko; Schubert, Gunnar

    2011-04-11

    We show that the lateral spread of silicon in a screen-printed aluminum layer increases by (1.50{+-}0.06) {mu}m/ deg. C, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.

  4. Aluminum Induces Rigor within the Actin Network of Soybean Cells.

    PubMed Central

    Grabski, S.; Schindler, M.

    1995-01-01

    Aluminum is toxic to both plants and animals. Root growth and pollen-tube extension are inhibited after aluminum stress in acidic environments. Incubation of cultured neurons with aluminum results in the formation of neurofibrillar tangles reminiscent of the neural pathology observed in Alzheimer's disease. The present communication demonstrates that aluminum induces a rapid and dramatic increase in the rigidity of the actin network in soybean (Glycine max) root cells. This rigidity can be prevented by either co-incubation with sodium fluoride or magnesium, or pretreatment with cytochalasin D. It is proposed that the growth-inhibitory activity and cytotoxicity of aluminum in plants may be a consequence of a global rigor that is induced within the actin network. This rigor may result from the formation of nonhydrolyzable [Al3+-ADP] or [Al3+-ATP] complexes whose binding to actin/myosin can modify contraction. Additionally, Al3+-mediated interference with the normal kinetics of F-actin filament assembly/disassembly could precipitate subsequent disorganization of associated cytoskeletal structures and promote altered expression of cytoskeletal proteins. PMID:12228515

  5. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.

    PubMed

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-04-21

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. PMID:27028104

  6. Formation of Deposits on the Cathode Surface of Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Allard, François; Soucy, Gervais; Rivoaland, Loig

    2014-12-01

    The efficiency of electrolysis cells for aluminum production is reduced when deposits are formed on the cathode block surface. Overfeeding of alumina or excessive heat loss in industrial cells leads to the formation of highly resistive deposits. In this study, the chemical composition of sludge, ledge toe, and thin deposits was investigated at the bottom of both industrial and experimental electrolysis cells. The formation of deposits in laboratory experiments was demonstrated in acidic, neutral, and basic electrolytic bath. A gradient of chiolite (Na5Al3F14) and α-Al2O3 was observed in the deposits. The bath at the bottom of the experimental electrolysis cell had a higher cryolite ratio implying a higher liquidus temperature. The sludge formed at the bottom of the cell can lift the aluminum metal resulting in an important reduction of the contact surface between the aluminum and the cathode block. Moreover, the deposits disturb the current path and generate horizontal current components in the metal which enhance the motion and lower the current efficiency. A thin film of bath supersaturated in alumina was observed under the metal. This work provides clarification on the formation mechanisms of the various deposits responsible for the deterioration of the cathode surface.

  7. Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Yin, Liang; Liu, Xiaowei; Weng, Rui; Wang, Yang; Wu, Zhiwen

    2016-09-01

    We present a novel method to fabricate Zn-Al LDH (layered double hydroxides) film with 3D flower-like micro-and nanostructure on the aluminum foil. The wettability of the Zn-Al LDH film can be easily changed from superhydrophilic to superhydrophobic with a simple chemical modification. The as-prepared superhydrophobic surfaces have water CAs (contact angles) of 165 ± 2°. In order to estimate the drag reduction property of the surface with different adhesion properties, the experimental setup of the liquid/solid friction drag is proposed. The drag reduction ratio for the as-prepared superhydrophobic sample is 20-30% at low velocity. Bearing this in mind, we construct superhydrophobic surfaces that have numerous technical applications in drag reduction field.

  8. Long-term testing and evaluation of cathode components in a commercial aluminum cell

    SciTech Connect

    Church, K.D.; Morris, E.G.; Joo, L.A. ); Stewart, D.V.; Morgan, W.R.; Tabereaux, A. )

    1990-04-01

    Since 1886, essentially all primary aluminum has been produced in Hall-Heroult electrolytic cells which electrochemically reduce alumina to the metal in an energy/capital intensive process. Nearly five per cent of the electrical energy generated in the United States in consumed in this Hall-Heroult process, at the rate of 6--8 kwh/lb. of aluminum produced. It has been in the aluminum industry's interest for the past several decades to utilize titanium diboride in some capacity as the cell cathode, either with conventional consumable carbon anodes or ultimately with nonconsumable, inert anodes. Eventual achievement of either or both of these goals will represent a technological breakthrough and make possible a significant reduction in the energy requirement to produce aluminum. The overall objective and achievement of this program was to better define the technical and economic viability of graphite-containing titanium diboride materials in low-cost shapes for use as cathodes in aluminum electrolytic cells as a precursor to subsequent demonstration and commercial application. This report covers the development of possible failure mechanisms, evaluations of the thermal shock resistance of non-cylindrical shapes, and an assessment of energy savings and technical/economic viability. In this program, titanium diboride-graphite (TiB{sub 2}-G) materials was demonstrated to be superior to dense TiB{sub 2} materials which had been previously evaluated in studies by others in terms of longevity, thermal shock properties, and the ability to manufacture large, complex components. 129 figs., 5 tabs.

  9. The use of a dynamic aluminum cell model

    NASA Astrophysics Data System (ADS)

    Piskazhova, T. V.; Mann, V. C.

    2006-02-01

    This article describes the application of a mathematical dynamic model of an aluminum smelter cell. The model-based programs are used to train personnel. Planned changes in process parameters are first calculated to choose the best practice, and in this paper, the authors give examples of such calculations illustrated by graphs and diagrams. A description is also offered of the application of a model-based cryolite ratio stabilization program, and the economic effectiveness gained through the program is shown.

  10. New electroplated aluminum bipolar plate for PEM fuel cell

    NASA Astrophysics Data System (ADS)

    El-Enin, Sanaa A. Abo; Abdel-Salam, Omar E.; El-Abd, Hammam; Amin, Ashraf M.

    Further improvement in the performance of the polymer electrolyte membrane fuel cells as a power source for automotive applications may be achieved by the use of a new material in the manufacture of the bipolar plate. Several nickel alloys were applied on the aluminum substrate, the use of aluminum as a bipolar plate instead of graphite is to reduce the bipolar plate cost and weight and the ease of machining. The electroplated nickel alloys on aluminum substrate produced a new metallic bipolar plate for PEM fuel cell with a higher efficiency and longer lifetime than the graphite bipolar plate due to its higher electrical conductivity and its lower corrosion rate. Different pretreatment methods were tested; the optimum method for pretreatment consists of dipping the specimen in a 12.5% NaOH for 3 min followed by electroless zinc plating for 2 min, then the specimen is dipped quickly in the electroplating bath after rinsing with distilled water. The produced electroplate was tested with different measurement techniques, chosen based on the requirement for a PEM fuel cell bipolar plate, including X-ray diffraction, EDAX, SEM, corrosion resistance, thickness measurement, microhardness, and electrical conductivity.

  11. Modeling and Analysis of Aluminum/Air Fuel Cell

    NASA Astrophysics Data System (ADS)

    Leon, Armando J.

    The technical and scientific challenges to provide reliable sources energy for US and global economy are enormous tasks, and especially so when combined with strategic and recent economic concerns of the last five years. It is clear that as part of the mix of energy sources necessary to deal with these challenges, fuel cells technology will play critical or even a central role. The US Department of Energy, as well as a number of the national laboratories and academic institutions have been aware of the importance such technology for some time. Recently, car manufacturers, transportation experts, and even utilities are paying attention to this vital source of energy for the future. In this thesis, a review of the main fuel cell technologies is presented with the focus on the modeling, and control of one particular and promising fuel cell technology, aluminum air fuel cells. The basic principles of this fuel cell technology are presented. A major part of the study consists of a description of the electrochemistry of the process, modeling, and simulations of aluminum air FC using Matlab Simulink(TM). The controller design of the proposed model is also presented. In sequel, a power management unit is designed and analyzed as an alternative source of power. Thus, the system commutes between the fuel cell output and the alternative power source in order to fulfill a changing power load demand. Finally, a cost analysis and assessment of this technology for portable devices, conclusions and future recommendations are presented.

  12. Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications.

    PubMed

    Wan, Dongyun; Yang, Chongyin; Lin, Tianquan; Tang, Yufeng; Zhou, Mi; Zhong, Yajuan; Huang, Fuqiang; Lin, Jianhua

    2012-10-23

    Low-temperature aluminum (Al) reduction is first introduced to reduce graphene oxide (GO) at 100-200 °C in a two-zone furnace. The melted Al metal exhibits an excellent deoxygen ability to produce well-crystallized reduced graphene oxide (RGO) papers with a low O/C ratio of 0.058 (Al-RGO), compared with 0.201 in the thermally reduced one (T-RGO). The Al-RGO papers possess outstanding mechanical flexibility and extremely high electrical conductivities (sheet resistance R(s) ~ 1.75 Ω/sq), compared with 20.12 Ω/sq of T-RGO. More interestingly, very nice hydrophobic nature (90.5°) was observed, significantly superior to the reported chemically or thermally reduced papers. These enhanced properties are attributed to the low oxygen content in the RGO papers. During the aluminum reduction, highly active H atoms from H(2)O reacted with melted Al promise an efficient oxygen removal. This method was also applicable to reduce graphene oxide foams, which were used in the GO/SA (stearic acid) composite as a highly thermally conductive reservoir to hold the phase change material for thermal energy storage. The Al-reduced RGO/SnS(2) composites were further used in an anode material of lithium ion batteries possessing a higher specific capacity. Overall, low-temperature Al reduction is an effective method to prepare highly conductive RGO papers and related composites for flexible energy conversion and storage device applications. PMID:22984901

  13. Protecting cell walls from binding aluminum by organic acids contributes to aluminum resistance.

    PubMed

    Li, Ya-Ying; Zhang, Yue-Jiao; Zhou, Yuan; Yang, Jian-Li; Zheng, Shao-Jian

    2009-06-01

    Aluminum-induced secretion of organic acids from the root apex has been demonstrated to be one major Al resistance mechanism in plants. However, whether the organic acid concentration is high enough to detoxify Al in the growth medium is frequently questioned. The genotypes of Al-resistant wheat, Cassia tora L. and buckwheat secrete malate, citrate and oxalate, respectively. In the present study we found that at a 35% inhibition of root elongation, the Al activities in the solution were 10, 20, and 50 muM with the corresponding malate, citrate, and oxalate exudation at the rates of 15, 20 and 21 nmol/cm(2) per 12 h, respectively, for the above three plant species. When exogenous organic acids were added to ameliorate Al toxicity, twofold and eightfold higher oxalate and malate concentrations were required to produce the equal effect by citrate. After the root apical cell walls were isolated and preincubated in 1 mM malate, oxalate or citrate solution overnight, the total amount of Al adsorbed to the cell walls all decreased significantly to a similar level, implying that these organic acids own an equal ability to protect the cell walls from binding Al. These findings suggest that protection of cell walls from binding Al by organic acids may contribute significantly to Al resistance. PMID:19522816

  14. Stability of aluminium reduction cells with mean flow

    NASA Astrophysics Data System (ADS)

    Kurenkov, A.; Thess, A.; Zikanov, O.; Segatz, M.; Droste, Ch.; Vogelsang, D.

    2004-06-01

    We report results of the linear stability analysis undertaken to investigate the effect of the mean flow of liquid metal on the stability of aluminum reduction cells. A simplified model of the cell is considered that consists of thin layers of aluminum and cryolite superimposed in an infinite horizontal channel with electrically non-conducting walls. A vertical uniform magnetic field and an electric current are applied in the opposite directions. In the basic steady state, a uniform flow of aluminum is assumed, while cryolite is at rest. The onset of the instability is caused by the action of two different mechanisms. The first is the Kelvin-Helmholtz instability of the mean flow. The second, essentially the MHD mechanism, is a consequence of destabilizing electromagnetic (Lorentz) forces produced by nonuniformities of the electric current due to interface deflections. We use the shallow water approximation and solve the problem for the cases of pure Kelvin-Helmholtz (zero magnetic field) and pure MHD (zero mean flow) instabilities and for the general case. We compute the stability chart and derive the parameters that determine the stability threshold. It is found that, while both playing a destabilizing role, the instability mechanisms do not affect each other. In particular, a uniform mean flow changes the direction of propagation of interfacial waves but leaves the MHD stability threshold unaltered. Figs 4, Refs 12.

  15. Reduction of adult hippocampal neurogenesis is amplified by aluminum exposure in a model of type 2 diabetes

    PubMed Central

    Nam, Sung Min; Kim, Jong Whi; Yoo, Dae Young; Jung, Hyo Young; Choi, Jung Hoon; Hwang, In Koo; Seong, Je Kyung

    2016-01-01

    In this study, we investigated the effects of chronic aluminum (Al) exposure for 10 weeks on cell proliferation and neuroblast differentiation in the hippocampus of type 2 diabetic rats. Six-week-old Zucker diabetic fatty (ZDF) and Zucker lean control (ZLC) rats were selected and randomly divided into Al- and non-Al-groups. Al was administered via drinking water for 10 weeks, after which the animals were sacrificed at 16 weeks of age. ZDF rats in both Al- and non-Al-groups showed increases in body weight and blood glucose levels compared to ZLC rats. Al exposure did not significantly affect body weight, blood glucose levels or pancreatic β-cells and morphology of the pancreas in either ZLC or ZDF rats. However, exposure to Al reduced cell proliferation and neuroblast differentiation in both ZLC and ZDF rats. Exposure to Al resulted in poor development of the dendritic processes of neuroblasts in both ZLC and ZDF rats. Furthermore, onset and continuation of diabetes reduced cell proliferation and neuroblast differentiation, and Al exposure amplified reduction of these parameters. These results suggest that Al exposure via drinking water aggravates the impairment in hippocampal neurogenesis that is typically observed in type 2 diabetic animals. PMID:27051335

  16. Cell Adhesion and Growth on the Anodized Aluminum Oxide Membrane.

    PubMed

    Park, Jeong Su; Moon, Dalnim; Kim, Jin-Seok; Lee, Jin Seok

    2016-03-01

    Nanotopological cues are popular tools for in vivo investigation of the extracellular matrix (ECM) and cellular microenvironments. The ECM is composed of multiple components and generates a complex microenvironment. The development of accurate in vivo methods for the investigation of ECM are important for disease diagnosis and therapy, as well as for studies on cell behavior. Here, we fabricated anodized aluminum oxide (AAO) membranes using sulfuric and oxalic acid under controlled voltage and temperature. The membranes were designed to possess three different pore and interpore sizes, AAO-1, AAO-2, and AAO-3 membranes, respectively. These membranes were used as tools to investigate nanotopology-signal induced cell behavior. Cancerous cells, specifically, the OVCAR-8 cell-line, were cultured on porous AAO membranes and the effects of these membranes on cell shape, proliferation, and viability were studied. AAO-1 membranes bearing small sized pores were found to maintain the spreading shape of the cultured cells. Cells cultured on AAO-2 and AAO-3 membranes, bearing large pore-sized AAO membranes, changed shape from spreading to rounding. Furthermore, cellular area decreased when cells were cultured on all three AAO membranes that confirmed decreased levels of focal adhesion kinase (FAK). Additionally, OVCAR-8 cells exhibited increased proliferation on AAO membranes possessing various pore sizes, indicating the importance of the nanosurface structure in regulating cell behaviors, such as cell proliferation. Our results suggest that porous-AAO membranes induced nanosurface regulated cell behavior as focal adhesion altered the intracellular organization of the cytoskeleton. Our results may find potential applications as tools in in vivo cancer research studies. PMID:27280255

  17. DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382

    SciTech Connect

    Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

    2009-01-14

    The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

  18. Crushing Strength of Aluminum Honeycomb with Thinning Cell Wall

    NASA Astrophysics Data System (ADS)

    Ogasawara, Nagahisa; Chiba, Norimasa; Kobayashi, Eiji; Kikuchi, Yuji

    To evaluate the crash safety of automobiles, various collision tests are performed by the auto industry. In the offset frontal collision test and the side collision test, the target is an aluminum honeycomb material which has thinning cell walls. In this study, based on the analyses of the shock absorption mechanism, a new crushing strength formula is proposed. First, load-displacement curves obtained from compression tests in quasi-static condition showed an almost linear relation between a thinning rate of cell walls and a crushing strength. Second, based on Wierzbicki's theory, a new formula was proposed, which can estimate a crushing strength of a honeycomb material with thinning wall. In addition, a correcting equation which considered an elastic deformation was also proposed. Third, parametric analyses were carried out with a FE model which can simulate a delamination between cell walls. The results obtained from the theory and FEM almost corresponded to each other for a wide range of the thinning rate. Fourth, impact tests were carried out, in which the weight was dropped freely at the speed used for the automobile tests. Those results almost agreed well with the sum of the theoretical crush strength and the inside air pressure.

  19. Corrosion reduction of aluminum alloys in flowing high-temperature water

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Ruther, W. E.

    1969-01-01

    Report describes a technique for reducing the corrosion rate of aluminum by adding colloidal substances in a closed-loop system. Experimental work shows that the addition of graphite and colloidal hydrated aluminum oxide significantly reduces the corrosion rate in flowing high-temperature water.

  20. Factors Leading to the Formation of a Resistive Thin Film at the Bottom of Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Coulombe, Marc-André; Soucy, Gervais; Rivoaland, Loig; Davies, Lynne

    2016-04-01

    Studies on sludge formation in aluminum electrolysis cells are rare and typically do not distinguish the deposits at the center of the cell from those composing the ledge toe because low voltage lost is expected at the center of the cell. However, high amount of sludge in the center leads to the formation of a thin film in an intermediate zone between the ledge toe and this center thick sludge accumulation. Looking at sludge deposits through composition mapping and microstructure analysis coming from four aluminum cells of two different aluminum reduction technologies, major factors leading to a thin resistive film were identified. This includes the formation of a suspension on the top of the thick deposit at the center of the cell, its displacement through magnetohydrodynamic induced movement by the metal pad, and the growth and thickening of a carbide sublayer making the thin film even more resistive. Correlation between thickening of the thin film and cathode voltage drop increase was observed. The postmortem analysis performed on six laboratory experiments was found useful to support different observations made on the industrial cells at lower cost.

  1. Cathode for a hall-heroult type electrolytic cell for producing aluminum

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.

  2. Influence of pulsed mechanical activation of hematite-graphite-aluminum powder mixtures on the reduction of iron oxides

    NASA Astrophysics Data System (ADS)

    Bodrova, L. E.; Vatolin, N. A.; Pastukhov, E. A.; Petrova, S. A.; Popova, E. A.; Zakharov, R. G.

    2011-11-01

    To decrease the temperature of direct iron reduction by carbon and aluminum, short-term pulsed mechanical activation (PMA) of an Fe2O3 + Cgr + Al powder mixture is perfumed during sound-frequency shock loading by a flat activating plunger. The PMA efficiency for powders in comparable with mechanical activation in high-energy ball mills in a decrease in the activation time and retaining the chemical purity of a powder composition.

  3. The investigation on the stratification phenomenon of aluminum rear alloyed layer in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Xi, Xi; Chen, Xiaojing; Zhang, Song; Shi, Zhengrong; Li, Guohua

    2015-06-01

    A stratification phenomenon of aluminum rear alloyed layer was found in the study of aluminum rear emitter N-type solar cells. It is related to the composition of the paste. The outer aluminum alloyed layer can be called as aluminum doped emitter, and it gives the contribution to the junction formation. The inner layer is only the Al/Si mixed layer. The aluminum atoms in this layer are not bonded with silicon atoms. This inner layer will ruin the quality of the rear junction. The shunt resistance, reverse current density and the junction electric leakage value are getting worse when the thickness of the inner layer increases. The thickness of the inner Al/Si mixed layer increases with the increasing of firing temperature, while the depth of the aluminum doped emitter almost does not change. From the analyses, the inner Al/Si mixed layer is redundant and deleterious. Only a single deep aluminum doped rear emitter is needed for N-type solar cells. The highest power conversion efficiency of 19.93% for aluminum rear emitter N-type cells without the stratification phenomenon has been obtained.

  4. The multivariable model-based control of the non-alumina electrolyte variables in aluminum smelting cells

    NASA Astrophysics Data System (ADS)

    McFadden, Fiona J. Stevens; Welch, Barry J.; Austin, Pual C.

    2006-02-01

    This paper investigates the application of multivariable model-based control to improve the regulatory control of electrolyte temperature, aluminum fluoride concentration, liquidus temperature, superheat, and electrolyte height. Also examined are therappropriateness of different control structures and the possible inclusion of recently developed sensors for alumina concentration and individual cell duct flowrate, temperature, and heat loss. For the smelter in this study, the maximum improvement possible with a multivariable model-based controller is predicted to be 30 40% reduction in standard deviation in electrolyte temperature, aluminum fluoride concentration, liquidus temperature, and superheat, and around half this for electrolyte height. Three control structures were found to be appropriate; all are different than the existing control structure, which was found to be suboptimal. Linear Quadratic Gaussian controllers were designed for each control structure and their predicted performance compared.

  5. Reduction of perfluorocarbon (PFC) emissions at Alcan`s primary aluminum smelters

    SciTech Connect

    Barber, M.A.

    1997-12-31

    Recent studies have indicated that perfluorocarbon (PFC) compounds are powerful greenhouse gases. The principal anthropogenic source of these compounds is believed to be primary aluminum smelters. As a result, most major aluminum producers have initiated programs to reduce PFC emissions. This paper outlines the actions Alcan has taken over the past 6 years to reduce PFC emissions, along with results obtained to date and projections for the future. An explanation of the mechanism of PFC formation is given. In addition, actual measured emission levels are compared to those predicted by models.

  6. The role of sodium in aluminum electrolysis: A possible indicator of cell performance

    SciTech Connect

    Tabereaux, A.T.

    1996-10-01

    The sodium concentration in the aluminum metal pad of modern prebake cells, having superior magnetic compensation and stable operating conditions, is substantially higher compared with that measured in older, less stable prebake and Soederberg cells. In one case, the sodium content was found to increase in the metal after the cells were retrofitted with improved technologies. The higher sodium level in aluminum in modern cells is due to the increase in the cathode polarization and build up of sodium containing species in the electrolyte near the bath metal interface as a consequence of reduced stirring and cell hydrodynamic forces. Correlations between sodium content in the aluminum metal pad and stability of the bath-metal pad interface of different cell technologies are discussed.

  7. Composite propellant aluminum agglomeration reduction using tailored Al/PTFE particles

    NASA Astrophysics Data System (ADS)

    Sippel, Travis R.

    Micron aluminum is widely used in propellants; however, performance could be significantly improved if ignition barriers could be disrupted and combustion tailored. In solid propellants for example, aluminum increases theoretical specific impulse performance, yet theoretical levels cannot be achieved largely because of two-phase flow losses. These losses could be reduced if particles quickly ignited, more gaseous products were produced, and if particle breakup occurred during combustion. To achieve altered aluminum ignition and particle combustion, this work explores the use of low level (10-30 wt.%) fluorocarbon (polytetrafluoroethylene (PTFE) or poly(carbon monofluoride) (PMF)) inclusion inside of aluminum via low or high energy mechanical activation. Aluminum/PTFE particles are found to be amenable to use in binder based energetics, having average particle sizes ranging from 15 to 78 μm, ~2-7 m2/g, specific surface area, and combustion enthalpies as high as 20.2 kJ/g. Differential scanning calorimetry (DSC) experiments indicate high energy MA reduces both reaction and oxidation onset to ~440 °C that is far below aluminum alone. Safety testing shows these particles have high electrostatic discharge (ESD) (89.9-108 mJ), impact (> 213 cm), and friction (> 360 N) ignition thresholds. The idea of further increasing reactivity and increasing particle combustion enthalpy is explored by reducing fluorocarbon inclusion content to 10 wt.% and through the use of the strained fluorocarbon PMF. Combustion enthalpy and average particle size range from 18.9 to 28.5 kJ/g and 23.0 to 67.5 μm, respectively and depend on MA intensity, duration, and inclusion level. Specific surface areas are high (5.3 to 34.8 m2/g) and as such, Al/PMF particles are appropriate for energetic applications not requiring a curable liquid binder. Mechanical activation reduces oxidation onset (DSC) from 555 to 480 °C (70/30 wt.%). Aluminum/PMF particles are sensitive to ESD (11.5-47.5 mJ) and some

  8. The Comparative Performance of Batteries: The Lead-Acid and the Aluminum-Air Cells.

    ERIC Educational Resources Information Center

    LeRoux, Xavier; And Others

    1996-01-01

    Describes a teaching program that shows how electrochemical principles can be conveyed by means of hands-on experiences of student-centered teaching experiments. Employs the readily available lead-acid cell and the simple aluminum-air cell. Discusses the batteries, equilibrium cell potential, performance comparison, current, electrode separation,…

  9. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    SciTech Connect

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  10. Changes in aluminum concentrations and speciation in lakes across the northeastern U.S. following reductions in acidic deposition.

    PubMed

    Warby, Richard A F; Johnson, Chris E; Driscoll, Charles T

    2008-12-01

    We surveyed 113 lakes in the northeastern U.S. in 2001 that had previously been sampled in 1986 to evaluate the effects of reductions in acidic deposition on the concentrations and speciation of aluminum (Al). We found ubiquitous decreases in the concentrations of total Al and inorganic monomeric aluminum (Ali) across the region. Median total Al decreased from 1.45 to 1.01 micromol L(-1) across the region, with the largest decrease in the Adirondacks (4.60 micromol L(-1) to 2.59 micromol L(-1)). Organic monomeric aluminum (Alo) also decreased region-wide and in all the subregions except the Adirondacks. The speciation of Ali shifted from largely Al-F complexes in 1986 to largely Al-OH complexes in 2001 in ponds whose concentrations were above the detection limit (>0.7 micromol L(-1)). In 2001, only seven lakes studied, representing a population of 130 lakes in the region, had Al1 concentrations above a toxic limit of 2 micromol L(-1) compared with 20 sample lakes, representing 449 lakes, in 1986. Thus, we estimate that more than 300 lakes in the northeastern United States no longer have summer Ali concentrations at levels considered harmful to aquatic biota. PMID:19192779

  11. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    SciTech Connect

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  12. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  13. Potential improvement of polysilicon solar cells by grain boundary and intragrain diffusion of aluminum

    SciTech Connect

    Sundaresan, R.; Burk, D.E.; Fossum, J.G.

    1984-02-15

    Experimental results are presented that imply potential improvements afforded by aluminum diffusion in both bulk and thin-film polysilicon solar cells. For bulk cells, a high-temperature aluminum diffusion (alloying) is shown to increase the minority-carrier diffusion length by gettering intragrain impurities. The role of the grain boundaries in this process and the influence of a light bias on the carrier lifetime are discussed. For thin-film cells, a low-temperature aluminum diffusion is shown to substantially passivate grain boundaries and hence decrease the recombination velocity. The decrease is evaluated using electron-beam-induced-current (EBIC) measurements interpreted via numerical analysis of the underlying carrier-transport problem. The actual benefit of the grain-boundary passivation to the open-circuit voltage of a thin-film cell is discussed.

  14. In vitro photodynamic effect of aluminum tetrasulfophthalocyanines on melanoma skin cancer and healthy normal skin cells.

    PubMed

    Maduray, K; Odhav, B; Nyokong, T

    2012-03-01

    Photodynamic therapy is a medical treatment that uses an inactive dye/drug and lasers as a light source to activate the dye/drug to produce a toxic form of oxygen that destroys the cancer cells. This study aimed at investigating the cytotoxic effects of different concentrations of aluminum tetrasulfophthalocyanines in its inactive and active state (laser induced) on melanoma skin cancer cells, healthy normal skin fibroblast and keratinocyte cells. Experimentally, 3 × 10⁴ cells/ml were seeded in 24-well plates before treatment with different concentrations of aluminum tetrasulfophthalocyanines. After 2h, cells were irradiated with a light dose of 4.5 J/cm². Post-irradiated cells were incubated for 24h before cell viability was measured using the CellTiter-Blue Viability Assay. Results showed that aluminum tetrasulfophthalocyanines at high concentrations were cytotoxic to melanoma cells in the absence of laser activation. In the presence of laser activation of aluminum tetrasulfophthalocyanines at a concentration of 40 μg/ml decreased cell viability of melanoma cells to 45%, fibroblasts to 78% and keratinocytes to 73%. At this photosensitizing concentration of aluminum tetrasulfophthalocyanines the efficacy of the treatment light dose 4.5 J/cm² and the cell death mechanism induced by photoactivated aluminum tetrasulfophthalocyanines was evaluated. A light dose of 4.5 J/cm² was more efficient in killing a higher number of melanoma cells and a lower number of fibroblast and keratinocyte cells than the other light doses of 2.5 J/cm², 7.5 J/cm² and 10.5 J/cm². Apoptosis features such as blebbing, nucleus condensation, nucleus fragmentation and the formation of apoptotic bodies were seen in the photodynamic therapy treated melanoma skin cancer cells. This in vitro photodynamic therapy study concludes that using aluminum tetrasulfophthalocyanines at a photosensitizing concentration of 40 μg/ml in combination with a laser dose of 4.5 J/cm² was potentially lethal

  15. Facile Aluminum Reduction Synthesis of Blue TiO2 with Oxygen Deficiency for Lithium-Ion Batteries.

    PubMed

    Zheng, Jing; Ji, Guangbin; Zhang, Peng; Cao, Xingzhong; Wang, Baoyi; Yu, Linhui; Xu, Zhichuan

    2015-12-01

    An ultrafacile aluminum reduction method is reported herein for the preparation of blue TiO2 nanoparticles (donated as Al-TiO2 , anatase phase) with abundant oxygen deficiency for lithium-ion batteries. Under aluminum reduction, the morphology of the TiO2 nanosheets changes from well-defined rectangular into uniform round or oval nanoparticles and the particle size also decreases from 60 to 31 nm, which can aggressively accelerate the lithium-ion diffusion. Electron paramagnetic resonance (EPR) and positron annihilation lifetime spectroscopy (PALS) results reveal that plentiful oxygen deficiencies relative to the Ti(3+) species were generated in blue Al-TiO2 ; this effectively enhances the electron conductivity of the TiO2 . X-ray photoelectron spectrometry (XPS) analysis indicates that a small peak is observed for the Al-O bond, which probably plays a very important role in the stabilization of the oxygen deficiencies/Ti(3+) species. As a result, the blue Al-TiO2 possesses significantly higher capacity, better rate performance, and a longer cycle life than the white pure TiO2 . Such improvements can be attributed to the decreased particle size, as well as the existence of the oxygen deficiencies/Ti(3+) species. PMID:26511473

  16. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells

    SciTech Connect

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P. . E-mail: Bressler@kennedykrieger.org

    2007-05-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin.

  17. Whole cell biotransformation for reductive amination reactions

    PubMed Central

    Klatte, Stephanie; Lorenz, Elisabeth; Wendisch, Volker F

    2014-01-01

    Whole cell biotransformation systems with enzyme cascading increasingly find application in biocatalysis to complement or replace established chemical synthetic routes for production of, e.g., fine chemicals. Recently, we established an Escherichia coli whole cell biotransformation system for reductive amination by coupling a transaminase and an amino acid dehydrogenase with glucose catabolism for cofactor recycling. Transformation of 2-keto-3-methylvalerate to l-isoleucine by E. coli cells was improved by genetic engineering of glucose metabolism for improved cofactor regeneration. Here, we compare this system with different strategies for cofactor regeneration such as cascading with alcohol dehydrogenases, with alternative production hosts such as Pseudomonas species or Corynebacterium glutamicum, and with improving whole cell biotransformation systems by metabolic engineering of NADPH regeneration. PMID:24406456

  18. Studies of a granular aluminum anode in an alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Popovich, Neil A.; Govind, Rakesh

    A granular aluminum anode was investigated for use in an alkaline aluminum/hydrogen peroxide fuel cell. The fuel cell utilizes granules of aluminum (8-12 mm in diameter) as an anode, potassium hydroxide (KOH) as an anolyte and hydrogen peroxide as a catholyte. Granular anodes have a significantly higher surface area than planar surfaces, thereby resulting in higher utilization of the anode material. Polarization experiments were performed as well as closed circuit power production experiments. KOH concentrations were varied in the experiments. Polarization experiments achieved a current density of 10.02 mA/cm 2 using 2 M KOH and granular aluminum with a surface area of 205.6 cm 2. Power production experiments sustained a current density of 0.05 mA/cm 2 using 1.5 M KOH and granular aluminum with a surface area of 59.8 cm 2. Results indicate that granular metal anodes have potential for use in high energy density fuel cells.

  19. Aluminum chloride induced oxidative damage on cells derived from hippocampus and cortex of ICR mice.

    PubMed

    Rui, Ding; Yongjian, Yang

    2010-04-01

    Aluminum (Al) is among the most abundant elements on earth, it has been associated with the etiology of Alzheimer's disease. In the present study, AlCl(3) was administered with the dose of 10, 50 or 300 mg/kg b.wt/day through diet for 100 days. On day 101, overnight-fasted animals were sacrificed, the whole brains were removed and the cells from hippocampus or cortex were separated for the measurements: malondialdehyde (MDA), superoxide dismutase (SOD), nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) damage. AlCl(3) exposure resulted in increased MDA levels accompanied by decreased activities of SOD in the cells. Comet assay demonstrated that aluminum induces nDNA damage in a dose-dependent manner, dramatically increased formation of 8-hydroxy 2-deoxyguanosine (8-OHdG) in the mtDNA isolated from the cells was also measured. The alterations seem more serious than the results displayed by the studies performed with lower doses of aluminum. However, a detailed biochemical mechanism by which aluminum accelerates mtDNA damage has not yet been identified, but the decrease in superoxide dismutase (SOD) activity and increase in MDA level in aluminum-treated mice may suggest the involvement of oxidative stress. PMID:20156420

  20. Energy Efficient Aluminum Production - Pilot-Scale Cell Tests - Final Report for Phase I and Phase II

    SciTech Connect

    R. A. Christini

    1999-12-30

    A cermet anode that produces oxygen and a cathode material that is wetted by aluminum can provide a dimensionally stable inter-electrode distance in the Hall-Heroult cell. This can be used to greatly improve the energy and/or productivity efficiencies. The concept, which was developed and tested, uses a system of vertically interleaved anodes and cathodes. The major advantage of this concept is the significant increase in electrochemical surface area compared to a horizontal orientation of anode and cathode that is presently used in the Hall-Heroult process. This creates an additional advantage for energy reduction of 1.3 kWh/lb or a 20% productivity improvement. The voltages obtained in an optimized cell test met the energy objectives of the project for at least two weeks. An acceptable current efficiency was never proven, however, during either pilot scale or bench scale tests with the vertical plate configuration. This must be done before a vertical cell can be considered viab le. Anode corrosion rate must be reduced by at least a factor of three in order to produce commercial purity aluminum. It is recommended that extensive theoretical and bench scale investigations be done to improve anode materials and to demonstrate acceptable current efficiencies in a vertical plate cell before pilot scale work is continued.

  1. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUM

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, has a dual functionality of simultaneously decomposing both reductively- and oxidatively-degradable contaminants. In this work, the use of bifunctional aluminum for the degradation of methyl te...

  2. Cell Structure Evolution of Aluminum Foams Under Reduced Pressure Foaming

    NASA Astrophysics Data System (ADS)

    Cao, Zhuokun; Yu, Yang; Li, Min; Luo, Hongjie

    2016-07-01

    Ti-H particles are used to increase the gas content in aluminum melts for reduced pressure foaming. This paper reports on the RPF process of AlCa alloy by adding TiH2, but in smaller amounts compared to traditional process. TiH2 is completely decomposed by stirring the melt, following which reduced pressure is applied. TiH2 is not added as the blowing agent; instead, it is added for increasing the H2 concentration in the liquid AlCa melt. It is shown that pressure change induces further release of hydrogen from Ti phase. It is also found that foam collapse is caused by the fast bubble coalescing during pressure reducing procedure, and the instability of liquid film is related to the significant increase in critical thickness of film rupture. A combination of lower amounts of TiH2, coupled with reduced pressure, is another way of increasing hydrogen content in the liquid aluminum. A key benefit of this process is that it provides time to transfer the molten metal to a mold and then apply the reduced pressure to produce net shape foam parts.

  3. Cell Structure Evolution of Aluminum Foams Under Reduced Pressure Foaming

    NASA Astrophysics Data System (ADS)

    Cao, Zhuokun; Yu, Yang; Li, Min; Luo, Hongjie

    2016-09-01

    Ti-H particles are used to increase the gas content in aluminum melts for reduced pressure foaming. This paper reports on the RPF process of AlCa alloy by adding TiH2, but in smaller amounts compared to traditional process. TiH2 is completely decomposed by stirring the melt, following which reduced pressure is applied. TiH2 is not added as the blowing agent; instead, it is added for increasing the H2 concentration in the liquid AlCa melt. It is shown that pressure change induces further release of hydrogen from Ti phase. It is also found that foam collapse is caused by the fast bubble coalescing during pressure reducing procedure, and the instability of liquid film is related to the significant increase in critical thickness of film rupture. A combination of lower amounts of TiH2, coupled with reduced pressure, is another way of increasing hydrogen content in the liquid aluminum. A key benefit of this process is that it provides time to transfer the molten metal to a mold and then apply the reduced pressure to produce net shape foam parts.

  4. Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction: Preprint

    SciTech Connect

    Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

    2008-05-01

    We prototype an alternative n-type monocrystalline silicon (c-Si) solar cell structure that utilizes an n/i-type hydrogenated amorphous silicon (a-Si:H) front hetero-contact and a back p-n junction formed by alloying aluminum (Al) with the n-type Si wafer.

  5. Oxygen reduction in fuel cell electrolytes

    SciTech Connect

    Striebel, K.A.

    1987-01-01

    Voltage losses in the O{sub 2} cathode represent the major inefficiency in aqueous fuel cells for transportation or stationary applications. Experimental and theoretical studies of oxygen reduction (OR) in novel acid and alkaline electrolytes on smooth and supported Pt have been carried out. Similar kinetically limited rates for OR were measured in the super-acid electrolytes trifluoromethane sulfonic acid (TFMSA) and tetrafluoroethane-1,2-disulfonic acid (TFEDSA), with the rotating disk electrode (RDE) technique at 23 C and pH = 1. The mechanism for OR on Pt in alkaline electrolytes is complicated by the concurrent oxidation and reduction of Pt. Rotating ring-disk electrode (RRDE) studies carried out with anodic and cathodic potential sweeps in 0.1 to 6.9 M KOH and 0.1 to 4.0 M K{sub 2}CO{sub 3} revealed similar currents when corrected for O{sub 2} solubility differences. Porous gas diffusion electrodes (GDE) with supported Pt catalyst were studied in a special cell with low uncompensated solution resistance. Cyclic voltammograms yielded measurements of the wetted areas of carbon and Pt and the local electrolyte composition. Models for the steady-state operation of porous GDE's were developed. These models account for the diffusion and reaction of O{sub 2} and ionic transport in KOH and K{sub 2}CO{sub 3}. The results suggest that modifications of the GDE structure will be necessary to obtain good performance with aqueous carbonate electrolytes.

  6. The Pivotal Role of Alumina Pore Structure in HF Capture and Fluoride Return in Aluminum Reduction

    NASA Astrophysics Data System (ADS)

    McIntosh, Grant J.; Agbenyegah, Gordon E. K.; Hyland, Margaret M.; Metson, James B.

    2016-07-01

    Fluoride emissions during primary aluminum production are mitigated by dry scrubbing on alumina which, as the metal feedstock, also returns fluoride to the pots. This ensures stable pot operation and maintains process efficiency but requires careful optimization of alumina for both fluoride capture and solubility. The Brunauer-Emmett-Teller (BET) surface area of 70-80 m2 g-1 is currently accepted. However, this does not account for pore accessibility. We demonstrate using industry-sourced data that pores <3.5 nm are not correlated with fluoride return. Reconstructing alumina pore size distributions (PSDs) following hydrogen fluoride (HF) adsorption shows surface area is not lost by pore diameter shrinkage, but by blocking the internal porosity. However, this alone cannot explain this 3.5 nm threshold. We show this is a consequence of surface diffusion-based inhibition with surface chemistry probably playing an integral role. We advocate new surface area estimates for alumina which account for pore accessibility by explicitly ignoring <3.5 nm pores.

  7. Aluminum toxicity and Ca depletion may enhance cell death of tobacco cells via similar syndrome.

    PubMed

    Basset, Refat Abdel; Matsumoto, Hideaki

    2008-05-01

    The main objective of this work is to find out whether aluminum (Al) toxicity and Ca depletion cause cell death of tobacco cells via similar sequence of events. Tobacco cell suspension culture exhibited maximum fresh weight in the presence of a wide range of Ca concentrations between 0.1-1.0 mM whereas higher concentrations (>1.0-5.0 mM) gradually lowered cell fresh weight. However, this decrease in fresh weight does not imply a negative impact on cell viability since cell growth recommenced in fresh MS medium with rates mostly higher than those of low Ca. In addition, high Ca seems to be crucial for survival of Al-treated cells. On the other side, tobacco cells exhibited extreme sensitivity to complete deprivation of Ca. Without Ca, cells could not survive for 18 h and substantially lost their growth capability. Evans blue uptake proved membrane damage of Ca-depleted same as Al-treated cells; relative to maintained membrane intactness of calcium-supplemented (control) ones. Percentage of membrane damage and the growth capability (survival) of tobacco cells exhibited a clear negative correlation.Alterations in growth (fresh weight per aliquot) could not be ascribed neither to cell number nor to decreased dry matter allocation (dry weight/fresh weight percentage) but was mainly due to decreased cellular water content. In this context, Ca-depleted cells lost about half their original water content while 100 microM Al-treated ones retained most of it (ca 87%). This represented the single difference between the two treatments (discussed in the text). Nevertheless, such high water content of the Al-treated cells seems physiologically useless since it did not result in improved viability. Similarities, however, included negligible levels of growth capability, maximum levels of membrane damage, and comparable amounts of NO(3) (-) efflux. As well, both types of treatments led to a sharp decline in osmotic potential that is, in turn, needed for water influx. The above

  8. Aluminum toxicity and Ca depletion may enhance cell death of tobacco cells via similar syndrome

    PubMed Central

    Matsumoto, Hideaki

    2008-01-01

    The main objective of this work is to find out whether aluminum (Al) toxicity and Ca depletion cause cell death of tobacco cells via similar sequence of events. Tobacco cell suspension culture exhibited maximum fresh weight in the presence of a wide range of Ca concentrations between 0.1–1.0 mM whereas higher concentrations (>1.0–5.0 mM) gradually lowered cell fresh weight. However, this decrease in fresh weight does not imply a negative impact on cell viability since cell growth recommenced in fresh MS medium with rates mostly higher than those of low Ca. In addition, high Ca seems to be crucial for survival of Al-treated cells. On the other side, tobacco cells exhibited extreme sensitivity to complete deprivation of Ca. Without Ca, cells could not survive for 18 h and substantially lost their growth capability. Evans blue uptake proved membrane damage of Ca-depleted same as Al-treated cells; relative to maintained membrane intactness of calcium-supplemented (control) ones. Percentage of membrane damage and the growth capability (survival) of tobacco cells exhibited a clear negative correlation. Alterations in growth (fresh weight per aliquot) could not be ascribed neither to cell number nor to decreased dry matter allocation (dry weight/fresh weight percentage) but was mainly due to decreased cellular water content. In this context, Ca-depleted cells lost about half their original water content while 100 µM Al-treated ones retained most of it (ca 87%). This represented the single difference between the two treatments (discussed in the text). Nevertheless, such high water content of the Al-treated cells seems physiologically useless since it did not result in improved viability. Similarities, however, included negligible levels of growth capability, maximum levels of membrane damage, and comparable amounts of NO3− efflux. As well, both types of treatments led to a sharp decline in osmotic potential that is, in turn, needed for water influx. The above

  9. Role of Exogenous Melatonin on Cell Proliferation and Oxidant/Antioxidant System in Aluminum-Induced Renal Toxicity.

    PubMed

    Karabulut-Bulan, Omur; Bayrak, Bertan Boran; Arda-Pirincci, Pelin; Sarikaya-Unal, Guner; Us, Huseyin; Yanardag, Refiye

    2015-11-01

    Aluminum has toxic potential on humans and animals when it accumulates in various tissues. It was shown in a number of studies that aluminum causes oxidative stress by free radical formation and lipid peroxidation in tissues and thus may cause damage in target organs. Although there are numerous studies investigating aluminum toxicity, biochemical mechanisms of the damage caused by aluminum have yet to be explained. Melatonin produced by pineal gland was shown to be an effective antioxidant. Since kidneys are target organs for aluminum accumulation and toxicity, we have studied the role of melatonin against aluminum-induced renal toxicity in rats. Wistar albino rats were divided into five groups. Group I served as control, and received only physiological saline; group II served as positive control for melatonin, and received ethanol and physiological saline; group III received melatonin (10 mg/kg); group IV received aluminum sulfate (5 mg/kg) and group V received aluminum sulfate and melatonin (in the same dose), injected three times a week for 1 month. Administration of aluminum caused degenerative changes in renal tissues, such as increase in metallothionein immunoreactivity and decrease in cell proliferation. Moreover, uric acid and lipid peroxidation levels and xanthine oxidase activity increased, while glutathione, catalase, superoxide dismutase, paraoxonase 1, glucose-6-phosphate dehydrogenase, and sodium potassium ATPase activities decreased. Administration of melatonin mostly prevented these symptoms. Results showed that melatonin is a potential beneficial agent for reducing damage in aluminum-induced renal toxicity. PMID:25855374

  10. Novel Aluminum (Al)-Carbon Nanotube (CNT) Open-Cell Foams

    NASA Astrophysics Data System (ADS)

    Morsi, K.; Krommenhoek, Max; Shamma, Mohamed

    2016-06-01

    This paper presents for the first time the processing of aluminum (Al)-carbon nanotube (CNT) open-cell foams. Al-2wt pct CNT and Al foams were successfully produced using a spark plasma sintering and dissolution process. Al-CNT foams with porosity levels of ~78 pct were produced. The mechanical response of the open-cell foams reveals initial evidence of enhanced damage tolerance of Al-CNT foams over Al foams produced in this study.

  11. A Case Study of Variation in Aluminum Smelting Cell Thermal State with Control Implications

    NASA Astrophysics Data System (ADS)

    Tandon, G.; Taylor, M. P.; Chen, J. J. J.

    2007-08-01

    The thermal state of an aluminum smelting cell is determined principally by the following parameters: electrolyte temperature and excess aluminum fluoride concentration. Despite the attempts to control them within a predetermined specification range, large variations are observed. The focus of the present study is to identify the causes of the variation and recommend the solutions to minimize it. The task was accomplished by monitoring an industrial operating cell. The Apollo root cause analysis technique has been used to identify the underlying causes of the variation. Smelter’s response of addition of AlF3 in order to control the variation was one of the primary causes. The AlF3 addition to the cell should be based on its mass balance requirement.

  12. Transformation products of submicron-sized aluminum-substituted magnetite: Color and reductant solubility

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Lauer, H. V., Jr.

    1991-01-01

    Magnetite, when present as fine particles, is soluble in acid ammonium oxalate (pH equals 3). However, the commonly used extractant for free iron oxides (i.e., citrate dithionite-bicarbonate (CDB) is not very effective in dissolving magnetite in soils and geologic materials. Upon oxidation, magnetite transforms to maghemite; at elevated temperatures, maghemite inverts to hematite. This transformation causes a change in color from black to red and may affect the reductant solubility as well. The objectives here were to examine the color and reflectance spectral characteristics of products during the transformation of magnetite to maghemite to hematite and to study the effect of Al-substitution in magnetite on the above process. Reductant solubility of Al-substituted magnetite, maghemite, and hematite was also studied. In summary, the transformation of magnetite to maghemite was accompanied by a change in color from black to red because of the oxidation of Fe2(+) to Fe3(+). The phase change maghemite to hematite had a relatively minor effect on the color and the reflectance spectra.

  13. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  14. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  15. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  16. Aluminum-chloride-phthalocyanine encapsulated in liposomes: activity against naturally occurring dog breast cancer cells.

    PubMed

    Rocha, Martha S T; Lucci, Carolina M; Longo, João Paulo F; Galera, Paula D; Simioni, Andreza R; Lacava, Zulmira G M; Tedesco, Antônio C; Azevedo, Ricardo B

    2012-04-01

    Breast tumors represent the most common malignant tumors. Current treatments for humans and pets rely on tumor excision and adjuvant chemotherapy, which may affect both cancer cells and normal cells. Photodynamic therapy (PDT) is an approved treatment modality for a variety of cancers and was recently recommended as a first-line treatment for non-melanoma skin cancers for humans. The main purpose of the present study was to determine the efficacy of PDT using aluminum-chloride-phthalocyanine that is encapsulated in liposomes and LED as a light source to kill naturally occurring female dog breast cancer in vitro. The cytotoxicity behavior of the encapsulated photosensitizer in the dark and under irradiation using the 670 nm laser were investigated using classical trypan blue and MTT cell viability tests, acridine orange and ethidium bromide staining to label organelles, and cell morphology. Cell morphology was evaluated using light and electron microscopy. Our results demonstrate a reduced cell viability that is associated with morphologic alterations. The neoplasic cell destruction was predominantly mediated via a necrotic process, which was assayed using acridine orange and ethidium bromide staining. These findings were confirmed using light and electronic microscopy. The photosensitizer or laser irradiation alone did not induce cytotoxicity or morphological alterations, indicating the safety and efficacy of PDT with chloro-aluminum-phthalocyanine that was encapsulated in liposomes for the treatment of breast cancer cells in vitro. PMID:22515076

  17. Oxygen reduction in fuel cell electrolytes

    SciTech Connect

    Striebel, K.A.; McLarnon, F.R.; Cairns, E.J.

    1987-12-01

    Experimental and theoretical studies of oxygen reduction (OR) in novel acid and alkaline electrolytes on smooth and supported Pt have been carried out. Similar kinetically limited rates for OR were measured in the /open quotes/super-acid/close quotes/ electrolytes trifluoromethane sulfonic acid (TFMSA) and tetrafluoroethane-1,2-disulfonic acid (TFEDSA), with the rotating disk electrode (RDE) technique at 23/degree/C and pH = 1. A first-order dependence on O/sub 2/ pressure was measured. The mechanism for OR on Pt in alkaline electrolytes is complicated by the concurrent oxidation and reduction of Pt. Rotating ring-disk electrode (RRDE) studies carried out with anodic and cathodic potential sweeps in 0.1 to 6.9 M KOH and 0.1 to 4.0 M K/sub 2/CO/sub 3/ revealed similar currents when corrected for O/sub 2/ solubility differences. In dilute electrolytes, OR proceeds primarily through the 4-electron pathway to water, independent of pH. In KOH, the mechanism for Pt oxidation changes and the fraction of current yielding a peroxide product increases at 2 to 3 M. These changes were not observed in K/sub 2/CO/sub 3/. Porous gas diffusion electrodes (GDE) with supported Pt catalyst were studied in a special cell with low uncompensated solution resistance. Cyclic voltammograms yielded measurements of the wetted areas of carbon and Pt and the local electrolyte composition. GDE galvanostatic steady-state performance with 100% O/sub 2/ was measured in 2 to 11 M KOH and 2 to 5.5 M K/sub 2/CO/sub 3/. Results suggest that OR on carbon contributes to the high currents in 6.9 M KOH at high overpotentials. In K/sub 2/CO/sub 3/, lower wetted areas and slow OH/sup /minus// ion transport are responsible for the poor performance when compared with KOH. Models for the steady-state operation of porous GDE's were developed. These models account for the diffusion and reaction of O/sub 2/ and ionic transport in KOH and K/sub 2/CO/sub 3/. 120 refs., 71 figs., 11 tabs.

  18. Determining Prebaked Anode Properties for Aluminum Production

    NASA Astrophysics Data System (ADS)

    Fischer, W. K.; Perruchoud, R.

    1987-11-01

    Critical to the performance of an aluminum reduction cell is anode quality and durability. In recognition of this consideration, the aluminum industry uses a number of standardized tests to evaluate baked anode samples. In addition to these routine evaluation procedures, recent innovations have led to newer methods which are helpful in diagnosing anode problems and improving net carbon usage. Recent work in particular has enlightened operators in such areas as carboxy reactivity, air reactivity, and thermal shock.

  19. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  20. Investigation of Freeze-Linings in Aluminum Production Cells

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2014-08-01

    The molten cryolite bath creates chemically a very aggressive environment in the Hall-Héroult cell, and thus, the formation of a protective solid layer (freeze-lining) on the cell wall is essential for the operation of the present cell designs. To provide further information on the formation of the freeze-lining deposit in this system, laboratory-based studies were undertaken using an air-cooled probe technique The effects of process conditions, i.e., time, bath agitation, and superheat on the microstructures, morphologies of the phases, and the phase assemblages adjacent to the deposit/bath interface were investigated. A detailed microstructural analysis of the steady-state deposits shows that a dense sealing primary-phase layer of cryolite solid solution was formed at the interface of the bath deposit for the process conditions examined. The formation of sealing primary-phase layer at the bath/deposit interface explicitly indicates that the deposit/liquid bath interface temperature is equal to that of the liquidus of the bulk bath. The experimentally investigated liquidus temperature and subliquidus equilibria differ significantly from those previously reported.

  1. Anodic Bubble Behavior and Voltage Drop in a Laboratory Transparent Aluminum Electrolytic Cell

    NASA Astrophysics Data System (ADS)

    Zhao, Zhibin; Wang, Zhaowen; Gao, Bingliang; Feng, Yuqing; Shi, Zhongning; Hu, Xianwei

    2016-06-01

    The anodic bubbles generated in aluminum electrolytic cells play a complex role to bath flow, alumina mixing, cell voltage, heat transfer, etc., and eventually affect cell performance. In this paper, the bubble dynamics beneath the anode were observed for the first time from bottom view directly in a similar industrial electrolytic environment, using a laboratory-scale transparent aluminum electrolytic cell. The corresponding cell voltage was measured simultaneously for quantitatively investigating its relevance to bubble dynamics. It was found that the bubbles generated in many spots that increased in number with the increase of current density; the bubbles grew through gas diffusion and various types of coalescences; when bubbles grew to a certain size with their surface reaching to the anode edge, they escaped from the anode bottom suddenly; with the increase of current density, the release frequency increases, and the size of these bubbles decreases. The cell voltage was very consistent with bubble coverage, with a high bubble coverage corresponding to a higher cell voltage. At low current density, the curves of voltage and coverage fluctuated in a regularly periodical pattern, while the curves became more irregular at high current density. The magnitude of voltage fluctuation increased with current density first and reached a maximum value at current density of 0.9 A/cm2, and decreased when the current density was further increased. The extra resistance induced by bubbles was found to increase with the bubble coverage, showing a similar trend with published equations.

  2. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    SciTech Connect

    Cudzinovic, M.; Sopori, B.

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  3. Organic solar cells on indium tin oxide and aluminum doped zinc oxide anodes

    NASA Astrophysics Data System (ADS)

    Schulze, Kerstin; Maennig, Bert; Leo, Karl; Tomita, Yuto; May, Christian; Hüpkes, Jürgen; Brier, Eduard; Reinold, Egon; Bäuerle, Peter

    2007-08-01

    The authors compare organic solar cells using two different transparent conductive oxides as anode: indium tin oxide (ITO) and three kinds of aluminum doped zinc oxide (ZAO). These anodes with different work functions are used for small molecule photovoltaic devices based on an oligothiophene derivative as donor and fullerene C60 as acceptor molecule. It turns out that cells on ITO and ZAO have virtually identical properties. In particular, the authors demonstrate that the work function of the anode does not influence the Voc of the photovoltaic device due to the use of doped transport layers.

  4. Modulation of miR-19 in Aluminum-Induced Neural Cell Apoptosis.

    PubMed

    Zhu, Mingming; Huang, Cong; Ma, Xiao; Wu, Rui; Zhu, Weiwei; Li, Xiaoting; Liang, Zhaofeng; Deng, Feifei; Zhu, Jianyun; Xie, Wei; Yang, Xue; Jiang, Ye; Wang, Shijia; Wu, Jieshu; Geng, Shanshan; Xie, Chunfeng; Zhong, Caiyun

    2016-01-01

    Neuronal cell death is an important feature of neurodegeneration. Aluminum is associated with neurodegenerative disorders, particularly Alzheimer's disease. However, the underlying mechanisms by which aluminum induces neuronal apoptosis remain to be elucidated. miR-19 is a key miRNA implicated in regulating cell survival process, while the role of miR-19 in Alzheimer's disease has not been investigated. In the present study, we showed that Aluminum maltolate (Al-malt), a lipophilic Al complex which is a common component of human diet with the ability to facilitate the entry of Al into the brain, induced apoptosis in human neuroblastoma SH-SY5Y cells, along with downregulation of miR-19a/miR-19b, upregulation of miR-19-targeted PTEN, and alterations of its downstream apoptosis related proteins including AKT, p53, Bax, and Bcl-2. miR-19 overexpression attenuated Al-malt-induced apoptosis as well as changes in the expression of apoptosis related proteins in SH-SY5Y cells. We further revealed that exposure of rats to Al-malt for 12 weeks at doses relevant to human exposure significantly elevated Al concentrations in serum and brain tissues. Al-malt dose-dependently induced apoptosis in rat brain, as evidenced by increased caspase activation and increased TUNEL staining. Consistent with in vitro results, Al-malt reduced miR-19 expression and altered the expression of apoptotic related proteins in rat brain. Taken together, our data suggest for the first time that miR-19 modulation is critically involved in Al-induced neural cell apoptosis. Findings from this study could provide new insight into the molecular mechanisms of Al-associated neurodegenerative pathogenesis. PMID:26836165

  5. Investigation of materials for inert electrodes in aluminum electrodeposition cells

    SciTech Connect

    Haggerty, J. S.; Sadoway, D. R.

    1987-09-14

    Work was divided into major efforts. The first was the growth and characterization of specimens; the second was Hall cell performance testing. Cathode and anode materials were the subject of investigation. Preparation of specimens included growth of single crystals and synthesis of ultra high purity powders. Special attention was paid to ferrites as they were considered to be the most promising anode materials. Ferrite anode corrosion rates were studied and the electrical conductivities of a set of copper-manganese ferrites were measured. Float Zone, Pendant Drop Cryolite Experiments were undertaken because unsatisfactory choices of candidate materials were being made on the basis of a flawed set of selection criteria applied to an incomplete and sometimes inaccurate data base. This experiment was then constructed to determine whether the apparatus used for float zone crystal growth could be adapted to make a variety of important based melts and their interactions with candidate inert anode materials. The third major topic was Non Consumable Anode (Data Base, Candidate Compositions), driven by our perception that the basis for prior selection of candidate materials was inadequate. Results are presented. 162 refs., 39 figs., 18 tabs.

  6. The photodynamic therapy effect of aluminum and zinc tetrasulfophthalocyanines on melanoma cancer cells

    NASA Astrophysics Data System (ADS)

    Maduray, K.; Karsten, A.; Odhav, B.; Nyokong, T.

    2010-11-01

    Photodynamic therapy (PDT) represents a novel treatment that uses a photosensitizer (PS), light source (laser) of an appropriate wavelength and oxygen to induce cell death in cancer cells. The aim of this study was to investigate the photodynamic effects of aluminum tetrasulfophthalocyanines (AlTSPc) and zinc (ZnTSPc) tetrasulfophthalocyanines activated with a 672nm wavelength laser on melanoma cancer, dermal fibroblast and epidermal keratinocyte cells. Each cell line was photosensitized with either AlTSPc or ZnTSPc for 2 h before using a diode laser with a wavelength of 672nm to deliver a light dose of 4.5 J/cm2 to the cells. The cell viability of melanoma cells were decreased to approximately 50% with concentrations of 40 μg/ml for AlTSPc and 50 μg/ml for ZnTSPc. These PS concentrations caused a slight decrease in the cell viability of fibroblast and keratinocyte cells. Both photosensitizers in the presence of high concentrations (60 μg/ml-100 μg/ml) showed cytotoxicity effects on melanoma cells in its inactive state. This was not observed in fibroblast and keratinocyte cells. Cell death in PDT treated melanoma cells was induced by apoptosis. Therefore, AlTSPc and ZnTSPc exhibit the potential to be used as a PS in PDT for the treatment of melanoma cancer.

  7. Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

    SciTech Connect

    James W. Evans

    2012-04-11

    The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focus of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has

  8. REPORT ON QUALITATIVE VALIDATION EXPERIMENTS USING LITHIUM-ALUMINUM LAYERED DOUBLE-HYDROXIDES FOR THE REDUCTION OF ALUMINUM FROM THE WASTE TREATMENT PLANT FEEDSTOCK

    SciTech Connect

    HUBER HJ; DUNCAN JB; COOKE GA

    2010-05-11

    A process for removing aluminum from tank waste simulants by adding lithium and precipitating Li-Al-dihydroxide (Lithiumhydrotalcite, [LiAl{sub 2}(OH){sub 6}]{sup +}X{sup -}) has been verified. The tests involved a double-shell tank (DST) simulant and a single-shell tank (SST) simulant. In the case of the DST simulant, the product was the anticipated Li-hydrotalcite. For the SST simulant, the product formed was primarily Li-phosphate. However, adding excess Li to the solution did result in the formation of traces of Li-hydrotalcite. The Li-hydrotalcite from the DST supernate was an easily filterable solid. After four water washes the filter cake was a fluffy white material made of < 100 {micro}m particles made of smaller spheres. These spheres are agglomerates of {approx} 5 {micro}m diameter platelets with < 1 {micro}m thickness. Chemical and mineralogical analyses of the filtrate, filter cake, and wash waters indicate a removal of 90+ wt% of the dissolved Al for the DST simulant. For the SST simulant, the main competing reaction to the formation of lithium hydrotalcite appears to be the formation of lithium phosphate. In case of the DST simulant, phosphorus co-precipitated with the hydrotalcite. This would imply the added benefit of the removal of phosphorus along with aluminum in the pre-treatment part of the waste treatment and immobilization plant (WTP). For this endeavor to be successful, a serious effort toward process parameter optimization is necessary. Among the major issues to be addressed are the dependency of the reaction yield on the solution chemistry, as well as residence times, temperatures, and an understanding of particle growth.

  9. Production of aluminum-silicon alloy and ferrosilicon and commercial-purity aluminum by the direct-reduction process. Third annual technical report, 1980 January 1-1980 December 31

    SciTech Connect

    Bruno, M.J.

    1981-01-01

    Progress on the program to demonstrate the technical feasibility of a pilot-sized Direct Reduction Process for producing aluminium and aluminium-silicon alloy is reported for Phase C. Progress is reported on reduction including the following tasks: supply burden material; burden beneficiation; effects of pilot operating parameters; pilot modifications; reactor scale-up design; calculating heat and mass balance; processing mathematical modeling; effects of process variables; information on supportive analytical, phase identification, and mechanical engineering data. Progress on alloy purification is reported in the following tasks: pilot unit installation; effects of pilot operating parameters; pilot unit modifications; and supportive mechanical engineering. Progress on purification to commercial grade aluminum is reported on: pilot unit installation; effects of pilot operating parameters; pilot unit modifications; support pilot operations; and supportive expended man-hours. Plans for Phase D are noted. (MCW)

  10. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    SciTech Connect

    Shao, Guojian; Lou, Chaogang; Kang, Jian; Zhang, Hao

    2015-12-21

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluate roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.

  11. Several new catalysts for reduction of oxygen in fuel cells

    NASA Technical Reports Server (NTRS)

    Cattabriga, R. A.; Cohn, E. M.; Giner, J. D.; Makrides, A. C.; Swette, L. L.

    1970-01-01

    Test results prove nickel carbide or nitride, nickel-cobalt carbide, titanium carbide or nitride, and intermetallic compounds of the transition or noble metals to be efficient electrocatalysts for oxygen reduction in alkaline electrolytes in low temperature fuel cells.

  12. Three-Electrode Metal Oxide Reduction Cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  13. Three-electrode metal oxide reduction cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  14. Reduction of Europium in a Redox Flow Cell

    NASA Astrophysics Data System (ADS)

    Lu, Daluh; Horng, Jiin-Shiung; Tung, Chia-Pao

    1988-05-01

    An electrolytic cell similar to the iron I chromium redox flow cell was used to investigate the reduction of europium. The cell contains two compartments partitioned by an anion exchange membrane, which is permeable to chloride ions. The anolyte is ferrous chloride which is oxidized to ferric form at the anode. Rare-earth chloride prepared from Taiwan black monazite is fed as the catholyte. The reduction of europium was tested in two connected cells at 20 and 45°C. All of Eu3+ can be reduced at 45°C, and 72% of the europium can be recovered in sulfate form. In oxide form, purity is about 84%.

  15. Development of Silver-Free Silicon Photovoltaic Solar Cells with All-Aluminum Electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Cheng

    To date, the most popular and dominant material for commercial solar cells is crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out of all commercial solar cells. Although the potential of crystalline-Si solar cells in supplying energy demands is enormous, their future growth will likely be constrained by two major bottlenecks. The first is the high electricity input to produce crystalline-Si solar cells and modules, and the second is the limited supply of silver (Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching terawatt-scale deployment, which means the electricity produced by crystalline-Si solar cells would never fulfill a noticeable portion of our energy demands in the future. In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al) electroplating has been developed as an alternative metallization technique in the fabrication of crystalline-Si solar cells. The plating is carried out in a near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been found that dense, adherent Al deposits with resistivity in the high 10--6 Ω-cm range can be reproducibly obtained directly on Si substrates and nickel seed layers. An all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al back electrode, has been successfully demonstrated based on commercial p-type monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further optimization of the cell fabrication process, in particular a suitable patterning technique for the front silicon nitride layer, is expected to increase the efficiency of the cell to ~18%. This shows the potential of Al electroplating in cell metallization is promising and replacing Ag with Al as the front finger electrode is feasible.

  16. Simulation of Magnetohydrodynamic Multiphase Flow Phenomena and Interface Fluctuation in Aluminum Electrolytic Cell with Innovative Cathode

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Li, Baokuan; He, Zhu; Feng, Naixiang

    2013-12-01

    A three-dimensional (3D) transient mathematical model has been developed to understand the effect of innovative cathode on molten cryolite (bath)/molten aluminum (metal) interface fluctuation as well as energy-saving mechanism in aluminum electrolytic cell with innovative cathode. Based on the finite element method, the steady charge conservation law, Ohm's law, and steady-state Maxwell's equations were solved in order to investigate electric current field, magnetic field, and electromagnetic force (EMF) field. Then, an inhomogeneous multiphase flow model of three phases including bath, metal, and gas bubbles, based on the finite volume method, was implemented using the Euler/Euler approach to investigate melt motion and bath/metal interface fluctuation. EMF was incorporated into the momentum equations of bath and metal as a source term. Additionally, the interphase drag force was employed to consider different phase interactions. Thus, present work owns three main features: (1) magnetohydrodynamic multiphase flow are demonstrated in detail both in aluminum electrolytic cell with traditional cathode and innovative cathode; (2) bath/metal interface fluctuation due to different driving forces of gas bubbles, EMF, and the combined effect of the two driving forces is investigated, which is critical to the energy saving; and (3) the effect of innovative cathode on melt flow and motion of gas bubbles. A good agreement between the predicated results and measurement is obtained. The velocity difference leading to the melt oscillation decreases due to more uniform flow field. The average velocity of metal in the cell with innovative cathode decreases by approximately 33.98 pct. The gas bubbles in the cell with innovative cathode releases more quickly under the effect of protrusion on the cathode. The average bubble release frequency increases from 1.1 to 1.98 Hz. Hence, the voltage drop caused by gas bubbles would decrease significantly. In addition, the two large vortices

  17. Possible Role of Root Border Cells in Detection and Avoidance of Aluminum Toxicity1

    PubMed Central

    Miyasaka, Susan C.; Hawes, Martha C.

    2001-01-01

    Root border cells are living cells that surround root apices of most plant species and are involved in production of root exudates. We tested predictions of the hypothesis that they participate in detection and avoidance of aluminum (Al) toxicity by comparing responses of two snapbean (Phaseolus vulgaris) cultivars (cv Dade and cv Romano) known to differ in Al resistance at the whole-root level. Root border cells of these cultivars were killed by excess Al in agarose gels or in simple salt solutions. Percent viability of Al-sensitive cv Romano border cells exposed in situ for 96 h to 200 μm total Al in an agarose gel was significantly less than that of cv Dade border cells; similarly, relative viability of harvested cv Romano border cells was significantly less than that of cv Dade cells after 24 h in 25 μm total Al in a simple salt solution. These results indicate that Al-resistance mechanisms that operate at the level of whole roots also operate at the cellular level in border cells. Al induced a thicker mucilage layer around detached border cells of both cultivars. Cultivar Dade border cells produced a thicker mucilage layer in response to 25 μM Al compared with that of cv Romano cells after 8 h of treatment and this phenomenon preceded that of observed cultivar differences in relative cell viability. Release of an Al-binding mucilage by border cells could play a role in protecting root tips from Al-induced cellular damage. PMID:11299377

  18. Natural Killer Cell Reduction and Uteroplacental Vasculopathy.

    PubMed

    Golic, Michaela; Haase, Nadine; Herse, Florian; Wehner, Anika; Vercruysse, Lisbeth; Pijnenborg, Robert; Balogh, Andras; Saether, Per Christian; Dissen, Erik; Luft, Friedrich C; Przybyl, Lukasz; Park, Joon-Keun; Alnaes-Katjavivi, Patji; Staff, Anne Cathrine; Verlohren, Stefan; Henrich, Wolfgang; Muller, Dominik N; Dechend, Ralf

    2016-10-01

    Uterine natural killer cells are important for uteroplacental development and pregnancy maintenance. Their role in pregnancy disorders, such as preeclampsia, is unknown. We reduced the number of natural killer cells by administering rabbit anti-asialo GM1 antiserum in an established rat preeclamptic model (female human angiotensinogen×male human renin) and evaluated the effects at the end of pregnancy (day 21), compared with preeclamptic control rats receiving normal rabbit serum. In 100% of the antiserum-treated, preeclamptic rats (7/7), we observed highly degenerated vessel cross sections in the mesometrial triangle at the end of pregnancy. This maternal uterine vasculopathy was characterized by a total absence of nucleated/living cells in the vessel wall and perivascularly and prominent presence of fibrosis. Furthermore, there were no endovascular trophoblast cells within the vessel lumen. In the control, normal rabbit serum-treated, preeclamptic rats, only 20% (1/5) of the animals displayed such vasculopathy. We confirmed the results in healthy pregnant wild-type rats: after anti-asialo GM1 treatment, 67% of maternal rats displayed vasculopathy at the end of pregnancy compared with 0% in rabbit serum-treated control rats. This vasculopathy was associated with a significantly lower fetal weight in wild-type rats and deterioration of fetal brain/liver weight ratio in preeclamptic rats. Anti-asialo GM1 application had no influence on maternal hypertension and albuminuria during pregnancy. Our results show a new role of natural killer cells during hypertensive pregnancy in maintaining vascular integrity. In normotensive pregnancy, this integrity seems important for fetal growth. PMID:27550919

  19. Aluminum Activates PERK-EIF2α Signaling and Inflammatory Proteins in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Rizvi, Syed Husain Mustafa; Parveen, Arshiya; Ahmad, Israr; Ahmad, Iqbal; Verma, Anoop K; Arshad, Md; Mahdi, Abbas Ali

    2016-07-01

    Aluminum is the third most abundant element present in the earth's crust and human exposure to it is possible due to industrialization, utensils, medicines, antiperspirants, etc. Evidences suggest involvement of aluminum in a variety of neurodegenerative disorders including Alzheimer's disease. Endoplasmic reticulum (ER) stress has been implicated in various neurological disorders. ER stress may be a result of impaired calcium homeostasis due to perturbed redox balance and is known to elicit inflammation through the activation of unfolded protein response (UPR). In the present study, we aimed to investigate the role of aluminum in ER stress-mediated activation of inflammatory responses in neuroblastoma cells. Lactate dehydrogenase (LDH) release assay revealed that aluminum compromised the membrane integrity of neuroblastoma cells, probably due to membrane damage, as indicated by enhanced levels of lipid peroxidation (LPO). Besides this, our results clearly demonstrated elevated reactive oxygen species (ROS) levels and a weakened antioxidant defence system manifested by decrease in catalase (CAT) activity and cellular glutathione (GSH). Moreover, we studied the expression of key apoptosis-related proteins, ER stress-mediated activation of UPR, and its downstream inflammatory pathway. It was observed that aluminum potentially enhanced protein levels of PERK, EIF2α, caspase 9, caspase 3, and inflammatory markers like NF-κB, NLRP3, HMGB1, and nitric oxide (NO). Furthermore, aluminum altered TNFα, IL1β, IL6, and IL10 mRNA levels as well. The overall findings indicated that aluminum mediates UPR activation through ER stress, which results in induction of inflammatory pathway and apoptotic proteins in neuronal cells. PMID:26546554

  20. Effects of anodic aluminum oxide membrane on performance of nanostructured solar cells

    NASA Astrophysics Data System (ADS)

    Dang, Hongmei; Singh, Vijay

    2015-05-01

    Three nanowire solar cell device configurations have been fabricated to demonstrate the effects of the host anodized aluminum oxide (AAO) membrane on device performance. The three configurations show similar transmittance spectra, indicating that AAO membrane has negligible optical absorption. Power conversion efficiency (PCE) of the device is studied as a function of the carrier transport and collection in cell structures with and without AAO membrane. Free standing nanowire solar cells exhibit PCE of 9.9%. Through inclusion of AAO in solar cell structure, interface defects and traps caused by humidity and oxygen are reduced, and direct contact of CdTe tentacles with SnO2 and formation of micro shunt shorts are prevented; hence PCE is improved to 11.1%-11.3%. Partially embedded nanowire solar cells further reduce influence of non-ideal and non-uniform nanowire growth and generate a large amount of carriers in axial direction and also a small quantity of carriers in lateral direction, thus becoming a promising solar cell structure. Thus, including AAO membrane in solar cell structure provides favorable electro-optical properties as well as mechanical advantages.

  1. The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa.

    PubMed

    Andrade, L F; Davide, L C; Gedraite, L S

    2010-05-01

    SPL (spent pot liner) is a solid waste produced by the aluminum industry. This waste has a highly variable composition, consisting of cyanides, fluorides, organics, and metals. The aim of this work was to study the effect of SPL on root tips of Lactuca sativa using current plant bioassays. We observed a decrease in the germination rate with increasing concentrations of SPL. In addition, SPL was found to reduce root growth, which is correlated with a decrease in the mitotic index. Nevertheless, we noticed a significant enhancement in the percentage of stickiness, c-metaphase, anaphase bridges, and laggard chromosomes in dividing cells and also an increase in the number of cells with condensed nuclei. Moreover, SPL was found to alter the root tip surface, resulting in a reduction in the amount of root hair. These results demonstrate that SPL is a toxic agent that leads to cell damage and disturbance. PMID:20092896

  2. Synergistic effects of iron and aluminum on stress-related gene expression in primary human neural cells.

    PubMed

    Alexandrov, Peter N; Zhao, Yuhai; Pogue, Aileen I; Tarr, Matthew A; Kruck, Theo P A; Percy, Maire E; Cui, Jian-Guo; Lukiw, Walter J

    2005-11-01

    Disturbances in metal-ion transport, homeostasis, overload and metal ion-mediated catalysis are implicated in neurodegenerative conditions such as Alzheimer's disease (AD). The mechanisms of metal-ion induced disruption of genetic function, termed genotoxicity, are not well understood. In these experiments we examined the effects of non-apoptotic concentrations of magnesium-, iron- and aluminum-sulfate on gene expression patterns in untransformed human neural (HN) cells in primary culture using high density DNA array profiling and Western immunoassay. Two week old HN cells were exposed to low micromolar magnesium, iron, or aluminum for 7 days, representing trace metal exposure over one-third of their lifespan. While total RNA yield and abundance were not significantly altered, both iron and aluminum were found to induce HSP27, COX-2, betaAPP and DAXX gene expression. Similarly up-regulated gene expression for these stress-sensing, pro-inflammatory and pro-apoptotic elements have been observed in AD brain. The combination of iron and aluminum together was found to be particularly effective in up-regulating these genes, and was preceded by the evolution of reactive oxygen intermediates as measured by 2',7'-dichlorofluorescein diacetate assay. These data indicate that physiologically relevant amounts of iron and aluminum are capable of inducing Fenton chemistry-triggered gene expression programs that may support downstream pathogenic responses and brain cell dysfunction. PMID:16308480

  3. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes

    NASA Astrophysics Data System (ADS)

    Kwon, Chang-Woo; Lee, Jae-Il; Kim, Ki-Bum; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2012-07-01

    The thermomechanical stability of micro-solid oxide fuel cells (micro-SOFCs) fabricated on an anodized aluminum oxide (AAO) membrane template is investigated. The full structure consists of the following layers: AAO membrane (600 nm)/Pt anode/YSZ electrolyte (900 nm)/porous Pt cathode. The utilization of a 600-nm-thick AAO membrane significantly improves the thermomechanical stability due to its well-known honeycomb-shaped nanopore structure. Moreover, the Pt anode layer deposited in between the AAO membrane and the YSZ electrolyte preserves its integrity in terms of maintaining the triple-phase boundary (TPB) and electrical conductivity during high-temperature operation. Both of these results guarantee thermomechanical stability of the micro-SOFC and extend the cell lifetime, which is one of the most critical issues in the fabrication of freestanding membrane-type micro-SOFCs.

  4. Aluminum hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting cell type.

    PubMed

    Rimaniol, Anne-Cécile; Gras, Gabriel; Verdier, François; Capel, Francis; Grigoriev, Vladimir B; Porcheray, Fabrice; Sauzeat, Elisabeth; Fournier, Jean-Guy; Clayette, Pascal; Siegrist, Claire-Anne; Dormont, Dominique

    2004-08-13

    Aluminum hydroxide (AlOOH) has been used for many years as a vaccine adjuvant, but little is known about its mechanism of action. We investigated in this study the in vitro effect of aluminum hydroxide adjuvant on isolated macrophages. We showed that AlOOH-stimulated macrophages contain large and persistent intracellular crystalline inclusions, a characteristic property of muscle infiltrated macrophages described in animal models of vaccine injection, as well as in the recently described macrophagic myofasciitis (MMF) histological reaction in humans. AlOOH-loaded macrophages exhibited phenotypical and functional modifications, as they expressed the classical markers of myeloid dendritic cells (HLA-DR(high)/CD86(high)/CD83(+)/CD1a(-)/CD14(-)) and displayed potent ability to induce MHC-II-restricted antigen specific memory responses, but kept a macrophage morphology. This suggests a key role of macrophages, in the reaction to AlOOH-adjuvanted vaccines and these mature antigen-presenting macrophages may therefore be of particular importance in the establishment of memory responses and in vaccination mechanisms leading to long-lasting protection. PMID:15297065

  5. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    SciTech Connect

    Fasoyinu, Yemi; Griffin, John A.

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  6. WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS USING POST ALUMINUM DISSOLUTION TANK 51 SLUDGE SLURRY

    SciTech Connect

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Erich Hansen, E; Dan Lambert, D; Michael Stone, M

    2008-04-28

    The remaining contents of Tank 51 from Sludge Batch 4 will be blended with Purex sludge from Tank 7 to constitute Sludge Batch 5 (SB5). The Savannah River Site (SRS) Liquid Waste Organization (LWO) has completed caustic addition to Tank 51 to perform low temperature Al dissolution on the H-Modified (HM) sludge material to reduce the total mass of sludge solids and Al being fed to the Defense Waste Processing Facility (DWPF). The Savannah River National Lab (SRNL) has also completed aluminum dissolution tests using a 3-L sample of Tank 51 sludge slurry through funding by DOE EM-21. This report documents assessment of downstream impacts of the aluminum dissolved sludge, which were investigated so technical issues could be identified before the start of SB5 processing. This assessment included washing the aluminum dissolved sludge to a Tank Farm projected sodium concentration and weight percent insoluble solids content and DWPF Chemical Process Cell (CPC) processing using the washed sludge. Based on the limited testing, the impact of aluminum dissolution on sludge settling is not clear. Settling was not predictable for the 3-L sample. Compared to the post aluminum dissolution sample, settling after the first wash was slower, but settling after the second wash was faster. For example, post aluminum dissolution sludge took six days to settle to 60% of the original sludge slurry height, while Wash 1 took nearly eight days, and Wash 2 only took two days. Aluminum dissolution did impact sludge rheology. A comparison between the as-received, post aluminum dissolution and washed samples indicate that the downstream materials were more viscous and the concentration of insoluble solids less than that of the starting material. This increase in viscosity may impact Tank 51 transfers to Tank 40. The impact of aluminum dissolution on DWPF CPC processing cannot be determined because acid addition for the Sludge Receipt and Adjustment Tank (SRAT) cycle was under-calculated and thus

  7. Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Elam, David; Ayon, Arturo A.

    2013-06-01

    We report radial, p-n junction, sub-micrometre, pillar array textured solar cells, fabricated on an n-type Czochralski silicon wafer. Relatively simple processing schemes such as metal-assisted chemical etching and spin on dopant techniques were employed for the fabrication of the proposed solar cells. Atomic layer deposition (ALD) grown aluminum oxide (Al2O3) was employed as a surface passivation layer on the B-doped emitter surface. In spite of the fact that the sub-micrometre pillar array textured surface has a relatively high surface-to-volume ratio, we observed an open circuit voltage (VOC) and a short circuit current density (JSC) as high as 572 mV and 29.9 mA cm-2, respectively, which leads to a power conversion efficiency in excess of 11.30%, for the optimized structure of the solar cell described herein. Broadband omnidirectional antireflection effects along with the light trapping property of the sub-micrometre, pillar array textured surface and the excellent passivation quality of the ALD-grown Al2O3 on the B-doped emitter surface were responsible for the enhanced electrical performance of the proposed solar cells.

  8. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. First interim technical report, Phase D, January 1-March 31, 1981

    SciTech Connect

    Bruno, M.J.

    1981-04-01

    Operation of the bench AF-reactor on burden with all reducing carbon exterior to the ore pellet resulted in low metal alloy product yields and prematurely terminated runs, indicating the need for intimate contact between alumina and carbon to produce oxycarbide liquid prior to reaction with solid silicon carbide. Carbon solubility tests made on 60Al-40Si alloys at 2200/sup 0/C in graphite crucibles indicated continued reaction to form SiC for one hour. Efficiency of reduction to SiC ranged from 68 to 100%. The A-C two-electrode submerged arc reactor pilot, SAR-II, was successfully operated on both alumina-clay-coke and alumina-silicon carbide-coke (from the VSR prereduction) burdens. Metal alloy was produced and tapped in each of four runs. The pilot crystallizer was operated to evalute the two-stage (stop and go) crystallization technique on obtaining high yields of Al in Al-Si eutectic, with a limit of 1.0% Fe and 0.1% Ti in the alloy product. 18 figures, 19 tables. (DLC)

  9. The aluminum smelting process.

    PubMed

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  10. The Aluminum Smelting Process

    PubMed Central

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  11. Cells with sodium hypochlorite or chlorite and anodes of magnesium or aluminum

    SciTech Connect

    Brenner, A.

    1996-10-01

    A cell composed of a chlorine oxy-ion salt, acting as the battery positive, and anodes of magnesium or aluminum was found to be capable of producing potentials and currents comparable to those of conventional batteries. However, its use would have to be limited to that of a reserve type of battery with a short service-life because of the chemical interaction of the anodes with the electrolyte. This rate of reaction was considerably reduced by the presence of nitrate ion in the electrolyte. The rate of decomposition of hypochlorite solutions on aging was found not to be significant for their use in a reserve type of battery. The utilization of the reactants in the magnesium-chlorine oxy-ion cells was about 60% on a continuous discharge. Since these cells after being discharged would contain only a solution of common salt and a slurry of a metal hydroxide, they were innocuous with respect to the environment. Since this characteristic might make the battery of possible interest for a green motor vehicles, a battery was evaluated with respect to the adaptations that would be necessary for such an application.

  12. Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells.

    PubMed

    Zhao, Xingyue; Shen, Heping; Zhang, Ye; Li, Xin; Zhao, Xiaochong; Tai, Meiqian; Li, Jingfeng; Li, Jianbao; Li, Xin; Lin, Hong

    2016-03-01

    Although low-temperature, solution-processed zinc oxide (ZnO) has been widely adopted as the electron collection layer (ECL) in perovskite solar cells (PSCs) because of its simple synthesis and excellent electrical properties such as high charge mobility, the thermal stability of the perovskite films deposited atop ZnO layer remains as a major issue. Herein, we addressed this problem by employing aluminum-doped zinc oxide (AZO) as the ECL and obtained extraordinarily thermally stable perovskite layers. The improvement of the thermal stability was ascribed to diminish of the Lewis acid-base chemical reaction between perovskite and ECL. Notably, the outstanding transmittance and conductivity also render AZO layer as an ideal candidate for transparent conductive electrodes, which enables a simplified cell structure featuring glass/AZO/perovskite/Spiro-OMeTAD/Au. Optimization of the perovskite layer leads to an excellent and repeatable photovoltaic performance, with the champion cell exhibiting an open-circuit voltage (Voc) of 0.94 V, a short-circuit current (Jsc) of 20.2 mA cm(-2), a fill factor (FF) of 0.67, and an overall power conversion efficiency (PCE) of 12.6% under standard 1 sun illumination. It was also revealed by steady-state and time-resolved photoluminescence that the AZO/perovskite interface resulted in less quenching than that between perovskite and hole transport material. PMID:26960451

  13. External quantum efficiency and photovoltaic performance of silicon cells deposited with aluminum, indium, and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ho, Wen-Jeng; Hu, Chia-Hua; Yeh, Chien-Wu; Lee, Yi-Yu

    2016-08-01

    In this study, the plasmonic light scattering of aluminum (Al), indium (In), and sliver (Ag) nanoparticles (NPs) deposited on silicon solar cells was demonstrated. For comparison, the dimensions of all NPs were maintained at 17–25 nm with a coverage of approximately 30–40% through the control of film deposition and thermal annealing conditions. Absorbance and surface plasmon Raman scattering were used to examine the different localized surface plasmon resonances (LSPRs) of the proposed NPs. Optical reflectance, external quantum efficiency (EQE) response, and photovoltaic current density–voltage characteristics under AM 1.5G illumination were used to confirm the contribution of the plasmonic light scattering of the NPs. The conversion efficiencies of the solar cells with Al, In, and Ag NPs increased 1.21-, 1.23-, and 1.17-fold, respectively, compared with that of the reference bare Si solar cell. The EQE response and photovoltaic performance revealed that Al and In NPs produced broadband plasmonic light scattering and increased efficiency, far exceeding the results obtained using Ag NPs.

  14. Early events responsible for aluminum toxicity symptoms in suspension-cultured tobacco cells.

    PubMed

    Sivaguru, Mayandi; Yamamoto, Yoko; Rengel, Zdenko; Ahn, Sung Ju; Matsumoto, Hideaki

    2005-01-01

    We investigated the aluminum (Al)-induced alterations in zeta potential, plasma membrane (PM) potential and intracellular calcium levels to elucidate their interaction with callose production induced by Al toxicity. A noninvasive confocal laser microscopy has been used to analyse the live tobacco (Nicotiana tabacum) cell events by means of fluorescent probes Fluo-3 acetoxymethyl ester (intracellular calcium) and DiBAC4 (PM potential) as well as to monitor callose accumulation. Log-phase cells showed no detectable changes in the PM potential during the first 30 min of Al treatment, but sustained large depolarization from 60 min onwards. Measurement of zeta potential confirmed the depolarization effect of Al, but the kinetics were different. The Al-treated cells showed a moderate increase in intracellular Ca2+ levels and callose production in 1 h, which coincided with the time course of PM depolarization. Compared with the Al treatment, cyclopiazonic acid, an inhibitor of endoplasmic reticulum Ca(2+)-ATPase, facilitated a higher increase in intracellular Ca2+ levels, but resulted in accumulation of only moderate levels of callose. Calcium channel modulators and Al induced similar levels of callose in the initial 1 h of treatment. Callose production induced by Al toxicity is dependent on both depolarization of the PM and an increase in intracellular Ca2+ levels. PMID:15720625

  15. Physicochemical properties of magnesium aluminum silicate (smectone) gels prepared using electrolytic-reduction ion water (2): Effects of various salts on the phase diagram.

    PubMed

    Okajima, Masahiro; Shimokawa, Ken-ichi; Ishii, Fumiyoshi

    2009-09-01

    We produced gels using electrolytic-reduction ion water and magnesium aluminum silicates (smectone), and evaluated in detail gel properties in the presence of various types of salt (NaCl, KCl, CaCl(2), MgCl(2), and AlCl(3)). Each salt was added to deionized-distilled water or electrolytic-reduction ion water, and phase diagrams for the smectone concentration (2.0-4.0%) were produced. The areas of the three phases of smectone (gel, sol, and separation) at each salt concentration were expressed as percentages of the total area. As a result, uni- and polyvalent cations (excluding Ca(2+) ions) affected the stability of gels produced using electrolytic-reduction ion water, and, particularly, univalent cations (Na(+), K(+)) markedly improved gel stability. Using electrolytic-reduction ion water as a dispersal medium, drug delivery systems (DDS) that can maintain the gelling state can be prepared. Thus, gel preparations with maintained functions or controlled-release transdermal drugs can be obtained. PMID:19477104

  16. The development of BCB-sealed galvanic cells. Case study: aluminum-platinum cells activated with sodium hypochlorite electrolyte solution

    NASA Astrophysics Data System (ADS)

    Dlutowski, J.; Biver, C. J.; Wang, W.; Knighton, S.; Bumgarner, J.; Langebrake, L.; Moreno, W.; Cardenas-Valencia, A. M.

    2007-08-01

    Energy on demand is an important concept in remote sensor development. The fabrication process for silicon-wafer-based, totally enclosed galvanic cells is presented herein. Benzocyclyobutene (BCB), a photo-patternable material, is used as the adhesive layer between the silicon wafers on which metal electrodes are patterned to form the cells' electrolyte cavity. As a case study, and since aluminum is an anode material with thermodynamic high energy density, this metal is evaporated onto a wafer and used as an anode. A sputtered platinum film collects the charge and provides a catalytic surface in the cell cathode. The metal film patterning process and wafer-to-wafer bonding with BCB is detailed. The difficulties encountered, and design modifications to overcome these, are presented. Cells of the mentioned design were activated with sodium hypochlorite solution electrolyte. Typical potential outputs for the cells, as a function of operational time, are also presented. With a 5 kΩ load, a potential of 1.4 V was maintained for over 240 min, until depletion of the electrolyte occurred. Average cell energy outputs under electrical loads between 100 Ω and 5 kΩ were in the range of 4-10 J with columbic densities ranging from 45 to 83 Ah L-1.

  17. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    SciTech Connect

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  18. Cell oxidation-reduction imbalance after modulated radiofrequency radiation.

    PubMed

    Marjanovic, Ana Marija; Pavicic, Ivan; Trosic, Ivancica

    2015-01-01

    Aim of this study was to evaluate an influence of modulated radiofrequency field (RF) of 1800 MHz, strength of 30 V/m on oxidation-reduction processes within the cell. The assigned RF field was generated within Gigahertz Transversal Electromagnetic Mode cell equipped by signal generator, modulator, and amplifier. Cell line V79, was irradiated for 10, 30, and 60 min, specific absorption rate was calculated to be 1.6 W/kg. Cell metabolic activity and viability was determined by MTT assay. In order to define total protein content, colorimetric method was used. Concentration of oxidised proteins was evaluated by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) marked with fluorescent probe 2',7'-dichlorofluorescin diacetate were measured by means of plate reader device. In comparison with control cell samples, metabolic activity and total protein content in exposed cells did not differ significantly. Concentrations of carbonyl derivates, a product of protein oxidation, insignificantly but continuously increase with duration of exposure. In exposed samples, ROS level significantly (p < 0.05) increased after 10 min of exposure. Decrease in ROS level was observed after 30-min treatment indicating antioxidant defence mechanism activation. In conclusion, under the given laboratory conditions, modulated RF radiation might cause impairment in cell oxidation-reduction equilibrium within the growing cells. PMID:25119294

  19. Measurement of DNA damage and cell killing in Chinese hamster V79 cells irradiated with aluminum characteristic ultrasoft X rays

    SciTech Connect

    Prise, K.M.; Folkard, M.; Davies, S.; Michael, B.D.

    1989-03-01

    Chinese hamster V79 cells were irradiated with 1.487 keV aluminum characteristic X rays produced using a cold-cathode discharge tube. Under aerobic conditions a relative biological effectiveness (RBE) of 2.18 for cell killing in comparison to 250-kVp X rays was measured using cells grown in suspension and irradiated on membrane filters. DNA damage in the form of single-strand (ssb) and double-strand breaks (dsb) was measured using the filter elution technique. The aerobic RBEs are 1.64 for dsb induction and 0.49 for ssb induction, consistent with the view that dsb are more closely related to cell kill than ssb. A reduced oxygen enhancement ratio (OER) for cell killing was measured for Al-K X rays, but the OER for dsb induction was similar to that measured for 250-kVp X rays. A curvilinear relationship between dsb induction and dose is observed, similar to that seen for 250-kVp X rays. This agrees with the concept that ultrasoft X rays produce critical lesions similar to hard X rays but with a greater efficiency per unit dose.

  20. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements

    PubMed Central

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-eun; Seo, Jung Hwan

    2016-01-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties. PMID:26948248

  1. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements

    NASA Astrophysics Data System (ADS)

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-Eun; Seo, Jung Hwan

    2016-03-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties.

  2. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements.

    PubMed

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-Eun; Seo, Jung Hwan

    2016-01-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties. PMID:26948248

  3. Characterization of Time-Dependent Behavior of Ramming Paste Used in an Aluminum Electrolysis Cell

    NASA Astrophysics Data System (ADS)

    Orangi, Sakineh; Picard, Donald; Alamdari, Houshang; Ziegler, Donald; Fafard, Mario

    2015-12-01

    A new methodology was proposed for the characterization of time-dependent behavior of materials in order to develop a constitutive model. The material used for the characterization was ramming paste, a porous material used in an aluminum electrolysis cell, which is baked in place under varying loads induced by the thermal expansion of other components of the cell. In order to develop a constitutive model representing the paste mechanical behavior, it was necessary to get some insight into its behavior using samples which had been baked at different temperatures ranging from 200 to 1000 °C. Creep stages, effect of testing temperature on the creep, creep-recovery, as well as nonlinear creep were observed for designing a constitutive law. Uniaxial creep-recovery tests were carried out at two temperatures on the baked paste: ambient and higher. Results showed that the shape of creep curves was similar to a typical creep; recovery happened and the creep was shown to be nonlinear. Those experimental observations and the identification of nonlinear parameters of developed constitutive model demonstrated that the baked paste experiences nonlinear viscoelastic-viscoplastic behavior at different temperatures.

  4. Apoptosis induction by aluminum phthalocyanine tetrasulfonate-based sonodynamic therapy in HL-60 cells

    NASA Astrophysics Data System (ADS)

    Iwase, Yumiko; Yumita, Nagahiko; Nishi, Koji; Kuwahara, Hiroyuki; Fukai, Toshio; Ikeda, Toshihiko; Chen, Fu-shih; Momose, Yasunori; Umemura, Shin-ichiro

    2015-07-01

    The present study aims to investigate sonodynamically-induced apoptosis using the phthalocyanine, chloroaluminum phthalocyanine tetrasulfonate (AlPcTS). HL-60 cells were exposed to ultrasound for up to 3 min in the absence and presence of AlPcTS. Apoptosis was analyzed by cell morphology, DNA fragmentation, and caspase-3 activity. Electron spin resonance was used to measure reactive oxygen species. The number of apoptotic cells showing membrane blebbing and cell shrinkage after combined treatment (ultrasound and AlPcTS) was significantly higher than following other treatments, including ultrasound alone and AlPcTS alone. Furthermore, DNA ladder formation, caspase-3 activation and enhanced nitroxide generation were observed in cells treated with ultrasound and AlPcTS. Sonodynamically induced apoptosis, caspase-3 activation, and nitroxide generation were significantly suppressed by histidine. The significant reduction by histidine indicated that ultrasonically generated reactive oxygen species, such as singlet oxygen, is an important mediator of sonodynamically-induced apoptosis.

  5. Analysis of aluminum nano-gratings assisted light reflection reduction in GaAs metal-semiconductor-metal photodetectors

    NASA Astrophysics Data System (ADS)

    Fan, Zhenzhu; Su, Yahui; Zhang, Huayong; Han, Xiaohu; Ren, Feifei

    2015-09-01

    Plasmonics-based GaAs metal-semiconductor-metal photodetector (MSM-PD) with aluminum nano-gratings was proposed. A detailed numerical study of subwavelength nanogratings behavior to reduce the light reflection is performed by finite-difference time domain (FDTD) algorithm. The geometric parameters of nano-gratings, such as aperture width, the nano-gratings height, the duty cycles are optimized for subwavelength metal nanogratings on GaAs substrate and their impact on light reflection below the conventional MSM-PD is confirmed. Simulation results show that a light reflection factor around 15% can be obtained near the wavelength of 900 nm with optimized MSM-PDs, and in visible light spectrum, the Al nano-gratings show better performance than Au nano-gratings.

  6. Mortality and cancer experience of Quebec aluminum reduction plant workers. Part I: The reduction plants and coal tar pitch volatile (CTPV) exposure assessment

    SciTech Connect

    Lavoue, J.; Gerin, M.; Cote, J.; Lapointe, R.

    2007-09-15

    This paper presents the exposure assessment and job-exposure matrix (JEM) used to estimate coal tar pitch volatile (CTPV) exposure for a study of mortality and cancer incidence in aluminum smelter workers in Quebec, Canada. Historical CTPV exposure was assessed by estimating benzene-soluble material (BSM) and benzo(a)pyrene (B(a)P) levels for combinations of job and time period. Estimates were derived by using several procedures including averaging measurement data, a deterministic mathematical model using process-related correction factors, and expert-based extrapolation. The JEM comprised 28,910 jobs, covering 7 facilities from 1916 to 1999. Estimated exposures ranged from 0.01 {mu} g/m{sup 3} to 68.08 {mu} g/m{sup 3} (B(a)P) and 0.01 mg/m{sup 3} to 3.64 mg/m{sup 3} (BSW) and were lowest before 1940 and after 1980. This methodology constitutes an improvement compared with methods used for previous studies of the Quebec cohort.

  7. Occurrence of aluminum in chloride cells of Perla marginata (Plecoptera) after exposure to low pH and elevated aluminum concentration

    SciTech Connect

    Guerold, F.; Giamberini, L.; Pihan, J.C.; Tourmann, J.L.; Kaufmann, R.

    1995-04-01

    As a consequence of acid depositions on poorly buffered catchments underlain by hard rocks, aluminum is mobilized and transported from terrestrial systems to the aquatic environment. Loss of fishes has been related to low pH and elevated aluminum concentrations in surface waters which present a low ionic content especially during acid stress such as snowmelt and heavy rainfalls. Among the causes of fish population decline in acid waters, aluminum is considered a toxic cofactor. Different studies have clearly shown that aluminum is accumulated in different organs such as kidneys, liver and gills. Research on fish has demonstrated that aluminum may be toxic, but the toxicity is markedly influenced by the pH, organic compounds and calcium content of the water. Field surveys have shown clearly that macroinvertebrates are also affected by surface-water acidification. However, little is know about the possible effects of aluminum on aquatic invertebrates and, particularly, on aquatic insects exposed to acidic conditions. Hall et al. have shown that the whole-body concentration of aluminum decreases in blackflies and mayflies transplated from neutral water to acid water. Similar results have been reported for Daphnia and chironomid. On the contrary, Ormerod et al. demonstrated the absence of relationship between water pH and insect aluminum concentrations. When aluminum occurs in aquatic insects, it has been shown that it is primarily adsorbed on the external surface and/or accumulates in gut contents. To our knowledge, the subcellular location as well as the toxicity of aluminum to acid-sensitive aquatic insects remains unclear and existing hypotheses are often based on research on fish. In this content the purpose of this study was to investigate the presence of aluminum at a subcellular level in the acid-sensitive species of stonefly, Perla marginata, after exposure to low pH and elevated aluminum concentrations. 18 refs., 1 fig., 1 tab.

  8. Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes.

    PubMed

    Wilken, Sebastian; Wilkens, Verena; Scheunemann, Dorothea; Nowak, Regina-Elisabeth; von Maydell, Karsten; Parisi, Jürgen; Borchert, Holger

    2015-01-14

    With the use of two transparent electrodes, organic polymer-fullerene solar cells are semitransparent and may be combined to parallel-connected multijunction devices or used for innovative applications like power-generating windows. A challenging issue is the optimization of the electrodes, to combine high transparency with adequate electric properties. In the present work, we study the potential of sputter-deposited aluminum-doped zinc oxide as an alternative to the widely used but relatively expensive indium tin oxide (ITO) as cathode material in semitransparent polymer-fullerene solar cells. Concerning the anode, we utilized an insulator-metal-insulator structure based on ultrathin Au films embedded between two evaporated MoO3 layers, with the outer MoO3 film (capping layer) serving as a light coupling layer. The performance of the ITO-free semitransparent polymer-fullerene solar cells was systematically studied as dependent on the thickness of the capping layer and the active layer as well as the illumination direction. These variations were found to have strong impact on the obtained photocurrent densities. We performed optical simulations of the electric field distribution within the devices using the transfer-matrix method, to analyze the origin of the current density variations in detail and provide deep insight into the device physics. With the conventional absorber materials studied here, optimized ITO-free and semitransparent devices reached 2.0% power conversion efficiency and a maximum optical transmission of 60%, with the device concept being potentially transferable to other absorber materials. PMID:25495167

  9. Novel aqueous dual-channel aluminum-hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarization losses of 0.9 mV cm(exp 2) mA(exp -1), and power densities of 1 W/cm(exp 2). Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H2O2 + 2OH(-) yields 2AlO2(-) + 4H2O E = 2.3 V. The search for electrical propulsion sources which fit the requirements for electrically powered vehicles has blurred the standard characteristics associated with electrochemical storage systems. Presently, electrochemical systems comprised of mechanically rechargeable primary batteries, secondary batteries, and fuel cells are candidates for electrochemical propulsion sources. While important advances in energy and power density continue for nonaqueous and molten electrolytes, aqueous electrolyte batteries often have an advantage in simplicity, conductivity, cost effectiveness, and environmental impact. Systems coupling aluminum anodes and aqueous electrolytes have been investigated. These systems include: aluminum/silver oxide, aluminum/manganese dioxide, aluminum air, aluminum/hydrogen peroxide aqueous batteries, and the recently introduced aluminum/ferricyanide and aluminum sulfur aqueous batteries. Conventional aqueous systems such as the nickel cadmium and lead-acid batteries are characterized by their relatively low energy densities and adverse environmental impact. Other systems have substantially higher theoretical energy capacities. While aluminum-silver oxide has demonstrated the highest steady-state power density, its high cost is an impediment for widespread utilization for electric propulsion.

  10. Durability and characterization studies of polymer electrolyte membrane fuel cell's coated aluminum bipolar plates and membrane electrode assembly

    NASA Astrophysics Data System (ADS)

    Hung, Y.; Tawfik, H.; Mahajan, D.

    Coated aluminum bipolar plates demonstrate better mechanical strength, ease of manufacturability, and lower interfacial contact resistance (ICR) than graphite composite plates in polymer electrolyte membrane (PEM) fuel cell applications. In this study, coated aluminum and graphite composite bipolar plates were installed in separate single PEM fuel cells and tested under normal operating conditions and cyclic loading. After 1000 h of operation, samples of both the bipolar plates and the membrane electrode assembly (MEA) were collected from both the cathode and the anode sides of the cell and characterized to examine the stability and integrity of the plate coating and evaluate possible changes of the ionic conductivity of the membrane due any electrochemical reaction with the coating material. Scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis were performed on the land and valley surfaces of the reactant flow fields at both the anode and the cathode sides of the bipolar plates. The measurements were superimposed on the reference to identify possible zones of anomalies for the purpose of conducting focused studies in these locations. The X-ray diffraction (XRD) analysis of samples scraped from the anode and cathode electrodes of the MEA showed the tendency for catalyst growth that could result in power degradation. Samples of the by-product water produced during the single fuel cell operation were also collected and tested for the existence of chromium, nickel, carbon, iron, sulfur and aluminum using mass spectroscopy techniques. The EDX measurements indicated the possibility of dissociation and dissolution of nickel chrome that was used as the binder for the carbide-based corrosion-resistant coating with the aluminum substrate.

  11. The Impact of Cathode Material and Shape on Current Density in an Aluminum Electrolysis Cell

    NASA Astrophysics Data System (ADS)

    Song, Yang; Peng, Jianping; Di, Yuezhong; Wang, Yaowu; Li, Baokuan; Feng, Naixiang

    2016-02-01

    A finite element model was developed to determine the impact of cathode material and shape on current density in an aluminum electrolysis cell. For the cathode material, results show that increased electrical resistivity leads to a higher cathode voltage drop; however, the horizontal current is reduced in the metal. The horizontal current magnitude for six different cathode materials in decreasing order is graphitized, semi-graphitized, full graphitic, 50% anthracite (50% artificial graphite), 70% anthracite (30% artificial graphite), 100% anthracite. The modified cathode shapes with an inclined cathode surface, higher collector bar and cylindrical protrusions are intended to improve horizontal current and flow resistance. Compared to a traditional cathode, modified collector bar sizes of 70 mm × 230 mm and 80 mm × 270 mm can reduce horizontal current density component Jx by 10% and 19%, respectively, due to better conductivity of the steel. The horizontal current in the metal decreases with increase of cathode inclination. The peak value of Jx can be approximately reduced by 20% for a 2° change in inclination. Cylindrical protrusions lead to local horizontal current increase on their tops, but the average current is less affected and the molten metal is effectively slowed down.

  12. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice.

    PubMed

    Al-Amin, Md Mamun; Reza, Hasan Mahmud; Saadi, Hasan Mahmud; Mahmud, Waich; Ibrahim, Abdirahman Adam; Alam, Musrura Mefta; Kabir, Nadia; Saifullah, A R M; Tropa, Sarjana Tarannum; Quddus, A H M Ruhul

    2016-04-15

    Aluminum chloride induces neurodegenerative disease in animal model. Evidence suggests that aluminum intake results in the activation of glial cells and generation of reactive oxygen species. By contrast, astaxanthin is an antioxidant having potential neuroprotective activity. In this study, we investigate the effect of astaxanthin on aluminum chloride-exposed behavioral brain function and neuronal oxidative stress (OS). Male Swiss albino mice (4 months old) were divided into 4 groups: (i) control (distilled water), (ii) aluminum chloride, (iii) astaxanthin+aluminum chloride, and (iv) astaxanthin. Two behavioral tests; radial arm maze and open field test were conducted, and OS markers were assayed from the brain and liver tissues following 42 days of treatment. Aluminum exposed group showed a significant reduction in spatial memory performance and anxiety-like behavior. Moreover, aluminum group exhibited a marked deterioration of oxidative markers; lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH) and advanced oxidation of protein products (AOPP) in the brain. To the contrary, co-administration of astaxanthin and aluminum has shown improved spatial memory, locomotor activity, and OS. These results indicate that astaxanthin improves aluminum-induced impaired memory performances presumably by the reduction of OS in the distinct brain regions. We suggest a future study to determine the underlying mechanism of astaxanthin in improving aluminum-exposed behavioral deficits. PMID:26927754

  13. Wettable Ceramic-Based Drained Cathode Technology for Aluminum Electrolysis

    SciTech Connect

    J.N. Bruggeman; T.R. Alcorn; R. Jeltsch; T. Mroz

    2003-01-09

    The goal of the project was to develop the ceramic based materials, technology, and necessary engineering packages to retrofit existing aluminum reduction cells in order to reduce energy consumption required for making primary aluminum. The ceramic materials would be used in a drained cathode configuration which would provide a stable, molten aluminum wetted cathode surface, allowing the reduction of the anode-cathode distance, thereby reducing the energy consumption. This multi-tasked project was divided into three major tasks: (1) Manufacturing and laboratory scale testing/evaluation of the ceramic materials, (2) Pilot scale testing of qualified compositions from the first task, and (3) Designing, retrofitting, and testing the ceramic materials in industrial cells at Kaiser Mead plant in Spokane, Washington. Specific description of these major tasks can be found in Appendix A - Project Scope. Due to the power situation in the northwest, the Mead facility was closed, thus preventing the industrial cell testing.

  14. The BnALMT1 and BnALMT2 Genes from Rape Encode Aluminum-Activated Malate Transporters That Enhance the Aluminum Resistance of Plant Cells1

    PubMed Central

    Ligaba, Ayalew; Katsuhara, Maki; Ryan, Peter R.; Shibasaka, Mineo; Matsumoto, Hideaki

    2006-01-01

    The release of organic anions from roots can protect plants from aluminum (Al) toxicity and help them overcome phosphorus (P) deficiency. Our previous findings showed that Al treatment induced malate and citrate efflux from rape (Brassica napus) roots, and that P deficiency did not induce the efflux. Since this response is similar to the malate efflux from wheat (Triticum aestivum) that is controlled by the TaALMT1 gene, we investigated whether homologs of TaALMT1 are present in rape and whether they are involved in the release of organic anions. We isolated two TaALMT1 homologs from rape designated BnALMT1 and BnALMT2 (B. napus Al-activated malate transporter). The expression of these genes was induced in roots, but not shoots, by Al treatment but P deficiency had no effect. Several other cations (lanthanum, ytterbium, and erbium) also increased BnALMT1 and BnALMT2 expression in the roots. The function of the BnALMT1 and BnALMT2 proteins was investigated by heterologous expression in cultured tobacco (Nicotiana tabacum) cells and in Xenopus laevis oocytes. Both transfection systems showed an enhanced capacity for malate efflux but not citrate efflux, when exposed to Al. Smaller malate fluxes were also activated by ytterbium and erbium treatment. Transgenic tobacco cells grew significantly better than control cells following an 18 h treatment with Al, indicating that the expression of BnALMT1 and BnALMT2 increased the resistance of these plant cells to Al stress. This report demonstrates that homologs of the TaALMT1 gene from wheat perform similar functions in other species. PMID:17028155

  15. Electrochemical reduction of CO 2 in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongliang; Zhao, Lin

    This paper describes results on the electrochemical reduction of carbon dioxide using the same device as the typical planar nickel-YSZ cermet electrode supported solid oxide fuel cells (H 2-CO 2, Ni-YSZ|YSZ|LSCF-GDC, LSCF, air). Operation in both the fuel cell and the electrolysis mode indicates that the electrodes could work reversibly for the charge transfer processes. An electrolysis current density of ≈1 A cm -2 is observed at 800 °C and 1.3 V for an inlet mixtures of 25% H 2-75% CO 2. Mass spectra measurement suggests that the nickel-YSZ cermet electrode is highly effective for reduction of CO 2 to CO. Analysis of the gas transport in the porous electrode and the adsorption/desorption process over the nickel surface indicates that the cathodic reactions are probably dominated by the reduction of steam to hydrogen, whereas carbon monoxide is mainly produced via the reverse water gas shift reaction.

  16. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells.

    PubMed

    Yagur-Kroll, Sharon; Schreuder, Erik; Ingham, Colin J; Heideman, René; Rosen, Rachel; Belkin, Shimshon

    2015-02-15

    The use of live bacterial reporters as sensing entities in whole-cell biosensors allows the investigation of the biological effects of a tested sample, as well as the bioavailability of its components. Here we present a proof of concept for a new design for online continuous water monitoring flow-cell biosensor, incorporating recombinant reporter bacteria, engineered to generate an optical signal (fluorescent or bioluminescent) in the presence of the target compound(s). At the heart of the flow-cell is a disposable chip made of porous aluminum oxide (PAO), which retains the sensor microorganisms on its rigid planar surface, while its high porosity allows an undisturbed access both to the sample and to essential nutrients. The ability of the bacterial reporters to detect model toxic chemicals was first demonstrated using a "naked" PAO chip placed on solid agar, and later in a chip encased in a specially designed flow-through configuration which enables continuous on-line monitoring. The applicability of the PAO chip to simultaneous online detection of diverse groups of chemicals was demonstrated by the incorporation of a 6-member sensor array into the flow-through chip. The selective response of the array was also confirmed in spiked municipal wastewater effluents. Sensing activity was retained by the bacteria after 12-weeks storage of freeze-dried biochips, demonstrating the biochip potential as a simple minimal maintenance "plug-in" cartridge. This low-cost and easy to handle PAO-based flow-cell biosensor may serve as a basis for a future platform for water quality monitoring. PMID:25441411

  17. Effect of Bath ph on Electroless Ni-P Coating Deposited on Open-Cell Aluminum Foams

    NASA Astrophysics Data System (ADS)

    Liu, Jiaan; Si, Fujian; Li, Dong; Liu, Yan; Cao, Zheng; Wang, Guoyong

    2015-09-01

    Different electroless Ni-P coatings were deposited on open-cell aluminum foams at various bath pH. The effect of bath pH on the morphology, structure, components, phases and corrosion resistance of the Ni-P coating was studied by scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), immersion test and electrochemical polarization measurement, respectively. The experimental results show that the bath pH not only changed the reactivity of the bath, but also had a influence on the microstructure and anticorrosive property of electroless Ni-P coating. The high pH bath raises the thickness of Ni-P coating but decreases the content of phosphorus element in the Ni-P coating. The corrosion resistance of the coated aluminum foams increases when the bath pH rises.

  18. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    SciTech Connect

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain the largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).

  19. The disruption of L-carnitine metabolism by aluminum toxicity and oxidative stress promotes dyslipidemia in human astrocytic and hepatic cells.

    PubMed

    Lemire, Joseph; Mailloux, Ryan; Darwich, Rami; Auger, Christopher; Appanna, Vasu D

    2011-06-24

    L-Carnitine is a critical metabolite indispensable for the metabolism of lipids as it facilitates fatty acid transport into the mitochondrion where β-oxidation occurs. Human astrocytes (CCF-STTG1 cells) and hepatocytes (HepG2 cells) exposed to aluminum (Al) and hydrogen peroxide (H₂O₂), were characterized with lower levels of L-carnitine, diminished β-oxidation, and increased lipid accumulation compared to the controls. γ-Butyrobetainealdehyde dehydrogenase (BADH) and butyrobetaine dioxygenase (BBDOX), two key enzymes mediating the biogenesis of L-carnitine, were sharply reduced during Al and H₂O₂ challenge. Exposure of the Al and H₂O₂-treated cells to α-ketoglutarate (KG), led to the recovery of L-carnitine production with the concomitant reduction in ROS levels. It appears that the channeling of KG to combat oxidative stress results in decreased L-carnitine synthesis, an event that contributes to the dyslipidemia observed during Al and H₂O₂ insults in these mammalian cells. Hence, KG may help alleviate pathological conditions induced by oxidative stress. PMID:21439360

  20. Final Report on Materials Characterization for the Wetted Cathodes for Low-Temperature Aluminum Smelting Program

    SciTech Connect

    Windisch, Charles F.

    2002-10-30

    This report is a summary of materials characterization results on twenty cathode samples that were used in a novel aluminum reduction cell at the Northwest Aluminum Technologies laboratory. Most of these cathodes were based on the TiB2 composition and showed very little corrosion as a result of testing. Most of the samples also showed good wetting by Al metal that formed during cell operation.

  1. Self-organization and entropy reduction in a living cell

    PubMed Central

    Davies, Paul C.W.; Rieper, Elisabeth; Tuszynski, Jack A.

    2012-01-01

    In this paper we discuss the entropy and information aspects of a living cell. Particular attention is paid to the information gain on assembling and maintaining a living state. Numerical estimates of the information and entropy reduction are given and discussed in the context of the cell’s metabolic activity. We discuss a solution to an apparent paradox that there is less information content in DNA than in the proteins that are assembled based on the genetic code encrypted in DNA. When energy input required for protein synthesis is accounted for, the paradox is clearly resolved. Finally, differences between biological information and instruction are discussed. PMID:23159919

  2. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  3. Cathodic phenomena in aluminum electrowinning

    NASA Astrophysics Data System (ADS)

    Bouteillon, J.; Poignet, J. C.; Rameau, J. J.

    1993-02-01

    Although aluminum is one of the world's highest production-volume primary metals, it is particularly costly to produce for a variety of factors, not the least of which are the expenses associated with electrolytic reduction. Based on the scale of global aluminum processing, even minor improvements in the electrowinning technology can result in significant savings of resources. Thus, from this perspective, the following reviews recent studies of cathodic phenomena in aluminum electrowinning.

  4. An application of parametric and nonparametric models to the assessment of fluoride levels in vegetation exposed to stack emissions of an aluminum reduction plant in Greece.

    PubMed

    Dimopoulos, Ioannis F; Tsiros, Ioannis X; Serelis, Konstantinos; Kamoutsis, Athanasios; Chronopoulou, Aikaterini

    2003-04-01

    Various statistical models were developed for assessing airborne fluoride (F) levels in natural vegetation near an aluminum reduction plant using as predictor variables the distance from the emission source, the predominating wind, and characteristic topography-geomorphology parameters. Results revealed that F concentrations in vegetation showed a predictable response to both wind conditions and landscape features. The linear model was found to give good estimations, taking advantage of the relatively strong linear correlation between concentration and distance. A nonlinear relationship between the F concentration in vegetation and the other variables was also found, while interactions between the variables were found to be non-first-order. The nonlinear relationship hypothesis was supported by the improved results of various nonlinear models that also indicated the importance of the area's topography-geomorphology and meteorology in model predictions. The application of an artificial neural network (ANN) model showed the closest agreement between predicted and observed values with a correlation coefficient of 0.92. The improved reliability of the ANN and a regression tree model (RTM) also were indicated by the normal distribution of their residuals. The RTM and the ANN were further investigated and found to be capable of identifying the importance of the variables in vegetation exposure to air emissions. PMID:12708503

  5. Reduction of interpore distance of anodized aluminum oxide nano pattern by mixed H3PO4:H2SO4 electrolyte.

    PubMed

    Song, Kwang Min; Park, Joonmo; Ryu, Sang-Wan

    2007-11-01

    A self-formed and ordered anodized aluminum oxide (AAO) nano pattern has generated considerable interest in both scientific research and commercial application. However, the interpore distance obtainable by AAO is limited by 40-500 nm depending on electrolyte and anodizing voltage. It's believed that below-30 nm AAO pattern is a key technology in the fabrication semiconductor nano structures with enhanced quantum confinement effect, so we worked on the reduction of interpore distance of AAO with a novel electrolyte. AAO nano patterns were fabricated with mixed H2SO4 and H3PO4 as an electrolyte for various voltages and temperatures. The interpore distance and pore diameter of AAO were decreased with reduced anodizing voltage. As a result, an AAO nano pattern with the interpore distance of 27 nm and the pore diameter of 7 nm was obtained. This is the smallest pattern, as long as we know, reported till now with AAO technique. The fabricated AAO pattern could be utilized for uniform and high density quantum dots with increased quantum effect. PMID:18047152

  6. Study on the fabrication of back surface reflectors in nano-crystalline silicon thin-film solar cells by using random texturing aluminum anodization

    NASA Astrophysics Data System (ADS)

    Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.

    2015-09-01

    In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The

  7. Long-term testing and evaluation of cathode components in a commercial aluminum cell

    SciTech Connect

    Church, K.D.; Morris, E.G.; Joo', L.A. ); Stewart, D.V.; Morgan, W.R.; Tabereaux, A. )

    1990-04-01

    The purpose of modeling thermal stresses in TiB{sub 2}-G cathode elements was to aide in the design of the final TiB{sub 2}-G cathode element shape to be used in an industrial reduction cell based on knowledge of thermal stress values and an estimate of the probability of element failure. Five finite element models of four TiB{sub 2}-G cathode element shapes were constructed (Figures 1-5) to model thermal stresses resulting from step changes in temperature of 25{degree}C--960{degree}C and 300{degree}C--960{degree}C. The models were developed to represent worst case'' conditions, that is, conditions representing the greatest anticipated values of thermal stress likely to be encountered. ANSYS was used to perform the thermal stress modeling. ANSYS is a general purpose finite element code available from Swanson Analysis Systems, Incorporated. Modeling thermal stress in ANSYS for a step change in temperature requires an initial transient thermal analysis followed by a structural analysis. After the geometry of each model was defined, material properties were specified, and heat transfer boundary conditions developed. The finite element models were constructed using convective heat transfer boundary conditions as a means of specifying heat flow into the models. Convection faces and convective heat transfer coefficients were defined at the TiB{sub 2}-G -- molten metal interfaces. A uniform starting temperature of either 25{degree}C or 300{degree}C was assigned and the models were solved for transient temperature distribution and thermally induced stress. LCHEM codes were utilized to model voltage distribution and current density in reduction cells utilizing TiB{sub 2}-G cathode elements. 4 refs., 119 figs., 9 tabs.

  8. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells.

    PubMed

    Rabaey, Korneel; Read, Suzanne T; Clauwaert, Peter; Freguia, Stefano; Bond, Philip L; Blackall, Linda L; Keller, Jurg

    2008-05-01

    Microbial fuel cells (MFCs) have the potential to combine wastewater treatment efficiency with energetic efficiency. One of the major impediments to MFC implementation is the operation of the cathode compartment, as it employs environmentally unfriendly catalysts such as platinum. As recently shown, bacteria can facilitate sustainable and cost-effective cathode catalysis for nitrate and also oxygen. Here we describe a carbon cathode open to the air, on which attached bacteria catalyzed oxygen reduction. The bacteria present were able to reduce oxygen as the ultimate electron acceptor using electrons provided by the solid-phase cathode. Current densities of up to 2.2 A m(-2) cathode projected surface were obtained (0.303+/-0.017 W m(-2), 15 W m(-3) total reactor volume). The cathodic microbial community was dominated by Sphingobacterium, Acinetobacter and Acidovorax sp., according to 16S rRNA gene clone library analysis. Isolates of Sphingobacterium sp. and Acinetobacter sp. were obtained using H(2)/O(2) mixtures. Some of the pure culture isolates obtained from the cathode showed an increase in the power output of up to three-fold compared to a non-inoculated control, that is, from 0.015+/-0.001 to 0.049+/-0.025 W m(-2) cathode projected surface. The strong decrease in activation losses indicates that bacteria function as true catalysts for oxygen reduction. Owing to the high overpotential for non-catalyzed reduction, oxygen is only to a limited extent competitive toward the electron donor, that is, the cathode. Further research to refine the operational parameters and increase the current density by modifying the electrode surface and elucidating the bacterial metabolism is warranted. PMID:18288216

  9. Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer

    PubMed Central

    2012-01-01

    Sulfonated aluminum phthalocyanines (AlPcSs), commonly used photosensitizers for photodynamic therapy of cancers (PDT), were conjugated with amine-dihydrolipoic acid-coated quantum dots (QDs) by electrostatic binding, achieving 70 AlPcSs per QD. The AlPcS-QD conjugates can utilize the intense light absorptions of conjugated QDs to indirectly excite AlPcSs producing singlet oxygen via fluorescence resonance energy transfer (FRET), demonstrating a new excitation model for PDT. The AlPcS-QD conjugates easily penetrated into human nasopharyngeal carcinoma cells and carried out the FRET in cells, with efficiency around 80%. Under the irradiation of a 532-nm laser, which is at the absorption region of QDs but not fit for the absorption of AlPcSs, the cellular AlPcS-QD conjugates can destroy most cancer cells via FRET-mediated PDT, showing the potential of this new strategy for PDT. PMID:22784858

  10. Programmed Cell Death-Involved Aluminum Toxicity in Yeast Alleviated by Antiapoptotic Members with Decreased Calcium Signals1

    PubMed Central

    Zheng, Ke; Pan, Jian-Wei; Ye, Lan; Fu, Yu; Peng, Hua-Zheng; Wan, Bai-Yu; Gu, Qing; Bian, Hong-Wu; Han, Ning; Wang, Jun-Hui; Kang, Bo; Pan, Jun-Hang; Shao, Hong-Hong; Wang, Wen-Zhe; Zhu, Mu-Yuan

    2007-01-01

    The molecular mechanisms of aluminum (Al) toxicity and tolerance in plants have been the focus of ongoing research in the area of stress phytophysiology. Recent studies have described Al-induced apoptosis-like cell death in plant and animal cells. In this study, we show that yeast (Saccharomyces cerevisiae) exposed to low effective concentrations of Al for short times undergoes enhanced cell division in a manner that is dose and cell density dependent. At higher concentrations of Al or longer exposure times, Al induces cell death and growth inhibition. Several apoptotic features appear during Al treatment, including cell shrinkage, vacuolation, chromatin marginalization, nuclear fragmentation, DNA degradation, and DNA strand breaks, as well as concomitant cell aggregation. Yeast strains expressing Ced-9, Bcl-2, and PpBI-1 (a plant Bax inhibitor-1 isolated from Phyllostachys praecox), respectively, display more resistance to Al toxicity compared with control cells. Data from flow cytometric studies show these three antiapoptotic members do not affect reactive oxygen species levels, but decrease calcium ion (Ca2+) signals in response to Al stress, although both intracellular reactive oxygen species and Ca2+ levels were increased. The data presented suggest that manipulation of the negative regulation process of programmed cell death may provide a novel mechanism for conferring Al tolerance. PMID:16861572

  11. Waste reduction options for manufacturers of copper indium diselenide photovoltaic cells

    SciTech Connect

    DePhillips, M.P.; Fthenakis, V.M.; Moskowitz, P.D.

    1994-03-01

    This paper identifies general waste reduction concepts and specific waste reduction options to be used in the production of copper indium diselenide (CIS) photovoltaic cells. A general discussion of manufacturing processes used for the production of photovoltaic cells is followed by a description of the US Environmental Protection Agency (EPA) guidelines for waste reduction (i.e., waste minimization through pollution prevention). A more specific discussion of manufacturing CIS cells is accompanied by detailed suggestions regarding waste minimization options for both inputs and outputs for ten stages of this process. Waste reduction from inputs focuses on source reduction and process changes, and reduction from outputs focuses on material reuse and recycling.

  12. Novel aqueous aluminum/sulfur batteries

    SciTech Connect

    Licht, S.; Peramunage, D. )

    1993-01-01

    Aluminum sulfur batteries based on concentrated polysulfide catholytes and an alkaline aluminum anode are introduced and investigated. The new battery is expressed by aluminum oxidation and aqueous sulfur reduction for an overall battery discharge consisting of 2Al + S[sub 4][sup 2[minus

  13. Aluminum-doped zinc oxide nanoparticles attenuate the TSLP levels via suppressing caspase-1 in activated mast cells.

    PubMed

    Kim, Min-Ho; Seo, Jun-Ho; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-04-01

    Zinc oxide nanoparticles (ZO-NPs) are used as antimicrobials, anti-inflammatories, and to treat cancer. However, although ZO-NPs have excellent efficiency and specificity, their cytotoxicity is higher than that of micron-sized zinc oxide. Doping ZO-NPs with aluminum can improve therapeutic efficacy, but the biological effects and mechanisms involved have not been elucidated. Here, we reported the efficacy of aluminum-doped ZO-NP (AZO) on thymic stromal lymphopoietin (TSLP) production and caspase-1 activation in human mast cell line, HMC-1 cells. AZO significantly reduced TSLP levels as well as interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α without inducing cytotoxicity. Furthermore, AZO more effectively reduced TSLP, IL-6, IL-8, and TNF-α levels than ZO-NP. The levels of inflammatory cytokine mRNA were also reduced by AZO treatment. AZO blocked production of IL-1β and activations of caspase-1 and nuclear factor-κB by inhibiting IκB kinase β and receptor interacting protein 2. In addition, AZO attenuated phosphorylation of mitogen-activated protein kinases, such as extracellular signal-regulated kinase, c-Jun N-terminal kinases, and p38. These findings provide evidence that AZO improves anti-inflammatory properties and offer a safe and effective potential treatment option. PMID:26825457

  14. Building an aluminum car

    SciTech Connect

    Ashley, S.

    1994-05-01

    This article examines the increasing use of aluminum in automobiles to decrease weight and consequently increase fuel economy. The topics of the article include federal fuel economy goals, the development of optimum body structure and manufacturing techniques, comparison with steel, cost of materials, weight reduction and recycling of materials.

  15. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    SciTech Connect

    Weiss, David C.; Gegal, Gerald A.

    2014-04-15

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  16. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  17. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  18. Numerical Investigation on the Impact of Anode Change on Heat Transfer and Fluid Flow in Aluminum Smelting Cells

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Gosselin, Louis; Fafard, Mario; Peng, Jianping; Li, Baokuan

    2016-04-01

    In order to understand the impact of anode change on heat transfer and magnetohydrodynamic flow in aluminum smelting cells, a transient three-dimensional (3D) coupled mathematical model has been developed. The solutions of the mass, momentum, and energy conservation equations were simultaneously implemented by the finite volume method with full coupling of the Joule heating and Lorentz force through solving the electrical potential equation. The volume of fluid approach was employed to describe the two-phase flow. The phase change of molten electrolyte (bath) as well as molten aluminum (metal) was modeled by an enthalpy-based technique, where the mushy zone is treated as a porous medium with a porosity equal to the liquid fraction. The effect of the new anode temperature on recovery time was also analyzed. A reasonable agreement between the test data and simulated results is obtained. The results indicate that the temperature of the bath under cold anodes first decreases reaching the minimal value and rises under the effect of increasing Joule heating, and finally returns to steady state. The colder bath decays the velocity, and the around ledge becomes thicker. The lowest temperature of the bath below new anodes increases from 1118 K to 1143 K (845 °C to 870 °C) with the new anode temperature ranging from 298 K to 498 K (25°C to 225°C), and the recovery time reduces from 22.5 to 20 hours.

  19. Confocal microscopy to guide Erbium:yttrium aluminum garnet laser ablation of basal cell carcinoma: an ex vivo feasibility study

    PubMed Central

    Larson, Bjorg A.; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2013-01-01

    Abstract. For the removal of superficial and nodular basal cell carcinomas (BCCs), laser ablation provides certain advantages relative to other treatment modalities. However, efficacy and reliability tend to be variable because tissue is vaporized such that none is available for subsequent histopathological examination for residual BCC (and to confirm complete removal of tumor). Intra-operative reflectance confocal microscopy (RCM) may provide a means to detect residual tumor directly on the patient and guide ablation. However, optimization of ablation parameters will be necessary to control collateral thermal damage and preserve sufficient viability in the underlying layer of tissue, so as to subsequently allow labeling of nuclear morphology with a contrast agent and imaging of residual BCC. We report the results of a preliminary study of two key parameters (fluence, number of passes) vis-à-vis the feasibility of labeling and RCM imaging in human skin ex vivo, following ablation with an erbium:yttrium aluminum garnet laser. PMID:24045654

  20. A silicon-wafer based p-n junction solar cell by aluminum-induced recrystallization and doping

    NASA Astrophysics Data System (ADS)

    Gardelis, S.; Nassiopoulou, A. G.; Manousiadis, P.; Vouroutzis, Î..; Frangis, N.

    2013-12-01

    We fabricated a silicon-wafer based p-n junction solar cell with conversion efficiency of 11% without conventional doping of the emitter or the use of anti-reflecting coatings. The emitter was originally nanocrystalline, grown on n-type crystalline Si and covered with a thin semi-transparent Al layer. Annealing in nitrogen at 430 °C promoted a simultaneous aluminum (Al)-induced recrystallization and Al-doping of the emitter. The recrystallized emitter consisted of considerably larger Si grains which were epitaxially crystallized on the Si substrate. These two effects led to a considerable improvement of the electrical and photovoltaic properties of the resulting p-n junction.

  1. Compressive properties of a closed-cell aluminum foam as a function of strain-rate and temperature

    SciTech Connect

    Cady, Carl M; Gray, Ill, George T; Liu, Cheng; Lovato, Manuel L; Mukai, T

    2008-01-01

    The compressive constitutive behavior of a closed-cell aluminum foam (ALPORAS) manufactured by Shinko Wire Co. in Japan was evaluated under static and dynamic loading conditions as a function of temperature. High-strain-rate tests (1000-2000 s{sup -1}) were conducted using a split-Hopkinson pressure bar (SHPB). Quasi-static and intermediate-strain-rate tests were conducted on a hydraulic load frame. A small but discernable change in the flow stress behavior as a function of strain rate was measured. The deformation behavior of the Al-foam was however found to be strongly temperature dependent under both quasi-static and dynamic loading. Localized deformation and stress state instability during testing of metal foams is discussed in detail since the mechanical behavior over the entire range of strain rates indicates non-uniform deformation. Additionally, investigation of the effect of residual stresses created during manufacturing on the mechanical behavior was investigated.

  2. Demonstration Project for Energy Conservation in Aluminum Smelting.

    SciTech Connect

    Cooke, A.V.; Buchta, W.M.; Boxall, Larry G.

    1986-05-01

    A new durable, carbon/TiB/sub 2/ material has been tested and proven in a VSS aluminum reduction plant trial at the Martin Marietta reduction smelter at the Dalles, OR. Uniform, slow coating wear was found, dominated by the rate of TiB/sub 2/ dissolution in molten aluminum. Significant energy efficiency benefits were also noted for the TiB/sub 2/-coated cells compared to the rest of the plant. A fully controlled and monitored 12-cell experiment was set up at the Commonwealth Aluminum VSS smelter at Goldendale, WA, to investigate the improved energy efficiency. After 18 months in service, these test cells have also shown energy efficiency benefits relative to the control cells and the plant. Results of the 12-cell plant trial of the proprietary carbon/TiB/sub 2/ coating have reinforced many of the preliminary conclusions drawn in the earlier 6-cell test. The operating personnel at the plant reported a definite preference for the TiB/sub 2/-coated cells, because the cathode surface was always cleaner and when muck accumulated, it dispersed more rapidly because it did not adhere to the cell bottom. The cathode current distribution was consistently more uniform in the test group than in the control group. A 5- to 7-year coating life is predicted depending on the TiB/sub 2/ type and the original coating thickness.

  3. Cell-to-cell pollution reduction effectiveness of subsurface domestic treatment wetlands.

    PubMed

    Steer, David N; Fraser, Lauchlan H; Seibert, Beth A

    2005-05-01

    Quarterly water quality data from 1998 to 2003 for eight single-family domestic systems serving 2-7 people in Ohio, USA, were studied to determine the cell-to-cell and system wide pathogen reduction efficiency and effectiveness of these systems in meeting compliance standards. Two-cell domestic wastewater treatment systems displayed significant variability in their cell-to-cell performance that directly impacted the overall ability of systems to meet effluent compliance standards. Fecal coliform was effectively reduced (approximately 99%) in these systems while two-thirds of the input biochemical oxygen demand was mitigated in each of the cells of these systems. Fecal coliform and biochemical oxygen demand were typically reduced below 2000 counts per 100 ml and 15 mg/l (respectively) before discharge to surface waters. Total suspended solids were reduced by approximately 80% overall with cell one retaining the majority of the solids (approximately 70%). These systems discharged more than 18 mg/l of suspended solids in less than 5% of the samples thus displaying a very high compliance rate. Ammonia and total phosphorus were less effectively treated (approximately 30-40% reductions in each cell) and exceeded standards (1.5 mg/l) more frequently. Analyses based on the number of occupants indicated that the two-cell design used here was most effective for smaller occupancy systems. More study is required to determine the value of this design for large occupancy systems. In the future, wetlands should be evaluated based on the total loads delivered to the watershed rather than by effluent concentrations. PMID:15627569

  4. Exploring the cell: Sodium (beta-alumina) cupric chloride - Aluminum chloride - Sodium chloride between 136 and 200 C

    NASA Technical Reports Server (NTRS)

    Miller, R. O.

    1975-01-01

    Experiments were done with a molten-salt catholyte (initially CuCl2 in AlCl3-NaCl) separated from molten Na by beta alumina. The open-circuit reduction potentials were 4.3 and 3 volts for Cu++ and Cu+, respectively. High polarization and nonrechargeability characterized the cell's operation. The cell's ohmic resistance during discharge was higher than what would be expected from only the ionic resistance of the beta-alumina.

  5. Aluminum Analysis.

    ERIC Educational Resources Information Center

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  6. Aluminum Hydroxide

    MedlinePlus

    ... penicillamine (Cuprimine, Depen), prednisone (Deltasone, Orasone), products containing iron, tetracycline (Sumycin, Tetracap, and others), ticlopidine (Ticlid), and vitamins.be aware that aluminum hydroxide may interfere with other medicines, making them less effective. Take your other medications 1 ...

  7. Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria

    USGS Publications Warehouse

    Oremland, R.S.; Blum, J.S.; Bindi, A.B.; Dowdle, P.R.; Herbel, M.; Stolz, J.F.

    1999-01-01

    Washed-cell suspensions of Sulfurospirillum barnesii reduced selenate [Se(VI)] when cells were cultured with nitrate, thiosulfate, arsenate, or fumarate as the electron acceptor. When the concentration of the electron donor was limiting, Se(VI) reduction in whole cells was approximately fourfold greater in Se(VI)-grown cells than was observed in nitrate-grown cells; correspondingly, nitrate reduction was ~11-fold higher in nitrate-grown cells than in Se(VI)-grown cells. However, a simultaneous reduction of nitrate and Se(VI) was observed in both cases. At nonlimiting electron donor concentrations, nitrate- grown cells suspended with equimolar nitrate and selenate achieved a complete reductive removal of nitrogen and selenium oxyanions, with the bulk of nitrate reduction preceding that of selenate reduction. Chloramphenicol did not inhibit these reductions. The Se(VI)-respiring haloalkaliphile Bacillus arsenicoselenatis gave similar results, but its Se(VI) reductase was not constitutive in nitrate-grown cells. No reduction of Se(VI) was noted for Bacillus selenitireducens, which respires selenite. The results of kinetic experiments with cell membrane preparations of S. barnesii suggest the presence of constitutive selenate and nitrate reduction, as well as an inducible, high- affinity nitrate reductase in nitrate-grown cells which also has a low affinity for selenate. The simultaneous reduction of micromolar Se(VI) in the presence of millimolar nitrate indicates that these organisms may have a functional use in bioremediating nitrate-rich, seleniferous agricultural wastewaters. Results with 75Se-selenate tracer show that these organisms can lower ambient Se(VI) concentrations to levels in compliance with new regulations proposed for release of selenium oxyanions into the environment.

  8. Effect of salicylic acid on the attenuation of aluminum toxicity in Coffea arabica L. suspension cells: A possible protein phosphorylation signaling pathway.

    PubMed

    Muñoz-Sanchez, J Armando; Chan-May, Abril; Cab-Guillén, Yahaira; Hernández-Sotomayor, S M Teresa

    2013-11-01

    The protective effect of salicylic acid (SA) on aluminum (Al) toxicity was studied in suspension cells of Coffea arabica L. The results showed that SA does not produce any effect on cell growth and that the growth inhibition produced by aluminum is restored during simultaneous treatment of the cells with Al and SA. In addition, the cells exposed to both compounds, Al and SA, showed evident morphological signals of recovery from the toxic state produced in the presence of Al. The cells treated with SA showed a lower accumulation of Al, which was linked to restoration from Al toxicity because the concentration of Al(3+) outside the cells, measured as the Al(3+)-morin complex, was not modified by the presence of SA. Additionally, the inhibition of phospholipase C by Al treatment was restored during the exposure of the cells to SA and Al. The involvement of protein phosphorylation in the protective effect of SA on Al-toxicity was suggested because staurosporine, a protein kinase inhibitor, reverted the stimulatory effect of the combination of Al and SA on protein kinase activity. These results suggest that SA attenuates aluminum toxicity by affecting a signaling pathway linked to protein phosphorylation. PMID:23953991

  9. Synergistic cytotoxic effects of ions released by zinc-aluminum bronze and the metallic salts on osteoblastic cells.

    PubMed

    Grillo, Claudia A; Morales, María L; Mirífico, María V; Fernández Lorenzo de Mele, Mónica A

    2013-07-01

    The use of copper-based alloys for fixed dental crowns and bridges is increasingly widespread in several countries. The aim of this work is to study the dissolution of a zinc-aluminum-bronze and the cytotoxic effects of the ions released on UMR-106 osteoblastic cell line. Two sources of ions were used: (1) ions released by the metal alloy immersed in the cell culture and (2) salts of the metal ions. Conventional electrochemical techniques, atomic absorption spectroscopy [to obtain the average concentration of ions (AC) in solution], and energy dispersive X-ray (EDX) spectroscopy analysis were used to study the corrosion process. Corrosion tests revealed a strong influence of the composition of the electrolyte medium and the immersion time on the electrochemical response. The cytotoxicity was evaluated with (a) individual ions, (b) combinations of two ions, and (c) the mixture of all the ions released by a metal disc of the alloy. Importantly, synergistic cytotoxic effects were found when Al-Zn ion combinations were used at concentration levels lower than the cytotoxic threshold values of the individual ions. Cytotoxic effects in cells in the vicinity of the metal disc were also found. These results were interpreted considering synergistic effects and a diffusion controlled mechanism that yields to concentration levels, in the metal surroundings, several times higher than the measured AC value. PMID:23596152

  10. Engineering Development Program of a Closed Aluminum-Oxygen Semi-cell System for an Unmanned Underwater Vehicle: An Update

    NASA Technical Reports Server (NTRS)

    Gregg, Dane W.; Hall, Susan E.

    1996-01-01

    Most emerging unmanned undersea vehicle (UUV) missions require significantly longer range and endurance than is achievable with existing battery technology. The Aluminum-Oxygen (Al-O2) semi-cell is a candidate technology capable of providing a significant improvement in endurance compared to the silver-zinc battery technology currently in use in UUVs and compares favorably to other proposed UUV power systems not only in performance, but also in safety and logistics. An Al-O2 semi-cell system is under development, consisting of a cell stack, gas management, oxygen storage, electrolyte management coolant and controller subsystems. It is designed to replace the existing silver-zinc battery and meet existing weight, volume, electrical and thermal requirements, therefore minimizing modification to the UUV. A detailed system design is complete. A component and material endurance test to evaluate compatibility and reliability of various materials and components is complete. Sub=scale (short stack) system testing is complete. A full-scale demonstration unit is now under construction for testing in the second half of 1995. The full scale demonstration test will simulate environmental conditions of the operational system. This paper summarizes the results of the extensive short stack and endurance test programs, describes the plan for full-scale testing, and concludes with a brief discussion of future directions for this technology.

  11. Folic Acid Protected Neural Cells Against Aluminum-Maltolate-Induced Apoptosis by Preventing miR-19 Downregulation.

    PubMed

    Zhu, Mingming; Li, Bingfei; Ma, Xiao; Huang, Cong; Wu, Rui; Zhu, Weiwei; Li, Xiaoting; Liang, Zhaofeng; Deng, Feifei; Zhu, Jianyun; Xie, Wei; Yang, Xue; Jiang, Ye; Wang, Shijia; Wu, Jieshu; Geng, Shanshan; Xie, Chunfeng; Zhong, Caiyun; Liu, Haiyan

    2016-08-01

    Aluminum (Al)-induced apoptosis is considered as the major cause of its neurotoxicity. Folic acid possesses neuroprotective function by preventing neural cell apoptosis. microRNAs (miRNAs) are important regulators of gene expression participating in cellular processes. As a key component of the miR-17-92 cluster, miR-19 is implicated in regulating apoptotic process, while its role in the neuroprotective effect of folic acid has not been investigated. The present study aimed to investigate the potential involvement and function of miR-19 in the protective action of folic acid against Al-induced neural cell apoptosis. Human SH-SY5Y cells were treated with Al-maltolate (Al-malt) in the presence or absence of folic acid. Results showed that Al-malt-induced apoptosis of SH-SY5Y cells was effectively prevented by folic acid. Al-malt suppressed the expression of miR-19a/19b, along with alterations of miR-19 related apoptotic proteins including PTEN, p-AKT, p53, Bax, Bcl-2, caspase 9 and caspase 3; and these effects were ameliorated by folic acid. miR-19 inhibitor alone induced apoptosis of SH-SY5Y cells. Combination treatment of folic acid and miR-19 inhibitor diminished the neuroprotective effect of folic acid. These findings demonstrated that folic acid protected neuronal cells against Al-malt-induced apoptosis by preventing the downregulation of miR-19 and modulation of miR-19 related downstream PTEN/AKT/p53 pathway. PMID:27113042

  12. Common reduction of the Raf kinase inhibitory protein in clear cell renal cell carcinoma

    PubMed Central

    Hill, Brianne; Melo, Jason De; Yan, Judy; Kapoor, Anil; He, Lizhi; Cutz, Jean-Claude; Feng, Xingchang; Bakhtyar, Nazihah; Tang, Damu

    2014-01-01

    Despite the recent progress in our understanding of clear cell renal cell carcinomas (ccRCCs), the etiology of ccRCC remains unclear. We reported here a prevailing reduction of the raf kinase inhibitory protein (RKIP) in ccRCC. In our examination of more than 600 ccRCC patients by western blot and immunohistochemistry, RKIP was significantly reduced in 80% of tumors. Inhibition of RKIP transcription in ccRCC occurs to greater levels than VHL transcription based on the quantification analysis of their transcripts in six large datasets of DNA microarray available in Oncomine™ with the median rank of suppression being 582 and 2343 for RKIP and VHL, respectively. Collectively, the magnitude of RKIP reduction and the levels of its downregulation match those of VHL. Furthermore, RKIP displays tumor suppressing activity in ccRCC. While modulation of RKIP expression did not affect the proliferation of A498 and 786-0 ccRCC cells and neither their ability to form xenograft tumors in NOD/SCID mice, ectopic expression or knockdown of RKIP inhibited or enhanced A498 and 786-0 ccRCC cell invasion, respectively. This was associated with robust changes in vimentin expression, a marker of EMT. Taken together, we demonstrate here that downregulation of RKIP occurs frequently at a rate that reaches that of VHL, suggesting RKIP being a critical tumor suppressor for ccRCC. This is consistent with RKIP being a tumor suppressor for other cancers. PMID:25277181

  13. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  14. Passivation properties of aluminum oxide films deposited by mist chemical vapor deposition for solar cell applications

    NASA Astrophysics Data System (ADS)

    Miki, Shohei; Iguchi, Koji; Kitano, Sho; Hayakashi, Koki; Hotta, Yasushi; Yoshida, Haruhiko; Ogura, Atsushi; Satoh, Shin-ichi; Arafune, Koji

    2015-08-01

    Aluminum oxide (AlOx) films were deposited by mist chemical vapor deposition (MCVD) in air for p-type crystalline silicon, and the effects of the deposition temperature (Tdep) and AlOx film thickness on the maximum surface recombination velocities (Smax) were evaluated. It was found that Smax was improved with increasing Tdep. The AlOx film deposited at 400 °C exhibited the best Smax value of 2.8 cm/s, and the passivation quality was comparable to that of AlOx deposited by other vacuum-based techniques. Smax was also improved with increasing film thickness. When the film thickness was above 10 nm, Smax was approximately 10 cm/s. From the Fourier transform infrared spectra, it was found that the AlOx films deposited by MCVD consisted of an AlOx layer and a Si-diffused AlOx layer. In addition, it is important for the layers to be thick enough to obtain high-quality passivation.

  15. Aluminum permanganate battery

    SciTech Connect

    Marsh, C.; Licht, S.L.

    1993-11-30

    A battery is provided comprising an aluminum anode, an aqueous solution of permanganate as the cathodic species and a second electrode capable of reducing permanganate. Such a battery system is characterized by its high energy density and low polarization losses when operating at high temperatures in a strong caustic electrolyte, i.e., high concentration of hydroxyl ions. A variety of anode and electrocatalyst materials are suitable for the efficient oxidation-reduction process and are elucidated.

  16. Water quality limits for Atlantic salmon (Salmo salar L.) exposed to short term reductions in pH and increased aluminum simulating episodes

    NASA Astrophysics Data System (ADS)

    Kroglund, F.; Rosseland, B. O.; Teien, H.-C.; Salbu, B.; Kristensen, T.; Finstad, B.

    2008-03-01

    Acidification has caused the loss or reduction of numerous Atlantic salmon (Salmo salar L.) populations on both sides of the North Atlantic. Acid deposition peaked in the 1980's and resulted in both chronically and episodically acidified rivers. At present, water quality is improving in all affected rivers due to reduced acid deposition. However, spring snow melt, heavy rainfall and sea salt episodes can still cause short term drops in pH and elevated concentrations of bioavailable aluminum. Technical malfunction in lime dozers will cause short termed episodic spates in the limed rivers. The current situation has prompted a need for dose-response relationships based on short term exposures of Atlantic salmon to assess the potential population effects of episodic acidification. Water quality guidelines for salmon have been lacking, despite a large number of experiments, all demonstrating dose-response relationships between water chemistry and fish health. We have summarized results from 347 short-term (<14 days) exposures of salmon parr and smolt performed between 1990 and 2003 in Norway. The experiments have been performed as bioassays, where fish have been exposed in tanks fed river water, in tanks where the river water quality has been manipulated (added H+ and Al) and as Carlin-tagged smolt releases after preexposure to moderately acidic waters. The results from the various bioassays are compared to water quality limits proposed on basis of the relationship between water quality and population status/health in Norwegian rivers. The focus of this article is placed on chemical-biological interactions that can be drawn across experiments and exposure protocols. We propose dose-response relationships for acid neutralizing capacity (ANC), pH, cationic Al and gill accumulated Al, versus mortality in freshwater, effects on hypo-osmoregulatory capacity in seawater challenge tests and on smolt to adult survival in release experiments. The "no effect" dose depends on the

  17. Water quality limits for Atlantic salmon (Salmo salar L.) exposed to short term reductions in pH and increased aluminum simulating episodes

    NASA Astrophysics Data System (ADS)

    Kroglund, F.; Rosseland, B. O.; Teien, H.-C.; Salbu, B.; Kristensen, T.; Finstad, B.

    2007-09-01

    Acidification has caused the loss or reduction of numerous Atlantic salmon (Salmo salar L.) populations on both sides of the North Atlantic. Acid deposition peaked in the 1980's and resulted in both chronically and episodically acidified rivers. At present, water quality is improving in all affected rivers due to reduced acid deposition. However, spring snow melt, heavy rainfall and sea salt episodes can still cause short term drops in pH and elevated concentrations of bioavailable aluminum. Technical malfunction in lime dozers will cause short termed episodic spates in the limed rivers. The current situation has prompted a need for dose-response relationships based on short term exposures of Atlantic salmon to assess the potential population effects of episodic acidification. Water quality guidelines for salmon have been lacking, despite a large number of experiments, all demonstrating dose-response relationships between water chemistry and fish health. We have summarized results from 347 short-term (<14 days) exposures of salmon parr and smolt performed between 1990 and 2003 in Norway. The experiments have been performed as bioassays, where fish have been exposed in tanks fed river water, in tanks where the river water quality has been manipulated (added H+ and Al) and as Carlin-tagged smolt releases after preexposure to moderately acidic waters. The results from the various bioassays are compared to water quality limits proposed on basis of the relationship between water quality and population status/health in Norwegian rivers. The focus of this article is placed on chemical-biological interactions that can be drawn across experiments and exposure protocols. We propose dose-response relationships for acid neutralizing capacity (ANC), pH, cationic Al and gill accumulated Al, versus mortality in freshwater, effects on hypo-osmoregulatory capacity in seawater challenge tests and on smolt to adult survival in release experiments. The "no effect" dose depends on the

  18. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis.

    PubMed

    Sivaguru, Mayandi; Ezaki, Bunichi; He, Zheng-Hui; Tong, Hongyun; Osawa, Hiroki; Baluska, Frantisek; Volkmann, Dieter; Matsumoto, Hideaki

    2003-08-01

    Here, we report the aluminum (Al)-induced organ-specific expression of a WAK1 (cell wall-associated receptor kinase 1) gene and cell type-specific localization of WAK proteins in Arabidopsis. WAK1-specific reverse transcriptase-polymerase chain reaction analysis revealed an Al-induced WAK1 gene expression in roots. Short- and long-term analysis of gene expression in root fractions showed a typical "on" and "off" pattern with a first peak at 3 h of Al exposure followed by a sharp decline at 6 h and a complete disappearance after 9 h of Al exposure, suggesting the WAK1 is a further representative of Al-induced early genes. In shoots, upon root Al exposure, an increased but stable WAK1 expression was observed. Using confocal microscopy, we visualized Al-induced closure of leaf stomata, consistent with previous suggestions that the Al stress primarily experienced in roots associated with the transfer of root-shoot signals. Elevated levels of WAK protein in root cells were observed through western blots after 6 h of Al exposure, indicating a lag time between the Al-induced WAK transcription and translation. WAK proteins are localized abundantly to peripheries of cortex cells within the elongation zone of the root apex. In these root cells, disintegration of cortical microtubules was observed after Al treatment but not after the Al analog lanthanum treatments. Tip-growing control root hairs, stem stomata, and leaf stomatal pores are characterized with high amounts of WAKs, suggesting WAKs are accumulating at plasma membrane domains, which suffer from mechanical stress and lack dense arrays of supporting cortical microtubules. Further, transgenic plants overexpressing WAK1 showed an enhanced Al tolerance in terms of root growth when compared with the wild-type plants, making the WAK1 one of the important candidates for plant defense against Al toxicity. PMID:12913180

  19. Aluminum-induced cell death of barley-root border cells is correlated with peroxidase- and oxalate oxidase-mediated hydrogen peroxide production.

    PubMed

    Tamás, L; Budíková, S; Huttová, J; Mistrík, I; Simonovicová, M; Siroká, B

    2005-06-01

    The function of root border cells (RBC) during aluminum (Al) stress and the involvement of oxalate oxidase, peroxidase and H(2)O(2) generation in Al toxicity were studied in barley roots. Our results suggest that RBC effectively protect the barley root tip from Al relative to the situation in roots cultivated in hydroponics where RBC are not sustained in the area surrounding the root tip. The removal of RBC from Al-treated roots increased root growth inhibition, Al and Evans blue uptake, inhibition of RBC production, the level of dead RBC, peroxidase and oxalate oxidase activity and the production of H(2)O(2). Our results suggest that even though RBC actively produce active oxygen species during Al stress, their role in the protection of root tips against Al toxicity is to chelate Al in their dead cell body. PMID:15759117

  20. A human pluripotent carcinoma stem cell-based model for in vitro developmental neurotoxicity testing: effects of methylmercury, lead and aluminum evaluated by gene expression studies.

    PubMed

    Laurenza, Incoronata; Pallocca, Giorgia; Mennecozzi, Milena; Scelfo, Bibiana; Pamies, David; Bal-Price, Anna

    2013-11-01

    The major advantage of the neuronal cell culture models derived from human stem cells is their ability to replicate the crucial stages of neurodevelopment such as the commitment of human stem cells to the neuronal lineage and their subsequent stages of differentiation into neuronal and glial-like cell. In these studies we used mixed neuronal/glial culture derived from the NTERA-2 (NT-2) cell line, which has been established from human pluripotent testicular embryonal carcinoma cells. After characterization of the different stages of cell differentiation into neuronal- and glial-like phenotype toxicity studies were performed to evaluate whether this model would be suitable for developmental neurotoxicity studies. The cells were exposed during the differentiation process to non-cytotoxic concentrations of methylmercury chloride, lead chloride and aluminum nitrate for two weeks. The toxicity was then evaluated by measuring the mRNA levels of cell specific markers (neuronal and glial). The results obtained suggest that lead chloride and aluminum nitrate at low concentrations were toxic primarily to astrocytes and at the higher concentrations it also induced neurotoxicity. In contrast, MetHgCl was toxic for both cell types, neuronal and glial, as mRNA specific for astrocytes and neuronal markers were affected. The results obtained suggest that a neuronal mixed culture derived from human NT2 precursor cells is a suitable model for developmental neurotoxicity studies and gene expression could be used as a sensitive endpoint for initial screening of potential neurotoxic compounds. PMID:23501475

  1. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA

    SciTech Connect

    Hu, Haiyan; Lin, Hui; Zheng, Wang; Feng, Xinbin; Liang, Liyuan; Elias, Dwayne A; Gu, Baohua

    2013-01-01

    Both reduction and surface adsorption of mercuric mercury [Hg(II)] are found to occur simultaneously on G. sulfurreducens PCA cells under dark, anaerobic conditions. Reduction of Hg(II) to elemental Hg(0) initially follows a pseudo-first order kinetics with a half-life of < 2 h in the presence of 50 nM Hg(II) and 1011 cells L-1 in a phosphate buffer (pH 7.4). Multiple gene deletions of the outer membrane cytochromes in this organism resulted in decrease in reduction rate from ~ 0.3 to 0.05 h-1, and reduction was nearly absent with heat-killed cells or in the cell filtrate. Adsorption of Hg(II) by cells is found to compete with, and thus inhibit, Hg(II) reduction. Depending on the Hg to cell ratio, maximum Hg(II) reduction was observed at about 5 10-19 mol Hg cell-1, but reduction terminated at a low Hg to cell ratio (< 10-20 mol Hg cell-1). This inhibitory effect is attributed to strong binding between Hg(II) and the thiol ( SH) functional groups on cells and validated by experiments in which the sorbed Hg(II) was readily exchanged by thiols (e.g., glutathione) but not by carboxylic ligands such as ethylenediaminetetraacetate (EDTA). We suggest that coupled Hg(II)-cell interactions, i.e., reduction and surface binding, could be important in controlling Hg species transformation and bioavailability and should therefore be considered in microbial Hg(II) uptake and methylation studies.

  2. Electron and photon degradation in aluminum, gallium and boron doped float zone silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rahilly, W. P.; Scott-Monck, J.; Anspaugh, B.; Locker, D.

    1976-01-01

    Solar cells fabricated from Al, Ga and B doped Lopex silicon over a range of resistivities were tested under varying conditions of 1 MeV electron fluence, light exposures and thermal cycling. Results indicate that Al and Ga can replace B as a P type dopant to yield improved solar cell performance.

  3. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  4. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  5. Mechanical characterization of hybrid and functionally-graded aluminum open-cell foams with nanocrystalline-copper coatings

    NASA Astrophysics Data System (ADS)

    Sun, Yi

    Cellular/foam materials found in nature such as bone, wood, and bamboo are usually functionally graded by having a non-uniform density distribution and inhomogenous composition that optimizes their global mechanical performance. Inspired by such naturally engineered products, the current study was conducted towards the development of functionally graded hybrid metal foams (FGHMF) with electrodeposited (ED) nanocrystalline coatings. First, the deformation and failure mechanisms of aluminum/copper (Al/Cu) hybrid foams were investigated using finite element analyses at different scales. The micro-scale behavior was studied based on single ligament models discretized using continuum elements and the macro-scale behavior was investigated using beam-element based finite element models of representative unit volumes consisting of multiple foam cells. With a detailed constitutive material behavior and material failure considered for both the aluminum ligament and the nano-copper coating, the numerical models were able to capture the unique behavior of Al/Cu hybrid foams, such as the typically observed sudden load drop after yielding. The numerical models indicate that such load drop is caused by the fracture of foam ligaments initiated from the rupture of the ED nano-copper coating due to its low ductility. This failure mode jeopardizes the global energy absorption capacity of hybrid foams, especially when a thick coating is applied. With the purpose of enhancing the performance of Al/Cu hybrid foams, an annealing process, which increased the ductility of the nanocrystalline copper coating by causing recovery, recrystallination and grain growth, was introduced in the manufacturing of Al/Cu hybrid foams. Quasi-static experimental results indicate that when a proper amount of annealing is applied, the ductility of the ED copper can be effectively improved and the compressive and tensile behavior of Al/Cu hybrid foams can be significantly enhanced, including better energy

  6. Aluminum and temperature alteration of cell membrane permeability of Quercus rubra

    SciTech Connect

    Junping Chen; Sucoff, E.I.; Stadelmann, E.J. )

    1991-06-01

    Al toxicity is the major factor limiting plant growth in acid soils. This report extends research on Al-induced changes in membrane behavior of intact root cortex cells of Northern red oak (Quercus rubra). Membrane permeability was determined by the plasmometric method for individual intact cells at temperatures from 2 or 4 to 35 C. Al (0.37 millimolar) significantly increased membrane permeability to urea and monoethyl urea and decreased permeability to water. Al significantly altered the activation energy required to transport water (+ 32%), urea (+ 9%), and monoethyl urea ({minus}7%) across cell membranes. Above 9 C, Al increased the lipid partiality of the cell membranes; below 7 C, Al decreased it. Al narrowed by 6 C the temperature range over which plasmolysis occurred without membrane damage. These changes in membrane behavior are explainable if Al reduced membrane lipid fluidity and kink frequency and increases packing density and the occurrence of straight lipid chains.

  7. Engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle: An update

    NASA Technical Reports Server (NTRS)

    Gregg, Dane W.; Hall, Susan E.

    1995-01-01

    Most emerging unmanned undersea vehicle (UUV) missions require significantly longer range and endurance than is achievable with existing battery technology. The Aluminum-Oxygen (Al-O2) semi-cell is a candidate technology capable of providing a significant improvement in endurance compared to the silver-zinc battery technology currently used in UUVs and compares favorably to other proposed UUV power systems not only in performance, but also in safety and logistics. An Al-O2 semi-cell system is under development by Loral Defense Systems-Akron (Loral) for the ARPA/Navy 44 in. diameter UUV test vehicle. The power plant consists of a cell stack, gas management, oxygen storage, electrolyte management, coolant and controller subsystems, designed to replace the existing silver-zinc battery and meet existing weight, volume, electrical and thermal requirements, therefore minimizing modifications to the UUV. A detailed system design is complete. A component and material endurance test to evaluate compatibility and reliability of various material arid components is complete. Sub scale (Short stack) system testing is completed. A full-scale demonstration unit is now under construction in the second half of 1995. The full scale demonstration test will simulate environmental conditions of the operational system. This paper summarizes the results of the extensive short stack and endurance test programs, describes the plan for full-scale testing, and concludes with a brief discussions of future directions for this technology. This program is sponsored by ARPA Maritime Systems Technology Office under NASA contract NAS3-26715.

  8. Engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle: An update

    NASA Astrophysics Data System (ADS)

    Gregg, Dane W.; Hall, Susan E.

    1995-04-01

    Most emerging unmanned undersea vehicle (UUV) missions require significantly longer range and endurance than is achievable with existing battery technology. The Aluminum-Oxygen (Al-O2) semi-cell is a candidate technology capable of providing a significant improvement in endurance compared to the silver-zinc battery technology currently used in UUVs and compares favorably to other proposed UUV power systems not only in performance, but also in safety and logistics. An Al-O2 semi-cell system is under development by Loral Defense Systems-Akron (Loral) for the ARPA/Navy 44 in. diameter UUV test vehicle. The power plant consists of a cell stack, gas management, oxygen storage, electrolyte management, coolant and controller subsystems, designed to replace the existing silver-zinc battery and meet existing weight, volume, electrical and thermal requirements, therefore minimizing modifications to the UUV. A detailed system design is complete. A component and material endurance test to evaluate compatibility and reliability of various material arid components is complete. Sub scale (Short stack) system testing is completed. A full-scale demonstration unit is now under construction in the second half of 1995. The full scale demonstration test will simulate environmental conditions of the operational system. This paper summarizes the results of the extensive short stack and endurance test programs, describes the plan for full-scale testing, and concludes with a brief discussions of future directions for this technology. This program is sponsored by ARPA Maritime Systems Technology Office under NASA contract NAS3-26715.

  9. Aluminum phosphide

    Integrated Risk Information System (IRIS)

    Aluminum phosphide ; CASRN 20859 - 73 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  10. Asymmetric reduction of ketones with recombinant E. coli whole cells in neat substrates.

    PubMed

    Jakoblinnert, Andre; Mladenov, Radoslav; Paul, Albert; Sibilla, Fabrizio; Schwaneberg, Ulrich; Ansorge-Schumacher, Marion B; de María, Pablo Domínguez

    2011-11-28

    The asymmetric reduction of ketones is performed by using lyophilized whole cells in neat substrates with defined water activity (a(w)). Ketones and alcohols prone to be unstable in aqueous media can now be converted via biocatalysis. PMID:22005469

  11. Materials Science Constraints on the Development of Aluminium Reduction Cells

    NASA Astrophysics Data System (ADS)

    Metson, James; McIntosh, Grant; Etzion, Ronny

    The Hall-Heroult process for the production of Aluminium metal is some 125 years old. The process is energy constrained by the need to shed around half of the (electrical) energy supplied to the cell as waste heat. The molten cryolite electrolyte is sufficiently aggressive that the only reliable method of protecting the side wall of the cell is to maintain a frozen layer of electrolyte at the hot face of the sidewall. Thus the lack of a cryolite resistant sidewall is but one of several materials science constraints which still limit the energy efficiency of the process. An inert anode and non-consumable cathode are also significant challenges which limit cell life and energy efficiency. Thus there are major challenges in both materials development and new conceptual cell designs to improve the efficiency of this process.

  12. A highly sensitive and selective fluorescent probe for trivalent aluminum ion based on rhodamine derivative in living cells.

    PubMed

    Tang, Jia-Liang; Li, Chun-Yan; Li, Yong-Fei; Lu, Xi; Qi, Hong-Rui

    2015-08-12

    A rhodamine spirolactam derivative (1) is developed as a colormetric and fluorescent probe for trivalent aluminum ions (Al(3+)). It exhibits a highly sensitive "turn-on" fluorescent response toward Al(3+) with a 70-fold fluorescence intensity enhancement under 2 equiv. of Al(3+) added. The probe can be applied to the quantification of Al(3+) with a linear range covering from 5.0 × 10(-7) to 2.0 × 10(-5) M and a detection limit of 4.0 × 10(-8) M. Most importantly, the fluorescence changes of the probe are remarkably specific for Al(3+) in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the experiment results show that the response behavior of 1 towards Al(3+) is pH independent in neutral condition (pH 6.0-8.0) and the response of the probe is fast (response time less than 3 min). In addition, the proposed probe has been used to detect Al(3+) in water samples and image Al(3+) in living cells with satisfying results. PMID:26320971

  13. Casting protocols for the production of open cell aluminum foams by the replication technique and the effect on porosity.

    PubMed

    Elizondo Luna, Erardo M; Barari, Farzad; Woolley, Robert; Goodall, Russell

    2014-01-01

    Metal foams are interesting materials from both a fundamental understanding and practical applications point of view. Uses have been proposed, and in many cases validated experimentally, for light weight or impact energy absorbing structures, as high surface area heat exchangers or electrodes, as implants to the body, and many more. Although great progress has been made in understanding their structure-properties relationships, the large number of different processing techniques, each producing material with different characteristics and structure, means that understanding of the individual effects of all aspects of structure is not complete. The replication process, where molten metal is infiltrated between grains of a removable preform material, allows a markedly high degree of control and has been used to good effect to elucidate some of these relationships. Nevertheless, the process has many steps that are dependent on individual "know-how", and this paper aims to provide a detailed description of all stages of one embodiment of this processing method, using materials and equipment that would be relatively easy to set up in a research environment. The goal of this protocol and its variants is to produce metal foams in an effective and simple way, giving the possibility to tailor the outcome of the samples by modifying certain steps within the process. By following this, open cell aluminum foams with pore sizes of 1-2.36 mm diameter and 61% to 77% porosity can be obtained. PMID:25548938

  14. Numerical Simulation of Capillary Channels Growth in Heterogeneous Porous Anode in Aluminum Electrolysis Cells by Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Diop, Mouhamadou; Wang, Moran

    2014-11-01

    This paper presents results obtained from three-dimensional numerical simulations of multiphase reactive flows in porous anode block in aluminum cells controlling a great extent of mass, heat and chemical balance in the anode-cathode region. A lattice Boltzmann method based on thermal reactive multiphase flows, is developed to simulate the spatial and temporal distribution of fluids, the effects of gas rate and capillary instabilities in the cryolite. A new model, which involves eighteen lattice particles for the first and second derivative, is proposed to achieve accurate simulations at high fluid density ratio. The effects of the dissolution of gas and the capillary number on the flow field induced by gas bubbles evolution are investigated. It is found that capillary channels in the limit of small Stefan, the radial transport of reactant out of the capillary channel decay exponentially with the height of penetration in the porous anode. Several examples are solved by the proposed method to demonstrate the accuracy and robustness of the method.

  15. An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte

    NASA Astrophysics Data System (ADS)

    Gifford, P. R.; Palmisano, J. B.

    1988-03-01

    A novel Al/Cl2 rechargeable electrochemical cell is decribed which employs an Al negative and graphtie positive electrode in a room temperature molten salt electrolyte of 1.5:1 AlCl3:1,2-dimethyl-3-propylimidazolium chloride. The graphite positive electrode functions as a reversible intercalation electrode for chlorine, eliminating the need for separate anolyte and catholyte compartments. The cell possesses an average discharge voltage of 1.7V for currents of 1-10 mA/g graphite, and over 150 cycles at 100 percent depth-of-discharge for positive electrode limited cells have been demonstrated. Improvements in the chlorine storage capacity of the positive electrode are needed to obtain satisfactory energy densities.

  16. Coordination between apoplastic and symplastic detoxification confers plant aluminum resistance.

    PubMed

    Zhu, Xiao Fang; Lei, Gui Jie; Wang, Zhi Wei; Shi, Yuan Zhi; Braam, Janet; Li, Gui Xin; Zheng, Shao Jian

    2013-08-01

    Whether aluminum toxicity is an apoplastic or symplastic phenomenon is still a matter of debate. Here, we found that three auxin overproducing mutants, yucca, the recessive mutant superroot2, and superroot1 had increased aluminum sensitivity, while a transfer DNA insertion mutant, xyloglucan endotransglucosylase/hydrolases15 (xth15), showed enhanced aluminum resistance, accompanied by low endogenous indole-3-acetic acid levels, implying that auxin may be involved in plant responses to aluminum stress. We used yucca and xth15 mutants for further study. The two mutants accumulated similar total aluminum in roots and had significantly reduced cell wall aluminum and increased symplastic aluminum content relative to the wild-type ecotype Columbia, indicating that altered aluminum levels in the symplast or cell wall cannot fully explain the differential aluminum resistance of these two mutants. The expression of Al sensitive1 (ALS1), a gene that functions in aluminum redistribution between the cytoplasm and vacuole and contributes to symplastic aluminum detoxification, was less abundant in yucca and more abundant in xth15 than the wild type, consistent with possible ALS1 function conferring altered aluminum sensitivity in the two mutants. Consistent with the idea that xth15 can tolerate more symplastic aluminum because of possible ALS1 targeting to the vacuole, morin staining of yucca root tip sections showed more aluminum accumulation in the cytosol than in the wild type, and xth15 showed reduced morin staining of cytosolic aluminum, even though yucca and xth15 had similar overall symplastic aluminum content. Exogenous application of an active auxin analog, naphthylacetic acid, to the wild type mimicked the aluminum sensitivity and distribution phenotypes of yucca, verifying that auxin may regulate aluminum distribution in cells. Together, these data demonstrate that auxin negatively regulates aluminum tolerance through altering ALS1 expression and aluminum distribution

  17. Aluminum-natural oxide-P type silicon /MIS/ solar cells

    NASA Astrophysics Data System (ADS)

    Badura, E.; Zdanowicz, W.

    1980-12-01

    MIS (metal-interfacial region-semiconductor) solar cells are attractive because of their relatively high conversion efficiency. Their performance, however, is strongly affected by device preparation. Two methods are described for preparing Al - natural SiO - p-type Si cells which exhibit high photovoltaic values. The first, involving a 'nonsintered oxide' process, entails etching the active silicon surfaces in HF acid and exposing them to air at room temperature for 48 hours. The second method differs from the first only in that it requires the additional step of sintering the oxidized surfaces in a vacuum at about 500 C. In both cases, a semitransparent Al film is then applied to the oxide, after which an Al grid electrode and 70-nm SiOx antireflection coatings are deposited on the device. Measured against both the nonsintered cell and the Schottky barrier cell, the sintered assembly shows the highest open-circuit voltage (0.46-0.492), the highest fill factor (0.66-0.73), and the most efficient dark parameters.

  18. Silicon Solar Cells with Front Hetero-contact and Aluminum Alloy Back Junction (Poster)

    SciTech Connect

    Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

    2008-05-01

    The objectives of this report are: (1) to apply industrial back Al process in efficient n-wafer cells with a-Si:H front surface passivation; and (2) to evaluate the surface recombination velocity (SRV) of the a-Si:H passivated front surface with different surface preparation procedures.

  19. Direct Measurement of Aluminum Uptake and Distribution in Single Cells of Chara corallina1

    PubMed Central

    Taylor, Gregory J.; McDonald-Stephens, Julie L.; Hunter, Douglas B.; Bertsch, Paul M.; Elmore, David; Rengel, Zdenko; Reid, Robert J.

    2000-01-01

    Quantitative information on the uptake and distribution of Al at the cellular level is required to understand mechanisms of Al toxicity, but direct measurement of uptake across the plasma membrane has remained elusive. We measured rates of Al transport across membranes in single cells of Chara corallina using the rare 26Al isotope, an emerging technology (accelerator mass spectrometry), and a surgical technique for isolating subcellular compartments. Accumulation of Al in the cell wall dominated total uptake (71–318 μg m−2 min−1), although transport across the plasma membrane was detectable (71–540 ng m−2 min−1) within 30 min of exposure. Transport across the tonoplast was initially negligible, but accelerated to rates approximating uptake across the plasma membrane. The avacuolate protoplasm showed signs of saturation after 60 min, but continued movement across the plasma membrane was supported by sequestration in the vacuole. Saturation of all compartments was observed after 12 to 24 h. Accumulation of Al in the cell wall reflected variation in {Al3+} induced by changes in Al supply or complexing ligands, but was unaffected by pH. In contrast, transport across the plasma membrane peaked at pH 4.3 and increased when {Al3+} was reduced by complexing ligands. Cold temperature (4°C) reduced accumulation in the cell wall and protoplasm, whereas 2,4-dinitrophenol and m-chlorocarbonylcyanidephenyl hydrazone increased membrane transport by 12- to 13-fold. Our data suggest that the cell wall is the major site of Al accumulation. Nonetheless, membrane transport occurs within minutes of exposure and is supported by subsequent sequestration in the vacuole. The rapid delivery of Al to the protoplasm suggests that intracellular lesions may be possible. PMID:10889247

  20. Osteoblast lineage cells can discriminate microscale topographic features on titanium-aluminum-vanadium surfaces.

    PubMed

    Olivares-Navarrete, Rene; Hyzy, Sharon L; Berg, Mark E; Schneider, Jennifer M; Hotchkiss, Kelly; Schwartz, Zvi; Boyan, Barbara D

    2014-12-01

    Titanium (Ti) and Ti alloys are used in orthopaedic/spine applications where biological implant fixation, or osseointegration, is required for long-term stability. These implants employ macro-scale features to provide mechanical stability until arthrodesis, features that are too large to influence healing at the cellular level. Micron-scale rough Ti alloy (Ti-6Al-4V) increases osteoblastic differentiation and osteogenic factor production in vitro and increases in vivo bone formation; however, effects of overall topography, including sub-micron scale and nanoscale features, on osteoblast lineage cells are less well appreciated. To address this, Ti6Al4V surfaces with macro/micro/nano-textures were generated using sand blasting and acid etching that had comparable average roughness values but differed in other roughness parameters (total roughness, profile roughness, maximum peak height, maximum valley depth, root-mean-squared roughness, kurtosis, skewness) (#5, #9, and #12). Human mesenchymal stem cells (HMSCs) and normal human osteoblasts (NHOst) were cultured for 7 days on the substrates and then analyzed for alkaline phosphatase activity and osteocalcin content, production of osteogenic local factors, and integrin subunit expression. All three surfaces supported osteoblastic differentiation of HMSCs and further maturation of NHOst cells, but the greatest response was seen on the #9 substrate, which had the lowest skewness and kurtosis. The #9 surface also induced highest expression of α2 and β1 integrin mRNA. HMSCs produced highest levels of ITGAV on #9, suggesting this integrin may play a role for early lineage cells. These results indicate that osteoblast lineage cells are sensitive to specific micro/nanostructures, even when overall macro roughness is comparable and suggest that skewness and kurtosis are important variables. PMID:25227453

  1. Closed-cell foams produced from sputter-deposited aluminum. [experiments on earth and in space environment

    NASA Technical Reports Server (NTRS)

    Patten, J. W.; Greenwell, E. N.

    1977-01-01

    Sputter deposited aluminum containing argon was melted to produce foam, both in the earth's gravitational field and in a zero-gravity space environment. Experiments leading to trapping of up to 270 ppm argon sputtering gas in pure aluminum during high-rate dc triode sputter deposition are discussed. Conduct of the melting experiments and design of the furnace used are described. Metallography; an analysis of bubble size, distribution, and morphology; and a preliminary description of the kinetics are also presented.

  2. Increasing the Thermal Stability of Aluminum Titanate for Solid Oxide Fuel Cell Anodes

    NASA Technical Reports Server (NTRS)

    Bender, Jeffrey B.

    2004-01-01

    Solid-oxide fuel cells (SOFCs) show great potential as a power source for future space exploration missions. Because SOFCs operate at temperatures significantly higher than other types of fuel cells, they can reach overall efficiencies of up to 60% and are able to utilize fossil fuels. The SOFC team at GRC is leading NASA's effort to develop a solid oxide fuel cell with a power density high enough to be used for aeronautics and space applications, which is approximately ten times higher than ground transport targets. layers must be able to operate as a single unit at temperatures upwards of 900'C for at least 40,000 hours with less than ten percent degradation. One key challenge to meeting this goal arises from the thermal expansion mismatch between different layers. The amount a material expands upon heating is expressed by its coefficient of thermal expansion (CTE). If the CTEs of adjacent layers are substantially different, thermal stresses will arise during the cell's fabrication and operation. These stresses, accompanied by thermal cycling, can fracture and destroy the cell. While this is not an issue at the electrolyte-cathode interface, it is a major concern at the electrolyte-anode interface, especially in high power anode-supported systems. electrolyte are nearly identical. Conventionally, this has been accomplished by varying the composition of the anode to match the CTE of the yittria-stabilized zirconia (YSZ) electrolyte (approx.10.8x10(exp -6/degC). A Ni/YSZ composite is typically used as a base material for the anode due to its excellent electrochemical properties, but its CTE is about 13.4x10(exp -6/degC). One potential way to lower the CTE of this anode is to add a small percentage of polycrystalline Al2TiO5, with a CTE of 0.68x10(exp -6/degC, to the Ni/YSZ base. However, Al2TiO5 is thermally unstable and loses its effectiveness as it decomposes to Al2O3 and TiO2 between 750 C and 1280 C. be used as additives to increase the thermal stability of Al2

  3. Whole cells in enantioselective reduction of benzyl acetoacetate

    PubMed Central

    Ribeiro, Joyce Benzaquem; Ramos, Aline de Souza; Lopes, Raquel de Oliveira; da Silva, Gabriela Veloso Vieira; de Souza, Rodrigo Octavio Mendonça Alves

    2014-01-01

    The β-ketoester benzyl acetoacetate was enantioselectively reduced to benzyl (S)-3-hydroxybutanoate by seven microorganism species. The best result using free cells was obtained with the yeast Hansenula sp., which furnished 97% ee and 85% of conversion within 24 h. After immobilization in calcium alginate spheres, K.marxianus showed to be more stable after 2 cycles of reaction. PMID:25477927

  4. The geometry of Niggli reduction: SAUC – search of alternative unit cells

    PubMed Central

    McGill, Keith J.; Asadi, Mojgan; Karakasheva, Maria T.; Andrews, Lawrence C.; Bernstein, Herbert J.

    2014-01-01

    A database of lattices using the G 6 representation of the Niggli-reduced cell as the search key provides a more robust and complete search than older techniques. Searching is implemented by finding the distance from the probe cell to other cells using a topological embedding of the Niggli reduction in G 6, so that all cells representing similar lattices will be found. The embedding provides the first fully linear measure of distances between unit cells. Comparison of results with those from older cell-based search algorithms suggests significant value in the new approach. PMID:24587790

  5. Enhanced performances of vertical-structured green-band InGaN/GaN multiple-quantum-well solar cells with aluminum reflectors

    NASA Astrophysics Data System (ADS)

    Lai, Meng-Hua; Zheng, Zhi-Wei; Yu, Jian; Ying, Lei-Ying; Zhang, Bao-Ping

    2016-06-01

    We demonstrated vertical-structured InGaN/GaN multiple-quantum-well (MQW) solar cells with enhanced performances at a wavelength of 510 nm. The enhancement was achieved by using a ptype ohmic mirror with a combined indium-tin-oxide film and an aluminum (Al) reflector inserted beneath the MQW absorption region. In addition, both good ohmic contact and high reflection were observed. The vertical-structured MQW solar cell with an Al reflector exhibited significant improvements in device performances as compared to that without the Al reflector, including a 49% increase in the short-circuit current density and a 56% increase in the power conversion efficiency.

  6. A "turn-on" fluorescent chemosensor for aluminum ion and cell imaging application

    NASA Astrophysics Data System (ADS)

    Guo, Ailing; Zhu, Ruitao; Ren, Yuehong; Dong, Jinlong; Feng, Liheng

    2016-01-01

    A simple and efficient fluorescent chemosensor for Al3 + is reported in the paper. The chemosensor is obtained by dehydration reaction of 2-hydroxy-1-naphthaldehyde and 2-aminophenol. The chemosensor has high selectivity and sensitivity for Al3 + and displays fluorescence "off-on" switch signal. The detection limit of the chemosensor for Al3 + can reach 1.0 × 10- 7 M in DMSO/H2O (1:9, v/v) solution. The mass spectra and Job's plot analysis confirm the 1:1 stoichiometry between chemosensor and Al3 +. Potential utilization of the probe as an intracellular sensor of Al3 + in human cancer (HiSa) cells is also examined by confocal fluorescence microscopy.

  7. Surface segregation at the aluminum interface of poly(3-hexylthiophene)/fullerene solar cells

    SciTech Connect

    Orimo, Akiko; Masuda, Kohji; Honda, Satoshi; Benten, Hiroaki; Ito, Shinzaburo; Ohkita, Hideo; Tsuji, Hiroshi

    2010-01-25

    The effects of thermal annealing before and after Al deposition on poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C{sub 61} butyric acid methyl ester (PCBM) blend solar cells were investigated by current density-voltage measurements and x-ray photoelectron spectroscopy (XPS). Compared to the preannealed device, the postannealed device exhibited enhanced open-circuit voltage (V{sub OC}), which is ascribed to the decrease in the reverse saturation current density J{sub 0}. The XPS measurements demonstrated that P3HT is dominant at the Al interface in the preannealed device while PCBM is instead dominant in the postannealed device. This surface-segregated PCBM formed in the postannealed device can serve as a hole-blocking layer at the Al interface to reduce J{sub 0}, and therefore improve V{sub OC}.

  8. Reduction of prion infectivity in packed red blood cells

    SciTech Connect

    Morales, Rodrigo; Buytaert-Hoefen, Kimberley A.; Gonzalez-Romero, Dennisse; Castilla, Joaquin; Hansen, Eric T.; Hlavinka, Dennis; Goodrich, Raymond P.; Soto, Claudio

    2008-12-12

    The link between a new variant form of Creutzfeldt-Jakob disease (vCJD) and the consumption of prion contaminated cattle meat as well as recent findings showing that vCJD can be transmitted by blood transfusion have raised public health concerns. Currently, a reliable test to identify prions in blood samples is not available. The purpose of this study was to evaluate the possibility to remove scrapie prion protein (PrP{sup Sc}) and infectivity from red blood cell (RBC) suspensions by a simple washing procedure using a cell separation and washing device. The extent of prion removal was assessed by Western blot, PMCA and infectivity bioassays. Our results revealed a substantial removal of infectious prions ({>=}3 logs of infectivity) by all techniques used. These data suggest that a significant amount of infectivity present in RBC preparations can be removed by a simple washing procedure. This technology may lead to increased safety of blood products and reduce the risk of further propagation of prion diseases.

  9. Solution Processing of Cadmium Sulfide Buffer Layer and Aluminum-Doped Zinc Oxide Window Layer for Thin Films Solar Cells

    NASA Astrophysics Data System (ADS)

    Alam, Mahboob; Islam, Mohammad; Achour, Amine; Hayat, Ansar; Ahsan, Bilal; Rasheed, Haroon; Salam, Shahzad; Mujahid, Mohammad

    2014-07-01

    Cadmium sulfide (CdS) and aluminum-doped zinc oxide (Al:ZnO) thin films are used as buffer layer and front window layer, respectively, in thin film solar cells. CdS and Al:ZnO thin films were produced using chemical bath deposition (CBD) and sol-gel technique, respectively. For CBD CdS, the effect of bath composition and temperature, dipping time and annealing temperature on film properties was investigated. The CdS films are found to be polycrystalline with metastable cubic crystal structure, dense, crack-free surface morphology and the crystallite size of either few nanometers or 12-17 nm depending on bath composition. In case of CdS films produced with 1:2 ratio of Cd and S precursors, spectrophotometer studies indicate quantum confinement effect, owing to extremely small crystallite size, with an increase in Eg value from 2.42 eV (for bulk CdS) to 3.76 eV along with a shift in the absorption edge toward 330 nm wavelength. The optimum annealing temperature is 400°C beyond which film properties deteriorate through S evaporation and CdO formation. On the other hand, Al:ZnO films prepared via spin coating of precursor sols containing 0.90-1.10 at.% Al show that, with an increase in Al concentration, the average grain size increases from 28 nm to 131 nm with an associated decrease in root-mean-square roughness. The minimum value of electrical resistivity, measured for the films prepared using 0.95 at.% Al in the precursor sol, is 2.7 × 10-4 Ω ṡ cm. The electrical resistivity value rises upon further increase in Al doping level due to introduction of lattice defects and Al segregation to the grain boundary area, thus limiting electron transport through it.

  10. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Fox, P. L.

    1998-01-01

    Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.

  11. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    PubMed Central

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  12. Scaleable Clean Aluminum Melting Systems

    SciTech Connect

    Han, Q.; Das, S.K.

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  13. DNA damage in the kidney tissue cells of the fish Rhamdia quelen after trophic contamination with aluminum sulfate

    PubMed Central

    Klingelfus, Tatiane; da Costa, Paula Moiana; Scherer, Marcos; Cestari, Marta Margarete

    2015-01-01

    Abstract Even though aluminum is the third most common element present in the earth's crust, information regarding its toxicity remains scarce. It is known that in certain cases, aluminum is neurotoxic, but its effect in other tissues is unknown. The aim of this work was to analyze the genotoxic potential of aluminum sulfate in kidney tissue of the fish Rhamdia quelen after trophic contamination for 60 days. Sixty four fish were subdivided into the following groups: negative control, 5 mg, 50 mg and 500 mg of aluminum sulfate per kg of fish. Samples of the posterior kidney were taken and prepared to obtain mitotic metaphase, as well as the comet assay. The three types of chromosomal abnormalities (CA) found were categorized as chromatid breaks, decondensation of telomeric region, and early separation of sister chromatids. The tests for CA showed that the 5 mg/kg and 50 mg/kg doses of aluminum sulfate had genotoxic potential. Under these treatments, early separation of the sister chromatids was observed more frequently and decondensation of the telomeric region tended to increase in frequency. We suggest that structural changes in the proteins involved in DNA compaction may have led to the decondensation of the telomeric region, making the DNA susceptible to breaks. Moreover, early separation of the sister chromatids may have occurred due to changes in the mobility of chromosomes or proteins that keep the sister chromatids together. The comet assay confirmed the genotoxicity of aluminum sulfate in the kidney tissue of Rhamdia quelen at the three doses of exposure. PMID:26692157

  14. Aluminum Carbothermic Technology

    SciTech Connect

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major

  15. Nanomolar aluminum induces expression of the inflammatory systemic biomarker C-reactive protein (CRP) in human brain microvessel endothelial cells (hBMECs).

    PubMed

    Alexandrov, Peter N; Kruck, Theodore P A; Lukiw, Walter J

    2015-11-01

    C-reactive protein (CRP; also known as pentraxin 1, PTX1), a 224 amino acid soluble serum protein organized into a novel pentameric ring-shaped structure, is a highly sensitive pathogenic biomarker for systemic inflammation. High CRP levels are found in practically every known inflammatory state, and elevated CRP levels indicate an increased risk for several common age-related human degenerative disorders, including cardiovascular disease, cancer, diabetes, and Alzheimer's disease (AD). While the majority of CRP is synthesized in the liver for secretion into the systemic circulation, it has recently been discovered that an appreciable amount of CRP is synthesized in highly specialized endothelial cells that line the vasculature of the brain and central nervous system (CNS). These highly specialized cells, the major cell type lining the human CNS vasculature, are known as human brain microvessel endothelial cells (hBMECs). In the current pilot study we examined (i) CRP levels in human serum obtained from AD and age-matched control patients; and (ii) analyzed the effects of nanomolar aluminum sulfate on CRP expression in primary hBMECs. The three major findings in this short communication are: (i) that CRP is up-regulated in AD serum; (ii) that CRP serum levels increased in parallel with AD progression; and (iii) for the first time show that nanomolar aluminum potently up-regulates CRP expression in hBMECs to many times its 'basal abundance'. The results suggest that aluminum-induced CRP may in part contribute to a pathophysiological state associated with a chronic systemic inflammation of the human vasculature. PMID:26265215

  16. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis.

    PubMed

    Pierson, Emma; Yau, Christopher

    2015-01-01

    Single-cell RNA-seq data allows insight into normal cellular function and various disease states through molecular characterization of gene expression on the single cell level. Dimensionality reduction of such high-dimensional data sets is essential for visualization and analysis, but single-cell RNA-seq data are challenging for classical dimensionality-reduction methods because of the prevalence of dropout events, which lead to zero-inflated data. Here, we develop a dimensionality-reduction method, (Z)ero (I)nflated (F)actor (A)nalysis (ZIFA), which explicitly models the dropout characteristics, and show that it improves modeling accuracy on simulated and biological data sets. PMID:26527291

  17. Al adjuvants can be tracked in viable cells by lumogallion staining.

    PubMed

    Mile, Irene; Svensson, Andreas; Darabi, Anna; Mold, Matthew; Siesjö, Peter; Eriksson, Håkan

    2015-07-01

    The mechanism behind the adjuvant effect of aluminum salts is poorly understood notwithstanding that aluminum salts have been used for decades in clinical vaccines. In an aqueous environment and at a nearly neutral pH, the aluminum salts form particulate aggregates, and one plausible explanation of the lack of information regarding the mechanisms could be the absence of an efficient method of tracking phagocytosed aluminum adjuvants and thereby the intracellular location of the adjuvant. In this paper, we want to report upon the use of lumogallion staining enabling the detection of phagocytosed aluminum adjuvants inside viable cells. Including micromolar concentrations of lumogallion in the culture medium resulted in a strong fluorescence signal from cells that had phagocytosed the aluminum adjuvant. The fluorescence appeared as spots in the cytoplasm and by confocal microscopy and co-staining with probes presenting fluorescence in the far-red region of the spectrum, aluminum adjuvants could to a certain extent be identified as localized in acidic vesicles, i.e., lysosomes. Staining and detection of intracellular aluminum adjuvants was achieved not only by diffusion of lumogallion into the cytoplasm, thereby highlighting the presence of the adjuvant, but also by pre-staining the aluminum adjuvant prior to incubation with cells. Pre-staining of aluminum adjuvants resulted in bright fluorescent particulate aggregates that remained fluorescent for weeks and with only a minor reduction of fluorescence upon extensive washing or incubation with cells. Both aluminum oxyhydroxide and aluminum hydroxyphosphate, two of the most commonly used aluminum adjuvants in clinical vaccines, could be pre-stained with lumogallion and were easily tracked intracellularly after incubation with phagocytosing cells. Staining of viable cells using lumogallion will be a useful method in investigations of the mechanisms behind aluminum adjuvants' differentiation of antigen-presenting cells

  18. Coupled Mercury–Cell Sorption, Reduction, and Oxidation on Methylmercury Production by Geobacter sulfurreducens PCA

    SciTech Connect

    Lin, Hui; Morrell-Falvey, Jennifer L.; Rao, Balaji; Liang, Liyuan; Gu, Baohua

    2014-09-30

    G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), in this paper we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62). These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell–SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10–19 to 25 × 10–19 moles-Hg/cell (equivalent to Hg/cell–SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn2+ leads to increased Hg reduction and decreased methylation. Finally, these results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.

  19. Coupled Mercury–Cell Sorption, Reduction, and Oxidation on Methylmercury Production by Geobacter sulfurreducens PCA

    DOE PAGESBeta

    Lin, Hui; Morrell-Falvey, Jennifer L.; Rao, Balaji; Liang, Liyuan; Gu, Baohua

    2014-09-30

    G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), in this paper we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62).more » These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell–SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10–19 to 25 × 10–19 moles-Hg/cell (equivalent to Hg/cell–SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn2+ leads to increased Hg reduction and decreased methylation. Finally, these results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.« less

  20. Study of integration issues to realize the market potential of OTEC energy in the aluminum industry. Final report

    SciTech Connect

    Jones, Jr., M. S.; Thiagarajan, V.; Sathyanarayana, K.; Markel, A. L.; Snyder, III, J. E.; Sprouse, A. M.; Leshaw, D.

    1980-09-01

    The various integration issues are studied which must be considered to realize the market potential for the use of OTEC by the aluminum industry. The chloride reduction process has been identified as an attractive candidate for use with OTEC systems, and drained-cathode Hall cells and two alternative chloride reduction processes are considered. OTEC power system and plantships for the different processes are described. Aluminum industry characteristics important for OTEC considerations are given, including economic models and case history analyses. Appended are supporting cost estimates and energy bridge concepts for getting OTEC energy to shore. (LEW)

  1. Study on Fuel Cell Network System Considering Reduction in Fuel Cell Capacity Using Load Leveling and Heat Release Loss

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya; Kudo, Kazuhiko

    Reduction in fuel cell capacity linked to a fuel cell network system is considered. When the power demand of the whole network is small, some of the electric power generated by the fuel cell is supplied to a water electrolysis device, and hydrogen and oxygen gases are generated. Both gases are compressed with each compressor and they are stored in cylinders. When the electric demand of the whole network is large, both gases are supplied to the network, and fuel cells are operated by these hydrogen and oxygen gases. Furthermore, an optimization plan is made to minimize the quantity of heat release of the hot water piping that connects each building. Such an energy network is analyzed assuming connection of individual houses, a hospital, a hotel, a convenience store, an office building, and a factory. Consequently, compared with the conventional system, a reduction of 46% of fuel cell capacity is expected.

  2. A novel mechanism of aluminum-induced cell death involving vacuolar processing enzyme and vacuolar collapse in tobacco cell line BY-2.

    PubMed

    Kariya, Koki; Demiral, Tijen; Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Turkan, Ismail; Sano, Toshio; Hasezawa, Seiichiro; Yamamoto, Yoko

    2013-11-01

    The role of vacuole in the cell death mechanism induced by aluminum (Al) was investigated in tobacco (Nicotiana tabacum L.) cell line BY-2. Cells at logarithmic phase of growth were treated without (control) or with Al (up to 150 μM) in a treatment medium containing CaCl2, sucrose and 2-(N-morpholino) ethanesulfonic acid (MES) buffer (pH 5.0). After 18 h treatment, both the integrity of the plasma membrane (estimated by Evans blue uptake) and growth capacity (estimated by post-Al treatment growth in nutrient medium) were decreased, while the activity of vacuolar processing enzyme (VPE) was increased, in the Al dose-dependent manner. The activity of the vacuole (estimated by neutral red uptake) was slightly increased at 50 μM then decreased with an increase in Al concentration. Direct observation of morphological changes of vacuole in a transgenic BY-2 expressing GFP-AtVam3p fusion protein localized on tonoplast indicated Al-induced collapse of vacuole. Time-course experiments indicated that both an increase in VPE activity and a loss of growth capacity were clearly observed at 6 h of the treatment time, prior to the loss of plasma membrane integrity. The presence of Ac-YVAD-CHO (an inhibitor effective to VPE) during Al treatment suppressed a loss of plasma membrane integrity. The expression of VPE genes (VPE-1a, VPE-1b) were significantly enhanced by Al treatment. Taken together, we conclude that an enhancement of VPE activity by Al is controlled at transcriptional level, and is a key factor leading to a loss of integrity of the plasma membrane and a loss of growth capacity. PMID:23891542

  3. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. Second annual technical report for the period 1978 September 1-1979 December 31

    SciTech Connect

    Bruno, M.J.

    1980-10-01

    A new computer program was developed for simultaneously solving heat and mass balance at steady state for a flowing one-dimensional chemical reactor. Bench scale reactor results confirmed that minimum final stage reaction temperature is 1950 to 2000/sup 0/C, depending on the Fe/sub 2/O/sub 3/ concentration in the burden. Additions of Fe/sub 2/O/sub 3/ to the charge produced significant increase in metallic yield. A new bench reactor was designed, built, and operated to facilitate semi-continuous operation, using O/sub 2/ injection to burn coke supporting the burden, resulting in burden movement. Validity of the equipment and test procedures was demonstrated by successfully operating the reactor as an iron blast furnace at 1500/sup 0/C. Bench scale fractional crystallizer runs were continued to determine the impurity effects of Fe up to 6.9% and Ti up to 1.25% on alloy product purity and yield. High initial impurity concentrations resulted in less pure Al-Si product and product yield below 50% due to Al and Si losses as Fe-Si-Al and Ti-Si-Al intermetallics. Long term testing was continued in the large bench scale membrane cell to evaluate woven cloth membrane and other construction materials, operating procedures, and effects of operating parameters on cell performance. Included in the latter were starting alloy composition, current density, anode-cathode spacing, and electrolyte composition.

  4. Reduction of radiation-induced cell cycle blocks by caffeine does not necessarily lead to increased cell killing

    SciTech Connect

    Musk, S.R. )

    1991-03-01

    The effect of caffeine upon the radiosensitivities of three human tumor lines was examined and correlated with its action upon the radiation-induced S-phase and G2-phase blocks. Caffeine was found to reduce at least partially the S-phase and G2-phase blocks in all the cell lines examined but potentiated cytotoxicity in only one of the three tumor lines. That reductions have been demonstrated to occur in the absence of increased cell killing provides supporting evidence for the hypothesis that reductions may not be causal in those cases when potentiation of radiation-induced cytotoxicity is observed in the presence of caffeine.

  5. Spatial Coordination of Aluminum Uptake, Production of Reactive Oxygen Species, Callose Production and Wall Rigidification in Maize Roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum toxicity associated with acid soils represents one of the biggest limitations to crop production worldwide. Although Al specifically inhibits the elongation of root cells, the exact mechanism by which this growth reduction occurs remains controversial. The aim of this study was to investiga...

  6. Ferric reduction by iron-limited Chlamydomonas cells interacts with both photosynthesis and respiration.

    PubMed

    Weger, H G; Espie, G S

    2000-04-01

    Iron limitation led to a large increase in extracellular ferricyanide (Fe[III]) reductase activity in cells of the green alga Chlamydomonas reinhardtii Dangeard. Mass-spectrometric measurement of gas exchange indicated that ferricyanide reduction in the dark resulted in a stimulation of respiratory CO2 production without affecting the rate of respiratory O2 consumption, consistent with the previously postulated activation of the oxidative pentose phosphate pathway in support of Fe(III) reduction by iron-limited Chlamydomonas cells (X. Xue et al., 1998, J. Phycol. 34: 939-944). At saturating irradiance, the rate of ferricyanide reduction was stimulated almost 3-fold, and this stimulation was inhibited by 3-(3',4'-dichlorophenyl)-1,1-dimethylurea. Ferricyanide reduction during photosynthesis resulted in approximately a 50% inhibition of photosynthetic CO2 fixation at saturating irradiance, and almost 100% inhibition of CO2 fixation at sub-saturating irradiance. Photosynthesis by iron-sufficient cells was not affected by ferricyanide addition. Addition of 250 microM ferricyanide to iron-limited cells in which photosynthesis was inhibited (either by the presence of glycolaldehyde, or by maintaining the cells at the CO2 compensation point) resulted in a stimulation in the rate of gross photosynthetic O2 evolution. Chlorophyll a fluorescence measurements indicated a large increase in non-photochemical quenching during ferricyanide reduction in the light; the increase in nonphotochemical quenching was abolished by the addition of nigericin. These results suggest that reduction of extracellular ferricyanide (mediated at the plasma membrane) interacts with both photosynthesis and respiration, and that both of these processes contribute NADPH in the light. PMID:10805449

  7. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  8. Design for aluminum recycling

    SciTech Connect

    Not Available

    1993-10-01

    This article describes the increasing use of aluminum in automobiles and the need to recycle to benefit further growth of aluminum applications by assuring an economical, high-quality source of metal. The article emphasizes that coordination of material specifications among designers can raise aluminum scrap value and facilitate recycling. Applications of aluminum in automobile construction are discussed.

  9. Influence of sorption processes on aluminum determinations in acidic waters

    SciTech Connect

    Goenaga, X.; Bryant, R.; Williams, D.J.A.

    1987-11-15

    Progressive removal of particles from freshwater samples by filtration using various pore diameter polycarbonate capillary membranes (0.4, 0.1, 0.05, and 0.015 ..mu..m) caused a reduction in the levels of labile aluminum (0-23%), as detected with pyrocatechol violet (PCV), in the filtrates. Removal of aluminum adsorbed onto suspended solids and aluminum losses through adsorption onto the membranes are thought to be responsible for these observations. Losses of aluminum during filtration of freshwater samples were evaluated by filtration of particle-free synthetic solutions and found to be <10%. Experiments with a sample of Na-illite showed that aluminum adsorbed thereon is partially labile and detectable with PCV in synthetic and natural solutions. It appears that for freshwater samples with high solid surface to aluminum ratios, a significant fraction of the experimentally determined monomeric or inorganic monomeric aluminum may actually be adsorbed aluminum.

  10. Transient proliferation of proanthocyanidin-accumulating cells on the epidermal apex contributes to highly aluminum-resistant root elongation in camphor tree.

    PubMed

    Osawa, Hiroki; Endo, Izuki; Hara, Yukari; Matsushima, Yuki; Tange, Takeshi

    2011-01-01

    Aluminum (Al) is a harmful element that rapidly inhibits the elongation of plant roots in acidic soils. The release of organic anions explains Al resistance in annual crops, but the mechanisms that are responsible for superior Al resistance in some woody plants remain unclear. We examined cell properties at the surface layer of the root apex in the camphor tree (Cinnamomum camphora) to understand its high Al resistance mechanism. Exposure to 500 μm Al for 8 d, more than 20-fold higher concentration and longer duration than what soybean (Glycine max) can tolerate, only reduced root elongation in the camphor tree to 64% of the control despite the slight induction of citrate release. In addition, Al content in the root apices was maintained at low levels. Histochemical profiling revealed that proanthocyanidin (PA)-accumulating cells were present at the adjacent outer layer of epidermis cells at the root apex, having distinctive zones for cell division and the early phase of cell expansion. Then the PA cells were gradually detached off the root, leaving thin debris behind, and the root surface was replaced with the elongating epidermis cells at the 3- to 4-mm region behind the tip. Al did not affect the proliferation of PA cells or epidermis cells, except for the delay in the start of expansion and the accelerated detachment of the former. In soybean roots, the innermost lateral root cap cells were absent in both PA accumulation and active cell division and failed to protect the epidermal cell expansion at 25 μm Al. These results suggest that transient proliferation and detachment of PA cells may facilitate the expansion of epidermis cells away from Al during root elongation in camphor tree. PMID:21045123

  11. InP based solar cells for space application: Reduction of external losses

    NASA Technical Reports Server (NTRS)

    Wu, X.; Coutts, T. J.; Dhere, R. G.; Gessert, T. A.; Dhere, N. G.

    1987-01-01

    Although InP-based solar cells have considerable potential for space applications, it is necessary to improve efficiencies to around the level of GaAs or Si cells before their excellent radiation resistance can be regarded as a dominant advantage. The authors concentrate on indium-tin-oxide/InP cells, presenting data relating to reduction of the contact resistance of the rear surface metallization, reduction of reflectance losses by choosing indium-tin-oxide deposition conditions to give specific optical properties, and reduction of losses associated with the grid. Simultaneous optimization of all of these has led to improved values of Jsc. For devices of approximately 1 cm2 in area, the largest Jsc achieved to date is 28.1 mA/aq cm (AM1.5, SERI/NASA direct normal spectrum, 25 C, total area, 100 mW/sq cm). For this particular cell, the equivalent AM0 value of Jsc was 34.6 mA/sq cm, which appears to be the largest reported for any InP-based cell.

  12. Electrochemical reduction of xylose to xylitol by whole cells or crude enzyme of Candida peltata.

    PubMed

    Park, Sun Mi; Sang, Byung In; Park, Dae Won; Park, Doo Hyun

    2005-10-01

    In this study, whole cells and a crude enzyme of Candida peltata were applied to an electrochemical bioreactor, in order to induce an increment of the reduction of xylose to xylitol. Neutral red was utilized as an electron mediator in the whole cell reactor, and a graphite-Mn(IV) electrode was used as a catalyst in the enzyme reactor in order to induce the electrochemical reduction of NAD(+) to NADH. The efficiency with which xylose was converted to xylitol in the electrochemical bioreactor was five times higher than that in the conventional bioreactor, when whole cells were employed as a biocatalyst. Meanwhile, the xylose to xylitol reduction efficiency in the enzyme reactor using the graphite-Mn (IV) electrode and NAD(+) was twice as high as that observed in the conventional bioreactor which utilized NADH as a reducing power. In order to use the graphite-Mn(IV) electrode as a catalyst for the reduction of NAD(+) to NADH, a bioelectrocatalyst was engineered, namely, oxidoreductase (e.g. xylose reductase). NAD(+) can function in this biotransformation procedure without any electron mediator or a second oxidoreductase for NAD(+)/NADH recycling. PMID:16273038

  13. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    PubMed Central

    Wang, Yuanmin; Sevinc, Papatya C.; Balchik, Sara M.; Fridrickson, Jim; Shi, Liang; Lu, H. Peter

    2013-01-01

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant ΔmtrC or mutant ΔomcA > double mutant (ΔomcA-ΔmtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes. PMID:23249294

  14. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    SciTech Connect

    Wang, Yuanmin; Sevinc, Papatya C.; Belchik, Sara M.; Fredrickson, Jim K.; Shi, Liang; Lu, H. Peter

    2013-01-22

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant @mtrC or mutant @omcA > double mutant (@omcA-@mtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes.

  15. Aluminum-based metal-air batteries

    DOEpatents

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  16. Reduction of the CD16−CD56bright NK Cell Subset Precedes NK Cell Dysfunction in Prostate Cancer

    PubMed Central

    Koo, Kyo Chul; Shim, Doo Hee; Yang, Chang Mo; Lee, Saet-Byul; Kim, Shi Mun; Shin, Tae Young; Kim, Kwang Hyun; Yoon, Ho Geun; Rha, Koon Ho; Lee, Jae Myun; Hong, Sung Joon

    2013-01-01

    Background Natural cytotoxicity, mediated by natural killer (NK) cells plays an important role in the inhibition and elimination of malignant tumor cells. To investigate the immunoregulatory role of NK cells and their potential as diagnostic markers, NK cell activity (NKA) was analyzed in prostate cancer (PCa) patients with particular focus on NK cell subset distribution. Methods Prospective data of NKA and NK cell subset distribution patterns were measured from 51 patients initially diagnosed with PCa and 54 healthy controls. NKA was represented by IFN-γ levels after stimulation of the peripheral blood with Promoca®. To determine the distribution of NK cell subsets, PBMCs were stained with fluorochrome-conjugated monoclonal antibodies. Then, CD16+CD56dim and CD16−CD56bright cells gated on CD56+CD3− cells were analyzed using a flow-cytometer. Results NKA and the proportion of CD56bright cells were significantly lower in PCa patients compared to controls (430.9 pg/ml vs. 975.2 pg/ml and 2.3% vs. 3.8%, respectively; p<0.001). Both tended to gradually decrease according to cancer stage progression (p for trend = 0.001). A significantly higher CD56dim-to-CD56bright cell ratio was observed in PCa patients (41.8 vs. 30.3; p<0.001) along with a gradual increase according to cancer stage progression (p for trend = 0.001), implying a significant reduction of CD56bright cells in relation to the alteration of CD56dim cells. The sensitivity and the specificity of NKA regarding PCa detection were 72% and 74%, respectively (best cut-off value at 530.9 pg/ml, AUC = 0.786). Conclusions Reduction of CD56bright cells may precede NK cell dysfunction, leading to impaired cytotoxicity against PCa cells. These observations may explain one of the mechanisms behind NK cell dysfunction observed in PCa microenvironment and lend support to the development of future cancer immunotherapeutic strategies. PMID:24223759

  17. BRAF inhibition decreases cellular glucose uptake in melanoma in association with reduction in cell volume

    PubMed Central

    Theodosakis, Nicholas; Held, Matthew A.; Marzuka-Alcala, Alexander; Meeth, Katrina M.; Micevic, Goran; Long, Georgina V.; Scolyer, Richard A.; Stern, David F.; Bosenberg, Marcus W.

    2015-01-01

    BRAF kinase inhibitors have dramatically impacted treatment of BRAFV600E/K-driven metastatic melanoma. Early responses assessed using [18F]fluorodeoxyglucose uptake-positron emission tomography (FDG-PET) have shown dramatic reduction of radiotracer signal within two weeks of treatment. Despite high response rates, relapse occurs in nearly all cases, frequently at sites of treated metastatic disease. It remains unclear whether initial loss of 18FDG uptake is due to tumor cell death or other reasons. Here we provide evidence of melanoma cell volume reduction in a patient cohort treated with BRAF inhibitors. We present data demonstrating that BRAF inhibition reduces melanoma glucose uptake per cell, but that this change is no longer significant following normalization for cell volume changes. We also demonstrate that volume normalization greatly reduces differences in transmembrane glucose transport and hexokinase-mediated phosphorylation. Mechanistic studies suggest that this loss of cell volume is due in large part to decreases in new protein translation as a consequence of vemurafenib treatment. Ultimately, our findings suggest that cell volume regulation constitutes an important physiologic parameter that may significantly contribute to radiographic changes observed in clinic. PMID:25948295

  18. Inert anodes for aluminum smelting

    SciTech Connect

    Weyand, J.D.; Ray, S.P.; Baker, F.W.; DeYoung, D.H.; Tarcy, G.P.

    1986-02-01

    The use of nonconsumable or inert anodes for replacement of consumable carbon anodes in Hall electrolysis cells for the production of aluminum has been a technical and commercial goal of the aluminum industry for many decades. This report summarizes the technical success realized in the development of an inert anode that can be used to produce aluminum of acceptable metal purity in small scale Hall electrolysis cells. The inert anode material developed consists of a cermet composition containing the phases: copper, nickel ferrite and nickel oxide. This anode material has an electrical conductivity comparable to anode carbon used in Hall cells, i.e., 150 ohm {sup {minus}1}cm{sup {minus}1}. Metal purity of 99.5 percent aluminum has been produced using this material. The copper metal alloy present in the anode is not removed by anodic dissolution as does occur with cermet anodes containing a metallic nickel alloy. Solubility of the oxide phases in the cryolite electrolyte is reduced by: (1) saturated concentration of alumina, (2) high nickel oxide content in the NiO-NiFe{sub 2}O{sub 4} composition, (3) lowest possible cell operating temperature, (4) additions of alkaline or alkaline earth fluorides to the bath to reduce solubilities of the anode components, and (5) avoiding bath contaminants such as silica. Dissolution rate measurements indicate first-order kinetics and that the rate limiting step for dissolution is mass transport controlled. 105 refs., 234 figs., 73 tabs.

  19. Effects of target angle on the properties of aluminum doped zinc oxide films prepared by DC magnetron sputtering for thin film solar cell applications.

    PubMed

    Park, Hyeongsik; Iftiquar, S M; Thuy, Trinh Than; Jang, Juyeon; Ahn, Shihyun; Kim, Sunbo; Lee, Jaehyeong; Jung, Junhee; Shin, Chonghoon; Kim, Minbum; Yi, Junsin

    2014-10-01

    An aluminum doped zinc oxide (AZO) films for front contacts of thin film solar cells, in this work, were prepared by DC magnetron sputtering with different target angles. Effects of target angles on the structural and electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. The surface became more irregular with increasing the target angle due to larger grains. The self-surface textured morphology, which is a favorable property as front layer of solar cell, exhibited at target angle of 72.5 degrees. We obtained the films with various opto-electronic properties by controlling target angle from 32.5 degrees to 72.5 degrees. The spectral haze increased substantially with the target angle, whereas the electrical resistivity was increased. The conversion efficiency of amorphous silicon solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density and fill factor, compared to cell with relatively flat AZO films. PMID:25942853

  20. Semi-rechargeable Aluminum-Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte

    NASA Astrophysics Data System (ADS)

    Mori, Ryohei

    2016-07-01

    To develop a semi-rechargeable aluminum-air battery, we attempted to insert various kinds of ceramic oxides between an aqueous NaCl electrolyte and an aluminum anode. From cyclic voltammetry experiments, we found that some of the ceramic oxide materials underwent an oxidation-reduction reaction, which indicates the occurrence of a faradaic electrochemical reaction. Using a TiO2 film as an internal layer, we successfully prepared an aluminum-air battery with secondary battery behavior. However, cell impedance increased as the charge/discharge reactions proceeded probably because of accumulation of byproducts in the cell components and the air cathode. Results of quantum calculations and x-ray photoelectron spectroscopy suggest the possibility of developing an aluminum rechargeable battery using TiO2 as an internal layer.

  1. Semi-rechargeable Aluminum-Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte

    NASA Astrophysics Data System (ADS)

    Mori, Ryohei

    2016-04-01

    To develop a semi-rechargeable aluminum-air battery, we attempted to insert various kinds of ceramic oxides between an aqueous NaCl electrolyte and an aluminum anode. From cyclic voltammetry experiments, we found that some of the ceramic oxide materials underwent an oxidation-reduction reaction, which indicates the occurrence of a faradaic electrochemical reaction. Using a TiO2 film as an internal layer, we successfully prepared an aluminum-air battery with secondary battery behavior. However, cell impedance increased as the charge/discharge reactions proceeded probably because of accumulation of byproducts in the cell components and the air cathode. Results of quantum calculations and x-ray photoelectron spectroscopy suggest the possibility of developing an aluminum rechargeable battery using TiO2 as an internal layer.

  2. A graphite based STT-RAM cell with reduction in switching current

    NASA Astrophysics Data System (ADS)

    Varghani, Ali; Peiravi, Ali

    2015-10-01

    Spin Transfer Torque Random Access Memory (STT-RAM) is a serious candidate for "universal memory" because of its non-volatility, fast access time, high density, good scalability, high endurance and relatively low power dissipation. However, problems with low write speed and large write current are important existing challenges in STT-RAM design and there is a tradeoff between them and data retention time. In this study, a novel STT-RAM cell structure which uses perfect graphite based Magnetic Tunnel Junction (MTJ) is proposed. First, the cross-section of the structure is selected to be an ellipse of 45 nm and 180 nm dimensions and a six-layer graphite is used as tunnel barrier. By passing a lateral current with a short pulse width (before applying STT current and independent of it) through four middle graphene layers of the tunnel barrier, a 27% reduction in the amplitude of the switching current (for fast switching time of 2 ns) or a 58% reduction in its pulse width is achieved without any reduction in data retention time. Finally, the effect of downscaling of technology on the proposed structure is evaluated. A reduction of 31.6% and 9% in switching current is achieved for 90 and 22 nm cell width respectively by passing sufficient current (100 μA with 0.1 ns pulse width) through the tunnel barrier. Simulations are done using Object Oriented Micro Magnetic Framework (OOMMF).

  3. Feasibility of alternative electrode materials for high temperature CO2 reduction on solid oxide electrolysis cell

    NASA Astrophysics Data System (ADS)

    Singh, Vandana; Muroyama, Hiroki; Matsui, Toshiaki; Hashigami, Satoshi; Inagaki, Toru; Eguchi, Koichi

    2015-10-01

    The electrochemical performance of Ni-gadolinia-doped ceria (GDC) cathode was studied for CO2 reduction on solid oxide electrolysis cell (SOEC) at 1000 °C and compared with that of Ni-yttria stabilized zirconia (Ni-YSZ) cathode. Ni-GDC cathode demonstrated higher performance for CO2 reduction. Furthermore, lanthanum strontium cobalt ferrite (LSCF) anode exhibited lower overpotential than lanthanum strontium manganite-yttria stabilized zirconia (LSM-YSZ) anode. Ni-GDC cathode and LSCF anode were found to be stable under a constant current density of -0.90 A cm-2 at 900 °C. Moreover, no substantial performance degradation was observed for the cell having Ni-GDC cathode and LSCF anode even after 9 h of electrolysis operation under a constant current density of -1.2 A cm-2 at 1000 °C.

  4. Non-lethal heat treatment of cells results in reduction of tumor initiation and metastatic potential

    SciTech Connect

    Kim, Yoo-Shin; Lee, Tae Hoon; O'Neill, Brian E.

    2015-08-14

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models. In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy.

  5. A novel aqueous dual-channel aluminum-hydrogen peroxide battery

    SciTech Connect

    Marsh, C. . Electric Propulsion); Licht, S. . Dept. of Chemistry)

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarized losses of 0.9 mV cm[sup 2]/mA, and power densities of 1 W/cm[sup 2]. Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H[sub 2]O[sub 2] + 2 OH[sup [minus

  6. Technological developments for aluminum smeltinq as the industry enters the 21st century

    NASA Astrophysics Data System (ADS)

    Grjotheim, Kai; Welch, Barry

    1989-11-01

    The capital-intensive nature of aluminum smelting, with its low productivity per unit reactor and high electrical consumption rates, has motivated the search for alternative smelting processes to replace the aging Hall-Héroult technology. Optional routes include carbothermic reduction of alumina, chlorination followed by electrolysis of aluminum chloride, and electrolytic decomposition of alumina using inert electrodes. Still in need of some fundamental innovation, the alternative techniques are limited by unsatisfactory materials performance and reactor design constraints. There have been, however, significant advances in the process efficiencies and scale of both the Bayer process and the Hall-Héroult cells. As a result, the basic Hall-Héroult technology will continue as the dominant aluminum smelting process for at least the next 50 years.

  7. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    SciTech Connect

    Pike, J; Jeffrey Gillam, J

    2008-12-17

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  8. Reduction of solar cell efficiency by bulk defects across the back-surface-field junction

    NASA Technical Reports Server (NTRS)

    Sah, C. T.; Yamakawa, K. A.; Lutwack, R.

    1982-01-01

    The degradation of solar cell performance due to bulk defects distributed across the back-surface field junction is analyzed in terms of a three-region developed-perimeter model. Families of curves are computed and their physical significance is discussed in detail with reference to three parameters used to characterize the defects: defect area, defect density, and defect surface recombination velocity. A reduction in the open-circuit voltage due to the presence of a defect is expressed as a function of the defect area, density, cell thickness, and defect surface recombination velocity. Numerical examples are presented to illustrate the importance of the particular defect parameters.

  9. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism

    PubMed Central

    Fendt, Sarah-Maria; Bell, Eric L.; Keibler, Mark A.; Davidson, Shawn M.; Wirth, Gregory J.; Fiske, Brian; Mayers, Jared R.; Schwab, Matthias; Bellinger, Gary; Csibi, Alfredo; Patnaik, Akash; Jose Blouin, Marie; Cantley, Lewis C.; Guarente, Leonard; Blenis, John; Pollak, Michael N.; Olumi, Aria F.

    2013-01-01

    Metformin inhibits cancer cell proliferation and epidemiology studies suggest an association with increased survival in cancer patients taking metformin, however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation while increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer. PMID:23687346

  10. Dual blockade of the A1 and A2A adenosine receptor prevents amyloid beta toxicity in neuroblastoma cells exposed to aluminum chloride.

    PubMed

    Giunta, Salvatore; Andriolo, Violetta; Castorina, Alessandro

    2014-09-01

    In a previous work we have shown that exposure to aluminum (Al) chloride (AlCl3) enhanced the neurotoxicity of the amyloid beta(25-35) fragment (Abeta(25-35)) in neuroblastoma cells and affected the expression of Alzheimer's disease (AD)-related genes. Caffein, a compound endowed with beneficial effects against AD, exerts neuroprotection primarily through its antagonist activity on A2A adenosine receptors (A2AR), although it also inhibits A1Rs with similar potency. Still, studies on the specific involvement of these receptors in neuroprotection in a model of combined neurotoxicity (Abeta(25-35)+AlCl3) are missing. To address this issue, cultured SH-SY5Y cells exposed to Abeta(25-35)+AlCl3 were assessed for cell viability, morphology, intracellular ROS activity and expression of apoptosis-, stress- and AD-related proteins. To define the role of A1R and A2ARs, pretreatment with caffein, specific receptor antagonists (DPCPX or SCH58261) or siRNA-mediated gene knockdown were delivered. Results indicate that AlCl3 treatment exacerbated Abeta(25-35) toxicity, increased ROS production, lipid peroxidation, β-secretase-1 (BACE1) and amyloid precursor protein (APP). Interestingly, SCH58261 successfully prevented toxicity associated to Abeta(25-35) only, whereas pretreatment with both DPCPX and SCH58261 was required to fully avert Abeta(25-35)+AlCl3-induced damage, suggesting that A1Rs might also be critically involved in protection during combined toxicity. The effects of caffein were mimicked by both N-acetyl cysteine, an antioxidant, and desferrioxamine, likely acting through distinct mechanisms. Altogether, our data establish a novel protective function associated with A1R inhibition in the setting of combined Abeta(25-35)+AlCl3 neurotoxicity, and expand our current knowledge on the potential beneficial role of caffein to prevent AD progression in subjects environmentally exposed to aluminum. PMID:25058312

  11. Influence of water on the reaction path of the oxygen reduction reaction in fuel cells

    NASA Astrophysics Data System (ADS)

    Malardier-Jugroot, Cecile; Groves, Michael; Jugroot, Manish

    2015-04-01

    The development of fuel cell technology has been limited in part due to the cost of the catalyst used in the cell and the rate limiting oxygen reduction reaction. We will present a molecular modelling study focus toward the prediction of improved durability and catalytic efficiency of the Platinum catalyst using doped graphene and doped single walled carbon nanotube surface. The most promising carbon supports - active centre systems were then studied in the gas phase and with explicit water molecules to model the oxygen reduction reaction and tailor the catalytic centres to improve the efficiency of this reaction while reducing the probability of occurrence of side reactions. Two major conclusions have been drawn from this analysis of the oxygen reduction reaction with and without water present. The doping of the carbon surface leads to a stronger platinum-surface interaction and does help the breaking of the oxygen-oxygen bond. These two are interrelated since the stronger surface-platinum bond allows for the same orbitals to interact with the oxygen-oxygen orbital. In addition, the dopants could make the surfaces more polar thus retaining water which might help catalyze the reaction, this property could be very promising to increase the effectiveness of fuel cell cathodes.

  12. Induction of differentiation in HL60 cells by the reduction of extrachromosomally amplified c-myc.

    PubMed Central

    Eckhardt, S G; Dai, A; Davidson, K K; Forseth, B J; Wahl, G M; Von Hoff, D D

    1994-01-01

    Oncogene amplification in tumor cells results in the overexpression of proteins that confer a growth advantage in vitro and in vivo. Amplified oncogenes can reside intrachromosomally, within homogeneously staining regions (HSRs), or extrachromosomally, within double minute chromosomes (DMs). Since previous studies have shown that low concentrations of hydroxyurea (HU) can eliminate DMs, we studied the use of HU as a gene-targeting agent in tumor cells containing extrachromosomally amplified oncogenes. In a neuroendocrine cell line (COLO 320), we have shown that HU can eliminate amplified copies of c-myc located on DMs, leading to a reduction in tumorigenicity in vitro and in vivo. To determine whether the observed reduction in tumorigenicity was due to differentiation, we next investigated whether HU could induce differentiation in HL60 cells containing extrachromosomally amplified c-myc. We compared the effects of HU, as well as two other known differentiating agents (dimethyl sulfoxide and retinoic acid), on c-myc gene copy number, c-myc expression, and differentiation in HL60 cells containing amplified c-myc genes either on DMs or HSRs. We discovered that HU and dimethyl sulfoxide reduced both c-myc gene copy number and expression and induced differentiation in cells containing c-myc amplified on DMs. These agents failed to have similar effects on HL60 cells with amplified c-myc in HSRs. By contrast, retinoic acid induced differentiation independent of the localization of amplified c-myc. These data illustrate the utility of targeting extrachromosomal DNA to modulate tumor phenotype and reveal that both HU and dimethyl sulfoxide induce differentiation in HL60 cells through DM elimination. Images PMID:8022834

  13. Two orders of magnitude fluorescence enhancement of aluminum phthalocyanines by gold nanocubes: a remarkable improvement for cancer cell imaging and detection.

    PubMed

    Xu, Yong-Kui; Hwang, Sekyu; Kim, Sungjee; Chen, Ji-Yao

    2014-04-23

    The metal-enhanced fluorescence (MEF) by metal nanoparticles is a useful technique for fluorescence detections in biological systems. The MEF effects with gold nanorods (AuNRs) and nanocubes (AuNCs) for fluorescence enhancements of sulfonated aluminum phthalocyanine (AlPcS), a commonly used and clinical approved photosensitizer for photodynamic therapy of cancers, were studied in this work. For the AuNRs which have the low aspect ratios with the corresponding longitudinal surface plasma resonance (LSPR) band in the region of 600-750 nm, the fluorescence quenching of conjugated AlPcS was found. Whereas for the AuNRs that have the LSPR bands of 800-900 nm, the MEF of AlPcS was obtained with the enhancing factor of 2-6 times, respectively. Using AuNCs, a great enhancement of AlPcS fluorescence was achieved with an enhancing factor of 150 times. Using two cancer cell lines as in vitro models, an outstanding fluorescence enhancement of AlPcS-AuNCs conjugates in cells, relative to AlPcS alone, was obtained under one-photon excitation (OPE) of 405 nm. Moreover, the bright fluorescence image of AlPcS-AuNCs in cells was also achieved under the two-photon excitation (TPE) of an 800 nm femtosecond laser. The high-quality cell imaging with either OPE or TPE demonstrated the potential of AlPcS-AuNCs in cancer cell detections. PMID:24660776

  14. A novel non-aqueous aluminum sulfur battery

    NASA Astrophysics Data System (ADS)

    Cohn, Gil; Ma, Lin; Archer, Lynden A.

    2015-06-01

    An aluminum-sulfur battery comprised of a composite sulfur cathode, aluminum anode and an ionic liquid electrolyte of AlCl3/1-ethyl-3-methylimidazolium chloride is described. The electrochemical reduction of elemental sulfur has been studied in different molar ratios of the electrolyte, and aluminum tetrachloride ions have been identified at the electroactive ionic species. The Al/S battery exhibits a discharge voltage plateau of 1.1-1.2 V, with extremely high charge storage capacity of more than 1500 mAh g-1, relative to the mass of sulfur in the cathode. The energy density of the Al/S cell is estimated to be 1700 Wh kg-1 sulfur, which is competitive with the most attractive battery chemistries targeted for high-energy electrochemical storage. Characterization by means of SEM, XRD and XPS of the battery components reveal complete dissolution of sulfur-based discharge products to the electrolyte. The low cost, natural abundance and high volumetric energy density of both anode and cathode materials define a research path for new materials and cell designs for next-generation Al/S battery systems.

  15. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    NASA Astrophysics Data System (ADS)

    Leadbetter, Kirt C.

    Aluminum plating is of considerable technical and economic interest because it provides an eco-friendly substitute for cadmium coatings used on many military systems. However, cadmium has been determined to be a significant environmental safety and occupational health (ESOH) hazard because of its toxicity and carcinogenic nature. Furthermore, the cost of treating and disposing of generated wastes, which often contain cyanide, is costly and is becoming prohibitive in the face of increasingly stringent regulatory standards. The non-toxic alternative aluminum is equivalent or superior in performance to cadmium. In addition, it could serve to provide an alternative to hexavalent chromium coatings used on military systems for similar reasons to that of cadmium. Aluminum is a beneficial alternative in that it demonstrates self-healing corrosion resistance in the form of a tightly-bound, impervious oxide layer. A successfully plated layer would be serviceable over a wider temperature range, 925 °F for aluminum compared to 450 oF for cadmium. In addition, an aluminum layer can be anodized to make it non-conducting and colorable. In consideration of the plating process, aluminum cannot be deposited from aqueous solutions because of its reduction potential. Therefore, nonaqueous electrolytes are required for deposition. Currently, aluminum can be electrodeposited in nonaqueous processes that use hazardous chemicals such as toluene and pyrophoric aluminum alkyls. Electrodeposition from ionic liquids provides the potential for a safer method that could be easily scaled up for industrial application. The plating process could be performed at a lower temperature and higher current density than other commercially available aluminum electrodeposition processes; thus a reduced process cost could be possible. The current ionic liquid based electrolytes are more expensive; however production on a larger scale and a long electrolyte lifetime are associated with a reduction in price

  16. Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Yamamoto, K.; Majjigi, R. K.; Brausch, J. F.

    1984-01-01

    Six scale-model nozzles were tested in an anechoic facility to evauate the effectiveness of convergent-divergent (C-D) terminations in reducing shock-cell noise of unsuppressed and mechanically suppressed coannular plug nozzles. One hundred fifty-three acoustic test points with inverted velocity profiles were conducted under static and simulated flight conditions. Diagnostic flow visualization with a shadowgraph and velocity measurements with a laser velocimeter were performed on selected plumes. Shock-cells were identified on the plug and downstream of the plug of the unsuppressed convergent coannular nozzle with truncated plug. Broadband peak frequencies predicted with the two shock-cell structures were correlated with the observed spectra using the measured shock-cell spacings. Relative to a convergent circular nozzle, the perceived noise level (PNL) data at an observer angle of 60 deg relative to inlet, indicated a reduction of (1) 6.5 dB and 9.2 dB with unsuppressed C-D coannular nozzle with truncated plug and (2) 7.7 dB and 8.3 dB with suppressed C-D coannular nozzle under static and simulated flight conditions, espectively. The unsuppressed C-D coannular nozzle with truncated plug, operating at the C-D design condition, had shock-cells downstream of the plug with no shock-cells on the plug. The downstream shock-cells were eliminated by replacing the truncated plug with a smooth extension to obtain an additional 2.4 dB and 3 dB front quadrant PNL reduction, under static and simulated flight conditions, respectively. Other results are discussed.

  17. Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Deyab, M. A.

    2014-12-01

    The effect of addition of carbon nanotubes (CNTs) on the corrosion resistance of conductive polymer coating (polyaniline) that coated aluminum bipolar plates in acidic environment inside the PEM fuel cell (0.1 M H2SO4) was investigated using electrical conductivity, polarization and electrochemical impedance spectroscopy (EIS) measurements. Scanning electron microscopy (SEM) was used to characterize the coating morphology. The results show that the addition of CNTs to polyaniline coating enhanced the electrical conductivity and the corrosion resistance of polyaniline polymer. The inhibition efficiency of polyaniline polymer increased with increasing CNTs concentration. The best inhibition was generally obtained at 0.8% CNTs concentration in the acidic medium. This was further confirmed by decreasing the oxygen and water permeability and increasing coating adhesion in the presence of CNTs. EIS measurements indicated that the incorporation of CNTs in coating increased both the charge transfer and pore resistances while reducing the double layer capacitance.

  18. Energy and materials flows in the production of primary aluminum

    SciTech Connect

    Shen, S.Y.

    1981-10-01

    The primary aluminum industry is one of the top five industrial energy users in the United States consuming about one quad annually. In 1980, for each ton of aluminum produced, an average smelting operation used about 157 million Btu of direct energy and another 70 million Btu were embodied in purchased materials. Producers employing the best practices used approximately 15% less energy per ton, or 132 million Btu of direct energy and 52 million Btu of embodied energy. These energy and materials flows are described in detail, using availability and input/output analyses and industry estimates. Energy consumption could be reduced further by developing (1) economical processes for using domestic nonbauxitic raw materials, a step that also would lessen the industry's present 94% dependence on foreign raw materials; (2) bulk alumina feeding equipment for handling more than one grade of alumina, thereby increasing the flexibility of smelting operations; (3) a reduction cell meter and temperature sensor for automatic control of alumina feeding and cell temperature; (4) a method for quickly and frequently measuring the NaF/AlF/sub 3/ ratio in a reduction cell for tighter control of electrolyte composition; and (5) a method for recovering waste heat.

  19. Keynote address: cellular reduction of nitroimidazole drugs: potential for selective chemotherapy and diagnosis of hypoxic cells.

    PubMed

    Chapman, J D; Lee, J; Meeker, B E

    1989-04-01

    Nitroimidazole drugs were initially developed as selective radiosensitizers of hypoxic cells and, consequently, as adjuvants to improve the local control probabilities of current radiotherapies. Misonidazole (MISO), the prototype radiosensitizing drug, was found in Phase I clinical studies to cause dose-limiting neurotoxicities (mainly peripheral neuropathies). MISO was also found to be cytotoxic in the absence of radiation and to covalently bind to cellular molecules, both processes demonstrating rates much higher in hypoxic compared with oxygenated cells. It is likely that neurotoxicity, cellular cytotoxicity and adduct formation results from reactions between reduction intermediates of MISO and cellular target molecules. Spin-offs from radiosensitizer research include the synthesis and characterization of more potent hypoxic cytotoxins and the exploitation of sensitizer-adducts as probes for measuring cellular and tissue oxygen levels. Current developments in hypoxic cell cytotoxin and hypoxic cell marker research are reviewed with specific examples from studies which characterize the cellular reduction of TF-MISO, (1-(2-nitro-1-imidazolyl)-3[2,2,2-trifluoroethoxy]-2-propanol). PMID:2649465

  20. Reduction of Myeloid-derived Suppressor Cells and Lymphoma Growth by a Natural Triterpenoid

    PubMed Central

    Radwan, Faisal F. Y.; Hossain, Azim; God, Jason M.; Leaphart, Nathan; Elvington, Michelle; Nagarkatti, Mitzi; Tomlinson, Stephen; Haque, Azizul

    2016-01-01

    Lymphoma is a potentially life threatening disease. The goal of this study was to investigate the therapeutic potential of a natural triterpenoid, Ganoderic acid A (GA-A) in controlling lymphoma growth both in vitro and in vivo. Here, we show that GA-A treatment induces caspase-dependent apoptotic cell death characterized by a dose-dependent increase in active caspases 9 and 3, up-regulation of pro-apoptotic BIM and BAX proteins, and a subsequent loss of mitochondrial membrane potential with release of cytochrome c. In addition to GA-A’s anti-growth activity, we show that lower doses of GA-A enhance HLA class II-mediated antigen presentation and CD4+ T cell recognition of lymphoma in vitro. The therapeutic relevance of GA-A treatment was also tested in vivo using the EL4 syngeneic mouse model of metastatic lymphoma. GA-A-treatment significantly prolonged survival of EL4 challenged mice and decreased tumor metastasis to the liver, an outcome accompanied by a marked down-regulation of STAT3 phosphorylation, reduction myeloid-derived suppressor cells (MDSCs), and enhancement of cytotoxic CD8+ T cells in the host. Thus, GA-A not only selectively induces apoptosis in lymphoma cells, but also enhances cell-mediated immune responses by attenuating MDSCs, and elevating Ag presentation and T cell recognition. The demonstrated therapeutic benefit indicates that GA-A is a candidate for future drug design for the treatment of lymphoma. PMID:25142864

  1. Significant reduction in arc frequency biased solar cells: Observations, diagnostics, and mitigation technique(s)

    NASA Technical Reports Server (NTRS)

    Upschulte, B. L.; Weyl, G. M.; Marinelli, W. J.; Aifer, E.; Hastings, D.; Snyder, D.

    1991-01-01

    A variety of experiments were performed which identify key factors contributing to the arcing of negatively biased high voltage solar cells. These efforts have led to reduction of greater than a factor of 100 in the arc frequency of a single cell following proper remediation procedures. Experiments naturally lead to and focussed on the adhesive/encapsulant that is used to bond the protective cover slip to the solar cell. An image-intensified charge coupled device (CCD) camera system recorded UV emission from arc events which occurred exclusively along the interfacial edge between the cover slip and the solar cell. Microscopic inspection of this interfacial region showed a bead of encapsulant along this entire edge. Elimination of this encapsulant bead reduced the arc frequency by two orders of magnitude. Water contamination was also identified as a key contributor which enhances arcing of the encapsulant bead along the solar cell edge. Spectrally resolved measurements of the observable UV light shows a feature assignable to OH(A-X) electronic emission, which is common for water contaminated discharges. Experiments in which the solar cell temperature was raised to 85 C showed a reduced arcing frequency, suggesting desorption of H2O. Exposing the solar cell to water vapor was shown to increase the arcing frequency. Clean dry gases such as O2, N2, and Ar show no enhancement of the arcing rate. Elimination of the exposed encapsulant eliminates any measurable sensitivity to H2O vapor.

  2. Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells.

    PubMed

    Renslow, Ryan; Donovan, Conrad; Shim, Matthew; Babauta, Jerome; Nannapaneni, Srilekha; Schenk, James; Beyenal, Haluk

    2011-12-28

    Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to estimate the power production of SMFCs. Our goals were to (1) experimentally quantify the dependence of oxygen reduction kinetics on temperature, electrode potential, and dissolved oxygen concentration for the graphite cathodes of SMFCs and (2) develop a mechanistic model. To accomplish this, we monitored current on polarized cathodes in river and ocean SMFCs. We found that (1) after oxygen reduction is initiated, the current density is linearly dependent on polarization potential for both SMFC types; (2) current density magnitude increases linearly with temperature in river SMFCs but remains constant with temperature in ocean SMFCs; (3) the standard heterogeneous rate constant controls the current density temperature dependence; (4) river and ocean SMFC graphite cathodes have large potential losses, estimated by the model to be 470 mV and 614 mV, respectively; and (5) the electrochemical potential available at the cathode is the primary factor controlling reduction kinetic rates. The mechanistic model based on thermodynamic and electrochemical principles successfully fit and predicted the data. The data, experimental system, and model can be used in future studies to guide SMFC design and deployment, assess SMFC current production, test cathode material performance, and predict cathode contamination. PMID:22052235

  3. Accelerated creep in solid oxide fuel cell anode supports during reduction

    NASA Astrophysics Data System (ADS)

    Frandsen, H. L.; Makowska, M.; Greco, F.; Chatzichristodoulou, C.; Ni, D. W.; Curran, D. J.; Strobl, M.; Kuhn, L. T.; Hendriksen, P. V.

    2016-08-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼×104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two measurements could be explained by newly observed stress promoted reduction. Finally, samples exposed to a small tensile stress (∼0.004 MPa) were observed to expand during reduction, which is in contradiction to previous literature. These observations suggest that release of internal residual stresses between the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation of the stress field in a stack based on anode supported SOFCs.

  4. TEM Cell Testing of Cable Noise Reduction Techniques from 2 MHz to 200 MHz -- Part 2

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Evans, William C.; Reed, Joshua L.; Shimp, Samuel K., III; Fitzpatrick, Fred D.

    2008-01-01

    This paper presents empirical results of cable noise reduction techniques as demonstrated in a TEM cell operating with radiated fields from 2 - 200 MHz. It is the second part of a two-paper series. The first paper discussed cable types and shield connections. In this second paper, the effects of load and source resistances and chassis connections are examined. For each topic, well established theories are compared to data from a real-world physical system. Finally, recommendations for minimizing cable susceptibility (and thus cable emissions) are presented. There are numerous papers and textbooks that present theoretical analyses of cable noise reduction techniques. However, empirical data is often targeted to low frequencies (e.g. <50 KHz) or high frequencies (>100 MHz). Additionally, a comprehensive study showing the relative effects of various noise reduction techniques is needed. These include the use of dedicated return wires, twisted wiring, cable shielding, shield connections, changing load or source impedances, and implementing load- or source-to-chassis isolation. We have created an experimental setup that emulates a real-world electrical system, while still allowing us to independently vary a host of parameters. The goal of the experiment was to determine the relative effectiveness of various noise reduction techniques when the cable is in the presence of radiated emissions from 2 MHz to 200 MHz.

  5. Thin-film a-Si:H solar cells processed on aluminum-induced texture (AIT) glass superstrates: prediction of light absorption enhancement.

    PubMed

    Sahraei, Nasim; Peters, Marius; Venkataraj, Selvaraj; Aberle, Armin G; Calnan, Sonya; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger; Stangl, Rolf

    2015-05-10

    Light scattering superstrates are important for thin-film a-Si:H solar cells. In this work, aluminum-induced texture (AIT) glass, covered with nonetched Al-doped ZnO (AZO), is investigated as an alternative to the commonly used planar glass with texture-etched AZO superstrate. Four different AIT glasses with different surface roughnesses and different lateral feature sizes are investigated for their effects on light trapping in a-Si:H solar cells. For comparison, two reference superstrates are investigated as well: planar glass covered with nonetched AZO and planar glass covered with texture-etched AZO. Single-junction a-Si:H solar cells are deposited onto each superstrate, and the scattering properties (haze and angular resolved scattering) as well as the solar cell characteristics (current-voltage and external quantum efficiency) are measured and compared. The results indicate that AIT glass superstrates with nonetched AZO provide similar, or even superior, light trapping than the standard reference superstrate, which is demonstrated by a higher short-circuit current Jsc and a higher external quantum efficiency. Using the trapped light fraction δ, a quantity based on the integrated light scattering at the AZO/a-Si:H interface, we show that Jsc linearly increases with δ in the scattering regime of the samples, regardless of the type of superstrate used. PMID:25967490

  6. Influence of calorie reduction on DNA repair capacity of human peripheral blood mononuclear cells.

    PubMed

    Matt, Katja; Burger, Katharina; Gebhard, Daniel; Bergemann, Jörg

    2016-03-01

    Caloric restrictive feeding prolongs the lifespan of a variety of model organisms like rodents and invertebrates. It has been shown that caloric restriction reduces age-related as well as overall-mortality, reduces oxidative stress and influences DNA repair ability positively. There are numerous studies underlining this, but fewer studies involving humans exist. To contribute to a better understanding of the correlation of calorie reduction and DNA repair in humans, we adapted the host cell reactivation assay to an application with human peripheral blood mononuclear cells. Furthermore, we used this reliable and reproducible assay to research the influence of a special kind of calorie reduction, namely F. X. Mayr therapy, on DNA repair capacity. We found a positive effect in all persons with low pre-existing DNA repair capacity. In individuals with normal pre-existing DNA repair capacity, no effect on DNA repair capacity was detectable. Decline of DNA repair, accumulation of oxidative DNA damages, mitochondrial dysfunction, telomere shortening as well as caloric intake are widely thought to contribute to aging. With regard to that, our results can be considered as a strong indication that calorie reduction may support DNA repair processes and thus contribute to a healthier aging. PMID:26879629

  7. Aluminum and Young Artists.

    ERIC Educational Resources Information Center

    Anderson, Thomas

    1980-01-01

    The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)

  8. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    PubMed

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode. PMID:25686380

  9. Integrating reductive and synthetic approaches in biology using man-made cell-like compartments

    PubMed Central

    Aoki, Wataru; Saito, Masato; Manabe, Ri-ichiroh; Mori, Hirotada; Yamaguchi, Yoshinori; Tamiya, Eiichi

    2014-01-01

    We propose ‘integrated synthetic genetics' as a novel methodology that integrates reductive and synthetic approaches used in life science research. Integrated synthetic genetics enables determinations of sets of genes required for the functioning of any biological subsystem. This method utilizes artificial cell-like compartments, including a randomly introduced whole gene library, strictly defined components for in vitro transcription and translation and a reporter that fluoresces ‘only when a particular function of a target biological subsystem is active.' The set of genes necessary for the target biological subsystem can be identified by isolating fluorescent artificial cells and multiplex next-generation sequencing of genes included in these cells. The importance of this methodology is that screening for the set of genes involved in a subsystem and reconstructing the entire subsystem can be done simultaneously. This methodology can be applied to any biological subsystem of any species and may remarkably accelerate life science research. PMID:24740007

  10. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  11. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.

    PubMed

    Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Majeed Khan, M A; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  12. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    PubMed Central

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M.A.; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33–55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  13. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells.

    PubMed

    Zhang, Baogang; Tian, Caixing; Liu, Ying; Hao, Liting; Liu, Ye; Feng, Chuanping; Liu, Yuqian; Wang, Zhongli

    2015-03-01

    Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation were realized in microbial fuel cells (MFCs). With initial V(V) concentrations of 75 mg/l and 150 mg/l in anolyte and catholyte, respectively, stable power output of 419±11 mW/m(2) was achieved. After 12h operation, V(V) concentration in the catholyte decreased to the value similar to that of the initial one in the anolyte, meanwhile it was nearly reduced completely in the anolyte. V(IV) was the main reduction product, which subsequently precipitated, acquiring total vanadium removal efficiencies of 76.8±2.9%. Microbial community analysis revealed the emergence of the new species of Deltaproteobacteria and Bacteroidetes as well as the enhanced Spirochaetes mainly functioned in the anode. This study opens new pathways to successful remediation of vanadium contamination. PMID:25536507

  14. The low current domain of the aluminum/sulfur battery

    SciTech Connect

    Licht, S.; Hwang, J.; Light, T.S.; Dillon, R.

    1997-03-01

    A variety of factors including solution-phase modification, aluminum composition, temperature, and anolyte volume, modify anodic behavior in the approach to the low current density domain of the aluminum/sulfur battery. A relatively low level [0.4% Hg(NO{sub 3}){sub 2} by weight in the anolyte] of mercury provides an amalgam film on the aluminum anode which minimizes the parasitic chemical consumption of aluminum anode which aluminum, providing anodic faradaic efficiencies in excess of 80%. Anodic overpotential losses are high for aluminum immersed in mercury-containing electrolytes. However, at lower current densities, their absolute magnitude is several hundred millivolts or smaller and does not substantially impair the cell potential. Aluminum/sulfur battery discharge times up to several hundred hours are demonstrated for 0.2 mA/cm{sup 2} current density cells.

  15. Process of electrolysis and fractional crystallization for aluminum purification

    DOEpatents

    Dawless, Robert K.; Bowman, Kenneth A.; Mazgaj, Robert M.; Cochran, C. Norman

    1983-10-25

    A method for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm.

  16. Process of electrolysis and fractional crystallization for aluminum purification

    DOEpatents

    Dawless, R.K.; Bowman, K.A.; Mazgaj, R.M.; Cochran, C.N.

    1983-10-25

    A method is described for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm. 2 figs.

  17. Complex foamed aluminum parts as permanent cores in aluminum castings

    SciTech Connect

    Simancik, F.; Schoerghuber, F.

    1998-12-31

    The feasibility of complex shaped aluminum foam parts as permanent cores in aluminum castings has been investigated. The foamed samples were prepared by injection of the foam into sand molds. It turned out that sound castings can be produced if the foam core is properly preheated and/or surface treated before casting. The effect of the foam core on the performance of the casting was evaluated by in compression testing and by measuring structural damping. The gain in the related properties turned out to be much higher than the weight increase of the casting due to the presence of the core. The weight increase may be partially offset through a reduction of the wall-thickness of the shell.

  18. The reduction half cell in biomaterials corrosion: oxygen diffusion profiles near and cell response to polarized titanium surfaces.

    PubMed

    Gilbert, J L; Zarka, L; Chang, E; Thomas, C H

    1998-11-01

    Mechanically assisted corrosion processes can greatly increase the oxidation currents generated in passivating alloy systems like Co-Cr and titanium due to oxide film disruption. When oxide films are abraded, repassivation and ionic dissolution both occur at rates that are orders of magnitude higher than undisrupted surfaces. The excess electrons generated by these anodic processes must be consumed in corresponding reduction reactions that include the reduction of oxygen. If large enough, these reduction reactions may locally deplete the concentration of solution-dissolved oxygen and, in turn, affect cell behavior in the vicinity of the implant surface. To date, this hypothesis has not been tested. In the present study, a scanning electrochemical microscope was used to measure oxygen concentration profiles in vitro near a planar titanium electrode polarized to different voltages representative of those attainable by titanium undergoing mechanically assisted corrosion. The potentials investigated ranged from 0 mV to -1000 mV (AgCl). The oxygen concentration as a function of distance from the titanium surface was measured using a platinum-iridium microelectrode and an amperometric technique. Also, preliminary experiments were performed to assess the response of rat calvarial osteoblast-rich cells cultured for 2 h on titanium samples polarized to two different potentials (0 mV and -1000 mV versus AgCl). The results of this study indicate that oxygen concentrations near titanium surfaces are affected by sample potentials out to probe-sample distances as great as 500 microm. Within 2 microm of the surface, oxygen concentrations decreased by 15 to 25% for sample potentials between -100 and -500 mV. At potentials more negative than -600 mV, the oxygen concentration dropped rapidly to near zero by -900 mV. The cell experiments showed a statistically significant difference in the amount of cell spreading, as measured by projected cell area, between the two groups (p < 0

  19. Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.

    SciTech Connect

    Hudak, Nicholas S.; Huber, Dale L.

    2010-12-01

    Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

  20. Respiratory Disorders in Aluminum Smelter Workers

    PubMed Central

    Søyseth, Vidar

    2014-01-01

    Objectives: Summarizing the knowledge status, including the morphology, possible etiological factors, and clinical expression of aluminum potroom asthma and chronic obstructive pulmonary disease related to aluminum potroom exposure. Methods: A review of the literature from the last two decades as it appears in PubMed. Results: There is substantial evidence for the existence of potroom asthma, although the incidence seems to decline over the last 10 years. Increased mortality from chronic obstructive pulmonary disease and longitudinal decline in forced expiratory volume in the first second of expiration has been shown in aluminum potroom workers. Morphological manifestations in bronchial biopsies and the inflammatory markers NO and eosinophils in airway tissue and blood are consistent with asthma in general. The causative agent(s) is (are) not known. Conclusions: Reduction of exposure and cessation of smoking seem to be the major preventive measures to avoid respiratory disorders in the aluminum industry. PMID:24806727

  1. Mitochondrial dysfunction, impaired oxidative-reduction activity, degeneration, and death in human neuronal and fetal cells induced by low-level exposure to thimerosal and other metal compounds

    PubMed Central

    Geier, D.A.; King, P.G.; Geier, M.R.

    2009-01-01

    Thimerosal (ethylmercurithiosalicylic acid), an ethylmercury (EtHg)-releasing compound (49.55% mercury (Hg)), was used in a range of medical products for more than 70 years. Of particular recent concern, routine administering of Thimerosal-containing biologics/childhood vaccines have become significant sources of Hg exposure for some fetuses/infants. This study was undertaken to investigate cellular damage among in vitro human neuronal (SH-SY-5Y neuroblastoma and 1321N1 astrocytoma) and fetal (nontransformed) model systems using cell vitality assays and microscope-based digital image capture techniques to assess potential damage induced by Thimerosal and other metal compounds (aluminum (Al) sulfate, lead (Pb)(II) acetate, methylmercury (MeHg) hydroxide, and mercury (Hg)(II) chloride) where the cation was reported to exert adverse effects on developing cells. Thimerosal-associated cellular damage was also evaluated for similarity to pathophysiological findings observed in patients diagnosed with autistic disorders (ADs). Thimerosal-induced cellular damage as evidenced by concentration- and time-dependent mitochondrial damage, reduced oxidative–reduction activity, cellular degeneration, and cell death in the in vitro human neuronal and fetal model systems studied. Thimerosal at low nanomolar (nM) concentrations induced significant cellular toxicity in human neuronal and fetal cells. Thimerosal-induced cytoxicity is similar to that observed in AD pathophysiologic studies. Thimerosal was found to be significantly more toxic than the other metal compounds examined. Future studies need to be conducted to evaluate additional mechanisms underlying Thimerosal-induced cellular damage and assess potential co-exposures to other compounds that may increase or decrease Thimerosal-mediated toxicity. PMID:24532866

  2. Two-Phase CFD Model of the Bubble-Driven Flow in the Molten Electrolyte Layer of a Hall-Héroult Aluminum Cell

    NASA Astrophysics Data System (ADS)

    Feng, Yuqing; Schwarz, M. Philip; Yang, William; Cooksey, Mark

    2015-08-01

    A two-phase computational fluid dynamics (CFD) model has been developed to simulate the time-averaged flow in the molten electrolyte layer of a Hall -Héroult aluminum cell. The flow is driven by the rise of carbon dioxide bubbles formed on the base of the anodes. The CFD model has been validated against detailed measurements of velocity and turbulence taken in a full-scale air-water physical model containing three anodes in four different configurations, with varying inter-anode gap and the option of slots. The model predictions agree with the measurements of velocity and turbulence energy for all configurations within the likely measurement repeatability, and therefore can be used to understand the overall electrolyte circulation patterns and mixing. For example, the model predicts that the bubble holdup under an anode is approximately halved by the presence of a slot aligned transverse to the cell long axis. The flow patterns do not appear to be significantly altered by halving the inter-anode gap width from 40 to 20 mm. The CFD model predicts that the relative widths of center, side, and end channels have a major influence on several critical aspects of the cell flow field.

  3. Nitrogen Isotope Fractionation Increases with the Cell-Specific Dissimilatory Nitrate Reduction Rate

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Sigman, D. M.; Granger, J.

    2009-12-01

    The use of the nitrogen (N) isotopes to estimate the impacts and rates of different N transformations depends on knowledge of their extent of isotope fractionation under environmentally relevant physico-chemical conditions. Though the extent of N isotope fractionation during denitrification by pure cultures of bacteria has been determined in the past, relatively large variation in the isotope effect during apparently replicate experiments has been perplexing and the values that should be most relevant for environmental applications have not been clear. We measured the extent of N and O isotope fractionation during nitrate reduction by two bacterial denitrifiers, Pseudomonas chlororaphis ATCC 43928 and Paracoccus denitrificans ATCC 19367 that were grown in 1L batch reactors in the presence of differing carbon sources that included complex organic (e.g, bactopeptone and casein) or defined (e.g., glucose and acetate) carbon compounds and varying concentrations of dissolved oxygen (0 - 4 mM) and nitrate (25 - 800 mM) in the assay medium. For P. denitrificans and P. Chlororaphis , the total range of the N isotope effect (15ɛ) varied from 22.3 to 9.3 ‰ and 34.3 to 15.6 ‰, respectively. Despite this large variation, the O-to-N isotope effect ratio centered around 1, consistent with our previous work. A systematic pattern that has emerged from these studies is that the N and O isotope effect during denitrification increases with increasing cell specific nitrate reduction (CSNR) rate. This sense of variation runs counter to expectations from studies of carbon and sulfur isotope effects during methanogenesis and sulfate reduction, respectively, in which higher substrate consumption rates are associated with lower isotope effects. As with many multi-step microbial processes, variability in the dissimilatory nitrate reduction isotope effect may arise from variation in the “relative” rate and reversibility of (1) nitrate uptake into the denitrifying cell, and/or (2

  4. Kinetics of Oxygen Reduction in Aprotic Li-O2 Cells: A Model-Based Study.

    PubMed

    Safari, M; Adams, B D; Nazar, L F

    2014-10-16

    A comprehensive and general kinetic model is developed for the oxygen reduction reaction in aprotic Li-O2 cells. The model is based on the competitive uptake of lithium superoxide by the surface and solution. A demonstrative kinetic study is provided to demystify the origin of curvature in Tafel plots as well as the current dependency and aberrant diversity of the nature and morphology of discharge products in these systems. Our results are general and extend to any system where solubilization of superoxide is favored, such as where phase-transfer catalysts play an important role. PMID:26278597

  5. Pressure pyrolysed non-precious oxygen reduction catalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Nallathambi, Vijayadurga

    2011-12-01

    Worldwide energy demand has driven long-term efforts towards developing a clean, hydrogen-based energy economy. Polymer electrolyte membrane fuel cells (PEMFC) are low emissions and high efficiency devices that utilize the power of hydrogen and are a key enabling technology for the hydrogen economy. Carbon supported platinum-black is the state-of the art catalyst for oxygen reduction in a PEMFC because it can withstand the acidic environment. However, the high cost and low abundance of this precious metal has limited large-scale commercialization of PEMFCs. Current efforts focus on developing alternative inexpensive, non-noble metal-based catalysts for oxygen reduction with performance comparable to conventional platinum based electrocatalysts. In this work, inexpensive metal-nitrogen-carbon (MNC) catalysts have been synthesized by pyrolyzing transition metal and nitrogen precursors together with high surface area carbon materials in a closed, constant-volume quartz tube. High pressure generated due to nitrogen precursor evaporation lead to increased surface nitrogen content in the catalysts post-pyrolysis. Electrochemical oxygen reduction activity of MNC catalysts was analyzed using half-cell Rotating Ring Disc Electrode (RRDE) studies. The effect of nitrogen precursor morphology on the generation of active sites has been explored in detail. By increasing the Nitrogen/Carbon ratio of the nitrogen precursor, the accessible active site density increased by reducing carbon deposition in the pores of the carbon support during pyrolysis. The most active catalysts were obtained using melamine, having a N/C ratio of 2. Single PEMFC measurements employing MNC catalysts as cathodes indicated kinetic current density as high as 15 A cm-3 at 0.8 ViR-free and over 100 h of stable current at 0.5 V were observed. Effects of carbon free ammonia generating solid nitrogen precursors such as urea and ammonium carbamate were also studied. These precursors etched the carbon support

  6. Curcuminoid Binding to Embryonal Carcinoma Cells: Reductive Metabolism, Induction of Apoptosis, Senescence, and Inhibition of Cell Proliferation

    PubMed Central

    Quitschke, Wolfgang W.

    2012-01-01

    Curcumin preparations typically contain a mixture of polyphenols, collectively referred to as curcuminoids. In addition to the primary component curcumin, they also contain smaller amounts of the co-extracted derivatives demethoxycurcumin and bisdemethoxycurcumin. Curcuminoids can be differentially solubilized in serum, which allows for the systematic analysis of concentration-dependent cellular binding, biological effects, and metabolism. Technical grade curcumin was solubilized in fetal calf serum by two alternative methods yielding saturated preparations containing either predominantly curcumin (60%) or bisdemethoxycurcumin (55%). Continual exposure of NT2/D1 cells for 4–6 days to either preparation in cell culture media reduced cell division (1–5 µM), induced senescence (6–7 µM) or comprehensive cell death (8–10 µM) in a concentration-dependent manner. Some of these effects could also be elicited in cells transiently exposed to higher concentrations of curcuminoids (47 µM) for 0.5–4 h. Curcuminoids induced apoptosis by generalized activation of caspases but without nucleosomal fragmentation. The equilibrium binding of serum-solubilized curcuminoids to NT2/D1 cells incubated with increasing amounts of curcuminoid-saturated serum occurred with apparent overall dissociation constants in the 6–10 µM range. However, the presence of excess free serum decreased cellular binding in a hyperbolic manner. Cellular binding was overwhelmingly associated with membrane fractions and bound curcuminoids were metabolized in NT2/D1 cells via a previously unidentified reduction pathway. Both the binding affinities for curcuminoids and their reductive metabolic pathways varied in other cell lines. These results suggest that curcuminoids interact with cellular binding sites, thereby activating signal transduction pathways that initiate a variety of biological responses. The dose-dependent effects of these responses further imply that distinct cellular pathways are

  7. Mapping the global flow of aluminum: from liquid aluminum to end-use goods.

    PubMed

    Cullen, Jonathan M; Allwood, Julian M

    2013-04-01

    Demand for aluminum in final products has increased 30-fold since 1950 to 45 million tonnes per year, with forecasts predicting this exceptional growth to continue so that demand will reach 2-3 times today's levels by 2050. Aluminum production uses 3.5% of global electricity and causes 1% of global CO2 emissions, while meeting a 50% cut in emissions by 2050 against growing demand would require at least a 75% reduction in CO2 emissions per tonne of aluminum produced--a challenging prospect. In this paper we trace the global flows of aluminum from liquid metal to final products, revealing for the first time a complete map of the aluminum system and providing a basis for future study of the emissions abatement potential of material efficiency. The resulting Sankey diagram also draws attention to two key issues. First, around half of all liquid aluminum (~39 Mt) produced each year never reaches a final product, and a detailed discussion of these high yield losses shows significant opportunities for improvement. Second, aluminum recycling, which avoids the high energy costs and emissions of electrolysis, requires signification "dilution" (~ 8 Mt) and "cascade" (~ 6 Mt) flows of higher aluminum grades to make up for the shortfall in scrap supply and to obtain the desired alloy mix, increasing the energy required for recycling. PMID:23438734

  8. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    PubMed Central

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  9. Reduction of GTP cyclohydrolase I feedback regulating protein expression by hydrogen peroxide in vascular endothelial cells.

    PubMed

    Ishii, Masakazu; Shimizu, Shunichi; Wajima, Teruaki; Hagiwara, Tamio; Negoro, Takaharu; Miyazaki, Akira; Tobe, Takashi; Kiuchi, Yuji

    2005-02-01

    We examined the effect of H(2)O(2) on the expression of GTP cyclohydrolase I (GTPCH) feedback regulating protein (GFRP). Addition of H(2)O(2) to endothelial cells decreased GFRP mRNA levels, in contrast to the increase of tetrahydrobiopterin (BH(4)) content and GTPCH mRNA levels. The inhibitors of nitric oxide (NO) synthase and GTPCH had no influence on the decrease of GFRP mRNA levels in H(2)O(2)-treated cells. It is suggested that H(2)O(2) induces BH(4) synthesis through not only induction of GTPCH but also reduction of GFRP. The decrease of GFRP mRNA level appears to be independent of the produced NO and BH(4). PMID:15699573

  10. Study of low doses cisplatin synergistic effect on photodynamic outcome of aluminum phythalocyanine on soft tissue sarcoma (RD) cell line.

    PubMed

    Ali, Safdar; Khurshid, Ahmat; Maqsood, M; Rafi, M; Khan, Junaid A; Zaidi, S S Z; Mohammad, Saleh; Ikram, Masroor

    2015-03-01

    Photodynamic therapy (PDT) in combination with other treatment modality expects to overcome the drug resistance experienced in monotherapy. In this present work combination of chemo cum PDT is studied over the range of doses. It is found that treating cells/exposing cells to chemo drug (cisplatin, CDDP) and PDT individually results in minimal cell killing (∼7% and ∼16%) compared to the administration of chemo followed by PDT (∼50% cells were viable). These results showed that cell viability synergistically decreases in case of combination treatment as compared with individual treatment. Photodynamic therapy (PDT) in combination with CDDP chemotherapy expects to overcome the drug resistance experienced in monotherapy. PMID:25562442

  11. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    DOEpatents

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  12. Aluminum toxicity. Hematological effects.

    PubMed

    Mahieu, S; del Carmen Contini, M; Gonzalez, M; Millen, N; Elias, M M

    2000-01-01

    Sequential effects of intoxication with aluminum hydroxide (Al) (80 mg/Kg body weight, i.p., three times a week), were studied on rats from weaning and up to 28 weeks. The study was carried out on hematological and iron metabolism-related parameters on peripheral blood, at the end of the 1st, 2nd, 3rd, 4th, 5th and 6th months of exposure. As it was described that hematotoxic effects of Al are mainly seen together with high levels of uremia, renal function was measured at the same periods. The animals treated developed a microcytosis and was accompanied by a decrease in mean corpuscular hemoglobin (MCH). Significantly lower red blood cell counts (RBC million/microl) were found in rats treated during the 1st month. These values matched those obtained for control rats during the 2nd month. From the 3rd month onwards, a significant increase was observed as compared to control groups, and the following values were obtained by the 6th month: (T) 10.0 +/- 0.3 versus (C) 8.7 +/- 0.2 (million/microl). Both MCH and mean corpuscular volume (MCV) were found to be significantly lower in groups treated from the 2nd month. At the end of the 6th month the following values were found: MCH (T) 13.3 +/- 0.1 versus (C) 16.9 +/- 0.3 (pg); MCV (T) 42.1 +/- 0.7 versus (C) 51.8 +/- 0.9 (fl). Al was found responsible for lower serum iron concentration levels and in the percentage of transferrin saturation. Thus, although microcytic anemia constitutes an evidence of chronic aluminum exposure, prolonged exposure could lead to a recovery of hematocrit and hemoglobin concentration values with an increase in red cell number. Nevertheless, both microcytosis and the decrease of MCH would persist. These modifications took place without changes being observed in the renal function during the observation period. PMID:10643868

  13. Aluminum: Recycling of Aluminum Dross/Saltcake

    SciTech Connect

    Blazek, S.

    1999-01-29

    As this NICE3 publication details, the objective of this project is to commercialize the process technology to eliminate all landfill waste associated with black dross and saltcake generated from aluminum recycling in the United States.

  14. Aluminum citrate inhibits cytotoxicity and aggregation of oxalate crystals.

    PubMed

    Guo, Chungang; McMartin, Kenneth E

    2007-02-12

    Calcium oxalate monohydrate (COM), which represents a major component of kidney stones, is an end metabolite of ethylene glycol. COM accumulation has been linked with acute renal toxicity in ethylene glycol poisoning. COM injures the kidney either by directly producing cytotoxicity to the kidney cells or by aggregating in the kidney lumen leading to the blockage of urine flow. The present studies were designed to examine whether aluminum citrate could reduce the toxicity of COM. Toxicity was determined in human proximal tubule cells by leakage of lactate dehydrogenase or uptake of ethidium homodimer and in erythrocytes by degree of hemolysis. Aluminum citrate significantly inhibited the leakage of lactate dehydrogenase from human proximal tubule cells and protected against cell death from COM. The inhibitory effect of aluminum citrate was greater than that of other citrate or aluminum salts such as sodium citrate, aluminum chloride, calcium citrate, ammonium citrate or potassium citrate. Aluminum citrate significantly inhibited the aggregation of COM crystals in vitro and decreased red cell membrane damage from COM. Aluminum citrate appeared to directly interact with COM, but not with the cell membrane. As such, aluminum citrate reduced the cytotoxicity by a physico-chemical interaction with the COM surface, and not by dissolving the COM crystals. These studies suggest that aluminum citrate may protect against tissue damage that occurs with high levels of oxalate accumulation, especially in ethylene glycol poisoning and possibly in hyperoxaluric states. PMID:17161516

  15. Textures, microstructures, anisotropy and formability of aluminum-manganese-magnesium and aluminum-magnesium alloys

    NASA Astrophysics Data System (ADS)

    Liu, Jiantao

    In this dissertation work, the microstructure and texture evolution of continuous cast (CC) and direct chill (DC) cast Al-Mn-Mg (AA 3105 and AA 3015) and Al-Mg (AA 5052) alloys during cold rolling and annealing are systematically investigated. Macrotexture analyses were based on three-dimensional orientation distribution functions (ODFs) calculated from incomplete pole figures from X-ray diffraction by using arbitrarily defined cell (ADC) and series expansion methods. A new technique, electron backscatter diffraction (EBSD), was adopted for microtexture and mesotexture investigation. The anisotropy and formability of Al-Mn-Mg and Al-Mg alloys are correlated to the texture results. For aluminum alloys studied in this work, a stronger Cube orientation is observed in DC hot band than in CC hot band after complete recrystallization. alpha and beta fibers become well developed beyond 50% cold rolling in both CC and DC aluminum alloys. The highest intensity along the beta fiber (skeleton line) is located between the Copper and the S orientations in both materials after high cold rolling reductions. In both CC and DC aluminum alloys, a cell structure develops with the indication of increasing CSL Sigma1 boundaries during the early stages of cold rolling. There is no evidence of the development of twin boundaries (Sigma3, Sigma9, Sigma27a & 27b) in either CC or DC aluminum alloys when the cold rolling reductions are less than 40%. The R and Cube textures are dominant recrystallization texture components in CC and DC AA 5052 alloys. The volume fraction of the Cube component is increased by increasing cold rolling reduction and annealing temperature but not by increasing annealing time while the volume fraction of the R component is only increased by increasing cold rolling reduction. Stronger Cube and R orientations are found at the surface layer than at half-thickness layer of cold rolled hot bands after annealing. The Cube and P textures are dominant recrystallization

  16. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a

  17. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  18. Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells.

    PubMed

    Alia, Shaun M; Duong, Kathlynne; Liu, Toby; Jensen, Kurt; Yan, Yushan

    2012-08-01

    Silver nanowires (AgNWs) and nanoparticles (AgNPs) have been synthesized to facilitate hydroxide-exchange membrane fuel cell development and commercialization. AgNWs and AgNPs with variable diameters (25-60 nm AgNWs, 2.4-30 nm AgNPs) have been studied with rotating-disk electrode experiments to examine the impact of size and morphology on the oxygen reduction reaction (ORR). Although a detrimental particle size effect is observed, AgNWs exceed the specific activity of bulk polycrystalline Ag. AgNWs with a diameter of 25 nm further exceed the ORR specific and mass activity of 2.4 nm AgNPs 5.3 times and by 16 %, respectively. Rotating ring-disk electrode testing demonstrates minimal peroxide formation on AgNWs; peroxide production increases with the use of AgNPs by as much as an order of magnitude and further increases with particle size reduction. Silver catalysts demonstrate alcohol tolerance for ORR, illustrating the benefit of silver and AgNWs as catalysts in hydroxide and alcohol hydroxide-based fuel cells. PMID:22887923

  19. Biological Selenite Reduction and Biofilm Growth in a Microfluidic Flow Cell

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Valocchi, A. J.; Werth, C. J.; Liu, W. T.; Sanford, R. A.; Singh, R.; Nobu, M.; Michelson, K.; Xue, Z.

    2014-12-01

    Selenite-contaminated groundwater can be biologically remediated in-situ by supplying an electron donor to promote the growth of selenite-reducing bacteria. We studied the fate of selenite during in-situ bioremediation using a microfluidic flow cell containing a homogeneous distribution of pores. The flow cell had two inlets: one for selenite supply, and the other for propionate (electron donor) supply. The media contained sulfate, which is common in groundwater and can affect selenite reduction. During the 5-month operation, biomass and selenite reduction products were periodically imaged using a phase contrast microscope and an environmental scanning electron microscope. Selenite reduction products were further characterized using Raman spectroscopy and energy-dispersive X-ray spectroscopy. Three types of crystals were detected in the mixing zone between selenite and propionate, and they occurred in different locations of the mixing zone. On the selenite side, selenite was biologically reduced to elemental selenium in the monoclinic form. Along the centerline, sulfate was biologically reduced to sulfide, which chemically reacted with selenite to form the second type of crystal (selenium sulfide). On the propionate side, selenium sulfide was biologically reduced to elemental selenium in the trigonal form. A mathematical model was developed to explain the segregation of the three crystals. On the selenite side, bacteria preferred selenite to sulfate since selenite can provide more energy for bacteria growth according to thermodynamics. On the propionate side, selenite was limiting; thus bacteria used selenium sulfide as their electron acceptor. Understanding this segregation can help to predict in-situ bioremediation of selenite-contaminated groundwater. Conventional prediction models consider the reaction on the selenite side as the only path of selenite removal, while a model considering the three paths of selenite removal would increase the prediction accuracy.

  20. Energy savings in aluminum production, use, and recycling

    SciTech Connect

    Russell, A.S.

    1983-07-01

    Aluminum and energy have been intertwined since the initial isolation of the metal from its ore, and industry growth has depended on great quantities of inexpensive, available energy. In response to the modern need, the industry has significantly decreased the energy required for the chemical steps in aluminum production. That aggressive effort is catalogued here. The energy saving potential of a new smelting process is mentioned. The tremendous energy reduction achieved by recycling and improved design of the aluminum beverage can is detailed, and the potential for similar advantages for other products is presented. Finally, the important role of light weight aluminum in decreasing the nation's energy requirement for transportation is discussed.

  1. Lithium-aluminum-iron electrode composition

    DOEpatents

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  2. Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system.

    PubMed

    Li, Yan; Wu, Yining; Liu, Bingchuan; Luan, Hongwei; Vadas, Timothy; Guo, Wanqian; Ding, Jie; Li, Baikun

    2015-09-01

    A self-sustained hybrid bioelectrochemical system consisting of microbial fuel cell (MFC) and microbial electrolysis cell (MEC) was developed to reduce multiple metals simultaneously by utilizing different reaction potentials. Three heavy metals representing spontaneous reaction (chromium, Cr) and unspontaneous reaction (lead, Pb and nickel, Ni) were selected in this batch-mode study. The maximum power density of the MFC achieved 189.4 mW m(-2), and the energy recovery relative to the energy storage circuit (ESC) was ∼ 450%. At the initial concentration of 100 mg L(-1), the average reduction rate of Cr(VI) was 30.0 mg L(-1) d(-1), Pb(II) 32.7 mg L(-1) d(-1), and Ni(II) 8.9 mg L(-1) d(-1). An electrochemical model was developed to predict the change of metal concentration over time. The power output of the MFC was sufficient to meet the requirement of the ESC and MEC, and the "self-sustained metal reduction" was achieved in this hybrid system. PMID:26038328

  3. Experimental Investigation of Shock-Cell Noise Reduction for Single Stream Nozzles in Simulated Flight

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Brausch, J. F.; Balsa, T. F.; Janardan, B. A.; Knott, P. R.

    1984-01-01

    Seven single stream model nozzles were tested in the Anechoic Free-Jet Acoustic Test Facility to evaluate the effectiveness of convergent divergent (C-D) flowpaths in the reduction of shock-cell noise under both static and mulated flight conditions. The test nozzles included a baseline convergent circular nozzle, a C-D circular nozzle, a convergent annular plug nozzle, a C-D annular plug nozzle, a convergent multi-element suppressor plug nozzle, and a C-D multi-element suppressor plug nozzle. Diagnostic flow visualization with a shadowgraph and aerodynamic plume measurements with a laser velocimeter were performed with the test nozzles. A theory of shock-cell noise for annular plug nozzles with shock-cells in the vicinity of the plug was developed. The benefit of these C-D nozzles was observed over a broad range of pressure ratiosin the vicinity of their design conditions. At the C-D design condition, the C-D annual nozzle was found to be free of shock-cells on the plug.

  4. Reduction of EGF receptor levels in human tumor cells transfected with an antisense RNA expression vector

    SciTech Connect

    Yamada, Hirotomo; Koizumi, Shinji; Kimura, Masami ); Shimizu, Nobuyoshi )

    1989-09-01

    An expression vector was constructed from part of pSV2neo with the 3{prime}-ClaI fragment of the epidermal growth factor (EGF) receptor cDNA inserted in an inverted orientation downstream from the human metallothionein (MT) IIa promoter. The human squamous carcinoma cell line NA, which overproduces EGF receptor, was transfected with this vector and selected for resistance to the neomycin derivative G418. One of the stable transfectants had a 90% reduction cell-surface EGF receptor in response to ZnSO{sub 4}. The nascent EGF receptor peptide was also decreased with concurrent induction of MT mRNA. These data suggest that the antisense transcript regulated by the MT promoter inhibits the expression of the endogenous EGF receptor genes. Although no transcripts from the antisense gene were detected, the results indicate that transfection with the antisense vector provides a technique by which to modulate the number of EGF receptors on the cell surface of squamous cell carcinomas.

  5. Zinc-Bismuth and Aluminum-Indium Monotectic Alloy-Based Fixed-Point Cells with Double Phase Transition for In Situ Calibration of Thermocouples

    NASA Astrophysics Data System (ADS)

    Lowe, Dave; Kodwani, Darsh

    2015-11-01

    Re-calibration of a thermocouple after it has been installed in a process is often not practical. In situ monitoring of performance is desirable and can be done with built-in reference standards based on melting or freezing phase transitions. Binary alloys with a monotectic reaction frequently have two invariant melt/freeze phase transitions taking place in the same material over a range of compositions. This makes them potentially well suited to be in situ temperature calibration artifacts, enabling correction for thermocouple drift without the need to disturb the thermocouple. A zinc-bismuth fixed-point cell was constructed and has been shown to be stable with two well-defined melting plateaus at nominally 255°C and 415°C. Two miniature fixed-point cells (each designed to be permanently installed with a thermocouple) based on zinc-bismuth and aluminum-indium alloys were made. Measurements have shown that the phase transitions can be identified despite the small quantity of metals used and that the alloys were sufficiently stable to have the potential to provide improved long-term confidence in process control and monitoring.

  6. Detection of charge storage on molecular thin films of tris(8-hydroxyquinoline) aluminum (Alq3) by Kelvin force microscopy: a candidate system for high storage capacity memory cells.

    PubMed

    Paydavosi, Sarah; Aidala, Katherine E; Brown, Patrick R; Hashemi, Pouya; Supran, Geoffrey J; Osedach, Timothy P; Hoyt, Judy L; Bulović, Vladimir

    2012-03-14

    Retention and diffusion of charge in tris(8-hydroxyquinoline) aluminum (Alq(3)) molecular thin films are investigated by injecting electrons and holes via a biased conductive atomic force microscopy tip into the Alq(3) films. After the charge injection, Kelvin force microscopy measurements reveal minimal changes with time in the spatial extent of the trapped charge domains within Alq(3) films, even for high hole and electron densities of >10(12) cm(-2). We show that this finding is consistent with the very low mobility of charge carriers in Alq(3) thin films (<10(-7) cm(2)/(Vs)) and that it can benefit from the use of Alq(3) films as nanosegmented floating gates in flash memory cells. Memory capacitors using Alq(3) molecules as the floating gate are fabricated and measured, showing durability over more than 10(4) program/erase cycles and the hysteresis window of up to 7.8 V, corresponding to stored charge densities as high as 5.4 × 10(13) cm(-2). These results demonstrate the potential for use of molecular films in high storage capacity nonvolatile memory cells. PMID:22332966

  7. Aluminum can induce alterations in the cellular localization and expression of three major nucleolar proteins in root tip cells of Allium cepa var. agrogarum L.

    PubMed

    Qin, Rong; Jiang, Wusheng; Liu, Donghua

    2013-01-01

    A 50 μM aluminum (Al) could induce nucleolar materials containing the argyrophilic proteins scattered in the nuclei and extruded from the nuclei into the cytoplasm in the root tip cells of Allium cepa. Unfortunately, what kinds of nucleolar proteins are affected has not been reported till now. In order to go deeper into the understanding of the cytological effects of Al on nucleolus and nucleolar proteins, alterations in the cellular localization and expression of three major nucleolar proteins: nucleophosmin, nucleolin, and fibrillarin were further examined under the treatment with Al in the root tip cells of A. cepa in the present study. Cytological effects of Al on nucleolus were observed by silver-staining method and three major nucleolar proteins: nucleophosmin, nucleolin, and fibrillarin were examined by western blotting. The results indicated that in the presence of 50 μM Al for 48 h the nucleolar proteins were translocated from nucleolus to nucleoplasm and cytoplasm. Western blotting data demonstrated the relatively higher expression of the three major nucleolar proteins when compared with control. Evidence from the present investigation indicated that Al had toxic effects on Ag-NOR proteins, nucleophosmin and nucleolin, and other kinds of nucleolar proteins, fibrillarin. PMID:23111171

  8. Aspects of aluminum toxicity

    SciTech Connect

    Hewitt, C.D.; Savory, J.; Wills, M.R. )

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  9. Zinc-Dependent Protection of Tobacco and Rice Cells From Aluminum-Induced Superoxide-Mediated Cytotoxicity

    PubMed Central

    Lin, Cun; Hara, Ayaka; Comparini, Diego; Bouteau, François; Kawano, Tomonori

    2015-01-01

    Al3+ toxicity in growing plants is considered as one of the major factors limiting the production of crops on acidic soils worldwide. In the last 15 years, it has been proposed that Al3+ toxicity are mediated with distortion of the cellular signaling mechanisms such as calcium signaling pathways, and production of cytotoxic reactive oxygen species (ROS) causing oxidative damages. On the other hand, zinc is normally present in plants at high concentrations and its deficiency is one of the most widespread micronutrient deficiencies in plants. Earlier studies suggested that lack of zinc often results in ROS-mediated oxidative damage to plant cells. Previously, inhibitory action of Zn2+ against lanthanide-induced superoxide generation in tobacco cells have been reported, suggesting that Zn2+ interferes with the cation-induced ROS production via stimulation of NADPH oxidase. In the present study, the effect of Zn2+ on Al3+-induced superoxide generation in the cell suspension cultures of tobacco (Nicotiana tabacum L., cell-line, BY-2) and rice (Oryza sativa L., cv. Nipponbare), was examined. The Zn2+-dependent inhibition of the Al3+-induced oxidative burst was observed in both model cells selected from the monocots and dicots (rice and tobacco), suggesting that this phenomenon (Al3+/Zn2+ interaction) can be preserved in higher plants. Subsequently induced cell death in tobacco cells was analyzed by lethal cell staining with Evans blue. Obtained results indicated that presence of Zn2+ at physiological concentrations can protect the cells by preventing the Al3+-induced superoxide generation and cell death. Furthermore, the regulation of the Ca2+ signaling, i.e., change in the cytosolic Ca2+ ion concentration, and the cross-talks among the elements which participate in the pathway were further explored. PMID:26648960

  10. TEM Cell Testing of Cable Noise Reduction Techniques From 2 MHz to 200 MHz - Part 1

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Evans, William C.; Reed, Joshua L.; Shimp, Samuel K.; Fitzpatrick, Fred D.

    2008-01-01

    This paper presents empirical results of cable noise reduction techniques as demonstrated in a TEM cell operating with radiated fields from 2 - 200 MHz. It is the first part of a two-paper series. This first paper discusses cable types and shield connections. In the second paper, the effects of load and source resistances and chassis connections are examined. For each topic, well established theories are compared to data from a real-world physical system. Finally, recommendations for minimizing cable susceptibility (and thus cable emissions) are presented. There are numerous papers and textbooks that present theoretical analyses of cable noise reduction techniques. However, empirical data is often targeted to low frequencies (e.g. <50 KHz) or high frequencies (>100 MHz). Additionally, a comprehensive study showing the relative effects of various noise reduction techniques is needed. These include the use of dedicated return wires, twisted wiring, cable shielding, shield connections, changing load or source impedances, and implementing load- or source-to-chassis isolation. We have created an experimental setup that emulates a real-world electrical system, while still allowing us to independently vary a host of parameters. The goal of the experiment was to determine the relative effectiveness of various noise reduction techniques when the cable is in the presence of radiated emissions from 2 MHz to 200 MHz. The electronic system (Fig. 1) consisted of two Hammond shielded electrical enclosures, one containing the source resistance, and the other containing the load resistance. The boxes were mounted on a large aluminium plate acting as the chassis. Cables connecting the two boxes measured 81 cm in length and were attached to the boxes using standard D38999 military-style connectors. The test setup is shown in Fig. 2. Electromagnetic fields were created using an HP8657B signal generator, MiniCircuits ZHL-42W-SMA amplifier, and an EMCO 5103 TEM cell. Measurements were

  11. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  12. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  13. Durable Scar Size Reduction Due to Allogeneic Mesenchymal Stem Cell Therapy Regulates Whole‐Chamber Remodeling

    PubMed Central

    Williams, Adam R.; Suncion, Viky Y.; McCall, Frederic; Guerra, Danny; Mather, Jacques; Zambrano, Juan P.; Heldman, Alan W.; Hare, Joshua M.

    2013-01-01

    Background Intramyocardial injection of mesenchymal stem cells (MSCs) in chronic ischemic cardiomyopathy is associated with reverse remodeling in experimental models and humans. Here, we tested the hypothesis that allogeneic MSC therapy drives ventricular remodeling by producing durable and progressive scar size reduction in ischemic cardiomyopathy. Methods and Results Gottingen swine (n=12) underwent left anterior descending coronary artery myocardial infarction (MI), and 3 months post‐MI animals received either intramyocardial allogeneic MSC injection (200 mol/L cells; n=6) or left ventricle (LV) catheterization without injection (n=6). Swine were followed with serial cardiac magnetic resonance imaging for 9 months to assess structural and functional changes of the LV. Intramyocardial injection was performed using an integrated imaging platform combining electroanatomical mapping unipolar voltage and 3‐dimensional cardiac magnetic resonance imaging angiography–derived anatomy to accurately target infarct border zone injections. MSC‐treated animals had a 19.62±2.86% reduction in scar size at 3 months postinjection, which progressed to 28.09±2.31% from 3 to 6 months postinjection (P<0.0001). MSC‐treated animals had unchanged end‐diastolic volume (EDV; P=0.08) and end‐systolic volume (ESV; P=0.28) from preinjection to 6 months postinjection, whereas controls had progressive dilatation in both EDV (P=0.0002) and ESV (P=0.0002). In addition, MSC‐treated animals had improved LV sphericity index. Percentage change in infarct size correlated with percentage change in EDV (r=0.68; P=0.01) and ESV (r=0.77; P=0.001). Ejection fraction increased from 29.69±1.68% to 35.85±2.74% at 3 months post‐MSC injection and progressed to 39.02±2.42% 6 months postinjection (P=0.0001), whereas controls had a persistently depressed ejection fraction during follow‐up (P=0.33). Conclusion Intramyocardial injection of allogeneic MSCs leads to a sustained and

  14. Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments

    USGS Publications Warehouse

    Zehr, J.P.; Oremland, R.S.

    1987-01-01

    Washed cell suspension of Desulfovibrio desulfuricans subsp. aestuarii were capable of reducing nanomolar levels of selenate to selenide as well as sulfate to sulfide. Reduction of these species was inhibited by 1 mM selenate or tungstate. The addition of 1 mM sulfate decreased the reduction of selenate and enhanced the reduction of sulfate. Increasing concentrations of sulfate inhibited rates of selenate reduction but enhanced sulfate reduction rates. Cell suspensions kept in 1 mM selenate were incapable of reducing either selenate or sulfate when the selenate/sulfate ratio was ???0.02, indicating that irreversible inhibition occurs at high selenate concentrations. Anoxic estuarine sediments having an active flora of sulfate-respiring bacteria were capable of a small amount of selenate reduction when ambient sulfate concentrations were low (<4 mM). These results indicate that sulfate is an inhibitor of the reduction of trace qunatitites of selenate. Therefore, direct reduction of traces of selenate to selenide by sulfate-respiring bacteria in natural environments is constrained by the ambient concentration of sulfate ions. The significance of this observation with regard to the role sediments play in sequestering selenium is discussed

  15. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.

    PubMed

    Gangadharan, Praveena; Nambi, Indumathi M

    2015-01-01

    Microbial fuel cell (MFC) technology is utilized to treat hexavalent chromium (Cr(VI)) from wastewater and to generate electricity simultaneously. The Cr(VI) is bioelectrochemically reduced to non-toxic Cr(III) form in the presence of an organic electron donor in a dual-chambered MFC. The Cr(VI) as catholyte and artificial wastewater inoculated with anaerobic sludge as anolyte, Cr(VI) at 100 mg/L was completely removed within 48 h (initial pH value 2.0). The total amount of Cr recovered was 99.87% by the precipitation of Cr(III) on the surface of the cathode. In addition to that 78.4% of total organic carbon reduction was achieved at the anode chamber within 13 days of operation. Furthermore, the maximum power density of 767.01 mW/m² (2.08 mA/m²) was achieved by MFCs at ambient conditions. The present work has successfully demonstrated the feasibility of using MFCs for simultaneous energy production from wastewater and reduction of toxic Cr(VI) to non-toxic Cr(III). PMID:25714633

  16. O2 reduction at the IFC orbiter fuel cell O2 electrode

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph

    1990-01-01

    O2 reduction Tafel data were obtained for the IFC Orbiter fuel cell O2 electrode (Au-10 percent Pt catalyst) at temperatures between 24 and 81 C. BET measurements gave an electrode surface area of about 2040 sq cm per sq cm of geometric area. The Tafel data could be fitted to three straight line regions. For current densities less than 0.001 A/sq cm, the slope was essentially independent of temperature with a value of about 0.032 V/decade. Above 0.001 A/sq cm, the two regions, designated in the present study as the 0.04 and 0.12 V/decate regions, were temperature dependent. The apparent energies of activation for these two regions were about 9.3 and 6.5 kcal/mol, respectively. Tafel data (1 atmosphere O2) were extrapolated to 120 C for predicting changes in overpotential with increasing temperature. A mechanism is presented for O2 reduction.

  17. Spontaneous electrochemical treatment for sulfur recovery by a sulfide oxidation/vanadium(V) reduction galvanic cell.

    PubMed

    Kijjanapanich, Pimluck; Kijjanapanich, Pairoje; Annachhatre, Ajit P; Esposito, Giovanni; Lens, Piet N L

    2015-02-01

    Sulfide is the product of the biological sulfate reduction process which gives toxicity and odor problems. Wastewaters or bioreactor effluents containing sulfide can cause severe environmental impacts. Electrochemical treatment can be an alternative approach for sulfide removal and sulfur recovery from such sulfide rich solutions. This study aims to develop a spontaneous electrochemical sulfide oxidation/vanadium(V) reduction cell with a graphite electrode system to recover sulfide as elemental sulfur. The effects of the internal and external resistance on the sulfide removal efficiency and electrical current produced were investigated at different pH. A high surface area of the graphite electrode is required in order to have as less internal resistance as possible. In this study, graphite powder was added (contact area >633 cm(2)) in order to reduce the internal resistance. A sulfide removal efficiency up to 91% and electrical charge of more than 400 C were achieved when using five graphite rods supplemented with graphite powder as the electrode at an external resistance of 30 Ω and a sulfide concentration of 250 mg L(-1). PMID:25463589

  18. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hao, Liting; Zhang, Baogang; Tian, Caixing; Liu, Ye; Shi, Chunhong; Cheng, Ming; Feng, Chuanping

    2015-08-01

    Bioelectricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly to enhance microbial reduction of vanadium (V) (V(V)) in groundwater. With the maximum power density of 543.4 mW m-2 from the MFC, V(V) removal is accelerated with efficiency of 93.6% during 12 h operation. Higher applied voltage can facilitate this process. V(V) removals decrease with the increase of initial V(V) concentration, while extra addition of chemical oxygen demand (COD) has little effect on performance improvement. Microbial V(V) reduction is enhanced and then suppressed with the increase of conductivity. High-throughput 16S rRNA gene pyrosequencing analysis implies the accumulated Enterobacter and Lactococcus reduce V(V) with products from fermentative microorganisms such as Macellibacteroides. The presentation of electrochemically active bacteria as Enterobacter promotes electron transfers. This study indicates that application of bioelectricity from MFCs is a promising strategy to improve the efficiency of in-situ bioremediation of V(V) polluted groundwater.

  19. Hybrid binuclear-cobalt-phthalocyanine as oxygen reduction reaction catalyst in single chamber microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Baitao; Zhou, Xiuxiu; Wang, Xiujun; Liu, Bingchuan; Li, Baikun

    2014-12-01

    A novel hybrid binuclear-cobalt-phthalocyanine (Bi-CoPc) is developed as the cathode catalyst to replace the costly platinum (Pt) in single chamber microbial fuel cells (SCMFCs). Bi-CoPc/C is integrated with metal oxides (NiO and CoO) to form macrocyclic complex for enhanced oxygen reduction rate (ORR). The characteristics of hybrid catalysts (Bi-CoPc/C-CoO and Bi-CoPc/C-NiO) are compared with Co-contained catalysts (CoPc/C and Bi-CoPc/C) and metal oxide catalysts (NiO and CoO). The increase in O and N functional groups indicates the benefits of NiO and CoO to the cathode catalysts. The cyclic voltammetry (CV) shows the reduction peak for Bi-CoPc/C-NiO and Bi-CoPc/C-CoO at -0.12 V and -0.22 V, respectively. The power densities (368 mW m-2 and 400 mW m-2) of SCMFCs with Bi-CoPc/C-CoO and Bi-CoPc-NiO/C are the highest among the cathodes tested, and close to that of Pt (450 mW m-2). This study demonstrates that hybrid Bi-CoPc/C with metal oxides has a great potential as a cost-effective catalyst in MFCs.

  20. The O2 reduction at the IFC modified O2 fuel cell electrode

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph; Baldwin, Richard S.; Johnson, Richard E.

    1992-01-01

    The International Fuel Corporation (IFC) state of the art (SOA) O2 electrode (Au-10 percent Pt electrocatalyst by weight) is currently being used in the alkaline H2-O2 fuel cell in the NASA Space Shuttle. Recently, IFC modified O2 electrode, as a possible replacement for the SOA electrode. In the present study, O2 reduction data were obtained for the modified electrode at temperatures between 23.3 and 91.7 C. BET measurements gave an electrode BET surface area of about 2070 sq. cm/sq. cm of geometric surface area. The Tafel data could be fitted to two straight line regions. The slope for the lower region, designated as the 0.04 V/decade region, was temperature dependent, and the transfer coefficient was about 1.5. The 'apparent' energy of activation for this region was about 19 kcal/mol. An O2 reduction mechanism for this 0.04 region is presented. In the upper region, designated as the 0.08 V/decade region, diffusion may be the controlling process. Tafel data are presented to illustrate the increase in performance with increasing temperature.

  1. Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Yuan, Yong; Zhou, Shungui; Zhuang, Li

    A polypyrrole/carbon black (Ppy/C) composite has been employed as an electrocatalyst for the oxygen reduction reaction (ORR) in an air-cathode microbial fuel cell (MFC). The electrocatalytic activity of the Ppy/C is evaluated toward the oxygen reduction using cyclic voltammogram and linear sweep voltammogram methods. In comparison with that at the carbon black electrode, the peak potential of the ORR at the Pp/C electrode shifts by approximate 260 mV towards positive potential, demonstrating the electrocatalytic activity of Ppy toward ORR. Additionally, the results of the MFC experiments show that the Ppy/C is well suitable to fully substitute the traditional cathode materials in MFCs. The maximum power density of 401.8 mW m -2 obtained from the MFC with a Ppy/C cathode is higher than that of 90.9 mW m -2 with a carbon black cathode and 336.6 mW m -2 with a non-pyrolysed FePc cathode. Although the power output with a Ppy/C cathode is lower than that with a commercial Pt cathode, the power per cost of a Ppy/C cathode is 15 times greater than that of a Pt cathode. Thus, the Ppy/C can be a good alternative to Pt in MFCs due to the economic advantage.

  2. Reduced cerebrovascular reserve is regionally associated with cortical thickness reductions in children with sickle cell disease.

    PubMed

    Kim, Junseok A; Leung, Jackie; Lerch, Jason P; Kassner, Andrea

    2016-07-01

    Sickle cell disease (SCD) is a genetic disorder which adversely affects cerebrovascular health. Previous studies have demonstrated regional cortical thinning in SCD. However, the reason behind regional reductions in cortical thickness remains unclear. Therefore, we aimed to explore the possible link between the state of cerebrovascular health and cortical thickness. In this study, we obtained magnetic resonance (MR) based measures of cerebrovascular reactivity (CVR), a measure of vascular health, and cortical thickness in SCD patients (N=60) and controls of similar age and similar gender ratio (N=27). The group comparison analysis revealed significant regionally specific reductions in CVR and cortical thickness in the SCD group compared to the controls. In addition, a regional association analysis was performed between CVR and cortical thickness in the SCD group which revealed a significant regional association in several brain regions with the highest strength of association observed in the left cuneus, right post central gyrus and the right temporal pole. The regional association analysis revealed that significant associations were found in brain regions with high metabolic activity (anterior cingulate, posterior cingulate, occipital gyrus, precuneus) thus demonstrating that these regions could be most vulnerable to structural damage under hypoxic conditions. PMID:27026656

  3. Purple top symptoms are associated with reduction of leaf cell death in phytoplasma-infected plants

    PubMed Central

    Himeno, Misako; Kitazawa, Yugo; Yoshida, Tetsuya; Maejima, Kensaku; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou

    2014-01-01

    Plants exhibit a wide variety of disease symptoms in response to pathogen attack. In general, most plant symptoms are recognized as harmful effects on host plants, and little is known about positive aspects of symptoms for infected plants. Herein, we report the beneficial role of purple top symptoms, which are characteristic of phytoplasma-infected plants. First, by using plant mutants defective in anthocyanin biosynthesis, we demonstrated that anthocyanin accumulation is directly responsible for the purple top symptoms, and is associated with reduction of leaf cell death caused by phytoplasma infection. Furthermore, we revealed that phytoplasma infection led to significant activation of the anthocyanin biosynthetic pathway and dramatic accumulation of sucrose by about 1000-fold, which can activate the anthocyanin biosynthetic pathway. This is the first study to demonstrate the role and mechanism of the purple top symptoms in plant–phytoplasma interactions. PMID:24531261

  4. [Photoinduced reduction of NAD(P) in the cells of green sulfur bacteria].

    PubMed

    Ivanovskiĭ, R N

    1975-01-01

    The spectrum of a photoinduced increase in luminescence of the cells of the gree sulphur bacterium Chlorobium limicola f. thiosulfatophilum, within the range of 400 to 520 nm, was found to correspond to the spectrum of luminescence of NADH in the protein-bound form. Photoinduced reduction of NAD(P) in green bacteria, contrary to purple bacteria, is not susceptible to the action of p-chlorocarbonylcyanide phenlhydrazone which uncouples photophosphorylation. Therefore, in Chlorobium limicola f. thiosulfatophilum, NAD(P) is reduced by direct non-cyclic transport of electrons via the photosynthetic chain. NAD(P)H is utilized mainly in the system of CO2 fixation; the process is inhibited by fluoroacetate, and the inhibition is eliminated by substrates of the cycle of carboxylic acids. PMID:2843

  5. Development of Crystallographic Texture and Grain Refinement in the Aluminum Layer of CU-AL-CU Tri-Layer Composite Deformed by Equal Channel Angular Extrusion

    NASA Astrophysics Data System (ADS)

    Tolaminejad, B.; Taheri, A. Karimi; Shahmiri, M.; Arabi, H.

    The present research is concerned with the aluminum layer of a loosely packed tri-layer copper-aluminum-copper composite deformed by ECAE process. Electron back scattered diffraction (EBSD), transmission electron microscope, and X-ray technique were employed to investigate the detailed changes occurring in the microtexture, microstructure (cell size and misorientation), and dislocation density evolution during consecutive passes of ECAE process performed on the composite based on route Bc. According to tensile test results, the yield stress of the aluminum layer was increased significantly after application of ECAE throughout the four repeated passes and then slightly decreased. An ultrafine grain size within the range of 500-600 nm was obtained in the Al layer by increasing the thickness of copper layers. It was observed that the reduction of grain size in the aluminum layer is nearly 57% more than that of an ECAE-ed single layer aluminum billet. Also, the grain refinement of the aluminum layer is accelerated throughout 8 passes. This observation was attributed to the higher rate of dislocation interaction, cell formation and texture development during the ECAE of the composite compared to those of the single billet.

  6. Studies on aluminum neurotoxicity

    SciTech Connect

    Cho, S.

    1988-01-01

    This work reports the inhibitory effects of aluminum on glucose-6-phosphate dehydrogenase (G6PD) from yeast and brains. The aluminum contents and several enzyme activities in aluminum-fed rat brain homogenates were compared with those in age-matched control groups. The concentration of aluminum in the homogenates of the aluminum-fed groups were twice of that of the controls. Acetylcholinesterase activities were the same as in both groups but hexokinase and G6PD activities in the aluminum-fed group were about 73% and 70% of the control, respectively. Further studies on the inhibitory effects of aluminum on G6PD were performed with the enzymes purified from human and pig brains. Two forms of G6PD isozymes were purified from human and pig brain by ammonium sulfate fractionation, hydroxylapatite chromatography, affinity chromatography with NADP-agarose and Blue-Sepharose CL-6B, and gel filtration with Sephadex S-300. The two forms of isozymes (isozyme I and II), purified to be homogeneous, had a molecular weight of 220,000, and composed of 4 subunits of molecular weight of 57,000. HPLC peptide maps of tryptic digests and amino acid analyses of the isozymes showed extensive homologies between the isozymes. Interestingly, only the isozyme II in human and pig brain were active with 6-phosphogluconate as a substrate. No such an activity was found in isozyme I. Aluminum inactivated G6PD activity of the human and pig brain isozyme I and isozyme II without affecting the 6-phosphogluconate dehydrogenase activity of the isozyme II. Circular dichroism studies showed that the binding of aluminum to G6PD induced a decrease in {alpha}-helix and {beta}-sheet and a increase in random coil. Therefore it is suggested that inactivation of G6PD by aluminum is due to the conformational change induced by aluminum binding.

  7. Low Temperature Aluminum Dissolution Of Sludge Waste

    SciTech Connect

    Keefer, M.T.; Hamm, B.A.; Pike, J.A.

    2008-07-01

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. The sludge is currently being stabilized in the Defense Waste Processing Facility (DWPF) through a vitrification process immobilizing the waste in a borosilicate glass matrix for long-term storage in a federal repository. Without additional treatment, the existing volume of sludge would produce nearly 8000 canisters of vitrified waste. Aluminum compounds, along with other non-radioactive components, represent a significant portion of the sludge mass currently planned for vitrification processing in DWPF. Removing the aluminum from the waste stream reduces the volume of sludge requiring vitrification and improves production rates. Treating the sludge with a concentrated sodium hydroxide (caustic) solution at elevated temperatures (>90 deg. C) to remove aluminum is part of an overall sludge mass reduction effort to reduce the number of vitrified canisters, shorten the life cycle for the HLW system, and reduce the risk associated with the long term storage of radioactive wastes at SRS. A projected reduction of nearly 900 canisters will be achieved by performing aluminum dissolution on six targeted sludge batches; however, a project to develop and install equipment will not be ready for operation until 2013. The associated upgrades necessary to implement a high temperature process in existing facilities are costly and present many technical challenges. Efforts to better understand the characteristics of the sludge mass and dissolution kinetics are warranted to overcome these challenges. Opportunities to further reduce the amount of vitrified waste and increase production rates should also be pursued. Sludge staged in Tank 51 as the next sludge batch for feed to DWPF consisted

  8. Aluminum inhibits neurofilament assembly, cytoskeletal incorporation, and axonal transport. Dynamic nature of aluminum-induced perikaryal neurofilament accumulations as revealed by subunit turnover.

    PubMed

    Shea, T B; Wheeler, E; Jung, C

    1997-01-01

    The mechanism by which aluminum induces formation of perikaryal neurofilament (NF) inclusions remains unclear. Aluminum treatment inhibits: 1. The incorporation of newly synthesized NF subunits into Triton-insoluble cytoskeleton of axonal neurites; 2. Their degradation and dephosphorylation; 3. Their translocation into axonal neurites. It also fosters the accumulation of phosphorylated NFs within perikarya. In the present study, we addressed the relationship among these effects. Aluminum reduced the assembly of newly synthesized NF subunits into NFs. During examination of those subunits that did assemble in the presence of aluminum, it was revealed that aluminum also interfered with transport of newly assembled NFs into axonal neurites. Similarly, a delay in axonal transport of microinjected biotinylated NF-H was observed in aluminum-treated cells. Aluminum also inhibited the incorporation of newly synthesized and microinjected subunits into the Triton-insoluble cytoskeleton within both perikarya and neurites. Once incorporated into Triton-insoluble cytoskeletons, however, biotinylated subunits were retained within perikarya of aluminum-treated cells to a greater extent than within untreated cells. Notably, these subunits were depleted in the presence and absence of aluminum within 48 h, despite the persistence of the aluminum-induced perikaryal accumulation itself, suggesting that individual NF subunits undergo turnover even within aluminum-induced perikaryal accumulations. These findings demonstrate that aluminum interferes with multiple aspects of neurofilament dynamics and furthermore leaves open the possibility that aluminum-induced perikaryal NF whorls may not represent permanent structures, but rather may require continued recruitment of cytoskeletal constituents. PMID:9437656

  9. Understanding and development of cost-effective industrial aluminum back surface field (Al-BSF) silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Nian

    For the long-term strategy of gradual decarbonization of the world's energy supply, high penetration of PV electricity is critical in the future world energy landscape. In order to achieve this, solar electricity with competitive cost to fossil fuel energy is necessary. To be able to obtain high efficiency solar cells, many advanced cell architectures have been developed commercially by PV industry. However, the fabrication of these cells necessitates complex processing steps and high requirements on semiconductor materials, which make it not as cost-effective as the state-of-the-art conventional Al-BSF structure. In order to keep the cost of PV cell low and improve on the efficiency with fewer processing steps, this thesis work focuses on the understanding of the conventional Al-BSF solar cell structure. The research work therefore, focuses on the (i) design, and modeling of front metal electrodes including the use of multi-bus-bar capable of decreasing the gridline resistance, (ii) fine-line printing and (iii) metal contact co-firing using high belt speed that is not common to the solar industry to achieve ~20% efficient industrial Al-BSF silicon solar cells. In order to achieve the objectives of this thesis work, firstly, the appropriate Al paste was investigated for lowest back surface recombination velocity (BSRV), which gives high open circuit voltage (Voc). Secondly, the impact of emitter sheet resistance on solar cell performance was modeled to determine the optimal sheet resistance, and the uniformity of emitter was also investigated. Thirdly, modeling on the front metal electrodes was carried out to investigate the optimal number of busbars, and determine the optimum number of gridlines and gridline geometries that would result in low series resistance (Rs), high fill factor (FF) and hence high efficiency. Fourthly, the modeled results were experimentally validated through fine-line printing and optimized contact co-firing. By combining each layer to make

  10. Effect of aluminum chloride and zinc sulfate on Autographa california nuclear polyhedrosis virus (ACNPV) replication in cell culture.

    PubMed

    Weiss, S A; Smith, G C; Vaughn, J L; Dougherty, E M; Tompkins, G J

    1982-11-01

    When IPL-SF-21AE III continuous insect cell line was grown and maintained in IPL-41 insect cell culture medium supplemented with 16 microM of AlCl3 or 0.24 microM of ZnSO4 . 7H2O, or both metallic salts, and then infected with Autographa california nuclear polyhedrosis virus, virus replication was increased significantly. The yield of polyhedral inclusion bodies (PIB) was enhanced up to 121%. Synthesis of cell-free nonoccluded virus was increased to 365% when infectivity was assayed by the plaque method. Newly applied electron microscopic quantitation and stereological techniques also revealed a significant increase in virus particles (VP) and in amount and size of PIB as well as number of VP per PIB. PMID:6759370

  11. Rapid Uptake of Aluminum into Cells of Intact Soybean Root Tips (A Microanalytical Study Using Secondary Ion Mass Spectrometry).

    PubMed Central

    Lazof, D. B.; Goldsmith, J. G.; Rufty, T. W.; Linton, R. W.

    1994-01-01

    A wide range of physiological disorders has been reported within the first few hours of exposing intact plant roots to moderate levels of Al3+. Past microanalytic studies, largely limited to electron probe x-ray microanalysis, have been unable to detect intracellular Al in this time frame. This has led to the suggestion that Al exerts its effect solely from extracellular or remote tissue sites. Here, freeze-dried cryosections (10 [mu]m thick) collected from the soybean (Glycine max) primary root tip (0.3-0.8 mm from the apex) were analyzed using secondary ion mass spectrometry (SIMS). The high sensitivity of SIMS for Al permitted the first direct evidence of early entry of Al into root cells. Al was found in cells of the root tip after a 30-min exposure of intact roots to 38 [mu]M Al3+. The accumulation of Al was greatest in the first 30 [mu]m, i.e. two to three cell layers, but elevated Al levels extended at least 150 [mu]m inward from the root edge. Intracellular Al concentrations at the root periphery were estimated to be about 70 nmol g-1 fresh weight. After 18 h of exposure, Al was evident throughout the root cross-section, although the rate of accumulation had slowed considerably from that during the initial 30 min. These results are consistent with the hypothesis that early effects of Al toxicity at the root apex, such as those on cell division, cell extension, or nutrient transport, involve the direct intervention of Al on cell function. PMID:12232392

  12. Aluminum: Reducing chloride emissions from aluminum production

    SciTech Connect

    Simon, P.

    1999-09-29

    Reynolds Metals Company (RMC), with assistance from a NICE{sup 3} grant, is developing for commercialization a closed-loop control process that greatly reduces chlorine emissions and increases plant efficiency while maintaining metal quality. The process still utilizes chlorine to remove impurities during aluminum processing, but is more effective than current methods. With the new technology chlorine in the stack is monitored and input chlorine is adjusted continuously. This optimization of chlorine use results in substantially less waste because less chlorine has to be bought or produced by aluminum manufacturers. This innovation is a significant improvement over conventional aluminum treatments, in which chlorine is injected in a more costly and wasteful manner. By the year 2010, the new technology has the potential to reduce the energy it takes to create chlorine by 8.4 billion Btu per year and to cut greenhouse gas emissions by 1,377 tons per year.

  13. Simulation of the reduction process of solid oxide fuel cell composite anode based on phase field method

    NASA Astrophysics Data System (ADS)

    Jiao, Zhenjun; Shikazono, Naoki

    2016-02-01

    It is known that the reduction process influences the initial performances and durability of nickel-yttria-stabilized zirconia composite anode of the solid oxide fuel cell. In the present study, the reduction process of nickel-yttria stabilized zirconia composite anode is simulated based on the phase field method. An three-dimensional reconstructed microstructure of nickel oxide-yttria stabilized zirconia composite obtained by focused ion beam-scanning electron microscopy is used as the initial microstructure for the simulation. Both reduction of nickel oxide and nickel sintering mechanisms are considered in the model. The reduction rates of nickel oxide at different interfaces are defined based on the literature data. Simulation results are qualitatively compared to the experimental anode microstructures with different reduction temperatures.

  14. Computational Modeling of Thermochemical Evolution of Aluminum Smelter Crust

    NASA Astrophysics Data System (ADS)

    Zhang, Qinsong; Taylor, Mark P.; Chen, John J. J.

    2015-02-01

    In an aluminum reduction cell, crushed anode cover at room temperature is added onto the exposed bulk electrolyte surface around newly positioned anodes and is heated by high heat flux from this liquid electrolyte. Liquid electrolyte penetrates inside the porous anode cover. Solid cryolite and alumina crystallize from the liquid electrolyte due to the temperature gradient in the anode cover. A solidified crust forms at the bottom part of the anode cover during the heating up period. A thermochemical model which takes into account both the liquid electrolyte penetration and phase transformations has been developed to simulate the temperature evolution, chemical composition development, and liquid front penetration and content in the anode cover. The model is tested against experimental data obtained from industrial cells and laboratory experiments in this paper.

  15. Aluminum space frame technology

    SciTech Connect

    Birch, S.

    1994-01-01

    This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.

  16. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are also…

  17. Cast aluminum denture base.

    PubMed

    Barco, M T; Dembert, M L

    1987-08-01

    The laboratory procedures for a cast aluminum base denture have been presented. If an induction casting machine is not available, the "two-oven technique" works well, provided the casting arm is kept spinning manually for 4 minutes after casting. If laboratory procedures are executed precisely and with care, the aluminum base denture can be cast with good results. PMID:3305884

  18. A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism.

    PubMed

    Wang, Yonggang; Zhou, Haoshen

    2010-09-14

    The copper-catalyzed O(2) reduction in aqueous electrolyte and the Li-anode in organic electrolyte were united together by a ceramic Li-ions exchange film to form a lithium-air fuel cell. The achieved results demonstrate the cycle between Cu and Cu(2)O can be used to catalyze O(2) electrochemical reduction based on the copper-corrosion mechanism. PMID:20668776

  19. Is the Aluminum Hypothesis Dead?

    PubMed Central

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  20. Differential Responses of Osteoblast Lineage Cells to Nanotopographically-Modified, Microroughened Titanium-Aluminum-Vanadium Alloy Surfaces

    PubMed Central

    Gittens, Rolando A.; Olivares-Navarrete, Rene; McLachlan, Taylor; Cai, Ye; Hyzy, Sharon L.; Schneider, Jennifer M.; Schwartz, Zvi; Sandhage, Kenneth H.; Boyan, Barbara D.

    2013-01-01

    Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MSCs) or immature osteoblasts as possible initial colonizers. Here we show that in the absence of any exogenous soluble factors, osteoblastic maturation of primary human osteoblasts (HOBs) but not osteoblastic differentiation of MSCs is strongly influenced by nanostructures superimposed onto a microrough Ti6Al4V (TiAlV) alloy. The sensitivity of osteoblasts to both surface microroughness and nanostructures led to a synergistic effect on maturation and local factor production. Osteoblastic differentiation of MSCs was sensitive to TiAlV surface microroughness with respect to production of differentiation markers, but no further enhancement was found when cultured on micro/nanostructured surfaces. Superposition of nanostructures to microroughened surfaces affected final MSC numbers and enhanced production of vascular endothelial growth factor (VEGF) but the magnitude of the response was lower than for HOB cultures. Our results suggest that the differentiation state of osteoblast-lineage cells determines the recognition of surface nanostructures and subsequent cell response, which has implications for clinical evaluation of new implant surface nanomodifications. PMID:22989383

  1. Efficient and ultraviolet durable inverted organic solar cells based on an aluminum-doped zinc oxide transparent cathode

    NASA Astrophysics Data System (ADS)

    Liu, Hanxiao; Wu, Zhenghui; Hu, Jianqiao; Song, Qunliang; Wu, Bo; Lam Tam, Hoi; Yang, Qingyi; Hong Choi, Wing; Zhu, Furong

    2013-07-01

    High performance inverted bulk heterojunction organic solar cells (OSCs), based on the blend of poly[[4,8-bis[(2-ethylhexyl)oxy] benzo [1,2-b:4,5-b'] dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  2. Aluminum structural applications

    SciTech Connect

    Lucas, G.

    1996-05-01

    Extensive research by aluminum producers and automakers in the 1980s resulted in the development of technologies that enable building of aluminum cars that meet and exceed all the expectations of today`s drivers and passengers, yet weigh several hundred pounds less than their steel counterparts. The Acura NSX sports car, the Audi A8, and the Jaguar XJ220 have all been introduced. Ford has built 40 aluminum-intensive automobiles based on the Taurus/Sable for test purposes, and General Motors recently announced an aluminum-structured electric vehicle. The design flexibility that aluminum allows is shown by these examples. Each uses a somewhat different technology that is particularly suited to the vehicle and its market.

  3. Effect of Protein Additives on Acetylene Reduction (Nitrogen Fixation) by Rhizobium in the Presence and Absence of Soybean Cells 1

    PubMed Central

    Anderson, Stephen J.; Phillips, Donald A.

    1976-01-01

    The effect of protein additives on acetylene reduction (N2 fixation) by Rhizobium associated with soybean cells (Glycine max [L.] Merr.) in vitro was studied. Acetylene reduction was promoted on the basal medium supplemented with 1.4 mg of N/ml supplied as aqueous extracts of hexane-extracted soybean, red kidney beans (Phaseolus vulgaris L.), or peas (Pisum sativum L.). Commercial samples of α-casein, or bovine serum albumin also promoted acetylene reduction at a concentration of 1.4 mg of N/ml of basal medium, but egg albumin supplying an equal amount of nitrogen to the basal medium completely suppressed acetylene reduction. Autoclaving the aqueous extract of hexane-extracted soybean meal had no effect on its ability to promote acetylene reduction. The presence of 40 mm succinate decreased acetylene reduction with leguminous proteins supplying 1.4 mg of N/ml but promoted acetylene reduction by Rhizobium 32H1-soybean cell associations on media containing α-casein, bovine serum albumin, or egg albumin suppling 1.4 mg of N/ml. Similar results were obtained with both cowpea Rhizobium 32H1 and Rhizobium japonicum 61A96. Pure cultures of Rhizobium 32H1 developed acetylene-reducing activity in the presence of soybean extract on basal agar medium and in vermiculite supplied with N-free mineral salts plus crude soybean meal. The results suggest that in certain situations, free living Rhizobium may reduce N2 under field conditions. PMID:16659592

  4. Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells.

    PubMed

    Li, Dongguo; Lv, Haifeng; Kang, Yijin; Markovic, Nenad M; Stamenkovic, Vojislav R

    2016-06-01

    We present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important role in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Understanding how the doped elements interact with each other and/or carbon is challenging and necessary in the design of robust fuel cell catalysts. PMID:27070766

  5. Oxygen reduction reaction on Cu-doped Ag cluster for fuel-cell cathode.

    PubMed

    Ma, Wenqiang; Chen, Fuyi; Zhang, Nan; Wu, Xiaoqiang

    2014-10-01

    The development of fuel cells as clean-energy technologies is largely limited by the prohibitive cost of the noble-metal catalysts needed for catalyzing the oxygen reduction reaction (ORR) in fuel cells. A fundamental understanding of catalyst design principle that links material structures to the catalytic activity can accelerate the search for highly active and abundant bimetallic catalysts to replace platinum. Here, we present a first-principles study of ORR on Ag12Cu cluster in alkaline environment. The adsorptions of O2, OOH, and OH on Cu-doped Ag13 are stronger than on Ag13. The d-band centers of adsorption sites show the Cu-doping makes d-electrons transferred to higher energy state, and improves O2 dissociation. ORR processes on Ag12Cu and Ag13 indicate Cu-doping can strongly promote ORR, and ORR process can be better preformed on Ag12Cu than on Ag13. For four-electron transfer, the effective reversible potential is 0.401 V/RHE on Ag12Cu in alkaline medium. PMID:25227449

  6. Iontophoresis Improved Growth Reduction of Invasive Squamous Cell Carcinoma in Topical Photodynamic Therapy

    PubMed Central

    Lemos, Camila Nunes; de Souza, Joel Gonçalves; Simão, Patrícia Sper; Lopez, Renata Fonseca Vianna

    2016-01-01

    This study examined the potential of iontophoresis in topical photodynamic therapy (PDT) of human invasive squamous cells carcinomas (SCC). SCC was induced in nude BALB/c mice by subcutaneous injection of A431 cells. Tumor penetration and distribution of the photosensitizer tetrasulfonated zinc phthalocyanine (ZnPcS4) was investigated after 10 and 30 min of in vivo iontophoresis of a gel containing ZnPcS4. PDT was performed immediately after iontophoresis using laser at 660 nm with a dose of irradiation of 100 J/cm2 and irradiance of 48 mW/cm2 while tumor growth was measured for 30 days. Iontophoresis increased ZnPcS4 penetration into tumors by 6-fold after 30 min when compared with passive delivery. Confocal microscopy analysis showed that ZnPcS4 was homogeneous distributed within deep regions of the tumor after iontophoresis. Irradiation of the tumors immediately after iontophoresis showed reduction in tumor size by more than 2-fold when compared to non-treated tumors. Iontophoretic-PDT treated tumors presented large areas of necrosis. The study concluded that iontophoretic delivery of photosensitizers could be a valuable strategy for topical PDT of invasive SCC. PMID:26752697

  7. Iontophoresis Improved Growth Reduction of Invasive Squamous Cell Carcinoma in Topical Photodynamic Therapy.

    PubMed

    Lemos, Camila Nunes; de Souza, Joel Gonçalves; Simão, Patrícia Sper; Lopez, Renata Fonseca Vianna

    2016-01-01

    This study examined the potential of iontophoresis in topical photodynamic therapy (PDT) of human invasive squamous cells carcinomas (SCC). SCC was induced in nude BALB/c mice by subcutaneous injection of A431 cells. Tumor penetration and distribution of the photosensitizer tetrasulfonated zinc phthalocyanine (ZnPcS4) was investigated after 10 and 30 min of in vivo iontophoresis of a gel containing ZnPcS4. PDT was performed immediately after iontophoresis using laser at 660 nm with a dose of irradiation of 100 J/cm(2) and irradiance of 48 mW/cm(2) while tumor growth was measured for 30 days. Iontophoresis increased ZnPcS4 penetration into tumors by 6-fold after 30 min when compared with passive delivery. Confocal microscopy analysis showed that ZnPcS4 was homogeneous distributed within deep regions of the tumor after iontophoresis. Irradiation of the tumors immediately after iontophoresis showed reduction in tumor size by more than 2-fold when compared to non-treated tumors. Iontophoretic-PDT treated tumors presented large areas of necrosis. The study concluded that iontophoretic delivery of photosensitizers could be a valuable strategy for topical PDT of invasive SCC. PMID:26752697

  8. Audit and review for evidence-based red cell wastage reduction measures.

    PubMed

    Smith, G A; Gopal-Patel, J; Joseph, J V; Hobson, A; Clarke, K

    2015-01-01

    Stocks of red blood cells (RBC) are held to ideally match supply and demand; hold too great a stock and unnecessary wastage occurs; too low a stock results in delay or lack of blood for the patient. Blood is a precious resource and its supply needs to be managed effectively. The aim was to identify how RBC units are wasted and propose laboratory-based reduction measures that would not compromise the clinical requirements of the patient. Wastage of RBC was investigated using a 'dashboard' query of a laboratory information management system. By employing service improvement tools, proposals were made to reduce unnecessary RBC waste while ensuring an adequate supply to the patient. The efficacy of those proposals was examined using the same dashboard to compare similar periods before and after their introduction. The reduction in RBC wastage for all groups during an eight month period (December to July) was from 6.4% (5.3% non-AB or B RhD-positive) pre-implementation to 4.4% (2.5% non-AB/B RhD-positive) post-implementation. Group O RhD-negative wastage reduced from 10.4% to 4.4% after introduction of waste-saving proposals. However, there was an increase in staff time required to introduce the changes and in associated Group and Screen testing (3.4 to 3.8 per unit issued). RBC wastage was significantly reduced (P<0.0001) by 32.8% (52%, non-AB/B RhD-positive), saving approximately 225 RBC units per annum. Financially, increased associated costs did not negate the savings made by the measures introduced. PMID:26738401

  9. Current enhancement of aluminum doped ZnO/n-Si isotype heterojunction solar cells by embedding silver nanoparticles.

    PubMed

    Yun, Juhyung; Kim, Joondong; Kojori, Hossein Shokri; Kim, Sung Jim; Tong, Chong; Anderson, Wayne A

    2013-08-01

    To improve Plasmonic energy harvesting, the Al doped ZnO (AZO) and Si heterojunction was studied for plasmonic photovoltaic applications. Silver nanoparticles (Ag NPs) were embedded in AZO, resulting in direct energy absoption from Ag NPs, positioned close to the junction. This structure has a benefit of avoiding highly doped lossy layers of conventional solar cell structures. Al doped ZnO (AZO) was deposited on n-Si substrate by dual beam sputtering method to fabricate AZO/Si heterojunction solar cells. AZO provides a transparent current spreading effect and rectifying junction with n type silicon (Si). Silver nanoparticles (Ag NPs) were embedded in AZO film (240-270 nm thick) with a sandwich-like structure. The position of Ag NPs in the AZO film was controlled to be located at 10, 20 and 40 nm distance from the Si absorber layer. Fabricated solar cells show improved performance in terms of the short circuit current (J(sc)) and the quantum efficiency (QE). Finite difference time domain (FDTD) simulations were carried out to investigate the QE enhancement and optimize photocurrent gain under an AM1.5G solar spectrum. In calculation, absorption enhancement is maximized when Ag NPs are located close to the Si layer in the range of 10-40 nm. Experimentally, 20 nm distance of Ag NPs from the Si showed the best performance with 0.36 V of open circuit voltage (V(oc)), 28.3 mA/cm2 of J(sc) and 5.91% of coversion efficiency. The QE showed 15% of enhancement around lambda = 435 nm and 5-10% of enhancement within lambda = 600-1000 nm. PMID:23882792

  10. Electricity demand in primary aluminum smelting

    SciTech Connect

    Mork, K.A.

    1982-07-01

    Primary aluminum smelters use almost 10% of all electricity used in US manufacturing, while contributing only about 0.2% to value added. This makes energy substitution in the industry a major concern for energy-conservation policy. The fact that aluminum is a key material for many energy-saving technologies adds to this interest. With a simple constant elasticity of substitution (CES) technology model, this paper presents demand estimates made using data collected from a variety of sources other than the US Census of Manufacturing and with two cross-sections comparing the US, Japan, and Norway. The results confirm beliefs about limited substitution possibilities for electricity in aluminum reduction. However, the estimated elasticity is large enough to indicate significant potentials for energy conservation. In particular, the results indicate potentially substantial energy savings from raising prices of hydro power from the low historic cost to the high level of current alternative cost. 12 references, 1 table.

  11. Aluminum: New challenges in downstream activities

    NASA Astrophysics Data System (ADS)

    Becker, Miklos N.

    1999-11-01

    During its history, aluminum’s attractive features, such as high strength-to-weight ratio, good electrical mass conductivity, and unique corrosion behavior, have led to a spectacular expansion in its use. The role of aluminum in non-aluminum-based materials is also very important; its contribution to the improvement of magnesium and titanium alloys and to highly complex packaging materials are some of the noteworthy examples. Significant cost reductions on the basic metal production level, near-to-shape fabricating methods, and the well-functioning recycling system are also major contributors to aluminum success. Imminent challenges for the industry are the need for products with very close tolerances on a mass fabricating repetitive basis and just-in-time delivery to original-equipment manufacturers and small users through distributors. A significant part of the challenges remains in the applications area, particularly automotive and aerospace.

  12. Reduction of spiked porcine circovirus during the manufacture of a Vero cell-derived vaccine.

    PubMed

    Lackner, Cornelia; Leydold, Sandra M; Modrof, Jens; Farcet, Maria R; Grillberger, Leopold; Schäfer, Birgit; Anderle, Heinz; Kreil, Thomas R

    2014-04-11

    Porcine circovirus-1 (PCV1) was recently identified as a contaminant in live Rotavirus vaccines, which was likely caused by contaminated porcine trypsin. The event triggered the development of new regulatory guidance on the use of porcine trypsin which shall ensure that cell lines and porcine trypsin in use are free from PCV1. In addition, manufacturing processes of biologicals other than live vaccines include virus clearance steps that may prevent and mitigate any potential virus contamination of product. In this work, artificial spiking of down-scaled models for the manufacturing process of an inactivated pandemic influenza virus vaccine were used to investigate inactivation of PCV1 and the physico-chemically related porcine parvovirus (PPV) by formalin and ultraviolet-C (UV-C) treatment as well as removal by the purification step sucrose gradient ultracentrifugation. A PCV1 infectivity assay, using a real-time PCR infectivity readout was established. The formalin treatment (0.05% for 48h) showed substantial inactivation for both PCV1 and PPV with reduction factors of 3.0log10 and 6.8log10, respectively, whereas UV-C treatment resulted in complete PPV (≥5.9log10) inactivation already at a dose of 13mJ/cm but merely 1.7log10 at 24mJ/cm(2) for PCV1. The UV-C inactivation results with PPV were confirmed using minute virus of mice (MVM), indicating that parvoviruses are far more sensitive to UV-C than PCV1. The sucrose density gradient ultracentrifugation also contributed to PCV1 clearance with a reduction factor of 2log10. The low pH treatment during the production of procine trypsin was investigated and showed effective inactivation for both PCV1 (4.5log10) and PPV (6.4log10). In conclusion, PCV1 in general appears to be more resistant to virus inactivation than PPV. Still, the inactivated pandemic influenza vaccine manufacturing process provides for robust virus reduction, in addition to the already implemented testing for PCV1 to avoid any contaminations. PMID

  13. Reductions in Red Blood Cell 2,3-Diphosphoglycerate Concentration during Continuous Renal Replacment Therapy

    PubMed Central

    Brugnara, Carlo; Betensky, Rebecca A.; Waikar, Sushrut S.

    2015-01-01

    Background and objectives Hypophosphatemia is a frequent complication during continuous renal replacement therapy (CRRT), a dialytic technique used to treat AKI in critically ill patients. This study sought to confirm that phosphate depletion during CRRT may decrease red blood cell (RBC) concentration of 2,3-diphosphoglycerate (2,3-DPG), a crucial allosteric effector of hemoglobin’s (Hgb’s) affinity for oxygen, thereby leading to impaired oxygen delivery to peripheral tissues. Design, setting, participants, & measurements Phosphate mass balance studies were performed in 20 patients with severe AKI through collection of CRRT effluent. RBC concentrations of 2,3-DPG, venous blood gas pH, and oxygen partial pressure required for 50% hemoglobin saturation (P50) were measured at CRRT initiation and days 2, 4, and 7. Similar measurements were obtained on days 0 and 2 in a reference group of 10 postsurgical patients, most of whom did not have AKI. Associations of 2,3-DPG with laboratory parameters and clinical outcomes were examined using mixed-effects and Cox regression models. Results Mean 2,3-DPG levels decreased from a mean (±SD) of 13.4±3.4 µmol/g Hgb to 11.0±3.1 µmol/g Hgb after 2 days of CRRT (P<0.001). Mean hemoglobin saturation P50 levels decreased from 29.7±4.4 mmHg to 26.7±4.0 mmHg (P<0.001). No significant change was seen in the reference group. 2,3-DPG levels after 2 days of CRRT were not significantly lower than those in the reference group on day 2. Among patients receiving CRRT, 2,3-DPG decreased by 0.53 µmol/g Hgb per 1 g phosphate removed (95% confidence interval 0.38 to 0.68 µmol/g Hgb; P<0.001). Greater reductions in 2,3-DPG were associated with higher risk for death (hazard ratio, 1.43; 95% confidence interval, 1.09 to 1.88; P=0.01). Conclusions CRRT-induced phosphate depletion is associated with measurable reductions in RBC 2,3-DPG concentration and a shift in the O2:Hgb affinity curve even in the absence of overt hypophosphatemia. 2

  14. Effects of different detachment procedures on viability, nitroxide reduction kinetics and plasma membrane heterogeneity of V-79 cells.

    PubMed

    Batista, Urska; Garvas, Maja; Nemec, Marjana; Schara, Milan; Veranic, Peter; Koklic, Tilen

    2010-06-01

    Cell detachment procedures can cause severe damage to cells. Many studies require cells to be detached before measurements; therefore, research on cells that have been grown attached to the bottom of the culture dish and later detached represents a special problem with respect to the experimental results when the properties of cell membranes undergo small changes such as in spectroscopic studies of membrane permeability. We characterized the influence of three different detachment procedures: cell scraping by rubber policeman, trypsinization and a citrate buffer treatment on V-79 cells in the plateau phase of growth (arrested in G1). We have measured cell viability by a dye-exclusion test; nitroxide reduction kinetics and membrane fluidity by EPR (electron paramagnetic resonance) method using the lipophilic spin-probe MeFASL(10,3) (5-doxylpalmitoyl-methylester), which partitions mainly in cell membranes and the hydrophilic spin-probe TEMPONE (4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl). The resulting cell damage due to the detachment process was observed with SEM (scanning electron microscopy). We found out that cell viability was 91% for trypsin treatment, 85% for citrate treatment and 70% for cell scraping. Though the plasma membrane was mechanically damaged by scraping, the membrane domain structure was not significantly altered compared with other detachment methods. On the other hand, the spin-probe reduction rate, which depends both on the transport across plasma membrane as well as on metabolic properties of cells, was the highest for trypsin method, suggesting that metabolic rate was the least influenced. Only the reduction rate of trypsin-treated cells stayed unchanged after 4 h of stirring in suspension. These results suggest that, compared with scraping cells or using citrate buffer, the most suitable detachment method for V-79 cells is detachment by trypsin and keeping cells in the stirred cell suspension until measurement. This method provides the

  15. Characterization of redox activity in resting and activated mast cells by reduction and reoxidation of lipophilic nitroxides.

    PubMed

    Suzuki-Nishimura, T; Swartz, H M

    1998-10-01

    1. We measured redox systems in resting and activated rat peritoneal mast cells under anoxia by using the redox metabolism of free doxyl stearic acid (5DS) and phosphatidylcholine with two 5DS molecules esterified to the glycerol (di5DSPC). 2. In the absence of oxygen, 5DS and di5DSPC were reduced to the corresponding hydroxylamines by resting mast cells, with apparent first-order kinetics of 0.085 and 0.078/min, respectively. 3. The activation of mast cells induced by compound 48/80 and bradykinin did not affect the rates of reduction of the nitroxides, and therefore the activation appeared not to be closely coupled to the redox system of these cells; this finding implies that ischemia is unlikely to affect histamine release from mast cells. 4. The oxidation of the nitroxides by the mast cells was very fast and may be nonenzymatic. 5. We concluded that nitroxides can be useful probes of redox metabolism in the mast cells but, because the characteristics of the cellular reduction-reoxidation systems differed from that of other cells, the use of this approach in other cells will require careful characterization of the redox metabolism of nitroxides in those cells. PMID:9792226

  16. Characteristics of aluminum-reinforced γ-LiAlO2 matrices for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Jin; Choi, Hyun-Jong; Hyun, Sang-Hoon; Im, Hee-Chun

    2008-05-01

    A key component in molten carbonate fuel cells (MCFCs) is the electrolyte matrix, which provides both ionic conduction and gas sealing. During initial MCFC stack start-up and operation (650 °C), the matrix experiences both mechanical and thermal stresses as a result of the difference in thermal expansion coefficients between the LiAlO2 ceramic particles and the carbonate electrolyte that causes cracking of the matrix. A pure γ-LiAlO2 matrix, however, has poor mechanical strength and low thermal expansion coefficients. In this study, fine γ-LiAlO2 powders and pure Al (3/20/50 μm)/Li2CO3 particles are used as a matrix and as reinforcing materials, respectively. The Al phase transforms completely into γ-LiAlO2 at 650 °C within 10 h. The mechanical strength of these matrices (283.48 gf mm-2) increases nearly threefold relative to that of a pure γ-LiAlO2 matrix (104.01 gf mm-2). The mismatch of the thermal expansion coefficient between the matrix and electrolyte phases can be controlled by adding Al particles, which results in improved thermal stability in the initial heating-up step. In unit-cell and thermal-cycling tests, the optimized matrix demonstrates superior performance over pure γ-LiAlO2 matrices.

  17. Aluminum-induced programmed cell death promoted by AhSAG, a senescence-associated gene in Arachis hypoganea L.

    PubMed

    Zhan, Jie; He, Hu-Yi; Wang, Tian-Ju; Wang, Ai-Qin; Li, Chuang-Zhen; He, Long-Fei

    2013-09-01

    Programmed cell death (PCD) is a foundational cellular process in plant development and elimination of damaged cells under environmental stresses. In this study, Al induced PCD in two peanut (Arachis hypoganea L.) cultivars Zhonghua 2 (Al-sensitive) and 99-1507 (Al-tolerant) using DNA ladder, TUNEL detection and electron microscopy. The concentration of Al-induced PCD was lower in Zhonghua 2 than in 99-1507. AhSAG, a senescence-associated gene was isolated from cDNA library of Al-stressed peanut with PCD. Open reading frame (ORF) of AhSAG was 474bp, encoding a SAG protein composed of 157 amino acids. Compared to the control and the antisense transgenic tobacco plants, the fast development and blossom of the sense transgenic plants happened to promote senescence. The ability of Al tolerance in sense transgenic tobacco was lower than in antisense transgenic tobacco according to root elongation and Al content analysis. The expression of AhSAG-GFP was higher in sense transgenic tobacco than in antisense transgenic tobacco. Altogether, these results indicated that there was a negative relationship between Al-induced PCD and Al-resistance in peanut, and the AhSAG could induce or promote the occurrence of PCD in plants. PMID:23849118

  18. Clinical biochemistry of aluminum

    SciTech Connect

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  19. Photosynthetic Oxygen Reduction in Isolated Intact Chloroplasts and Cells in Spinach 1

    PubMed Central

    Marsho, Thomas V.; Behrens, Paul W.; Radmer, Richard J.

    1979-01-01

    The time course of light-induced O2 exchange by isolated intact chloroplasts and cells from spinach was determined under various conditions using isotopically labeled O2 and a mass spectrometer. In dark-adapted chloroplasts and cells supplemented with saturating amounts of bicarbonate, O2 evolution began immediately upon illumination. However, this initial rate of O2 evolution was counterbalanced by a simultaneous increase in the rate of O2 uptake, so that little net O2 was evolved or consumed during the first ∼ 1 minute of illumination. After this induction (lag) phase, the rate of O2 evolution increased 3- to 4-fold while the rate of O2 uptake diminished to a very low level. Inhibition of the Calvin cycle, e.g. with dl-glyceraldehyde or iodoacetamide, had negligible effects on the initial rate of O2 evolution or O2 uptake; both rates were sutained for several minutes, and about balanced so that no net O2 was produced. Uncouplers had an effect similar to that observed with Calvin cycle inhibitors, except that rates of O2 evolution and photoreduction were stimulated 40 to 50%. These results suggest that higher plant phostosynthetic preparations which retain the ability to reduce CO2 also have a significant capacity to photoreduce O2. With near-saturating light and sufficient CO2, O2 reduction appears to take place primarily via a direct interaction between O2 and reduced electron transport carriers, and occurs principally when CO2-fixation reactions are suboptimal, e.g. during induction or in the presence of Calvin cycle inhibitors. The inherent maximum endogenous rate of O2 reduction is approximately 25 to 50% of the maximum rate of noncyclic electron transport coupled to CO2 fixation. Although the photoreduction of O2 is coupled to ion transport and/or phosphorylation, this process does not appear to supply significant amounts of ATP directly during steady-state CO2 fixation in strong light. PMID:16661027

  20. Protective potential of Bacopa monniera (Brahmi) extract on aluminum induced cerebellar toxicity and associated neuromuscular status in aged rats.

    PubMed

    Tripathi, S; Mahdi, A A; Hasan, M; Mitra, K; Mahdi, F

    2011-01-01

    The present study attempts to assess the comparative effects of Bacopa monniera, (40 mg/kg body weight) and donepezil (2.5 mg/kg b. wt) on aluminum (100 mg / kg b. wt. of AlCl3) mediated oxidative damage in the cerebellum of aged rats (24 months) along with the associated dysfunctioning of neuromuscular coordination and motor activity. A significant decrease in the activities of antioxidant enzymes and increased total reacting oxygen species, lipid and protein peroxidation products observed in aluminum exposed rats. We observed that treatment with B. monniera extract restored the altered antioxidant enzyme activities more, when compared with donepezil. However, acetylcholinesterase showed similar effect both in donepezil and B. monniera treated groups. The content of aluminum was increased in all experimental groups, however, iron content was found increased in all groups except the B. monniera treated groups. Moreover, aluminum treated groups of rats exhibited significant changes in behavioral profiles but these changes were in both B. monniera and donepezil treated groups. The light microscopic and ultrastructural studies revealed damaged Purkinje's neurons and altered granular cell layer along with the increased accumulation of lipofuscin granules in aluminum treated animals. These changes were quite less pronounced in B. monniera group than that of donepezil and this may be due to the reduction of excess iron content by B. monniera. On the basis of our results it may be concluded that Al may be linked with cerebellar degeneration and neuromuscular disorders while Bacopa monniera extract helps in reversing these changes. PMID:21366957

  1. TP53-dependent chromosome instability is associated with transient reductions in telomere length in immortal telomerase-positive cell lines

    NASA Technical Reports Server (NTRS)

    Schwartz, J. L.; Jordan, R.; Liber, H.; Murnane, J. P.; Evans, H. H.

    2001-01-01

    Telomere shortening in telomerase-negative somatic cells leads to the activation of the TP53 protein and the elimination of potentially unstable cells. We examined the effect of TP53 gene expression on both telomere metabolism and chromosome stability in immortal, telomerase-positive cell lines. Telomere length, telomerase activity, and chromosome instability were measured in multiple clones isolated from three related human B-lymphoblast cell lines that vary in TP53 expression; TK6 cells express wild-type TP53, WTK1 cells overexpress a mutant form of TP53, and NH32 cells express no TP53 protein. Clonal variations in both telomere length and chromosome stability were observed, and shorter telomeres were associated with higher levels of chromosome instability. The shortest telomeres were found in WTK1- and NH32-derived cells, and these cells had 5- to 10-fold higher levels of chromosome instability. The primary marker of instability was the presence of dicentric chromosomes. Aneuploidy and other stable chromosome alterations were also found in clones showing high levels of dicentrics. Polyploidy was found only in WTK1-derived cells. Both telomere length and chromosome instability fluctuated in the different cell populations with time in culture, presumably as unstable cells and cells with short telomeres were eliminated from the growing population. Our results suggest that transient reductions in telomere lengths may be common in immortal cell lines and that these alterations in telomere metabolism can have a profound effect on chromosome stability. Copyright 2000 Wiley-Liss, Inc.

  2. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  3. Production of anhydrous aluminum chloride composition and process for electrolysis thereof

    DOEpatents

    Vandegrift, George F.; Krumpelt, Michael; Horwitz, E. Philip

    1983-01-01

    A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  4. Mechanism of Immunopotentiation and Safety of Aluminum Adjuvants

    PubMed Central

    HogenEsch, Harm

    2013-01-01

    Aluminum-containing adjuvants are widely used in preventive vaccines against infectious diseases and in preparations for allergy immunotherapy. The mechanism by which they enhance the immune response remains poorly understood. Aluminum adjuvants selectively stimulate a Th2 immune response upon injection of mice and a mixed response in human beings. They support activation of CD8 T cells, but these cells do not undergo terminal differentiation to cytotoxic T cells. Adsorption of antigens to aluminum adjuvants enhances the immune response by facilitating phagocytosis and slowing the diffusion of antigens from the injection site which allows time for inflammatory cells to accumulate. The adsorptive strength is important as high affinity interactions interfere with the immune response. Adsorption can also affect the physical and chemical stability of antigens. Aluminum adjuvants activate dendritic cells via direct and indirect mechanisms. Phagocytosis of aluminum adjuvants followed by disruption of the phagolysosome activates NLRP3-inflammasomes resulting in the release of active IL-1β and IL-18. Aluminum adjuvants also activate dendritic cells by binding to membrane lipid rafts. Injection of aluminum-adjuvanted vaccines causes the release of uric acid, DNA, and ATP from damaged cells which in turn activate dendritic cells. The use of aluminum adjuvant is limited by weak stimulation of cell-mediated immunity. This can be enhanced by addition of other immunomodulatory molecules. Adsorption of these molecules is determined by the same mechanisms that control adsorption of antigens and can affect the efficacy of such combination adjuvants. The widespread use of aluminum adjuvants can be attributed in part to the excellent safety record based on a 70-year history of use. They cause local inflammation at the injection site, but also reduce the severity of systemic and local reactions by binding biologically active molecules in vaccines. PMID:23335921

  5. Influence of reduction conditions on electrical properties of NiO-zirconia composites for solid oxide fuel cell electrode

    NASA Astrophysics Data System (ADS)

    Orui, Himeko; Nozawa, Kazuhiko; Arai, Hajime; Kanno, Ryoji

    2015-08-01

    The electrical properties of nickel-zirconia cermets as the anode material for solid oxide fuel cells (SOFCs) were studied for Sc2O3-Al2O3-stabilized ZrO2 (SASZ), together with conventional Y2O3-stabilized ZrO2 (YSZ). The reduction behavior of the cermets in terms of achieving better electrical conductivity was examined under constant temperature ramp rate (CTR) and constant temperature (CT) conditions. The reduction process and electrical conduction thus obtained were affected by the NiO particle size and porosity, and the zirconia composition of the starting NiO-zirconia composite material. All the NiO-zirconia anodes examined in this study exhibited high conductivity after reduction at a CT of 800 °C. The CTR condition resulted in lower electrical conductivity for the Ni-zirconia cermet. In particular, NiO-SASZ using coarse NiO powder exhibited only ionic conduction with a low electronic contribution, which was due to the absence of nickel-nickel percolation. Thermogravimetric analysis of the NiO reduction indicated that NiO-SASZ and NiO-YSZ had different reduction mechanism which might correspond to the interaction between NiO and zirconia and the long-term stability of these cermets. A kinetic analysis of the NiO reduction process revealed that fast and constant nucleation during the initial stage of reduction is important for the construction of nickel-nickel connections in the cermets.

  6. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  7. Rotenone induces reductive stress and triacylglycerol deposition in C2C12 cells.

    PubMed

    He, Quan; Wang, Miao; Petucci, Christopher; Gardell, Stephen J; Han, Xianlin

    2013-12-01

    Environmental rotenone is associated with Parkinson's disease due to its inhibitory property to the complex I of mitochondrial respiration chain. Although environmental pollution has been postulated as a causal factor for the increasing prevalence of obesity, the role of rotenone in the pathogenesis of obesity has not been studied. We employed muscle-derived cell C2C12 as a model and shotgun lipidomics as a tool for lipid analysis and found that treatment with rotenone led to the profound deposition of intracellular triacylglycerol (TAG) in a time- and dose-dependent fashion. The TAG deposition resulted from complex I inhibition. Further studies revealed that rotenone induced mitochondrial stress as shown by decreased mitochondrial oxygen consumption rate, increased NADH/NAD+ ratio (i.e., reductive stress) and mitochondrial metabolites. We demonstrated that rotenone activated fatty acid de novo synthesis and TAG synthesis and ultimately resulted in intracellular TAG deposition. These studies suggested that increased mitochondrial stresses might be an underlying mechanism responsible for TAG accumulation manifest in obesity. PMID:24104397

  8. Pyrolyzed binuclear-cobalt-phthalocyanine as electrocatalyst for oxygen reduction reaction in microbial fuel cells.

    PubMed

    Li, Baitao; Wang, Mian; Zhou, Xiuxiu; Wang, Xiujun; Liu, Bingchuan; Li, Baikun

    2015-10-01

    A novel platinum (Pt)-free cathodic materials binuclear-cobalt-phthalocyanine (Bi-CoPc) pyrolyzed at different temperatures (300-1000 °C) were examined as the oxygen reduction reaction (ORR) catalysts, and compared with unpyrolyzed Bi-CoPc/C and Pt cathode in single chamber microbial fuel cells (SCMFCs). The results showed that the pyrolysis process increased the nitrogen abundance on Bi-CoPc and changed the nitrogen types. The Bi-CoPc pyrolyzed at 800 °C contained a significant amount of pyrrolic-N, and exhibited a high electrochemical catalytic activity. The power density and current density increased with temperature: Bi-CoPc/C-800 > Bi-CoPc/C-1000 > Bi-CoPc/C-600 > Bi-CoPc/C-300 > Bi-CoPc/C. The SCMFC with Bi-CoPc/C-800 cathode had a maximum power density of 604 mW m(-2). The low cost Bi-CoPc compounds developed in this study showed a potential in air-breathing MFC systems, with the proper pyrolysis temperature being chosen. PMID:26142820

  9. PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells.

    PubMed

    Guerrini, Edoardo; Grattieri, Matteo; Faggianelli, Alessio; Cristiani, Pierangela; Trasatti, Stefano

    2015-12-01

    Influence of PTFE in the external Gas Diffusion Layer (GDL) of open-air cathodes applied to membraneless microbial fuel cells (MFCs) is investigated in this work. Electrochemical measurements on cathodes with different PTFE contents (200%, 100%, 80% and 60%) were carried out to characterize cathodic oxygen reduction reaction, to study the reaction kinetics. It is demonstrated that ORR is not under diffusion-limiting conditions in the tested systems. Based on cyclic voltammetry, an increase of the cathodic electrochemical active area took place with the decrease of PTFE content. This was not directly related to MFC productivity, but to the cathode wettability and the biocathode development. Low electrodic interface resistances (from 1 to 1.5 Ω at the start, to near 0.1 Ω at day 61) indicated a negligible ohmic drop. A decrease of the Tafel slopes from 120 to 80 mV during productive periods of MFCs followed the biological activity in the whole MFC system. A high PTFE content in the cathode showed a detrimental effect on the MFC productivity, acting as an inhibitor of ORR electrocatalysis in the triple contact zone. PMID:26045153

  10. Nanostructured Catalyst Systems for Fuel Cells: Synthesis and Characterization of Low Platinum Content Electrocatalysts for O{sub 2} Reduction

    SciTech Connect

    Adzic, Radoslav

    2007-02-01

    The objective of this project is to synthesize and characterize new O{sub 2} reduction catalysts with enhanced activity and ultra low Pt loading, and to test them in membrane electrode assemblies (MEAs) to determine their performance under fuel cell cathode operating conditions.

  11. Advances in aluminum anodizing

    NASA Technical Reports Server (NTRS)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  12. Walnut Hulls Clean Aluminum

    NASA Technical Reports Server (NTRS)

    Colberg, W. R.; Gordon, G. H.; Jackson, C. H.

    1984-01-01

    Hulls inflict minimal substrate damage. Walnut hulls found to be best abrasive for cleaning aluminum surfaces prior to painting. Samples blasted with walnut hulls showed no compressive stress of surface.

  13. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  14. Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery.

    PubMed

    Chiku, Masanobu; Takeda, Hiroki; Matsumura, Shota; Higuchi, Eiji; Inoue, Hiroshi

    2015-11-11

    Amorphous vanadium oxide/carbon composite (V2O5/C) was first applied to the positive electrode active material for rechargeable aluminum batteries. Electrochemical properties of V2O5/C were investigated by cyclic voltammetry and charge-discharge tests. Reversible reduction/oxidation peaks were observed for the V2O5/C electrode and the rechargeable aluminum cell showed the maximum discharge capacity over 200 mAh g(-1) in the first discharging. The XPS analyses after discharging and the following charging exhibited that the redox of vanadium ion in the V2O5/C active material occurred during discharging and charging, and the average valence of V changed between 4.14 and 4.85. PMID:26489385

  15. Activation of aluminum as an effective reducing agent by pitting corrosion for wet-chemical synthesis.

    PubMed

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent. PMID:23390579

  16. Activation of Aluminum as an Effective Reducing Agent by Pitting Corrosion for Wet-chemical Synthesis

    PubMed Central

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F−, Cl−, and Br− in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu2Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent. PMID:23390579

  17. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  18. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  19. Light weight aluminum optics

    NASA Astrophysics Data System (ADS)

    Catura, R. C.; Vieira, J. R.

    1985-09-01

    Light weight mirror blanks were fabricated by dip-brazing a core of low mass aluminum foam material to thin face sheets of solid aluminum. The blanks weigh 40% of an equivalent size solid mirror and were diamond turned to provide reflective surfaces. Optical interferometry was used to assess their dimensional stability over 7 months. No changes in flatness are observed (to the sensitivity of the measurements of a half wavelength of red light).

  20. The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling

    PubMed Central

    Jünger, Martin A; Rintelen, Felix; Stocker, Hugo; Wasserman, Jonathan D; Végh, Mátyás; Radimerski, Thomas; Greenberg, Michael E; Hafen, Ernst

    2003-01-01

    Background Forkhead transcription factors belonging to the FOXO subfamily are negatively regulated by protein kinase B (PKB) in response to signaling by insulin and insulin-like growth factor in Caenorhabditis elegans and mammals. In Drosophila, the insulin-signaling pathway regulates the size of cells, organs, and the entire body in response to nutrient availability, by controlling both cell size and cell number. In this study, we present a genetic characterization of dFOXO, the only Drosophila FOXO ortholog. Results Ectopic expression of dFOXO and human FOXO3a induced organ-size reduction and cell death in a manner dependent on phosphoinositide (PI) 3-kinase and nutrient levels. Surprisingly, flies homozygous for dFOXO null alleles are viable and of normal size. They are, however, more sensitive to oxidative stress. Furthermore, dFOXO function is required for growth inhibition associated with reduced insulin signaling. Loss of dFOXO suppresses the reduction in cell number but not the cell-size reduction elicited by mutations in the insulin-signaling pathway. By microarray analysis and subsequent genetic validation, we have identified d4E-BP, which encodes a translation inhibitor, as a relevant dFOXO target gene. Conclusion Our results show that dFOXO is a crucial mediator of insulin signaling in Drosophila, mediating the reduction in cell number in insulin-signaling mutants. We propose that in response to cellular stresses, such as nutrient deprivation or increased levels of reactive oxygen species, dFOXO is activated and inhibits growth through the action of target genes such as d4E-BP. PMID:12908874

  1. The Effect of Detaching Bubbles on Aluminum-Cryolite Interfaces: An Experimental and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Einarsrud, Kristian Etienne

    2010-06-01

    Because of gas-induced flow in commercial aluminum reduction cells, deformations of the cryolite-aluminum interface will appear close to the side channel of the cell. In the present work, the dynamic nature of this phenomena is studied both in experiments and with help of a numerical model in the commercial computational fluid dynamics (CFD) code, FLUENT. Experiments are conducted in a full scale, two dimensional oil-water half-anode model, quantifying interfacial deformations over various operating conditions. Besides data on interfacial deformations, the experiments confirm previously published data on bubble motion under inclined anodes. The oil-water model is studied further with a three-fluid CFD model by means of a transient volume of fluid method. The model presented is verified and validated against experimentally measured data, yielding promising results. The CFD model is generalized further to realistic parameters for the Hall-Héroult cell. Averaged results from the transient model are compared with steady state calculations, showing good agreement. Average deformations up to 20 mm are observed under normal operating conditions. The transient approach shows that the dynamic behavior of the aluminum-cryolite interface is significant and is the same magnitude of the average deformations.

  2. The reversibility of dissimilatory sulphate reduction and the cell-internal multi-step reduction of sulphite to sulphide: insights from the oxygen isotope composition of sulphate.

    PubMed

    Brunner, Benjamin; Einsiedl, Florian; Arnold, Gail L; Müller, Inigo; Templer, Stefanie; Bernasconi, Stefano M

    2012-01-01

    Dissimilatory sulphate reduction (DSR) leads to an overprint of the oxygen isotope composition of sulphate by the oxygen isotope composition of water. This overprint is assumed to occur via cell-internally formed sulphuroxy intermediates in the sulphate reduction pathway. Unlike sulphate, the sulphuroxy intermediates can readily exchange oxygen isotopes with water. Subsequent to the oxygen isotope exchange, these intermediates, e.g. sulphite, are re-oxidised by reversible enzymatic reactions to sulphate, thereby incorporating the oxygen used for the re-oxidation of the sulphur intermediates. Consequently, the rate and expression of DSR-mediated oxygen isotope exchange between sulphate and water depend not only on the oxygen isotope exchange between sulphuroxy intermediates and water, but also on cell-internal forward and backward reactions. The latter are the very same processes that control the extent of sulphur isotope fractionation expressed by DSR. Recently, the measurement of multiple sulphur isotope fractionation has successfully been applied to obtain information on the reversibility of individual enzymatically catalysed steps in DSR. Similarly, the oxygen isotope signature of sulphate has the potential to reveal complementary information on the reversibility of DSR. The aim of this work is to assess this potential. We derived a mathematical model that links sulphur and oxygen isotope effects by DSR, assuming that oxygen isotope effects observed in the oxygen isotopic composition of ambient sulphate are controlled by the oxygen isotope exchange between sulphite and water and the successive cell-internal oxidation of sulphite back to sulphate. Our model predicts rapid DSR-mediated oxygen isotope exchange for cases where the sulphur isotope fractionation is large and slow exchange for cases where the sulphur isotope fractionation is small. Our model also demonstrates that different DSR-mediated oxygen isotope equilibrium values are observed, depending on the

  3. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    SciTech Connect

    Gopalan, Srikanth

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  4. Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells

    PubMed Central

    Fendt, Sarah-Maria; Bell, Eric L.; Keibler, Mark A.; Olenchock, Benjamin A.; Mayers, Jared R.; Wasylenko, Thomas M.; Vokes, Natalie I.; Guarente, Leonard; Vander Heiden, Matthew G.; Stephanopoulos, Gregory

    2014-01-01

    Reductively metabolized glutamine is a major cellular carbon source for fatty acid synthesis during hypoxia or when mitochondrial respiration is impaired. Yet, a mechanistic understanding of what determines reductive metabolism is missing. Here we identify several cellular conditions where the α-ketoglutarate/citrate ratio is changed due to altered acetyl-CoA to citrate conversion, and demonstrate that reductive glutamine metabolism is initiated in response to perturbations that results in an increase in the α-ketoglutarate/citrate ratio. Thus, targeting reductive glutamine conversion for a therapeutic benefit might require distinct modulations of metabolite concentrations rather than targeting the upstream signaling, which only indirectly affects the process. PMID:23900562

  5. R&D on fuel cells in Japan and possible contributions of fuel cells to the Global Reduction of CO{sub 2} emissions

    SciTech Connect

    Takenaka, Hiroyasu

    1993-12-31

    Fuel cells can generate electricity equivalent to 40-60% of the energy contained In the fuel consumed, and an overall efficiency as high as 80% is not impossible to achieve through utilization of the exhaust heat. In addition, emissions of pollutants such as NOx and SOx from fuel cells are low. Since various reformed gases derived from natural gas, methanol and coal can be used as fuel for fuel cells, the wide range of applications for fuel cells is expected to contribute to the reduction of petroleum dependence in Japan.

  6. Polymer Electrolyte Fuel Cells Employing Heteropolyacids as Redox Mediators for Oxygen Reduction Reactions: Pt-Free Cathode Systems.

    PubMed

    Matsui, Toshiaki; Morikawa, Eri; Nakada, Shintaro; Okanishi, Takeou; Muroyama, Hiroki; Hirao, Yoshifumi; Takahashi, Tsuyoshi; Eguchi, Koichi

    2016-07-20

    In this study, the heteropolyacids of H3+xPVxMO12-xO40 (x = 0, 2, and 3) were applied as redox mediators for the oxygen reduction reaction in polymer electrolyte fuel cells, of which the cathode is free from the usage of noble metals such as Pt/C. In this system, the electrochemical reduction of heteropolyacid over the carbon cathode and the subsequent reoxidation of the partially reduced heteropolyacid by exposure to the dissolved oxygen in the regenerator are important processes for continuous power generation. Thus, the redox properties of catholytes containing these heteropolyacids were investigated in detail. The substitution quantity of V in the heteropolyacid affected the onset reduction potential as well as the reduction current density, resulting in a difference in cell performance. The chemical composition of heteropolyacid also had a significant impact on the reoxidation property. Among the three compounds, H6PV3Mo9O40 was the most suitable redox mediator. Furthermore, the pH of the catholyte was found to be the crucial factor in determining the reoxidation rate of partially reduced heteropolyacid as well as cell performance. PMID:27348019

  7. Reduction of exogenous ketones depends upon NADPH generated photosynthetically in cells of the cyanobacterium Synechococcus PCC 7942

    PubMed Central

    2011-01-01

    Effective utilization of photosynthetic microorganisms as potential biocatalysts is favorable for the production of useful biomaterials and the reduction of atmospheric CO2. For example, biocatalytic transformations are used in the synthesis of optically active alcohols. We previously found that ketone reduction in cells of the cyanobacterium Synechococcus PCC 7942 is highly enantioselective and remarkably enhanced under light illumination. In this study, the mechanism of light-enhanced ketone reduction was investigated in detail using several inhibitors of photosynthetic electron transport and of enzymes of the Calvin cycle. It is demonstrated that light intensity and photosynthesis inhibitors significantly affect the ketone reduction activity in Synechococcus. This indicates that the reduction correlates well with photosynthetic activity. Moreover, ketone reduction in Synechococcus specifically depends upon NADPH and not NADH. These results also suggest that cyanobacteria have the potential to be utilized as biocatalytic systems for direct usage of light energy in various applications such as syntheses of useful compounds and remediation of environmental pollutants. PMID:21906270

  8. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOEpatents

    Gilbert, Marian; Kaun, Thomas D.

    1984-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  9. Therapeutic effects of stem cells and substrate reduction in juvenile Sandhoff mice.

    PubMed

    Arthur, J R; Lee, J P; Snyder, E Y; Seyfried, T N

    2012-06-01

    Sandhoff Disease (SD) involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the β-subunit gene of β-hexosaminidase A and B (Hexb gene). Substrate reduction therapy, utilizing imino sugar N-butyldeoxygalactonojirimycin (NB-DGJ), reduces ganglioside biosynthesis and levels of stored GM2 in SD mice. Intracranial transplantation of Neural Stem Cells (NSCs) can provide enzymatic cross correction, to help reduce ganglioside storage and extend life. Here we tested the effect of NSCs and NB-DGJ, alone and together, on brain β-hexosaminidase activity, GM2, and GA2 content in juvenile SD mice. The SD mice received either cerebral NSC transplantation at post-natal day 0 (p-0), intraperitoneal injection of NB-DGJ (500 mg/kg/day) from p-9 to p-15, or received dual treatments. The brains were analyzed at p-15. β-galactosidase staining confirmed engraftment of lacZ-expressing NSCs in the cerebral cortex. Compared to untreated and sham-treated SD controls, NSC treatment alone provided a slight increase in Hex activity and significantly decreased GA2 content. However, NSCs had no effect on GM2 content when analyzed at p-15. NB-DGJ alone had no effect on Hex activity, but significantly reduced GM2 and GA2 content. Hex activity was slightly elevated in the NSC + drug-treated mice. GM2 and GA2 content in the dual treated mice were similar to that of the NB-DGJ treated mice. These data indicate that NB-DGJ alone was more effective in targeting storage in juvenile SD mice than were NSCs alone. No additive or synergistic effect between NSC and drug was found in these juvenile SD mice. PMID:22367451

  10. Aluminum fluoride inhibition of glucocorticoid receptor inactivation and transformation

    SciTech Connect

    Housley, P.R. )

    1990-04-10

    Fluoride, in the presence of aluminum ions, reversibly inhibits the temperature-mediated inactivation of unoccupied glucocorticoid receptors in cytosol preparations from mouse L cells. The effect is concentration-dependent, with virtually complete stabilization of specific glucocorticoid-binding capacity at 2 mM fluoride and 100 microM aluminum. These concentrations of aluminum and fluoride are ineffective when used separately. Aluminum fluoride also stabilizes receptors toward inactivation by gel filtration and ammonium sulfate precipitation. Aluminum fluoride prevents temperature-dependent transformation of steroid-receptor complexes to the DNA-binding state. Aluminum fluoride does not inhibit calf intestine alkaline phosphatase, and unoccupied receptors inactivated by this enzyme in the presence of aluminum fluoride can be completely reactivated by dithiothreitol. The effects of aluminum fluoride are due to stabilization of the complex between the glucocorticoid receptor and the 90-kDa mammalian heat-shock protein hsp90, which suggests that aluminum fluoride interacts directly with the receptor. Endogenous thermal inactivation of receptors in cytosol is not accompanied by receptor dephosphorylation. However, inactivation is correlated with dissociation of hsp90 from the unoccupied receptor. These results support the proposal that hsp90 is required for the receptor to bind steroid and dissociation of hsp90 is sufficient to inactivate the unoccupied receptor.

  11. Reduction of TIP30 in esophageal squamous cell carcinoma cells involves promoter methylation and microRNA-10b

    SciTech Connect

    Dong, Wenjie; Shen, Ruizhe; Cheng, Shidan

    2014-10-31

    Highlights: • TIP30 expression is frequently suppressed in ESCC. • TIP30 was hypermethylated in ESCC. • Reduction of TIP30 was significantly correlated with LN metastasis. • miR-10b is a direct regulator of TIP30. - Abstract: TIP30 is a putative tumor suppressor that can promote apoptosis and inhibit angiogenesis. However, the role of TIP30 in esophageal squamous cell carcinoma (ESCC) biology has not been investigated. Immunohistochemistry was used to investigate the expression of TIP30 in 70 ESCC. Hypermethylation of TIP30 was evaluated by the methylation specific PCR (MSP) method in ESCC (tumor and paired adjacent non-tumor tissues). Lost expression of TIP30 was observed in 50 of 70 (71.4%) ESCC. 61.4% (43 of 70) of primary tumors analyzed displayed TIP30 hypermethylation, indicating that this aberrant characteristic is common in ESCC. Moreover, a statistically significant inverse association was found between TIP30 methylation status and expression of the TIP30 protein in tumor tissues (p = 0.001). We also found that microRNA-10b (miR-10b) targets a homologous DNA region in the 3′untranslated region of the TIP30 gene and represses its expression at the transcriptional level. Reporter assay with 3′UTR of TIP30 cloned downstream of the luciferase gene showed reduced luciferase activity in the presence of miR-10b, providing strong evidence that miR-10b is a direct regulator of TIP30. These results suggest that TIP30 expression is regulated by promoter methylation and miR-10b in ESCC.

  12. Aluminum, parathyroid hormone, and osteomalacia

    SciTech Connect

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  13. Facet-Dependent Catalytic Activity of Platinum Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells

    PubMed Central

    Zhang, Bo; Wang, Dong; Hou, Yu; Yang, Shuang; Yang, Xiao Hua; Zhong, Ju Hua; Liu, Jian; Wang, Hai Feng; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui

    2013-01-01

    Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully. PMID:23670438

  14. ALUMINUM RECLAMATION BY ACIDIC EXTRACTION OF ALUMINUM-ANODIZING SLUDGES

    EPA Science Inventory

    Extraction of aluminum-anodizing sludges with sulfuric acid was examined to determine the potential for production of commercial-strength solutions of aluminum sulfate, that is liquid alum. The research established kinetic and stoichiometric relationships and evaluates product qu...

  15. Filtrates and Residues. Galvanic Cells and the Standard Reduction Potential Table.

    ERIC Educational Resources Information Center

    Tanis, David O.

    1990-01-01

    Presented is an activity designed to introduce introductory chemistry students to the standard reduction potential table. Included are lists of equipment and reagents, procedures, sample worksheets, and teaching directions. (CW)

  16. Weight reduction and pioglitazone ameliorate polycystic ovary syndrome after removal of a Sertoli-stromal cell tumor

    PubMed Central

    Baba, Tsuyoshi; Endo, Toshiaki; Ikeda, Keiko; Shimizu, Ayumi; Morishita, Miyuki; Kuno, Yoshika; Honnma, Hiroyuki; Kiya, Tamotsu; Ishioka, Shin-ichi; Saito, Tsuyoshi

    2012-01-01

    This report presents an unusual case of Sertoli-stromal cell tumor and polycystic ovary syndrome successfully treated with weight reduction and an insulin-sensitizing agent. A 22-year-old woman, gravida 0, para 0, visited our hospital for the first time with a 12-year history of secondary amenorrhea and hypertrichosis. Transvaginal ultrasonography revealed a solid tumor in the right ovary. Right salpingo-oophorectomy was performed and pathological examination confirmed a Sertoli-stromal cell tumor. The patient’s serum androgen levels declined postoperatively, but remained above normal. Pioglitazone treatment for 6 months also significantly reduced serum androgen levels, but they still remained above normal. However, after losing 12 kg of body weight, the patient’s serum androgen levels declined to normal, and spontaneous menstruation became regular. Weight reduction with pioglitazone is an effective means of treating hyperandrogenism. PMID:23226075

  17. Continuum and Quantum-Chemical Modeling of Oxygen Reduction on the Cathode in a Solid Oxide Fuel Cell

    SciTech Connect

    Choi, Yongman; Mebane, David S.; Wang, Jeng-Han; Liu, Meilin

    2009-10-08

    Solid oxide fuel cells (SOFCs) have several advantages over other types of fuels cells such as high-energy efficiency and excellent fuel flexibility. To be economically competitive, however, new materials with extraordinary transport and catalytic properties must be developed to dramatically improve the performance while reducing the cost. This article reviews recent advancements in understanding oxygen reduction on various cathode materials using phenomenological and quantum chemical approaches in order to develop novel cathode materials with high catalytic activity toward oxygen reduction. We summarize a variety of results relevant to understanding the interactions between O2 and cathode materials at the molecular level as predicted using quantum-chemical cal-culations and probed using in situ surface vibrational spectroscopy. It is hoped that this in-depth understanding may provide useful insights into the design of novel cath-ode materials for a new generation of SOFCs.

  18. Aluminum for plasmonics.

    PubMed

    Knight, Mark W; King, Nicholas S; Liu, Lifei; Everitt, Henry O; Nordlander, Peter; Halas, Naomi J

    2014-01-28

    Unlike silver and gold, aluminum has material properties that enable strong plasmon resonances spanning much of the visible region of the spectrum and into the ultraviolet. This extended response, combined with its natural abundance, low cost, and amenability to manufacturing processes, makes aluminum a highly promising material for commercial applications. Fabricating Al-based nanostructures whose optical properties correspond with theoretical predictions, however, can be a challenge. In this work, the Al plasmon resonance is observed to be remarkably sensitive to the presence of oxide within the metal. For Al nanodisks, we observe that the energy of the plasmon resonance is determined by, and serves as an optical reporter of, the percentage of oxide present within the Al. This understanding paves the way toward the use of aluminum as a low-cost plasmonic material with properties and potential applications similar to those of the coinage metals. PMID:24274662

  19. Comparison of the Toxicity of Smoke from Conventional and Harm Reduction Cigarettes Using Human Embryonic Stem Cells

    PubMed Central

    Fonteno, Shawn; Weng, Jo-Hao; Talbot, Prue

    2010-01-01

    This study evaluated the hypothesis that smoke from harm reduction cigarettes impedes attachment and proliferation of H9 human embryonic stem cells (hESCs). Smoke from three harm reduction brands was compared with smoke from a conventional brand. Doses of smoke were measured in puff equivalents (PE) (1 PE = the amount of smoke in one puff that dissolves in 1 ml of medium). Cytotoxic doses were determined using morphological criteria and trypan blue staining, and apoptosis was confirmed using Magic Red staining. Attachment and proliferation of hESC were followed at a noncytotoxic dose in time-lapse videos collected using BioStation technology. Data were mined from videos either manually or using video bioinformatics subroutines developed with CL-Quant software. Mainstream (MS) and sidestream (SS) smoke from conventional and harm reduction cigarettes induced apoptosis in hESC colonies at 1 PE. At 0.1 PE (noncytotoxic), SS smoke from all brands inhibited attachment of hESC colonies to Matrigel with the strongest inhibition occurring in harm reduction brands. At 0.1 PE, SS smoke, but not MS smoke, from all brands inhibited hESC growth, and two harm reduction brands were more potent than the conventional brand. In general, hESC appeared more sensitive to smoke than their mouse ESC counterparts. Although harm reduction cigarettes are often marketed as safer than conventional brands, our assays show that SS smoke from harm reduction cigarettes was at least as potent or in some cases more potent than smoke from a conventional brand and that SS smoke was more inhibitory than MS smoke in all assays. PMID:20702591

  20. Ferric ions accumulate in the walls of metabolically inactivating Saccharomyces cerevisiae cells and are reductively mobilized during reactivation.

    PubMed

    Wofford, Joshua D; Park, Jinkyu; McCormick, Sean P; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2016-07-13

    Mössbauer and EPR spectra of fermenting yeast cells before and after cell wall (CW) digestion revealed that CWs accumulated iron as cells transitioned from exponential to post-exponential growth. Most CW iron was mononuclear nonheme high-spin (NHHS) Fe(III), some was diamagnetic and some was superparamagnetic. A significant portion of CW Fe was removable by EDTA. Simulations using an ordinary-differential-equations-based model suggested that cells accumulate Fe as they become metabolically inactive. When dormant Fe-loaded cells were metabolically reactivated in Fe-deficient bathophenanthroline disulfonate (BPS)-treated medium, they grew using Fe that had been mobilized from their CWs AND using trace amounts of Fe in the Fe-deficient medium. When grown in Fe-deficient medium, Fe-starved cells contained the lowest cellular Fe concentrations reported for a eukaryotic cell. During metabolic reactivation of Fe-loaded dormant cells, Fe(III) ions in the CWs of these cells were mobilized by reduction to Fe(II), followed by release from the CW and reimport into the cell. BPS short-circuited this process by chelating mobilized and released Fe(II) ions before reimport; the resulting Fe(II)(BPS)3 complex adsorbed on the cell surface. NHHS Fe(II) ions appeared transiently during mobilization, suggesting that these ions were intermediates in this process. In the presence of chelators and at high pH, metabolically inactive cells leached CW Fe; this phenomenon probably differs from metabolic mobilization. The iron regulon, as reported by Fet3p levels, was not expressed during post-exponential conditions; Fet3p was maximally expressed in exponentially growing cells. Decreased expression of the iron regulon and metabolic decline combine to promote CW Fe accumulation. PMID:27188213

  1. Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Ziwu; Shi, Qianqian; Zhang, Rufan; Wang, Quande; Kang, Guojun; Peng, Feng

    2014-12-01

    To develop low-cost and efficient cathode electrocatalysts for fuel cells in acidic media, phosphorus-doped carbon nanotubes (P-CNTs) supported low Pt loading catalyst (0.85% Pt) is designed. The as-prepared Pt/P-CNTs exhibit significantly enhanced electrocatalytic oxygen reduction reaction (ORR) activity and long-term stability due to the stronger interaction between Pt and P-CNTs, which is proven by X-ray photoelectron spectroscopic analysis and density functional theory calculations. Moreover, the as-prepared Pt/P-CNTs also display much better tolerance to methanol crossover effects, showing a good potential application for future proton exchange membrane fuel cell devices.

  2. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  3. Mitogen-activated protein kinase signal transduction and DNA repair network are involved in aluminum-induced DNA damage and adaptive response in root cells of Allium cepa L.

    PubMed Central

    Panda, Brahma B.; Achary, V. Mohan M.

    2014-01-01

    In the current study, we studied the role of signal transduction in aluminum (Al3+)-induced DNA damage and adaptive response in root cells of Allium cepa L. The root cells in planta were treated with Al3+ (800 μM) for 3 h without or with 2 h pre-treatment of inhibitors of mitogen-activated protein kinase (MAPK), and protein phosphatase. Also, root cells in planta were conditioned with Al3+ (10 μM) for 2 h and then subjected to genotoxic challenge of ethyl methane sulfonate (EMS; 5 mM) for 3 h without or with the pre-treatment of the aforementioned inhibitors as well as the inhibitors of translation, transcription, DNA replication and repair. At the end of treatments, roots cells were assayed for cell death and/or DNA damage. The results revealed that Al3+ (800 μM)-induced significant DNA damage and cell death. On the other hand, conditioning with low dose of Al3+ induced adaptive response conferring protection of root cells from genotoxic stress caused by EMS-challenge. Pre-treatment of roots cells with the chosen inhibitors prior to Al3+-conditioning prevented or reduced the adaptive response to EMS genotoxicity. The results of this study suggested the involvement of MAPK and DNA repair network underlying Al-induced DNA damage and adaptive response to genotoxic stress in root cells of A. cepa. PMID:24926302

  4. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yu, Lihua; Wu, Dan; Huang, Liping; Zhou, Peng; Quan, Xie; Chen, Guohua

    2015-01-01

    Microbial fuel cells (MFCs) using either Cr(VI) (MFCsCr) or Cu(II) (MFCsCu) as a final electron acceptor, are stacked to self-drive microbial electrolysis cells (MECs) using Cd(II) (MECsCd) as an electron acceptor for simultaneous reduction of Cr(VI) in MFCsCr, Cu(II) in MFCsCu and Cd(II) in MECsCd with no external energy consumption. Titanium sheet (TS) and carbon rod (CR) as the cathodes of MECsCd are assessed for efficient system performance. MFCsCr and MFCsCu in series is superior to the parallel configuration, and higher Cd(II) reduction along with simultaneous Cr(VI) and Cu(II) reduction supports TS function as a good cathode material. Conversely, CR can not entirely proceed Cd(II) reduction in MECsCd despite of more Cr(VI) and Cu(II) reduction in the same serial configuration than either system alone. While a decrease in cathode volume in both MFCsCr and MFCsCu with serial connection benefits to reduction of Cr(VI) in MFCsCr and Cu(II) in MFCsCu, Cd(II) reduction in MECsCd is substantially enhanced under a decrease in cathode volume in individual MFCsCr and serially connected with volume-unchanged MFCsCu. This study demonstrates simultaneous Cr(VI), Cu(II) and Cd(II) recovery from MFCsCr-MFCsCu-MECsCd self-driven system is feasible, and TS as the cathodes of MECsCd is critical for efficient system performance.

  5. Aluminum Hydroxide and Magnesium Hydroxide

    MedlinePlus

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  6. A Diguanylate Cyclase Acts as a Cell Division Inhibitor in a Two-Step Response to Reductive and Envelope Stresses

    PubMed Central

    Kim, Hyo Kyung

    2016-01-01

    ABSTRACT Cell division arrest is a universal checkpoint in response to environmental assaults that generate cellular stress. In bacteria, the cyclic di-GMP (c-di-GMP) signaling network is one of several signal transduction systems that regulate key processes in response to extra-/intracellular stimuli. Here, we find that the diguanylate cyclase YfiN acts as a bifunctional protein that produces c-di-GMP in response to reductive stress and then dynamically relocates to the division site to arrest cell division in response to envelope stress in Escherichia coli. YfiN localizes to the Z ring by interacting with early division proteins and stalls cell division by preventing the initiation of septal peptidoglycan synthesis. These studies reveal a new role for a diguanylate cyclase in responding to environmental change, as well as a novel mechanism for arresting cell division. PMID:27507823

  7. A novel electrolysis cell for CO2 reduction to CO in ionic liquid/organic solvent electrolyte

    NASA Astrophysics Data System (ADS)

    Shi, Jin; Shi, Feng; Song, Ning; Liu, Jian-Xiong; Yang, Xi-Kun; Jia, You-Jian; Xiao, Zheng-Wei; Du, Ping

    2014-08-01

    A novel electrolysis cell has been developed for CO2 reduction to CO in an ionic liquid/organic solvent electrolyte. The electrolysis cell is separated into two compartments by an ion-exchange membrane (Nafion117). The cathode compartment is filled with a CO2 saturated 1-butyl-3-methyl-imidazolium trifluoromethanesulfonates ([Bmim][CF3SO3])/propylene carbonate (PC) solution. The anode compartment is filled with a 0.1 M H2SO4 aqueous solution. A Ag foil and a graphite rod are used as the cathode and the anode respectively. In this electrolysis cell, CO2 reduction can be carried out in the nonaqueous electrolyte, and H2O oxidation can be carried out in the aqueous solution. Thus CO can be produced from CO2 and H2O. Owing to the high solubility of CO2 in the nonaqueous electrolyte, the Faradaic efficiency of CO formation is high, reached 90.1% at -1.72 V (vs Pt wire). After 3 h electrolysis, no poisonous species are observed on the cathode. The Ag electrode exhibits a high electrocatalytic activity for CO2 reduction to CO.

  8. Toward understanding the mechanism underlying the strong adjuvant activity of aluminum salt nanoparticles.

    PubMed

    Ruwona, Tinashe B; Xu, Haiyue; Li, Xu; Taylor, Amber N; Shi, Yan-Chun; Cui, Zhengrong

    2016-06-01

    Aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate are commonly used human vaccine adjuvants. In an effort to improve the adjuvant activity of aluminum salts, we previously showed that the adjuvant activity of aluminum oxyhydroxide nanoparticles is significantly more potent than that of aluminum oxyhydroxide microparticles. The present study was designed to (i) understand the mechanism underlying the potent adjuvant activity of aluminum oxyhydroxide nanoparticles, relative to microparticles, and (ii) to test whether aluminum hydroxyphosphate nanoparticles have a more potent adjuvant activity than aluminum hydroxyphosphate microparticles as well. In human THP-1 myeloid cells, wild-type and NLRP3-deficient, both aluminum oxyhydroxide nanoparticles and microparticles stimulate the secretion of proinflammatory cytokine IL-1β by activating NLRP3 inflammasome, although aluminum oxyhydroxide nanoparticles are more potent than microparticles, likely related to the higher uptake of the nanoparticles by the THP-1 cells than the microparticles. Aluminum hydroxyphosphate nanoparticles also have a more potent adjuvant activity than microparticles in helping a model antigen lysozyme to stimulate specific antibody response, again likely related to their stronger ability to activate the NLRP3 inflammasome. PMID:27155490

  9. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  10. Synergistic action of auxin and ethylene on root elongation inhibition is caused by a reduction of epidermal cell length.

    PubMed

    Alarcón, M Victoria; Lloret, Pedro G; Salguero, Julio

    2014-01-01

    Auxin and ethylene have been largely reported to reduce root elongation in maize primary root. However the effects of auxin are greater than those caused by ethylene. Although auxin stimulates ethylene biosynthesis through the specific increase of ACC synthase, the auxin inhibitory effect on root elongation is not mediated by the auxin-induced increase of ethylene production. Recently it has been demonstrated that root inhibition by the application of the synthetic auxin NAA (1-naphtalenacetic acid) is increased if combined with the ethylene precursor ACC (1-aminocyclopropane-1-carboxilic acid) when both compounds are applied at very low concentrations.   Root elongation is basically the result of two processes: a) cell divisions in the meristem where meristematic cells continuously generate new cells and b) subsequently polarized growth by elongation along the root axis as cells leave the meristem and enter the root elongation zone. Our results indicate that exogenous auxin reduced both root elongation and epidermal cell length. In a different way, ethylene at very low concentrations only inhibited root elongation without affecting significantly epidermal cell length. However, these concentrations of ethylene increased the inhibitory effect of auxin on root elongation and cell length. Consequently the results support the hypothesis that ethylene acts synergistically with auxin in the regulation of root elongation and that inhibition by both hormones is due, at least partially, to the reduction of cell length in the epidermal layer. PMID:24598313

  11. Localization of aluminum in soybean bacteroids and seeds

    SciTech Connect

    Roth, L.E.; Dunlap, J.R.; Stacey, G.

    1987-10-01

    Aluminum, long known to be detrimental to soybean productivity, was localized in the polyphosphate granules (PPG) of bacteroids in root nodules of soybean plants. By using energy-dispersive X-ray analysis, bacteroids in early infections were shown to have typical PPG constituents. However, in PPG in older infections and after the bacteroids were digested intracellularly, aluminum was also detected. These results indicate that aluminum accumulates in PPG after a period when organisms have been resident in host cells and that high levels of aluminum were present in the bacteroids at the time of their demise. At least some of the aluminum in these laboratory-grown plants could have come from the seeds used.

  12. Investigation of acute nanoparticulate aluminum toxicity in zebrafish.

    PubMed

    Griffitt, Robert J; Feswick, April; Weil, Roxana; Hyndman, Kelly; Carpinone, Paul; Powers, Kevin; Denslow, Nancy D; Barber, David S

    2011-10-01

    In freshwater fish, aluminum is a well-recognized gill toxicant, although responses are influenced by pH. Aluminum nanomaterials are being used in diverse applications that are likely to lead to environmental release and exposure. However, it is unclear if the effects of nanoparticulate aluminum are similar to those of other forms of aluminum or require special consideration. To examine the acute toxicological effects of exposure to aluminum nanoparticle (Al-NP)s, adult female zebrafish were exposed to either Al-NPs or aluminum chloride for up to 48 hours in moderately hard fresh water. Al-NPs introduced into test water rapidly aggregated and up to 80% sedimented from the water column during exposures. No mortality was caused by concentrations of Al-NP up to 12.5 mg/L. After exposure, tissue concentrations of aluminum, effects on gill morphology, Na+, K+ -ATPase (NKA) activity, and global gene expression patterns were examined. Exposure to both aluminum chloride and nanoparticulate aluminum resulted in a concentration dependent decrease in sodium potassium ATPase activity, although Al-NP exposure did not alter gill morphology as measured by filament widths. Decreased ATPase activity coincided with decreases in filamental NKA staining and mucous cell counts. Analysis of gill transcriptional responses demonstrated that exposure to 5 mg/L Al-NP only resulted in significant changes in expression of two genes, whereas aluminum chloride exposure significantly affected the expression of 105 genes. Taken together, these results indicate that nanoparticulate aluminum has little acute toxicity for zebrafish in moderately hard freshwater. PMID:21910207

  13. RECLAMATION OF ALUMINUM FINISHING SLUDGES

    EPA Science Inventory

    The research study of the reclamation of aluminum-anodizing sludges was conducted in two sequential phases focused on enhanced dewatering of aluminum-anodizing sludges to produce commercial-strength solutions of aluminum sulfate, i.e., liquid alum. The use of high-pressure (14 to...

  14. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  15. Galectin-3 Overrides PTRF/Cavin-1 Reduction of PC3 Prostate Cancer Cell Migration.

    PubMed

    Meng, Fanrui; Joshi, Bharat; Nabi, Ivan Robert

    2015-01-01

    Expression of Caveolin-1 (Cav1), a key component of cell surface caveolae, is elevated in prostate cancer (PCa) and associated with PCa metastasis and a poor prognosis for PCa patients. Polymerase I and Transcript Release Factor (PTRF)/cavin-1 is a cytoplasmic protein required for Cav1-dependent formation of caveolae. Expression of PTRF reduces the motility of PC3 cells, a metastatic prostate cancer cell line that endogenously expresses abundant Cav1 but no PTRF and no caveolae, suggesting a role for non-caveolar Cav1 domains, or Cav1 scaffolds, in PCa cell migration. Tyrosine phosphorylated Cav1 (pCav1) functions in concert with Galectin-3 (Gal3) and the galectin lattice to stabilize focal adhesion kinase (FAK) within focal adhesions (FAs) and promote cancer cell motility. However, whether PTRF regulation of Cav1 function in PCa cell migration is related to Gal3 expression and functionality has yet to be determined. Here we show that PTRF expression in PC3 cells reduces FAK stabilization in focal adhesions and reduces cell motility without affecting pCav1 levels. Exogenous Gal3 stabilized FAK in focal adhesions of PTRF-expressing cells and restored cell motility of PTRF-expressing PC3 cells to levels of PC3 cells in a dose-dependent manner, with an optimal concentration of 2 µg/ml. Exogenous Gal3 stabilized FAK in focal adhesions of Gal3 knockdown PC3 cells but not in Cav1 knockdown PC3 cells. Cav1 knockdown also prevented Gal3 rescue of FA-associated FAK stabilization in PTRF-expressing PC3 cells. Our data support a role for PTRF/cavin-1, through caveolae formation, as an attenuator of the non-caveolar functionality of Cav1 in Gal3-Cav1 signalling and regulation of focal adhesion dynamics and cancer cell migration. PMID:25942420

  16. Aluminum Foam-Phase Change Material Composites as Heat Exchangers

    SciTech Connect

    Hong, Sung-tae; Herling, Darrell R.

    2007-04-07

    The effects of geometric parameters of open-cell aluminum foams on the performance of aluminum foam-phase change material (PCM) composites as heat sinks are investigated by experiments. Three types of open-cell aluminum 6061 foams with similar relative densities and different cell sizes are used. Paraffin is selected as the PCM due to its excellent thermal stability and ease of handling. The experimental results show that the performance of the heat sink is significantly affected by the surface area density of the aluminum foam. In general, as the surface area density of the foam increases, the performance of the heat sink is improved regardless of the current phase of the PCM.

  17. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  18. Mechanisms of aluminum tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity limits agricultural productivity over much of the world’s arable land by inhibiting root growth and development. Affected plants have difficulty in acquiring adequate water and nutrition from their soil environments and thus have stunted shoot development and diminished yield....

  19. Maize aluminum tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is one of the most economically important food crops grown on acid soils, where aluminum (Al) toxicity greatly limits crop yields. Considerable variation for Al tolerance exists in maize, and this variation has been exploited for many years by plant breeders to enhance maize Al tolerance. Curr...

  20. Aluminum-ferricyanide battery

    SciTech Connect

    Marsh, C.; Licht, S.L.

    1993-11-29

    A battery capable of producing high current densities with high charge capacity is described which includes an aluminum anode, a ferricyanide electrolyte and a second electrode capable of reducing ferricyanide electrolyte which is either dissolved in an alkaline solution or alkaline seawater solution. The performance of the battery is enhanced by high temperature and high electrolyte flow rates.

  1. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  2. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  3. REMOVAL OF ALUMINUM COATINGS

    DOEpatents

    Peterson, J.H.

    1959-08-25

    A process is presented for dissolving aluminum jackets from uranium fuel elements without attack of the uranium in a boiling nitric acid-mercuric nitrate solution containing up to 50% by weight of nitrtc acid and mercuric nitrate in a concentration of between 0.05 and 1% by weight.

  4. Reduction of Nup107 attenuates the growth factor signaling in the senescent cells

    SciTech Connect

    Kim, Sung Young; Kang, Hyun Tae; Choi, Hae Ri; Park, Sang Chul

    2010-10-08

    Research highlights: {yields} Decreased expression of Nup107 in aged cells and organs. {yields} Depletion of Nup107 results in impaired nuclear translocation of p-ERK. {yields} Depletion of Nup107 affects downstream effectors of ERK signaling. {yields} Depletion of Nup107 inhibits cell proliferation of oligodendroglioma cells. -- Abstract: Hypo-responsiveness to growth factors is a fundamental feature of cellular senescence. In this study, we found markedly decreased level of Nup107, a key scaffold protein in nuclear pore complex assembly, in senescent human diploid fibroblasts as well as in organs of aged mice. Depletion of Nup107 by specific siRNA in young human diploid fibroblasts prevented the effective nuclear translocation of phosphorylated extracellular signal-regulated kinase (ERK) following epidermal growth factor (EGF) stimulation, and decreased the expression of c-Fos in consequence. The disturbances in ERK signaling in Nup107 depleted cells closely mirror the similar changes in senescent cells. Knockdown of Nup107 in anaplastic oligodendroglioma cells caused cell death, rather than growth retardation, indicating a greater sensitivity to Nup107 depletion in cancer cells than in normal cells. These findings support the notion that Nup107 may contribute significantly to the regulation of cell fate in aged and transformed cells by modulating nuclear trafficking of signal molecules.

  5. Reduction of MTT to Purple Formazan by Vitamin E Isomers in the Absence of Cells

    PubMed Central

    Lim, Su-Wen; Loh, Hwei-San; Ting, Kang-Nee; Bradshaw, Tracey Dawn; Allaudin, Zeenathul Nazariah

    2015-01-01

    The yellow tetrazolium salt 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) is widely used to determine cell viability in cell proliferation and cytotoxic assays. MTT is reduced by metabolically active cells to form an insoluble purple formazan product that is quantifiable by spectrophotometry. It is the most common and direct assay for cell viability. However, in this present study, we demonstrated that the vitamin E isomers α-β-γ-δ-tocotrienols and α-tocopherol were able to reduce MTT into a formazan product, despite the absence of living cells. For comparison, a second method for determining cell viability, which is the neutral red uptake assay, was used in parallel with the MTT assay. The results showed that neutral red did not interact with the vitamin E isomers. Our findings suggest that the MTT assay is not suitable for studying the proliferative effects of vitamin E isomers on cell growth. PMID:26868595

  6. Subcritical crack velocities in titanium diboride under simulated hall-heroult cell conditions

    SciTech Connect

    Bumgartner

    1984-09-01

    Static fatigue crack velocities were measured in two types of titanium diboride under conditions existing in aluminum reduction cells. Double torsion specimens were heavily loaded (up to K/K /SUB lc/ = 0.85) for extended times at 960/sup 0/C while subjected to environments of aluminum, electrolyte, or electrolysis. Within the sensitivity limits of the method (about 10/sup -10/ m/s), one material did not exhibit slow crack growth. In the other material, crack velocity increased under cathodic conditions as compared to the rate in aluminum without electrolysis.

  7. Mesoporous aluminum phosphite

    SciTech Connect

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-08-15

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S{sup +}I{sup -} surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N{sub 2} adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  8. A New Family of Membrane Electron Transporters and Its Substrates, Including a New Cell Envelope Peroxiredoxin, Reveal a Broadened Reductive Capacity of the Oxidative Bacterial Cell Envelope

    PubMed Central

    Cho, Seung-Hyun; Parsonage, Derek; Thurston, Casey; Dutton, Rachel J.; Poole, Leslie B.; Collet, Jean-Francois; Beckwith, Jon

    2012-01-01

    ABSTRACT The Escherichia coli membrane protein DsbD functions as an electron hub that dispatches electrons received from the cytoplasmic thioredoxin system to periplasmic oxidoreductases involved in protein disulfide isomerization, cytochrome c biogenesis, and sulfenic acid reduction. Here, we describe a new class of DsbD proteins, named ScsB, whose members are found in proteobacteria and Chlamydia. ScsB has a domain organization similar to that of DsbD, but its amino-terminal domain differs significantly. In DsbD, this domain directly interacts with substrates to reduce them, which suggests that ScsB acts on a different array of substrates. Using Caulobacter crescentus as a model organism, we searched for the substrates of ScsB. We discovered that ScsB provides electrons to the first peroxide reduction pathway identified in the bacterial cell envelope. The reduction pathway comprises a thioredoxin-like protein, TlpA, and a peroxiredoxin, PprX. We show that PprX is a thiol-dependent peroxidase that efficiently reduces both hydrogen peroxide and organic peroxides. Moreover, we identified two additional proteins that depend on ScsB for reduction, a peroxiredoxin-like protein, PrxL, and a novel protein disulfide isomerase, ScsC. Altogether, our results reveal that the array of proteins involved in reductive pathways in the oxidative cell envelope is significantly broader than was previously thought. Moreover, the identification of a new periplasmic peroxiredoxin indicates that in some bacteria, it is important to directly scavenge peroxides in the cell envelope even before they reach the cytoplasm. PMID:22493033

  9. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    SciTech Connect

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATP level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in Leydig

  10. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of Acetobacter pasteurianus GIM1.158

    PubMed Central

    2014-01-01

    Background Enantiomerically pure alcohols are important building blocks for production of chiral pharmaceuticals, flavors, agrochemicals and functional materials and appropriate whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to these valuable compounds. At present, most of these biocatalysts follow Prelog’s rule, and thus the (S)-alcohols are usually obtained when the smaller substituent of the ketone has the lower CIP priority. Only a few anti-Prelog (R)-specific whole cell biocatalysts have been reported. In this paper, the biocatalytic anti-Prelog reduction of 2-octanone to (R)-2-octanol was successfully conducted with high enantioselectivity using whole cells of Acetobacter pasteurianus GIM1.158. Results Compared with other microorganisms investigated, Acetobacter pasteurianus GIM1.158 was shown to be more effective for the reduction reaction, affording much higher yield, product enantiomeric excess (e.e.) and initial reaction rate. The optimal temperature, buffer pH, co-substrate and its concentration, substrate concentration, cell concentration and shaking rate were 35°C, 5.0, 500 mmol/L isopropanol, 40 mmol/L, 25 mg/mL and 120 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 89.5% and >99.9%, respectively, in 70 minutes. Compared with the best available data in aqueous system (yield of 55%), the yield of (R)-2-octanol was greatly increased. Additionally, the efficient whole-cell biocatalytic process was feasible on a 200-mL preparative scale and the chemical yield increased to 95.0% with the product e.e. being >99.9%. Moreover, Acetobacter pasteurianus GIM1.158 cells were proved to be capable of catalyzing the anti-Prelog bioreduction of other prochiral carbonyl compounds with high efficiency. Conclusions Via an effective increase in the maximum yield and the product e.e. with Acetobacter pasteurianus GIM1.158 cells, these results open the way to use of whole cells of

  11. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  12. Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Huang, Liping; Quan, Xie; Li Puma, Gianluca

    2016-03-01

    The performance of carbon rod (CR), titanium sheet (TS), stainless steel woven mesh (SSM) and copper sheet (CS) cathode materials are investigated in microbial fuel cells (MFCs) for simultaneous electricity generation and Cu(II) reduction, in multiple batch cycle operations. After 12 cycles, the MFC with CR exhibits 55% reduction in the maximum power density and 76% increase in Cu(II) removal. In contrast, the TS and SSM cathodes at cycle 12 show maximum power densities of 1.7 (TS) and 3.4 (SSM) times, and Cu(II) removal of 1.2 (TS) and 1.3 (SSM) times higher than those observed during the first cycle. Diffusional resistance in the TS and SSM cathodes is found to appreciably decrease over time due to the copper deposition. In contrast to CR, TS and SSM, the cathode made with CS is heavily corroded in the first cycle, exhibiting significant reduction in both the maximum power density and Cu(II) removal at cycle 2, after which the performance stabilizes. These results demonstrate that the initial deposition of copper on the cathodes of MFCs is crucial for efficient and continuous Cu(II) reduction and electricity generation over prolonged time. This effect is closely associated with the nature of the cathode material. Among the materials examined, the SSM is the most effective and inexpensive cathode for practical use in MFCs.

  13. H2O2 detection analysis of oxygen reduction reaction on cathode and anode catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Kishi, Akira; Shironita, Sayoko; Umeda, Minoru

    2012-01-01

    The generation percentage of H2O2 during oxygen reduction reaction (ORR) at practical powder electrocatalysts was evaluated using a scanning electrochemical microscope (SECM). We employed a porous microelectrode that contains electrocatalysts, namely, Pt/C, Pt-Co/C, and Pt-Ru/C as the oxygen reduction electrode of the SECM, and the Pt microelectrode was used as the H2O2 detector. First, the H2O2 generation amount at Pt/Cs was measured by changing the Pt loading amount. A Pt/C with a higher Pt loading has a higher ORR activity and generates a larger amount of H2O2. However, the percentage of H2O2 generated with respect to the ORR is the same regardless of the Pt loading amount. Next, H2O2 generation is markedly suppressed at the Pt-Co/C and Pt-Ru/C in the potential ranges of practical fuel cell cathode and anode, respectively. This explains that the Pt-Co/C is effective when used as a cathode, and the anode Pt-Ru/C enables the reduction of the H2O2 generation even if O2 crossleak occurs in the practical polymer electrolyte fuel cell.

  14. Reduction of myoblast differentiation following multiple population doublings in mouse C2 C12 cells: a model to investigate ageing?

    PubMed

    Sharples, Adam P; Al-Shanti, Nasser; Lewis, Mark P; Stewart, Claire E

    2011-12-01

    Ageing skeletal muscle displays declines in size, strength, and functional capacity. Given the acknowledged role that the systemic environment plays in reduced regeneration (Conboy et al. [2005] Nature 433: 760-764), the role of resident satellite cells (termed myoblasts upon activation) is relatively dismissed, where, multiple cellular divisions in-vivo throughout the lifespan could also impact on muscular deterioration. Using a model of multiple population doublings (MPD) in-vitro thus provided a system in which to investigate the direct impact of extensive cell duplications on muscle cell behavior. C(2) C(12) mouse skeletal myoblasts (CON) were used fresh or following 58 population doublings (MPD). As a result of multiple divisions, reduced morphological and biochemical (creatine kinase, CK) differentiation were observed. Furthermore, MPD cells had significantly increased cells in the S and decreased cells in the G1 phases of the cell cycle versus CON, following serum withdrawal. These results suggest continued cycling rather than G1 exit and thus reduced differentiation (myotube atrophy) occurs in MPD muscle cells. These changes were underpinned by significant reductions in transcript expression of: IGF-I and myogenic regulatory factors (myoD and myogenin) together with elevated IGFBP5. Signaling studies showed that decreased differentiation in MPD was associated with decreased phosphorylation of Akt, and with later increased phosphorylation of JNK1/2. Chemical inhibition of JNK1/2 (SP600125) in MPD cells increased IGF-I expression (non-significantly), however, did not enhance differentiation. This study provides a potential model and molecular mechanisms for deterioration in differentiation capacity in skeletal muscle cells as a consequence of multiple population doublings that would potentially contribute to the ageing process. PMID:21826704

  15. Hydrogen effects on the age hardening behavior of 2024 aluminum

    NASA Technical Reports Server (NTRS)

    Wagner, J. A.; Louthan, M. R., Jr.; Sisson, R. D., Jr.

    1986-01-01

    It has been found that the fatigue crack growth rate in aluminum alloys increases significantly in the presence of moisture. This phenomenon along with a moisture effect observed in another context has been attributed to 'embrittlement' of the aluminum by absorbed hydrogen generated by the reaction of moisture with freshly exposed aluminum. A description is given of a number of age hardening experiments involving 2024 aluminum. These experiments show that a mechanism related to the segregation of absorbed hydrogen to the coherent theta-double-prime interfaces may account for the observed reduction in fatigue life. It is pointed out that this segregation promotes a loss of coherency in the hydrogen rich region at a fatigue crack tip. Subsequently, the loss of coherency causes local softening and reduces fatigue life.

  16. Novel titanium-aluminum joints for cryogenic cold finger structures

    NASA Astrophysics Data System (ADS)

    Meehan, H. M.; Sweet, R. C.

    For optimum performance, the sensors employed in airborne detection and surveillance systems must be maintained at low temperatures. The containing wall of the expansion volume of a Stirling cycle cooler may provide the low temperature surface for mounting the sensors. IR detectors are commonly mounted on copper heat exchanger surfaces. A stainless steel member is employed to thermally isolate and structurally stabilize such surfaces. It is pointed out that the use of an aluminum-titanium cold finger results in a considerable weight reduction. The present investigation is concerned with an attempt to obtain such structures with the aid of a technique involving the casting of molten aluminum onto an appropriately dimensioned and positioned titanium member, taking into account the fact that aluminum readily wets and bonds to clean titanium surfaces. The casting is then machined to provide the form and structure desired. It is concluded that aluminum-titanium cast structures offer good potential for use as cryogenic cold finger assemblies.

  17. Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass

    NASA Astrophysics Data System (ADS)

    García-Linares, Pablo; Voarino, Philippe; Dominguez, César; Dellea, Olivier; Besson, Pierre; Fugier, Pascal; Baudrit, Mathieu

    2015-09-01

    Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (ISC) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions and away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications.

  18. Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass

    SciTech Connect

    García-Linares, Pablo Voarino, Philippe; Besson, Pierre; Baudrit, Mathieu; Dominguez, César; Dellea, Olivier; Fugier, Pascal

    2015-09-28

    Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (I{sub SC}) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions and away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications.

  19. Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H2O2-induced reduction in primary cell wall hydration

    PubMed Central

    2011-01-01

    Background Extensin deposition is considered important for the correct assembly and biophysical properties of primary cell walls, with consequences to plant resistance to pathogens, tissue morphology, cell adhesion and extension growth. However, evidence for a direct and causal role for the extensin network formation in changes to cell wall properties has been lacking. Results Hydrogen peroxide treatment of grapevine (Vitis vinifera cv. Touriga) callus cell walls was seen to induce a marked reduction in their hydration and thickness. An analysis of matrix proteins demonstrated this occurs with the insolubilisation of an abundant protein, GvP1, which displays a primary structure and post-translational modifications typical of dicotyledon extensins. The hydration of callus cell walls free from saline-soluble proteins did not change in response to H2O2, but fully regained this capacity after addition of extensin-rich saline extracts. To assay the specific contribution of GvP1 cross-linking and other wall matrix proteins to the reduction in hydration, GvP1 levels in cell walls were manipulated in vitro by binding selected fractions of extracellular proteins and their effect on wall hydration during H2O2 incubation assayed. Conclusions This approach allowed us to conclude that a peroxidase-mediated formation of a covalently linked network of GvP1 is essential and causal in the reduction of grapevine callus wall hydration in response to H2O2. Importantly, this approach also indicated that extensin network effects on hydration was only partially irreversible and remained sensitive to changes in matrix charge. We discuss this mechanism and the importance of these changes to primary wall properties in the light of extensin distribution in dicotyledons. PMID:21672244

  20. Cost-Effective Consolidation of Fine Aluminum Scrap for Increased Remelting Effieciency

    SciTech Connect

    William Van Geertruyden

    2005-09-22

    The main objective of this research was to develop a new re-melting process for fine or light gauge aluminum scrap products that exhibits dramatic improvements in energy efficiency. Light gauge aluminum scrap in the form of chips, turnings, and borings has historically been underutilized in the aluminum recycling process due to its high surface area to volume ratio resulting in low melt recovery. Laboratory scale consolidation experiments were performed using loose aluminum powder as a modeling material as well as shredded aluminum wire scrap. The processing parameters necessary to create consolidated aluminum material were determined. Additionally, re-melting experiments using consolidated and unconsolidated aluminum powder confirmed the hypothesis that metal recovery using consolidated material will significantly improve by as much as 20%. Based on this research, it is estimated that approximately 495 billion Btu/year can be saved by implementation of this technology in one domestic aluminum rolling plant alone. The energy savings are realized by substituting aluminum scrap for primary aluminum, which requires large amounts of energy to produce. While there will be an initial capital investment, companies will benefit from the reduction of dependence on primary aluminum thus saving considerable costs. Additionally, the technology will allow companies to maintain in-house alloy scrap, rather than purchasing from other vendors and eliminate the need to discard the light gauge scrap to landfills.

  1. Computational and Genetic Reduction of a Cell Cycle to Its Simplest, Primordial Components

    PubMed Central

    Fumeaux, Coralie; Viollier, Patrick H.; Howard, Martin

    2013-01-01

    What are the minimal requirements to sustain an asymmetric cell cycle? Here we use mathematical modelling and forward genetics to reduce an asymmetric cell cycle to its simplest, primordial components. In the Alphaproteobacterium Caulobacter crescentus, cell cycle progression is believed to be controlled by a cyclical genetic circuit comprising four essential master regulators. Unexpectedly, our in silico modelling predicted that one of these regulators, GcrA, is in fact dispensable. We confirmed this experimentally, finding that ΔgcrA cells are viable, but slow-growing and elongated, with the latter mostly due to an insufficiency of a key cell division protein. Furthermore, suppressor analysis showed that another cell cycle regulator, the methyltransferase CcrM, is similarly dispensable with simultaneous gcrA/ccrM disruption ameliorating the cytokinetic and growth defect of ΔgcrA cells. Within the Alphaproteobacteria, gcrA and ccrM are consistently present or absent together, rather than either gene being present alone, suggesting that gcrA/ccrM constitutes an independent, dispensable genetic module. Together our approaches unveil the essential elements of a primordial asymmetric cell cycle that should help illuminate more complex cell cycles. PMID:24415923

  2. The protective effect of a constant magnetic field. [reduction of molecular cell pathology

    NASA Technical Reports Server (NTRS)

    Sosunov, A. V.; Tripuzov, A. N.

    1974-01-01

    The protective effect of a constant magnetic field sharply reduced spontaneous lysis of E. coli cells when subjected to ultraviolet radiation. A protective effect of a CMF was found in a study of tissue cultures of normally growing cells (kidney epithelium) and cancer cells (cells from a cancer of the larynx). The protective effect of a CMF is also seen in a combined exposure of tissue cultures to X-rays and CMF energy (strength of the CMF was 2000 oersteds with a gradient of 500 oersteds/cm). The data obtained are of interest to experimental oncology (development of new methods of treating malignant tumors).

  3. XTH31, Encoding an in Vitro XEH/XET-Active Enzyme, Regulates Aluminum Sensitivity by Modulating in Vivo XET Action, Cell Wall Xyloglucan Content, and Aluminum Binding Capacity in Arabidopsis[W

    PubMed Central

    Zhu, Xiao Fang; Shi, Yuan Zhi; Lei, Gui Jie; Fry, Stephen C.; Zhang, Bao Cai; Zhou, Yi Hua; Braam, Janet; Jiang, Tao; Xu, Xiao Yan; Mao, Chuan Zao; Pan, Yuan Jiang; Yang, Jian Li; Wu, Ping; Zheng, Shao Jian

    2012-01-01

    Xyloglucan endohydrolase (XEH) and xyloglucan endotransglucosylase (XET) activities, encoded by xyloglucan endotransglucosylase-hydrolase (XTH) genes, are involved in cell wall extension by cutting or cutting and rejoining xyloglucan chains, respectively. However, the physiological significance of this biochemical activity remains incompletely understood. Here, we find that an XTH31 T-DNA insertion mutant, xth31, is more Al resistant than the wild type. XTH31 is bound to the plasma membrane and the encoding gene is expressed in the root elongation zone and in nascent leaves, suggesting a role in cell expansion. XTH31 transcript accumulation is strongly downregulated by Al treatment. XTH31 expression in yeast yields a protein with an in vitro XEH:XET activity ratio of >5000:1. xth31 accumulates significantly less Al in the root apex and cell wall, shows remarkably lower in vivo XET action and extractable XET activity, has a lower xyloglucan content, and exhibits slower elongation. An exogenous supply of xyloglucan significantly ameliorates Al toxicity by reducing Al accumulation in the roots, owing to the formation of an Al-xyloglucan complex in the medium, as verified by an obvious change in chemical shift of 27Al-NMR. Taken together, the data indicate that XTH31 affects Al sensitivity by modulating cell wall xyloglucan content and Al binding capacity. PMID:23204407

  4. XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis.

    PubMed

    Zhu, Xiao Fang; Shi, Yuan Zhi; Lei, Gui Jie; Fry, Stephen C; Zhang, Bao Cai; Zhou, Yi Hua; Braam, Janet; Jiang, Tao; Xu, Xiao Yan; Mao, Chuan Zao; Pan, Yuan Jiang; Yang, Jian Li; Wu, Ping; Zheng, Shao Jian

    2012-11-01

    Xyloglucan endohydrolase (XEH) and xyloglucan endotransglucosylase (XET) activities, encoded by xyloglucan endotransglucosylase-hydrolase (XTH) genes, are involved in cell wall extension by cutting or cutting and rejoining xyloglucan chains, respectively. However, the physiological significance of this biochemical activity remains incompletely understood. Here, we find that an XTH31 T-DNA insertion mutant, xth31, is more Al resistant than the wild type. XTH31 is bound to the plasma membrane and the encoding gene is expressed in the root elongation zone and in nascent leaves, suggesting a role in cell expansion. XTH31 transcript accumulation is strongly downregulated by Al treatment. XTH31 expression in yeast yields a protein with an in vitro XEH:XET activity ratio of >5000:1. xth31 accumulates significantly less Al in the root apex and cell wall, shows remarkably lower in vivo XET action and extractable XET activity, has a lower xyloglucan content, and exhibits slower elongation. An exogenous supply of xyloglucan significantly ameliorates Al toxicity by reducing Al accumulation in the roots, owing to the formation of an Al-xyloglucan complex in the medium, as verified by an obvious change in chemical shift of (27)Al-NMR. Taken together, the data indicate that XTH31 affects Al sensitivity by modulating cell wall xyloglucan content and Al binding capacity. PMID:23204407

  5. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    NASA Astrophysics Data System (ADS)

    Hainey, Mel F.; Redwing, Joan M.

    2016-12-01

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  6. Papuamine causes autophagy following the reduction of cell survival through mitochondrial damage and JNK activation in MCF-7 human breast cancer cells

    PubMed Central

    KANNO, SYU-ICHI; YOMOGIDA, SHIN; TOMIZAWA, AYAKO; YAMAZAKI, HIROYUKI; UKAI, KAZUYO; MANGINDAAN, REMY E.P.; NAMIKOSHI, MICHIO; ISHIKAWA, MASAAKI

    2013-01-01

    We previously reported that extracts of an Indonesian marine sponge Haliclona sp. showed potent cytotoxicity and the induction of apoptosis against human solid cancer cell lines. In this study, we examine the cytotoxic mechanism of the major chemical compound, papuamine, on MCF-7 human breast cancer cells. Papuamine at 5 μM did not show significant cytotoxic effects after incubation for 24 h, but autophagosome vesicular formation was apparent. At 10 μM of papuamine, significant reduction in cell survival was observed at 12 h, and increases in autophagy at this concentration were time-dependent and apparent before the appearance of cytotoxic effects. Both the release of cytochrome c to the cytosol and increase in Bax in the mitochondrial fraction were found to be concentration-dependent. Moreover, mitochondrial membrane potential shows concentration- and time-dependent decreases with exposure to papuamine. The release of cytochrome c has been shown to be accompanied by an increase in JNK activation. 3-Methyladenine (MA), a classical autophagy inhibitor showed increased JNK activation by exposure to papuamine. In conclusion, our results indicate that papuamine causes earlier onset autophagy and delayed reduction of cell survival through mitochondrial damage and JNK activation in MCF-7 cells. PMID:24026338

  7. Cell culture media supplementation of bioflavonoids for the targeted reduction of acidic species charge variants on recombinant therapeutic proteins.

    PubMed

    Hossler, Patrick; Wang, Min; McDermott, Sean; Racicot, Christopher; Chemfe, Kofi; Zhang, Yun; Chumsae, Christopher; Manuilov, Anton

    2015-01-01

    Charge variants in recombinant proteins are an important series of protein modifications, whose potential role on protein stability, activity, immunogenicity, and pharmacokinetics continues to be studied. Monoclonal antibodies in particular have been shown to have a wide range of acidic species variants, including those associated with the addition of covalent modifications as well as the chemical degradation at specific peptide regions on the antibody. These variants play a significant role toward the overall heterogeneity of recombinant therapeutic proteins and are typically monitored during manufacturing to ensure they lie within proven acceptable ranges. In this work, it has been found that the supplementation of members of the bioflavonoid chemical family into mammalian cell culture media was effective toward the reduction of acidic species charge variants on recombinant monoclonal antibodies and dual variable domain immunoglobulins. The demonstrated reduction in acidic species through the use of bioflavonoids facilitates the manufacturing of a less heterogeneous product with potential improvements in antibody structure and function. PMID:25920009

  8. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    SciTech Connect

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir

    2014-08-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  9. Parthenolide Induces Apoptosis in Committed Progenitor AML Cell line U937 via Reduction in Osteopontin

    PubMed Central

    Zahedpanah, Mahdi; Shaiegan, Mojgan; Ghaffari, Seyed Hamidollah; Nikbakht, Mohsen; Nikugoftar, Mahin; Mohammadi, Saeed

    2016-01-01

    Background: Interfering with cell proliferation and survival is a critical role for antineoplastic drugs leading to cell death through induction of apoptosis. Alternative treatments with herbal extracts offer insights into acute myeloid leukemia (AML) therapy. Parthenolide (PTL), an extract from feverfew, induces apoptosis in primary human leukemia stem cells (LSCs) and bulk leukemic cell populations. Osteopontin (OPN) preserves cell viability in response to anticancer agents and its receptors could be utilized for therapeutic targeting of cancer cells. Methods: U937 cells were cultured in RPMI 1640 with concentrations of 2, 4, 6, 8, and 10 µM PTL for 20-24 hours for MTT assays. Apoptosis assays were performed with Annexin V-Alexa Fluor-488/PI as Annexin V+/PI- and Annexin V+/PI+ to measure early and late apoptosis, respectively. Quantitative real-time PCR was used to measure OPN gene expression using the 2-ΔΔCt method. The PTL–treated cells were stained with FITC-CD38 antibody for flow cytometry analyses. Data were compared using one-way analysis of variance (ANOVA) by SPSS 19. Results: Parthenolide inhibited growth of U937 cells with IC25 and IC50 values of 4 and 5.8 µM, respectively. Death induction with PTL was apoptotic. Flow cytometry showed a significant decrease in the percentage of CD38+ U937 cells in response to PTL. Osteopontin gene expression decreased in response to PTL. Conclusion: PTL induced apoptosis and reduced OPN gene expression in U937 cells.

  10. Extensive Reduction of Cell Viability and Enhanced Matrix Production in Pseudomonas aeruginosa PAO1 Flow Biofilms Treated with a d-Amino Acid Mixture

    PubMed Central

    Sanchez, Zoe; Tani, Akio

    2013-01-01

    Treatment of Pseudomonas aeruginosa PAO1 flow biofilms with a d-amino acid mixture caused significant reductions in cell biomass by 75% and cell viability by 71%. No biofilm disassembly occurred, and matrix production increased by 30%, thereby providing a thick protective cover for remaining viable or persister cells. PMID:23220960

  11. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    PubMed

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence. PMID:25700743

  12. PFC Emissions from Detected Versus Nondetected Anode Effects in the Aluminum Industry

    NASA Astrophysics Data System (ADS)

    Wong, David S.; Fraser, Paul; Lavoie, Pascal; Kim, Jooil

    2015-02-01

    Perfluorinated carbon compounds (PFCs) CF4 and C2F6 are potent greenhouse gases that are generated in aluminum reduction cells during events known as anode effects (AEs). Since the 1990s, the aluminum industry has made considerable progress in reducing PFCs from conventionally defined and detected AEs. However in recent years, the industry has noted the presence of unaccounted PFCs that are generated outside the conventional AE definition. Two additional AE categories have been proposed, namely low-voltage, propagating AEs (LVP-AEs) and nonpropagating AEs (NP-AEs) that relate to continuous, background levels of PFC emissions. These unaccounted PFC phenomena may help explain the recent discrepancy between industry accounting and atmospheric measurements of global PFC emissions. Estimates from AGAGE, a global network of atmospheric observatories, suggest as much as 50% underaccounting of PFCs by the aluminum industry in the 2006-2010 period. The following work reviews this discrepancy and the potential role played by LVP-AEs and NP-AEs.

  13. Reduction of the invasiveness of human glioma cells by ALA-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Sun, Chung-Ho; Madsen, Steen

    2006-02-01

    Introduction: High grade gliomas are characterised by rapid and invasive growth, that cause massive tissue destruction at both the tumour- brain boarder as well as in regions remote from the tumor core. Eradication or inhibition of infiltrating glioma cells poses a significant clinical challenge that is unlikely to be solved using conventional treatment regimens consisting of ionizing radiation and chemotherapeutic agents. In this study we evaluated the effects of ALA mediated photodynamic therapy (PDT) on the invesivness of human glioma cells migrating from implanted multicell tumor spheroids. Materials and method 3-400nm diameter tumor spheroids, derived from the human glioma cell line ACBT, were implanted into a gel matrix of collagen type I. 24 hours following implantation there was a significant invasion of the surrounding gel by individual tumor cells to an average distance of 400nm. The cultures were incubated in increasing concentrations of ALA (10-1000 ug/ml) for four hours and then exposed to 635nm laser light in a titration of both fluence level and fluence rate. Results Fluences of 25J/cm2 were clearly cytotoxic for both the infiltrating cells as well as the spheroids at all ALA concentrations. Fluence levels of 6J did not stop the spheroid growth or prove cytotoxic to the glioma cells that had previously migrated into the gel, in a majority of cultures but inhibited further migration of the cells by 80-90% compared to control. Conclusion: Measurement of cell survival and cell proliferation indices seemed to indicate a direct migratory inhibition effect on the invading cells and not cytotoxicity as the most likely mechanism for this observation.

  14. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio.

    PubMed

    Winston, Ryan J; Dorsey, Jay D; Hunt, William F

    2016-05-15

    Green infrastructure aims to restore watershed hydrologic function by more closely mimicking pre-development groundwater recharge and evapotranspiration (ET). Bioretention has become a popular stormwater control due to its ability to reduce runoff volume through these pathways. Three bioretention cells constructed in low permeability soils in northeast Ohio were monitored for non-winter quantification of inflow, drainage, ET, and exfiltration. The inclusion of an internal water storage (IWS) zone allowed the three cells to reduce runoff by 59%, 42%, and 36% over the monitoring period, in spite of the tight underlying soils. The exfiltration rate and the IWS zone thickness were the primary determinants of volume reduction performance. Post-construction measured drawdown rates were higher than pre-construction soil vertical hydraulic conductivity tests in all cases, due to lateral exfiltration from the IWS zones and ET, which are not typically accounted for in pre-construction soil testing. The minimum rainfall depths required to produce outflow for the three cells were 5.5, 7.4, and 13.8mm. During events with 1-year design rainfall intensities, peak flow reduction varied from 24 to 96%, with the best mitigation during events where peak rainfall rate occurred before the centroid of the rainfall volume, when adequate bowl storage was available to limit overflow. PMID:26906696

  15. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells

    PubMed Central

    Da Han; Liu, Xuejiao; Zeng, Fanrong; Qian, Jiqin; Wu, Tianzhi; Zhan, Zhongliang

    2012-01-01

    Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm0.5Sr0.5CoO3−δ (SSC) catalyst coating bonded onto the internal surface of a high-porosity La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) backbone, exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial resistances in air, e.g., 0.021 Ω cm2 at 650°C and 0.043 Ω cm2 at 600°C. We further demonstrated that such a micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive power densities of 2.02 W cm−2 at 650°C and 1.46 W cm−2 at 600°C when operated on humidified hydrogen fuel and air oxidant. PMID:22708057

  16. Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update

    SciTech Connect

    Petrovic, John; Thomas, George

    2011-06-01

    A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the production of hydrogen for on-board hydrogen-powered vehicle applications. Although the concept of reacting aluminum metal with water to produce hydrogen is not new, there have been a number of recent claims that such aluminum-water reactions might be employed to power fuel cell devices for portable applications such as emergency generators and laptop computers, and might even be considered for possible use as the hydrogen source for fuel cell-powered vehicles.

  17. Reduction of nuclear encoded enzymes of mitochondrial energy metabolism in cells devoid of mitochondrial DNA.

    PubMed

    Mueller, Edith E; Mayr, Johannes A; Zimmermann, Franz A; Feichtinger, René G; Stanger, Olaf; Sperl, Wolfgang; Kofler, Barbara

    2012-01-20

    Mitochondrial DNA (mtDNA) depletion syndromes are generally associated with reduced activities of oxidative phosphorylation (OXPHOS) enzymes that contain subunits encoded by mtDNA. Conversely, entirely nuclear encoded mitochondrial enzymes in these syndromes, such as the tricarboxylic acid cycle enzyme citrate synthase (CS) and OXPHOS complex II, usually exhibit normal or compensatory enhanced activities. Here we report that a human cell line devoid of mtDNA (HEK293 ρ(0) cells) has diminished activities of both complex II and CS. This finding indicates the existence of a feedback mechanism in ρ(0) cells that downregulates the expression of entirely nuclear encoded components of mitochondrial energy metabolism. PMID:22222373

  18. Future materials requirements for the high-energy-intensity production of aluminum

    NASA Astrophysics Data System (ADS)

    Welch, B. J.; Hyland, M. M.; James, B. J.

    2001-02-01

    Like all metallurgical industries, aluminum smelting has been under pressure from two fronts—to give maximum return on investment to the shareholders and to comply with environmental regulations by reducing greenhouse emissions. The smelting process has advanced by improving efficiency and productivity while continuing to seek new ways to extend the cell life. Materials selection (particularly the use of more graphitized cathodic electrodes) has enabled lower energy consumption, while optimization of the process and controlling in a narrow band has enabled increases in productivity and operations at higher current densities. These changes have, in turn, severely stressed the materials used for cell construction, and new problems are emerging that are resulting in a reduction of cell life. The target for aluminum electro-winning has been to develop an oxygen-evolving electrode, rather than one that evolves substantial amounts of carbon dioxide. Such an electrode, when combined with suitable wettable cathode material developments, would reduce operating costs by eliminating the need for frequent electrode change and would enable more productive cell designs and reduce plant size. The materials specifications for developing these are, however, an extreme challenge. Those specifications include minimized corrosion rate of any electrode into the electrolyte, maintaining an electronically conducting oxidized surface that is of low electrical resistance, meeting the metal purity targets, and enabling variable operating current densities. Although the materials specifications can readily be written, the processing and production of the materials is the challenge.

  19. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    PubMed

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices. PMID:20356280

  20. Developmental mercury exposure elicits acute hippocampal cell death, reductions in neurogenesis, and severe learning deficits during puberty.

    PubMed

    Falluel-Morel, Anthony; Sokolowski, Katie; Sisti, Helene M; Zhou, Xiaofeng; Shors, Tracey J; Dicicco-Bloom, Emanuel

    2007-12-01

    Normal brain development requires coordinated regulation of several processes including proliferation, differentiation, and cell death. Multiple factors from endogenous and exogenous sources interact to elicit positive as well as negative regulation of these processes. In particular, the perinatal rat brain is highly vulnerable to specific developmental insults that produce later cognitive abnormalities. We used this model to examine the developmental effects of an exogenous factor of great concern, methylmercury (MeHg). Seven-day-old rats received a single injection of MeHg (5 microg/gbw). MeHg inhibited DNA synthesis by 44% and reduced levels of cyclins D1, D3, and E at 24 h in the hippocampus, but not the cerebellum. Toxicity was associated acutely with caspase-dependent programmed cell death. MeHg exposure led to reductions in hippocampal size (21%) and cell numbers 2 weeks later, especially in the granule cell layer (16%) and hilus (50%) of the dentate gyrus defined stereologically, suggesting that neurons might be particularly vulnerable. Consistent with this, perinatal exposure led to profound deficits in juvenile hippocampal-dependent learning during training on a spatial navigation task. In aggregate, these studies indicate that exposure to one dose of MeHg during the perinatal period acutely induces apoptotic cell death, which results in later deficits in hippocampal structure and function. PMID:17760861