Science.gov

Sample records for alveolar bone defects

  1. Simple bone augmentation for alveolar ridge defects.

    PubMed

    Haggerty, Christopher J; Vogel, Christopher T; Fisher, G Rawleigh

    2015-05-01

    Dental implant procedures, both surgical placement and preimplant bone augmentation, have become an integral aspect of the oral and maxillofacial surgeon's practice. The number of dental implants placed each year continues to increase as a result of increasing patient exposure and awareness of dental implants, the increased functional and esthetic dental demands of general practitioners and patients, the overall increase in age of the US patient population, and expanded insurance coverage of dental implant-related procedures. This article outlines relevant surgical procedures aimed toward reconstructing alveolar ridge defects to restore intra-arch alveolar discrepancies before restoration-driven dental implant placement. PMID:25951957

  2. Is bone transplantation the gold standard for repair of alveolar bone defects?

    PubMed

    Raposo-Amaral, Cassio Eduardo; Bueno, Daniela Franco; Almeida, Ana Beatriz; Jorgetti, Vanda; Costa, Cristiane Cabral; Gouveia, Cecília Helena; Vulcano, Luiz Carlos; Fanganiello, Roberto D; Passos-Bueno, Maria Rita; Alonso, Nivaldo

    2014-01-01

    New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2-5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone. PMID:24551445

  3. Is bone transplantation the gold standard for repair of alveolar bone defects?

    PubMed Central

    Raposo-Amaral, Cassio Eduardo; Bueno, Daniela Franco; Almeida, Ana Beatriz; Jorgetti, Vanda; Costa, Cristiane Cabral; Gouveia, Cecília Helena; Vulcano, Luiz Carlos; Fanganiello, Roberto D; Passos-Bueno, Maria Rita

    2014-01-01

    New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2–5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone. PMID:24551445

  4. Bone Reconstruction following Application of Bone Matrix Gelatin to Alveolar Defects: A Randomized Clinical Trial

    PubMed Central

    Bayat, M.; Momen Heravi, F.; Mahmoudi, M.; Bahrami, N.

    2015-01-01

    Background: Conventional dentoalveolar osseous reconstruction often involves the use of graft materials with or without barrier membranes. Objective: To evaluate the efficacy of bone induction by bone matrix gelatin (BMG), delivered on an absorbable collagen sponge (ACS), compared to a placebo (ACS alone) in human alveolar socket defects. Methods: 20 alveolar sockets from 10 healthy adults were studied. In all cases, both the mandibular premolar area and the contralateral premolar area (as the control site) were involved. In each of the 10 patients, the extraction sites were filled randomly with BMG and ACS. The repair response was examined on day 90. Qualitative histological and quantitative histometric analysis, including the percentage of new-formed bone fill and density were done. Results: Assessment of the alveolar bone indicated that patients treated with BMG had significantly (p<0.05) better bone quality and quantity compared to the controls. In addition, bone density and histology revealed no differences between the newly induced and native bone. Conclusion: The data from this single-blind clinical trial demonstrated that the novel combination of BMG had a striking effect on de novo osseous formation for the bone regeneration. PMID:26576263

  5. Substance P incorporation in calcium phosphate cement for dental alveolar bone defect restoration.

    PubMed

    Wang, Tianjue; Wu, Di; Li, Yuan; Li, Wantao; Zhang, Shuyin; Hu, Kaijin; Zhou, Hongzhi

    2016-12-01

    A combination of osteoinductive neuropeptide substance P (SP) and osteoconductive bone cement of calcium phosphate (CPC) might provide an effective and lower-cost solution for complex alveolar bone defects restoration. The present study aims to investigate the key design considerations of SP delivery in CPC. In this study, CPC-based modular scaffolds were developed, where collagen type I was used as accessory organic ingredient to modulate the physical and biological characters. SP was directly mixed in the cement as free peptides, or was covalently immobilized with collagen component. The structural and mechanical properties of the scaffolds were assessed in vitro, and their osteogenic ability was observed in a rabbit model with alveolar bone defect. The results showed that SP could enhance the osteo-conductivity/inductivity of CPC. Collagen solution optimized biocompatibility of CPC, and meanwhile exhibited additive effects on the functions of SP. Nevertheless, immobilization of SP with collagen blocked their bioactivity in CPC. Collagen sponges created macro-porosity in CPC and achieved maximum bone ingrowth with the aid of SP. In conclusion, the present study primarily demonstrated that CPC scaffold can be functionalized by synthetic SP, and the biocompatibility and porosity of the scaffold are adaptable key factors determining their final osteogenic activities. PMID:27612746

  6. The use of autogeneous mandibular bone block grafts for reconstruction of alveolar defects

    PubMed Central

    Dolanmaz, Doğan; Esen, Alparslan; Yıldırım, Gülsün; İnan, Özgür

    2015-01-01

    Objective: Purpose of this retrospective study was to evaluate outcomes autogenous bone block grafts obtained from mandible for different indications. The healing of the donor and recipient sites in the postoperative period, morbidity and the resorption of the graft were investigated. Patients and Methods: Twenty-nine patients grafted with mandibular bone block graft were participated in the present study. Grafting was applied in these patients for three indications; reconstruction of alveolar cleft, lateral crest augmentation before dental implantation and sinus floor augmentation. All operations were performed under local anesthesia and in some cases sedation was used as well. Results: Minimal exposure of the block graft occurred in three alveolar cleft patients. Secondary epithelization was achieved in all cleft patients with no symptoms of infection. In one patient infection was seen in donor site 1-week after the operation. The region was curetted and antibiotics administrated again. Two patients showed an infection of recipient site, after 4 weeks the grafts were removed. In all the patients, as the screw head became apparent until 1 thread, amount of the resorption were considered <1.5 mm. Conclusion: The usage of mandibular block grafts is a simple and effective treatment modality for reconstruction of different types of alveolar defects and it also reduces cost of treatment. PMID:26389038

  7. Dental alveolar bone defects related to Vitamin D and calcium status.

    PubMed

    Davideau, J L; Lezot, F; Kato, S; Bailleul-Forestier, I; Berdal, A

    2004-05-01

    Vitamin D is important for skeletal development, growth, and homeostasis but has been sparsely studied in the oro-facial bone. Dental alveolar bone anchors teeth to mandible and maxilla bones via a periodontal ligament. Its formation and maintenance are strictly dependent on the presence of tooth organs and it is characterized by a high turnover rate. In order to study the role of Vitamin D and the calcium status on dental alveolar bone formation, microradiographic and histologic comparison of wild-type, Vitamin D receptor null mutant (VDR (-/-) hypo- and normo-calcemic mice and tissues were performed at 2 months. In hypo-calcemic VDR (-/-) mice, alveolar bone was hypomineralized and demonstrated a cellular and matrix organization, similar to the immature woven bone. In normo-calcemic VDR (-/-) mice, mineralization of dental alveolar bone appeared normal, but bone was morphologically abnormal in some specific anatomical locations. These data show that Vitamin D and calcium status may control the formation of dental alveolar bone. The differences of phenotype between hypo- and normo-calcemic VDR null mutant mice suggested a specific Vitamin D control of alveolar bone formation by the Vitamin D nuclear receptor pathway. PMID:15225849

  8. Reconstruction of alveolar bone defect with autogenous bone particles and osseointegrated implants: Histologic analysis and 10 years monitoring

    PubMed Central

    de Carvalho, Paulo Sérgio Perri; de Carvalho, Mariliza Comar Astolphi; Ponzoni, Daniela

    2015-01-01

    Maintaining the volume of the alveolar process after extraction can be achieved by immediate implant placement and guided bone regeneration, with or without the use of biomaterials. The authors present a case report with a 10 years follow-up, rehabilitation using osseointegrated implants in the extraction area and maintenance of the volume of the alveolar process with autogenous cortical bone shavings. PMID:26389054

  9. Three-Dimensional Bone Regeneration of Alveolar Ridge Defects Using Corticocancellous Allogeneic Block Grafts: Histologic and Immunohistochemical Analysis.

    PubMed

    Jun, Choong-Man; Yun, Jeong-Ho

    2016-01-01

    In this study, the effectiveness of a corticocancellous block allograft for restoring alveolar ridge defects in preparation for the placement of dental implants was assessed. Significant ridge defects in four partially edentulous patients were reconstructed using an irradiated corticocancellous allogeneic block soaked in platelet-rich plasma, which was also covered with a resorbable collagen membrane. After 5 or 6 months, the sites were reentered and a trephine bone core specimen was obtained from each augmented site for histologic, histomorphometric, and immunohistochemical assessment. In all four cases, histologic evaluation of the augmented site showed areas of new vital bone formation around the graft material (mean newly formed bone fraction, 23.7%; mean total mineralized tissue fraction, 40.1%), in which osteocytes were frequently observed within the lacunae. Immunohistochemical analysis showed the presence of biomarkers commonly related to active bone formation (alkaline phosphatase, osteocalcin, and bone morphogenetic protein-2), confirming that the biochemical environment was conducive to new bone formation. The findings of this study demonstrate that the use of allogeneic block grafts for restoring alveolar ridge defects prior to the placement of dental implants may be an effective and advantageous alternative to autograft procedures. PMID:26697555

  10. Effect of biphasic calcium phosphate nanocomposite on healing of surgically created alveolar bone defects in beagle dogs

    NASA Astrophysics Data System (ADS)

    Wang, Lanlei; Guan, Aizhong; Shi, Han; Chen, Yangxi; Liao, Yunmao

    2009-09-01

    The aim of the present study was to investigate the effect of porous biphasic calcium phosphate nanocomposite (nanoBCP) scaffolds bioceramic. Alveolar bone defects were surgically created bilaterally at the buccal aspects of the upper second premolar in fourteen beagle dogs. After root conditioning with ethylenediaminetetraacetate (EDTA), nanoBCP was randomly filled in the defects and nothing was put into the contralaterals as controls. Dogs were killed at the 12th weeks. Histological observations were processed through a light microscopy. The results revealed that a great amount of functional periodontal fissures formed in the defects in the nanoBCP groups while minimal bone took shape in the controls. In this study, nanoBCP has proved to work well as a biocompatible and osteoconductive scaffold material to promote periodontal regeneration effectively.

  11. Secondary alveolar bone grafting: our experience with olecranon bone graft.

    PubMed

    Nadal, Emmanuela; Sabás, Mariana; Dogliotti, Pedro; Espósito, Raquel

    2010-03-01

    Management of alveolar cleft has dramatically changed during the last century: secondary alveolar bone grafting is now an integral part of cleft palate and craniofacial center's protocols. The objectives of alveolar repair and bone grafting are as follows: providing a continuous and stable maxillary dental arch, closure of oronasal fistulae, adequate bone for tooth eruption or orthodontic movement, and nasal base support, improving facial aesthetic. Although cancellous iliac bone is the donor site selected more frequently, bone grafts harvested from different sites have been advocated to decrease donor site morbidity.The aim of this study was to propose and evaluate the use of olecranon as a donor site in 24 patients with secondary alveolar cleft. The graft is taken as a single piece to fit the alveolar cleft defect, and it includes periosteum and corticocancellous bone to improve early vascularization and greater volume maintenance. PMID:20186086

  12. Evaluation of soft tissue coverage over porous polymethylmethacrylate space maintainers within nonhealing alveolar bone defects.

    PubMed

    Kretlow, James D; Shi, Meng; Young, Simon; Spicer, Patrick P; Demian, Nagi; Jansen, John A; Wong, Mark E; Kasper, F Kurtis; Mikos, Antonios G

    2010-12-01

    Current treatment of traumatic craniofacial injuries often involves early free tissue transfer, even if the recipient site is contaminated or lacks soft tissue coverage. There are no current tissue engineering strategies to definitively regenerate tissues in such an environment at an early time point. For a tissue engineering approach to be employed in the treatment of such injuries, a two-stage approach could potentially be used. The present study describes methods for fabrication, characterization, and processing of porous polymethylmethacrylate (PMMA) space maintainers for temporary retention of space in bony craniofacial defects. Carboxymethylcellulose hydrogels were used as a porogen. Implants with controlled porosity and pore interconnectivity were fabricated by varying the ratio of hydrogel:polymer and the amount of carboxymethylcellulose within the hydrogel. The in vivo tissue response to the implants was observed by implanting solid, low-porosity, and high-porosity implants (n = 6) within a nonhealing rabbit mandibular defect that included an oral mucosal defect to allow open communication between the oral cavity and the mandibular defect. Oral mucosal wound healing was observed after 12 weeks and was complete in 3/6 defects filled with solid PMMA implants and 5/6 defects filled with either a low- or high-porosity PMMA implant. The tissue response around and within the pores of the two formulations of porous implants tested in vivo was characterized, with the low-porosity implants surrounded by a minimal but well-formed fibrous capsule in contrast to the high-porosity implants, which were surrounded and invaded by almost exclusively inflammatory tissue. On the basis of these results, PMMA implants with limited porosity hold promise for temporary implantation and space maintenance within clean/contaminated bone defects. PMID:20524844

  13. Evaluation of Soft Tissue Coverage over Porous Polymethylmethacrylate Space Maintainers Within Nonhealing Alveolar Bone Defects

    PubMed Central

    Kretlow, James D.; Shi, Meng; Young, Simon; Spicer, Patrick P.; Demian, Nagi; Jansen, John A.; Wong, Mark E.; Kasper, F. Kurtis

    2010-01-01

    Current treatment of traumatic craniofacial injuries often involves early free tissue transfer, even if the recipient site is contaminated or lacks soft tissue coverage. There are no current tissue engineering strategies to definitively regenerate tissues in such an environment at an early time point. For a tissue engineering approach to be employed in the treatment of such injuries, a two-stage approach could potentially be used. The present study describes methods for fabrication, characterization, and processing of porous polymethylmethacrylate (PMMA) space maintainers for temporary retention of space in bony craniofacial defects. Carboxymethylcellulose hydrogels were used as a porogen. Implants with controlled porosity and pore interconnectivity were fabricated by varying the ratio of hydrogel:polymer and the amount of carboxymethylcellulose within the hydrogel. The in vivo tissue response to the implants was observed by implanting solid, low-porosity, and high-porosity implants (n = 6) within a nonhealing rabbit mandibular defect that included an oral mucosal defect to allow open communication between the oral cavity and the mandibular defect. Oral mucosal wound healing was observed after 12 weeks and was complete in 3/6 defects filled with solid PMMA implants and 5/6 defects filled with either a low- or high-porosity PMMA implant. The tissue response around and within the pores of the two formulations of porous implants tested in vivo was characterized, with the low-porosity implants surrounded by a minimal but well-formed fibrous capsule in contrast to the high-porosity implants, which were surrounded and invaded by almost exclusively inflammatory tissue. On the basis of these results, PMMA implants with limited porosity hold promise for temporary implantation and space maintenance within clean/contaminated bone defects. PMID:20524844

  14. Alveolar bone grafting

    PubMed Central

    Lilja, Jan

    2009-01-01

    In patients with cleft lip and palate, bone grafting in the mixed dentition in the residual alveolar cleft has become a well-established procedure. The main advantages can be summarised as follows: stabilisation of the maxillary arch; facilitation of eruption of the canine and sometimes facilitation of the lateral incisor eruption; providing bony support to the teeth adjacent to the cleft; raising the alar base of the nose; facilitation of closure of an oro-nasal fistula; making it possible to insert a titanium fixture in the grafted site and to obtain favourable periodontal conditions of the teeth within and adjacent to the cleft. The timing of the ABG surgery take into consideration not only eruption of the canine but also that of the lateral incisor, if present. The best time for bone grafting surgery is when a thin shell of bone still covers the soon erupting lateral incisor or canine tooth close to the cleft. PMID:19884665

  15. Candidates Cell Sources to Regenerate Alveolar Bone from Oral Tissue

    PubMed Central

    Nishimura, Masahiro; Takase, Kazuma; Suehiro, Fumio; Murata, Hiroshi

    2012-01-01

    Most of the cases of dental implant surgery, especially the bone defect extensively, are essential for alveolar ridge augmentation. As known as cell therapy exerts valuable effects on bone regeneration, numerous reports using various cells from body to regenerate bone have been published, including clinical reports. Mesenchymal cells that have osteogenic activity and have potential to be harvested from intra oral site might be a candidate cells to regenerate alveolar bone, even dentists have not been harvested the cells outside of mouth. This paper presents a summary of somatic cells in edentulous tissues which could subserve alveolar bone regeneration. The candidate tissues that might have differentiation potential as mesenchymal cells for bone regeneration are alveolar bone chip, bone marrow from alveolar bone, periosteal tissue, and gingival tissue. Understanding their phenotype consecutively will provide a rational approach for alveolar ridge augmentation. PMID:22505911

  16. Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo

    PubMed Central

    Du, Bing; Liu, Weizhen; Deng, Yue; Li, Shaobing; Liu, Xiangning; Gao, Yan; Zhou, Lei

    2015-01-01

    To improve the regenerative performance of nano-hydroxyapatite/coralline (nHA/coral) block grafting in a canine mandibular critical-size defect model, nHA/coral blocks were coated with recombinant human vascular endothelial growth factor165 (rhVEGF) via physical adsorption (3 μg rhVEGF165 per nHA/coral block). After the nHA/coral blocks and VEGF/nHA/coral blocks were randomly implanted into the mandibular box-shaped defects in a split-mouth design, the healing process was evaluated by histological observation and histomorphometric and immunohistological analyses. The histological evaluations revealed the ingrowth of newly formed blood vessels and bone at the periphery and cores of the blocks in both groups at both 3 and 8 weeks postsurgery, respectively. In the histomorphometric analysis, the VEGF/nHA/coral group exhibited a larger quantity of new bone formation at 3 and 8 weeks postsurgery. The percentages of newly formed bone within the entire blocks in the VEGF/nHA/coral group were 27.3%±8.1% and 39.3%±12.8% at 3 weeks and 8 weeks, respectively, and these values were slightly greater than those of the nHA/coral group (21.7%±3.0% and 32.6%±10.3%, respectively), but the differences were not significant (P>0.05). The immunohistological evaluations revealed that the neovascular density in the VEGF/nHA/coral group (146±32.9 vessel/mm2) was much greater than that in the nHA/coral group (105±51.8 vessel/mm2) at the 3-week time point (P<0.05), but no significant difference was observed at the 8-week time point (341±86.1 and 269±50.7 vessel/mm2, respectively, P>0.05). The present study indicated that nHA/coral blocks might be optimal scaffolds for block grafting in critical-size mandibular defects and that additional VEGF coating via physical adsorption can promote angiogenesis in the early stage of bone healing, which suggests that prevascularized nHA/coral blocks have significant potential as a bioactive material for bone regeneration in large-scale alveolar

  17. Restoration of a Critical Mandibular Bone Defect Using Human Alveolar Bone-Derived Stem Cells and Porous Nano-HA/Collagen/PLA Scaffold

    PubMed Central

    Wang, Xing; Xing, Helin; Zhang, Guilan; Wu, Xia; Zou, Xuan; Feng, Lin; Wang, Dongsheng; Li, Meng; Zhao, Jing; Du, Jianwei; Lv, Yan; E, Lingling; Liu, Hongchen

    2016-01-01

    Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs) can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs' identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects. PMID:27118977

  18. A novel in vivo platform for studying alveolar bone regeneration in rat

    PubMed Central

    Kim, Joong-Hyun; Moon, Ho-Jin; Kim, Tae-Hyun; Jo, Jong-Min; Yang, Sung Hee; Naskar, Deboki; Kundu, Subhas C; Chrzanowski, Wojciech

    2013-01-01

    Alveolar bone regeneration is a significant challenge in dental implantation. Novel biomaterials and tissue-engineered constructs are under extensive development and awaiting in vivo animal tests to find clinical endpoint. Here, we establish a novel in vivo model, modifying gingivoperiosteoplasty in rat for the alveolar bone regeneration. Rat premaxillary bone defects were filled with silk scaffold or remained empty during the implantation period (up to 6 weeks), and harvested samples were analyzed by micro-computed tomography and histopathology. Empty defects showed increased but limited new bone formation with increasing implantation period. In defects implanted with silk sponge, the bone formation was significantly greater than that of empty defect, indicating an effective role of silk scaffold in the defect model. The modified premaxillary defect model in rat is simple to perform, while mimicking the clinical conditions, finding usefulness for the development of biomaterials and tissue-engineered constructs targeting alveolar bone regeneration in dental implantation. PMID:24555013

  19. A novel in vivo platform for studying alveolar bone regeneration in rat.

    PubMed

    Kim, Joong-Hyun; Moon, Ho-Jin; Kim, Tae-Hyun; Jo, Jong-Min; Yang, Sung Hee; Naskar, Deboki; Kundu, Subhas C; Chrzanowski, Wojciech; Kim, Hae-Won

    2013-01-01

    Alveolar bone regeneration is a significant challenge in dental implantation. Novel biomaterials and tissue-engineered constructs are under extensive development and awaiting in vivo animal tests to find clinical endpoint. Here, we establish a novel in vivo model, modifying gingivoperiosteoplasty in rat for the alveolar bone regeneration. Rat premaxillary bone defects were filled with silk scaffold or remained empty during the implantation period (up to 6 weeks), and harvested samples were analyzed by micro-computed tomography and histopathology. Empty defects showed increased but limited new bone formation with increasing implantation period. In defects implanted with silk sponge, the bone formation was significantly greater than that of empty defect, indicating an effective role of silk scaffold in the defect model. The modified premaxillary defect model in rat is simple to perform, while mimicking the clinical conditions, finding usefulness for the development of biomaterials and tissue-engineered constructs targeting alveolar bone regeneration in dental implantation. PMID:24555013

  20. Porous calcium phosphate cement for alveolar bone regeneration.

    PubMed

    Félix Lanao, R P; Hoekstra, J W M; Wolke, J G C; Leeuwenburgh, S C G; Plachokova, A S; Boerman, O C; van den Beucken, J J J P; Jansen, J A

    2014-06-01

    The present study aimed to provide information on material degradation and subsequent alveolar bone formation, using composites consisting of calcium phosphate cement (CPC) and poly(lactic-co-glycolic) acid (PLGA) with different microsphere morphology (hollow vs dense). In addition to the plain CPC-PLGA composites, loading the microspheres with the growth factors platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF) was investigated. A total of four different CPC composites were applied into one-wall mandible bone defects in beagle dogs in order to evaluate them as candidates for alveolar bone regeneration. These composites consisted of CPC and hollow or dense PLGA microspheres, with or without the addition of PDGF-IGF growth factor combination (CPC-hPLGA, CPC-dPLGA, CPC-hPLGAGF , CPC-dPLGAGF ). Histological evaluation revealed significantly more bone formation in CPC-dPLGA than in CPC-hPLGA composites. The combination PDGF-IGF enhanced bone formation in CPC-hPLGA materials, but significantly more bone formation occurred when CPC-dPLGA was used, with or without the addition of growth factors. The findings demonstrated that CPC-dPLGA composite was the biologically superior material for use as an off-the-shelf material, due to its good biocompatibility, enhanced degradability and superior bone formation. PMID:22777771

  1. "Tent-Pole" for Reconstruction of Large Alveolar Defects: A Case Report.

    PubMed

    Xiao, Ting; Zhao, Yuyue; Luo, En; Hu, Jian

    2016-01-01

    Severe tridimensional alveolar ridge defects complicate the placement of dental implants, and surgical removal of some oral tumors might not leave adequate bone for dental implant placement. Regenerating an adequate amount of bone vertically and horizontally to achieve a satisfying outcome for well-osseointegrated implants and thus ensure long-term success of implant restoration is challenging. This report describes the clinical feasibility of a simple approach using a screw tent-pole combined with guided bone regeneration to augment complicated tridimensional alveolar ridge defects in a case of extensive bone loss due to maxillary tumor surgery. Titanium screws were arranged in "tented" fashion to provide stable room for bone regeneration. Regenerated bone was achieved and 2 more implants were placed in the regenerated ridge 10 months later, leading to a successful maxillary prosthesis. PMID:26375368

  2. Proteomic Analysis of Gingival Tissue and Alveolar Bone during Alveolar Bone Healing*

    PubMed Central

    Yang, Hee-Young; Kwon, Joseph; Kook, Min-Suk; Kang, Seong Soo; Kim, Se Eun; Sohn, Sungoh; Jung, Seunggon; Kwon, Sang-Oh; Kim, Hyung-Seok; Lee, Jae Hyuk; Lee, Tae-Hoon

    2013-01-01

    Bone tissue regeneration is orchestrated by the surrounding supporting tissues and involves the build-up of osteogenic cells, which orchestrate remodeling/healing through the expression of numerous mediators and signaling molecules. Periodontal regeneration models have proven useful for studying the interaction and communication between alveolar bone and supporting soft tissue. We applied a quantitative proteomic approach to analyze and compare proteins with altered expression in gingival soft tissue and alveolar bone following tooth extraction. For target identification and validation, hard and soft tissue were extracted from mini-pigs at the indicated times after tooth extraction. From triplicate experiments, 56 proteins in soft tissue and 27 proteins in alveolar bone were found to be differentially expressed before and after tooth extraction. The expression of 21 of those proteins was altered in both soft tissue and bone. Comparison of the activated networks in soft tissue and alveolar bone highlighted their distinct responsibilities in bone and tissue healing. Moreover, we found that there is crosstalk between identified proteins in soft tissue and alveolar bone with respect to cellular assembly, organization, and communication. Among these proteins, we examined in detail the expression patterns and associated networks of ATP5B and fibronectin 1. ATP5B is involved in nucleic acid metabolism, small molecule biochemistry, and neurological disease, and fibronectin 1 is involved in cellular assembly, organization, and maintenance. Collectively, our findings indicate that bone regeneration is accompanied by a profound interaction among networks regulating cellular resources, and they provide novel insight into the molecular mechanisms involved in the healing of periodontal tissue after tooth extraction. PMID:23824910

  3. Osteogenesis effect of guided bone regeneration combined with alveolar cleft grafting: assessment by cone beam computed tomography.

    PubMed

    Xiao, W-L; Zhang, D-Z; Chen, X-J; Yuan, C; Xue, L-F

    2016-06-01

    Cone beam computed tomography (CBCT) allows for a significantly lower radiation dose than conventional computed tomography (CT) scans and provides accurate images of the alveolar cleft area. The osteogenic effect of guided bone regeneration (GBR) vs. conventional alveolar bone grafting alone for alveolar cleft defects was evaluated in this study. Sixty alveolar cleft patients were divided randomly into two groups. One group underwent GBR using acellular dermal matrix film combined with alveolar bone grafting using iliac crest bone grafts (GBR group), while the other group underwent alveolar bone grafting only (non-GBR group). CBCT images were obtained at 1 week and at 3 months following the procedure. Using Simplant 11.04 software, the bone resorption rate was calculated and compared between the two groups. The bone resorption rate from 1 week to 3 months following bone grafting without the GBR technique was 36.50±5.04%, whereas the bone resorption rate using the GBR technique was 31.69±5.50% (P=0.017). The application of autogenous iliac bone combined with the GBR technique for alveolar bone grafting of alveolar cleft patients can reduce bone resorption and result in better osteogenesis. PMID:26876144

  4. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration.

    PubMed

    Subramaniam, Sadhasivam; Fang, Yen-Hsin; Sivasubramanian, Savitha; Lin, Feng-Huei; Lin, Chun-pin

    2016-01-01

    Periodontitis is a very severe inflammatory condition of the periodontium that progressively damages the soft tissue and destroys the alveolar bone that supports the teeth. The bone loss is naturally irreversible because of limited reparability of the teeth. Advancement in tissue engineering provides an effective regeneration of osseous defects with suitable dental implants or tissue-engineered constructs. This study reports a hydroxyapatite, calcium sulfate hemihydrate and hyaluronic acid laden collagenase (HAP/CS/HA-Col) as a bone substitute for the alveolar bone regeneration. The composite material was mechanically tested and the biocompatibility was evaluated by WST-1 assay. The in vivo bone formation was assessed in rat with alveolar bone defects and the bone augmentation by the HAP/CS/HA-Col composite was confirmed by micro-CT images and histological examination. The mechanical strength of 6.69 MPa with excellent biocompatibility was obtained for the HAP/CS/HA-Col composite. The collagenase release profile had facilitated the acceleration of bone remodeling process and it was confirmed by the findings of micro-CT and H&E staining. The bone defects implanted with HAP/CS/HA composite containing 2 mg/mL type I collagenase have shown improved new bone formation with matured bone morphology in comparison with the HAP/CS/HA composite that lacks the collagenase and the porous hydroxyapatite (p-HAP) granules. The said findings demonstrated that the collagenase inclusion in HAP/CS/HA composite is a feasible approach for the alveolar bone regeneration and the same design can also be applied to other defective tissues. PMID:26454048

  5. Correction of alveolar cleft with calcium-based bone substitutes.

    PubMed

    Lazarou, Spiros A; Contodimos, George B; Gkegkes, Ioannis D

    2011-05-01

    The criterion standard of alveolar cleft repair is iliac crest bone graft before secondary canine eruption. Tooth eruption has never been shown to occur in synthetic bone substitute, and there is no ideal autologous bone graft for primary repair. This prospective study evaluated alveolar cleft grafting with a calcium substitute before primary canine eruption. Ten consecutive patients with complete cleft lip, palate, and unilateral alveolar cleft with reasonably aligned arches were grafted beginning in January 2003 to March 2007. Mean age at surgery was 10.4 months. Follow-up ranged from 3 to 7 years. Radiologic evaluation of alveolar ridge was performed at the age of 4.All 10 patients were operated on by the same surgeon using the same technique, that is, conservative elevation of nasal, oral, and anterior alveolar mucosal flaps around the cleft, closure of nasal and oral flaps, placement of 1 to 3 mL of calcium substitute paste or crystals in the pocket, and closure of the anterior alveolar mucosa. All 10 patients healed without complication. Clinical evaluation revealed a well-healed arch with primary canine growth in the area of the previous cleft. Adequate normal bone formation and often a descending secondary canine were radiologically confirmed. Calcium substitutes offer significant advantages over other biomaterials as well as autologous bone grafts particularly in the primary alveolar cleft reconstruction. Our study has shown for the first time that teeth can erupt through this material, which turns into a normal functioning bone in the alveolar ridge. PMID:21558929

  6. Alveolar Ridge Preservation Using Xenogeneic Collagen Matrix and Bone Allograft

    PubMed Central

    Parashis, Andreas O.; Kalaitzakis, Charalampos J.; Tatakis, Dimitris N.; Tosios, Konstantinos

    2014-01-01

    Alveolar ridge preservation (ARP) has been shown to prevent postextraction bone loss. The aim of this report is to highlight the clinical, radiographic, and histological outcomes following use of a bilayer xenogeneic collagen matrix (XCM) in combination with freeze-dried bone allograft (FDBA) for ARP. Nine patients were treated after extraction of 18 teeth. Following minimal flap elevation and atraumatic extraction, sockets were filled with FDBA. The XCM was adapted to cover the defect and 2-3 mm of adjacent bone and flaps were repositioned. Healing was uneventful in all cases, the XCM remained in place, and any matrix exposure was devoid of further complications. Exposed matrix portions were slowly vascularized and replaced by mature keratinized tissue within 2-3 months. Radiographic and clinical assessment indicated adequate volume of bone for implant placement, with all planned implants placed in acceptable positions. When fixed partial dentures were placed, restorations fulfilled aesthetic demands without requiring further augmentation procedures. Histological and immunohistochemical analysis from 9 sites (4 patients) indicated normal mucosa with complete incorporation of the matrix and absence of inflammatory response. The XCM + FDBA combination resulted in minimal complications and desirable soft and hard tissue therapeutic outcomes, suggesting the feasibility of this approach for ARP. PMID:25328523

  7. Is there a relation between local bone quality as assessed on panoramic radiographs and alveolar bone level?

    PubMed

    Nackaerts, Olivia; Gijbels, Frieda; Sanna, Anna-Maria; Jacobs, Reinhilde

    2008-03-01

    The aim was to explore the relation between radiographic bone quality on panoramic radiographs and relative alveolar bone level. Digital panoramic radiographs of 94 female patients were analysed (mean age, 44.5; range, 35-74). Radiographic density of the alveolar bone in the premolar region was determined using Agfa Musica software. Alveolar bone level and bone quality index (BQI) were also assessed. Relationships between bone density and BQI on one hand and the relative loss of alveolar bone level on the other were assessed. Mandibular bone density and loss of alveolar bone level were weakly but significantly negatively correlated for the lower premolar area (r = -.27). The BQI did not show a statistically significant relation to alveolar bone level. Radiographic mandibular bone density on panoramic radiographs shows a weak but significant relation to alveolar bone level, with more periodontal breakdown for less dense alveolar bone. PMID:17690924

  8. Prospective Analysis of Secondary Alveolar Bone Grafting in Cleft Lip and Palate Patients

    PubMed Central

    Reddy, M Gokul Chandra; Babu, V Ramesh; Rao, V Eswar; Chaitanya, J Jaya; Allareddy, S; Reddy, C Charan Kumar

    2015-01-01

    Background: To assess the success of the uptake of bone graft in cleft alveolus of the cleft lip and palate patients, quantitatively through computed tomography (CT) scan 6 months postoperative. To assess the successful eruption of permanent lateral incisor or canine in the bone grafted area. Materials and Methods: The children age group of 9-21 years with unilateral cleft lip and palate came to the hospital, needing secondary alveolar bone grafting. A detailed history and clinical examination of the patient was taken. A 3D CT scan was taken and the volume of the cleft was measured pre-operatively. After ambulatory period, 3D CT scan of the alveolar cleft region was taken and volume of the bone grafted was measured and patient was discharged from the hospital. After 6 months, patient was recalled and again 3D CT scan was taken and the volume of remaining bone was measured. Results: The mean volume of the defect pre-operatively is 0.80 cm3 with a standard deviation of 0.36 cm3 with minimum volume of the defect 0.44 cm3 and maximum volume of the defect 1.60 cm3. The mean volume of the bone post-operative immediately after grafting is 1.01 cm3 with a standard deviation of 0.52 cm3 with minimum of bone volume is 0.48 cm3 and maximum of 2.06 cm3. The mean volume of the bone after 6 months after bone grafting is 0.54 cm3 with a standard deviation of 0.33 cm3, minimum bone volume of 0.22 cm3 and maximum bone volume of 1.42 cm3. Conclusion: The CT scan is a valuable radiographic imaging modality to assess and follow the clinical outcome of secondary alveolar bone grafting. PMID:25954076

  9. Tentpole technique for bone regeneration in vertically deficient alveolar ridges: A review

    PubMed Central

    Daga, Dipti; Mehrotra, Divya; Mohammad, Shadab; Singh, Geeta; Natu, S.M.

    2015-01-01

    Background and objectives Vertical augmentation is necessary in cases of extensive resorption of alveolar ridge for dental implants placement and esthetic prosthetic rehabilitation. Several surgical techniques have been used to increase bone height including distraction osteogenesis, and particulate or block bone graft. This study was done to describe the evolution of “tentpole technique” and to review the literature related to this technique and thus evaluate its effectiveness to augment large vertical alveolar ridge defects for implant placement. Material and methods The evidence was obtained by PubMed and Google search using key words: tentpole technique, ridge resorption, and alveolar ridge augmentation. The years of search included from 2002 till 2013. Results The technique was described as effective on review of outcome of existing studies. It was found that considerable and stable increase in alveolar ridge height was achieved using tentpole technique. Conclusions Tenting of periosteum and soft tissue matrix maintains space and enhances the effectiveness of bone graft. This technique offers predictable functional and esthetic reconstruction of large vertical alveolar defects. PMID:26258021

  10. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    PubMed

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  11. Alveolar bone loss in osteoporosis: a loaded and cellular affair?

    PubMed Central

    Jonasson, Grethe; Rythén, Marianne

    2016-01-01

    Maxillary and mandibular bone mirror skeletal bone conditions. Bone remodeling happens at endosteal surfaces where the osteoclasts and osteoblasts are situated. More surfaces means more cells and remodeling. The bone turnover rate in the mandibular alveolar process is probably the fastest in the body; thus, the first signs of osteoporosis may be revealed here. Hormones, osteoporosis, and aging influence the alveolar process and the skeletal bones similarly, but differences in loading between loaded, half-loaded, and unloaded bones are important to consider. Bone mass is redistributed from one location to another where strength is needed. A sparse trabeculation in the mandibular premolar region (large intertrabecular spaces and thin trabeculae) is a reliable sign of osteopenia and a high skeletal fracture risk. Having dense trabeculation (small intertrabecular spaces and well-mineralized trabeculae) is generally advantageous to the individual because of the low fracture risk, but may imply some problems for the clinician. PMID:27471408

  12. Osteogenic Effect of High-frequency Acceleration on Alveolar Bone

    PubMed Central

    Alikhani, M.; Khoo, E.; Alyami, B.; Raptis, M.; Salgueiro, J.M.; Oliveira, S.M.; Boskey, A.; Teixeira, C.C.

    2012-01-01

    Mechanical stimulation contributes to the health of alveolar bone, but no therapy using the osteogenic effects of these stimuli to increase alveolar bone formation has been developed. We propose that the application of high-frequency acceleration to teeth in the absence of significant loading is osteogenic. Sprague-Dawley rats were divided among control, sham, and experimental groups. The experimental group underwent localized accelerations at different frequencies for 5 min/day on the occlusal surface of the maxillary right first molar at a very low magnitude of loading (4 µε). Sham rats received a similar load in the absence of acceleration or frequency. The alveolar bone of the maxilla was evaluated by microcomputed tomography (µCT), histology, fluorescence microscopy, scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR imaging), and RT-PCR for osteogenic genes. Results demonstrate that application of high-frequency acceleration significantly increased alveolar bone formation. These effects were not restricted to the area of application, and loading could be replaced by frequency and acceleration. These studies propose a simple mechanical therapy that may play a significant role in alveolar bone formation and maintenance. PMID:22337699

  13. Periodontal repair in dogs: effect of rhBMP-2 concentration on regeneration of alveolar bone and periodontal attachment.

    PubMed

    Wikesjö, U M; Guglielmoni, P; Promsudthi, A; Cho, K S; Trombelli, L; Selvig, K A; Jin, L; Wozney, J M

    1999-06-01

    The objective of this study was to evaluate the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) concentration on regeneration of alveolar bone and cementum, and on associated root resorption and ankylosis. Contralateral, critical size, supra-alveolar, periodontal defects were surgically produced and immediately implanted with rhBMP-2 in an absorbable collagen sponge (ACS) carrier in 8, young adult, male, beagle dogs. 6 animals received rhBMP-2/ACS (rhBMP-2 at 0.05, 0.10, or 0.20 mg/mL; total construct volume/defect approximately 4.0 mL) in contralateral defects following an incomplete block design. 2 animals received rhBMP-2/ACS (rhBMP-2 at 0 and 0.10 mg/mL) in contralateral defects (controls). The animals were euthanised at 8 weeks post-surgery and block sections of the defects were collected for histologic and histometric analysis. Supra-alveolar periodontal defects receiving rhBMP-2 at 0.05, 0.10, or 0.20 mg/ml exhibited extensive alveolar regeneration comprising 86%, 96%, and 88% of the defect height, respectively. Cementum regeneration encompassed 8%, 6%, and 8% of the defect height, respectively. Root resorption was observed for all rhBMP-2 concentrations. Ankylosis was observed in almost all teeth receiving rhBMP-2. Control defects without rhBMP-2 exhibited limited, if any, evidence of alveolar bone and cementum regeneration, root resorption, or ankylosis. Within the selected rhBMP-2 concentration and observation interval, there appear to be no meaningful differences in regeneration of alveolar bone and cementum. There also appear to be no significant differences in the incidence and extent of root resorption and ankylosis, though there may be a positive correlation with rhBMP-2 concentration. PMID:10382580

  14. Secondary Alveolar Bone Grafting and Iliac Cancellous Bone Harvesting for Patients With Alveolar Cleft.

    PubMed

    Pan, Weiyi; Wu, Chenzhou; Yang, Zheng; Duan, Zexi; Su, Zhifei; Wang, Peiqi; Zheng, Qian; Li, Chunjie

    2016-06-01

    To assess the efficacy of present interventions optimizing the result of secondary alveolar bone grafting (SABG) and the interventions alleviating the donor site morbidity after iliac cancellous bone harvesting. Researches were identified by searching the electronic database of MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Chinese BioMedical Literature Database, and the China National Knowledge Infrastructure. In addition, relevant journals and references of the included studies were searched manually. The Oxford 2011 Levels of Evidence were applied to assess the methodological quality of selected studies, and the best evidence synthesis system was applied afterward to measure the strength of evidence. As a result, 42 studies were considered eligible and included, among which 4 were of high quality while 38 were of low quality. Thirty lines of evidences were acquired after the synthesis, among which 13 were rated as moderate while 17 were rated as insufficient. As for the interventions optimizing the result of SABG, moderate evidence confirmed the efficacy of preoperative orthodontic treatment, the superiority of performing SABG before the eruption of canine, and the accuracy of cone beam computed tomography in preoperative estimation of the cleft volume. As for the interventions alleviating the morbidity of iliac cancellous bone harvesting, moderate evidence confirmed the treatment benefit of the interventions below: minimally invasive technique, including trephine and Shepard osteotomy; preemptive analgesia, including continuous bupivacaine infusion or transversus abdominis plane block. As for the rest interventions, only insufficient evidence was found. PMID:27244214

  15. Histologic Evaluation of Human Alveolar Sockets Treated With an Artificial Bone Substitute Material

    PubMed Central

    Wakimoto, Mari; Ueno, Takaaki; Hirata, Azumi; Iida, Seiji; Aghaloo, Tara; Moy, Peter K.

    2012-01-01

    This study involved a histologic, enzyme histologic, immunohistologic, and three-dimensional microstructure evaluating the extent of osteogenesis and repair in the human alveolar extraction socket achievable with an artificial bone substitute. After tooth extraction in 7 patients, extraction sockets were filled with Mastergraft (15% hydroxyapatite, 85% β-tricalcium phosphate complex). Radio-micrographs and histologic examinations were performed on samples obtained during dental implant placement procedure. On micro– computed tomography, new bone was observed in all collected samples, and osteogenesis was observed to have taken place around the artificial bone substitute. Histologically, active osteogenesis was found throughout the region observed. Addition of new bone around the Mastergraft was observed, and osteoblast-like cells were present. Cells that had partially invaded the artificial bone included tartrate-resistant acid phosphate–positive and CD34-positive cells. These findings indicate that the Mastergraft artificial bone induced osteogenesis in the jawbone and seemed effective for repairing bone defects. PMID:21415629

  16. Orthodontically guided bone transport in the treatment of alveolar cleft: A case report

    PubMed Central

    Gómez, Elena; Otero, Marta; Berraquero, Rosario; Wucherpfennig, Begona; Hernández-Godoy, Juan; Guiñales, Jorge; Vincent, Germán; Burgueño, Miguel

    2016-01-01

    Introduction Conventional treatments are sometimes not possible in certain alveolar cleft cases due to the severity of the gap which separates the fragments. Various management strategies have been proposed, including sequential surgical interventions or delaying treatment until adulthood to then carry out maxillary osteotomies. A further alternative approach has also been proposed, involving the application of bone transport techniques to mobilise the osseous fragments and thereby reduce the gap between lateral fragments and the premaxilla. Case Report We introduce the case of a 10-year-old patient who presented with a bilateral alveolar cleft and a severe gap. Stable occlusion between the premaxilla and the mandible was achieved following orthodontic treatment, making it inadvisable to perform a retrusive osteotomy of the premaxilla in order to close the alveolar clefts. Faced with this situation, it was decided we would employ a bone transport technique under orthodontic guidance using a dental splint. This would enable an osseous disc to be displaced towards the medial area and reduce the interfragmentary distance. During a second surgical intervention, closure of the soft tissues was performed and the gap was filled in using autogenous bone. Conclusions The use of bone transport techniques in selected cases allows closure of the osseous defect, whilst also preserving soft tissues and reducing the amount of bone autograft required. In our case, we were able to respect the position of the premaxilla and, at the same time, generate new tissues at both an alveolar bone and soft tissue level with results which have remained stable over the course of time. Key words:Alveolar cleft, bone transport, graft. PMID:26855699

  17. Secondary Alveolar Bone Grafting (CLEFTSiS) 2007-2010.

    PubMed

    Paterson, Michael; Rae, Jennifer; Paterson, Paul; Gilgrass, Toby; Devlin, Mark; McIntyre, Grant

    2016-03-01

    Objective To determine whether alveolar bone graft outcomes for unilateral and bilateral cleft lip and palate patients have continued to improve since the reorganization of cleft services in Scotland in 2000. Design Retrospective analysis of postoperative anterior occlusal radiographs. Patients and Participants Eighty-one of 106 patients who were eligible for alveolar bone grafting between 2007 and 2010 had suitable postoperative radiographs available. Interventions Twenty-seven percent of the patients (n = 22) had presurgical orthodontic intervention. All patients underwent alveolar bone grafting with bone harvested from the iliac crest. Main Outcome Measures The Kindelan bone-fill index was used to evaluate success. Weighted kappa statistics were used to assess intra- and interobserver reproducibility. A comparison was made with results from 2000 to 2004 to assess any improvement. Chi-square tests (or Fisher exact test) were used to determine whether outcomes differed depending on the laterality of the cleft, use of presurgical expansion, or age at bone grafting. Results Interobserver scoring agreement was good (weighted kappa = .383). Intraobserver reproducibility was greater (weighted kappas of .835 and .620). Success was achieved in 99% of bone grafts, compared with 76% in the period from 2000 to 2004 (P < .001). There was no statistically significant relationship between the laterality of the cleft (P = 1.000), use of presurgical expansion (P = 1.000), or age at time of bone grafting and outcome (P = .259). Conclusion Scottish secondary alveolar bone graft outcomes improved during 2007 to 2010 in comparison to the 2000 to 2004 results. PMID:26914161

  18. Alveolar ridge augmentation using chin bone graft, bovine bone mineral, and titanium mesh: Clinical, histological, and histomorphomtric study

    PubMed Central

    Khamees, Jihad; Darwiche, Mohammad Atef; Kochaji, Nabil

    2012-01-01

    Background: Resorption of the alveolar ridge often leaves insufficient bone volume. Very few studies have investigated the quantity and quality of bone formation in humans, following alveolar ridge augmentation, using autogenous bone and bovine bone mineral (BBM) under titanium mesh. Materials and Methods: Sixteen alveolar bone defects divided into two groups; control group with symphyseal autogenous bone covered by titanium mesh; and test group with symphyseal autogenous bone mixed with BBM in 1: 1 ratio and covered by titanium mesh. The outcomes were evaluated clinically, histologically, and histomorphometrically. Results: Clinical measurements showed that the horizontal bone gain was 3.44±0.54 mm and 2.88±0.57 mm, on average, for control group and test group, respectively. While graft absorption was 2.66±0.98 mm (43.62%) and 1.67±1.00 mm (36.65%), on average, for control group and test group, respectively. In the test group, BBM particles were still recognizable, on histologic analysis. They were surrounded completely or partly by newly formed bone. Clear signs of resorption of the BBM were found, with osteoclast cell noticed in the area. Histomorphometrically, the newly formed bone was 78.40%±13.97% and 65.58%±6.59%, whereas connective tissue constituted 21.60%±13.97% and 23.87%±4.79% for control group and test group, respectively. The remaining BBM particles occupied 10.55%±1.80%. All differences between the control and test groups were not significant (P>.05). Conclusion: This investigation suggests that horizonal ridge augmentation with titanium mesh and autogenous bone alone or mixed with BBM are predictable and ridges were augmented even if mesh exposure occurs. PMID:23055591

  19. The osteoimmunology of alveolar bone loss.

    PubMed

    Tompkins, Kevin A

    2016-03-01

    The mineralized structure of bone undergoes constant remodeling by the balanced actions of bone-producing osteoblasts and bone-resorbing osteoclasts (OCLs). Physiologic bone remodeling occurs in response to the body's need to respond to changes in electrolyte levels, or mechanical forces on bone. There are many pathological conditions, however, that cause an imbalance between bone production and resorption due to excessive OCL action that results in net bone loss. Situations involving chronic or acute inflammation are often associated with net bone loss, and research into understanding the mechanisms regulating this bone loss has led to the development of the field of osteoimmunology. It is now evident that the skeletal and immune systems are functionally linked and share common cells and signaling molecules. This review discusses the signaling system of immune cells and cytokines regulating aberrant OCL differentiation and activity. The role of these cells and cytokines in the bone loss occurring in periodontal disease (PD) (chronic inflammation) and orthodontic tooth movement (OTM) (acute inflammation) is then described. The review finishes with an exploration of the emerging role of Notch signaling in the development of the immune cells and OCLs that are involved in osteoimmunological bone loss and the research into Notch signaling in OTM and PD. PMID:26950207

  20. Requirement of alveolar bone formation for eruption of rat molars.

    PubMed

    Wise, Gary E; He, Hongzhi; Gutierrez, Dina L; Ring, Sherry; Yao, Shaomian

    2011-10-01

    Tooth eruption is a localized event that requires a dental follicle (DF) to regulate the resorption of alveolar bone to form an eruption pathway. During the intra-osseous phase of eruption, the tooth moves through this pathway. The mechanism or motive force that propels the tooth through this pathway is controversial but many studies have shown that alveolar bone growth at the base of the crypt occurs during eruption. To determine if this bone growth (osteogenesis) was causal, experiments were designed in which the expression of an osteogenic gene in the DF, bone morphogenetic protein-6 (Bmp6), was inhibited by injection of the first mandibular molar of the rat with a small interfering RNA (siRNA) targeted against Bmp6. The injection was followed by electroporation to promote uptake of the siRNA. In 45 first molars injected, eruption was either delayed or completely inhibited (seven molars). In the impacted molars, an eruption pathway formed but bone growth at the base of the crypt was greatly reduced compared with the erupted first-molar controls. These studies show that alveolar bone growth at the base of the crypt is required for tooth eruption and that Bmp6 may be essential for promoting this growth. PMID:21896048

  1. Requirement of alveolar bone formation for eruption of rat molars

    PubMed Central

    Wise, Gary E.; He, Hongzhi; Gutierrez, Dina L.; Ring, Sherry; Yao, Shaomian

    2011-01-01

    Tooth eruption is a localized event that requires a dental follicle (DF) to regulate the resorption of alveolar bone to form an eruption pathway. During the intra-osseous phase of eruption, the tooth moves through this pathway. The mechanism or motive force that propels the tooth through this pathway is controversial but many studies have shown that alveolar bone growth at the base of the crypt occurs during eruption. To determine if this bone growth (osteogenesis) was causal, experiments were designed in which the expression of an osteogenic gene in the DF, bone morphogenetic protein-6 (BMP6), was inhibited by injection of the 1st mandibular molar of the rat with an siRNA targeted against BMP6. The injection was followed by electroporation to promote uptake of the siRNA. In 45 first molars injected, eruption either was delayed or completely inhibited (7 molars). In the impacted molars, an eruption pathway formed but bone growth at the base of the crypt was greatly reduced as compared to the erupted first molar controls. These studies show that alveolar bone growth at the base of the crypt is required for tooth eruption and that BMP6 may be an essential gene for promoting this growth. PMID:21896048

  2. [Bone formation and corticotomy-induced accelerated bone remodeling: can alveolar corticotomy induce bone formation?].

    PubMed

    Moreau, Nathan; Charrier, Jean-Baptiste

    2015-03-01

    Current orthodontic treatments must answer an increasing demand for faster yet as efficient treatments, especially in adult patients. These past years, the amelioration of orthodontic, anesthetic and orthognathic surgery techniques have allowed considerable improvement of orthodontico-surgical treatments and of adult orthodontic treatments. Alveolar corticotomy (an example of such techniques) accelerates orthodontic tooth movements by local modifications of bone metabolism, inducing a transient osteopenia. This osteopenia allows greater tooth movements than conventional techniques. Whereas there is a growing understanding of the underlying biological mechanisms of alveolar corticotomies, there is little data regarding the osteogenic potential of such technique. In the present article, we review the literature pertaining to alveolar corticotomies and their underlying biological mechanisms and present a clinical case underlining the osteogenic potential of the technique. PMID:25888047

  3. SOCS-3 Regulates Alveolar Bone Loss in Experimental Periodontitis.

    PubMed

    Papathanasiou, E; Kantarci, A; Konstantinidis, A; Gao, H; Van Dyke, T E

    2016-08-01

    The host immune response plays a key role in bacteria-induced alveolar bone resorption. Endogenous control of the magnitude and duration of inflammatory signaling is considered an important determinant of the extent of periodontal pathology. Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytokine signaling pathways and may play a role in restraining periodontal inflammation. We hypothesized that SOCS-3 regulates alveolar bone loss in experimental periodontitis. Periodontal bone loss was induced in 16-wk-old myeloid-specific SOCS-3-knockout and wild-type (WT) C57Bl6-B.129 mice by oral inoculation 9 times with 10(9) colony-forming units of Porphyromonas gingivalis A7436 through an oral gavage model for periodontitis. Sham controls for both types of mice received vehicle without bacteria. The mice were euthanized 6 wk after the last oral inoculation. Increased bone loss was demonstrated in P. gingivalis-infected SOCS-3-knockout mice as compared with P. gingivalis-infected WT mice by direct morphologic measurements, micro-computed tomography analyses, and quantitative histology. Loss of SOCS-3 function resulted in an increased number of alveolar bone osteoclasts and increased RANKL expression after P. gingivalis infection. SOCS-3 deficiency in myeloid cells also promotes a higher P. gingivalis lipopolysaccharide-induced inflammatory response with higher secretion of IL-1β, IL-6, and KC (IL-8) by peritoneal macrophages as compared with WT controls. Our data implicate SOCS-3 as a critical negative regulator of alveolar bone loss in periodontitis. PMID:27126447

  4. Histology of human alveolar bone regeneration with a porous tricalcium phosphate. A report of two cases.

    PubMed

    Zerbo, I R; Bronckers, A L; de Lange, G L; van Beek, G J; Burger, E H

    2001-08-01

    Porous beta-phase tricalcium phosphate particles (pTCP) (Cerasorb) were used in two patients to restore or augment alveolar bone prior to the placement of dental implants. In one patient, pTCP was used to fill a large alveolar defect in the posterior mandible after the removal of a residual cyst, and in another patient to augment the sinus floor. Biopsies were taken at the time of implant placement, 9.5 and 8 months after grafting, respectively, and processed for hard tissue histology. Goldner-stained histological sections showed considerable replacement of the bone substitute by bone and bone marrow. In the 9.5 months biopsy of the mandible, 34% of the biopsy consisted of mineralised bone tissue and 29% of remaining pTCP, while the biopsy at 8 months after sinus floor augmentation consisted of 20% mineralised bone and 44% remaining pTCP. Bone and osteoid were lying in close contact with the remaining pTCP and were also seen within the micropores of the grafted particles. Tartrate resistant-acid phosphatase (TRAP) multinuclear cells, presumably osteoclasts, were found surrounding, within and in close contact with the pTCP particles, suggesting active resorption of the bone substitute. Remodelling of immature woven bone into mature lamellar bone was also found. No histological signs of inflammation were detected. The limited data presented from these two cases suggest that this graft material, possibly by virtue of its porosity and chemical nature, may be a suitable bone substitute that can biodegrade and be replaced by new mineralising bone tissue. PMID:11488868

  5. Iliac Crest Donor Site for Children With Cleft Lip and Palate Undergoing Alveolar Bone Grafting: A Long-term Assessment.

    PubMed

    Wheeler, Jonathan; Sanders, Megan; Loo, Stanley; Moaveni, Zac; Bartlett, Glenn; Keall, Heather; Pinkerton, Mark

    2016-05-01

    The authors aimed to accurately assess the donor site morbidity from iliac crest bone grafts for secondary bone grafting in patients with cleft lip and palate alveolar defects. Fifty patients between 3 months and 10 years following alveolar bone grafting for cleft lip and palate were entered into the study. Two-thirds of patients had no significant concerns about the donor site. The remaining third had some concerns about the appearance of their hips and less than 10% of patients expressing strong agreement with statements about concerns with shape, appearance, and self-consciousness about the iliac crest donor site. Examination findings showed the average length of scar being 5.4 cm and a third of patients having some minor palpable boney irregularities of the iliac crest. The authors found that the alveolar crest donor site is well tolerated by patients long term but has a measurable morbidity long term. PMID:27035602

  6. The outcome of intraoral onlay block bone grafts on alveolar ridge augmentations: A systematic review

    PubMed Central

    Aloy-Prósper, Amparo; Peñarrocha-Oltra, David; Peñarrocha-Diago, Maria A.

    2015-01-01

    Aim: The purpose of this study was to systematically review clinical studies examining the survival and success rates of implants placed with intraoral onlay autogenous bone grafts to answer the following question: do ridge augmentations procedures with intraoral onlay block bone grafts in conjunction with or prior to implant placement influence implant outcome when compared with a control group (guided bone regeneration, alveolar distraction, native bone or short dental implants.)? Material and Method: An electronic data banks and hand searching were used to find relevant articles on vertical and lateral augmentation procedures performed with intraoral onlay block bone grafts for dental implant therapy published up to October 2013. Publications in English, on human subjects, with a controlled study design –involving at least one group with defects treated with intraoral onlay block bone grafts, more than five patients and a minimum follow-up of 12 months after prosthetic loading were included. Two reviewers extracted the data. Results: A total of 6 studies met the inclusion criteria: 4 studies on horizontal augmentation and 2 studies on vertical augmentation. Intraoperative complications were not reported. Most common postsurgical complications included mainly mucosal dehiscences (4 studies), bone graft or membrane exposures (3 studies), complete failures of block grafts (2 studies) and neurosensory alterations (4 studies). For lateral augmentation procedures, implant survival rates ranged from 96.9% to 100%, while for vertical augmentation they ranged from 89.5% to 100%. None article studied the soft tissues healing. Conclusions: Survival and success rates of implants placed in horizontally and vertically resorbed edentulous ridges reconstructed with block bone grafts are similar to those of implants placed in native bone, in distracted sites or with guided bone regeneration. More surgical challenges and morbidity arise from vertical augmentations, thus short

  7. Alveolar bone thickness around maxillary central incisors of different inclination assessed with cone-beam computed tomography

    PubMed Central

    Liu, Fang; Sun, Hong-jing; Lv, Pin; Cao, Yu-ming; Yu, Mo; Yue, Yang

    2015-01-01

    Objective To assess the labial and lingual alveolar bone thickness in adults with maxillary central incisors of different inclination by cone-beam computed tomography (CBCT). Methods Ninety maxillary central incisors from 45 patients were divided into three groups based on the maxillary central incisors to palatal plane angle; lingual-inclined, normal, and labial-inclined. Reformatted CBCT images were used to measure the labial and lingual alveolar bone thickness (ABT) at intervals corresponding to every 1/10 of the root length. The sum of labial ABT and lingual ABT at the level of the root apex was used to calculate the total ABT (TABT). The number of teeth exhibiting alveolar fenestration and dehiscence in each group was also tallied. One-way analysis of variance and Tukey's honestly significant difference test were applied for statistical analysis. Results The labial ABT and TABT values at the root apex in the lingual-inclined group were significantly lower than in the other groups (p < 0.05). Lingual and labial ABT values were very low at the cervical level in the lingual-inclined and normal groups. There was a higher prevalence of alveolar fenestration in the lingual-inclined group. Conclusions Lingual-inclined maxillary central incisors have less bone support at the level of the root apex and a greater frequency of alveolar bone defects than normal maxillary central incisors. The bone plate at the marginal level is also very thin. PMID:26445719

  8. Osteogenic Differentiation of Human Amniotic Epithelial Cells and Its Application in Alveolar Defect Restoration

    PubMed Central

    Jiawen, Si; Jianjun, Zhang; Jiewen, Dai; Dedong, Yu; Hongbo, Yu; Jun, Shi; Xudong, Wang; Shen, Steve G.F.

    2014-01-01

    The present study investigated the detailed in vitro osteogenic differentiation process and in vivo bone regenerative property of human amniotic epithelial cells (hAECs). The in vitro osteogenic differentiation process of hAECs was evaluated by biochemical staining, real-time polymerase chain reaction, and immunofluorescence. Next, β-tricalcium phosphate (β-TCP) scaffolds alone or loaded with hAECs were implanted into the alveolar defects of rats. Micro-computed tomography evaluation and histologic studies were conducted. Our results validated the in vitro osteogenic capacity of hAECs by upregulation of Runx2, osterix, alkaline phosphatase, collagen I, and osteopontin, with positive biochemical staining for osteoblasts. An epithelial-mesenchymal transformation process might be involved in the osteogenic differentiation of hAECs by increased expression of transforming growth factor-β1. Our data also demonstrated that in vivo implantation of hAECs loaded on β-TCP scaffolds, not only improved bone regeneration by direct participation, but also reduced the early host immune response to the scaffolds. The presented data indicate that hAECs possess proper osteogenic differentiation potential and a modulatory influence on the early tissue remodeling process, making these cells a potential source of progenitor cells for clinical restoration of the alveolar defect. PMID:25368378

  9. Sclerostin is essential for alveolar bone loss in occlusal hypofunction

    PubMed Central

    XU, YANG; WANG, LUFEI; SUN, YAO; HAN, XIANGLONG; GAO, TIAN; XU, XIN; CHEN, TIAN; ZHAO, XUEFENG; ZENG, HUAN; WANG, YANMIN; BAI, DING

    2016-01-01

    Bone loss is caused by occlusal hypofunction and is a serious health concern. This is particularly true of tooth loss, which is common in the elderly. However, the cellular and molecular mechanisms underlying bone loss have yet to be fully elucidated. Sclerostin and Wnt/β-catenin signaling have previously been reported to serve important roles in regulating bone remodeling. Therefore, the present study aimed to investigate the involvement of sclerostin and Wnt/β-catenin signaling in occlusal hypofunction-induced alveolar bone remodeling. The unilateral maxillary molars of 14 male Sprague-Dawley rats were extracted in order to establish a model of occlusal hypofunction. For each rat, the non-extraction side was treated as the control group for comparisons with the extraction side. At 8 weeks after tooth extraction, the rats were sacrificed and alveolar bone specimens were harvested for X-ray radiography, micro-computed tomography (CT) and histological and immunohistochemical examinations. Bone loss and architecture deterioration were observed at the occlusal hypofunction side. The bone mineral density was markedly decreased and the ratio of bone volume to total volume was significantly decreased at the hypofunction side, as compared with the control side (P<0.001). In addition, the number of osteoclasts at the hypofunction side were significantly increased compared with that in the control side (P<0.001), as demonstrated using tartrate-resistant acid phosphatase staining. Furthermore, the protein expression levels of sclerostin and receptor activator of nuclear factor-κB ligand were increased, whereas those of β-catenin were decreased, at the hypofunction side when compared with the control side. In conclusion, the results of the present study suggested that occlusal hypofunction-induced bone loss may be associated with upregulated expression of sclerostin, which, in turn, may inhibit the activity of the Wnt/β-catenin signaling pathway. PMID:27168809

  10. Relationship between alveolar bone measured by /sup 125/I absorptiometry with analysis of standardized radiographs: 2. Bjorn technique

    SciTech Connect

    Ortman, L.F.; McHenry, K.; Hausmann, E.

    1982-05-01

    The Bjorn technique is widely used in periodontal studies as a standardized measure of alveolar bone. Recent studies have demonstrated the feasibility of using /sup 125/I absorptiometry to measure bone mass. The purpose of this study was to compare /sup 125/I absorptiometry with the Bjorn technique in detecting small sequential losses of alveolary bone. Four periodontal-like defects of incrementally increasing size were produced in alveolar bone in the posterior segment of the maxilla of a human skull. An attempt was made to sequentially reduce the amount of bone in 10% increments until no bone remained, a through and through defect. The bone remaining at each step was measured using /sup 125/I absorptiometry. At each site the /sup 125/I absorptiometry measurements were made at the same location by fixing the photon source to a prefabricated precision-made occlusal splint. This site was just beneath the crest and midway between the borders of two adjacent teeth. Bone loss was also determined by the Bjorn technique. Standardized intraoral films were taken using a custom-fitted acrylic clutch, and bone measurements were made from the root apex to coronal height of the lamina dura. A comparison of the data indicates that: (1) in early bone loss, less than 30%, the Bjorn technique underestimates the amount of loss, and (2) in advanced bone loss, more than 60% the Bjorn technique overestimates it.

  11. Bone printing: new frontiers in the treatment of bone defects.

    PubMed

    Arealis, Georgios; Nikolaou, Vasileios S

    2015-12-01

    Bone defects can be congenital or acquired resulting from trauma, infection, neoplasm and failed arthroplasty. The osseous reconstruction of these defects is challenging. Unfortunately, none of the current techniques for the repair of bone defects has proven to be fully satisfactory. Bone tissue engineering (BTE) is the field of regenerative medicine (RM) that focuses on alternative treatment options for bone defects that will ideally address all the issues of the traditional techniques in treating large bone defects. However, current techniques of BTE is laborious and have their own shortcomings. More recently, 2D and 3D bone printing has been introduced to overcome most of the limitations of bone grafts and BTE. So far, results are extremely promising, setting new frontiers in the management of bone defects. PMID:26747913

  12. An automatic early stage alveolar-bone-resorption evaluation method on digital dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Katsumata, Akitoshi; Muramatsu, Chisako; Hara, Takeshi; Suzuki, Hiroki; Fujita, Hiroshi

    2014-03-01

    Periodontal disease is a kind of typical dental diseases, which affects many adults. The presence of alveolar bone resorption, which can be observed from dental panoramic radiographs, is one of the most important signs of the progression of periodontal disease. Automatically evaluating alveolar-bone resorption is of important clinic meaning in dental radiology. The purpose of this study was to propose a novel system for automated alveolar-bone-resorption evaluation from digital dental panoramic radiographs for the first time. The proposed system enables visualization and quantitative evaluation of alveolar bone resorption degree surrounding the teeth. It has the following procedures: (1) pre-processing for a test image; (2) detection of tooth root apices with Gabor filter and curve fitting for the root apex line; (3) detection of features related with alveolar bone by using image phase congruency map and template matching and curving fitting for the alveolar line; (4) detection of occlusion line with selected Gabor filter; (5) finally, evaluation of the quantitative alveolar-bone-resorption degree in the area surrounding teeth by simply computing the average ratio of the height of the alveolar bone and the height of the teeth. The proposed scheme was applied to 30 patient cases of digital panoramic radiographs, with alveolar bone resorption of different stages. Our initial trial on these test cases indicates that the quantitative evaluation results are correlated with the alveolar-boneresorption degree, although the performance still needs further improvement. Therefore it has potential clinical practicability.

  13. Are Panoramic Radiographs Reliable to Diagnose Mild Alveolar Bone Resorption?

    PubMed Central

    Semenoff, Larissa; Semenoff, Tereza Aparecida Delle; Pedro, Fabio Luiz Miranda; Volpato, Evaristo Ricci; Machado, Maria Aparecida de Andrade Moreira; Borges, Álvaro Henrique; Semenoff-Segundo, Alex

    2011-01-01

    It is extremely important to assess variations between the most used radiographs in dental practice, since minimum distortion on obtained images may change diagnosis, treatment plan, and prognosis for the patient. For this, the distance between the enamel-cementum junction and the alveolar bone crest was measured on conventional and digitized periapical, bitewing, and panoramic radiographs and compared among them. From a total of 1484 records, 39 sets of radiographs that fulfilled the inclusion criteria of the study sample were selected. The measurements were grouped according to the intensity of bone loss. Statistically significant difference was found in the averages of the measurements assessed in radiographs with absence of bone loss between conventional panoramic and periapical radiographs, between digitized panoramic and periapical radiographs and between digitized bitewing and panoramic radiographs. By analyzing the results of this work and considering the research protocol used, one can conclude that small losses in height of alveolar bone crest observed in panoramic radiographs should be cautiously evaluated, as they may be overestimated. PMID:21991470

  14. Are panoramic radiographs reliable to diagnose mild alveolar bone resorption?

    PubMed

    Semenoff, Larissa; Semenoff, Tereza Aparecida Delle; Pedro, Fabio Luiz Miranda; Volpato, Evaristo Ricci; Machado, Maria Aparecida de Andrade Moreira; Borges, Alvaro Henrique; Semenoff-Segundo, Alex

    2011-01-01

    It is extremely important to assess variations between the most used radiographs in dental practice, since minimum distortion on obtained images may change diagnosis, treatment plan, and prognosis for the patient. For this, the distance between the enamel-cementum junction and the alveolar bone crest was measured on conventional and digitized periapical, bitewing, and panoramic radiographs and compared among them. From a total of 1484 records, 39 sets of radiographs that fulfilled the inclusion criteria of the study sample were selected. The measurements were grouped according to the intensity of bone loss. Statistically significant difference was found in the averages of the measurements assessed in radiographs with absence of bone loss between conventional panoramic and periapical radiographs, between digitized panoramic and periapical radiographs and between digitized bitewing and panoramic radiographs. By analyzing the results of this work and considering the research protocol used, one can conclude that small losses in height of alveolar bone crest observed in panoramic radiographs should be cautiously evaluated, as they may be overestimated. PMID:21991470

  15. Cryopreserved cancellous bone allograft in periodontal intraosseous defects.

    PubMed

    Borghetti, A; Novakovitch, G; Louise, F; Simeone, D; Fourel, J

    1993-02-01

    The purpose of this study was to evaluate the potential of cryopreserved cancellous bone allograft (CCBA) in the treatment of intraosseous periodontal defects compared to surgical debridement alone (DEBR). Cancellous bone was procured from femur heads that had been extracted for hip prosthesis procedures and cryopreserved in liquid nitrogen (-196 degrees C) in a tissue bank. Ten patients without systemic disorders and advanced periodontal disease (at least 2 intraosseous defects) participated in this investigation. Measurements from the cemento-enamel junction were made after initial therapy for clinical attachment level; also gingival recession, probing pocket depth, plaque index, and gingival index and, at the time of surgery, alveolar crest height and osseous defect depth were measured. All measurements were repeated at 1 year-reentry. Sixteen defects were debrided and grafted (test sites) and 13 defects were debrided only (control sites). Soft tissue measurements showed no statistical differences between the 2 groups. Defect fill was significantly greater with CCBA (1.75 mm) than with DEBR (0.56 mm). Defect depth reduction was 2.06 mm for CCBA and 0.78 mm for DEBR. These values correspond to a percent-defect resolution of 60% for CCBA and 29% for DEBR. Hard tissue measurements showed significant differences between the 2 groups. CCBA seems to be effective in the short-term treatment of intraosseous periodontal defects. PMID:8433252

  16. Biological Events in Periodontal Ligament and Alveolar Bone Associated with Application of Orthodontic Forces

    PubMed Central

    Feller, L.; Khammissa, R. A. G.; Schechter, I.; Thomadakis, G.; Fourie, J.; Lemmer, J.

    2015-01-01

    Orthodontic force-induced stresses cause dynamic alterations within the extracellular matrix and within the cytoskeleton of cells in the periodontal ligament and alveolar bone, mediating bone remodelling, ultimately enabling orthodontic tooth movement. In the periodontal ligament and alveolar bone, the mechanically induced tensile strains upregulate the expression of osteogenic genes resulting in bone formation, while mechanically induced compressive strains mediate predominantly catabolic tissue changes and bone resorption. In this review article we summarize some of the currently known biological events occurring in the periodontal ligament and in the alveolar bone in response to application of orthodontic forces and how these facilitate tooth movement. PMID:26421314

  17. Changes in alveolar bone support induced by the Herbst appliance: a tomographic evaluation

    PubMed Central

    Schwartz, João Paulo; Raveli, Taisa Boamorte; Schwartz-Filho, Humberto Osvaldo; Raveli, Dirceu Barnabé

    2016-01-01

    ABSTRACT Objective: This study evaluated alveolar bone loss around mandibular incisors, induced by the Herbst appliance. Methods: The sample consisted of 23 patients (11 men, 12 women; mean age of 15.76 ± 1.75 years), Class II, Division 1 malocclusion, treated with the Herbst appliance. CBCT scans were obtained before treatment (T0) and after Herbst treatment (T1). Vertical alveolar bone level and alveolar bone thickness of mandibular incisors were assessed. Buccal (B), lingual (L) and total (T) bone thicknesses were assessed at crestal (1), midroot (2) and apical (3) levels of mandibular incisors. Student's t-test and Wilcoxon t-test were used to compare dependent samples in parametric and nonparametric cases, respectively. Pearson's and Spearman's rank correlation analyses were performed to determine the relationship of changes in alveolar bone thickness. Results were considered at a significance level of 5%. Results: Mandibular incisors showed no statistical significance for vertical alveolar bone level. Alveolar bone thickness of mandibular incisors significantly reduced after treatment at B1, B2, B3, T1 and significantly increased at L2. The magnitude of the statistically significant changes was less than 0.2 mm. The changes in alveolar bone thickness showed no statistical significance with incisor inclination degree. Conclusions: CBCT scans showed an association between the Herbst appliance and alveolar bone loss on the buccal surface of mandibular incisors; however, without clinical significance. PMID:27275621

  18. The microvascular osteocutaneous femur transplant for covering combined alveolar ridge and floor of the mouth defects: preliminary report.

    PubMed

    Gaggl, Alexander; Bürger, Heinz; Chiari, Friedrich Michael

    2008-04-01

    In this preliminary report, the surgical technique of an oral defect coverage using the microvascular osteocutaneous flap from the distal medial femur is described and three clinical cases are reported. The new flap was used for covering combined defects of the alveolar ridge and the neighboring floor of the mouth after tumor surgery and irradiation. The bone part of the flap was supplied by the descending genicular artery and the soft tissue part by their first emission-the saphenous artery. Anastomoses were performed between the common part of the flap pedicle and cervical arteries or veins. There were no severe complications or transplant loss. All patients were successfully treated with dental implants (n = 12) 4 to 6 months after ridge reconstruction. The microvascular osteocutaneous femur transplant can be used successfully in individual reconstruction of the alveolar ridge and the neighboring floor of the mouth after tumor resection. PMID:18454356

  19. Microtomography of the human tooth-alveolar bone complex

    NASA Astrophysics Data System (ADS)

    Dalstra, Michel; Cattaneo, Paolo M.; Beckmann, Felix; Sakima, Maurício T.; Lemor, Carsten; Laursen, Morten G.; Melsen, Birte

    2006-08-01

    In this study the structure of the adult human dentoalveolar process is examined using conventional and synchrotron radiation-based microtomography (SRμCT). Mandibular and maxillary segments containing two to five adjacent teeth were harvested at autopsy from 49 adult donors. These segments were embedded in blocks of methylmetacrylate and scanned using a conventional table-top μCT-scanner at a pixel size and slice thickness of 35 μm. A few segments were also scanned at a synchrotron facility at an initial pixel size of 16.4 μm, which was binned by a factor 2 to result in an effective voxel size of almost 32.8 μm. The three-dimensional reconstructions revealed how intricately the teeth are supported by the alveolar bone. Furthermore, this support is highly inhomogeneous with respect to the buccal, mesial, lingual and distal quadrants. Reflecting their various degrees of mineralization, tissues like bone, dentine, enamel and cementum, could well be identified, especially in the scans made with SRμCT. Despite comparable voxel sizes, the reconstructed data-sets obtained with conventional μCT were less detailed and somewhat fuzzy in appearance compared to the data-sets of SRμCT. However, for quantification of macroscopical features like the thickness of the alveolar wall or the presence of dehiscences/fenestrations this seemed sufficient.

  20. Prediction of the alveolar bone level after the extraction of maxillary anterior teeth with severe periodontitis

    PubMed Central

    2015-01-01

    Purpose After extraction, the alveolar bone tends to undergo atrophy in three-dimensions. The amount of alveolar bone loss in the horizontal dimension has been reported to be greater than the amount of bone loss in the vertical dimension, and is most pronounced in the buccal aspect. The aim of this study was to monitor the predictive alveolar bone level following the extraction of anterior teeth seriously involved with advanced chronic periodontitis. Methods This study included 25 patients with advanced chronic periodontitis, whose maxillary anterior teeth had been extracted due to extensive attachment loss more than one year before the study. Periapical radiographs were analyzed to assess the vertical level of alveolar bone surrounding the edentulous area. An imaginary line connecting the mesial and the distal ends of the alveolar crest facing the adjacent tooth was arbitrarily created. Several representative coordinates were established in the horizontal direction, and the vertical distance from the imaginary line to the alveolar crest was measured at each coordinate for each patient using image analysis software. Regression functions predicting the vertical level of the alveolar bone in the maxillary anterior edentulous area were identified for each patient. Results The regression functions demonstrated a tendency to converge to parabolic shapes. The predicted maximum distance between the imaginary line and the alveolar bone calculated using the regression function was 1.43±0.65 mm. No significant differences were found between the expected and actual maximum distances. Likewise, the predicted and actual maximum horizontal distances did not show any significant differences. The distance from the alveolar bone crest to the imaginary lines was not influenced by the mesio-distal spans of the edentulous area. Conclusions After extraction, the vertical level of the alveolar ridge increased to become closer to the reference line connecting the mesial and distal

  1. Reconstruction of Extended and Morphologically Varied Alveolar Ridge Defects with the Titanium Mesh Technique: Clinical and Dental Implants Outcomes.

    PubMed

    Lizio, Giuseppe; Mazzone, Noemi; Corinaldesi, Giuseppe; Marchetti, Claudio

    2016-01-01

    A sample of 24 patients with varied morphologic defects were treated with 34 titanium meshes and particulate bone and rehabilitated at least 8 to 9 months thereafter with the placement of 88 implants. Of the 34 meshes, 4 had to be removed before implant placement (11.76% total failure) and 20 were exposed due to soft tissue dehiscence (58.82% of complications): 4 (11.77%) prematurely (within 4 to 6 weeks) and 16 (47.05%) delayed (after 4 to 6 weeks), with no compromise in implant placement. None of the 88 implants was lost (100% implant survival), and 15 demonstrated increased bone loss, yielding a cumulative implant success rate of 82.9%. This technique appears useful in treating extended and morphologically varied alveolar defects. PMID:27560673

  2. Presurgical orthodontic decompensation alters alveolar bone condition around mandibular incisors in adults with skeletal Class III malocclusion

    PubMed Central

    Sun, Boyang; Tang, Jun; Xiao, Ping; Ding, Ying

    2015-01-01

    This study is to use cone beam computed tomography (CBCT) to acquire accurate radiographic images for alveolar bone in lower incisors and the change after presurgical orthodontic treatment. Seventeen patients with skeletal Class III malocclusion, ten normal occlusion subjects, and fifteen patients treated with orthodontic treatment and orthognathic surgery were included. CBCT images were obtained. The labial and lingual inclinations of mandibular incisors, the thickness of alveolar bone, the vertical alveolar height and root length were measured. Alveolar bone thickness at the apex in patients with skeletal Class III malocclusion was thinner than normal subjects. The vertical alveolar bone heights at labial and lingual sides in patients with skeletal Class III malocclusion were both reduced compared with normal subjects, especially at the labial side. There were statistically significant correlations between lower incisor inclination and alveolar bone morphology. After orthodontics, the incisors root apex was closer to the lingual side of alveolar bone. The alveolar bone thickness at apex was not statistically changed. The vertical alveolar bone heights at the labial and lingual sides were both significantly reduced especially the lingual side after presurgical orthodontic treatment. The root length was not significantly changed. In conclusion, the alveolar bone thickness at apex is thinner and the vertical alveolar height is reduced at the labial side. Forward movement of lower incisors during presurgical orthodontic treatment can render the lower incisors root apex closer to the lingual side and the vertical alveolar height is reduced. PMID:26550202

  3. A huge oral pyogenic granuloma with extensive alveolar bone loss and ‘sun-ray’ appearance mimicking a malignant tumour

    PubMed Central

    Thada, Smitha Rani; Pai, Keerthilatha M; Agarwal, Pankaj

    2014-01-01

    Pyogenic granuloma represents an exuberant connective tissue proliferation due to a chronic stimulus or injury. Aetiological factor for this lesion may sometimes be hard to identify, but the fact that it is usually located close to the gingival margin suggests that calculus, food materials and overhanging restorations are important irritants. It rarely grows more than 2 cm in diameter and usually does not cause any changes in the alveolar bone. We report an unusual case of pyogenic granuloma with unknown aetiology that presented as an extraordinarily large sessile bilobular lesion and showed a large radiographic defect in the alveolar bone with a sun-ray pattern. This kind of clinicoradiological appearance of pyogenic granuloma as presented in our case is rare and the first of its kind. PMID:24859551

  4. Long-term outcomes of the use of allogeneic, radiation-sterilised bone blocks in reconstruction of the atrophied alveolar ridge in the maxilla and mandible.

    PubMed

    Krasny, Marta; Krasny, Kornel; Fiedor, Piotr; Zadurska, Małgorzata; Kamiński, Artur

    2015-12-01

    Increasingly dental surgeons face the challenge of reconstruction of the height and/or thickness of the alveolar ridge as more and more patients wish to have permanent restoration of their dental defects based on intraosseous implants. Evaluation of human allogeneic bone tissue grafts in reconstruction of atrophied alveolar ridge as a pre-implantation procedure. The material comprised 21 patients aged 19-63, treated between 2009 and 2012 by the same surgeon. Restoration of bone tissue defects was performed with allogeneic, frozen, radiation-sterilised, corticocancellous blocks. The study included 26 grafting procedures with 7 procedures consisting in reconstruction of the alveolar ridge in the mandible and 19 in the maxilla. In all the cases the atrophied alveolar ridge was successfully reconstructed, which allowed placement of intraosseous implants in compliance with the initial treatment plan. After the treatment was completed the patients reported for follow-up annually. The average time of follow-up amounted to 39 months (28-50 months). None of the implants was lost during the follow-up period. There was one case of gingival recession causing aesthetics deterioration of the prosthetic restoration. In three cases the connector became unscrewed partially, which was corrected at the same visit. Frozen, radiation-sterilised, allogeneic bone blocks constitute good and durable bone-replacement material allowing effective and long-lasting reconstruction of the atrophied alveolar ridge to support durable, implant-based, prosthetic restoration. PMID:26162810

  5. Occlusal Disorders among Patients with Total Clefts of Lip, Alveolar Bone, and Palate

    PubMed Central

    Paradowska-Stolarz, Anna

    2014-01-01

    Clefts are common birth defects. They are accompanied by various malformations, including disturbances in facial look as well as skeletal disorders that include malocclusions, most frequently crossbites and class III anomalies. The aim of the study was to present the commonest malocclusions in patients with total cleft of the lip, alveolar bone and palate (n = 154) and compare the results to the healthy on-cleft patients (n = 151). Normal occlusion, characteristic for I angle class, was observed in 50% of the control group and 30% of the examined. In the examined patients with clefts, most frequently crossbite and open bite on the cleft side was observed. In patients with clefts, only 2 out of 154 patients presented isolated dental anomalies. In healthy individuals the commonest occlusal disorder was distal occlusion and dental anomalies. The commonest malocclusions among patients with clefts are crossbites and class III malocclusions. PMID:24982898

  6. Contour changes in human alveolar bone following tooth extraction of the maxillary central incisor

    PubMed Central

    Li, Bei; Wang, Yao

    2014-01-01

    The purpose of this study was to apply cone-beam computed tomography (CBCT) to observe contour changes in human alveolar bone after tooth extraction of the maxillary central incisor and to provide original morphological evidence for aesthetic implant treatment in the maxillary anterior area. Forty patients were recruited into the study. Each patient had two CBCT scans (CBCT I and CBCT II), one taken before and one taken three months after tooth extraction of maxillary central incisor (test tooth T). A fixed anatomic reference point was used to orient the starting axial slice of the two scans. On three CBCT I axial slices, which represented the deep, middle, and shallow layers of the socket, labial and palatal alveolar bone widths of T were measured. The number of sagittal slices from the start point to the pulp centre of T was recorded. On three CBCT II axial slices, the pulp centres of extracted T were oriented according to the number of moved sagittal slices recorded in CBCT I. Labial and palatal alveolar bone widths at the oriented sites were measured. On the CBCT I axial slice which represented the middle layer of the socket, sagittal slices were reconstructed. Relevant distances of T on the sagittal slice were measured, as were the alveolar bone width and tooth length of the opposite central incisor. On the CBCT II axial slice, which represented the middle layer of the socket, relevant distances recorded in CBCT I were transferred on the sagittal slice. The height reduction of alveolar bone on labial and palatal sides was measured, as were the alveolar bone width and tooth length of the opposite central incisor at the oriented site. Intraobserver reliability assessed by intraclass correlation coefficients (ICCs) was high. Paired sample t-tests were performed. The alveolar bone width and tooth length of the opposite central incisor showed no statistical differences (P<0.05). The labial alveolar bone widths of T at the deep, middle, and shallow layers all showed

  7. Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano-hydroxyapatite and collagen

    PubMed Central

    Wang, Yan-Fu; Wang, Cheng-Yue; Wan, Peng; Wang, Shao-Gang; Wang, Xiu-Mei

    2016-01-01

    To study the effect of two composition ratios of nano-hydroxyapatite and collagen (NHAC) composites on repairing alveolar bone defect of dogs. Eighteen healthy adult dogs were randomly divided into three groups. Two kinds of the NHAC composites were prepared according to the constituent ratios of 3:7 and 5:5; immediately after extraction of the mandibular second premolars, each kind of the NHAC composite was implanted into extraction socket, respectively: Group I, nHA/Col = 3:7; Group II, nHA/Col = 5:5 and Group III, blank control group. The bone-repairing ability of the two grafts was separately analyzed by morphometric measurement, X-ray tomography examination and biomechanical analysis at 1st, 3rd and 6th month post-surgical, respectively. The NHAC composites were absorbed gradually after implanting into alveolar bone defect and were replaced by new bone. The ratios of new bone formation of Group I was significantly higher than that of Group II after 3 months (P < 0.05). The structure and bioactive performance can be improved when the ratio between the collagen and the hydroxyapatite was reasonable, and the repairing ability and effect in extraction sockets are obviously better. PMID:26816654

  8. Effects of oestrogen deficiency on the alveolar bone of rats with experimental periodontitis

    PubMed Central

    XU, XIN-CHEN; CHEN, HUI; ZHANG, XI; ZHAI, ZAN-JING; LIU, XU-QIANG; ZHENG, XIN-YI; ZHANG, JUN; QIN, AN; LU, ER-YI

    2015-01-01

    Periodontitis is an inflammatory disease characterized by loss of connective tissue and alveolar bone, and osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture. To date, the association between periodontitis and osteoporosis has remained to be fully elucidated. In the present study, an experimental rat model of periodontitis was used to explore the effects of oestrogen deficiency-induced osteoporosis on the maxillary alveolar bone. Forty-four female, six-month-old Sprague-Dawley rats were randomly divided into four groups: Control, ligature, ovariectomized (OVX), and OVX + ligature. One month after ovariectomy, rats in the ligature and OVX + ligature groups received ligatures on their first and second maxillary molars for 1 month. Fluorescent labelling was performed prior to sacrificing the animals. At the end of the experiment, the maxillae and serum were collected and subjected to micro-computed tomography analysis, confocal laser-scanning microscopic observation, Van Gieson's fuchsin staining, tartrate-resistant acid phosphatase staining and ELISA. Ligatures slightly reduced the alveolar bone mineral density (BMD) and bone formation rate, but significantly reduced alveolar crest height (ACH). Ovariectomy reduced the alveolar BMD, impaired the trabecular structure, reduced the bone formation rate and increased the serum levels of bone resorption markers. Animals in the OVX + ligature group exhibited a lower alveolar BMD, a poorer trabecular structure, a reduced ACH, a lower bone formation rate and higher serum levels of bone resorption markers compared with those in the control group. The results of the present study showed that ovariectomy enhanced alveolar bone loss and reduced the ACH of rats with experimental periodontitis. Thus, post-menopausal osteoporosis may influence the progression of periodontitis. PMID:26035209

  9. Injectable bone substitute to preserve alveolar ridge resorption after tooth extraction: a study in dog

    PubMed Central

    Boix, Damien; Weiss, Pierre; Gauthier, Olivier; Guicheux, Jérôme; Bouler, Jean-Michel; Pilet, Paul; Daculsi, Guy; Grimandi, Gaël

    2006-01-01

    The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute on the prevention of alveolar ridge resorption after tooth extraction. Maxillary and mandibular premolars were extracted from 3 Beagle dogs with preservation of alveolar bone. Thereafter, distal sockets were filled with an injectable bone substitute (IBS), obtained by combining a polymer solution and granules of a biphasic calcium phosphate (BCP) ceramic. As a control, the mesial sockets were left unfilled. After a 3 months healing period, specimens were removed and prepared for histomorphometric evaluation with image analysis. Histomorphometric study allowed to measure the mean and the maximal heights of alveolar crest modifications. Results always showed an alveolar bone resorption in unfilled sockets. Resorption in filled maxillary sites was significantly lower than in control sites. Interestingly, an alveolar ridge augmentation was measured in mandibular filled sockets including 30 % of newly-formed bone. It was concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate can significantly increase alveolar ridge preservation after tooth extraction. PMID:17122930

  10. [Prevention of osteoporosis by foods and dietary supplements. Milk basic protein (MBP) induces alveolar bone formation in rat experimental periodontitis].

    PubMed

    Seto, Hiroyuki; Nagata, Toshihiko

    2006-10-01

    Periodontitis is a chronic inflammatory disease caused by infection of periodontopathic bacteriae, which induced alveolar bone resorpotion. Milk basic protein (MBP) has been reported to be useful as a supplement because of increasing bone formation in animal and human studies. We examined the effect of MBP for alveolar bone formation in rat experimental periodontitis. After alveolar bone resorption was induced by ligature technique, the diets containing low and high dose of MBP were given to rats for 90 days. Micro-focus computed tomography and histological observation revealed a recovery of alveolar bone in high-dose MBP group compared to the control group. Osteoid thickness of alveolar bone crest significantly increased in low and high-dose MBP groups. These findings indicate that MBP may be effective for the recovery of alveolar bone resorption in periodontitis. PMID:17012815

  11. Dental implants placed on bone subjected to vertical alveolar distraction show the same performance as those placed on primitive bone

    PubMed Central

    León-Camacho, María A.; Somoza-Martín, José M.; Fernández-González, Beatriz; Blanes-Vázquez-Gundín, Silvia; Gándara-Rey, José M.; García-García, Abel

    2013-01-01

    Introduction: Vertical osteogenic alveolar distraction (VOAD) allows for the augmentation of the alveolar ridge for the placement of dental implants in atrophic alveolar ridges. The goal of this paper is to assess long-term peri-implant bone resorption in implants placed on bones subjected to VOAD, comparing it with a group of patients who had implants placed directly on the alveolar bone without previous bone regeneration. Material and Methods: We conducted a follow-up study on 32 patients who were divided into two groups: The Distraction Group (14 patients), and the Distraction-Free Group (18 patients), who received a total of 100 implants. Peri-implant bone loss was measured by means of panoramic X-rays, at the time of loading and one year later, and in 35 implants of each group after 3 years of functional loading. Results: The peri-implant bone resorption (PBR) average observed in the Distraction Group at the time of prosthetic placement is higher (0.50±0.09 mm) than in the Distraction-Free Group (0.25±0.06 mm), showing statistically significant results (p=0.047). PBR levels 1 year after loading were the same for both groups (0.66 mm). At 3 years, they were higher in the Distraction Group (1.03 ± 0.22 mm vs. 0.68 ± 0.08 mm). Key words:Bone resorption, alveolar distraction osteogenesis, dental implants. PMID:23524476

  12. USE OF BIOCERAMICS IN FILLING BONE DEFECTS

    PubMed Central

    Garrido, Carlos Antõnio; Sampaio, Tania Clarete Fonseca Vieira Sales

    2015-01-01

    Objective: To present the results from using biological ceramics for filling bone defects resulting from post-traumatic or orthopedic injuries. Methods: Thirty-six patients with bone defects caused by trauma or orthopedic injury were evaluated. Nineteen patients were male (52.8%) and 17 were female (47.2%). Their ages ranged from 19 to 84 years, with a mean of 45.7 years and median of 37 years. Only patients with defects that required at least five grams of biological ceramic were included. Eighteen cases were classified as orthopedic: bone defects were observed in 11 cases of total hip arthroplasty; one case of primary total hip arthroplasty, due to coxarthrosis; five cases of femoral or tibial open wedge osteotomy; and one case of tarsal arthrodesis. There were 18 cases of trauma-related defects; uninfected pseudarthrosis, eight cases; recent fractures of the tibial plateau with compression of the spongy bone, three cases; and exposed fractures treated with external fixators, seven cases. The surgical technique consisted of curetting and debriding the injury until bone suitable for grafting was found. Biological ceramic was then used to fill the defect and some kind of fixation was applied. Results: Among the 36 patients evaluated, it was seen that 35 (97.2%) presented integration of the biological ceramic, while one case of open fracture treated with external fixation had poor integration of the biological ceramic. Conclusion: Treatment of bone defects of orthopedic or post-traumatic etiology using a phosphocalcium ceramic composed of hydroxyapatite was shown to be a practical, effective and safe method. PMID:27022576

  13. Osteogenic Profile of Mesenchymal Cell Populations Contributing to Alveolar Bone Formation.

    PubMed

    Minaříková, Monika; Oralová, Veronika; Veselá, Barbora; Radlanski, Ralf J; Matalová, Eva

    2015-01-01

    Teeth develop within the surrounding periodontal tissues, involving the alveolar bone, periodontal ligament and cementum. The alveolar bone originates through the process of intramembranous ossification involving mesenchymal cells from the tooth germ. As most available data are related to endochondral ossification, we examined the molecular background of alveolar bone development. We investigated the osteogenic profile of mesenchymal cells dissected from mouse mandible slices at the stage of early alveolar bone formation. Relative monitoring of gene expression was undertaken using PCR Arrays; this included the profiles of 84 genes associated with osteogenesis. To examine the tooth-bone interface, stages with detectable changes in bone remodelling during development (E13.0, E14.0 and E15.0) were chosen and compared with each other. These results showed a statistically significant increase in the expression of the genes Fgf3, Ctsk, Icam-1, Mmp9, Itga3 and Tuft1, and of a wide range of collagens (Col1a2, Col3a1, Col7a1, Col12a1, Col14a1). Decreased expression was detected in the case of Col2a1, Sox9, Smad2 and Vegfb. To confirm these changes in gene expression, immunofluorescence analyses of Mmp9 and Sox9 proteins were performed in situ. Our research has identified several candidate genes that may be crucial for the initiation of alveolar bone formation and is the basis for further functional studies. PMID:26451912

  14. Immunohistochemical localization of tenascin-C in rat periodontal ligament with reference to alveolar bone remodeling.

    PubMed

    Sato, Rei; Fukuoka, Hiroki; Yokohama-Tamaki, Tamaki; Kaku, Masaru; Shibata, Shunichi

    2016-03-01

    We investigated the immunohistochemical localization of tenascin-C in 8-week-old rat periodontal ligaments. Tenascin-C immunoreactivity was detected in zones along with cementum and alveolar bone, and more intensely on the resorption surface of alveolar bone than on the formation surface. On the resorbing surface, tenascin-C immunoreactivity was detected in Howship's lacunae without osteoclasts, and in the interfibrous space of the periodontal ligaments, indicating that this molecule works as an adhesion molecule between bone and fibers of periodontal ligaments. Upon experimental tooth movement by inserting elastic bands (Waldo method), the physiological resorption surface of alveolar bone under compressive force showed enhanced bone resorption and enhanced tenascin-C immunoreactivity. However, on the physiological bone formation surface under compressive force, bone resorption was seen only occasionally, and no enhanced tenascin-C immunoreactivity was noted. In an experiment involving excessive occlusal loading to rat molars, transient bone resorption occurred within interradicular septa, but no enhanced tenascin-C immunoreactivity was seen in the periodontal ligaments. These results indicate that tenascin-C works effectively on the bone resorbing surface of physiological alveolar bone remodeling sites, rather than on the non-physiological transient bone resorbing surface. Fibronectin immunoreactivity was distributed evenly in the periodontal ligaments under experimental conditions. Co-localization of tenascin-C and fibronectin immunoreactivity was observed in many regions, but mutually exclusive expression patterns were also seen in some regions, indicating that fibronectin might not be directly involved in alveolar bone remodeling, but may play a role via interaction with tenascin-C. PMID:25957016

  15. Diffuse pulmonary uptake of bone-seeking radiotracer in bone scintigraphy of a rare case of pulmonary alveolar microlithiasis

    PubMed Central

    Fallahi, Babak; Ghafary, Bahar Moasses; Fard-Esfahani, Armaghan; Eftekhari, Mohammad

    2015-01-01

    Pulmonary alveolar microlithiasis (PAM) is a rare diffuse pulmonary disease representing microliths formed by deposition of calcium phosphonate in the alveolar airspaces. PAM is often diagnosed incidentally during chest X-ray imaging. Most of them are asymptomatic. We present a 39-year-old man referring for a bone scan due to a complaint of right leg pain. Bone scan showed diffuse uptake of bone-seeking radiotracer on both lung fields predominantly in basal regions. The bronchoalveolar lavage test confirmed the diagnosis of PAM. PMID:26170578

  16. Effect of odanacatib on root resorption and alveolar bone metabolism during orthodontic tooth movement.

    PubMed

    Wei, X X; Chu, J P; Zou, Y Z; Ru, N; Cui, S X; Bai, Y X

    2015-01-01

    The aim of this study was to investigate the effect of local administration of odanacatib (ODN) on orthodontic root resorption and the status of alveolar bone metabolism in rat molars. All specimens were scanned using microcomputed tomography and then the raw images were reconstructed. The total volume of the root resorption craters of the 60 g-NS (normal saline) group was higher than in the 60 g-ODN group and the control group. In the 60 g-NS group, the bone volume fraction values of alveolar bone were significantly decreased compared with the other 2 groups. There were no significant differences in the bone volume fraction values of the tibiae among the 3 groups. The results of tartrate-resistant acid phosphatase-positive (TRAP+) numbers showed that there was no difference between the 60 g-NS group and the 60 g-ODN group. The expression of cathepsin K was decreased significantly in the 60 g-ODN group. These results indicate that ODN reduces orthodontics-induced external root resorption and increases alveolar bone metabolism. This may be because ODN inhibits the activity of odontoclasts, but maintains the quantity of odontoclasts and enhances bone formation. ODN promotes local alveolar bone metabolism, but does not affect systemic bone metabolism. PMID:26782444

  17. Characteristics and prediction of the alveolar bone loss: essay of modeling.

    PubMed

    Ruquet, M; Bonfil, J J; Tardivo, D; Tavitian, P; Sastre, J; Tosello, A; Foti, B

    2009-12-01

    The alveolar bone loss is a phenomenon which intervenes throughout the life and which can be aggravated by the action of individual and behavioural factors. From this observation we shall try to characterize it and to propose formulas of prediction of the alveolar bone loss according to the age of the patient. We shall expose an analysis of factors bound to the alveolar bone loss and propose a modeling of the alveolar bone loss according to the age in an essentially predictive purpose. The methodology is based on the medical exploitation of CT-dentascanners and medical questionnaire as well as administrative questionnaire used in odontology. Measures of the distance ECJ and the summit of crest are made on the radiology and the individual factors and behavioural factors are scored. The descriptive analysis of the data allowed us to characterize the phenomenon of alveolar bone loss in a therapeutic purpose. The statistical treatment of these data will establish various models according to gender. The described method is simple and its applications seem numerous in the several domains: prevention, improvement of prosthetic and periodontal therapeutics. PMID:20614694

  18. Rhizoma Dioscoreae extract protects against alveolar bone loss in ovariectomized rats via microRNAs regulation.

    PubMed

    Zhang, Zhiguo; Song, Changheng; Zhang, Fangzhen; Xiang, Lihua; Chen, Yanjing; Li, Yan; Pan, Jinghua; Liu, Hong; Xiao, Gary Guishan; Ju, Dahong

    2015-01-01

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats underwent either ovariectomy or sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX), estradiol valerate (EV), or RDE. After treatments, the bone mineral density (BMD) and the three-dimensional microarchitecture of the alveolar bone were analyzed to assess bone mass. Microarrays were used to evaluate microRNA expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of microRNAs was validated using real-time quantitative RT-PCR (qRT-PCR), and the target genes of validated microRNAs were predicted and further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using qRT-PCR. Our results show that RDE inhibits alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 8 microRNAs and downregulated expression levels of 8 microRNAs in the alveolar bone in the microarray analysis. qRT-PCR helped validate 13 of 16 differentially expressed microRNAs, and 114 putative target genes of the validated microRNAs were retrieved. The IPA showed that these putative target genes had the potential to code for proteins that were involved in the transforming growth factor (TGF)-β/bone morphogenetic proteins (BMPs)/Smad signaling pathway (Tgfbr2/Bmpr2, Smad3/4/5, and Bcl-2) and interleukin (IL)-6/oncostatin M (OSM)/Jak1/STAT3 signaling pathway (Jak1, STAT3, and Il6r). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may involve the simultaneous inhibition of bone formation and bone resorption, which is associated with modulation of the TGF-β/BMPs/Smad and the IL-6/OSM/Jak1/STAT3 signaling pathways via microRNA regulation. PMID

  19. Rhizoma Dioscoreae Extract Protects against Alveolar Bone Loss in Ovariectomized Rats via microRNAs Regulation

    PubMed Central

    Zhang, Zhiguo; Song, Changheng; Zhang, Fangzhen; Xiang, Lihua; Chen, Yanjing; Li, Yan; Pan, Jinghua; Liu, Hong; Xiao, Gary Guishan; Ju, Dahong

    2015-01-01

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats underwent either ovariectomy or sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX), estradiol valerate (EV), or RDE. After treatments, the bone mineral density (BMD) and the three-dimensional microarchitecture of the alveolar bone were analyzed to assess bone mass. Microarrays were used to evaluate microRNA expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of microRNAs was validated using real-time quantitative RT-PCR (qRT-PCR), and the target genes of validated microRNAs were predicted and further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using qRT-PCR. Our results show that RDE inhibits alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 8 microRNAs and downregulated expression levels of 8 microRNAs in the alveolar bone in the microarray analysis. qRT-PCR helped validate 13 of 16 differentially expressed microRNAs, and 114 putative target genes of the validated microRNAs were retrieved. The IPA showed that these putative target genes had the potential to code for proteins that were involved in the transforming growth factor (TGF)-β/bone morphogenetic proteins (BMPs)/Smad signaling pathway (Tgfbr2/Bmpr2, Smad3/4/5, and Bcl-2) and interleukin (IL)-6/oncostatin M (OSM)/Jak1/STAT3 signaling pathway (Jak1, STAT3, and Il6r). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may involve the simultaneous inhibition of bone formation and bone resorption, which is associated with modulation of the TGF-β/BMPs/Smad and the IL-6/OSM/Jak1/STAT3 signaling pathways via microRNA regulation. PMID

  20. The Effects of Tooth Extraction on Alveolar Bone Biomechanics in the Miniature Pig, Sus scrofa

    PubMed Central

    Yeh, K.; Popowics, T.; Rafferty, K.; Herring, S.; Egbert, M.

    2010-01-01

    Objective This study investigated the role of occlusion in the development of biomechanical properties of alveolar bone in the miniature pig, Sus scrofa. The hypothesis tested was that the tissues supporting an occluding tooth would show greater stiffness and less strain than that of a non-occluding tooth. Design Maxillary teeth opposing the erupting lower first molar (M1) were extracted on one side. Occlusion developed on the contralateral side. Serially administered fluorochrome labels tracked bone mineralization apposition rate (MAR). A terminal experiment measured in vivo buccal alveolar bone strain on occluding and non-occluding sides during mastication. Ex vivo alveolar strains during occlusal loading were subsequently measured using a materials testing machine (MTS/Sintech). Whole specimen stiffness and principal strains were calculated. Results MAR tended to be higher on the extraction side during occlusion. In vivo buccal shear strains were higher in the alveolar bone of the occluding side vs. the extraction side (mean of 471με vs. 281με, respectively; p=0.04); however, ex vivo shear strains showed no significant differences between sides. Stiffness differed between extraction and occlusion side specimens, significantly so in the low load range (344 vs. 668MPa, respectively; p=0.04). Conclusions Greater in vivo shear strains may indicate more forceful chews on the occluding side, whereas the similarity in ex vivo bone strain magnitude suggests a similarity in alveolar bone structure and occlusal load transmission regardless of occlusal status. The big overall change in specimen stiffness that was observed was likely attributable to differences in the periodontal ligament rather than alveolar bone. PMID:20580345

  1. Myricetin Prevents Alveolar Bone Loss in an Experimental Ovariectomized Mouse Model of Periodontitis

    PubMed Central

    Huang, Jialiang; Wu, Chuanlong; Tian, Bo; Zhou, Xiao; Ma, Nian; Qian, Yufen

    2016-01-01

    Periodontitis is a common chronic inflammatory disease, which leads to alveolar bone resorption. Healthy and functional alveolar bone, which can support the teeth and enable their movement, is very important for orthodontic treatment. Myricetin inhibited osteoclastogenesis by suppressing the expression of some genes, signaling pathways, and cytokines. This study aimed to investigate the effects of myricetin on alveolar bone loss in an ovariectomized (OVX) mouse model of periodontitis as well as in vitro osteoclast formation and bone resorption. Twenty-four healthy eight-week-old C57BL/J6 female mice were assigned randomly to four groups: phosphate-buffered saline (PBS) control (sham) OVX + ligature + PBS (vehicle), and OVX + ligature + low or high (2 or 5 mg∙kg−1∙day−1, respectively) doses of myricetin. Myricetin or PBS was injected intraperitoneally (i.p.) every other day for 30 days. The maxillae were collected and subjected to further examination, including micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, and tartrate-resistant acid phosphatase (TRAP) staining; a resorption pit assay was also performed in vitro to evaluate the effects of myricetin on receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclastogenesis. Myricetin, at both high and low doses, prevented alveolar bone resorption and increased alveolar crest height in the mouse model and inhibited osteoclast formation and bone resorption in vitro. However, myricetin was more effective at high dose than at low dose. Our study demonstrated that myricetin had a positive effect on alveolar bone resorption in an OVX mouse model of periodontitis and, therefore, may be a potential agent for the treatment of periodontitis and osteoporosis. PMID:27011174

  2. GBR and autogenous cortical bone particulate by bone scraper for alveolar ridge augmentation: a 2-case report.

    PubMed

    Trombelli, Leonardo; Farina, Roberto; Marzola, Andrea; Itro, Angelo; Calura, Giorgio

    2008-01-01

    Scientific literature describes autogenous bone as the gold standard among graft materials for alveolar reconstructive procedures. Alveolar ridge augmentation has been clinically achieved with different forms of autogenous bone, including autogenous cortical bone particulate (ACBP). However, few histologic studies demonstrating the biologic potential and healing dynamics following the use of ACBP are currently available. This case report presents 2 patients in whom atrophic edentulous alveolar crests were submitted to a vertical/lateral ridge augmentation prior to implant placement. The technique was performed through the use of a titanium-reinforced expanded polytetrafluoroethylene (e-PTFE) membrane with an ACBP graft obtained from the retromolar region with a specially designed bone scraper. Bone biopsy specimens were harvested at 9 months after graft placement. Analysis of the reconstructed bone revealed bone with a lamellar quality characterized by a mature osteonic structure. Sparse particles of grafted bone were evident in direct contact with the regenerated bone. Marrow spaces showed a normal stromal component with limited grafted particles. PMID:18416419

  3. Correlation of vermilion symmetry to alveolar cleft defect in unilateral cleft lip repair.

    PubMed

    Bonanthaya, K; Rao, D D; Shetty, P; Uguru, C

    2016-06-01

    Asymmetry is a major problem in repaired unilateral cleft lip (UCL). One of the important manifestations of this is the asymmetry of the vermilion. The aim of this study was to correlate the severity of the asymmetry in the vermilion to the size of the alveolar defect. Twenty patients aged between 6 and 18 months with complete unilateral cleft lip, alveolus, and palate were included. An impression of each patient's alveolus at the time of cheiloplasty was taken using silicon rubber base material, and a study cast was prepared. The width of the cleft alveolus was measured on these casts using a transparent grid. Frontal photographs were taken at 6 months postoperative and vermilion symmetry was measured as the ratio between the cleft and non-cleft sides. The results obtained in this study showed a direct correlation between the size of the alveolar defect and the vermilion symmetry in repaired UCL. The wider the cleft alveolus and greater the antero-posterior discrepancy, the greater is the vermilion asymmetry. The asymmetry of the vermilion in UCL after repair is directly dependent on the size of the alveolar defect. The alveolar discrepancy causes 'in-rolling' of the vermilion on the cleft side and affects the vermilion symmetry. PMID:26754270

  4. Peptide-induced de novo bone formation after tooth extraction prevents alveolar bone loss in a murine tooth extraction model.

    PubMed

    Arai, Yuki; Aoki, Kazuhiro; Shimizu, Yasuhiro; Tabata, Yasuhiko; Ono, Takashi; Murali, Ramachandran; Mise-Omata, Setsuko; Wakabayashi, Noriyuki

    2016-07-01

    Tooth extraction causes bone resorption of the alveolar bone volume. Although recombinant human bone morphogenetic protein 2 (rhBMP-2) markedly promotes de novo bone formation after tooth extraction, the application of high-dose rhBMP-2 may induce side effects, such as swelling, seroma, and an increased cancer risk. Therefore, reduction of the necessary dose of rhBMP-2 which can still obtain sufficient bone mass is necessary by developing a new osteogenic reagent. Recently, we showed that the systemic administration of OP3-4 peptide, which was originally designed as a bone resorption inhibitor, had osteogenic ability both in vitro and in vivo. This study evaluated the ability of the local application of OP3-4 peptide to promote bone formation in a murine tooth extraction model with a very low-dose of BMP. The mandibular incisor was extracted from 10-week-old C57BL6/J male mice and a gelatin hydrogel containing rhBMP-2 with or without OP3-4 peptide (BMP/OP3-4) was applied to the socket of the incisor. Bone formation inside the socket was examined radiologically and histologically at 21 days after the extraction. The BMP/OP3-4-group showed significant bone formation inside the mandibular extraction socket compared to the gelatin-hydrogel-carrier-control group or rhBMP-2-applied group. The BMP/OP3-4-applied mice showed a lower reduction of alveolar bone and fewer osteoclast numbers, suggesting that the newly formed bone inside the socket may prevent resorption of the cortical bone around the extraction socket. Our data revealed that OP3-4 peptide promotes BMP-mediated bone formation inside the extraction socket of mandibular bone, resulting in preservation from the loss of alveolar bone. PMID:27118173

  5. Bone mineral density, Bone mineral contents, MMP-8 and MMP-9 levels in Human Mandible and alveolar bone: Simulated microgravity

    NASA Astrophysics Data System (ADS)

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    Exposure to microgravity has been associated with several physiological changes in astronauts and cosmonauts, including an osteoporosis-like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in flights. There is no study on the correlation on effects of mandibular bone and alveolar bone loss in both sex in simulating microgravity. This study was designed to determine the Bone mineral density and GCF MMP-8 MMP-9 in normal healthy subject of both sexes in simulated microgravity condition of -6 head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers participated in three weeks 6 HDT bed-rest exposure. The Bone density and bone mineral contents were measured by dual energy X-ray absorptiometry before and in simulated microgravity. The GCF MMP-8 MMP-8 were measured by Enzyme-linked immunosorbent assays (Human Quantikine MMP-8,-9 ELISA kit). The bone mineral density and bone mineral contents levels were significantly decreased in simulated microgravity condition in both genders, although insignificantly loss was higher in females as compared to males. MMP-8 MMP-9 levels were significantly increased in simulated microgravity as compared to normal condition although insignificantly higher in females as compared to males. Further study is required on large samples size including all factors effecting in simulated microgravity and microgravity. Keys words-Simulated microgravity condition, head-down-tilt, Bone loss, MMP-8, MMP-9, Bone density, Bone mineral contents.

  6. Donor Site Evaluation: Anterior Iliac Crest Following Secondary Alveolar Bone Grafting

    PubMed Central

    Vura, Nandagopal; Reddy K., Rajiv; R., Sudhir; G., Rajasekhar; Kaluvala, Varun Raja

    2013-01-01

    Introduction: The use of autogenous bone graft for Secondary alveolar bone grafting is well established in the treatment of cleft lip and palate patients. Aims and Objectives: To evaluate post-operative morbidity of anterior iliac crest graft after secondary alveolar bone grafting in cleft patients. Material and Methods: Forty patients during the period from July 2008 to March 2013, who underwent secondary alveolar bone grafting by harvesting graft from anterior iliac crest in Mamata Dental Hospital, Khammam, Andhra Pradesh, India are included in the present study. Unilateral and bilateral cleft patients who had undergone secondary alveolar bone grafting (SABG) with anterior iliac crest as their donor site have been selected and post- operative complications from the surgery were evaluated with the help of a questionnaire which included pain, gait disturbances, numbness and scar problems (infection, irritation). Results: Patients who were operated gave maximum score for pain as 8 on visual analogue scale. No pain was observed in any of the cases after 8 days, gait disturbances were seen in all patients (limping) for 2-6 days, there was no post-operative numbness with all the patients returning to their routine in 6- 15 days and 90% of the patients gave a satisfied response towards scar. Conclusion: From the results in our study the morbidity after harvesting bone from iliac crest was found to be moderate to low, which had minimal complications and were well tolerated and greater acceptance from the patient. PMID:24392424

  7. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection

    PubMed Central

    Teng, Yen-Tung A.; Nguyen, Hai; Gao, Xuijuan; Kong, Young-Yun; Gorczynski, Reginald M.; Singh, Bhagirath; Ellen, Richard P.; Penninger, Josef M.

    2000-01-01

    Periodontitis, a prime cause of tooth loss in humans, is implicated in the increased risk of systemic diseases such as heart failure, stroke, and bacterial pneumonia. The mechanisms by which periodontitis and antibacterial immunity lead to alveolar bone and tooth loss are poorly understood. To study the human immune response to specific periodontal infections, we transplanted human peripheral blood lymphocytes (HuPBLs) from periodontitis patients into NOD/SCID mice. Oral challenge of HuPBL-NOD/SCID mice with Actinobacillus actinomycetemcomitans, a well-known Gram-negative anaerobic microorganism that causes human periodontitis, activates human CD4+ T cells in the periodontium and triggers local alveolar bone destruction. Human CD4+ T cells, but not CD8+ T cells or B cells, are identified as essential mediators of alveolar bone destruction. Stimulation of CD4+ T cells by A. actinomycetemcomitans induces production of osteoprotegerin ligand (OPG-L), a key modulator of osteoclastogenesis and osteoclast activation. In vivo inhibition of OPG-L function with the decoy receptor OPG diminishes alveolar bone destruction and reduces the number of periodontal osteoclasts after microbial challenge. These data imply that the molecular explanation for alveolar bone destruction observed in periodontal infections is mediated by microorganism-triggered induction of OPG-L expression on CD4+ T cells and the consequent activation of osteoclasts. Inhibition of OPG-L may thus have therapeutic value to prevent alveolar bone and/or tooth loss in human periodontitis. This article may have been published online in advance of the print edition. The date of publication is available from the JCI website, http://www.jci.org. J. Clin. Invest. 106:R59–R67 (2000). PMID:10995794

  8. Correlated characteristics of the jaws: association between torus mandibularis and marginal alveolar bone height.

    PubMed

    Eggen, S

    1992-02-01

    The factor marginal alveolar bone height and torus mandibularis (TM) were studied in 2 groups of dentate patients more than 20 years of age, altogether 571 individuals. Subgroups possessing TM had the higher prevalence of unimpaired bone height as compared with those without the trait (P less than 0.001). Different environmental factors considered, such as food habits, exposure to infection, oral hygiene habits, bruxism, access to professional dental care, and habits as to seeking dental treatment, did not seem to account for or to have any influence on the observed phenotypic correlation between TM and more favorable bone height. It was therefore suggested that TM and marginal bone seem to be influenced by common pleiotropic genes. It is hypothesized that future disclosure of the loci that regulate the capacity to develop TM at the same time may throw some light on the genetic contribution and mechanisms that tend to make the marginal alveolar bone more resistant to destructive agents. PMID:1566614

  9. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications

    PubMed Central

    Asa'ad, Farah; Giannì, Aldo Bruno; Giannobile, William V.; Rasperini, Giulio

    2016-01-01

    To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration. PMID:27366149

  10. Hyperactive lesions of gingiva associated with severe alveolar bone loss: A rare finding.

    PubMed

    Tripathi, Amitandra Kumar; Upadhaya, Vinod; Kumar, Vivek; Saimbi, C S

    2015-01-01

    Pyogenic granuloma (PG) is an inflammatory reactive hyperplasia of connective tissue. It usually arises in response to various stimuli such as low-grade local irritation, traumatic injury, hormonal factors or certain kinds of drugs. It predominantly occurs in the second decade of life in young females and rarely may cause significantly alveolar bone loss. It managed by conservative surgical excision and removal of causative irritants. This paper presents the case of a PG in a 55-year-old male with severe alveolar bone loss in the affected site, managed by surgical intervention. PMID:26097359

  11. The Impact of Occlusal Function on Structural Adaptation in Alveolar Bone of the Growing Pig, Sus Scrofa

    PubMed Central

    Yeh, Kuang-Dah; Popowics, Tracy Ellen

    2010-01-01

    Objectives This study investigated the effects of growth and tooth loading on the structural adaptation of the developing alveolar bone adjacent to the tooth root as the tooth erupted into function. Growth and occlusal function were expected to lead to increased alveolar bone density. Meanwhile, the supporting alveolar bone was expected to develop a dominant trabecular orientation (anisotropy) only after occlusal loading. Design Minipigs with erupting and occluding mandibular first molars (M1’s) were used to study the effects of growth and occlusal function on developing alveolar bone structure through comparison of alveolar bone surrounding M1’s. A second minipig model with one side upper opponent teeth extracted prior to occlusal contact with the M1 was raised until the non-extraction side M1’s developed full occlusal contact. The comparisons between extraction and non-extraction side M1 alveolar bone were used to emphasize the impact of occlusal loading on alveolar bone structure. Specimens were scanned on a Scanco Medical μCT 20 at a 22μm voxel resolution for structural analysis. Results With growth and occlusal function a distinct alveolar bone proper tended to develop immediately adjacent to the tooth root. The cancellous bone had thicker but fewer and more separated trabeculae after growth or occlusal loading. On the other hand, occlusal function did not lead to increased alveolar structural anisotropy. Conclusion During tooth eruption, growth and masticatory loads effect structural change in alveolar bone. The impact of occlusal function on cancellous bone anisotropy may need a more extensive period of time to demonstrate. PMID:20855059

  12. Rehabilitation of masticatory function improves the alveolar bone architecture of the mandible in adult rats.

    PubMed

    Mavropoulos, Anestis; Odman, Anna; Ammann, Patrick; Kiliaridis, Stavros

    2010-09-01

    Masticatory functional changes have been shown to influence the quantity and quality of the alveolar bone during growth. This study was designed to investigate the effect of masticatory function rehabilitation on the morphology and the trabecular architecture of the mandibular alveolar bone after cessation of growth. Forty-four Sprague-Dawley male rats received soft diet in order to develop masticatory muscle hypofunction. After 21 weeks, after cessation of growth, the animals were divided into two groups: the first group continued receiving soft diet for six more weeks (hypofunction group), while the second group changed to ordinary (hard) diet with the aim to restore a normal masticatory function (rehabilitation group). A third group of 16 male rats (normal group) received ordinary (hard) diet during the whole experimental period and served as control. Micro-tomographic histomorphometry was used to evaluate the architecture of the mandibular alveolar bone (e.g. bone volume fraction, trabecular thickness, trabecular separation, etc.) at the end of the experiment (27 weeks). The height and width of the alveolar process were measured as well. The alveolar process trabecular bone volume fraction (BV/TV) was lower for the animals of the hypofunctional group as compared to those of the normal (p<0.01) and the rehabilitation (p<0.05) groups. Despite the significant improvement observed in the rehabilitation group, their BV/TV was lower in comparison to the normal group (p<0.05) at the end of this experiment. All the other micro-tomographic parameters followed the same pattern of change between groups; values of the rehabilitation group were between the values of the two other groups, differing significantly from both of them. The alveolar process was significantly shorter in the normal group in comparison to both the hypofunctional and rehabilitation groups (p<0.05). On the other hand, both the normal and rehabilitation groups were had a wider alveolar process than the

  13. CBX7 deficiency plays a positive role in dentin and alveolar bone development.

    PubMed

    Zhou, Zhixuan; Yin, Ying; Jiang, Fei; Niu, Yuming; Wan, Shujian; Chen, Ning; Shen, Ming

    2016-08-01

    To clarify the role of CBX7 deficiency in dentin and alveolar bone development, the dental and mandibular phenotypes of homozygous CBX7-knockout (CBX7(-/-)) mice were compared with their wild-type (WT) counterparts at 3 weeks age. In contrast to WT littermates, dental volume and dentin sialoprotein-positive area were significantly increased, whereas the area ratio of predentin to dentin was decreased markedly in CBX7(-/-) mice. Mineral density, cortical thickness, alveolar bone volume, type I collagen and osterix-immunopositive area, osteoblast number and activity, protein expression and mRNA level of Runt-related transcription factor 2 (Runx2), alkaline phosphatase, osteocalcin, osteopontin and bone morphogenetic protein 2 (BMP2) were all remarkably increased, while osteoclast number and activity, and mRNA expression ratio of NF-κB ligand (RANKL) to osteoprotegerin (opg) were all decreased significantly in the alveolar bone of CBX7(-/-) mice compared with their WT counterparts. Moreover, proliferating cell nuclear antigen (PCNA)-positive cells were found more in Hertwig' s epithelial root sheath of CBX7(-/-) mice, and their protein level of cyclin E1, cyclin-dependent kinase 2 (CDK2) were correspondingly increased in contrast to WT mice. Taken together, these results of this study suggest that CBX7 deficiency plays a positive role in dentin and alveolar bone formation. PMID:27271093

  14. Nephrocalcinosis associated with continuous enamel hypoplasia and severe alveolar bone loss: a case report and literature review.

    PubMed

    Ashkenazi, Malka; Rafe, Zvi; Sarnat, Haim; Levin, Liran

    2014-01-01

    Enamel-renal syndrome (ERS) is a rare manifestation of nephrocalcinosis that has been associated with generalized enamel hypoplasia. The purpose of this paper was to describe, for the first time, the association of enamel-renal syndrome with severe localized periodontal bone loss. A 13-year-old boy presented with: generalized hypoplastic enamel; intrapulpal calcifications; retention of primary teeth; delayed eruption of permanent teeth; enlarged dental-follicles; misshaped roots of permanent teeth; gingival overgrowth; severe localized alveolar bone loss; and severe malocclusion. His parents were first cousins, suggesting autosomal recessive inheritance. Further studies are necessary to clarify whether the etiology of the oral disturbances relates to the genetic defect in the dental tissue or to the continuous metabolic distress associated with renal dysfunction. Nevertheless, since nephrocalcinosis is often asymptomatic, dentists should refer children with generalized enamel hypoplasia or/and multiple intrapulpal calcifications to nephrologists. PMID:24960394

  15. In-Vivo Effect of Andrographolide on Alveolar Bone Resorption Induced by Porphyromonas gingivalis and Its Relation with Antioxidant Enzymes

    PubMed Central

    Al Batran, Rami; Al-Bayaty, Fouad H.; Al-Obaidi, Mazen M. Jamil

    2013-01-01

    Alveolar bone resorption is one of the most important facts in denture construction. Porphyromonas gingivalis (Pg) causes alveolar bone resorption, and morphologic measurements are the most frequent methods to identify bone resorption in periodontal studies. This study has aimed at evaluating the effect of Andrographolide (AND) on alveolar bone resorption in rats induced by Pg. 24 healthy male Sprague Dawley rats were divided into four groups as follows: normal control group and three experimental groups challenged orally with Pg ATCC 33277 five times a week supplemented with 20 mg/kg and 10 mg/kg of AND for twelve weeks. Alveolar bones of the left and right sides of the mandible were assessed by a morphometric method. The bone level, that is, the distance from the alveolar bone crest to cementumenamel junction (CEJ), was measured using 6.1 : 1 zoom stereomicroscope and software. AND reduced the effect of Pg on alveolar bone resorption and decreased the serum levels of Hexanoyl-Lysine (HEL); furthermore the reduced glutathione/oxidised glutathione (GSH/GSSG) ratio in AND treated groups (10 and 20 mg/kg) significantly increased when compared with the Pg group (P < 0.05). We can conclude that AND suppresses alveolar bone resorption caused by Pg in rats. PMID:24151590

  16. In vitro culture and characterization of alveolar bone osteoblasts isolated from type 2 diabetics.

    PubMed

    Sun, Dao-Cai; Li, De-Hua; Ji, Hui-Cang; Rao, Guo-Zhou; Liang, Li-Hua; Ma, Ai-Jie; Xie, Chao; Zou, Gui-Ke; Song, Ying-Liang

    2012-06-01

    In order to understand the mechanisms of poor osseointegration following dental implants in type 2 diabetics, it is important to study the biological properties of alveolar bone osteoblasts isolated from these patients. We collected alveolar bone chips under aseptic conditions and cultured them in vitro using the tissue explants adherent method. The biological properties of these cells were characterized using the following methods: alkaline phosphatase (ALP) chemical staining for cell viability, Alizarin red staining for osteogenic characteristics, MTT test for cell proliferation, enzyme dynamics for ALP contents, radio-immunoassay for bone gla protein (BGP) concentration, and ELISA for the concentration of type I collagen (COL-I) in the supernatant. Furthermore, we detected the adhesion ability of two types of cells from titanium slices using non-specific immunofluorescence staining and cell count. The two cell forms showed no significant difference in morphology under the same culture conditions. However, the alveolar bone osteoblasts received from type 2 diabetic patients had slower growth, lower cell activity and calcium nodule formation than the normal ones. The concentration of ALP, BGP and COL-I was lower in the supernatant of alveolar bone osteoblasts received from type 2 diabetic patients than in that received from normal subjects (P < 0.05). The alveolar bone osteoblasts obtained from type 2 diabetic patients can be successfully cultured in vitro with the same morphology and biological characteristics as those from normal patients, but with slower growth and lower concentration of specific secretion and lower combining ability with titanium than normal ones. PMID:22473318

  17. A radiological evaluation of alveolar bone regeneration between the left and right mandibles and maxillae of the Chacma baboon.

    PubMed

    Kotze, Marthinus J; Bütow, Kurt-W; Olorunju, Steve A; Kotze, Harry F

    2016-01-01

    There is a lack of information in comparing the healing rate between the left and right sides of the maxilla and mandible. Osteogenesis of alveolar bone was evaluated with digital radiology by comparing differences in bone density (BD) at different time points within the left and right maxilla and mandible. Alveolar bone defects were created in five healthy Chacma baboons. Standardised x-ray images were acquired over time and the densities of the selected trauma areas were measured pre-operatively, post-operatively and at 3 and 6 weeks post-operatively. Differences in densities were statistically tested. There was no significant difference when the grey scale averages of the combined first and fourth quadrants (right side) and combined second and third quadrants (left side) were compared pre-operatively (t = 0.70), immediately post-operatively (t = 0.34), 3 weeks post-operatively (t = 0.40) and 6 weeks post-operatively (t = 0.66). There was also no significant difference between the values for the first and second quadrants (maxilla) pre-operatively (t = 0.37), immediately post-operatively (t = 0.30), 3 weeks post-operatively (t = 0.30) and 6 weeks post-operatively (t = 0.38); the third and fourth quadrants (mandible) were also not significantly different pre-operatively (t = 0.29), immediately post-operatively (t = 0.69), 3 weeks post-operatively (t = 0.07) and 6 weeks postoperatively (t = 0.06). However, the results showed an increased predisposition of the right side to regenerate faster than the left side and indicated sufficient information to investigate the effect of laterality and preferred side of mastication on the rate of healing and alveolar BD in the maxilla and mandible. PMID:27609459

  18. Comparative study between two techniques for alveolar bone loss assessment: A pilot study

    PubMed Central

    Lira-Júnior, Ronaldo; Freires, Irlan de Almeida; de Oliveira, Isabelle LinsMacêdo; da Silva, Ennyo Sobral Crispim; da Silva, SeverinoCelestino; de Brito, Roberto Lira

    2013-01-01

    Objective: To conduct a comparative study between two techniques for assessment of alveolar bone loss. Materials and Methods: Absolute and relative techniques were evaluated. The sample consisted of 16 radiographs supposed to meet a single criterion: The reference points applied (Cementum-enamel junction (CEJ) alveolar bone crest and root apex) should be visible. Bone height was measured in the selected radiographs as the percentage of root length through both techniques. Data were submitted to the Statistical Package for Social Science software. Results obtained by both methods were converted into bone loss index values and then categorized. Sensitivity and specificity of the relative technique, compared to the absolute technique, were calculated. Wilcoxon test and the Bland and Altman's method were employed for comparisons. Significance level was set at 5%. Results: For the absolute and relative techniques, means of bone loss index were respectively of 4.81 (±2.25) and 4.75 (±1.80). Bone loss index ≥6 (alveolar bone loss ≥50%) was found in 5 (31.2%) teeth, in the absolute technique, and in 4 (25%) teeth, according to the relative technique. There was no statistically significant difference between both methods (P>0.05). According to the Bland and Altman's method, it was verified a bias of 0.06, and limits of upper and lower agreement of, respectively, 1.58 and –1.45. Sensitivity of 0.8 and specificity of 1 were found for the relative technique compared to the absolute one. Conclusion: There was no significant difference between the techniques evaluated, and the relative technique was found to be reliable for measuring alveolar bone loss. PMID:23633780

  19. Are there specific indications for the different alveolar bone augmentation procedures for implant placement? A systematic review.

    PubMed

    Milinkovic, I; Cordaro, L

    2014-05-01

    Bone resorption following tooth loss often interferes with dental implant placement in a desired position, and requires additional bone augmentation procedures. Many techniques have been described to augment and reconstruct alveolar ridge width and height. The aim of this study was to systemically review whether there is evidence to provide indications for the various bone augmentation procedures based on defect dimension and type. An electronic search of the Medline database and Cochrane library, complemented by a manual search, was performed. Inclusion criteria for partial edentulism were: clinical trials on bone augmentation procedures in preparation or at the time of implant placement, reporting preoperative and postoperative dimensions of the ridge. For edentulous patients, studies were included when providing the data on ridge and defect description, or the amount of augmentation achieved. The search yielded 53 publications for partially edentulous patients and 15 publications for edentulous patients. The literature provides evidence that dehiscence and fenestrations can be treated successfully with guided bone regeneration (GBR) at the time of implant placement (mean implant survival rate (MISR) 92.2%, mean complication rate (MCR) 4.99%). In partially edentulous ridges, when a horizontal defect is present, procedures such as staged GBR (MISR 100%, MCR 11.9%), bone block grafts (MISR 98.4%, MCR 6.3%), and ridge expansion/splitting (MISR 97.4%, MCR 6.8%) have proved to be effective. Vertical defects can be treated with simultaneous and staged GBR (MISR 98.9%, MCR 13.1% and MISR 100%, MCR 6.95%, respectively), bone block grafts (MISR 96.3%, MCR 8.1%), and distraction osteogenesis (MISR 98.2%, MCR 22.4%). In edentulous patients, there is evidence that bone block grafts can be used (MISR 87.75%), and that Le Fort I osteotomies can be applied (MISR 87.9%), but associated with a high complication rate. The objective of extracting specific indications for each

  20. Alveolar bone regeneration for immediate implant placement using an injectable bone substitute: an experimental study in dogs

    PubMed Central

    Boix, Damien; Gauthier, Olivier; Guicheux, Jérôme; Pilet, Paul; Weiss, Pierre; Grimandi, Gaël; Daculsi, Guy

    2004-01-01

    Background The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute for bone regeneration around dental implants placed into fresh extraction sockets. Methods Third and fourth mandibular premolars were extracted from 3 Beagle dogs and the interradicular septa were surgically reduced to induce a mesial bone defect. Thereafter, immediate placements of titanium implants were performed. On the left side of the jaw, mesial bone defects were filled with an injectable bone substitute (IBS), obtained by combining a polymer and a biphasic calcium phosphate ceramic. As a control, the right defects were left unfilled. After 3 months of healing, specimens were prepared for histological and histomorphometric evaluations. Results No post surgical complication was observed during the healing period. In all experimental conditions, histological observations revealed a lamellar bone formation in contact with the implant. Histomorphometric analysis showed that IBS triggers a significant (p<0.05) increase in term of thread numbers in contact with bone (TN), bone-to-implant contact (BIC) and peri-implant bone density (PBD), of about 8.6%, 11.0% and 14.7%, respectively. In addition, no significant difference was observed when TN, BIC and PBD in filled defects were compared to no-defect sites. Conclusion It is concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate significantly increase bone regeneration around immediate implants. PMID:15212348

  1. Assessment of Corticotomy Facilitated Tooth Movement and Changes in Alveolar Bone Thickness - A CT Scan Study

    PubMed Central

    Bhattacharya, Preeti; Bhattacharya, Hirak; Bhandari, Ravi; Agarwal, D.K.; Gupta, Ankur; Ansar, Juhi

    2014-01-01

    Introduction: Corticotomy is an effective method of accelerating the orthodontic treatment. The aim of this study was to compare the treatment time for the extraction space closure, between corticotomy assisted and conventional orthodontic tooth movement and to check the alveolar bone thickness before and after corticotomy procedure in the corticotomy group. Settings and Design: Cross-sectional clinical study. Materials and Methods: Twenty patients (age>15 y) requiring orthodontic treatment with upper anterior retraction in the extraction space of 1st premolar were selected and were randomised into control and corticotomy group each group consisted of 10 subjects. Pre retraction, corticotomy was performed in the maxillary anterior segment. The pre and post retraction CT scans were recorded and the thickness of the alveolar plates were measured at crestal level (S1), mid root level (S2) and apical level (S3) PreTreatment (T1). The same measurements were repeated after incisor retraction was completed PostTreatment (T2). Statistical Analysis: Student’s t-test, Pearson correlation coefficient. Results: There was a significant difference in retraction time (days) between control and corticotomy groups (p<0.001). Also, there were significant difference in total alveolar bone thickness at the crest region for all the four incisor teeth (p<0.05). A significant difference was observed in total alveolar bone thickness at the S2 and S3 level for 11, 21 and 11, 12 and 22 (p<0.05) respectively. Conclusion: Alveolar corticotomies not only accelerates the orthodontic treatment but, also provides the advantage of increased alveolar width to support the teeth and overlying structures. PMID:25478442

  2. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

    PubMed Central

    Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified

  3. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein.

    PubMed

    Foster, B L; Ao, M; Willoughby, C; Soenjaya, Y; Holm, E; Lukashova, L; Tran, A B; Wimer, H F; Zerfas, P M; Nociti, F H; Kantovitz, K R; Quan, B D; Sone, E D; Goldberg, H A; Somerman, M J

    2015-09-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp(-/-) mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp(-/-) mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp(-/-) mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp(-/-) mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in

  4. Arthritis-induced alveolar bone loss is associated with changes in the composition of oral microbiota.

    PubMed

    Corrêa, Jôice Dias; Saraiva, Adriana Machado; Queiroz-Junior, Celso Martins; Madeira, Mila Fernandes Moreira; Duarte, Poliana Mendes; Teixeira, Mauro Martins; Souza, Danielle Glória; da Silva, Tarcília Aparecida

    2016-06-01

    Rheumatoid arthritis (RA) and periodontitis (PD) are chronic inflammatory disorders that cause bone loss. PD tends to be more prevalent and severe in RA patients. Previous experimental studies demonstrated that RA triggers alveolar bone loss similarly to PD. The aim of this study was to investigate if arthritis-induced alveolar bone loss is associated with modification in the oral microbiota. Checkerboard DNA-DNA hybridization was employed to analyze forty oral bacterial species in 3 groups of C57BL/6 mice: control (n = 12; without any challenge); Y4 (n = 8; received oral inoculation of Aggregatibacter Actinomycetemcomitans strain FDC Y4) and AIA group (n = 12; chronic antigen-induced arthritis). The results showed that AIA and Y4 group exhibited similar patterns of bone loss. The AIA group exhibited higher counts of most bacterial species analyzed with predominance of Gram-negative species similarly to infection-induced PD. Prevotella nigrescens and Treponema denticola were detected only in the Y4 group whereas Campylobacter showae, Streptococcus mitis and Streptococcus oralis were only found in the AIA group. Counts of Parvimonas micra, Selenomonas Noxia and Veillonella parvula were greater in the AIA group whereas Actinomyces viscosus and Neisseira mucosa were in large proportion in Y4 group. In conclusion, AIA is associated with changes in the composition of the oral microbiota, which might account for the alveolar bone loss observed in AIA mice. PMID:26996070

  5. Three-dimensional evaluation of maxillary anterior alveolar bone for optimal placement of miniscrew implants

    PubMed Central

    Choi, Jin Hwan; Lee, Kee Joon; Park, Young Chel

    2014-01-01

    Objective This study aimed to propose clinical guidelines for placing miniscrew implants using the results obtained from 3-dimensional analysis of maxillary anterior interdental alveolar bone by cone-beam computed tomography (CBCT). Methods By using CBCT data from 52 adult patients (17 men and 35 women; mean age, 27.9 years), alveolar bone were measured in 3 regions: between the maxillary central incisors (U1-U1), between the maxillary central incisor and maxillary lateral incisor (U1-U2), and between the maxillary lateral incisor and the canine (U2-U3). Cortical bone thickness, labio-palatal thickness, and interdental root distance were measured at 4 mm, 6 mm, and 8 mm apical to the interdental cementoenamel junction (ICEJ). Results The cortical bone thickness significantly increased from the U1-U1 region to the U2-U3 region (p < 0.05). The labio-palatal thickness was significantly less in the U1-U1 region (p < 0.05), and the interdental root distance was significantly less in the U1-U2 region (p < 0.05). Conclusions The results of this study suggest that the interdental root regions U2-U3 and U1-U1 are the best sites for placing miniscrew implants into maxillary anterior alveolar bone. PMID:24696821

  6. MicroRNAs: Potential Biomarkers and Therapeutic Targets for Alveolar Bone Loss in Periodontal Disease

    PubMed Central

    Kagiya, Tadayoshi

    2016-01-01

    Periodontal disease is an inflammatory disease caused by bacterial infection of tooth-supporting structures, which results in the destruction of alveolar bone. Osteoclasts play a central role in bone destruction. Osteoclasts are tartrate-resistant acid phosphatase (TRAP)-positive multinucleated giant cells derived from hematopoietic stem cells. Recently, we and other researchers revealed that microRNAs are involved in osteoclast differentiation. MicroRNAs are novel, single-stranded, non-coding, small (20–22 nucleotides) RNAs that act in a sequence-specific manner to regulate gene expression at the post-transcriptional level through cleavage or translational repression of their target mRNAs. They regulate various biological activities such as cellular differentiation, apoptosis, cancer development, and inflammatory responses. In this review, the roles of microRNAs in osteoclast differentiation and function during alveolar bone destruction in periodontal disease are described. PMID:27529224

  7. MicroRNAs: Potential Biomarkers and Therapeutic Targets for Alveolar Bone Loss in Periodontal Disease.

    PubMed

    Kagiya, Tadayoshi

    2016-01-01

    Periodontal disease is an inflammatory disease caused by bacterial infection of tooth-supporting structures, which results in the destruction of alveolar bone. Osteoclasts play a central role in bone destruction. Osteoclasts are tartrate-resistant acid phosphatase (TRAP)-positive multinucleated giant cells derived from hematopoietic stem cells. Recently, we and other researchers revealed that microRNAs are involved in osteoclast differentiation. MicroRNAs are novel, single-stranded, non-coding, small (20-22 nucleotides) RNAs that act in a sequence-specific manner to regulate gene expression at the post-transcriptional level through cleavage or translational repression of their target mRNAs. They regulate various biological activities such as cellular differentiation, apoptosis, cancer development, and inflammatory responses. In this review, the roles of microRNAs in osteoclast differentiation and function during alveolar bone destruction in periodontal disease are described. PMID:27529224

  8. Non-steroidal anti-inflammatory drugs in the reduction of human alveolar bone loss.

    PubMed

    Feldman, R S; Szeto, B; Chauncey, H H; Goldhaber, P

    1983-03-01

    Aspirin (ASA) and indomethacin are inhibitors of prostaglandin synthesis and reduce bone resorption in tissue culture stimulated by preparations obtained from human gingival tissue. In a retrospective study, we attempted to determine whether ASA or ASA plus indomethacin exert a bone resorption inhibiting effect on human alveolar bone. Dental radiographs of 75 patients with a history of arthritis and long-term ingestion (greater than 5 years) of ASA were compared with dental radiographs of 75 healthy male volunteers from the VA Dental Longitudinal Study (DLS). Proximal bone loss was measured using a Schei Ruler graded on a 10-point scale. The data indicated that the ASA population presented with significantly fewer sites of 10% or greater mesial and distal bone loss than the healthy control population (P less than 0.05). Mean percentage bone loss for the entire dentition was also lower in the ASA group, although the difference was not statistically significant. As there is no evidence to suggest that inhibition of alveolar bone loss is a natural concomitant of the arthritic process, we conclude that the inhibition of bone loss found in this study was due to the chronic ingestion of ASA or ASA and indomethacin. PMID:6573339

  9. Osteoclastogenesis in Local Alveolar Bone in Early Decortication-Facilitated Orthodontic Tooth Movement

    PubMed Central

    Liu, Chang; Jiang, Yu-Xi; Qu, Hong; Li, Cui-Ying; Jiang, Jiu-Hui

    2016-01-01

    Objective In the current study, we aimed to investigate the effects of alveolar decortication on local bone remodeling, and to explore the possible mechanism by which decortication facilitates tooth movement. Materials and Methods Forty rabbits were included in the experiment. The left mandible was subjected to decortication-facilitated orthodontics, and the right mandible underwent traditional orthodontics as a control. The animals were sacrificed on the days 1, 3, 5, 7 and 14, after undergoing orthodontic procedures. Tooth movement was measured by Micro-CT, and the local periodontal tissues were investigated using H&E, Masson's trichrome and tartrate-resistant acid phosphatase (TRAP) staining. The mRNA levels of genes related to bone remodeling in the alveolar bone were analyzed using real-time PCR. Result On days 3, 5, 7 and 14, tooth movement was statistically accelerated by decortication (P < 0.05) and was accompanied by increased hyperemia. Despite the lack of new bone formation in both groups, more osteoclasts were noted in the decorticated group, with two peak counts (P < 0.05). The first peak count was consistent with the maximum values of ctsk and TRAP expression, and the second peak counts accompanied the maximum nfatc1 and jdp2 expression. The increased fra2 expression and the ratio of rankl/opg also accompanied the second peak counts. Conclusions Following alveolar decortication, osteoclastogenesis was initially induced to a greater degree than the new bone formation which was thought to have caused a regional acceleratory phenomenon (RAP). The amount of steoclastogenesis in the decorticated alveolar bone was found to have two peaks, perhaps due to attenuated local resistance. The first peak count in osteoclasts may have been due to previously existing osteoclast precursors, whereas the second may represent the differentiation of peripheral blood mononuclear cells which came from circulation as the result of hyperemia. PMID:27096621

  10. Nitrogen-containing bisphosphonate therapy: assessment of the alveolar bone structure in rats - a blind randomized controlled trial.

    PubMed

    Pacheco, Viviane N; Langie, Renan; Etges, Adriana; Ponzoni, Deise; Puricelli, Edela

    2015-08-01

    This study aimed to assess the effect of zoledronic acid exposure on structures of the alveolar bone of rats. The sample was composed of 42 male Wistar rats. Animals in the T1 and T2 groups received weekly doses of 0.2 mg/kg intraperitoneal zoledronic acid for 3 weeks, while animals in the T3 group received the same treatment for 8 weeks. The control groups C1, C2 and C3 received equivalent doses of saline. The first upper molars of Wistar rats in the C2, T2, C3 and T3 groups were extracted. Cone-beam computerized tomography scans were performed, and the image density was analysed by grey levels. The presence and type of inflammatory infiltrate, vascularization and bone necrosis were assigned by histological qualitative scores. Histomorphometric analysis of bone density was performed in the groups without extraction. No significant differences were found in the bone grey density estimated by grey-level value and histomorphometric analysis between the C1 and T1 groups (P > 0.05). The grey levels in the T3 group were lower (P < 0.05) than in the C3 group, corresponding to the bone defect. Histological assessments showed the presence of bone necrosis in the T3 group and lower levels of bone remodelling in the test groups (T2 and T3) compared to the control groups (C2 and C3). The results of qualitative analyses did not differ significantly between the groups (P > 0.05). Zoledronic acid-exposed animals showed maxillary changes including reduced grey levels, the presence of bone necrosis and a higher prevalence of inflammatory signs. PMID:26119047

  11. Nitrogen-containing bisphosphonate therapy: assessment of the alveolar bone structure in rats – a blind randomized controlled trial

    PubMed Central

    Pacheco, Viviane N; Langie, Renan; Etges, Adriana; Ponzoni, Deise; Puricelli, Edela

    2015-01-01

    This study aimed to assess the effect of zoledronic acid exposure on structures of the alveolar bone of rats. The sample was composed of 42 male Wistar rats. Animals in the T1 and T2 groups received weekly doses of 0.2 mg/kg intraperitoneal zoledronic acid for 3 weeks, while animals in the T3 group received the same treatment for 8 weeks. The control groups C1, C2 and C3 received equivalent doses of saline. The first upper molars of Wistar rats in the C2, T2, C3 and T3 groups were extracted. Cone-beam computerized tomography scans were performed, and the image density was analysed by grey levels. The presence and type of inflammatory infiltrate, vascularization and bone necrosis were assigned by histological qualitative scores. Histomorphometric analysis of bone density was performed in the groups without extraction. No significant differences were found in the bone grey density estimated by grey-level value and histomorphometric analysis between the C1 and T1 groups (P > 0.05). The grey levels in the T3 group were lower (P < 0.05) than in the C3 group, corresponding to the bone defect. Histological assessments showed the presence of bone necrosis in the T3 group and lower levels of bone remodelling in the test groups (T2 and T3) compared to the control groups (C2 and C3). The results of qualitative analyses did not differ significantly between the groups (P > 0.05). Zoledronic acid-exposed animals showed maxillary changes including reduced grey levels, the presence of bone necrosis and a higher prevalence of inflammatory signs. PMID:26119047

  12. Histological Features and Biocompatibility of Bone and Soft Tissue Substitutes in the Atrophic Alveolar Ridge Reconstruction.

    PubMed

    Maiorana, Carlo; Beretta, Mario; Rancitelli, Davide; Grossi, Giovanni Battista; Cicciù, Marco; Herford, Alan Scott

    2016-01-01

    The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented. PMID:27022489

  13. Histological Features and Biocompatibility of Bone and Soft Tissue Substitutes in the Atrophic Alveolar Ridge Reconstruction

    PubMed Central

    Rancitelli, Davide; Grossi, Giovanni Battista; Herford, Alan Scott

    2016-01-01

    The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented. PMID:27022489

  14. The Association between Lower Incisal Inclination and Morphology of the Supporting Alveolar Bone — A Cone-Beam CT Study

    PubMed Central

    Yu, Quan; Pan, Xiao-gang; Ji, Guo-ping; Shen, Gang

    2009-01-01

    Aim To investigate the relationship between the positioning of the lower central incisor and physical morphology of the surrounding alveolar bone. Methodology Thirty-eight patients (18 males, 20 females), with mean age of 13.4 years, were included in this study. As part of orthodontic treatment planning the patients were required to take dental Cone-beam CT (CBCT) covering the region of lower incisors, the surrounding alveolar bone and the mandibular symphysis. The cephalometric parameters were designed and measured to indicate the inclination of lower central incisor and physical morphology of the adjacent alveolar bone. Computer-aided descriptive statistical analysis was performed using SPSS 15.0 software package for Windows. A correlation analysis and a linear regression analysis between the incisor inclination and the alveolar bone morphology were performed. Results Significant positive correlations were found between the lower central incisor inclination and the morphological contour of the alveolar bone (P <0.05). The lower central incisor root apex was closer to the lingual alveolar crest when it was buccally inclined. Conclusion The morphology of the alveolar bone may be affected by incisal inclination. PMID:20690425

  15. Repair of tegmen defect using cranial particulate bone graft.

    PubMed

    Greene, Arin K; Poe, Dennis S

    2015-01-01

    Bone paté is used to repair cranial bone defects. This material contains bone-dust collected during the high-speed burring of the cranium. Clinical and experimental studies of bone dust, however, have shown that it does not have biological activity and is resorbed. We describe the use of bone paté using particulate bone graft. Particulate graft is harvested with a hand-driven brace and 16mm bit; it is not subjected to thermal injury and its large size resists resorption. Bone paté containing particulate graft is much more likely than bone dust to contain viable osteoblasts capable of producing new bone. PMID:25465655

  16. Influences of Fucoxanthin on Alveolar Bone Resorption in Induced Periodontitis in Rat Molars

    PubMed Central

    Kose, Oguz; Arabaci, Taner; Yemenoglu, Hatice; Kara, Adem; Ozkanlar, Seckin; Kayis, Sevki; Duymus, Zeynep Yesil

    2016-01-01

    The aim of this study was to evaluate the effects of systemic fucoxanthin treatment on alveolar bone resorption in rats with periodontitis. Thirty rats were divided into control, experimental periodontitis (EP), and experimental periodontitis-fucoxanthin (EP-FUCO) groups. Periodontitis was induced by ligature for four weeks. After removal of the ligature, the rats in the EP-FUCO group were treated with a single dose of fucoxanthin (200 mg/kg bw) per day for 28 consecutive days. At the end of the study, all of the rats were euthanized and intracardiac blood and mandible tissue samples were obtained for biochemical, immunohistochemical, and histometric analyses. Fucoxanthin treatment resulted in a slight decrease in tumor necrosis factor-α, interleukin-1β, and interleukin-6 levels and a significant decrease in oxidative stress index. It was observed that fucoxanthin caused a significant reduction in receptor activator of nuclear factor kappa-β ligand (RANKL) levels and a statistically non-significant elevation in osteoprotegerin and bone-alkaline phosphatase levels. There were no significant differences in alveolar bone loss levels between the EP and EP-FUCO groups. This experimental study revealed that fucoxanthin provides a limited reduction in alveolar bone resorption in rats with periodontitis. One of the mechanisms underlying the mentioned limited effect might be related to the ability of fucoxanthin to inhibit oxidative stress-related RANKL-mediated osteoclastogenesis. PMID:27043583

  17. Modeling of Trabecular Bone and Lamina Dura Following Selective Alveolar Decortication in Rats

    PubMed Central

    Sebaoun, Jean-David; Kantarci, Alpdogan; Turner, John W.; Carvalho, Roberto S.; Van Dyke, Thomas E.; Ferguson, Donald J.

    2008-01-01

    Background: Modifying the balance between resorption and apposition through selectively injuring the cortical plate of the alveolus has been an approach to speed tooth movement and is referred to as periodontally accelerated osteogenic orthodontics. The aim of this study was to investigate the alveolar response to corticotomy as a function of time and proximity to the surgical injury in a rat model. Methods: Maxillary buccal and lingual cortical plates were injured in 36 healthy adult rats adjacent to the upper left first molars. Twenty-four animals were euthanized at 3, 7, or 11 weeks. In one group, the maxillae were removed and stripped of soft tissues, and histomorphometric analysis was performed to study alveolar spongiosa and periodontal ligament (PDL) modeling dynamics. Catabolic activity was analyzed with tartrate-resistant acid phosphatase–positive osteoclasts and preosteoclasts. Anabolic actions were measured using a fluorescent vital bone stain series followed by sacrifice at 30 and 51 days. To further analyze the new bone formation, a separate group of animals were fed with calcein fluorescent stain and processed for non-decalcified fluorescent stain histology. Results: At 3 weeks, the surgery group had significantly (P <0.05) less calcified spongiosa bone surface, greater periodontal ligament surface, higher osteoclast number, and greater lamina dura apposition width. The catabolic activity (osteoclast count) and anabolic activity (apposition rate) were three-fold greater, calcified spongiosa decreased by two-fold, and PDL surface increased by two-fold. Surgical injury to the alveolus that induced a significant increase in tissue turnover by week 3 dissipated to a steady state by postoperative week 11. The impact of the injury was localized to the area immediately adjacent to the decortication injury. Conclusion: Selective alveolar decortication induced increased turnover of alveolar spongiosa, and the activity was localized; dramatic escalation of

  18. Radiographic evaluation of the effect of obesity on alveolar bone in rats with ligature-induced periodontal disease

    PubMed Central

    do Nascimento, Cassiane Merigo; Cassol, Tiago; da Silva, Fernanda Soares; Bonfleur, Maria Lucia; Nassar, Carlos Augusto; Nassar, Patricia Oehlmeyer

    2013-01-01

    There is evidence that the lack of metabolic control of obese patients may accelerate periodontitis. The aim of this study was to evaluate radiographically the effect of cafeteria-diet-induced obesity on alveolar bone loss in rats subjected to periodontal disease. Twenty male Wistar rats were randomly divided into four groups: 1) control group, 2) control and ligature group; 3) cafeteria group; and 4) cafeteria and ligature group. The animals were evaluated for obesity and euthanized, and the mandible of each rat was removed to perform a radiographic evaluation of alveolar bone loss and its effect on diet-induced obesity. The results showed greater alveolar bone loss in the mice in Group 4 (P<0.01). Thus, we concluded that obese mice, on average, showed greater radiographic evidence of alveolar bone loss than mice undergoing induction of obesity. PMID:24124386

  19. Lippia sidoides and Myracrodruon urundeuva gel prevents alveolar bone resorption in experimental periodontitis in rats.

    PubMed

    Botelho, M A; Rao, V S; Carvalho, C B M; Bezerra-Filho, J G; Fonseca, S G C; Vale, M L; Montenegro, D; Cunha, F; Ribeiro, R A; Brito, G A

    2007-09-25

    In Brazilian folk medicine, Lippia sidoides (Ls) and Myracrodruon urundeuva (Mu) have gained popularity and reputation as effective antimicrobial and anti-inflammatory agents. This work aimed to evaluate the effect of topical herbal gel from Ls 0.5% (v/w) and Mu 5% (w/w) in experimental periodontal disease (EPD) in rats. Wistar rats were subjected to ligature placement around the second upper left molars. Animals were treated topically with Ls and/or Mu-based gel, immediately after EPD induction and three times/day for 11 days until the rats were sacrificed (11th day). Saline-based gel was utilized as control for all experiments and doxycycline based gel 10% (w/w) was utilized as reference substance. Animals were weighed daily. Alveolar bone loss was measured as the difference (in millimeters) between the cusp tip and the alveolar bone. The periodontum and the surrounding gingivae were examined at histopathology, as well as the neutrophil influx into the gingivae was assayed using myeloperoxidase activity and cytokine production mainly tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) levels by ELISA method. The local bacterial flora was assessed through culture of the gingival tissue in standard aerobic and anaerobic media. Alveolar bone loss was significantly inhibited by Ls and Mu combined treatment compared to the saline control group. Ls and Mu combined treatment reduced tissue lesion at histopathology, with partial preservation of the periodontum, coupled to decreased myeloperoxidase activity as well as significantly inhibited TNF-alpha and IL-1beta production in gingival tissue compared to the saline control group. Ls and Mu combined treatment also prevented the growth of oral microorganisms and the weight loss. Ls and Mu combined based gel treatment preserved alveolar bone resorption and demonstrated anti-inflammatory and antibacterial activities in experimental periodontitis. PMID:17714897

  20. Omega-3 fatty acid effect on alveolar bone loss in rats.

    PubMed

    Kesavalu, L; Vasudevan, B; Raghu, B; Browning, E; Dawson, D; Novak, J M; Correll, M C; Steffen, M J; Bhattacharya, A; Fernandes, G; Ebersole, J L

    2006-07-01

    Gingival inflammation and alveolar bone resorption are hallmarks of adult periodontitis, elicited in response to oral micro-organisms such as Porphyromonas gingivalis. We hypothesized that omega (omega)-3 fatty acids (FA) dietary supplementation would modulate inflammatory reactions leading to periodontal disease in infected rats. Rats were fed fish oil (omega-3 FA) or corn oil (n-6 FA) diets for 22 weeks and were infected with P. gingivalis. Rats on the omega-3 FA diet exhibited elevated serum levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), documenting diet-induced changes. PCR analyses demonstrated that rats were orally colonized by P. gingivalis; increased IgG antibody levels substantiated this infection. P. gingivalis-infected rats treated with omega-3 FA had significantly less alveolar bone resorption. These results demonstrated the effectiveness of an omega-3 FA-supplemented diet in modulating alveolar bone resorption following P. gingivalis infection, and supported that omega-3 FA may be a useful adjunct in the treatment of periodontal disease. PMID:16798867

  1. [Experimental study of coral implantation in repair of skull bone defect in rabbit: histomorphometry of bone].

    PubMed

    Miao, L; Liu, B

    1997-05-01

    In order to evaluate coral as a bone graft substitute in repair of bone defect, particulates of coral were implanted into skull bone defect of rabbit, 1.5 cm in diameter. Hydroxyapatite and blank were taken as controls. The rabbits were sacrificed at the second, fourth, eighth and twelveth weeks after the operation. The specimens were taken and performed histological examination and histomorphometry observation. Results were as follows: at the second week many multinucleus giant cells infiltrated. As time elapsed, the coral were progressively degenerated and new bone was formed to fill the defect. Up to the twelveth week, the coral degenerated completely and new bone formed in the center of the defect. Percentage of new bone was in defect was 36.9%. Compared with the controls, there were significant differences (P < 0.01). It was suggested that coral had good osteoconductility. Howevel, coral underwent rapid degeneration, it might result in inconplete repair of bone defect. PMID:9867910

  2. Alveolar bone dynamics in osteoporotic rats treated with raloxifene or alendronate: confocal microscopy analysis

    NASA Astrophysics Data System (ADS)

    Ramalho-Ferreira, Gabriel; Faverani, Leonardo Perez; Grossi-Oliveira, Gustavo Augusto; Okamoto, Tetuo; Okamoto, Roberta

    2015-03-01

    In this study, the characteristics of the alveolar bone of rats with induced osteoporosis were examined. Thirty-two rats were divided into four groups according to the induction of osteoporosis and drugs administered: OG, osteoporotic rats without treatment (negative control); SG, rats which underwent sham surgery ovariectomy (SHAM); alendronate (AG), osteoporotic rats treated with alendronate; and RG, osteoporotic rats treated with raloxifene (RG). On the 8th day after ovariectomy and SHAM surgeries, drug therapy was started with AG or RG. On the 52nd day, 20 mg/kg calcein was administered to all of the rats, and on the 80th day, 20 mg/kg alizarin red was administered. Euthanasia was performed on the 98th day. The bone area marked by fluorochromes was calculated and data were subjected to two-way ANOVA test and Tukey's post-hoc test (p<0.05). The comparison of the induced osteoporosis groups showed no statistically significant differences in bone turnover only between RG and SG (p=0.074) and AG and OG (p=0.138). All other comparisons showed significant differences (p<0.001). The largest bone turnover was observed in RG and SG groups. RG was the medication that improved the dynamics of the alveolar bone of rats with induced osteoporosis, resembling that of healthy rats.

  3. Effects of long-term FK 506 therapy on the alveolar bone and cementum of rats.

    PubMed

    Nassar, C A; Nassar, P O; Andia, D C; Guimarães, M R; Spolidorio, L C

    2009-06-01

    Cyclosporine (CsA) and tacrolimus (FK 506) exert complex, incompletely understood actions on bone. The objective of the study was to evaluate the effects of long-term tacrolimus therapy on the periodontium. Rats were treated for 60, 120, 180, and 240 days with daily subcutaneous injections of 1 mg/kg body weight of FK 506. After the experimental period, we obtained serum levels of calcium and alkaline phosphatase (ALP). After histological processing, the alveolar bone and cementum, as well as volume densities of bone (V(b)) and osteoclasts (V(o)), were assessed at the regions of the lower first molar. There was a tendency toward a statistically significant decrease in ALP levels with FK 506; however, serum calcium levels increased during the long periods. At 60, 180, and 240 days of treatment with FK 506, we did not observe V(b) and V(o) alterations. At 120 days of treatment, there was an evident decrease in V(b), but it did not show alveolar bone loss. We did not observe any alterations of cementum among rats treated with FK 506. It may be concluded that FK 506 administration did not induce side effects on the periodontium. PMID:19545747

  4. Alveolar bone healing process in spontaneously hypertensive rats (SHR). A radiographic densitometry study

    PubMed Central

    MANRIQUE, Natalia; PEREIRA, Cassiano Costa Silva; GARCIA, Lourdes Maria Gonzáles; MICARONI, Samuel; de CARVALHO, Antonio Augusto Ferreira; PERRI, Sílvia Helena Venturoli; OKAMOTO, Roberta; SUMIDA, Doris Hissako; ANTONIALI, Cristina

    2012-01-01

    Hypertension is one of the most important public health problems worldwide. If undiagnosed or untreated, this pathology represents a systemic risk factor and offers unfavorable conditions for dental treatments, especially those requiring bone healing. Objectives The purpose of this study was to demonstrate, by analysis of bone mineral density (BMD), that the alveolar bone healing process is altered in spontaneously hypertensive rats (SHRs). Material and Methods Wistar rats and SHRs were submitted to extraction of the upper right incisor and were euthanized 7, 14, 21, 28 and 42 days after surgery. Right maxillae were collected, radiographed and analyzed using Digora software. BMD was expressed as minimum (min), middle (med) and maximum (max) in the medium (MT) and apical (AT) thirds of the dental alveolus. Results The results were compared across days and groups. Wistar showed difference in med and max BMD in the MT between 7 and 28 and also between 14 and 28 days. The AT exhibited significant difference in med and min BMD between 7 and 28 days, as well as difference in min BMD between 28 and 42 days. SHRs showed lower med BMD in the MT at 28 days when compared to 21 and 42 days. Differences were observed across groups in med and min BMD at day 28 in the MT and AT; and in max BMD at 14, 21 and 42 days in the MT. Conclusions These results suggest that the alveolar bone healing process is delayed in SHRs comparing with Wistar rats. PMID:22666841

  5. Microvascular anastomoses for bone grafts in the treatment of massive defects in bone.

    PubMed

    Weiland, A J; Daniel, R K

    1979-01-01

    Six patients with large defects in bone are described in whom we performed microvascular anastomoses of grafted fibular vessels (arteries and veins) to vessels in the recipient site. Two other patients, with massive loss of bone and skin, were treated by grafting of osteocutaneous composites also using microvascular anastomoses. All but one defect healed successfully. There is a wide potential for applications of these two techniques in the treatment of large segmental bone defects secondary to trauma or following tumor resection. PMID:365868

  6. Correlations between initial cleft size and dental anomalies in unilateral cleft lip and palate patients after alveolar bone grafting.

    PubMed

    Jabbari, Fatima; Reiser, Erika; Thor, Andreas; Hakelius, Malin; Nowinski, Daniel

    2016-03-01

    Objective To determine in individuals with unilateral cleft lip and palate the correlation between initial cleft size and dental anomalies, and the outcome of alveolar bone grafting. Methods A total of 67 consecutive patients with non-syndromic unilateral complete cleft lip and palate (UCLP) were included from the cleft lip and palate-craniofacial center, Uppsala University Hospital, Sweden. All patients were operated by the same surgeon and treated according to the Uppsala protocol entailing: lip plasty at 3 months, soft palate closure at 6 months, closure of the residual cleft in the hard palate at 2 years of age, and secondary alveolar bone grafting (SABG) prior to the eruption of the permanent canine. Cleft size was measured on dental casts obtained at the time of primary lip plasty. Dental anomalies were registered on radiographs and dental casts obtained before bone grafting. Alveolar bone height was evaluated with the Modified Bergland Index (mBI) at 1 and 10-year follow-up. Results Anterior cleft width correlated positively with enamel hypoplasia and rotation of the central incisor adjacent to the cleft. There was, however, no correlation between initial cleft width and alveolar bone height at either 1 or 10 years follow-up. Conclusions Wider clefts did not seem to have an impact on the success of secondary alveolar bone grafting but appeared to be associated with a higher degree of some dental anomalies. This finding may have implications for patient counseling and treatment planning. PMID:26923345

  7. Correlations between initial cleft size and dental anomalies in unilateral cleft lip and palate patients after alveolar bone grafting

    PubMed Central

    Jabbari, Fatima; Reiser, Erika; Thor, Andreas; Hakelius, Malin; Nowinski, Daniel

    2016-01-01

    Objective To determine in individuals with unilateral cleft lip and palate the correlation between initial cleft size and dental anomalies, and the outcome of alveolar bone grafting. Methods A total of 67 consecutive patients with non-syndromic unilateral complete cleft lip and palate (UCLP) were included from the cleft lip and palate-craniofacial center, Uppsala University Hospital, Sweden. All patients were operated by the same surgeon and treated according to the Uppsala protocol entailing: lip plasty at 3 months, soft palate closure at 6 months, closure of the residual cleft in the hard palate at 2 years of age, and secondary alveolar bone grafting (SABG) prior to the eruption of the permanent canine. Cleft size was measured on dental casts obtained at the time of primary lip plasty. Dental anomalies were registered on radiographs and dental casts obtained before bone grafting. Alveolar bone height was evaluated with the Modified Bergland Index (mBI) at 1 and 10-year follow-up. Results Anterior cleft width correlated positively with enamel hypoplasia and rotation of the central incisor adjacent to the cleft. There was, however, no correlation between initial cleft width and alveolar bone height at either 1 or 10 years follow-up. Conclusions Wider clefts did not seem to have an impact on the success of secondary alveolar bone grafting but appeared to be associated with a higher degree of some dental anomalies. This finding may have implications for patient counseling and treatment planning. PMID:26923345

  8. Difference in the Surgical Outcome of Unilateral Cleft Lip and Palate Patients with and without Pre-Alveolar Bone Graft Orthodontic Treatment

    PubMed Central

    Chang, Chun-Shin; Wallace, Christopher Glenn; Hsiao, Yen-Chang; Chiu, Yu-Ting; Pai, Betty Chien-Jung; Chen, I-Ju; Liao, Yu-Fang; Liou, Eric Jen-Wein; Chen, Philip Kuo-Ting; Chen, Jyh-Ping; Noordhoff, M. Samuel

    2016-01-01

    Presurgical orthodontic treatment before secondary alveolar bone grafting (SABG) is widely performed for cleft lip/palate patients. However, no randomized controlled trial has been published comparing SABG outcomes in patients with, and without, presurgical orthodontic treatment. This randomized, prospective, single-blinded trial was conducted between January 2012 and April 2015 to compare ABG volumes 6 months postoperatively between patients with and without presurgical orthodontic treatment. Twenty-four patients were enrolled and randomized and 22 patients completed follow-up. Patients who had presurgical orthodontics before SABG had significantly improved inclination (p < 0.001) and rotation (p < 0.001) of the central incisor adjacent to the defect, significantly improved ABG fill volume (0.81 ± 0.26 cm3 at 6 months compared to 0.59 ± 0.22 cm3; p < 0.05) and less residual alveolar bone defect (0.31 ± 0.08 cm3 at 6 months compared to s 0.55 ± 0.14 cm3; p < 0.001) compared to patients who did not have presurgical orthodontic treatment. In conclusion, orthodontic treatment combined with SABG results in superior bone volume when compared with conventional SABG alone. PMID:27041697

  9. A histomorphometric study of alveolar bone modeling and remodeling in mice fed a boron-deficient diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Objective: Emerging evidence indicates that boron (B) plays a role in bone formation and maintenance. Thus, a study was performed to determine whether dietary B-deficiency affects periodontal alveolar bone modeling and remodeling. Material and Methods: Weanling Swiss mice (n=30) were ...

  10. Evaluation of inorganic bovine bone graft in periodontal defects after third molar surgery

    PubMed Central

    de Melo, Daniela Guimaraes; de Santana Santos, Thiago; Sehn, Felipe Perraro; de Oliveira e Silva, Emanuel Dias; Martins-Filho, Paulo Ricardo Saquete; Dourado, Ana Cláudia Amorim Gomes

    2015-01-01

    Aim: This study evaluated the e cacy of inorganic bovine bone graft (IBB) in periodontal defect after mandibular third molar (3M) surgery. Methods: The authors conducted a split-mouth, prospective, randomized, blinded, placebo-controlled clinical trial involving 20 participants with a mean age of 21.60 ± 6.5 years who had symmetrical bilateral lower 3M randomly assigned to receive IBB or left empty (blooding clot). The clinical variables studied were probing depth and clinical attachment level (CAL) at preoperative and postoperative periods of 10, 30, and 60 days. Radiographic measures included the distance from the alveolar bone crest to the cementoenamel junction and the bone density at 30 and 60 days postsurgical procedure. For statistical analysis, we used the paired t-test at a level of signi cance of 5%. Results: It was observed a reduction in pocket depth and CAL in both groups, but IBB did not provide better results than blooding clot (P > 0.05). On the other hand, IBB group showed an increased in the bone density, and a decrease in the periodontal defect on the distal surface of second molar (2M) after 30 and 60 days of surgery compared to the control group (P < 0.05). Conclusion: The use of inorganic bone graft (GenOx) did not enhance the probing depth after 3M removal. Although the radiographic ndings have showed an increase in bone density and a decrease in the periodontal defect on the distal surface of the 2M, we cannot recommend the use of IBB as a treatment for periodontal defect prevention after 3M removal. PMID:26981470

  11. Inhibitory effects of Persicariae Rhizoma aqueous extracts on experimental periodontitis and alveolar bone loss in Sprague-Dawley rats

    PubMed Central

    Kang, Su Jin; Lee, Eun Kyung; Han, Chang Hyun; Lee, Bong Hyo; Lee, Young Joon; Ku, Sae Kwang

    2016-01-01

    Persicariae Rhizoma (PR) is the dried stem parts of Persicaria tinctoria H. Gross (Polygonaceae), and has been traditionally used as anti-inflammatory and detoxifying agent. In the present study, the effects of PR aqueous extracts on ligation-induced experimental periodontitis (EPD) and associated alveolar bone loss in rats were examined. Following the induction of EPD in rats, PR extracts were orally administered once a day for 10 days, and the changes and gains in body weight, alveolar bone loss and total aerobic bacterial counts of buccal gingiva were observed with histopathological analysis. In addition, anti-inflammatory effects were evaluated by monitoring myeloperoxidase (MPO) activities, and interleukin (IL)-1β and tumor necrosis factor (TNF)-α contents, and anti-oxidant effects were investigated by measuring inducible nitric oxide synthase (iNOS) activities and malondialdehyde (MDA) levels. Bacterial proliferation, periodontitis and associated alveolar bone loss induced by ligature placement were significantly and dose-dependently inhibited by the treatment with PR extracts. The inhibitory effects of 200 mg/kg PR were similar to those of 5 mg/kg indomethacin on ligation-induced periodontitis and associated alveolar bone losses in this study. The results suggest that PR effectively inhibits ligature placement-induced periodontitis and alveolar bone loss in rats via antibacterial, antioxidative and anti-inflammatory activities. PMID:27588077

  12. Effect of cyclical forces on the periodontal ligament and alveolar bone remodeling during orthodontic tooth movement

    PubMed Central

    Kalajzic, Zana; Peluso, Elizabeth Blake; Utreja, Achint; Dyment, Nathaniel; Nihara, Jun; Xu, Manshan; Chen, Jing; Uribe, Flavio; Wadhwa, Sunil

    2014-01-01

    Objective To investigate the effect of externally applied cyclical (vibratory) forces on the rate of tooth movement, the structural integrity of the periodontal ligament, and alveolar bone remodeling. Methods Twenty-six female Sprague-Dawley rats (7 weeks old) were divided into four groups: CTRL (unloaded), VBO (molars receiving a vibratory stimulus only), TMO (molars receiving an orthodontic spring only), and TMO+VB (molars receiving an orthodontic spring and the additional vibratory stimulus). In TMO and TMO+VB groups, the rat first molars were moved mesially for 2 weeks using Nickel-Titanium coil spring delivering 25 g of force. In VBO and TMO+VB groups, cyclical forces at 0.4 N and 30 Hz were applied occlusally twice a week for 10 minutes. Microfocus X-ray computed tomography analysis and tooth movement measurements were performed on the dissected rat maxillae. Tartrate-resistant acid phosphatase staining and collagen fiber assessment were performed on histological sections. Results Cyclical forces significantly inhibited the amount of tooth movement. Histological analysis showed marked disorganization of the collagen fibril structure of the periodontal ligament during tooth movement. Tooth movement caused a significant increase in osteoclast parameters on the compression side of alveolar bone and a significant decrease in bone volume fraction in the molar region compared to controls. Conclusions Tooth movement was significantly inhibited by application of cyclical forces. PMID:23937517

  13. Quantification of osteoarticular joint defects through bone segmentation and modeling.

    PubMed

    Yang, Jian; Fu, Tianyu; Ai, Danni; Xing, Huijun; Li, Qin; Wang, Yongtian

    2014-01-01

    Shoulder instability is a major threat to people's daily life. Many patients suffer from shoulder instability such as the loss of the glenoid and humeral head. In clinical practice, an accurate 3D structure estimation of damaged joints is necessary to diagnose and treat bone defects. This study quantifies osteoarticular defects through the modeling and visualization of osteoarticular structures. An improved algorithm to extract the 3D structure of the bones is proposed. The bone contour is then automatically extracted using prior shape and gray scale intensity distribution of joint CT images. Joint structures with mirror symmetry are matched using the Iterative Closest Point registration algorithm. Osteoarticular defects can be quantified on the basis of the symmetric information of the bones. Experimental results demonstrate that the proposed method can effectively segment the joint structures from the CT image. In addition, the proposed mirror symmetrical method can effectively estimate osteoarticular defects. PMID:25227059

  14. Bone defect rehabilitation using lyophilized bone preshaped on a stereolithographic model

    PubMed Central

    Bohner, Lauren Oliveira Lima; Mukai, Eduardo; Mukai, Sueli; Tortamano, Pedro; Sesma, Newton

    2016-01-01

    Bone grafting provides ideal conditions to the patient's rehabilitation with dental implants. In addition, prototyped tridimensional models allow the surgical procedure to be simulated and enable important anatomic structures to be visualized. To present a bone defect rehabilitated with xenogenic bone preshaped on a stereolithographic model and the follow-up after 7 years of treatment. The present case report describes a bone defect rehabilitated with a lyophilized bone block preshaped on a stereolithographic model. The patient, a 56-year-old woman, was referred to the dental office presenting a bone defect in the anterior maxilla. Bone regeneration intervention was performed with xenogenic grafting and barrier membrane. The follow-up of the postoperative period and after 7 years is presented. After 7 years, the tomographic exam showed the maintenance of bone at the grafted site, representing the long-term success of the treatment.

  15. Preparation and biocompatibility evaluation of bioactive glass-forsterite nanocomposite powder for oral bone defects treatment applications.

    PubMed

    Saqaei, Mahboobe; Fathi, Mohammadhossein; Edris, Hossein; Mortazavi, Vajihesadat

    2015-11-01

    Bone defects which emerge around dental implants are often seen when implants are placed in areas with insufficient alveolar bone, in extraction sockets, or around failing implants. Bone regeneration in above-mentioned defects using of bone grafts or bone substitutes may cure the long-term prognoses of dental implants. Biocompatibility, bioactivity and osteogenic properties are key factors affecting the applications of a bone substitute. This study was aimed at preparation, characterization, biocompatibility and bioactivity evaluation of the bioactive glass-forsterite nanocomposite powder as a desired candidate for oral bone defect treatments. Nanocomposite powders containing 58S bioactive glass and different amounts of forsterite nanopowder were synthesized in situ by sol-gel technique. Characterization of the prepared nanocomposite powders and their cytotoxicity assessment was performed via MTT test. Bioactivity assessment was done by immersing the prepared powder in the simulated body fluid (SBF). Results showed that nanocomposite powders containing forsterite with crystallite size of 20-50nm were successfully fabricated by calcination at 600°C. The prepared bioactive glass-forsterite nanocomposite powders revealed high in vitro biocompatibility; besides, the nanocomposite containing 20wt.% forsterite showed a substantial increase in the cell viability compared with control groups. During immersion in SBF, the formation of apatite layer confirmed the bioactivity of bioactive glass-forsterite nanocomposite powders. According to the results, the fabricated nanocomposite powders can be introduced as a promising candidate for oral bone imperfection treatments and hard tissue mend. PMID:26249608

  16. Uranium inhibits bone formation in physiologic alveolar bone modeling and remodeling

    SciTech Connect

    Ubios, A.M.; Guglielmotti, M.B.; Steimetz, T.; Cabrini, R.L. )

    1991-02-01

    The toxic effect of uranium (U) on bone modeling and remodeling was studied by performing histomorphometric measurements in the periodontal cortical bone of rats. Two different single intraperitoneal doses of uranyl nitrate (238U) were administered to two sets of rats respectively (2 and 0.8 mg/kg body wt). Rats treated with the first dose were killed 14 days postinjection (PI) and those treated with the second were killed 14, 30, and 60 days PI. The results revealed a decrease in bone formation in rats treated with uranium. On the remodeling side the decrease in bone formation was coupled to an increase in bone resorption on the 14th day PI. On the modeling side no bone resorption was observed and the decrease in bone formation was linked to an increase in resting bone zones. Bone formation depression as a key event in U intoxication is stressed.

  17. Periodontal ligament, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance.

    PubMed

    LeBlanc, Aaron R H; Reisz, Robert R

    2013-01-01

    Tooth implantation provides important phylogenetic and functional information about the dentitions of amniotes. Traditionally, only mammals and crocodilians have been considered truly thecodont, because their tooth roots are coated in layers of cementum for anchorage of the periodontal ligament, which is in turn attached to the bone lining the alveolus, the alveolar bone. The histological properties and developmental origins of these three periodontal tissues have been studied extensively in mammals and crocodilians, but the identities of the periodontal tissues in other amniotes remain poorly studied. Early work on dental histology of basal amniotes concluded that most possess a simplified tooth attachment in which the tooth root is ankylosed to a pedestal composed of "bone of attachment", which is in turn fused to the jaw. More recent studies have concluded that stereotypically thecodont tissues are also present in non-mammalian, non-crocodilian amniotes, but these studies were limited to crown groups or secondarily aquatic reptiles. As the sister group to Amniota, and the first tetrapods to exhibit dental occlusion, diadectids are the ideal candidates for studies of dental evolution among terrestrial vertebrates because they can be used to test hypotheses of development and homology in deep time. Our study of Permo-Carboniferous diadectid tetrapod teeth and dental tissues reveal the presence of two types of cementum, periodontal ligament, and alveolar bone, and therefore the earliest record of true thecodonty in a tetrapod. These discoveries in a stem amniote allow us to hypothesize that the ability to produce the tissues that characterize thecodonty in mammals and crocodilians is very ancient and plesiomorphic for Amniota. Consequently, all other forms of tooth implantation in crown amniotes are derived arrangements of one or more of these periodontal tissues and not simply ankylosis of teeth to the jaw by plesiomorphically retaining "bone of attachment", as

  18. Periodontal Ligament, Cementum, and Alveolar Bone in the Oldest Herbivorous Tetrapods, and Their Evolutionary Significance

    PubMed Central

    LeBlanc, Aaron R. H.; Reisz, Robert R.

    2013-01-01

    Tooth implantation provides important phylogenetic and functional information about the dentitions of amniotes. Traditionally, only mammals and crocodilians have been considered truly thecodont, because their tooth roots are coated in layers of cementum for anchorage of the periodontal ligament, which is in turn attached to the bone lining the alveolus, the alveolar bone. The histological properties and developmental origins of these three periodontal tissues have been studied extensively in mammals and crocodilians, but the identities of the periodontal tissues in other amniotes remain poorly studied. Early work on dental histology of basal amniotes concluded that most possess a simplified tooth attachment in which the tooth root is ankylosed to a pedestal composed of “bone of attachment”, which is in turn fused to the jaw. More recent studies have concluded that stereotypically thecodont tissues are also present in non-mammalian, non-crocodilian amniotes, but these studies were limited to crown groups or secondarily aquatic reptiles. As the sister group to Amniota, and the first tetrapods to exhibit dental occlusion, diadectids are the ideal candidates for studies of dental evolution among terrestrial vertebrates because they can be used to test hypotheses of development and homology in deep time. Our study of Permo-Carboniferous diadectid tetrapod teeth and dental tissues reveal the presence of two types of cementum, periodontal ligament, and alveolar bone, and therefore the earliest record of true thecodonty in a tetrapod. These discoveries in a stem amniote allow us to hypothesize that the ability to produce the tissues that characterize thecodonty in mammals and crocodilians is very ancient and plesiomorphic for Amniota. Consequently, all other forms of tooth implantation in crown amniotes are derived arrangements of one or more of these periodontal tissues and not simply ankylosis of teeth to the jaw by plesiomorphically retaining “bone of attachment

  19. Bone resorption analysis of platelet-derived growth factor type BB application on collagen for bone grafts secured by titanium mesh over a pig jaw defect model

    PubMed Central

    Herford, Alan Scott; Cicciù, Marco

    2012-01-01

    Purpose: The aim of this investigation was to evaluate whether the addition of the platelet derived growth factor type BB (PDGF-BB) to a collagen matrix applied on a titanium mesh would favor healing and resorption onto the grafted bone. A histologic and radiographic study of two different groups (test and control) was performed. Designs: A surgical procedure was performed on 8 pigs to obtain 16 bilateral mandibular alveolar defects. All the defects were then reconstructed with a mixture of autogenous bovine bone using titanium mesh positioning. Two groups, with a total of 16 defects were created: The first to study collagen sponge and PDGF-BB and the second to control collagen only. The collagen matrix was positioned directly over the mesh and soft tissue was closed without tensions onto both groups without attempting to obtain primary closure. Possible exposure of the titanium mesh as well as the height and volume of the new bone was recorded. Results: New bone formation averaged about 6.68 mm in the test group studied; the control group had less regenerated bone at 4.62 mm. Conclusion: PDGF-BB addition to the collagen matrix induced a strong increase in hard and soft tissue healing and favored bone formation, reducing bone resorption even if the mesh was exposed. PMID:23833493

  20. Secondary alveolar bone grafting in cleft of the lip and palate patients

    PubMed Central

    Walia, Abhilashaa

    2011-01-01

    Aim: The aim was to restore the function and form of both arches with a proper occlusal relationship and eruption of tooth in the cleft area. Materials and Methods: Eleven patients were selected irrespective of sex and socio-economic status and whose age was within the mixed dentition period. Iliac crest is grafted in cleft area and subsequently evaluated for graft success using study models, and periapical and occlusal radiographs. Results: At the time of evaluation teeth were erupted in the area and good alveolar bone levels were present. Premaxilla becomes immobile with a good arch form and arch continuity. There are no major complications in terms of pain, infection, paraesthesia, hematoma formation at donor site without difficulty in walking. There is no complication in terms of pain, infection, exposure of graft, rejection of graft, and wound dehiscence at the recipient site. Discussion: It is evident that secondary alveolar grafting during the mixed dentition period is more beneficial for patients at the donor site as well as the recipient site. Conclusion: Long-term follow-up is required to achieve maximum advantage of secondary alveolar grafting; the age of the patient should be within the mixed dentition period, irrespective of sex, socio-economic status. It may be unilateral or bilateral. PMID:22090755

  1. Chronic Kidney Disease Impairs Bone Defect Healing in Rats

    PubMed Central

    Liu, Weiqing; Kang, Ning; Seriwatanachai, Dutmanee; Dong, Yuliang; Zhou, Liyan; Lin, Yunfeng; Ye, Ling; Liang, Xing; Yuan, Quan

    2016-01-01

    Chronic kidney disease (CKD) has been regarded as a risk for bone health. The aim of this study was to evaluate the effect of CKD on bone defect repair in rats. Uremia was induced by subtotal renal ablation, and serum levels of BUN and PTH were significantly elevated four weeks after the second renal surgery. Calvarial defects of 5-mm diameter were created and implanted with or without deproteinized bovine bone mineral (DBBM). Micro-CT and histological analyses consistently revealed a decreased newly regenerated bone volume for CKD rats after 4 and 8 weeks. In addition, 1.4-mm-diameter cortical bone defects were established in the distal end of femora and filled with gelatin sponge. CKD rats exhibited significantly lower values of regenerated bone and bone mineral density (BMD) within the cortical gap after 2 and 4 weeks. Moreover, histomorphometric analysis showed an increase in both osteoblast number (N.Ob/B.Pm) and osteoclast number (N.Oc/B.Pm) in CKD groups due to hyperparathyroidism. Notably, collagen maturation was delayed in CKD rats as verified by Masson’s Trichrome staining. These data indicate that declined renal function negatively affects bone regeneration in both calvarial and femoral defects. PMID:26955758

  2. Juvenile Swine Surgical Alveolar Cleft Model to Test Novel Autologous Stem Cell Therapies

    PubMed Central

    Caballero, Montserrat; Morse, Justin C.; Halevi, Alexandra E.; Emodi, Omri; Pharaon, Michael R.; Wood, Jeyhan S.

    2015-01-01

    Reconstruction of craniofacial congenital bone defects has historically relied on autologous bone grafts. Engineered bone using mesenchymal stem cells from the umbilical cord on electrospun nanomicrofiber scaffolds offers an alternative to current treatments. This preclinical study presents the development of a juvenile swine model with a surgically created maxillary cleft defect for future testing of tissue-engineered implants for bone generation. Five-week-old pigs (n=6) underwent surgically created maxillary (alveolar) defects to determine critical-sized defect and the quality of treatment outcomes with rib, iliac crest cancellous bone, and tissue-engineered scaffolds. Pigs were sacrificed at 1 month. Computed tomography scans were obtained at days 0 and 30, at the time of euthanasia. Histological evaluation was performed on newly formed bone within the surgical defect. A 1 cm surgically created defect healed with no treatment, the 2 cm defect did not heal. A subsequently created 1.7 cm defect, physiologically similar to a congenitally occurring alveolar cleft in humans, from the central incisor to the canine, similarly did not heal. Rib graft treatment did not incorporate into adjacent normal bone; cancellous bone and the tissue-engineered graft healed the critical-sized defect. This work establishes a juvenile swine alveolar cleft model with critical-sized defect approaching 1.7 cm. Both cancellous bone and tissue engineered graft generated bridging bone formation in the surgically created alveolar cleft defect. PMID:25837453

  3. Bioceramic Implant Induces Bone Healing of Cranial Defects

    PubMed Central

    Kihlström, Lars; Lundgren, Kalle; Trobos, Margarita; Engqvist, Håkan; Thomsen, Peter

    2015-01-01

    Summary: Autologous bone or inert alloplastic materials used in cranial reconstructions are techniques that are associated with resorption, infection, and implant exposure. As an alternative, a calcium phosphate–based implant was developed and previously shown to potentially stimulate bone growth. We here uncover evidence of induced bone formation in 2 patients. Histological examination 9 months postoperatively showed multinuclear cells in the central defect zone and bone ingrowth in the bone-implant border zone. An increased expression of bone-associated markers was detected. The other patient was investigated 50 months postoperatively. Histological examination revealed ceramic materials covered by vascularized compact bone. The bone regenerative effect induced by the implant may potentially improve long-term clinical outcome compared with conventional techniques, which needs to be verified in a clinical study. PMID:26495204

  4. In vitro cytotoxicity of a novel injectable and biodegradable alveolar bone substitute.

    PubMed

    Zhang, Zhixing; Feng, Xiangli; Mao, Jing; Xiao, Jianzhong; Liu, Chenmei; Qiu, Jinjun

    2009-02-01

    The unsaturated polyphosphoester (UPPE) polymer is being investigated as an injectable and biodegradable system for alveolar bone repair in the treatment of periodontal diseases. The incorporation of beta-tricalcium phosphate (beta-TCP) particles into the UPPE polymer was previously shown to significantly increase the material's mechanical properties. Moreover, in vitro experiments demonstrated that the UPPE/beta-TCP composite was capable of zero-order release of tetracycline for over 2 weeks. In this study, we investigated the in vitro cytotoxicity of each individual component, the resulting cross-linked network and the degradation products of the UPPE/beta-TCP composite using an AlamarBlue viability assay. We confirmed that each individual component except beta-TCP and the in vitro degradation products of the composite displayed a dose-dependent cytotoxic response. Once cross-linked, however, the composite did not demonstrate an adverse response. Our results suggest that the UPPE/beta-TCP composite holds great promise for use as an injectable and biodegradable alveolar bone substitute. PMID:19116137

  5. Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament.

    PubMed

    Sundaram, M Nivedhitha; Sowmya, S; Deepthi, S; Bumgardener, Joel D; Jayakumar, R

    2016-05-01

    Periodontitis is an inflammatory disease that causes destruction of tooth-supporting tissues and if left untreated leads to tooth loss. Current treatments have shown limited potential for simultaneous regeneration of the tooth-supporting tissues. To recreate the complex architecture of the periodontium, we developed a bilayered construct consisting of poly(caprolactone) (PCL) multiscale electrospun membrane (to mimic and regenerate periodontal ligament, PDL) and a chitosan/2wt % CaSO4 scaffold (to mimic and regenerate alveolar bone). Scanning electron microscopy results showed the porous nature of the scaffold and formation of beadless electrospun multiscale fibers. The fiber diameter of microfiber and nanofibers was in the range of 10 ± 3 µm and 377 ± 3 nm, respectively. The bilayered construct showed better protein adsorption compared to the control. Osteoblastic differentiation of human dental follicle stem cells (hDFCs) on chitosan/2wt % CaSO4 scaffold showed maximum alkaline phosphatase at seventh day followed by a decline thereafter when compared to chitosan control scaffold. Fibroblastic differentiation of hDFCs was confirmed by the expression of PLAP-1 and COL-1 proteins which were more prominent on PCL multiscale membrane in comparison to control membranes. Overall these results show that the developed bilayered construct might serve as a good candidate for the simultaneous regeneration of the alveolar bone and PDL. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 761-770, 2016. PMID:26153674

  6. The vascularized sural nerve graft based on a peroneal artery perforator for reconstruction of the inferior alveolar nerve defect.

    PubMed

    Hayashida, Kenji; Hiroto, Saijo; Morooka, Shin; Kuwabara, Kaoru; Fujioka, Masaki

    2015-03-01

    The sural nerve has been described for nerve reconstruction of the maxillofacial region since it provides many advantages. We report a case of a vascularized sural nerve graft based on a peroneal artery perforator for immediate reconstruction after the removal of intraosseous neuroma originating in the inferior alveolar nerve. The patient had a neuroma caused by iatrogenic injury to the inferior alveolar nerve. A 4-cm long neuroma existed in the inferior alveolar nerve and was resected. A peroneal perforator was chosen as the pedicle of the vascularized sural nerve graft for the nerve gap. The graft including the skin paddle for monitoring the perfusion supplied by this perforator was transferred to the lesion. The nerve gap between the two stumps of the inferior alveolar nerve was repaired using the 6-cm long vascularized sural nerve. The perforator of the peroneal artery was anastomosed to the branch of the facial artery in a perforator-to-perforator fashion. There was no need to sacrifice any main arteries. The skin paddle with 1 cm × 3 cm in size was inset into the incised medial neck. Perceptual function tests with a Semmes-Weinstein pressure esthesiometer and two-point discrimination in the lower lip and chin at 10 months after surgery showed recovery almost to the level of the normal side. This free vascularized sural nerve graft based on a peroneal artery perforator may be a good alternative for reconstruction of inferior alveolar nerve defects. PMID:25346479

  7. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP.

    PubMed

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1(-/-) mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1(-/-) mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP. PMID:27388773

  8. Micromolar sodium fluoride mediates anti-osteoclastogenesis in Porphyromonas gingivalis-induced alveolar bone loss.

    PubMed

    Bhawal, Ujjal K; Lee, Hye-Jin; Arikawa, Kazumune; Shimosaka, Michiharu; Suzuki, Masatoshi; Toyama, Toshizo; Sato, Takenori; Kawamata, Ryota; Taguchi, Chieko; Hamada, Nobushiro; Nasu, Ikuo; Arakawa, Hirohisa; Shibutani, Koh

    2015-12-01

    Osteoclasts are bone-specific multinucleated cells generated by the differentiation of monocyte/macrophage lineage precursors. Regulation of osteoclast differentiation is considered an effective therapeutic approach to the treatment of bone-lytic diseases. Periodontitis is an inflammatory disease characterized by extensive bone resorption. In this study, we investigated the effects of sodium fluoride (NaF) on osteoclastogenesis induced by Porphyromonas gingivalis, an important colonizer of the oral cavity that has been implicated in periodontitis. NaF strongly inhibited the P. gingivalis-induced alveolar bone loss. That effect was accompanied by decreased levels of cathepsin K, interleukin (IL)-1β, matrix metalloproteinase 9 (MMP9), and tartrate-resistant acid phosphatase, which were up-regulated during P. gingivalis-induced osteoclastogenesis. Consistent with the in vivo anti-osteoclastogenic effect, NaF inhibited osteoclast formation caused by the differentiation factor RANKL (receptor activator of nuclear factor κB ligand) and macrophage colony-stimulating factor (M-CSF). The RANKL-stimulated induction of the transcription factor nuclear factor of activated T cells (NFAT) c1 was also abrogated by NaF. Taken together, our data demonstrate that NaF inhibits RANKL-induced osteoclastogenesis by reducing the induction of NFATc1, ultimately leading to the suppressed expression of cathepsin K and MMP9. The in vivo effect of NaF on the inhibition of P. gingivalis-induced osteoclastogenesis strengthens the potential usefulness of NaF for treating periodontal diseases. PMID:26674426

  9. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP

    PubMed Central

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R.; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1−/− mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1−/− mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP. PMID:27388773

  10. The Protective Effect of Rhizoma Dioscoreae Extract against Alveolar Bone Loss in Ovariectomized Rats via Regulating Wnt and p38 MAPK Signaling

    PubMed Central

    Zhang, Zhiguo; Xiang, Lihua; Bai, Dong; Wang, Wenlai; Li, Yan; Pan, Jinghua; Liu, Hong; Wang, Shaojun; Xiao, Gary Guishan; Ju, Dahong

    2014-01-01

    Aim: The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Methods: Female Wistar rats were subjected to either ovariectomy or a sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX) or RDE by oral gavage or with 17β-estradiol (E2) subcutaneously. After treatments, the bone mineral density (BMD), the three-dimensional bone architecture of the alveolar bone and the plasma biomarkers of bone turnover were analyzed to assess bone metabolism, and the histomorphometry of the alveolar bone was observed. Microarrays were used to evaluate gene expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of genes was further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using real-time quantitative RT-PCR (qRT-PCR). Results: Our results showed that RDE inhibited alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 207 genes and downregulated expression levels of 176 genes in the alveolar bone. The IPA showed that several genes had the potential to code for proteins that were involved in the Wnt/β-catenin signaling pathway (Wnt7a, Fzd2, Tcf3, Spp1, Frzb, Sfrp2 and Sfrp4) and the p38 MAPK signaling pathway (Il1rn and Mapk14). Conclusion: These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may be involved in the reduced abnormal bone remodeling, which is associated with the modulation of the Wnt/β-catenin and the p38 MAPK signaling pathways via gene regulation. PMID:25514564

  11. Distribution of /sup 3/H-proline in alveolar bone of the mouse as seen by radioautography

    SciTech Connect

    Johnson, R.B.

    1986-11-01

    Previous studies of the turnover of alveolar bone collagenous proteins have devoted little attention to the variable patterns in this process caused by bone remodeling. The present study seeks to document changes resulting from physiologic tooth movements in the incorporation and removal of the /sup 3/H-proline label within the interdental septum of alveolar bone. One week following /sup 3/H-proline injection, three zones could be distinguished: the appositional band, new bone, and old bone. Radioautography demonstrated that formation of new bone on the distal wall of the septum entrapped fibers of the periodontal ligament to create Sharpey's fibers. At the alveolar crest, new bone entrapped transseptal fibers to form transalveolar Sharpey's fibers. Grain counts were made within each area and over the total septum and were compared statistically. The data strongly suggested regional variations in protein remodeling. Counts from old and new bone were significantly different from the total septum or the appositional band (P less than .001). Regression lines were drawn to represent incorporation and removal of the isotope; slopes were calculated and compared statistically. The rate of incorporation and removal was significantly greater in the appositional band and in the total septum in comparison to old bone (P less than .001). The rates of incorporation and removal in the appositional band, old bone, and total septum were significantly different (P less than .001). Half-life of the labeled protein of old bone was 16.78 weeks; in the appositional band, 7.66 weeks; and in the total septum, 7.64 weeks. These data suggest that regional variations in collagen remodeling must be considered in a study of interdental bone and that the total septal grain counts are not indicative of the remodeling in the component zones.

  12. Lipopolysaccharide-induced epithelial monoamine oxidase mediates alveolar bone loss in a rat chronic wound model.

    PubMed

    Ekuni, Daisuke; Firth, James D; Nayer, Tarun; Tomofuji, Takaaki; Sanbe, Toshihiro; Irie, Koichiro; Yamamoto, Tatsuo; Oka, Takashi; Liu, Zhenzi; Vielkind, Juergen; Putnins, Edward E

    2009-10-01

    Reactive oxygen species (ROS) production is an antimicrobial response to pathogenic challenge that may, in the case of persistent infection, have deleterious effects on the tissue of origin. A rat periodontal disease model was used to study ROS-induced chronic epithelial inflammation and bone loss. Lipopolysaccharide (LPS) was applied for 8 weeks into the gingival sulcus, and histological analysis confirmed the onset of chronic disease. Junctional epithelium was collected from healthy and diseased animals using laser-capture microdissection, and expression microarray analysis was performed. Of 19,730 genes changed in disease, 42 were up-regulated >/=4-fold. Three of the top 10 LPS-induced genes, monoamine oxidase B (MAO/B) and flavin-containing monooxygenase 1 and 2, are implicated in ROS signaling. LPS-associated induction of the ROS mediator H(2)O(2), as well as MAO/B and tumor necrosis factor (TNF)-alpha levels were validated in the rat histological sections and a porcine junctional epithelial cell culture model. Topical MAO inhibitors significantly counteracted LPS-associated elevation of H(2)O(2) production and TNF-alpha expression in vivo and in vitro, inhibited disease-associated apical migration and proliferation of junctional epithelium and inhibited induced systemic H(2)O(2) levels and alveolar bone loss in vivo. These results suggest that LPS induces chronic wounds via elevated MAO/B-mediated increases in H(2)O(2) and TNF-alpha activity by epithelial cells and is further associated with more distant effects on systemic oxidative stress and alveolar bone loss. PMID:19779138

  13. Dental implants with versus without peri-implant bone defects treated with guided bone regeneration

    PubMed Central

    Peñarrocha-Oltra, David; Peñarrocha-Diago, Maria; Peñarrocha-Diago, Miguel

    2015-01-01

    Background The guided bone regeneration (GBR) technique is highly successful for the treatment of peri-implant bone defects. The aim was to determine whether or not implants associated with GBR due to peri-implant defects show the same survival and success rates as implants placed in native bone without defects. Material and Methods Patients with a minimum of two submerged dental implants: one suffering a dehiscence or fenestration defect during placement and undergoing simultaneous guided bone regeneration (test group), versus the other entirely surrounded by bone (control group) were treated and monitored annually for three years. Complications with the healing procedure, implant survival, implant success and peri-implant marginal bone loss were assessed. Statistical analysis was performed with non-parametric tests setting an alpha value of 0.05. Results Seventy-two patients and 326 implants were included (142 test, 184 control). One hundred and twenty-five dehiscences (average height 1.92±1.11) and 18 fenestrations (average height 3.34±2.16) were treated. At 3 years post-loading, implant survival rates were 95.7% (test) and 97.3% (control) and implant success rates were 93.6% and 96.2%, respectively. Mean marginal bone loss was 0.54 (SD 0.26 mm) for the test group and 0.43 (SD 0.22 mm) for the control group. No statistically significant differences between both groups were found. Conclusions Within the limits of this study, implants with peri-implant defects treated with guided bone regeneration exhibited similar survival and success rates and peri-implant marginal bone loss to implants without those defects. Large-scale randomized controlled studies with longer follow-ups involving the assessment of esthetic parameters and hard and soft peri-implant tissue stability are needed. Key words:Guided bone regeneration, peri-implant defects, dental implants, marginal bone level, success rate, survival rate. PMID:26330931

  14. Treatment of Bone Defects in War Wounds: Retrospective Study

    PubMed Central

    Grubor, Predrag; Milicevic, Snjezana; Grubor, Milan; Meccariello, Luigi

    2015-01-01

    Introduction: Results of the treatment of open fractures primarily depend on the treatment of connected soft tissue injuries. Objective: The aim was to present the experience and methods gained during the treatment of diaphyseal bone defects as a consequence of gunshot fracture soft war trauma. Patients and Methods: The study consisted of 116 patients with the diaphyseal bone defect who were treated with the usage of primary and delayed autotransplantation of bones, transplants of the fibula and Ilizarov distraction osteogenesis. Results: The results of compensation of bone defect less than 4 cm and conducted by an early cortico-spongioplastics were as follows: good in 8 respondents (45%), satisfactory in 6 (34%) and poor in 4 respondents (21%). In cases of delayed cortico-spongioplastics, the above mentioned results were: good in 36 (41%) respondents, satisfactory in 24 (34%) and poor in 16 (25%) respondents. The results of compensation of bone defect greater than 4 cm with the usage of fibular transplant were as follows: good in 3 (38%) respondents, satisfactory in 3 (38%) and poor in 2 (24%), and with the usage of using the Ilizarov method, the results were as follows: good in 8 (57%) respondents, satisfactory in 3 (21.5%) and poor in 3(21.5%) respondents. Conclusion: The results showed that, in cases of compensation of bone defects less than 4 cm, the advantage is given to the primary spongioplastics over the delayed one. In cases of compensation of bone defects greater than 4 cm, the advantage is given to the Ilizarov distraction osteogenesis when compared to the fibular transplant. PMID:26543315

  15. Effects of bovine lactoferrin in surgically created bone defects on bone regeneration around implants.

    PubMed

    Görmez, Ulaş; Kürkcü, Mehmet; E Benlidayi, Mehmet; Ulubayram, Kezban; Sertdemir, Yaşar; Dağlioğlu, Kenan

    2015-03-01

    The aim of this experimental study was to evaluate the effect of bovine lactoferrin (bLF)-loaded gelatin microspheres (GM) used in combination with anorganic bovine bone on bone regeneration in surgically created bone defects around tooth implants. Twenty-four uniform bone defects were created in the frontal bone via an extraoral approach in 12 domestic pigs. Twenty-four implants were placed at the center of the defects. In eight animals one of these defects was filled with 0.3 mL anorganic bovine bone while the other was left empty. In four animals, all defects were filled with 3 mg/defect bLF-loaded GM and anorganic bovine bone. All the defects were covered with collagen membranes. All animals were sacrificed after 10 weeks of healing, and the implants with the surrounding bone defects were removed en bloc. Undecalcified sections were prepared for histomorphometric analysis. The mean total area of hard tissue was 26.9 ± 6.0% in the empty defect group, 31.8 ± 8.4% in the graft group, and 47.6 ± 5.0% in the lactoferrin group (P < 0.001). The mean area of newly formed bone was 26.9 ± 6.0% in the empty defect group, 22.4 ± 8.2% in the graft group, and 46.1 ± 5.1% in the lactoferrin group (P < 0.001). The mean residual graft area was 9.4 ± 3.2% in the graft group and 1.5 ± 0.6% in the lactoferrin group (P < 0.001). The mean proportion of bone-implant contact in the defect region was 21.9 ± 8.4% in the empty defect group, 26.9 ± 10.1% in the graft group and 29.9 ± 10.3% in the lactoferrin group (P = 0.143). These data indicate that a combination of 3 mg bLF-loaded GM and bovine-derived HA promotes bone regeneration in defects around implants. PMID:25807903

  16. Optimization of dental status improves long-term outcome after alveolar bone grafting in unilateral cleft lip and palate.

    PubMed

    Jabbari, Fatima; Skoog, Valdemar; Reiser, Eicka; Hakelius, Malin; Nowinski, Daniel

    2015-03-01

    Objective : To evaluate the importance of dental status for long-term outcome after alveolar bone grafting in patients with unilateral cleft lip and palate. Design : Retrospective longitudinal study. Setting : Cleft lip and palate-craniofacial center, Uppsala University Hospital, Sweden. Patients : A total of 67 consecutive patients with unilateral complete cleft lip and palate. Interventions : Secondary alveolar bone grafting, prior to the eruption of the permanent canine, was performed at the average age of 10.0 years (range, 8.5 to 12.0 years). Main Outcome Measures : Alveolar bone height was evaluated with the modified Bergland index at 1 and 10 years after surgery. Results : Of the patients, 97% had modified Bergland index grade I and the remaining 3% had modified Bergland index grade II at 1 year after surgery. At 10 years' follow-up, 43% showed modified Bergland index grade I; 55%, modified Bergland index grade II; and 2% (one patient), modified Bergland index grade III. The degree of dental anomalies in the cleft area, such as enamel hypoplasia, incisor rotation, incisor inclination, canine inclination, and oral hygiene registered preoperatively, all correlated negatively to the modified Bergland index at 10 years after surgery. Enamel hypoplasia (ρ = 0.70195, P < .0001), followed by canine inclination (ρ = 0.55429, P < .0001), showed the strongest correlation to reduced bone height in the cleft area. Conclusions : In patients with unilateral cleft lip and palate, excellent results from secondary alveolar bone grafting in terms of bone height in the alveolar cleft tend to decrease with time. This seems to be correlated with factors that might to some extent be treated preoperatively through adequate planning and execution of the orthodontic treatment. PMID:24568558

  17. Nell-1-induced bone regeneration in calvarial defects.

    PubMed

    Aghaloo, Tara; Cowan, Catherine M; Chou, Yu-Fen; Zhang, Xinli; Lee, Haofu; Miao, Steve; Hong, Nichole; Kuroda, Shun'ichi; Wu, Benjamin; Ting, Kang; Soo, Chia

    2006-09-01

    Many craniofacial birth defects contain skeletal components requiring bone grafting. We previously identified the novel secreted osteogenic molecule NELL-1, first noted to be overexpressed during premature bone formation in calvarial sutures of craniosynostosis patients. Nell-1 overexpression significantly increases differentiation and mineralization selectively in osteoblasts, while newborn Nell-1 transgenic mice significantly increase premature bone formation in calvarial sutures. In the current study, cultured calvarial explants isolated from Nell-1 transgenic newborn mice (with mild sagittal synostosis) demonstrated continuous bone growth and overlapping sagittal sutures. Further investigation into gene expression cascades revealed that fibroblast growth factor-2 and transforming growth factor-beta1 stimulated Nell-1 expression, whereas bone morphogenetic protein (BMP)-2 had no direct effect. Additionally, Nell-1-induced osteogenesis in MC3T3-E1 osteoblasts through reduction in the expression of early up-regulated osteogenic regulators (OSX and ALP) but induction of later markers (OPN and OCN). Grafting Nell-1 protein-coated PLGA scaffolds into rat calvarial defects revealed the osteogenic potential of Nell-1 to induce bone regeneration equivalent to BMP-2, whereas immunohistochemistry indicated that Nell-1 reduced osterix-producing cells and increased bone sialoprotein, osteocalcin, and BMP-7 expression. Insights into Nell-1-regulated osteogenesis coupled with its ability to stimulate bone regeneration revealed a potential therapeutic role and an alternative to the currently accepted techniques for bone regeneration. PMID:16936265

  18. Stress Distribution on Short Implants at Maxillary Posterior Alveolar Bone Model With Different Bone-to-Implant Contact Ratio: Finite Element Analysis.

    PubMed

    Yazicioglu, Duygu; Bayram, Burak; Oguz, Yener; Cinar, Duygu; Uckan, Sina

    2016-02-01

    The aim of this study was to evaluate the stress distribution of the short dental implants and bone-to-implant contact ratios in the posterior maxilla using 3-dimensional (3D) finite element models. Two different 3D maxillary posterior bone segments were modeled. Group 1 was composed of a bone segment consisting of cortical bone and type IV cancellous bone with 100% bone-to-implant contact. Group 2 was composed of a bone segment consisting of cortical bone and type IV cancellous bone including spherical bone design and homogenous tubular hollow spaced structures with 30% spherical porosities and 70% bone-to-implant contact ratio. Four-millimeter-diameter and 5-mm-height dental implants were assumed to be osseointegrated and placed at the center of the segments. Lateral occlusal bite force (300 N) was applied at a 25° inclination to the implants long axis. The maximum von Mises stresses in cortical and cancellous bones and implant-abutment complex were calculated. The von Mises stress values on the implants and the cancellous bone around the implants of the 70% bone-to-implant contact group were almost 3 times higher compared with the values of the 100% bone-to-implant contact group. For clinical reality, use of the 70% model for finite element analysis simulation of the posterior maxilla region better represents real alveolar bone and the increased stress and strain distributions evaluated on the cortical and cancellous bone around the dental implants. PMID:26867093

  19. Fabrication of printed titanium shells for containment of BMP-2 composite graft materials for alveolar bone reconstruction.

    PubMed

    Jensen, Ole T; Lehman, Hadas; Ringeman, Jason L; Casap, Nardy

    2014-01-01

    The engineering, design, manufacture, and rationale for use of printed titanium shells for alveolar bone reconstruction using BMP-2/ACS/allograft are described. This is proposed as a possible improvement to the current hand-configured mesh graft technique in common use today. PMID:24451877

  20. Guided bone regeneration in the treatment of fenestration osseous defect.

    PubMed

    Mahesh, H V; Ramya, K S

    2013-01-01

    This article presents a case with a fenestration defect which was treated by placing a resorbable barrier alone. In the case presented, the osseous defect was a natural space maker with the wall of the defect providing sufficient support to prevent collapse of the membrane into the space. So the use of membrane alone is the preferred treatment. Resorbable collagen membrane was placed in order to avoid a second surgical procedure to remove the nonresorbable membrane. The membrane was positioned by placing a resorbable sling suture such that it covered the defective site adequately. Postsurgical healing of the defect was evaluated 1 month after the surgery and it was satisfactory. Thus guided bone regeneration of the fenestration defect is a reliable treatment procedure. PMID:23965465

  1. Kinetics of gene expression of alkaline phosphatase during healing of alveolar bone in rats.

    PubMed

    Rodrigues, Willian Caetano; Fabris, André Luís da Silva; Hassumi, Jaqueline Suemi; Gonçalves, Alaíde; Sonoda, Celso Koogi; Okamoto, Roberta

    2016-06-01

    Immunohistochemical studies and molecular biology have enabled us to identify numerous proteins that are involved in the metabolism of bone, and their encoding genes. Among these is alkaline phosphatase (ALP), an enzyme that is responsible for the initiation of mineralisation of the extracellular matrix during alveolar bone repair. To evaluate the gene expression of ALP during this process, we studied nine healthy adult male rats, which had their maxillary central incisors extracted from the right side and were randomly divided into three groups. During three experimental periods, 7 days, 14 days, and 28 days, the alveoli were curetted, the rats killed, and samples analysed by real-time reverse transcription polymerase chain reaction (qRT-PCR). The RNAm that encodes the gene for the synthesis of ALP was expressed during the three periods analysed, but its concentration was significantly increased at 14 and 28 days compared with at 7 days. There was no significant difference between 14 and 28 days (p=0.0005). We conclude that genes related to ALP are expressed throughout the healing process and more intensively during the later periods (14 and 28 days), which coincides with the increased formation of mineralised bone. PMID:26935214

  2. Histomorphometric study of alveolar bone healing in rats fed a boron-deficient diet.

    PubMed

    Gorustovich, Alejandro A; Steimetz, Tammy; Nielsen, Forrest H; Guglielmotti, María B

    2008-04-01

    Bone healing after tooth extraction in rats is a suitable experimental model to study bone formation. Thus, we performed a study to determine the effects of boron (B) deficiency on bone healing by using this model. The first lower right molar of weanling Wistar rats was extracted under anesthesia. The animals were divided into two groups: +B (adequate; 3 mg B/kg diet), and -B (boron-deficient; 0.07 mg/kg diet). The animals in both groups were killed in groups of 10 at 7 and 14 days after surgery. The guidelines of the NIH for the care and use of laboratory animals were observed. The mandibles were resected, fixed, decalcified, and embedded in paraffin. Buccolingually oriented sections were obtained at the level of the mesial alveolus and used for histometric evaluations. Total alveolar volume (TAV) and trabecular bone volume per total volume (BV/TV) in the apical third of the alveolus were determined. Percentages of osteoblast surface (ObS), eroded surface (ES), and quiescent surface (QS) were determined. No statistical significant differences in food intake and body weight were observed. Histomorphometric evaluation found -B rats had 36% and 63% reductions in BV/TV at 7 and 14 days, respectively. When compared with +B rats, -B rats had significant reductions (57% and 87%) in ObS concomitantly with increases (120% and 126%) in QS at 7 and 14 days, respectively. The findings show that boron deficiency results in altered bone healing because of a marked reduction in osteogenesis. PMID:18361451

  3. Short dental implants in reduced alveolar bone height: A review of the literature

    PubMed Central

    Tutak, Marcin; Smektała, Tomasz; Schneider, Katarzyna; Gołębiewska, Edyta; Sporniak-Tutak, Katarzyna

    2013-01-01

    Background The purpose of this study was to evaluate the use of short dental implants in distally reduced alveolar bone height. Material/Methods MedLine (PubMed and Ovid), ISI Web of Knowledge, and Cochrane databases were used for analysis. Searching was conducted using the search equation: ‘Dental Implants’ [Majr] AND (Short[TIAB] OR Shorter[TIAB]) AND (Implant[TIAB] OR Implants[TIAB]). Abstracts were screened by 2 independent reviewers. The articles included in the analysis were published in the English language and reported data on the use of implants with lengths below 10 mm in the posterior region with reduced alveolar bone height making the placement of longer implants impossible without additional surgical interventions. Articles concerning data on orthodontic implants and post-resection surgery reconstruction were excluded from analysis. Any disagreements between the 2 reviewers were resolved by a third reviewer. No time frame was used. Results Of the 791 articles initially found, automatic rejection of duplicates in the Endnotes X5 software resulted in 538 articles. After the selection of studies from databases, a bibliography of 32 eligible articles was searched for other publications. Through this method, 2 more studies were added. Conclusions The analysis of the results of different studies on the use of short dental implants showed that this treatment could be effective and comparable to the use of standard-length implants. This study revealed that rough-surfaced implants with lengths between 6–10 mm placed in the posterior mandible are the preferred solution. However, more detailed data will require additional prospective studies. PMID:24257121

  4. Hydrogel Delivery of Mesenchymal Stem Cell–Expressing Bone Morphogenetic Protein-2 Enhances Bone Defect Repair

    PubMed Central

    Hsiao, Hui-Yi; Yang, Shu-Rui; Brey, Eric M.; Chu, I-Ming

    2016-01-01

    Background: The application of bone tissue engineering for repairing bone defects has gradually shown some satisfactory progress. One of the concerns raising scientific attention is the poor supply of growth factors. A number of growth factor delivery approaches have been developed for promoting bone formation. However, there is no systematic comparison of those approaches on efficiency of neobone formation. In this study, the approaches using periosteum, direct supply of growth factors, or gene transfection of growth factors were evaluated to determine the osteogenic capacity on the repair of bone defect. Methods: In total, 42 male 21-week-old Sprague-Dawley rats weighing 250 to 400 g were used as the bone defect model to evaluate the bone repair efficiency. Various tissue engineered constructs of poly(ethylene glycol)-poly(l-lactic acid) (PEG-PLLA) copolymer hydrogel with periosteum, with external supply of bone morphogenetic protein-2 (BMP2), or with BMP2-transfected bone marrow–derived mesenchymal stem cells (BMMSCs) were filled in a 7-mm bone defect region. Animals were euthanized at 3 months, and the hydrogel constructs were harvested. The evaluation with histological staining and radiography analysis were performed for the volume of new bone formation. Results: The PEG-PLLA scaffold with BMMSCs promotes bone regeneration with the addition of periosteum. The group with BMP2-transfected BMMSCs demonstrated the largest volume of new bone among all the testing groups. Conclusions: Altogether, the results of this study provide the evidence that the combination of PEG-PLLA hydrogels with BMMSCs and sustained delivery of BMP2 resulted in the maximal bone regeneration. PMID:27622106

  5. Evaluation of the bone healing process in an experimental tibial bone defect model in ovariectomized rats.

    PubMed

    Kido, Hueliton Wilian; Bossini, Paulo Sérgio; Tim, Carla Roberta; Parizotto, Nivaldo Antônio; da Cunha, Anderson Ferreira; Malavazi, Iran; Renno, Ana Claudia Muniz

    2014-10-01

    The aim of this study was to evaluate the influence of postmenopausal bone loss (induced by ovariectomy) in the process of bone healing in a tibial bone defect model in rats by means of histological evaluation of bone defects and the analysis of the expression of genes and proteins involved in bone consolidation. Twenty female Wistar rats (12 weeks old, weighing ±250 g) were randomly divided into two groups: control group (CG) and ovariectomized group (OG). Rats of OG were submitted to ovariectomy and after 8 weeks post-surgery, all animals were submitted to the tibial bone defect model. The main histological finding analysis revealed that ovariectomized animals showed a higher amount of granulation tissue and immature newly formed bone compared to CG. Furthermore, quantitative histological analysis showed that OG presented a significant decrease in the amount of newly formed bone (p = 0.0351). RT-PCR analysis showed no difference in Runx2, ALP, RANK, RANKL and Osterix gene expression 14-day post-surgery. Interestingly, immunohistochemical evaluation showed that Runx2 was down expressed (p = 0.0001) and RANKL was up expressed (p = 0.0022) in the OG. In conclusion, these data highlight that bone loss induced by ovariectomy causes an impairment in the capacity of bone to heal mainly probably because of alterations in the imbalance of osteoblasts and osteoclasts activities. PMID:24532218

  6. Individual replacement of the frontal bone defect: case report.

    PubMed

    Jirman, R; Horák, Z; Mazánek, J; Reznícek, J

    2009-01-01

    The objective of the skeletal defects reconstruction using individual implants is an attempt to replace lost and damaged anatomical bone structures, renew their original function, and at the same time, to restore the original aesthetic visual aspect. This work is focused on a demonstration of the design methods, fabrication and surgical techniques of the custom-made replacement of a large defect of the frontal bone on the skull. The patient was a 30-year-old woman with a defect of the frontal bone in the size of 7 x 3 x 2 cm after a serious polytrauma. The size and character of the defect excluded the use of commonly supplied augmentations. The geometry of the individual replacement was designed on the basis of a 3D model of the defect obtained from a series of CT scans. After verification of the shape accuracy of the defect made from plastic on a 3D printer, the individual replacement was fabricated from an ultra high molecular weight polyethylene (UHMWPE) by machining with the use of the CNC technology. The success of the augmentation depends on the accurate and precise fabrication of the individual replacement, which is highly demanding on the used advanced technologies. PMID:19591381

  7. Retrospective long-term analysis of bone level changes after horizontal alveolar crest reconstruction with autologous bone grafts harvested from the posterior region of the mandible

    PubMed Central

    2016-01-01

    Purpose The goal of this study was to evaluate the long-term success of horizontal alveolar crest augmentation of the retromolar region of the mandible with particulated bone, as well as factors affecting subsequent peri-implant bone loss. Methods A total of 109 patients (68 female, 41 male) suffering from alveolar ridge deficiencies of the maxilla and mandible were included in this study. All patients were treated with particulated retromolar bone grafts from the mandible prior to the insertion of endosseous dental implants. Mesial and distal peri-implant crestal bone changes were assessed at six time points. Several parameters, including implant survival and the influence of age, gender, localisation of the implant, diameter, covering procedures, and time points of implant placement, were analysed to identify associations with bone level changes using the Mann-Whitney U-test, the Kruskal-Wallis test, and Spearman's rank-order correlation coefficient. Results A total of 164 dental implants were placed in the maxilla (n=97) and in the mandible (n=67). The mean observation period was 105.26±21.58 months after implantation. The overall survival rate was 97.6% after 10 years. Overall, peri-implant bone loss was highest during the first year, but decreased over time. The mean amount of bone loss after 10 years was 2.47 mm mesially and 2.50 mm distally. Bone loss was significantly influenced by implant type and primary stability. Conclusions The use of particulated autologous retromolar bone grafts is a reliable technique for the horizontal reconstruction of local alveolar ridge deficiencies. Our results demonstrate that implants placed in augmented bone demonstrated similar bone level changes compared to implants inserted in non-augmented regions. PMID:27127688

  8. [Bone morphogenetic proteins (BMP): clinical application for reconstruction of bone defects].

    PubMed

    Sierra-García, Gerardo Daniel; Castro-Ríos, Rocío; Gónzalez-Horta, Azucena; Lara-Arias, Jorge; Chávez-Montes, Abelardo

    2016-01-01

    Since the introduction of bone morphogenetic proteins, their use has become an invaluable ally for the treatment of bone defects. These proteins are potent growth factors, related to angiogenic and osteogenic activity. The osteoinductive capacity of recombinant bone morphogenetic protein (rhBMP) in the formation of bone and cartilage has been confirmed in in vitro studies and evaluated in clinical trials. To obtain a therapeutic effect, administration is systemic, by injection over the physiological dose. Among the disadvantages, ectopic bone formation or high morbidity in cases of spinal fusion is observed. In this review, the roles of bone morphogenetic proteins in bone repair and clinical applications are analyzed. These findings represent advances in the study of bone regeneration and application of growth factors for more predictable results. PMID:27335195

  9. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.

    PubMed

    Van der Stok, Johan; Van der Jagt, Olav P; Amin Yavari, Saber; De Haas, Mirthe F P; Waarsing, Jan H; Jahr, Holger; Van Lieshout, Esther M M; Patka, Peter; Verhaar, Jan A N; Zadpoor, Amir A; Weinans, Harrie

    2013-05-01

    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects. PMID:23255164

  10. Effect of laser phototherapy on human alveolar bone repair: micro tomographic and histomorphometrical analysis

    NASA Astrophysics Data System (ADS)

    Romão, Marcia M. A.; Marques, Márcia M.; Cortes, Arthur R. G.; Horliana, Anna C. R. T.; Moreira, Maria S.; Lascala, Cesar A.

    2015-06-01

    The immediate dental implant placement in the molars region is critical, because of the high amount of bone loss and the discrepancy between the alveolar crest thickness and the dental implant platform. Laser phototherapy (LPT) improves bone repair thus could accelerate the implant placement. Twenty patients were selected for the study. Ten patients were submitted to LPT with GaAlAs diode laser (808nm) during molar extraction, immediately after, 24h, 48h, 72h, 96h and 7 days. The irradiations were applied in contact and punctual mode (100mW, 0.04cm2, 0.75J/cm2, 30s per point, 3J per point). The control group (n=10) received the same treatment; however with the power of the laser off. Forty days later samples of the tissue formed inside the sockets were obtained for further microtomography (microCTs) and histomorphometry analyses. Data were compared by the Student t test, whereas those from the different microCT parameters were compared by the Pearson correlation test (p<0.05). The relative bone volume, as well as area was significantly higher (p<0.001) in the lased than the control group. In the control group there were negative correlations between number and thickness, and between number and separation of trabecula (p<0.01). Between thickness and separation of trabecula the correlation was positive (p<0.01). The laser group showed significant negative correlation between the number and the thickness of trabecula (p<0.01). LPT accelerated bone repair. By the Pearson correlation test it was possible to infer that the lased group presented a more homogeneous trabecular configuration, which would allow earlier dental implant placement.

  11. Cartilage Transplants Hold Promise for Challenging Bone Defects

    PubMed Central

    Nishitani, Kohei; Schwarz, Edward M.

    2015-01-01

    The challenges of healing have led investigators to question existing paradigms in the hopes of uncovering overlooked solutions. Such is the case in a recent study showing that introduction of a cartilage construct into a mouse tibial defect induces remarkable healing owing to the transformation of donor chondrocytes into new bone. PMID:24418762

  12. [New aspects of the treatment of larger bone defects].

    PubMed

    Thielemann, F W; Schmidt, K; Koslowski, L

    1983-06-01

    A characterisation of mainly used implant materials into bone defects is performed. The materials are classified in two groups; their biological effects are described in detail. Using OCG as a typical osteoinductive implant histological and radiological findings are described which take place in animals after heterotopic and orthotopic implantation. PMID:6136164

  13. Defect of alveolar regeneration in pulmonary emphysema: Role of lung fibroblasts

    PubMed Central

    Plantier, Laurent; Boczkowski, Jorge; Crestani, Bruno

    2007-01-01

    Pulmonary emphysema is characterized by the irreversible loss of pulmonary alveoli. Despite recent advances in the understanding this disease, its treatment remains palliative. In this review, we will successively review the data suggesting (1) that alveolar regeneration systems are functional in the mammalian lung and have the potential to regrow lost alveoli, (2) that cigarette smoke, the main etiologic factor of emphysema, inhibits those systems under experimental conditions, and (3) that alveolar regeneration systems are dysfunctional in the human emphysematous lung and may be a target for therapeutic intervention in this disease. Special emphasis will be put on the role of alveolar fibroblasts in those processes. PMID:18268920

  14. Aggregatibacter actinomycetemcomitans, a potent immunoregulator of the periodontal host defense system and alveolar bone homeostasis.

    PubMed

    Herbert, B A; Novince, C M; Kirkwood, K L

    2016-06-01

    Aggregatibacter actinomycetemcomitans is a perio-pathogenic bacteria that has long been associated with localized aggressive periodontitis. The mechanisms of its pathogenicity have been studied in humans and preclinical experimental models. Although different serotypes of A. actinomycetemcomitans have differential virulence factor expression, A. actinomycetemcomitans cytolethal distending toxin (CDT), leukotoxin, and lipopolysaccharide (LPS) have been most extensively studied in the context of modulating the host immune response. Following colonization and attachment in the oral cavity, A. actinomycetemcomitans employs CDT, leukotoxin, and LPS to evade host innate defense mechanisms and drive a pathophysiologic inflammatory response. This supra-physiologic immune response state perturbs normal periodontal tissue remodeling/turnover and ultimately has catabolic effects on periodontal tissue homeostasis. In this review, we have divided the host response into two systems: non-hematopoietic and hematopoietic. Non-hematopoietic barriers include epithelium and fibroblasts that initiate the innate immune host response. The hematopoietic system contains lymphoid and myeloid-derived cell lineages that are responsible for expanding the immune response and driving the pathophysiologic inflammatory state in the local periodontal microenvironment. Effector systems and signaling transduction pathways activated and utilized in response to A. actinomycetemcomitans will be discussed to further delineate immune cell mechanisms during A. actinomycetemcomitans infection. Finally, we will discuss the osteo-immunomodulatory effects induced by A. actinomycetemcomitans and dissect the catabolic disruption of balanced osteoclast-osteoblast-mediated bone remodeling, which subsequently leads to net alveolar bone loss. PMID:26197893

  15. Effects of Electromagnetic Fields on Osteogenesis of Human Alveolar Bone-Derived Mesenchymal Stem Cells

    PubMed Central

    Lim, KiTaek; Hexiu, Jin; Kim, Jangho; Seonwoo, Hoon; Cho, Woo Jae; Choung, Pill-Hoon; Chung, Jong Hoon

    2013-01-01

    This study was performed to investigate the effects of extremely low frequency pulsed electromagnetic fields (ELF-PEMFs) on the proliferation and differentiation of human alveolar bone-derived mesenchymal stem cells (hABMSCs). Osteogenesis is a complex series of events involving the differentiation of mesenchymal stem cells to generate new bone. In this study, we examined not merely the effect of ELF-PEMFs on cell proliferation, alkaline phosphatase (ALP) activity, and mineralization of the extracellular matrix but vinculin, vimentin, and calmodulin (CaM) expressions in hABMSCs during osteogenic differentiation. Exposure of hABMSCs to ELF-PEMFs increased proliferation by 15% compared to untreated cells at day 5. In addition, exposure to ELF-PEMFs significantly increased ALP expression during the early stages of osteogenesis and substantially enhanced mineralization near the midpoint of osteogenesis within 2 weeks. ELF-PEMFs also increased vinculin, vimentin, and CaM expressions, compared to control. In particular, CaM indicated that ELF-PEMFs significantly altered the expression of osteogenesis-related genes. The results indicated that ELF-PEMFs could enhance early cell proliferation in hABMSCs-mediated osteogenesis and accelerate the osteogenesis. PMID:23862141

  16. The use of bone cement for ossicular chain defects.

    PubMed

    Kalcioglu, M Tayyar; Tan, Mehmet; Fleerakkers, Jelle

    2013-11-01

    Bone cement is a good and cheap option for some ossicular chain problems such as incudostapedial re-bridging. The purpose of this retrospective study is to evaluate the audiologic results after reconstruction of three different types of ossicular chain defects, using bone cement. Group 1 consists of 42 patients who underwent an ossiculoplasty using bone cement between the damaged long process of the incus and an intact stapes superstructure. Group 2 consists of 46 patients in which incus interposition between malleus and stapes superstructure was performed, using bone cement to fix the interposed incus. For group 3, consisting of 32 patients who had a present malleus, a defective long process of the incus and a missing stapes superstructure, a re-shaped incus was placed between the stapes footplate and the malleus and bone cement was again used as a fixator. Preoperative and postoperative pure-tone audiometric findings were obtained and hearing differences were assessed. The mean preoperative and postoperative air-bone gaps were 34.8 and 15.6, 35 and 18.4, and 43.4 and 19.8 for groups 1, 2, and 3, respectively. There was a significant improvement in hearing outcomes in all the groups when comparing preoperative and postoperative mean air-bone gaps (p < 0.001). The postoperative air-bone gap was ≤20 dB in 76 % of patients in group 1, 64 % of patients in group 2, and 46 % of patients in group 3. Bone cement is an effective and cheap option for some ossicular chain problems such as incudostapedial re-bridging. It may also be used to fix the interposed incus to the stapes superstructure and/or malleus to avert displacement. PMID:23283240

  17. Inhibitory effects of French pine bark extract, Pycnogenol®, on alveolar bone resorption and on the osteoclast differentiation.

    PubMed

    Sugimoto, Hideki; Watanabe, Kiyoko; Toyama, Toshizo; Takahashi, Shun-suke; Sugiyama, Shuta; Lee, Masaichi-Chang-il; Hamada, Nobushiro

    2015-02-01

    Pycnogenol(®) (PYC) is a standardized bark extract from French maritime pine (Pinus pinaster Aiton). We examined the inhibitory effects of PYC on alveolar bone resorption, which is a characteristic feature of periodontitis, induced by Porphyromonas gingivalis (P. gingivalis) and osteoclast differentiation. In rat periodontitis model, rats were divided into four groups: group A served as the non-infected control, group B was infected orally with P. gingivalis ATCC 33277, group C was administered PYC in the diet (0.025%: w/w), and group D was infected with P. gingivalis and administered PYC. Administration of PYC along with P. gingivalis infection significantly reduced alveolar bone resorption. Treatment of P. gingivalis with 1 µg/ml PYC reduced the number of viable bacterial cells. Addition of PYC to epithelial cells inhibited adhesion and invasion by P. gingivalis. The effect of PYC on osteoclast formation was confirmed by tartrate-resistant acid phosphatase staining. PYC treatment significantly inhibited osteoclast formation. Addition of PYC (1-100 µg/ml) to purified osteoclasts culture induced cell apoptosis. These results suggest that PYC may prevent alveolar bone resorption through its antibacterial activity against P. gingivalis and by suppressing osteoclastogenesis. Therefore, PYC may be useful as a therapeutic and preventative agent for bone diseases such as periodontitis. PMID:25336411

  18. A novel oxysterol promotes bone regeneration in rabbit cranial bone defects.

    PubMed

    Hokugo, Akishige; Sorice, Sarah; Parhami, Farhad; Yalom, Anisa; Li, Andrew; Zuk, Patricia; Jarrahy, Reza

    2016-07-01

    Bone morphogenetic proteins (BMPs) have played a central role in the development of regenerative therapies for bone reconstruction. However, the high cost and side-effect profile of BMPs limits their broad application. Oxysterols, naturally occurring products of cholesterol oxidation, are promising osteogenic agents alternative to BMPs. The osteogenic capacity of these non-toxic and relatively inexpensive molecules has been documented in rodent models. We studied the impact of Oxy49, a novel oxysterol analogue, on the osteogenic differentiation of rabbit bone marrow stromal cells (BMSCs). Moreover, we evaluated the capacity for in vivo bone regeneration with Oxy49 in rabbit cranial bone defects. We found that rabbit BMSCs treated with Oxy49 demonstrated differentiation along osteogenic pathways, and that complete bone regeneration occurred when cranial defects were treated with Oxy49. Collectively, these results demonstrate that Oxy49 has the ability to induce osteogenic differentiation in rabbit BMSCs with an efficacy comparable to that of BMP-2 and to promote significant bone regeneration in cranial defects. Oxysterols may be a viable novel agent in bone tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd. PMID:23997014

  19. Histological and histomorphometrical comparative study of β-tricalcium phosphate block grafts and periosteal expansion osteogenesis for alveolar bone augmentation.

    PubMed

    Yamauchi, K; Takahashi, T; Funaki, K; Hamada, Y; Yamashita, Y

    2010-10-01

    This study evaluated local tissue reaction around the β-tricalcium phosphate (β-TCP) block and compared results with β-TCP block grafting and periosteal expansion osteogenesis (PEO). The mandibular premolars were extracted from five dogs and buccal corticotomy was performed. Narrow alveolar ridge models were created at 4 weeks. The β-TCP block graft, such as veneer graft, was used on the right side and PEO using β-TCP block on the left side. Changes of alveolar width, histological findings and histomorphometrical analysis were evaluated. There were no problems with materials at any of the sites at any time. In both groups, the width increased after surgery and results were stable 8 weeks after surgery. Newly formed bone tissue was observed inside the β-TCP block in both sides. Histological findings differed especially at the division between mandibular bone and β-TCP block. Histomorphometric analyses revealed that β-TCP had been absorbed (mean decrease 28%) and new bone had formed (mean increase 43%) at 8 weeks postoperatively on both sides. The β-TCP block worked as a space-maker under the soft tissue, including the periosteum, and acted as a substitute for original bone. This bone substitute was effective material for bone augmentation in both methods. PMID:20615666

  20. A Novel Nanosilver/Nanosilica Hydrogel for Bone Regeneration in Infected Bone Defects.

    PubMed

    Zhang, Shiwen; Guo, Yuchen; Dong, Yuliang; Wu, Yunshu; Cheng, Lei; Wang, Yongyue; Xing, Malcolm; Yuan, Quan

    2016-06-01

    Treating bone defects in the presence of infection is a formidable clinical challenge. The use of a biomaterial with the dual function of bone regeneration and infection control is a novel therapeutic approach to this problem. In this study, we fabricated an innovative, dual-function biocomposite hydrogel containing nanosilver and nanosilica (nAg/nSiO2) particles and evaluated its characteristics using FT-IR, SEM, swelling ratio, and stiffness assays. The in vitro antibacterial analysis showed that this nAg/nSiO2 hydrogel inhibited both Gram-positive and Gram-negative bacteria. In addition, this nontoxic material could promote osteogenic differentiation of rat bone marrow stromal cells (BMSCs). We then created infected bone defects in rat calvaria in order to evaluate the function of the hydrogel in vivo. The hydrogel demonstrated effective antibacterial ability while promoting bone regeneration in these defects. Our results indicate that this nAg/nSiO2 hydrogel has the potential to both control infection and to promote bone healing in contaminated defects. PMID:27167643

  1. Evaluation of bone response to various anorganic bovine bone xenografts: an experimental calvaria defect study.

    PubMed

    Tovar, N; Jimbo, R; Gangolli, R; Perez, L; Manne, L; Yoo, D; Lorenzoni, F; Witek, L; Coelho, P G

    2014-02-01

    This in vivo study investigated the in vivo performance of two newly developed synthetic bone substitutes and compared them to commercially available xenografts (Bio-Oss, Geistlich Pharma AG, Switzerland; OsteoGraf, Dentsply, USA). The materials were tested in a rabbit calvaria model, and the bone forming properties were observed at 4 and 8 weeks after implantation by means of histomorphometry and micro computed tomography (micro-CT). Defects without any graft material were used as negative controls. Micro-CT showed that all materials tested presented new bone formation that filled the defects at both time points, whereas the negative control presented less bone formation, with soft tissue infiltration into the defects. Comparable bone fill percentages were observed for histomorphometric and micro-CT results. Even though no statistically significant difference was found quantitatively between all of the bone graft substitute groups, a higher mean decrease in graft material filling the defects, along with higher remodelling activity, was evident for the experimental materials compared to the commercially available xenografts at 8 weeks. The results indicate that the experimental materials possess high degradability, along with osteoconduction comparable to commercially available xenografts. PMID:23948358

  2. Bone reconstruction of large defects using bone marrow derived autologous stem cells.

    PubMed

    Lucarelli, Enrico; Donati, Davide; Cenacchi, Annarita; Fornasari, Pier Maria

    2004-04-01

    Bone is a tissue that has the ability to heal itself when fractured. Occasionally, a critical defect can be formed when part of the bone is lost or excised, in this case the bone fails to heal and requires bone reconstruction to prevent a non-union defect. Autogenous cancellous bone is the current gold standard treatment in bone loss. Because the amount of autogenous cancellous bone that can be harvested is limited, the expanding need for bone reconstruction is paired by the growth of interest in the discipline of tissue engineering. Labs worldwide are working to provide the right carrier and the right set of cells that, once retransplanted, will ensure bone repair. Several investigators have focused their attention on a subset of autologous non-hematopoietic stem/progenitor cells contained in the adult bone marrow stroma, referred to as stromal stem cells (SSC), as the appropriate cells to be transplanted. The use of autologous cells is facilitated by less stringent ethical and regulatory issues and does not require the patient to be immunologically suppressed. In pre-clinical and clinical protocols of critical defects in which SSC are employed, two approaches are mainly used: in the first, SSC are derived from bone marrow and directly introduced at the lesion site, in the second, SSC are derived from several sites and are expanded ex vivo before being implanted. Both approaches, equally correct in principle, will have to demonstrate, with definitive evidence of their efficacy, their capability of solving a critical clinical problem such as non-union. In this report we outline the difficulties of working with SSC. PMID:15062758

  3. Accuracy of Cone Beam Computed Tomography in Diagnosis and Treatment Planning of Periodontal Bone Defects: A Case Report

    PubMed Central

    Songa, Vajra Madhuri; Jampani, Narendra Dev; Babu, Venkateshwara; Buggapati, Lahari

    2014-01-01

    Diagnosis of periodontitis depend mostly on traditional two-dimensional (2-D) radiographic assessment. Regardless of efforts in improving reliability, present methods of detecting bone level changes over time or determining three-dimensional (3-D) architecture of osseous defects are lacking. To improve the diagnostic potential, an imaging modality which would give an undistorted 3-D vision of a tooth and surrounding structures is imperative. Cone beam computed tomography (CBCT) generates 3D volumetric images which provide axial, coronal and sagittal multi-planar reconstructed images without magnification and renders image guidance throughout the treatment phase. The purpose of this case report was to introduce the clinical application of a newly developed, CBCT system for detecting alveolar bone loss in 21-year-old male patient with periodontitis. To evaluate the bone defect we took an intraoral radiograph and performed CBCT scanning on mandibular left first molar tooth and compared their images. CBCT images of mandibular left first molar showed the extension of furcation involvement, its distal root is devoid of supporting bone and it has only lingual cortical plate which were not shown precisely by the conventional intraoral radiograph. So we consider that the use of latest adjuncts like CBCT is successful in diagnosing periodontal defects. PMID:25654049

  4. Alveolar bone density and its clinical implication in the placement of dental implants and orthodontic mini-implants

    PubMed Central

    Almasoud, Naif N.; Tanneru, Nagaraju; Marei, Hesham F.

    2016-01-01

    Objectives: To assess the bone density in maxilla and mandible in dentate and edentulous patients in Saudi population. Methods: This study involved a retrospective analysis of cone beam CT images of 100 patients (50 male and 50 female) who have come to College of Dentistry, University of Dammam, Dammam, Kingdom of Saudi Arabia between January 2014 and 2015. Using the bone density option in the Simplant software, the Hounsfield unit (HU) was calculated at the edentulous sites. While for dentate sites, a region of interest was selected coronally at 3-5 mm to the root apex using I-CAT vision software. The densities of the buccal bone and cancellous bone were measured at interradicular areas of a specific teeth. Results: The highest bone density at the edentulous sites was at the mandibular anterior region (776.5 ± 65.7 HU), followed by the mandibular posterior region (502.2 ± 224.2 HU). Regarding the dentate sites, the highest bone density was at the buccal cortical plate of the lower incisor teeth (937.56 ± 176.92 HU) and the lowest bone density was at the cancellous bone around the posterior maxillary teeth (247.12 ± 46.75 HU). Conclusion: The alveolar bone density at dentate and edentulous sites in our population is generally lower than the norm reference density of other populations, which dictates the need for quantitative assessment of bone density before implants and mini-implants placement. PMID:27279516

  5. The Effectiveness of Crataegus orientalis M Bieber. (Hawthorn) Extract Administration in Preventing Alveolar Bone Loss in Rats with Experimental Periodontitis

    PubMed Central

    Hatipoğlu, Mükerrem; Sağlam, Mehmet; Köseoğlu, Serhat; Köksal, Ekrem; Keleş, Ali; Esen, Hacı Hasan

    2015-01-01

    The purpose of this animal study was to evaluate the effects of hawthorn (Crataeus orientalis M Bieber.) extract on serum oxidative status and alveolar bone loss in experimental periodontitis. Twenty-seven Wistar rats were assigned to one of the following groups: non- ligated+placebo (saline) (NL, n = 9), ligature only+placebo (saline) (LO, n = 9), and ligature and treated with hawthorn extract in saline (H, n = 9) (100 mg/kg orogastrically, once a day for 11 days). Periodontitis was induced by submerging a 4/0 silk ligature in the sulcus of the mandibular right first molars of rats, and the animals were sacrificed after 11 days. Micro-CT examinations were performed for linear and volumetric parameter assessment of alveolar bone. Periodontal tissues were histopathologically examined to assess the differences among the study groups. Levels of serum total antioxidant status (TAS)/total oxidant status (TOS), and oxidative stress index (OSI) were also analyzed. Alveolar bone loss was significantly reduced by hawthorn administration compared to LO group (p<0.05). The number of inflammatory cells and osteoclasts in the LO group was significantly higher than that of the NL and H groups (p< 0.05). The number of osteoblasts in the LO and H groups was significantly higher than that of the NL group (p<0.05). TOS and OSI levels were significantly reduced in H group compared to LO group (P <0.05) and TAS levels were similar in H and NL group (p< 0.05). Hawthorn extract showed inhibitory effect on periodontal inflammation and alveolar bone loss by regulating TAS, TOS and OSI levels in periodontal disease in rats when administered systemically. PMID:26030160

  6. The Effectiveness of Crataegus orientalis M Bieber. (Hawthorn) Extract Administration in Preventing Alveolar Bone Loss in Rats with Experimental Periodontitis.

    PubMed

    Hatipoğlu, Mükerrem; Sağlam, Mehmet; Köseoğlu, Serhat; Köksal, Ekrem; Keleş, Ali; Esen, Hacı Hasan

    2015-01-01

    The purpose of this animal study was to evaluate the effects of hawthorn (Crataeus orientalis M Bieber.) extract on serum oxidative status and alveolar bone loss in experimental periodontitis. Twenty-seven Wistar rats were assigned to one of the following groups: non- ligated+placebo (saline) (NL, n = 9), ligature only+placebo (saline) (LO, n = 9), and ligature and treated with hawthorn extract in saline (H, n = 9) (100 mg/kg orogastrically, once a day for 11 days). Periodontitis was induced by submerging a 4/0 silk ligature in the sulcus of the mandibular right first molars of rats, and the animals were sacrificed after 11 days. Micro-CT examinations were performed for linear and volumetric parameter assessment of alveolar bone. Periodontal tissues were histopathologically examined to assess the differences among the study groups. Levels of serum total antioxidant status (TAS)/total oxidant status (TOS), and oxidative stress index (OSI) were also analyzed. Alveolar bone loss was significantly reduced by hawthorn administration compared to LO group (p<0.05). The number of inflammatory cells and osteoclasts in the LO group was significantly higher than that of the NL and H groups (p< 0.05). The number of osteoblasts in the LO and H groups was significantly higher than that of the NL group (p<0.05). TOS and OSI levels were significantly reduced in H group compared to LO group (P <0.05) and TAS levels were similar in H and NL group (p< 0.05). Hawthorn extract showed inhibitory effect on periodontal inflammation and alveolar bone loss by regulating TAS, TOS and OSI levels in periodontal disease in rats when administered systemically. PMID:26030160

  7. [The impact of octacalcium phosphate on the dynamics of bone matrix formation in experimental bone defects].

    PubMed

    Gurin, A N; Grigoryan, A S; Fedotov, A Yu; Komlev, V S

    2016-01-01

    The aim of the study was to assess the interaction of of octacalcium phosphate (OCP) with bone matrix and cells and its impact on the process of bone generation. The survey was conducted on animal model: critical hipbone defect was created in 12 230-250 g Wister rats. The animals were then divided in two groups. In group 1 (6 animals) defect was left to heal under blood clot and in group 2 (6 animals) it was filled with OCP. Three animals with no defect served as a control group. It was showed significant (p<0.05) increase of the area of the newly formed bone tissue and its direct correlation with duration of observation. PMID:27367191

  8. Staged Osteotome Sinus Floor Elevation for Progressive Site Development and Immediate Implant Placement in Severely Resorbed Alveolar Bone: A Case Report

    PubMed Central

    2013-01-01

    This case report discusses osteotome sinus floor elevation (OSFE) and immediate placement in 2 stages in severely resorbed alveolar bone height in which multiple implant placement is not otherwise feasible due to a lack of initial stability. The first implant placed using OSFE without bone grafting prepares the adjacent resorbed sites for further implant placement in the sinus areas, which allows for better initial stability and early functional loading. This process avoids the conventional extensive lateral approach for sinus lifting and bone grafting procedures even in extremely resorbed alveolar bone. PMID:24251045

  9. Maxillofacial-derived stem cells regenerate critical mandibular bone defect.

    PubMed

    Steinhardt, Yair; Aslan, Hadi; Regev, Eran; Zilberman, Yoram; Kallai, Ilan; Gazit, Dan; Gazit, Zulma

    2008-11-01

    Stem cell-based bone tissue regeneration in the maxillofacial complex is a clinical necessity. Genetic engineering of mesenchymal stem cells (MSCs) to follow specific differentiation pathways may enhance the ability of these cells to regenerate and increase their clinical relevance. MSCs isolated from maxillofacial bone marrow (BM) are good candidates for tissue regeneration at sites of damage to the maxillofacial complex. In this study, we hypothesized that MSCs isolated from the maxillofacial complex can be engineered to overexpress the bone morphogenetic protein-2 gene and induce bone tissue regeneration in vivo. To demonstrate that the cells isolated from the maxillofacial complex were indeed MSCs, we performed a flow cytometry analysis, which revealed a high expression of mesenchyme-related markers and an absence of non-mesenchyme-related markers. In vitro, the MSCs were able to differentiate into osteogenic, chondrogenic, and adipogenic lineages. Gene delivery of the osteogenic gene BMP2 via an adenoviral vector revealed high expression levels of BMP2 protein that induced osteogenic differentiation of these cells in vitro and induced bone formation in an ectopic site in vivo. In addition, implantation of genetically engineered maxillofacial BM-derived MSCs into a mandibular defect led to regeneration of tissue at the site of the defect; this was confirmed by performing micro-computed tomography analysis. Histological analysis of the mandibles revealed osteogenic differentiation of implanted cells as well as bone tissue regeneration. We conclude that maxillofacial BM-derived MSCs can be genetically engineered to induce bone tissue regeneration in the maxillofacial complex and that this finding may be clinically relevant. PMID:18636943

  10. The Effect of Systemic Delivery of Aminoguanidine versus Doxycycline on the Resorptive Phase of Alveolar Bone Following modified Widman Flap in Diabetic Rats: A Histopathological and Scanning Electron Microscope (SEM) study

    PubMed Central

    Tella, E; Aldahlawi, S; Eldeeb, A; El Gazaerly, H

    2014-01-01

    Objectives Aminoguanidine (guanylhydrazinehydrochloride) is a drug that prevents many of the classical systemic complications of diabetes including diabetic osteopenia through its inhibitory activity on the accumulation of advanced glycation end –products (AGEs). The aim of the present study was to evaluate the effectiveness of aminoguanidine versus doxycycline in reducing alveolar bone resorption following mucoperiosteal flap in diabetic rats, using the conventional histopathology and scanning electron microscope (SEM). Methods Twenty-seven male albino rats were used in this study. Periodontal defects were induced experimentally on lower anterior teeth. All rats were subjected to induction of diabetes, by IV injection of the pancreatic B-cells toxin alloxan monohydrate. After eight weeks following the establishment of periodontal defects in all rats, the ligation was removed and 3 rats were scarified as negative control (group 1). The remaining animals were divided into three group based on treatment applied following mucoperiosteal flap surgery. Group 2 received saline treatment only, group 3 received doxycycline periostat (1.5 mg/kg/day) for 3 weeks, and group 4 received aminoguanidine (7.3 mmol/kg) for 3 weeks. The fasting glucose level was measured weekly post operatively. After 21 days all rats were sacrificed. Three anterior parts of the mandible of each group was prepared for histopathological examination and two parts were prepared for SEM. Results Aminoguanidine treated group (group 4) showed statistically significant increased new bone formation, higher number of osteoblasts and decrease osteoclasts number, resorptive lacunae and existing inflammatory cell infiltration as compared to positive control group (group 2) (P<0.05). Doxycycline was also effective in reducing bone loss as documental by histopathological study. Conclusion The present study showed that aminoguanidine was significantly effective in reducing alveolar bone loss and can modify the

  11. Repair of segmental bone defects with bone marrow and BMP-2 adenovirus in the rabbit radius

    NASA Astrophysics Data System (ADS)

    Cheng, Lijia; Lu, Xiaofeng; Shi, Yujun; Li, Li; Xue, Jing; Zhang, Li; Xia, Jie; Wang, Yujia; Zhang, Xingdong; Bu, Hong

    2012-12-01

    Bone tissue engineering (BTE) is approached via implantation of autogenous mesenchymal stem cells (MSCs), marrow cells, or platelet-rich plasma, etc. To the contrary, gene therapy combining with the bone marrow (BM) has not been often reported. This study was performed to investigate whether a modified BTE method, that is, the BM and a recombinant human bone morphogenetic protein-2 adenovirus (Ad.hBMP-2) gene administering in hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramics could accelerate the healing of segmental defects in the rabbit radius. In our study, ceramics were immersed in the adenovirus overnight, and half an hour before surgery, autologous BM aspirates were thoroughly mixed with the ceramics; at the same time, a 15-mm radius defect was introduced in the bilateral forelimbs of all animals, after that, this defect was filled with the following: (1) Ad.hBMP-2 + HA/β-TCP + autologous BM (group 1); (2) HA/β-TCP + Ad.hBMP-2 (group 2); (3) HA/β-TCP alone (group 3); (4) an empty defect as a control (group 4). Histological observation and μ-CT analyses were performed on the specimens at weeks 2, 4, 8, and 12, respectively. In group 1, new bone was observed at week 4 and BM appeared at week 12, in groups 2 and 3, new bone was observed at week 8 and it was more mature at week 12, in contrast, the defect was not bridged in group 4 at week 12. The new bone area percentage in group 1 was significantly higher than that in groups 2 and 3. Our study indicated that BM combined with hBMP-2 adenovirus and porous ceramics could significantly increase the amount of newly formed bone. And this modified BTE method thus might have potentials in future clinical application.

  12. Injectable biocomposites for bone healing in rabbit femoral condyle defects.

    PubMed

    Liu, Jianheng; Mao, Kezheng; Liu, Zhengsheng; Wang, Xiumei; Cui, Fuzhai; Guo, Wenguang; Mao, Keya; Yang, Shuying

    2013-01-01

    A novel biomimetic bone scaffold was successfully prepared in this study, which was composed of calcium sulfate hemihydrate (CSH), collagen and nano-hydroxyapatite (nHAC). CSH/nHAC was prepared and observed with scanning electron microscope and rhBMP-2 was introduced into CSH/nHAC. The released protein content from the scaffold was detected using high performance liquid chromatography at predetermined time interval. In vivo bone formation capacity was investigated by means of implanting the scaffolds with rhBMP-2 or without rhBMP-2 respectively into a critical size defect model in the femoral condyle of rabbit. The releasing character of rhBMP-2 was that an initial burst release (37.5%) was observed in the first day, followed by a sustained release and reached 100% at the end of day 20. The CSH/nHAC showed a gradual decrease in degradation with the content of nHAC increase. The results of X-rays, Micro CT and histological observation indicated that more new bone was formed in rhBMP-2 group. The results implied that this new injectable bone scaffold should be very promising for bone repair and has a great potential in bone tissue engineering. PMID:24146770

  13. Ultrastructural Analyses of Alveolar Bone in a Patient With Osteomyelitis Secondary to Osteopetrosis: A Review of the Literature.

    PubMed

    Mikami, Toshinari; Miake, Yasuo; Bologna-Molina, Ronell; Takeda, Yasunori

    2016-08-01

    Osteopetrosis is a generic term for generalized sclerotic conditions caused by rare genetic disorders. Decreased osteoclastic activities disturb bone remodeling, resulting in greater mineral density and greater compressive strength; therefore, bone fracture is a major physical symptom of osteopetrosis. Osteomyelitis of the maxilla or mandible is a common and well-documented complication of osteopetrosis. Local infection, such as odontogenic infection, is more likely to lead to osteomyelitis, and treatment strategies can be challenging. However, detailed ultrastructural analyses of bone from patients with osteopetrosis and odontogenic infection are limited. This report describes a case of osteomyelitis of the maxilla and mandible secondary to osteopetrosis in an adult patient and presents ultrastructural data of alveolar bone tissue analyzed by contact microradiography, electron probe microanalysis, and x-ray diffraction. Cases of osteomyelitis of the jaw secondary to osteopetrosis also are reviewed. PMID:27000409

  14. Negative pressure technology enhances bone regeneration in rabbit skull defects

    PubMed Central

    2013-01-01

    Background Bone is a slowly regenerating tissue influenced by various physiological processes, including proliferation, differentiation, and angiogenesis, under the control of growth factors. Shortening this healing time is an important and popular clinical research focus in orthopedics. Negative pressure can stimulate angiogenesis, improve blood circulation, promote granulation tissue growth and accelerate tissue wound healing. We sought to determine whether negative pressure could reduce bone healing time in a rabbit cranial defect model. Methods Four symmetrical holes (diameter, 3.5 mm) were drilled into the skulls of 42 New Zealand white rabbits, with two holes in each parietal bone. For each rabbit, the two sides were then randomly assigned into experimental and control groups. Using negative pressure suction tubes, experimental holes were treated with −50 kPa for 15 minutes, four times per day, whereas the control holes remained untreated. After 4 weeks, the negative pressure suction tubes were removed. At 2, 4, 6 and 8 weeks, three-dimensional (3D) reconstruction computed tomography (CT), X-ray radiopacity, and two-photon absorptiometry were used to evaluate new bone formation. Histological changes were determined by hematoxylin and eosin (H.E) staining. At weekly intervals until 6 weeks, the mRNA expression levels of vascular endothelial growth factor (VEGF) and bone morphogenetic protein (BMP)-2 were evaluated by RT-PCR. A paired student’s t-test was employed to compare X-ray radiopacity and bone density measurements between the experimental and control groups. Results 3D-reconstruction CT showed that new bone regeneration in the experimental group was greater than that in the control group at 4 and 6 weeks. At these time points, the experimental group presented with higher X-ray radiopacity and increased bone density (P < 0.05) as compared with the control group. Cartilage islands and new bone were observed by H.E staining at 2

  15. Review of secondary alveolar cleft repair

    PubMed Central

    Cho-Lee, Gui-Youn; García-Díez, Eloy-Miguel; Nunes, Richard-Agostinho; Martí-Pagès, Carles; Sieira-Gil, Ramón; Rivera-Baró, Alejandro

    2013-01-01

    Introduction: The alveolar cleft is a bony defect that is present in 75% of the patients with cleft lip and palate. Although secondary alveolar cleft repair is commonly accepted for these patients, nowadays, controversy still remains regarding the surgical technique, the timing of the surgery, the donor site, and whether the use of allogenic materials improve the outcomes. The purpose of the present review was to evaluate the protocol, the surgical technique and the outcomes in a large population of patients with alveolar clefts that underwent secondary alveolar cleft repair. Materials and Methods: A total of 109 procedures in 90 patients with alveolar cleft were identified retrospectively after institutional review board approval was obtained. The patients were treated at a single institution during a period of 10 years (2001-2011). Data were collected regarding demographics, type of cleft, success parameters of the procedure (oronasal fistulae closure, unification of the maxillary segments, eruption and support of anterior teeth, support to the base of the nose, normal ridge form for prosthetic rehabilitation), donor site morbidity, and complications. Pre- and postoperative radiological examination was performed by means of orthopantomogram and computed tomography (CT) scan. Results: The average patient age was 14.2 years (range 4–21.3 years). There were 4 right alveolar-lip clefts, 9 left alveolar-lip clefts, 3 bilateral alveolar-lip clefts, 18 right palate-lip clefts, 40 left palate-lip clefts and 16 bilateral palate-lip clefts. All the success parameters were favorable in 87 patients. Iliac crest bone grafts were employed in all cases. There were three bone graft losses. In three cases, allogenic materials used in a first surgery performed in other centers, underwent infection and lacked consolidation. They were removed and substituted by autogenous iliac crest bone graft. Conclusions: The use of autogenous iliac crest for secondary alveolar bone grafting

  16. [Alveolar bone thickness in A point area : how to avoid periodontal failures in front of upper incisors].

    PubMed

    Chevalier, Émilie; Philip-Alliez, Camille; Le Gall, Michel

    2016-03-01

    Studies on orthodontic-periodontics relationships are numerous but few have benefited from the contribution of new 3D imaging techniques that emphasize iatrogenic effects that orthodontics may have on the periodontium. Periodontal risk in terms of fenestration, bone dehiscences next maxillary incisors are real during or after orthodontic treatment. The accurate assessment of the initial situation in terms of bone quantity in this dental arch anterior segment is thus very important. Our study aimed to evaluate the reliability of conventional lateral cephalograms to quantify alveolar bone thickness in relation to the maxillary incisors by comparing it with data from CT scans. The second objective was to identify an at risk patient profile by assessing possible correlations between this thickness and dysmorphia components. The results revealed a half of assessment error in the estimation of bone thickness and increased risk in case of hyperdivergence typology, Class III skeletal relationships and dento-alveolar protrusion. Finally, in view of these data, we discussed the clinical procedures to avoid such periodontal failures in this anterior segment of the dental arch. PMID:27083221

  17. Use of a bioactive scaffold for the repair of bone defects in a novel reproducible vertebral body defect model.

    PubMed

    Liang, Haixiang; Wang, Kun; Shimer, Adam L; Li, Xudong; Balian, Gary; Shen, Francis H

    2010-08-01

    Bone defects in vertebral bodies (VB) usually occur after the reduction of fractures or are caused by bone disease. Besides the treatment of original disease, repair of the bone defect can restore the structure of VB and improve stabilization of the spine to protect the spinal cord nerves. To aid studies of the efficacy of bioengineering techniques for repair of VB, we developed a rat model with a critical size bone defect in VB. Air-motivated burrs were used to create two sizes of bone defect (2 x 3 x 1.5 mm; 2 x 3 x 3 mm) in the anterior part of VB in 6-month-old Fischer 344 rats. Quantitative CT analyses and histological assays demonstrated that neither defects self-repaired by 8 weeks post surgery. Moreover, the tendency of bone formation was monitored in the same animal by serial CT image evaluations, allowing us to demonstrate that there was significant bone growth during the 4- to 6-week period after the creation of the bone defect. We then implanted sintered poly(lactic-co-glycolic acid) (PLGA) microsphere scaffolds loaded with Matrigel with or without recombinant human bone morphogenetic protein 2 (rhBMP2; 2.0 microg rhBMP2/10 microL Matrigel/scaffold) into the bone defect (2 x 3 x 3 mm) in the VB. Bone formation was detected by quantitative analyses of serial CT images, which demonstrated bone growth in rats that received the rhBMP2 implant, in both surrounding areas and inside area of the scaffold. In addition to a rapid increase within 2 weeks of the operation, another significant bone formation period was found between 4 and 8 weeks after the implantation. By contrast, the control group that received the implant without rhBMP2 did not show similar bone formation tendencies. The results of CT analyses were confirmed by histological studies. This study suggests that a critical size bone defect of the anterior VB can be developed in a rat model. Characterization of this model demonstrated that 4 to 6 weeks after creation of the defect was a significant

  18. Current Concepts of Bone Tissue Engineering for Craniofacial Bone Defect Repair

    PubMed Central

    Fishero, Brian Alan; Kohli, Nikita; Das, Anusuya; Christophel, John Jared; Cui, Quanjun

    2014-01-01

    Craniofacial fractures and bony defects are common causes of morbidity and contribute to increasing health care costs. Successful regeneration of bone requires the concomitant processes of osteogenesis and neovascularization. Current methods of repair and reconstruction include rigid fixation, grafting, and free tissue transfer. However, these methods carry innate complications, including plate extrusion, nonunion, graft/flap failure, and donor site morbidity. Recent research efforts have focused on using stem cells and synthetic scaffolds to heal critical-sized bone defects similar to those sustained from traumatic injury or ablative oncologic surgery. Growth factors can be used to augment both osteogenesis and neovascularization across these defects. Many different growth factor delivery techniques and scaffold compositions have been explored yet none have emerged as the universally accepted standard. In this review, we will discuss the recent literature regarding the use of stem cells, growth factors, and synthetic scaffolds as alternative methods of craniofacial fracture repair. PMID:25709750

  19. Analysis of correlation between initial alveolar bone density and apical root resorption after 12 months of orthodontic treatment without extraction

    PubMed Central

    Scheibel, Paula Cabrini; Ramos, Adilson Luiz; Iwaki, Lilian Cristina Vessoni; Micheletti, Kelly Regina

    2014-01-01

    OBJECTIVE: The aim of the present study was to investigate the correlation between initial alveolar bone density of upper central incisors (ABD-UI) and external apical root resorption (EARR) after 12 months of orthodontic movement in cases without extraction. METHODS: A total of 47 orthodontic patients 11 years old or older were submitted to periapical radiography of upper incisors prior to treatment (T1) and after 12 months of treatment (T2). ABD-UI and EARR were measured by means of densitometry. RESULTS: No statistically significant correlation was found between initial ABD-UI and EARR at T2 (r = 0.149; p = 0.157). CONCLUSION: Based on the present findings, alveolar density assessed through periapical radiography is not predictive of root resorption after 12 months of orthodontic treatment in cases without extraction. PMID:25715722

  20. [Clinical and radiological study on tissue regeneration after alveolar bone augmentation with various osteoplastic materials and membranes].

    PubMed

    Mikhaĭlovskiĭ, A A; Kulakov, A A; Korolev, V M; Vinnichenko, O Iu

    2014-01-01

    The aim of the study was to compare the efficiency of alveolar bone augmentation using a variety of osteoplastic materials and collagen membrane and healing under a clot. The study included patients undergoing the extraction of symmetric teeth. After extraction one of the sockets were filled with osteoplastic materials while symmetrically located socket with no bone grafting served as a control. In group 1 augmentation was performed using Bio-Oss Collagen Bio-Gide membrane, in group 2 - Osteodent-M and Collost membranes, in group 3 - BIOPLAST-dent and BIOPLAST-dent-MK membranes. Clinical and radiological evaluation revealed positive impact of bioplastic materials on the bone tissue healing and recovery rates. The best results showed Bio-Oss Collagen with barrier bioresorbable membrane Bio-Gide allowing the creation of the most favorable conditions for delayed implantation. PMID:25377579

  1. Platelet-rich plasma, plasma rich in growth factors and simvastatin in the regeneration and repair of alveolar bone

    PubMed Central

    RIVERA, CÉSAR; MONSALVE, FRANCISCO; SALAS, JUAN; MORÁN, ANDREA; SUAZO, IVÁN

    2013-01-01

    Platelet preparations promote bone regeneration by inducing cell migration, proliferation and differentiation in the area of the injury, which are essential processes for regeneration. In addition, several studies have indicated that simvastatin (SIMV), widely used for the treatment of hypercholesterolemia, stimulates osteogenesis. The objective of this study was to evaluate the effects of treatment with either platelet-rich plasma (PRP) or plasma rich in growth factors (PRGF) in combination with SIMV in the regeneration and repair of alveolar bone. The jaws of Sprague Dawley rats (n=18) were subjected to rotary instrument-induced bone damage (BD). Animals were divided into six groups: BD/H2O (n=3), distilled water without the drug and alveolar bone damage; BD/H2O/PRP (n=3), BD and PRP; BD/H2O/PRGF (n=3), BD and PRGF; BD/SIMV (n=3), BD and water with SIMV; BD/SIMV/PRP (n=3), BD, PRP and SIMV; and BD/SIMV/PRGF (n=3), BD, PRGF and SIMV. Conventional histological analysis (hematoxylin and eosin staining) revealed that the BD/SIMV group showed indicators for mature bone tissue, while the BD/SIMV/PRP and BD/SIMV/PRGF groups showed the coexistence of indicators for mature and immature bone tissue, with no statistical differences between the platelet preparations. Simvastatin did not improve the effect of platelet-rich plasma and plasma rich in growth factors. It was not possible to determine which platelet preparation produced superior effects. PMID:24250728

  2. Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects.

    PubMed

    Vishnu Priya, M; Sivshanmugam, A; Boccaccini, A R; Goudouri, O M; Sun, Wook; Hwang, Nathaniel; Deepthi, S; Nair, Shantikumar V; Jayakumar, R

    2016-01-01

    Injectable hydrogels with their 3D structure and good moldability serve as excellent scaffolding material for regenerating irregular non load-bearing bone defects. Most of the bone defects do not heal completely due to the lack of vasculature required for the transport of nutrients and oxygen to the regenerating tissues. To enhance vasculature, we developed an injectable hydrogel system made of chitin and poly (butylene succinate) (PBSu) loaded with 250  ±  20 nm sized fibrin nanoparticles (FNPs) and magnesium-doped bioglass (MBG). FNPs were expected to enhance vascularisation and MBG was expected to help induce early osteogenesis. Composite hydrogels were analysed using Fourier transform infra-red spectroscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy, and rheology. Hydrogels with MBG showed a slightly rougher morphology upon SEM analysis. Composites containing 5% MBG and 2% FNPs showed good rheological properties, injectability, temperature stability, biomineralization and protein adsorption. Human umbilical vein endothelial cells (HUVECs) and rabbit-adipose derived mesenchymal stem cells (rASCs) were used for cyto-compatibility studies. Composite gels with 2% FNPs and 2% MBG (composite 1) were considered to be non-toxic to both the cells and were taken for further in vitro studies. Aortic ring assay was carried out to study the angiogenic potential of the hydrogels. The aorta placed with composite hydrogels showed enhanced sprouting of blood vessels. rASCs too showed good spreading on the composite hydrogels. Hydrogels containing MBG showed early initiation of differentiation and higher expression of alkaline phosphatase and osteocalcin confirming the osteoinductive property of MBG. These studies indicate that this composite hydrogel can be used for regenerating irregular bone defects. PMID:27305426

  3. Evaluation of the efficacy of platelet-rich plasma and platelet-rich fibrin in alveolar defects after removal of impacted bilateral mandibular third molars

    PubMed Central

    Doiphode, Amol M.; Hegde, Prashanth; Mahindra, Uma; Santhosh Kumar, S. M.; Tenglikar, Pavan D.; Tripathi, Vivek

    2016-01-01

    Aim and Objectives: This study attempted the evaluation of the efficacy of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in alveolar defects after removal of bilateral mandibular third molars. Materials and Methods: A total of 30 patients reporting to Department of Oral and Maxillofacial Surgery and having bilateral mandibular third molar impaction in both male and female aged between 18 and 30 years were included in this study. PRF and PRP were placed in extraction site and recalled at 2nd, 4th, and 6th month postoperatively. Data were statistically analyzed using IBM SPSS software for Windows, version 19.0. IBM Corp., Armonk, NY, USA. Results: This study showed decreased probing depth in PRF group compared to PRP and control one. This signifies a better soft tissue healing of extraction sockets with PRF as compared to the PRP and the control group and increase in the bone density highlights the use of PRP and PRF certainly as a valid method in inducing hard tissue regeneration. Conclusion: This study indicates a definite improvement in the periodontal health distal to second molar after third molar surgery in cases treated with PRF as compared to the PRP group and control group. Hence, PRP and PRF can be incorporated as an adjunct to promote wound healing and osseous regeneration in mandibular third molar extraction sites. PMID:27195227

  4. Influence of alveolar bone level on the pull-out bond strength of fiber-reinforced composite posts to root dentin.

    PubMed

    Dal Piva, Amanda Maria de Oliveira; Campos, Fernanda; Alves, Maria Luiza Lima; Sousa, Rafael Santiago; Lima, Júlia Magalhães da Costa; Souza, Rodrigo Othávio Assunção

    2016-01-01

    This in vitro study evaluated the influence of alveolar bone level and type of cement on pull-out bond strength between different fiber-reinforced composite (FRC) posts and root dentin. Sixty bovine teeth were sectioned, and their root canals were prepared. The specimens were divided into 6 groups (n = 10) according to 2 factors: alveolar bone level and type of cement. Each root was embedded in acrylic resin to the depth of 7, 10, or 14 mm, simulating different alveolar bone levels. After the FRC posts were treated with 37% phosphoric acid and silane was applied, they were cemented with either a conventional resin cement or a self-adhesive resin cement and subjected to mechanical cycling. The results indicated that neither the alveolar bone level nor the type of cement played a significant role in the pull-out bond strength of the FRC posts to root dentin. Therefore, it is concluded that conventional and self-adhesive resin cements can be used to lute FRC posts to tooth roots, even in the presence of significant alveolar bone resorption. PMID:26943098

  5. Effect of labiolingual inclination of a maxillary central incisor and surrounding alveolar bone loss on periodontal stress: A finite element analysis

    PubMed Central

    Choi, Sung-Hwan; Kim, Young-Hoon; Lee, Kee-Joon

    2016-01-01

    Objective The aim of this study was to investigate whether labial tooth inclination and alveolar bone loss affect the moment per unit of force (Mt/F) in controlled tipping and consequent stresses on the periodontal ligament (PDL). Methods Three-dimensional models (n = 20) of maxillary central incisors were created with different labial inclinations (5°, 10°, 15°, and 20°) and different amounts of alveolar bone loss (0, 2, 4, and 6 mm). The Mt/F necessary for controlled tipping (Mt/Fcont) and the principal stresses on the PDL were calculated for each model separately in a finite element analysis. Results As labial inclination increased, Mt/Fcont and the length of the moment arm decreased. In contrast, increased alveolar bone loss caused increases in Mt/Fcont and the length of the moment arm. When Mt/F was near Mt/Fcont, increases in Mt/F caused compressive stresses to move from a predominantly labial apical region to a palatal apical position, and tensile stresses in the labial area moved from a cervical position to a mid-root position. Although controlled tipping was applied to the incisors, increases in alveolar bone loss and labial tooth inclination caused increases in maximum compressive and tensile stresses at the root apices. Conclusions Increases in alveolar bone loss and labial tooth inclination caused increases in stresses that might cause root resorption at the root apex, despite the application of controlled tipping to the incisors. PMID:27226961

  6. Modern materials in fabrication of scaffolds for bone defect replacement

    NASA Astrophysics Data System (ADS)

    Bazlov, V. A.; Mamuladze, T. Z.; Pavlov, V. V.; Kirilova, I. A.; Sadovoy, M. A.

    2016-08-01

    The article defines the requirements for modern scaffold-forming materials and describes the main advantages and disadvantages of various synthetic materials. Osseointegration of synthetic scaffolds approved for use in medical practice is evaluated. Nylon 618 (certification ISO9001 1093-1-2009) is described as the most promising synthetic material used in medical practice. The authors briefly highlight the issues of individual bone grafting with the use of 3D printing technology. An example of contouring pelvis defect after removal of a giant tumor with the use of 3D models is provided.

  7. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption.

    PubMed

    Saita, Makiko; Kaneko, Junya; Sato, Takenori; Takahashi, Shun-suke; Wada-Takahashi, Satoko; Kawamata, Ryota; Sakurai, Takashi; Lee, Masaichi-Chang-il; Hamada, Nobushiro; Kimoto, Katsuhiko; Nagasaki, Yukio

    2016-01-01

    The excessive production of reactive oxygen species (ROS) has been implicated in a variety of disorders, but to date, ROS scavengers have not been widely used for local treatment of inflammation, because they are rapidly eliminated from the inflamed site. We have designed a novel redox injectable gel (RIG) that is formed at 37 °C after disintegration of nano-assembled flower micelles allowing nitroxide radicals to act locally as specific ROS scavengers for the treatment of periodontitis. In the present study, we have confirmed retention of the RIG in the periodontal region, along with its antioxidant-related anti-inflammatory effects, and we have subsequently evaluated the inhibitory effect of the RIG against Porphyromonas gingivalis (P. gingivalis)-induced alveolar bone loss attributed to ROS. Alveolar bone loss was estimated by morphometry, gingival blood flow was measured using laser Doppler flowmetry, and osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase staining. The results show that the RIG can inhibit P. gingivalis-induced bone loss by antioxidant-related anti-inflammatory actions, and this suggests that the RIG is a promising novel therapeutic agent for the treatment of P. gingivalis-induced periodontitis. PMID:26559357

  8. A histomorphometric study of the effect of doxycycline and erythromycin on bone formation in dental alveolar socket of rat

    PubMed Central

    Shahabooei, Mohammad; Razavi, Sayed Mohammad; Minaiyan, Mohsen; Birang, Reza; Behfarnia, Parichehr; Yaghini, Jaber; Naghsh, Narges; Ghalayani, Parichehr; Hajisadeghi, Samira

    2015-01-01

    Background: The aim of the present study was to evaluate whether subantimicrobial doses of doxycycline (DOX) and erythromycin (EM) used for the treatment of peri-implant osteolysis due to their anti-osteoclastogenesis can interfere with the osseous wound healing process in rat alveolar socket. Materials and Methods: Forty-five male Wistar rats had their first maxillary right molar extracted and were divided into three groups. DOX and EM at the doses of 5 mg/kg/day orally (p.o.) and 2 mg/kg/day intraperitoneally (i.p.) were administered respectively to two separate groups for 7 days after operation. In the control group the animals received normal saline (5 ml/kg). Five rats were sacrificed at 7, 14 and 21 days post-extraction in each study group. A histomorphometric analysis was used to evaluate new bone formation inside the alveolar socket. Significant level was set at 0.05. Results: The findings showed that the percentage of new bone formation (NBF) enhanced significantly on days 7 and 14. There was no significant difference in the NBF between DOX and EM groups. Conclusion: Short-term treatment with both DOX and EM enhanced new bone formation without any advances in favor of each drug. PMID:25878996

  9. Anti-inflammatory and Anti-resorptive Effects of Atorvastatin on Alveolar Bone Loss in Wistar Rats.

    PubMed

    Goes, Paula; Lima, Neiberg Alcântara; Rodrigues, José Ariévilo Gurgel; Benevides, Norma Maria Barros; Brito, Gerly Anne Castro; Lima, Vilma

    2016-01-01

    The aim of this study was to evaluate the anti-inflammatory and anti-resorptive effect of atorvastatin (ATV) in an experimental alveolar bone loss (ABL) model. Wistar rats were subjected to ligature placement around the maxillary second molar for 11 days. The animals received 0.9% saline (2 mL/kg) or ATV (0.3, 3 or 27 mg/kg) daily by gavage. ABL was evaluated by resorption area and histopathological analysis. Serum bone-specific alkaline phosphatase (BALP) activity was also evaluated. Leukogram was performed at 0 h, 6th h, 2nd, 7th and 11th days. Kidney and liver conditions and the body mass variation were analyzed. ATV (3 and 27 mg/kg) inhibited ABL by 39% and 56%, respectively. Histopathological analysis showed that ATV 27 mg/kg prevented ABL and cemental resorption, and inflammatory cell infiltration induced by ligature. ATV (27 mg/kg) prevented serum BALP levels reduction. ATV (27 mg/kg) prevented leukocytosis and did not affect either kidney or liver function nor body mass weight. ATV showed a protecting effect in the ligature-induced periodontitis, without affecting system parameters, by inhibition of inflammatory process and by its anabolic activity on the alveolar bone. PMID:27224558

  10. Evaluation of the Stress Induced in Tooth, Periodontal Ligament & Alveolar Bone with Varying Degrees of Bone Loss During Various Types of Orthodontic Tooth Movements

    PubMed Central

    Mahajan, Shalu; Verma, Santosh; Bhardwaj, Preeti; Sharma, Geeta

    2016-01-01

    Introduction The force applied on to a tooth with periodontal bone loss may generate different magnitude and pattern of stresses in the periodontium when compared to a tooth with no bone loss & under the same force system. The intensity of the forces and moment to force ratios needed to be applied during an Orthodontic treatment must be adapted to obtain the same movement as in a tooth with a healthy periodontal support. Aim Evaluation and assessment of the stress distribution during various types of Orthodontic tooth movement on application of Orthodontic force, at various levels of alveolar bone loss; & determination of the most ideal force system producing the Optimum Stress (i.e., stress within optimum range), uniformly (conducive to bodily movement of maxillary canine with varying degrees of bone loss). Materials and Methods A human maxillary canine tooth of right side was simulated by means of Finite Element Method (FEM). Five different models were constructed with bone loss ranging from 0mm in model 1, to 8mm in model 5 (progressing at 2mm per model). Ten different loading conditions were applied on these models and the stress generated was charted at various occluso-gingival levels and surfaces around the tooth. The evaluation and assessment of the stress distribution during various types of Orthodontic tooth movement on application of Orthodontic force, at various levels of alveolar bone loss was done. Results The results showed that there was a high positive correlation between the increase in bone loss & the stress generated, suggesting an elevation in the stress with advancing bone loss. Additionally, the type of tooth movement was found to be changed with bone loss. During the determination of ideal force system it was found that the centre of resistance of the canine migrated apically with bone loss and an increase in the moment to force ratio (Mc:F) was required to control the root position in these cases. Conclusion A high positive correlation

  11. Investigating Oral Microbiome Profiles in Children with Cleft Lip and Palate for Prognosis of Alveolar Bone Grafting

    PubMed Central

    Liu, Luwei; Zhang, Qian; Lin, Jiuxiang; Ma, Lian; Zhou, Zhibo; He, Xuesong; Jia, Yilin; Chen, Feng

    2016-01-01

    In this study, we sought to investigate the oral microbiota structure of children with cleft lip and palate (CLP) and explore the pre-operative oral bacterial composition related to the prognosis of alveolar bone grafting. In total, 28 patients (19 boys, 9 girls) with CLP who were scheduled to undergo alveolar bone grafting for the first time were recruited. According to the clinical examination of operative sites at the third month after the operation, the individuals were divided into a non-inflammation group (n = 15) and an inflammation group (n = 13). In all, 56 unstimulated saliva samples were collected before and after the operation. The v3-v4 hypervariable regions of the 16S rRNA gene were sequenced using an Illumina MiSeq sequencing platform. Based on the beta diversity of the operational taxonomic units (OTUs) in the inflammation and non-inflammation samples, the microbial variation in the oral cavity differed significantly between the two groups before and after the operation (P < 0.05). Analysis of the relative abundances of pre-operative OTUs revealed 26 OTUs with a relative abundance higher than 0.01%, reflecting a significant difference of the relative abundance between groups (P < 0.05). According to a principal component analysis of the pre-operative samples, the inflammation-related OTUs included Tannerella sp., Porphyromonas sp., Gemella sp., Moraxella sp., Prevotella nigrescens, and Prevotella intermedia, most of which were enriched in the inflammation group and showed a significant positive correlation. A cross-validated random forest model based on the 26 different OTUs before the operation was able to fit the post-operative status of grafted sites and yielded a good classification result. The sensitivity and specificity of this classified model were 76.9% and 86.7%, respectively. These findings show that the oral microbiota profile before alveolar bone grafting may be related to the risk of post-operative inflammation at grafted sites. PMID

  12. Investigating Oral Microbiome Profiles in Children with Cleft Lip and Palate for Prognosis of Alveolar Bone Grafting.

    PubMed

    Liu, Luwei; Zhang, Qian; Lin, Jiuxiang; Ma, Lian; Zhou, Zhibo; He, Xuesong; Jia, Yilin; Chen, Feng

    2016-01-01

    In this study, we sought to investigate the oral microbiota structure of children with cleft lip and palate (CLP) and explore the pre-operative oral bacterial composition related to the prognosis of alveolar bone grafting. In total, 28 patients (19 boys, 9 girls) with CLP who were scheduled to undergo alveolar bone grafting for the first time were recruited. According to the clinical examination of operative sites at the third month after the operation, the individuals were divided into a non-inflammation group (n = 15) and an inflammation group (n = 13). In all, 56 unstimulated saliva samples were collected before and after the operation. The v3-v4 hypervariable regions of the 16S rRNA gene were sequenced using an Illumina MiSeq sequencing platform. Based on the beta diversity of the operational taxonomic units (OTUs) in the inflammation and non-inflammation samples, the microbial variation in the oral cavity differed significantly between the two groups before and after the operation (P < 0.05). Analysis of the relative abundances of pre-operative OTUs revealed 26 OTUs with a relative abundance higher than 0.01%, reflecting a significant difference of the relative abundance between groups (P < 0.05). According to a principal component analysis of the pre-operative samples, the inflammation-related OTUs included Tannerella sp., Porphyromonas sp., Gemella sp., Moraxella sp., Prevotella nigrescens, and Prevotella intermedia, most of which were enriched in the inflammation group and showed a significant positive correlation. A cross-validated random forest model based on the 26 different OTUs before the operation was able to fit the post-operative status of grafted sites and yielded a good classification result. The sensitivity and specificity of this classified model were 76.9% and 86.7%, respectively. These findings show that the oral microbiota profile before alveolar bone grafting may be related to the risk of post-operative inflammation at grafted sites. PMID

  13. The use of piezoelectric surgery to lateralize the inferior alveolar nerve with simultaneous implant placement and immediate buccal cortical bone repositioning: a prospective clinical study.

    PubMed

    de Vicente, J C; Peña, I; Braña, P; Hernández-Vallejo, G

    2016-07-01

    A prospective study was conducted to assess a variation of inferior alveolar nerve (IAN) lateralization. This study included 13 patients. An osteotomy was made with a piezoelectric device, and the IAN bundle was moved buccally. Dental implants were then inserted medial to the nerve bundle, and the inner surface of the buccal cortical bone plate was shaped to reduce its thickness. Finally, the bone plate was repositioned to restore the original shape and contour of the mandible. Neurosensory examinations of the lower lip and chin were performed using three tests: light touch, pain, and two-point discrimination. Three months after surgery, the function of the IAN was judged to be completely restored at 11 of the 13 surgical sites. Differences in the tests comparing the operated and non-operated sides were not significant. No implants were lost, and all patients were satisfied with the result. Although IAN lateralization in conjunction with dental implant placement is rarely indicated, the use of a piezoelectric device to perform a buccal osteotomy with final repositioning of the buccal cortical plate over the bony defect contributes to the recovery of the contour and shape of the mandible, without impairment of IAN function. PMID:26897328

  14. Involvement of SOCS3 in regulation of CD11c+ dendritic cell-derived osteoclastogenesis and severe alveolar bone loss.

    PubMed

    Zhang, Xiaoxia; Alnaeeli, Mawadda; Singh, Bhagirath; Teng, Yen-Tung A

    2009-05-01

    To investigate the role of suppressor of cytokine signaling (SOCS) molecules in periodontal immunity and RANKL-mediated dendritic cell (DC)-associated osteoclastogenesis, we analyzed SOCS expression profiles in CD4(+) T cells and the effect of SOCS3 expression in CD11c(+) DCs during periodontal inflammation-induced osteoclastogenesis and bone loss in nonobese diabetic (NOD) versus humanized NOD/SCID mice. Our results of ex vivo and in vitro analyses showed that (i) there is significantly higher SOCS3 expression associated with RANKL(+) T-cell-mediated bone loss in correlation with increased CD11c(+) DC-mediated osteoclastogenesis; (ii) the transfection of CD11c(+) DC using an adenoviral vector carrying a dominant negative SOCS3 gene significantly abrogates TRAP and bone-resorptive activity; and (iii) inflammation-induced TRAP expression, bone resorption, and SOCS3 activity are not associated with any detectable change in the expression levels of TRAF6 and mitogen-activated protein kinase signaling adaptors (i.e., Erk, Jnk, p38, and Akt) in RANKL(+) T cells. We conclude that SOCS3 plays a critical role in modulating cytokine signaling involved in RANKL-mediated DC-derived osteoclastogenesis during immune interactions with T cells and diabetes-associated severe inflammation-induced alveolar bone loss. Therefore, the development of SOCS3 inhibitors may have therapeutic potential as the target to halt inflammation-induced bone loss under pathological conditions in vivo. PMID:19255186

  15. Bone Tissue Engineering with Multilayered Scaffolds-Part II: Combining Vascularization with Bone Formation in Critical-Sized Bone Defect.

    PubMed

    Sathy, Binulal Nelson; Watson, Brendan M; Kinard, Lucas A; Spicer, Patrick P; Dahlin, Rebecca L; Mikos, Antonios G; Nair, Shantikumar

    2015-10-01

    Our previous in vivo study showed that multilayered scaffolds made of an angiogenic layer embedded between an osteogenic layer and an osteoconductive layer, with layer thickness in the 100-400 μm range, resulted in through-the-thickness vascularization of the construct even in the absence of exogenous endothelial cells. The angiogenic layer was a collagen-fibronectin gel, and the osteogenic layer was made from nanofibrous polycaprolactone while the osteoconductive layer was made either from microporous hydroxyapatite or microfibrous polycaprolactone. In this follow-up study, we implanted these acellular and cellular multilayered constructs in critical-sized rat calvarial defects and evaluated their vascularization and bone formation potential. Vascularization and bone formation at the defect were evaluated and quantified using microcomputed tomography (microCT) followed by perfusion of the animals with the radio opaque contrast agent, MICROFIL. The extent of bony bridging and union within the critical-sized defect was evaluated using a previously established scoring system from the microCT data set. Similarly the new bone formation in the defect was quantified from the microCT data set as previously reported. Histological evaluation at 4 and 12 weeks validated the microCT findings. Our experimental results showed that acellular multilayered scaffolds with microscale-thick nanofibers and porous ceramic discs with angiogenic zone at their interface can regenerate functional vasculature and bone similar to that of cellular constructs in critical-sized calvarial defects. This result suggests that suitably bioengineered acellular multilayered constructs can be an improved and more translational approach in functional in vivo bone regeneration. PMID:26262560

  16. Effect of Autogenous Cortical Bone Grafting in Conjunction with Guided Tissue Regeneration in the Treatment of Intraosseous Periodontal Defects

    PubMed Central

    Keles, Gonca Cayir; Sumer, Mahmut; Cetinkaya, Burcu Ozkan; Tutkun, Ferda; Simsek, S. Burcak

    2010-01-01

    Objectives: The aim of this clinical trial was to evaluate the additional benefit of using guided tissue regeneration (GTR) with autogenous cortical bone (ACB) grafting versus ACB grafting alone for the regenerative treatment of intraosseous periodontal defects. Methods: Via a split-mouth design, 12 patients with chronic periodontitis (five men, seven women; mean age, 45.3±4.6 years) who had probing pocket depths (PPDs) of ≥6 mm following initial periodontal therapy were randomly assigned to two treatments in contralateral areas of the dentition: a combination of ACB grafting and GTR (with a absorbable membrane of polylactic acid) or ACB grafting alone. The compared parameters were preoperative and 6-month postoperative PPDs, clinical attachment levels (CALs), and radiographic alveolar bone heights. Results: Both treatment modalities resulted in significant changes in the postoperative measurements from the preoperative values (P<.01). The reduction in the PPDs, gain in the CALs, and gain in the radiographic alveolar bone heights were 4.58±1.08, 4.25±1.06, and 5.50±2.24 mm in the patients treated with ACB grafting and GTR and 4.92±1.00, 4.50±0.80, and 5.92±1.83 mm in those treated with ACB grafting alone, respectively. The differences between the treatments were not statistically significant (P>.05). Conclusions: Within the study limitations, both ACB grafting with GTR and ACB grafting alone lead to significant improvements in clinical and radiographic parameters at 6 months postoperatively. The combined approach does not provide any additional benefit for treating intraosseous periodontal defects. PMID:20922160

  17. Induction of fully stabilized cortical bone defects to study intramembranous bone regeneration

    PubMed Central

    McGee-Lawrence, Meghan E.; Razidlo, David F.

    2015-01-01

    Summary Bone is a regenerative tissue with an innate ability to self-remodel in response to environmental stimuli and the need to repair damage. Rodent models of fracture healing, and in particular genetic mouse models, can be used to study the contributions of specific molecular switches to skeletal repair, as well as to recreate and exacerbate biological development and repair mechanisms in postnatal skeletons. Here, we describe methodology for producing fully stabilized, single-cortex defects in mouse femurs to study mechanisms of intramembranous bone regeneration. PMID:25331051

  18. Effects of liquid nitrogen cryotherapy and bone grafting on artificial bone defects in minipigs: a preliminary study.

    PubMed

    Pogrel, M A; Regezi, J A; Fong, B; Hakim-Faal, Z; Rohrer, M; Tran, C; Schiff, T

    2002-06-01

    Liquid nitrogen cryotherapy has been advocated as an adjunct in the enucleation and curettage of locally aggressive lesions of the jaws. Simultaneous autogenous bone grafting has also been advocated to accelerate bone formation and reduce morbidity. There is, however, relatively little scientific basis for either of these hypotheses. In this study, nine Yucatan minipigs had artificial defects created in the mandible, which were treated with liquid nitrogen spray. Half of the defects were grafted with autogenous bone from the chin and half were closed primarily. Two animals were sacrificed 3 days postoperatively to measure the width of necrosis and the rest were sacrificed at 3 months to assess healing and new bone formation. It was found that drilling the artificial defects alone caused bone necrosis for a mean depth of 0.09 mm. Liquid nitrogen cryospray caused a mean depth of bone necrosis of 0.82 mm (range 0.51-1.52 mm). The defects that were bone grafted healed well clinically. Defects not bone grafted showed a 50% rate of wound breakdown and sequestrum formation with delayed healing. Vital staining showed a non-significantly greater rate of bone formation in the grafted defects. Digitally superimposed radiography showed a non-significantly greater bone density in the non-grafted defects at 3 months postoperatively. It appears that liquid nitrogen cryospray does devitalize an area of bone around defects in the mandible. The width of necrosis is usually less than 1 mm and subsequent healing is enhanced by autogenous bone grafting. This has clinical implications. PMID:12190137

  19. The remodeling pattern of human mandibular alveolar bone during prenatal formation from 19 to 270mm CRL.

    PubMed

    Radlanski, Ralf J; Renz, Herbert; Tsengelsaikhan, Nyamdorj; Schuster, Felix; Zimmermann, Camilla A

    2016-05-01

    The underlying mechanisms of human bone morphogenesis leading to a topologically specific shape remain unknown, despite increasing knowledge of the basic molecular aspects of bone formation and its regulation. The formation of the alveolar bone, which houses the dental primordia, and later the dental roots, may serve as a model to approach general questions of bone formation. Twenty-five heads of human embryos and fetuses (Radlanski-Collection, Berlin) ranging from 19mm to 270mm (crown-rump-length) CRL were prepared as histological serial sections. For each stage, virtual 3D-reconstructions were made in order to study the morphogenesis of the mandibular molar primordia with their surrounding bone. Special focus was given to recording the bone-remodeling pattern, as diagnosed from the histological sections. In early stages (19-31mm CRL) developing bone was characterized by appositional only. At 41, in the canine region, mm CRL bony extensions were found forming on the bottom of the trough. Besides general apposition, regions with resting surfaces were also found. At a fetal size of 53mm CRL, septa have developed and led to a compartment for canine development. Furthermore, one shared compartment for the incisor primordia and another shared compartment for the molars also developed. Moreover, the inner surfaces of the dental crypts showed resorption of bone. From this stage on, a general pattern became established such that the compartmentalizing ridges and septa between all of the dental primordia and the brims of the crypts were noted, and were due to appositional growth of bone, while the crypts enlarged on their inner surfaces by resorption. By 160mm CRL, the dental primordia were larger, and all of the bony septa had become reduced in size. The primordia for the permanent teeth became visible at 225mm CRL and shared the crypts of their corresponding deciduous primordia. PMID:26921449

  20. Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiae.

    PubMed

    Li, Jiao Jiao; Roohani-Esfahani, Seyed-Iman; Dunstan, Colin R; Quach, Terrence; Steck, Roland; Saifzadeh, Siamak; Pivonka, Peter; Zreiqat, Hala

    2016-02-01

    The treatment of large bone defects, particularly those with segmental bone loss, remains a significant clinical challenge as current approaches involving surgery or bone grafting often do not yield satisfactory long-term outcomes. This study reports the evaluation of novel ceramic scaffolds applied as bone graft substitutes in a clinically relevant in vivo model. Baghdadite scaffolds, unmodified or modified with a polycaprolactone coating containing bioactive glass nanoparticles, were implanted into critical-sized segmental bone defects in sheep tibiae for 26 weeks. Radiographic, biomechanical, μ-CT and histological analyses showed that both unmodified and modified baghdadite scaffolds were able to withstand physiological loads at the defect site, and induced substantial bone formation in the absence of supplementation with cells or growth factors. Notably, all samples showed significant bridging of the critical-sized defect (average 80%) with evidence of bone infiltration and remodelling within the scaffold implant. The unmodified and modified baghdadite scaffolds achieved similar outcomes of defect repair, although the latter may have an initial mechanical advantage due to the nanocomposite coating. The baghdadite scaffolds evaluated in this study hold potential for use as purely synthetic bone graft substitutes in the treatment of large bone defects while circumventing the drawbacks of autografts and allografts. PMID:26894676

  1. COMPARATIVE STUDY OF BONE NEOFORMATION USING AUTOLOGOUS GRAFTING AND THREE REPLACEMENTS: BONE DEFECTS IN RATS

    PubMed Central

    Stein, Rodrigo Steffen; Silva, Jefferson Braga; Silva, Vinicius Duval da

    2015-01-01

    Objective: Compare the percentage of bone neoformation promoted by autologous bone grafting and three kinds of replacement materials with different characteristics in rats' femoral holes. Methods: Two holes measuring 5.4×2.7mm, were produced on each femur (right and left) of 14 isogenic Wistar rats. Each of the four defects produced was filled by autologous bone or by one of three tested materials-hydroxyapatite (HA), Genphos® (HA+ β-TCP) and GenMix® (a combined bovine bone graft). In the end of the 6-week (n = 6) and 12-week (n = 8) periods, the animals were sacrificed. The sections (stained with Picro-Sirius) were assessed by optical microscopy and specific software. Results: The groups with autologous bone were shown to be significantly superior to the others at both assessed times, showing a mean bone formation rate ± SD of 90.6 ± 10.8% in six weeks, and 98 ± 9.2% in 12 weeks (p > 0.0001 for both assessed times). In six weeks, the results for the other groups were the following: Genphos®, 46 ± 7.1%; HA, 43.1 ± 8.4%; and GenMix®, 57.3 ± 4.5%. In 12 weeks: Genphos®, 47.8 ± 11.1%; HA, 39.9 ± 5.4%; GenMix®, 59.7 ± 4.8%, significant (p = 0.007). Conclusions: In both assessed times, the three bone replacement materials tested in the study showed to be inferior to autologous bone graft for bone neoformation percentage. PMID:27022515

  2. Evaluation of human recombinant bone morphogenetic protein-2-loaded tricalcium phosphate implants in rabbits' bone defects.

    PubMed

    Laffargue, P; Hildebrand, H F; Rtaimate, M; Frayssinet, P; Amoureux, J P; Marchandise, X

    1999-08-01

    Porous beta-tricalcium phosphate (betaTCP) has osteoconductive properties. The adsorption of human recombinant bone morphogenetic protein-2 (rhBMP-2) onto TCP could realize an osteoinductive bone substitute. We evaluated it on an animal model using dual-energy X-ray absorptiometry (DEXA) and solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. BetaTCP cylinders loaded with rhBMP-2 were implanted into rabbits' femoral condyle bone defects, and betaTCP alone as control into the contralateral femur. We studied two different doses of rhBMP-2 (10 and 40 microg) on two groups of four animals. Evaluation consisted in radiography, histology, and histomorphometry, DEXA, and NMR spectroscopy using an original method of quantification. With both doses of rhBMP-2, we observed on radiographs an increase of trabecular bone around implants. Histology showed resorption of the ceramic, trabecular bone with osteoblasts and osteoid substance around the implants, and colonization inside the porous betaTCP by new bone formed. Histomorphometry showed that the osteoid surface (OS/BS) was greatest with the high dose of rhBMP-2. The difference was slight between the low dose of rhBMP-2 and control. DEXA showed a dose-dependent increase of bone mineral density of rhBMP-2-loaded betaTCP vs. control. NMR spectroscopy confirmed that the amount of new bone formed in betaTCP was greater when betaTCP carried rhBMP-2, and increased with the dose of rhBMP-2 used. We showed that betaTCP was a good matrix for rhBMP-2, which gave it osteoinductive properties in an orthotopic site, in a dose-dependent manner. Thus, such composite biomaterial seems to be of great interest in reconstructive bone surgery. Further studies are needed in clinical practice to determine optimal doses. PMID:10458276

  3. The clinical application of rhBMP-7 for the reconstruction of alveolar cleft.

    PubMed

    Ayoub, Ashraf; Roshan, Cherian P; Gillgrass, Toby; Naudi, Kurt; Ray, Arup

    2016-01-01

    In this study, radiographic assessment was performed to find out the effectiveness of bone regeneration following the application of recombinant human bone morphogenetic protein 7 (rhBMP-7) for the reconstruction of alveolar cleft defects in 11 cases: nine unilateral and two bilateral alveolar clefs. Reconstruction of the alveolar cleft was performed by using 3.5 mg of rhBMP-7 (Osigraft OP1) on a type I collagen carrier. Radiographs were taken 6 months post operation using a Gendex Intraoral Unit with Agfa Dentus M2 Comfort occlusal film. The amount of bony infill was graded on a Kindelan four-point scale. The patients were followed up for an average of 6.6 years. Based on the radiographic analysis, eight out of the nine unilateral alveolar cleft cases received a score of grade I and one patient had a grade II score, using the Kindelan scale. In the two bilateral alveolar clefts, only one side had bone formation. The radiographic appearance showed a normal trabecular pattern similar to the adjacent bone. Thus, rhBMP-7 was radiographically and clinically successful in regenerating the bone at the alveolar cleft which resulted in shortening of the operation time, absence of donor-site morbidity and a shorter hospital stay. The promising results of this preliminary study should encourage a phase II trial to compare bone grafts with BMP for the reconstruction of alveolar defects. PMID:26507862

  4. Local delivery of rhVEGF165 through biocoated nHA/coral block grafts in critical-sized dog mandible defects: a histological study at the early stages of bone healing

    PubMed Central

    Du, Bing; Gao, Yao; Deng, Yue; Zhao, Yadong; Lai, Chunhua; Guo, Zehong; Rong, Mingdeng; Zhou, Lei

    2015-01-01

    Alveolar defects of a critical size cannot heal completely without grafting. Thus, they represent a major clinical challenge to reconstructive surgery. Numerous types of grafts have been used to improve bone regeneration. In the case of particle grafts, the capacity for volume rebuilding and space maintaining is still not ideal, particularly for critical-sized bone defects. Although porous block grafts can overcome the above problems of particle grafts, they are still not widely used for critical-sized alveolar defects, because of their reduced efficacy in blood vessel and bone formation. Thus, in the present study, nano-hydroxyapatite/coralline (nHA/coral) blocks were pre-vascularized by coating them with vascular endothelial growth factor (VEGF), and then implanted in dogs with critical-sized mandibular defects. This model has possible applications in orthopedic and implant surgery. In vivo results indicate that the nHA/coral blocks allow cell and collagen ingrowth because of their suitable pore size and interconnectivity of pores. In addition, pre-vascularization properties were obtained by coating the scaffolds with VEGF. Histological and immunohistochemical examinations, as well as fluorescence analysis, revealed that the local delivery of VEGF can significantly improve neovascularization and mineralization of newly formed bone at the early stages of bone healing in this dog implantation model. Our data collectively show that nHA/coral blocks have possible applications in bone tissue engineering, and excellent results can be achieved by pre-vascularization with VEGF. PMID:26131067

  5. Mucosal Langerhans Cells Promote Differentiation of Th17 Cells in a Murine Model of Periodontitis but Are Not Required for Porphyromonas gingivalis–Driven Alveolar Bone Destruction

    PubMed Central

    Bittner-Eddy, Peter D.; Fischer, Lori A.; Kaplan, Daniel H.; Thieu, Kathleen

    2016-01-01

    Periodontitis is a chronic oral inflammatory disease affecting one in five individuals that can lead to tooth loss. CD4+ Th cells activated by a microbial biofilm are thought to contribute to the destruction of alveolar bone surrounding teeth by influencing osteoclastogenesis through IL-17A and receptor activator for NF-κB ligand effects. The relative roles of mucosal Ag presentation cells in directing Th cell immune responses against oral pathogens and their contribution to destruction of alveolar bone remain unknown. We tested the contribution of mucosal Langerhans cells (LCs) to alveolar bone homeostasis in mice following oral colonization with a well-characterized human periodontal pathogen, Porphyromonas gingivalis. We found that oral mucosal LCs did not protect from or exacerbate crestal alveolar bone destruction but were responsible for promoting differentiation of Th17 cells specific to P. gingivalis. In mice lacking LCs the Th17 response was suppressed and a Th1 response predominated. Bypassing LCs with systemic immunization of P. gingivalis resulted in a predominantly P. gingivalis–specific Th1 response regardless of whether LCs were present. Interestingly, we find that in vivo clonal expansion of P. gingivalis–specific Th cells and induced regulatory T cells does not depend on mucosal LCs. Furthermore, destruction of crestal alveolar bone induced by P. gingivalis colonization occurred regardless of the presence of mucosal LCs or P. gingivalis–specific Th17 cells. Our data indicate that both LCs and Th17 cells are redundant in contributing to alveolar bone destruction in a murine model of periodontitis. PMID:27402698

  6. Mucosal Langerhans Cells Promote Differentiation of Th17 Cells in a Murine Model of Periodontitis but Are Not Required for Porphyromonas gingivalis-Driven Alveolar Bone Destruction.

    PubMed

    Bittner-Eddy, Peter D; Fischer, Lori A; Kaplan, Daniel H; Thieu, Kathleen; Costalonga, Massimo

    2016-08-15

    Periodontitis is a chronic oral inflammatory disease affecting one in five individuals that can lead to tooth loss. CD4(+) Th cells activated by a microbial biofilm are thought to contribute to the destruction of alveolar bone surrounding teeth by influencing osteoclastogenesis through IL-17A and receptor activator for NF-κB ligand effects. The relative roles of mucosal Ag presentation cells in directing Th cell immune responses against oral pathogens and their contribution to destruction of alveolar bone remain unknown. We tested the contribution of mucosal Langerhans cells (LCs) to alveolar bone homeostasis in mice following oral colonization with a well-characterized human periodontal pathogen, Porphyromonas gingivalis We found that oral mucosal LCs did not protect from or exacerbate crestal alveolar bone destruction but were responsible for promoting differentiation of Th17 cells specific to P. gingivalis. In mice lacking LCs the Th17 response was suppressed and a Th1 response predominated. Bypassing LCs with systemic immunization of P. gingivalis resulted in a predominantly P. gingivalis-specific Th1 response regardless of whether LCs were present. Interestingly, we find that in vivo clonal expansion of P. gingivalis-specific Th cells and induced regulatory T cells does not depend on mucosal LCs. Furthermore, destruction of crestal alveolar bone induced by P. gingivalis colonization occurred regardless of the presence of mucosal LCs or P. gingivalis-specific Th17 cells. Our data indicate that both LCs and Th17 cells are redundant in contributing to alveolar bone destruction in a murine model of periodontitis. PMID:27402698

  7. Evaluation of Bone Regeneration on Polyhydroxyethyl-polymethyl Methacrylate Membrane in a Rabbit Calvarial Defect Model.

    PubMed

    Kim, Somin; Hwang, Yawon; Kashif, Muhammad; Jeong, Dosun; Kim, Gonhyung

    This study was conducted to evaluate the capacity of guiding bone regeneration of polyhydroxyethyl-polymethyl methacrylate (PHEMA-PMMA) membrane as a guided tissue regeneration membrane for bone defects. Two 8-mm diameter transosseous round defects were made at the parietal bone of 18 New Zealand White rabbits. Defects were covered with or without PHEMA-PMMA membrane. Radiological and histological evaluation revealed that the bone tissue over the defect was more regenerated with time in both groups. However, there was significantly more bone regeneration at 8 weeks in the experimental group than the control group (p<0.05). There was no sign of membrane degradation or tissue inflammation and no invasion of muscle and fibrous tissue into defects. PHEMA-PMMA is a potential material for guided tissue regeneration membrane as it induces no adverse tissue reaction and effectively supports selective bone regeneration. PMID:27566076

  8. Porphyromonas gingivalis GroEL Induces Osteoclastogenesis of Periodontal Ligament Cells and Enhances Alveolar Bone Resorption in Rats

    PubMed Central

    Lin, Feng-Yen; Hsiao, Fung-Ping; Huang, Chun-Yao; Shih, Chun-Ming; Tsao, Nai-Wen; Tsai, Chien-Sung; Yang, Shue-Fen; Chang, Nen-Chung; Hung, Shan-Ling; Lin, Yi-Wen

    2014-01-01

    Porphyromonas gingivalis is a major periodontal pathogen that contains a variety of virulence factors. The antibody titer to P. gingivalis GroEL, a homologue of HSP60, is significantly higher in periodontitis patients than in healthy control subjects, suggesting that P. gingivalis GroEL is a potential stimulator of periodontal disease. However, the specific role of GroEL in periodontal disease remains unclear. Here, we investigated the effect of P. gingivalis GroEL on human periodontal ligament (PDL) cells in vitro, as well as its effect on alveolar bone resorption in rats in vivo. First, we found that stimulation of PDL cells with recombinant GroEL increased the secretion of the bone resorption-associated cytokines interleukin (IL)-6 and IL-8, potentially via NF-κB activation. Furthermore, GroEL could effectively stimulate PDL cell migration, possibly through activation of integrin α1 and α2 mRNA expression as well as cytoskeletal reorganization. Additionally, GroEL may be involved in osteoclastogenesis via receptor activator of nuclear factor κ-B ligand (RANKL) activation and alkaline phosphatase (ALP) mRNA inhibition in PDL cells. Finally, we inoculated GroEL into rat gingiva, and the results of microcomputed tomography (micro-CT) and histomorphometric assays indicated that the administration of GroEL significantly increased inflammation and bone loss. In conclusion, P. gingivalis GroEL may act as a potent virulence factor, contributing to osteoclastogenesis of PDL cells and resulting in periodontal disease with alveolar bone resorption. PMID:25058444

  9. The aspect of ultrastructural changes of the osteoblasts and surface areas of alveolar bone appearing in experimental tooth movement.

    PubMed

    Hirashita, A

    1976-12-01

    Molars of mature Wistar rats were moved experimentally by orthodontic elastic for four days. Then, the aspects of ultrastructural changes of the osteoblasts and structure of the alveolar bone surface which appeared in experimental tooth movement were studied. The following results were obtained. 1) These osteoblasts are classified into three groups according to their position. 2) The most active response to the orthodontic force is exhibited by the second group of cells with the ability of rapid production of abundant acid polysaccharide; i) Abundant rough surfaced endoplasmic reticulum with markedly dilated cisternae. ii) Well developed Golgi apparatus and electron opaque granules with a limiting membrane are found in the cytoplasm. Large granules are frequently seen to be secreted out of the cell. iii) The mitochondria are of large size and round shape with well developed cristae. 3) The surface of the new alveolar bone is covered with a belt-shaped structure consisting of small dense spherical-shaped structures. 4) Osteoclasts are rarely seen, but the original function of the cells appears to be almost inactive. PMID:1072189

  10. Variations in the buccal-lingual alveolar bone thickness of impacted mandibular third molar: our classification and treatment perspectives

    PubMed Central

    Ge, Jing; Zheng, Jia-Wei; Yang, Chi; Qian, Wen-Tao

    2016-01-01

    Selecting either buccal or lingual approach for the mandibular third molar surgical extraction has been an intense debate for years. The aim of this observational retrospective study was to classify the molar based on the proximity to the external cortical bone, and analyze the position of inferior alveolar canal (IAC) of each type. Cone-beam CT (CBCT) data of 110 deeply impacted mandibular third molars from 91 consecutive patients were analyzed. A new classification based on the mean deduction value (MD) of buccal-lingual alveolar bone thickness was proposed: MD≥1 mm was classified as buccal position, 1 mm>MD>−1 mm was classified as central position, MD≤−1 mm was classified as lingual position. The study samples were distributed as: buccal position (1.8%) in 2 subjects, central position (10.9%) in 12 and lingual position (87.3%) in 96. Ninety-six molars (87.3%) contacted the IAC. The buccal and inferior IAC course were the most common types in impacted third molar, especially in lingually positioned ones. Our study suggested that amongst deeply impacted mandibular third molars, lingual position occupies the largest proportion, followed by the central, and then the buccal type. PMID:26759181

  11. Gingival and localized alveolar bone necrosis related to the use of arsenic trioxide paste--two case reports.

    PubMed

    Chen, Gin; Sung, Po-Ta

    2014-03-01

    The leakage of arsenic trioxide paste from tooth fillings has been associated with widespread necrosis of the supporting periodontal tissues. This report describes two cases of arsenic trioxide paste-induced gingival and localized alveolar bone necrosis in the mandible, following the use of arsenic trioxide paste as a pulp-devitalized agent. The first case was a 54-year-old female complaining of a painful white patch on the gingival tissue of the left mandibular second molar (tooth #37) after treatment by a private dentist. She underwent completely debridement of all necrotic soft tissue with physical saline irrigation. The gingival tissue was gradually replaced with vascular tissue and completely healed after 7 weeks. The second case was a 30-year-old female complaining of severe pain and continuous gingival bleeding from the right maxillary first bicuspid (tooth #14) following treatment by a private dentist. She finally accepted debridement of the sequestrum and necrotic alveolar bone with decortication to induce active bleeding. A partial thickness gingival flap was made to cover the wound. Four weeks later, the supporting tissues had completely healed. Arsenic trioxide paste is a cytotoxic agent and may cause harmful adverse effects on adjacent periodontium and supporting hard tissue if leakage occurs, or it is used carelessly. There is no indication for the use of arsenic trioxide paste in modern dental practice. PMID:24630037

  12. Variations in the buccal-lingual alveolar bone thickness of impacted mandibular third molar: our classification and treatment perspectives.

    PubMed

    Ge, Jing; Zheng, Jia-Wei; Yang, Chi; Qian, Wen-Tao

    2016-01-01

    Selecting either buccal or lingual approach for the mandibular third molar surgical extraction has been an intense debate for years. The aim of this observational retrospective study was to classify the molar based on the proximity to the external cortical bone, and analyze the position of inferior alveolar canal (IAC) of each type. Cone-beam CT (CBCT) data of 110 deeply impacted mandibular third molars from 91 consecutive patients were analyzed. A new classification based on the mean deduction value (MD) of buccal-lingual alveolar bone thickness was proposed: MD≥1 mm was classified as buccal position, 1 mm>MD>-1 mm was classified as central position, MD≤-1 mm was classified as lingual position. The study samples were distributed as: buccal position (1.8%) in 2 subjects, central position (10.9%) in 12 and lingual position (87.3%) in 96. Ninety-six molars (87.3%) contacted the IAC. The buccal and inferior IAC course were the most common types in impacted third molar, especially in lingually positioned ones. Our study suggested that amongst deeply impacted mandibular third molars, lingual position occupies the largest proportion, followed by the central, and then the buccal type. PMID:26759181

  13. Effects of a herbal gel containing carvacrol and chalcones on alveolar bone resorption in rats on experimental periodontitis.

    PubMed

    Botelho, Marco Antonio; Rao, Vietla Satyanarayana; Montenegro, Danusa; Bandeira, Mary Anne Menezes; Fonseca, Said Gonçalves Cruz; Nogueira, Nadia Accioly Pinto; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne Castro

    2008-04-01

    Carvacrol and dimeric chalcones are the respective bioactive components of Lippia sidoides and Myracrodruon urundeuva, popular medicinal plants of Northeastern Brazil with proven antimicrobial and antiinflammatory properties. Periodontal disease is associated with inflammation and microbiological proliferation, thus the study aimed to investigate the effect of a topical gel based on carvacrol and chalcones in the experimental periodontal disease (EPD) in rats. Animals were treated with carvacrol and/or chalcones gel, immediately after EPD induction, three times a day for 11 days. Appropriate controls were included in the study. Animals were weighed daily. They were killed on day 11, the mandibles dissected and alveolar bone loss was measured. The periodontium were examined at histopathology and the neutrophil influx into the gingiva was assayed using myeloperoxidase activity. The bacterial flora were assessed through culture of the gingival tissue. Alveolar bone loss was significantly (p < 0.05) inhibited by combined carvacrol and chalcones gel, compared with the vehicle and non-treated groups. The treatment with the combined gel reduced tissue lesion at histopathology, decreased myeloperoxidase activity in gingival tissue and inhibited the growth of oral microorganisms as well as the weight loss. Carvacrol and chalcones combination gel has a beneficial effect upon EPD in this model. PMID:18338370

  14. β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease

    PubMed Central

    2015-01-01

    The objective of this study was to assess the effects of oral ingestion of β-glucans isolated from Saccharomyces cereviseae on the metabolic profile, expression of gingival inflammatory markers and amount of alveolar bone loss in diabetic rats with periodontal disease. Diabetes mellitus was induced in 48 Wistar rats by intraperitoneal injection of streptozotocin (80 mg/kg). After confirming the diabetes diagnosis, the animals were treated with β-glucans (by gavage) for 28 days. On the 14th day of this period, periodontal disease was induced using a ligature protocol. β-glucans reduced the amount of alveolar bone loss in animals with periodontal disease in both the diabetic and non-diabetic groups (p < 0.05). β-glucans reduced blood glucose, cholesterol and triacylglycerol levels in diabetic animals, both with and without periodontal disease (p < 0.05). Furthermore, treatment with β-glucans reduced the expression of cyclooxygenase-2 and receptor activator of nuclear factor kappa-B ligand and increased osteoprotegerin expression in animals with diabetes and periodontal disease (p < 0.05). It was concluded that treatment with β-glucans has beneficial metabolic and periodontal effects in diabetic rats with periodontal disease. PMID:26291983

  15. A randomized controlled evaluation of alveolar ridge preservation following tooth extraction using deproteinized bovine bone mineral and demineralized freeze-dried bone allograft

    PubMed Central

    Sadeghi, Rokhsareh; Babaei, Maryam; Miremadi, S. Asghar; Abbas, Fatemeh Mashadi

    2016-01-01

    Background: Alveolar ridge preservation could be performed immediately following tooth extraction to limit dimensional changes of alveolar process due to bone resorption. The aim of this study was to compare the clinical and histologic outcomes of socket preservation using two different graft materials; deproteinized bovine bone mineral (DBBM) and demineralized freeze-dried bone allograft (DFDBA) with absorbable collagen membrane. Materials and Methods: Twenty extraction sockets in 20 patients were randomly divided into 2 treatment groups: 10 sockets were augmented with DBBM and collagen membrane whereas 10 sockets were filled with DFDBA and covered by collagen membrane. Primary closure was achieved over extraction sockets by flap advancement. Horizontal and vertical ridge dimensional changes were assessed at baseline and after 4-6 months at the time of implant placement. For histological and histomorphometrical analysis, bone samples were harvested from the augmented sites with trephine during implant surgery. All data were analyzed using SPSS version 18 (α=0.05). Results: Clinical measurements revealed that average horizontal reduction was 2.3 ± 0.64 mm for DFDBA and 2.26 ± 0.51 mm for DBBM. Mean vertical ridge resorption at buccal side was 1.29 ± 0.68 mm for DFDBA and 1.1 ± 0.17 mm for DBBM. Moreover, mean vertical ridge reduction at lingual site was 0.41 ± 0.38 mm and 0.35 ± 0.34 mm for DFDBA and DBBM, respectively. No significant differences were seen between two groups in any of those clinical parameters. Histologic analysis showed statistically significant more new bone deposition for DFDBA compared to DBBM (34.49 ± 3.19 vs. 18.76 ± 3.54) (P < 0.01). Residual graft particles were identified significantly more in DBBM (12.77 ± 1.85) than DFDBA (6.06 ± 1.02). Conclusion: Based on the findings of this study, both materials have positive effect on alveolar ridge preservation after tooth extraction, but there was more new bone formation and less

  16. Three-Dimensional Porous Gelapin-Simvastatin Scaffolds Promoted Bone Defect Healing in Rabbits.

    PubMed

    Moshiri, Ali; Shahrezaee, Mostafa; Shekarchi, Babak; Oryan, Ahmad; Azma, Kamran

    2015-06-01

    Treatment of large bone defects (LBDs) is technically demanding. Tissue engineering is an option. A bioactive graft may be produced by combining tissue scaffolds and healing promotive factors in order to accelerate bone repair. We investigated the role of Simvastatin (Sim)-embedded porous Gelapin (Gel) scaffold on experimental bone healing. At first, the effectiveness of different concentrations of Gel and Sim powders was investigated in an experimentally induced femoral hole model in rabbits (n = 6) for 30 days. Then bone bioactive grafts were produced by combination of the effective concentrations of Gel, Sim, and Genipin. The bioimplants were subcutaneously tested in a rabbit model (n = 9) to determine their biocompatibility and biodegradability for 10-30 days. Finally, a large radial bone defect model was produced in rabbits (n = 20), and the bioimplants were inserted in the defects. The untreated and autograft-treated bone defects were served as controls. The animals were euthanized after 30 and 60 days of bone injury. The bone samples were evaluated by radiography, three-dimensional CT scan, bone densitometry, histopathology, and nano-indentation. At a concentration of 5 mg/hole, Sim closed the femoral bone holes after 30 days, while in the defect, autograft, and Gel groups, the holes were open. Both the Gel and Gel-Sim scaffolds were biocompatible and biodegradable. Subcutaneously, the Gel-Sim scaffold was replaced with the newly regenerated ectopic bone after 30 days. After implantation of the Gel-Sim scaffold in the radial bone defects, the scaffold was completely replaced with new woven bone after 30 days which was then matured and remodeled into a cortical bone after 60 days. Sixty days after bone injury, the Gel-Sim-treated defects had significantly higher bone volume, matrix mineralization, elastic modulus, and contact hardness when compared to the controls. The Gel-Sim scaffold may be a suitable option in managing LBDs. PMID:25804980

  17. Eggshell Derived Hydroxyapatite as Bone Graft Substitute in the Healing of Maxillary Cystic Bone Defects: A Preliminary Report

    PubMed Central

    Kattimani, Vivekanand S; Chakravarthi, P Srinivas; Kanumuru, Narasimha Reddy; Subbarao, Vummidisetti V; Sidharthan, A; Kumar, T S Sampath; Prasad, L Krishna

    2014-01-01

    Background: Since ancient times, use of graft materials to promote healing of defects of bone is wellknown. Traditionally, missing bone is replaced with material from either patient or donor. Multiple sources of bone grafts have been used to graft bone defects to stimulate bone healing. Hydroxyapatite is naturally occurring mineral component of bone, which is osteoconductive. This versatile biomaterial is derived from many sources. The aim of this study is to evaluate the efficacy of eggshell derived hydroxyapatite (EHA) in the bone regeneration of human maxillary cystic bone defects secondary to cystic removal/apicoectomy and compare the material properties of EHA in vitro. Materials and Methods: A total of eight maxillary bone defects were grafted after cystic enucleation and/or apicoectomy in the year 2008 and completed the study at 1 year. The patients were followed-up 2 weeks after surgery for signs and symptoms of infection or any other complications that may have been related to surgical procedure. Follow-up radiographs were obtained immediately after surgery followed by 1, 2, and 3 months to assess the efficacy of EHA in bone healing. Physicochemical characterization of the EHA was carried out in comparison with synthetic hydroxyapatite (SHA), also compared the biocompatibility of EHA using in vitro cytotoxicity test. Results: By the end of the 8th week, the defects grafted with EHA showed complete bone formation. However, bone formation in non-grafted sites was insignificant. The values of density measurements were equal or more than that of surrounding normal bone. These results indicate that the osseous regeneration of the bone defect filled with EHA is significant. EHA showed the superior material properties in comparison with SHA. Conclusion: EHA is a versatile novel bone graft substitute that yielded promising results. Because of its biocompatibility, lack of disease transfer risks, ease of use and unlimited availability, EHA remains a viable choice

  18. Bridging Plate Development for Treatment of Segmental Bone Defects of the Canine Mandible: Mechanical Tests and Finite Element Method.

    PubMed

    de Freitas, Elisângela Perez; Rahal, Sheila Canevese; Shimano, Antonio Carlos; da Silva, Jorge Vicente Lopes; Noritomi, Pedro Yoshito; El-Warrak, Alexander Oliveira; Melchert, Alessandra

    2016-03-01

    With regard to the canine mandible, a mistaken concept of application is to assume that systemic plate-bone resistance is provided by the implant so that biomechanical position could be ignored. Because the alveolar border of the mandible is a tensile zone, the plate would ideally be positioned near this area while avoiding important structures. The aim of this study was to develop 2 bridging plates for the treatment of a segmental bone defect of the canine mandible using monocortical screws to avoid damage to the tooth roots and remaining neurovascular structures. Computed tomography images of the heads of 4 dogs (rottweiler, Doberman, boxer, and miniature poodle breeds) were used as models to develop the project. The images were reconstructed in 3-dimensional (3D) format. For each dog breed, 6 mandible prototypes were produced, each with a segmental bone defect in the right mandible. The mandibular reconstruction was performed with pure titanium bridging plate and locking screws. One plate model was developed for medium- and large-breed dogs and another for small-breed dogs. Mechanical testing showed the platemandible system resists the bite forces in all dog breeds. All safety factors were greater than I in the platemandible system for medium- and large-breed dogs and greater than 10 in the plate-mandible system for small-breed dogs. Thus, bridging plates designed with differentiated geometry and monocortical locking screws showed mechanical resistance to support simulated induced bone model defects and were able to support at least 5 times the value of bite force for each evaluated dog. PMID:27487652

  19. Evaluation of laser photobiomodulation on healing of bone defects grafted with bovine bone in diabetic rats

    NASA Astrophysics Data System (ADS)

    Paraguassú, Gardênia Matos; da Costa Lino, Maíra Doria Martinez; de Carvalho, Fabíola Bastos; Cangussu, Maria Cristina; Pinheiro, Antônio Luiz Barbosa; Ramalho, Luciana Maria Pedreira

    2012-09-01

    Previous studies have shown positive effects of Low Level Laser Therapy (LLLT) on the repair of bone defects, but there is a few that associates bone healing in the presence of a metabolic disorder such as Diabetes Mellitus, a systemic disorder associated to impair of the repair of different tissues. The aim of this study was to assess, histologically, the repair of surgical defects created in the femur of diabetic and non-diabetic rats treated or not with LLLT (λ780nm, 70mW, CW, o/˜0.4mm, 16J/cm2 per session) associated or not to the use of a biomaterial. Surgical tibial bone defects were created in 60 animals that were divided into 4 groups: Group B (non-diabetic + biomaterial); Group BL (non-diabetic + biomaterial + LLLT); Group BD (diabetic + biomaterial); Group BDL (diabetic + biomaterial + LLLT). The irradiated group received 16 J/cm2 per session divided into 4 points around the defect, being the first irradiation carried out immediately after surgery and repeated every 48h for 14 days. The animals were killed 15, 21 and 30 days after surgery. The specimens underwent a semi-quantitative analysis. The results showed inflammation more intense in the BD and BDL groups than in the B and BL groups in the period of 15 days (p = 0.02), however the cortical repair in the BDL group was below 25% in more than half of the specimens, while in the BD group, the repair was more than to 25% in all specimens. At 30 days, both osteoblastic activity and collagen deposition were significantly higher in the B group when compared to the BD group (p=0.04). Bone deposition was significantly higher in the BL group (p=0.023) than in BDL group. It is concluded that LLLT has a positive biomodulative effect in the early stages of the healing process of bone defects grafted with biomaterial in diabetic and non-diabetic rats.

  20. Alveolar corticotomy: a new surgical approach based on bone activation: principle and protocol.

    PubMed

    Petitbois, Renaud; Scortecci, Gérard

    2012-12-01

    Alveolar corticotomy has proven effective in shortening orthodontic treatments in adults. A new non-invasive and flapless surgical approach has, however, yielded the same results. This technique, based on prior osteogenic alveoli preparation, entails neither anatomical risk nor post-op pain. The present article describes this new protocol and uses a case report to illustrate it. PMID:23164922

  1. Cyclophilin A (CypA) is associated with the inflammatory infiltration and alveolar bone destruction in an experimental periodontitis

    SciTech Connect

    Liu, Lihua; Li, Chengzhang; Cai, Cia; Xiang, Junbo; Cao, Zhengguo

    2010-01-01

    Background and objective: CypA is able to regulate inflammatory responses and MMPs production via interaction with its cell surface receptor, EMMPRIN. This study aimed to address the possible association of CypA with pathological inflammation and destruction of periodontal tissues, and whether CypA-EMMPRIN interaction exists in periodontitis. Materials and methods: Experimental periodontitis was induced by ligation according to our previous method. Histological and radiographic examinations were performed. Western blot was used to detect CypA and EMMPRIN expressions in gingival tissues. Immunohistochemistry was applied for CypA, EMMPRIN, MMP-1, MMP-2, MMP-9, as well as cell markers of macrophage, lymphocyte and neutrophil. CypA expression, alveolar bone loss, and inflammatory infiltrations were quantified followed by correlation analyses. Results: Western blot revealed that CypA and EMMRPIN expressions were dramatically elevated in inflamed gingival tissues (ligature group) as compared to healthy gingival tissues (control group). The enhanced CypA and EMMPRIN expressions were highly consistent in cell localization on seriate sections. They were permanently co-localized in infiltrating macrophages and lymphocytes, as well as osteoclasts and osteoblasts in interradicular bone, but rarely expressed by infiltrating neutrophils. MMP-1, MMP-2, and MMP-9 expressions were also sharply increased in inflamed gingiva. MMP-2 and MMP-9 were mainly over-expressed by macrophages, while MMP-1 was over-produced by fibroblasts and infiltrating cells. The number of CypA-positive cells was strongly correlated with the ACJ-AC distance (r = 0.839, p = 0.000), the number of macrophages (r = 0.972, p = 0.000), and the number of lymphocytes (r = 0.951, p = 0.000). Conclusion: CypA is associated with the inflammatory infiltration and alveolar bone destruction of periodontitis. CypA-EMMPRIN interaction may exist in these pathological processes.

  2. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair

    PubMed Central

    Huang, Chunlan; Ness, Vincent P.; Yang, Xiaochuan; Chen, Hongli; Luo, Jiebo; Brown, Edward B; Zhang, Xinping

    2015-01-01

    Osteogenesis and angiogenesis are two integrated components in bone repair and regeneration. A deeper understanding of osteogenesis and angiogenesis has been hampered by technical difficulties of analyzing bone and neovasculature simultaneously in spatiotemporal scales and in three-dimensional formats. To overcome these barriers, a cranial defect window chamber model was established that enabled high-resolution, longitudinal, and real-time tracking of angiogenesis and bone defect healing via Multiphoton Laser Scanning Microscopy (MPLSM). By simultaneously probing new bone matrix via second harmonic generation (SHG), neovascular networks via intravenous perfusion of fluorophore, and osteoblast differentiation via 2.3kb collagen type I promoter driven GFP (Col2.3GFP), we examined the morphogenetic sequence of cranial bone defect healing and further established the spatiotemporal analyses of osteogenesis and angiogenesis coupling in repair and regeneration. We demonstrated that bone defect closure was initiated in the residual bone around the edge of the defect. The expansion and migration of osteoprogenitors into the bone defect occurred during the first 3 weeks of healing, coupled with vigorous microvessel angiogenesis at the leading edge of the defect. Subsequent bone repair was marked by matrix deposition and active vascular network remodeling within new bone. Implantation of bone marrow stromal cells (BMSCs) isolated from Col2.3GFP mice further showed that donor-dependent bone formation occurred rapidly within the first 3 weeks of implantation, in concert with early angiogenesis. The subsequent bone wound closure was largely host-dependent, associated with localized modest induction of angiogenesis. The establishment of a live imaging platform via cranial window provides a unique tool to understand osteogenesis and angiogenesis in repair and regeneration, enabling further elucidation of the spatiotemporal regulatory mechanisms of osteoprogenitor cell interactions

  3. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair.

    PubMed

    Huang, Chunlan; Ness, Vincent P; Yang, Xiaochuan; Chen, Hongli; Luo, Jiebo; Brown, Edward B; Zhang, Xinping

    2015-07-01

    Osteogenesis and angiogenesis are two integrated components in bone repair and regeneration. A deeper understanding of osteogenesis and angiogenesis has been hampered by technical difficulties of analyzing bone and neovasculature simultaneously in spatiotemporal scales and in 3D formats. To overcome these barriers, a cranial defect window chamber model was established that enabled high-resolution, longitudinal, and real-time tracking of angiogenesis and bone defect healing via multiphoton laser scanning microscopy (MPLSM). By simultaneously probing new bone matrix via second harmonic generation (SHG), neovascular networks via intravenous perfusion of fluorophore, and osteoblast differentiation via 2.3-kb collagen type I promoter-driven GFP (Col2.3GFP), we examined the morphogenetic sequence of cranial bone defect healing and further established the spatiotemporal analyses of osteogenesis and angiogenesis coupling in repair and regeneration. We showed that bone defect closure was initiated in the residual bone around the edge of the defect. The expansion and migration of osteoprogenitors into the bone defect occurred during the first 3 weeks of healing, coupled with vigorous microvessel angiogenesis at the leading edge of the defect. Subsequent bone repair was marked by matrix deposition and active vascular network remodeling within new bone. Implantation of bone marrow stromal cells (BMSCs) isolated from Col2.3GFP mice further showed that donor-dependent bone formation occurred rapidly within the first 3 weeks of implantation, in concert with early angiogenesis. The subsequent bone wound closure was largely host-dependent, associated with localized modest induction of angiogenesis. The establishment of a live imaging platform via cranial window provides a unique tool to understand osteogenesis and angiogenesis in repair and regeneration, enabling further elucidation of the spatiotemporal regulatory mechanisms of osteoprogenitor cell interactions with host bone

  4. BST2 Mediates Osteoblast Differentiation via the BMP2 Signaling Pathway in Human Alveolar-Derived Bone Marrow Stromal Cells.

    PubMed

    Yoo, Su-Hyang; Kim, Jae Goo; Kim, Beom-Su; Lee, Jun; Pi, Sung-Hee; Lim, Hyun-Dae; Shin, Hong-In; Cho, Eui-Sic; You, Hyung-Keun

    2016-01-01

    The molecular mechanisms controlling the differentiation of bone marrow stromal stem cells into osteoblasts remain largely unknown. In this study, we investigated whether bone marrow stromal antigen 2 (BST2) influences differentiation toward the osteoblasts lineage. BST2 mRNA expression in human alveolar-derived bone marrow stromal cells (hAD-BMSCs) increased during differentiation into osteoblasts. hAD-BMSCs differentiation into osteoblasts and the mRNA expression of the bone-specific markers alkaline phosphatase, collagen type α 1, bone sialoprotein, osteocalcin, and osterix were reduced by BST2 knockdown using siRNA. Furthermore, BST2 knockdown in hAD-BMSCs resulted in decreased RUNX2 mRNA and protein expression. We hypothesized that BST2 is involved in differentiation of into osteoblasts via the BMP2 signaling pathway. Accordingly, we evaluated the mRNA expression levels of BMP2, BMP receptors (BMPR1 and 2), and the downstream signaling molecules SMAD1, SMAD4, and p-SMAD1/5/8 in BST2 knockdown cells. BMP2 expression following the induction of differentiation was significantly lower in BST2 knockdown cells than in cells treated with a non-targeting control siRNA. Similar results were found for the knockdown of the BMP2 receptor- BMPR1A. We also identified significantly lower expression of SMAD1, SMAD4, and p-SMAD1/5/8 in the BST2 knockdown cells than control cells. Our data provide the first evidence that BST2 is involved in the osteogenic differentiation of bone marrow stromal cells via the regulation of the BMP2 signaling pathway. PMID:27359105

  5. BST2 Mediates Osteoblast Differentiation via the BMP2 Signaling Pathway in Human Alveolar-Derived Bone Marrow Stromal Cells

    PubMed Central

    Yoo, Su-Hyang; Kim, Jae Goo; Kim, Beom-Su; Lee, Jun; Pi, Sung-Hee; Lim, Hyun-Dae; Shin, Hong-In; Cho, Eui-Sic

    2016-01-01

    The molecular mechanisms controlling the differentiation of bone marrow stromal stem cells into osteoblasts remain largely unknown. In this study, we investigated whether bone marrow stromal antigen 2 (BST2) influences differentiation toward the osteoblasts lineage. BST2 mRNA expression in human alveolar-derived bone marrow stromal cells (hAD-BMSCs) increased during differentiation into osteoblasts. hAD-BMSCs differentiation into osteoblasts and the mRNA expression of the bone-specific markers alkaline phosphatase, collagen type α 1, bone sialoprotein, osteocalcin, and osterix were reduced by BST2 knockdown using siRNA. Furthermore, BST2 knockdown in hAD-BMSCs resulted in decreased RUNX2 mRNA and protein expression. We hypothesized that BST2 is involved in differentiation of into osteoblasts via the BMP2 signaling pathway. Accordingly, we evaluated the mRNA expression levels of BMP2, BMP receptors (BMPR1 and 2), and the downstream signaling molecules SMAD1, SMAD4, and p-SMAD1/5/8 in BST2 knockdown cells. BMP2 expression following the induction of differentiation was significantly lower in BST2 knockdown cells than in cells treated with a non-targeting control siRNA. Similar results were found for the knockdown of the BMP2 receptor- BMPR1A. We also identified significantly lower expression of SMAD1, SMAD4, and p-SMAD1/5/8 in the BST2 knockdown cells than control cells. Our data provide the first evidence that BST2 is involved in the osteogenic differentiation of bone marrow stromal cells via the regulation of the BMP2 signaling pathway. PMID:27359105

  6. Biomechanical analysis of alveolar bone stress around implants with different thread designs and pitches in the mandibular molar area.

    PubMed

    Lan, Ting-Hsun; Du, Je-Kang; Pan, Chin-Yun; Lee, Huey-Er; Chung, Wei-Hao

    2012-04-01

    Threaded implants have been shown to play an important role in increasing mechanical osseointegration. The aim of this study was to determine bone stress distribution when using different types of implant thread pitches and designs. Five 3D finite element models were constructed to simulate bone stresses induced in implant bodies with two types of thread form: triangular ("Tri" prefix) and trapezoidal ("Trap" prefix). The former had thread pitches of 0.8, 1.2, and 1.6 mm, while the latter had thread pitches of 1.2 and 1.6 mm. A biting load of 143 N was applied vertically and obliquely to the occlusal central fossa of the crown. The main effects of each level of the three factors investigated (loading type, pitch, and thread form) in terms of the stress value were computed for all models. Results indicated that the loading type was the main factor of influence on the peak compressive stress of the alveolar bone. Optimal thread pitch was 1.2 mm for a triangular-thread implant, and a trapezoidal-threaded implant with thread pitch of 1.6 mm had the lowest stress value among trapezoidal-threaded implants. This study concluded that each thread form has its unique optimal thread pitch with regard to lower concentration of bone stress. Clinically, this study suggests that in biomechanical consideration, thread pitch exceeding 0.8 mm is more appropriate for a screwed implant. For clinical cases that require greater bone-implant interface, trapezoidal-threaded implants with thread pitch of 1.6 mm provide greater primary stability and lower concentration of bone stress under different loading directions. PMID:21301903

  7. Histomorphometric Study of Alveolar Bone Healing in Rats Fed a Boron-Deficient Diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone healing after tooth extraction in rats is a suitable experimental model to study bone formation. Thus, we performed a study to determine the effects of boron (B) deficiency on bone healing by using this model. Weanling Wistar rats were divided into two groups: control (+B; 3 mg B/kg diet), and ...

  8. Three-dimensional evaluation of upper anterior alveolar bone dehiscence after incisor retraction and intrusion in adult patients with bimaxillary protrusion malocclusion*

    PubMed Central

    Guo, Qing-yuan; Zhang, Shi-jie; Liu, Hong; Wang, Chun-ling; Wei, Fu-lan; Lv, Tao; Wang, Na-na; Liu, Dong-xu

    2011-01-01

    Objective: The purpose of this study was to evaluate three-dimensional (3D) dehiscence of upper anterior alveolar bone during incisor retraction and intrusion in adult patients with maximum anchorage. Methods: Twenty adult patients with bimaxillary dentoalveolar protrusion had the four first premolars extracted. Miniscrews were placed to provide maximum anchorage for upper incisor retraction and intrusion. A computed tomography (CT) scan was performed after placement of the miniscrews and treatment. The 3D reconstructions of pre- and post-CT data were used to assess the dehiscence of upper anterior alveolar bone. Results: The amounts of upper incisor retraction at the edge and apex were (7.64±1.68) and (3.91±2.10) mm, respectively, and (1.34±0.74) mm of upper central incisor intrusion. Upper alveolar bone height losses at labial alveolar ridge crest (LAC) and palatal alveolar ridge crest (PAC) were 0.543 and 2.612 mm, respectively, and the percentages were (6.49±3.54)% and (27.42±9.77)%, respectively. The shape deformations of LAC-labial cortex bending point (LBP) and PAC-palatal cortex bending point (PBP) were (15.37±5.20)° and (6.43±3.27)°, respectively. Conclusions: Thus, for adult patients with bimaxillary protrusion, mechanobiological response of anterior alveolus should be taken into account during incisor retraction and intrusion. Pursuit of maximum anchorage might lead to upper anterior alveolar bone loss. PMID:22135148

  9. Rhizoma Dioscoreae extract protects against alveolar bone loss by regulating the cell cycle: A predictive study based on the protein‑protein interaction network.

    PubMed

    Zhang, Zhi-Guo; Song, Chang-Heng; Zhang, Fang-Zhen; Chen, Yan-Jing; Xiang, Li-Hua; Xiao, Gary Guishan; Ju, Da-Hong

    2016-06-01

    Rhizoma Dioscoreae extract (RDE) exhibits a protective effect on alveolar bone loss in ovariectomized (OVX) rats. The aim of this study was to predict the pathways or targets that are regulated by RDE, by re‑assessing our previously reported data and conducting a protein‑protein interaction (PPI) network analysis. In total, 383 differentially expressed genes (≥3‑fold) between alveolar bone samples from the RDE and OVX group rats were identified, and a PPI network was constructed based on these genes. Furthermore, four molecular clusters (A‑D) in the PPI network with the smallest P‑values were detected by molecular complex detection (MCODE) algorithm. Using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA) tools, two molecular clusters (A and B) were enriched for biological process in Gene Ontology (GO). Only cluster A was associated with biological pathways in the IPA database. GO and pathway analysis results showed that cluster A, associated with cell cycle regulation, was the most important molecular cluster in the PPI network. In addition, cyclin‑dependent kinase 1 (CDK1) may be a key molecule achieving the cell‑cycle‑regulatory function of cluster A. From the PPI network analysis, it was predicted that delayed cell cycle progression in excessive alveolar bone remodeling via downregulation of CDK1 may be another mechanism underling the anti‑osteopenic effect of RDE on alveolar bone. PMID:27122061

  10. Stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height: A three-dimensional finite element analysis

    PubMed Central

    Singh, S. Vijay; Bhat, Manohar; Gupta, Saurabh; Sharma, Deepak; Satija, Harsha; Sharma, Sumeet

    2015-01-01

    Objective: A three-dimensional (3D) finite element analysis (FEA) on the stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height. Materials and Methods: The 3D model was fabricated using software to represent an endodontically treated mandibular second premolar with post and restored with a full ceramic crown restoration, which was then analyzed using FEA using FEA ANSYS Workbench V13.0 (ANSYS Inc., Canonsburg, Pennsylvania, U.S.A) software. Results: The FEA showed the maximum stresses of 137.43 Mpa in dentin with alveolar bone height of 4 mm when the titanium post was used, 138.48 Mpa when carbon fiber post was used as compared to 105.91 Mpa in the model with alveolar bone height of 2 mm from the cement enamel junction (CEJ) when the titanium post was used and 107.37 Mpa when the carbon fiber post was used. Conclusions: Stress was observed more in alveolar bone height level of 4 mm from CEJ than 2 mm from CEJ. Stresses in the dentin were almost similar when the carbon fiber post was compared to titanium post. However, stresses in the post and the cement were much higher when titanium post was used as compared to carbon fiber post. PMID:26430375

  11. Aesthetic recovery of alveolar atrophy following autogenous onlay bone grafting using interconnected porous hydroxyapatite ceramics (IP-CHA) and resorbable poly-L-lactic/polyglycolic acid screws: case report

    PubMed Central

    2014-01-01

    Background Onlay bone grafting techniques have some problems related to the limited volume of autogenous grafted bone and need for surgery to remove bone fixing screws. Here, we report a case of horizontal alveolar ridge atrophy following resection of a maxillary bone cyst, in which autogenous onlay bone grafting with interconnected porous hydroxyapatite ceramics (IP-CHA) and bioresorbable poly-L-lactic/polyglycolic acid (PLLA-PGA) screws was utilized. Case presentation A 51-year-old man had aesthetic complications related to alveolar atrophy following maxillary bone cyst extraction. We performed onlay grafting for aesthetic alveolar bone recovery using IP-CHA to provide adequate horizontal bone volume and PLLA-PGA screws for bone fixing to avoid later damage to host bone during surgical removal. During the operation, an autogenous cortical bone block was collected from the ramus mandibular and fixed to the alveolar ridge with PLLA-PGA screws, then the gap between the bone block and recipient bone was filled with a granular type of IP-CHA. Post-surgery orthopantomograph and CT scan findings showed no abnormal resorption of the grafted bone, and increased radiopacity, which indicated new bone formation in the area implanted with IP-CHA. Conclusion Our results show that IP-CHA and resorbable PLLA-PGA screws are useful materials for autogenous onlay bone grafting. PMID:24889647

  12. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats.

    PubMed

    van der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A; Esbrit, Pedro; Weinans, Harrie

    2015-05-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous titanium is improved with a coating of osteostatin, an osteoinductive peptide that consists of the 107-111 domain of the parathyroid hormone (PTH)-related protein (PTHrP), and the effects of this osteostatin coating on bone regeneration were evaluated in vitro and in vivo. SLM-produced porous titanium received an alkali-acid-heat treatment and was coated with osteostatin through soaking in a 100 nM solution for 24 h or left uncoated. Osteostatin-coated scaffolds contained ∼0.1 μg peptide/g titanium, and in vitro 81% was released within 24 h. Human periosteum-derived osteoprogenitor cells cultured on osteostatin-coated scaffolds did not induce significant changes in osteogenic (alkaline phosphatase [ALP], collagen type 1 [Col1], osteocalcin [OCN], runt-related transcription factor 2 [Runx2]), or angiogenic (vascular endothelial growth factor [VEGF]) gene expression; however, it resulted in an upregulation of osteoprotegerin (OPG) gene expression after 24 h and a lower receptor activator of nuclear factor kappa-B ligand (RankL):OPG mRNA ratio. In vivo, osteostatin-coated, porous titanium implants increased bone regeneration in critical-sized cortical bone defects (p=0.005). Bone regeneration proceeded until 12 weeks, and femurs grafted with osteostatin-coated implants and uncoated implants recovered, respectively, 66% and 53% of the original femur torque strength (97±31 and 77±53 N·mm, not significant). In conclusion, the osteostatin coating improved bone regeneration of porous titanium. This effect was initiated after a short burst release and might be related to the observed in vitro upregulation of OPG gene expression by osteostatin in osteoprogenitor

  13. Bone mineral density, bone mineral content, gingival crevicular fluid (matrix metalloproteinases, cathepsin K, osteocalcin), and salivary and serum osteocalcin levels in human mandible and alveolar bone under conditions of simulated microgravity.

    PubMed

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    2010-09-01

    In astronauts and cosmonauts, exposure to microgravity has been associated with several physiological changes, including an osteoporosis like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in space flights. There has been no study of the effects of mandibular bone and alveolar bone loss in both sexes under conditions of simulated microgravity. This study was designed to investigate bone mineral density; bone mineral content; matrix metalloproteinase (MMP)-8, MMP-9, cathepsin K, and osteocalcin levels in gingival crevicular fluid (GCF); and salivary and serum osteocalcin levels in normal healthy men and women under conditions of simulated microgravity, namely, -6° head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers who were exposed to 3 weeks of -6° HDT bed rest. Dual-energy X-ray absorptiometry was used to measure bone density and bone mineral content in alveolar bone from the mandibular canine to the third molar, as well as in the mandibular ramus, before, during, and after exposure to conditions of simulated microgravity. GCF (ie, MMP-8, MMP-9, cathepsin K, and osteocalcin) and salivary and serum osteocalcin levels were measured by enzyme-linked immunosorbent assays. Bone mineral density and bone mineral content were significantly lower under conditions of simulated microgravity in both sexes. The decreases were greater in women than in men, but the differences between sexes were not significant. Cathepsin, osteocalcin, MMP-8, and MMP-9 levels were significantly higher under conditions of simulated microgravity than under normal conditions; the increases were greater in women than in men, but the differences were not significant. Additional, more comprehensive, studies with larger sample sizes are now necessary for the investigation of simulated microgravity and microgravity. PMID:20881330

  14. Micro-CT Analysis of Bone Healing in Rabbit Calvarial Critical-Sized Defects with Solid Bioactive Glass, Tricalcium Phosphate Granules or Autogenous Bone

    PubMed Central

    Karhula, Sakari S.; Haapea, Marianne; Kauppinen, Sami; Finnilä, Mikko; Saarakkala, Simo; Serlo, Willy; Sándor, George K.

    2016-01-01

    ABSTRACT Objectives The purpose of the present study was to evaluate bone healing in rabbit critical-sized calvarial defects using two different synthetic scaffold materials, solid biodegradable bioactive glass and tricalcium phosphate granules alongside solid and particulated autogenous bone grafts. Material and Methods Bilateral full thickness critical-sized calvarial defects were created in 15 New Zealand white adult male rabbits. Ten defects were filled with solid scaffolds made of bioactive glass or with porous tricalcium phosphate granules. The healing of the biomaterial-filled defects was compared at the 6 week time point to the healing of autologous bone grafted defects filled with a solid cranial bone block in 5 defects and with particulated bone combined with fibrin glue in 10 defects. In 5 animals one defect was left unfilled as a negative control. Micro-computed tomography (micro-CT) was used to analyze healing of the defects. Results Micro-CT analysis revealed that defects filled with tricalcium phosphate granules showed new bone formation in the order of 3.89 (SD 1.17)% whereas defects treated with solid bioactive glass scaffolds showed 0.21 (SD 0.16)%, new bone formation. In the empty negative control defects there was an average new bone formation of 21.8 (SD 23.7)%. Conclusions According to findings in this study, tricalcium phosphate granules have osteogenic potential superior to bioactive glass, though both particulated bone with fibrin glue and solid bone block were superior defect filling materials. PMID:27489608

  15. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow.

    PubMed

    Dong, Yifei; Arif, Arif A; Poon, Grace F T; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline

    2016-01-01

    Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function. PMID:27404290

  16. Runx2 Overexpression in Bone Marrow Stromal Cells Accelerates Bone Formation in Critical-Sized Femoral Defects

    PubMed Central

    Wojtowicz, Abigail M.; Templeman, Kellie L.; Hutmacher, Dietmar W.; Guldberg, Robert E.

    2010-01-01

    The repair of large nonunions in long bones remains a significant clinical problem due to high failure rates and limited tissue availability for auto- and allografts. Many cell-based strategies for healing bone defects deliver bone marrow stromal cells (BMSCs) to the defect site to take advantage of the inherent osteogenic capacity of this cell type. However, many factors, including donor age and ex vivo expansion of the cells, cause BMSCs to lose their differentiation ability. To overcome these limitations, we have genetically engineered BMSCs to constitutively overexpress the osteoblast-specific transcription factor Runx2. In the present study, we examined Runx2-modified BMSCs, delivered via polycaprolactone scaffolds loaded with type I collagen meshes, in critical-sized segmental defects in rats compared to unmodified cells, cell-free scaffolds, and empty defects. Runx2 expression in BMSCs accelerated healing of critical-sized defects compared to unmodified BMSCs and defects receiving cell-free treatments. These findings provide an accelerated method for healing large bone defects, which may reduce recovery time and the need for external fixation of critical-sized defects. PMID:20412027

  17. Runx2 overexpression in bone marrow stromal cells accelerates bone formation in critical-sized femoral defects.

    PubMed

    Wojtowicz, Abigail M; Templeman, Kellie L; Hutmacher, Dietmar W; Guldberg, Robert E; García, Andrés J

    2010-09-01

    The repair of large nonunions in long bones remains a significant clinical problem due to high failure rates and limited tissue availability for auto- and allografts. Many cell-based strategies for healing bone defects deliver bone marrow stromal cells (BMSCs) to the defect site to take advantage of the inherent osteogenic capacity of this cell type. However, many factors, including donor age and ex vivo expansion of the cells, cause BMSCs to lose their differentiation ability. To overcome these limitations, we have genetically engineered BMSCs to constitutively overexpress the osteoblast-specific transcription factor Runx2. In the present study, we examined Runx2-modified BMSCs, delivered via polycaprolactone scaffolds loaded with type I collagen meshes, in critical-sized segmental defects in rats compared to unmodified cells, cell-free scaffolds, and empty defects. Runx2 expression in BMSCs accelerated healing of critical-sized defects compared to unmodified BMSCs and defects receiving cell-free treatments. These findings provide an accelerated method for healing large bone defects, which may reduce recovery time and the need for external fixation of critical-sized defects. PMID:20412027

  18. Total Knee Arthroplasty for Post-Traumatic Proximal Tibial Bone Defect: Three Cases Report

    PubMed Central

    Tigani, D; Dallari, D; Coppola, C; Ben Ayad, R; Sabbioni, G; Fosco, M

    2011-01-01

    Bone stock deficiency in primary as well as in revision total knee arthroplasty (TKA) represents a difficult problem to surgeon with regard to maintaining proper alignment of the implant components and in establishing a stable bone-implant interface. Different surgical procedures are available in these situations, for instances the use of bone cement, prosthetic augments, custom implant, and wire mesh with morsellized bone grafting and structural bone allograft. Structural allograft offers a numerous advantages as easy remodeling and felling cavitary or segmental defects, excellent biocompatibility, bone stock restoration and potential for ligamentous reattachment. In this article we report a short term result of three cases affected by severe segmental medial post/traumatic tibial plateau defect in arthritic knee, for which massive structural allograft reconstruction and primary total knee replacement were carried. The heights of the bone defect were between 27-33 mm and with moderate medio-lateral knee instability. Pre-operative AKS score in three cases was 30, 34 and 51 points consecutively and improved at the last follow-up to 83, 78 and 85 consecutively. No acute or chronic complication was observed. Last radiological exam referred no signs of prosthetic loosening, no secondary resorption of bone graft and well integrated graft to host bone. These results achieved in our similar three cases have confirmed that the structural bone allograft is a successful biological material to restore hemi-condylar segmental tibial bone defect when total knee replacement is indicated. PMID:21584202

  19. From bench to clinic and back: skeletal stem cells and impaction bone grafting for regeneration of bone defects.

    PubMed

    Aarvold, A; Smith, J O; Tayton, E R; Jones, A M H; Dawson, J I; Lanham, S; Briscoe, A; Dunlop, D G; Oreffo, R O C

    2014-10-01

    Tissue engineering offers enormous potential for bone regeneration. Despite extensive in vitro and in vivo work, few strategies translate into clinical practice. This paper describes the combination of skeletal stem cells (SSCs) and impaction bone grafting (IBG) for the treatment of patients with bone defects associated with avascular necrosis of the femoral head. SSCs and milled allograft were impacted into necrotic bone in the femoral heads of four patients. Three patients remained asymptomatic at 22-44 month follow-up, but one patient has required total hip replacement (both hips). This has allowed retrieval of the femoral heads, which were analysed structurally and functionally by μCT, histology and mechanical testing. A central channel of impacted bone was found in the femoral heads, which displayed a mature trabecular micro-architecture. The impacted bone was denser than the surrounding trabecular bone, as strong in compression and with histological micro-architecture comparable to that of trabecular bone. Analysis of the retrieved femoral head samples has demonstrated that this tissue-engineering strategy regenerates bone that is both structurally and functionally analogous to normal trabecular bone. SSCs, together with IBG, have proved an effective treatment for avascular necrosis of the femoral head and offer significant potential for the broader spectrum of bone defects. PMID:23038218

  20. Support Immersion Endoscopy in Post-Extraction Alveolar Bone Chambers: A New Window for Microscopic Bone Imaging In Vivo

    PubMed Central

    Engelke, Wilfried; Lazzarini, Marcio; Stühmer, Walter; Beltrán, Víctor

    2015-01-01

    Using an endoscopic approach, small intraoral bone chambers, which are routinely obtained during tooth extraction and implantation, provide visual in vivo access to internal bone structures. The aim of the present paper is to present a new method to quantify bone microstructure and vascularisation in vivo. Ten extraction sockets and 6 implant sites in 14 patients (6 men / 8 women) were examined by support immersion endoscopy (SIE). After tooth extraction or implant site preparation, microscopic bone analysis (MBA) was performed using short distance SIE video sequences of representative bone areas for off-line analysis with ImageJ. Quantitative assessment of the microstructure and vascularisation of the bone in dental extraction and implant sites in vivo was performed using ImageJ. MBA revealed bone morphology details such as unmineralised and mineralised areas, vascular canals and the presence of bleeding through vascular canals. Morphometric examination revealed that there was more unmineralised bone and less vascular canal area in the implant sites than in the extraction sockets. PMID:26713617

  1. Diamond squid (Thysanoteuthis rhombus)-derived chondroitin sulfate stimulates bone healing within a rat calvarial defect.

    PubMed

    Hosaka, Yoshinao Z; Iwai, Yuji; Tamura, Jun-ichi; Uehara, Masato

    2013-12-01

    Chondroitin sulfate (CS) has been suggested to be involved in bone formation and mineralization processes. A previous study showed that squid-derived CS (sqCS) has osteoblastogenesis ability in cooperation with bone morphogenetic protein (BMP)-4 in vitro. However, in vivo, osteogenic potential has not been verified. In this study, we created a critical-sized bone defect in the rat calvaria and implanted sqCS-loaded gelatin hydrogel sponges (Gel) into the defect with or without BMP-4 (CS/BMP/Gel and CS/Gel, respectively). At 15 weeks, bone repair rate of CS/Gel-treated defects and CS/BMP/Gel-treated defects were 47.2% and 51.1%, respectively, whereas empty defects and defects with untreated sponges showed significantly less bone ingrowth. The intensity of von Kossa staining of the regenerated bone was less than that of the original one. Mineral apposition rates at 9 to 10 weeks were not significantly different between all treatment groups. Although bone repair was not completed, sqCS stimulated bone regeneration without BMP-4 and without external mesenchymal cells or preosteoblasts. Therefore, sqCS is a promising substance for promotion of osteogenesis. PMID:24335526

  2. Cause and significance of cold bone defects on indium-111-labeled leukocyte imaging

    SciTech Connect

    Datz, F.L.; Thorne, D.A.

    1987-05-01

    Although photon deficient defects on bone scan have received a great deal of interest, such defects in bones on Indium-111 (/sup 111/In) leukocyte imaging have not been as well recognized. We therefore undertook a retrospective review to determine the frequency and significance of such cold defects on /sup 111/In-labeled leukocyte imaging. Three hundred thirty-two scans on 290 patients were reviewed and 40 cases of decreased activity involving bone were found, for an incidence of 12%. The causes of the defects were: fracture (eight), nontraumatic avascular necrosis (eight), solid tumor (six), prostheses and other orthopedic hardware (four), advanced age (four), radiation (three), leukemia (two), osteomyelitis (two), myelofibrosis (one), postlaminectomy (one), and idiopathic (one). To determine the frequency of cold defects in osteomyelitis, all 15 cases of osteomyelitis in this series were reviewed and 12 showed increased activity, two were cold, and one was normoactive. Thus, 14% of cases of osteomyelitis presented as cold defects. We conclude that cold bone defects do occur on /sup 111/In-labeled leukocyte scans and that the causes of such defects are similar to those reported for bone and bone marrow scanning.

  3. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies.

    PubMed

    Gomes, P S; Fernandes, M H

    2011-01-01

    In vivo research with animal models has been a preferred experimental system in bone-related biomedical research since, by approximation, it allows relevant data gathering regarding physiological and pathological conditions that could be of use to establish more effective clinical interventions. Animal models, and more specifically rodent models, have been extensively used and have contributed greatly to the development and establishment of a wide range of translational approaches aiming to regenerate the bone tissue. In this regard, the calvarial defect model has found great application in basic and applied research, nonetheless the controversial rationalization for the use of critical size defects - defects that are unable to report spontaneous healing - or subcritical size defects in the proposed applications. Accordingly, this work aims to review the advantages and limitations of the use of rodent models in biomedical bone-related research, emphasizing the problematic issues of the use of calvarial critical and subcritical size defects. Additionally, surgical protocols for the establishment of both defects in rat calvarial bone, as well as the description and exemplification of the most frequently used techniques to access the bone tissue repair, are portrayed. PMID:21156759

  4. A novel surgical technique for transverse sternal bone defects using flexible intramedullary nailing.

    PubMed

    Böcker, W; Euler, E; Schieker, M; Kettler, M; Mutschler, W

    2006-12-01

    Transverse sternal bone defects as a result of surgery or trauma remain an important clinical condition with serious sequelae. Patients sometimes complain of local pain during movement and breathing. Usually, defects are filled with prosthetic materials which remain permanently IN SITU. Small defects can be treated with autogenous bone grafts, whereas large defects are difficult to stabilize with common osteosynthetic techniques. Here, we report a new surgical technique using flexible intramedullary nailing ("Elastic Stable Intramedullary Nailing"--ESIN or "Embrochage Centro-Medullaire Elastique Stable"--ECMES) to stabilize a sternal defect after surgical removal of an osteochondral lesion. The defect was bridged by two elastic titanium nails and an autogenous corticocancellous bone graft. This new surgical technique showed a good clinical and functional outcome. PMID:17151979

  5. Increased bone formation in a rabbit long-bone defect model after single local and single systemic application of erythropoietin.

    PubMed

    Omlor, Georg W; Kleinschmidt, Kerstin; Gantz, Simone; Speicher, Anja; Guehring, Thorsten; Richter, Wiltrud

    2016-08-01

    Background and purpose - Delayed bone healing with non-union is a common problem. Further options to increase bone healing together with surgery are needed. We therefore evaluated a 1-dose single application of erythropoietin (EPO), applied either locally to the defect or systemically during surgery, in a critical-size rabbit long-bone defect. Material and methods - 19 New Zealand White rabbits received a 15-mm defect in the radius diaphysis. An absorbable gelatin sponge was soaked with saline (control group and systemic treatment group) or EPO (local treatment group) and implanted into the gap. The systemic treatment group received EPO subcutaneously. In vivo micro-CT analysis was performed 4, 8, and 12 weeks postoperatively. Vascularization was evaluated histologically. Results - Semiquantitative histomorphometric and radiological evaluation showed increased bone formation (2.3- to 2.5-fold) in both treatment groups after 12 weeks compared to the controls. Quantitative determination of bone volume and tissue volume showed superior bone healing after EPO treatment at all follow-up time points, with the highest values after 12 weeks in locally treated animals (3.0- to 3.4-fold). More vascularization was found in both EPO treatment groups. Interpretation - Initial single dosing with EPO was sufficient to increase bone healing substantially after 12 weeks of follow-up. Local application inside the defect was most effective, and it can be administered directly during surgery. Apart from effects on ossification, systemic and local EPO treatment leads to increased callus vascularization. PMID:27348783

  6. [Comparison between gene therapy and gradual release carrier for bone morphogenetic protein-2 in repairing bone defects].

    PubMed

    Li, Jianjun; Bai, Lunhao; Cui, Shaoqian; Wang, Huan; Xu, Xinxiang

    2007-06-01

    To compare the effects between gene therapy and gradual release carrier for bone morphogenetic protein-2 (BMP-2) in repairing bone defects, bone defects for 15 mm were created.on the bilateral radius in rabbits and treated with four kinds of implantations, ie, composite of transgeneic MSCs and PLA/PCL (Group A), composite of MSCs and gradual release carrier for BMP-2 (Group B), composite of MSCs and PLA/PCL (Group C), and PLA/PCL alone (Group D). After 4, 8, and 12 weeks of the operations, X-ray, histological examination, biomechanics analysis, and bone density measurement were conducted. Results showed that both osteoblasts and mesenchymal cells displayed strongly positive expression of BMP-2 in Group A after 4 weeks of the operation, the speed and quality of bone formation in Group A were much better than those in Group B. After 12 weeks of the operations, bone defects were completely repaired in Group A. BMP-2 gene therapy is really a good method to repair segmental bone defects. PMID:17713285

  7. Use of platelet rich fibrin in a fenestration defect around an implant

    PubMed Central

    Vijayalakshmi, R.; Rajmohan, C. S.; Deepalakshmi, D.; Sivakami, G.

    2012-01-01

    Guided bone regeneration (GBR) in implant therapy is especially useful for implant placement with dehiscence defects or fenestration defects. In alveolar ridges with marked facial/buccal depressions or in knifeedge alveolar crests, the position and direction of fixture placement is restricted. Improvement of alveolar ridge morphology becomes possible with GBR. This article describes a case in which the fenestration defect around an implant was treated by the application of platelet rich fibrin, a second generation platelet concentrate along with bone graft, and guided tissue regeneration membrane. PMID:22628974

  8. Use of platelet rich fibrin in a fenestration defect around an implant.

    PubMed

    Vijayalakshmi, R; Rajmohan, C S; Deepalakshmi, D; Sivakami, G

    2012-01-01

    Guided bone regeneration (GBR) in implant therapy is especially useful for implant placement with dehiscence defects or fenestration defects. In alveolar ridges with marked facial/buccal depressions or in knifeedge alveolar crests, the position and direction of fixture placement is restricted. Improvement of alveolar ridge morphology becomes possible with GBR. This article describes a case in which the fenestration defect around an implant was treated by the application of platelet rich fibrin, a second generation platelet concentrate along with bone graft, and guided tissue regeneration membrane. PMID:22628974

  9. A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects.

    PubMed

    Diab, Tamim; Pritchard, Eleanor M; Uhrig, Brent A; Boerckel, Joel D; Kaplan, David L; Guldberg, Robert E

    2012-07-01

    The use of tissue grafting for the repair of large bone defects has numerous limitations including donor site morbidity and the risk of disease transmission. These limitations have prompted research efforts to investigate the effects of combining biomaterial scaffolds with biochemical cues to augment bone repair. The goal of this study was to use a critically-sized rat femoral segmental defect model to investigate the efficacy of a delivery system consisting of an electrospun polycaprolactone (PCL) nanofiber mesh tube with a silk fibroin hydrogel for local recombinant bone morphogenetic protein 2 (BMP-2) delivery. Bilateral 8 mm segmental femoral defects were formed in 13-week-old Sprague Dawley rats. Perforated electrospun PCL nanofiber mesh tubes were fitted into the adjacent native bone such that the lumen of the tubes contained the defect (Kolambkar et al., 2011b). Silk hydrogels with or without BMP-2 were injected into the defect. Bone regeneration was longitudinally assessed using 2D X-ray radiography and 3D microcomputed topography (μCT). Following sacrifice at 12 weeks after surgery, the extracted femurs were either subjected to biomechanical testing or assigned for histology. The results demonstrated that silk was an effective carrier for BMP-2. Compared to the delivery system without BMP-2, the delivery system that contained BMP-2 resulted in more bone formation (p<0.05) at 4, 8, 12 weeks after surgery. Biomechanical properties were also significantly improved in the presence of BMP-2 (p<0.05) and were comparable to age-matched intact femurs. Histological evaluation of the defect region indicated that the silk hydrogel has been completely degraded by the end of the study. Based on these results, we conclude that a BMP-2 delivery system consisting of an electrospun PCL nanofiber mesh tube with a silk hydrogel presents an effective strategy for functional repair of large bone defects. PMID:22658161

  10. Radially and axially graded multizonal bone graft substitutes targeting critical-sized bone defects from polycaprolactone/hydroxyapatite/tricalcium phosphate.

    PubMed

    Ergun, Asli; Yu, Xiaojun; Valdevit, Antonio; Ritter, Arthur; Kalyon, Dilhan M

    2012-12-01

    Repair and regeneration of critical sized defects via the utilization of polymeric bone graft substitutes are challenges. Here, we introduce radially and axially graded multizonal bone graft substitutes fabricated from polycaprolactone (PCL), and PCL biocomposites with osteoconductive particles, that is, hydroxyapatite (HA), and β-tricalcium phosphate (TCP). The novel bone graft substitutes should provide a greater degree of freedom to the orthopedic surgeon especially for repair of critically sized bone defects. The modulus of the graft substitute could be tailored in the axial direction upon the systematic variation of the HA/TCP concentration, while in the radial direction the bone graft substitute consisted of an outer layer with high stiffness, encapsulating a softer core with greater porosity. The biocompatibility of the bone graft substitutes was investigated using in vitro culturing of human bone marrow-derived stromal cells followed by the analysis of cell proliferation and differentiation rates. The characterization of the tissue constructs included the enzymatic alkaline phosphates (ALP) activity, microcomputed tomography imaging, and polymerase chain reaction analysis involving the expressions of bone markers, that is, Runx2, ALP, collagen type I, osteopontin, and osteocalcin, overall demonstrating the differentiation of bone marrow derived stem cells (BMSCs) via osteogenic lineage and formation of mineralized bone tissue. PMID:22764839

  11. Radially and Axially Graded Multizonal Bone Graft Substitutes Targeting Critical-Sized Bone Defects from Polycaprolactone/Hydroxyapatite/Tricalcium Phosphate

    PubMed Central

    Ergun, Asli; Yu, Xiaojun; Valdevit, Antonio; Ritter, Arthur

    2012-01-01

    Repair and regeneration of critical sized defects via the utilization of polymeric bone graft substitutes are challenges. Here, we introduce radially and axially graded multizonal bone graft substitutes fabricated from polycaprolactone (PCL), and PCL biocomposites with osteoconductive particles, that is, hydroxyapatite (HA), and β-tricalcium phosphate (TCP). The novel bone graft substitutes should provide a greater degree of freedom to the orthopedic surgeon especially for repair of critically sized bone defects. The modulus of the graft substitute could be tailored in the axial direction upon the systematic variation of the HA/TCP concentration, while in the radial direction the bone graft substitute consisted of an outer layer with high stiffness, encapsulating a softer core with greater porosity. The biocompatibility of the bone graft substitutes was investigated using in vitro culturing of human bone marrow-derived stromal cells followed by the analysis of cell proliferation and differentiation rates. The characterization of the tissue constructs included the enzymatic alkaline phosphates (ALP) activity, microcomputed tomography imaging, and polymerase chain reaction analysis involving the expressions of bone markers, that is, Runx2, ALP, collagen type I, osteopontin, and osteocalcin, overall demonstrating the differentiation of bone marrow derived stem cells (BMSCs) via osteogenic lineage and formation of mineralized bone tissue. PMID:22764839

  12. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects.

    PubMed

    García, José R; Clark, Amy Y; García, Andrés J

    2016-04-01

    Vascularization of bone defects is considered a crucial component to the successful regeneration of large bone defects. Although vascular endothelial growth factor (VEGF) has been delivered to critical-size bone defect models to augment blood vessel infiltration into the defect area, its potential to increase bone repair remains ambiguous. In this study, we investigated whether integrin-specific biomaterials modulate the effects of VEGF on bone regeneration. We engineered protease-degradable, VEGF-loaded poly(ethylene glycol) (PEG) hydrogels functionalized with either a triple-helical, α2 β1 integrin-specific peptide GGYGGGP(GPP)5 GFOGER(GPP)5 GPC (GFOGER) or an αv β3 integrin-targeting peptide GRGDSPC (RGD). Covalent incorporation of VEGF into the PEG hydrogel allowed for protease degradation-dependent release of the protein while maintaining VEGF bioactivity. When applied to critical-size segmental defects in the murine radius, GFOGER-functionalized VEGF-free hydrogels exhibited significantly increased vascular volume and density and resulted in a larger number of thicker blood vessels compared to RGD-functionalized VEGF-free hydrogels. VEGF-loaded RGD hydrogels increased vascularization compared to VEGF-free RGD hydrogels, but the levels of vascularization for these VEGF-containing RGD hydrogels were similar to those of VEGF-free GFOGER hydrogels. VEGF transiently increased bone regeneration in RGD hydrogels but had no effect at later time points. In GFOGER hydrogels, VEGF did not show an effect on bone regeneration. However, VEGF-free GFOGER hydrogels resulted in increased bone regeneration compared to VEGF-free RGD hydrogels. These findings demonstrate the importance of integrin-specificity in engineering constructs for vascularization and associated bone regeneration. PMID:26662727

  13. Comparison of the Human Bone Matrix Gelatin (HBMG) with Autogenous Bone Graft in Reconstruction of the Parietal Bone Defects in Rat: A Histological and Radiographic Study

    PubMed Central

    Shahoon, Hossein; Azimi, Hamid Reza; Kianbakht, Camellia

    2009-01-01

    Background and aims Autogenous bone graft is commonly used for reconstruction of bone defects in routine surgical procedures. The complexity of producing bone grafts and their application has lead to the use of human bone matrix gelatin (HBMG). The present study was conducted to compare the efficacy of HBMG and autograft on the reconstruction of bone defects in rats. Materials and methods In this cross-sectional, experimental study, two defects were put on left and right sides of parietal bone of rats. HBMG was placed randomly on defects of one side and autograft in the defects of the other side. All specimens were assessed and compared with each other according to histological and radiographic characteristics. Other assessments included amount and the rate of bone formation, inflammation signs, fibrosis tissue and cartilage formation and also radio-graphic characteristics of grafts, assessed by digital and film-based methods. Mann-Whitney U test was used for statistical analysis. Results The results showed a reduction of inflammation and an increase in new bone formation in both groups in 7, 14, 28 and 60 days after surgery. Bone formation with HBMG on day 24 was more than autograft. However, there was no sig-nificant difference between the groups on day 60. Superiority of digital method to film-based method of imaging was also observed. Conclusion Although HBMG has the same efficacy as autograft, the rate of bone reconstruction with HBMG is higher. HBMG also induces focal, rather than peripheral, bone construction in the defect. PMID:23230480

  14. [Experimental study of pBMP/MPTCP in bone defects therapy].

    PubMed

    Yi, W H; Lu, C; Zhou, J N

    2001-06-28

    To develop a new substitute of bone graft, which is composed of porcine bone morphogenetic protein (pBMP) and the magnetic porous tricalcium phosphate (MPTCP), we investigated the effects of pBMP/MPTCP (Group A), autologous red bone marrow/porus tricalcium phosphate (BM/PTCP) (Group B), pBMP/PTCP(Group C) on the repair of bone defects created surgically in rabbits. By gross inspection, roentgenography examination, histological examination, immunohistochemistry test of osteocalcim, quantitive histological measurement of new bone formation and biomechanical test, three kinds of substitutes were proved to be biocompatible. Group A induced more new bone formation than other two groups, and showed a better biomechanical function(P < 0.01). It is believed that pBMP/MPTCP has characteristics of strong osteoinductive capacity, good biocompatibility, excellent filling of bone defects and gradual biodegradation. PMID:12536687

  15. Induced membrane technique for the treatment of bone defects due to post-traumatic osteomyelitis

    PubMed Central

    Wang, X.; Luo, F.; Huang, K.

    2016-01-01

    Objectives Induced membrane technique is a relatively new technique in the reconstruction of large bone defects. It involves the implantation of polymethylmethacrylate (PMMA) cement in the bone defects to induce the formation of membranes after radical debridement and reconstruction of bone defects using an autologous cancellous bone graft in a span of four to eight weeks. The purpose of this study was to explore the clinical outcomes of the induced membrane technique for the treatment of post-traumatic osteomyelitis in 32 patients. Methods A total of 32 cases of post-traumatic osteomyelitis were admitted to our department between August 2011 and October 2012. This retrospective study included 22 men and ten women, with a mean age of 40 years (19 to 70). Within this group there were 20 tibias and 12 femurs with a mean defect of 5 cm (1.5 to 12.5). Antibiotic-loaded PMMA cement was inserted into the defects after radical debridement. After approximately eight weeks, the defects were implanted with bone graft. Results The patients were followed for 27.5 months (24 to 32). Radiographic bone union occurred at six months for 26 cases (81%) and clinical healing occurred in 29 cases (90%) at ten months. A total of six cases had a second debridement before bone grafting because of recurrence of infection and one patient required a third debridement. No cases of osteomyelitis had recurred at the time of the last follow-up visit. Conclusion The induced membrane technique for the treatment of post-traumatic osteomyelitis is a simple, reliable method, with good early results. However, there are many challenges in determining the scope of the debridement, type of limb fixation and source of bone graft to be used. Cite this article: Dr Z. Xie. Induced membrane technique for the treatment of bone defects due to post-traumatic osteomyelitis. Bone Joint Res 2016;5:101–105. DOI: 10.1302/2046-3758.53.2000487. PMID:27033845

  16. Bone Regeneration in Iliac Crestal Defects: An Experimental Study on Sheep

    PubMed Central

    Lorusso, Felice; Ravera, Lorenzo; Mortellaro, Carmen; Piattelli, Adriano

    2016-01-01

    Background. Oral rehabilitation of partially fully edentulous patients with dental implants has become a routine procedure in clinical practice. In a site with a lack of bone GBR is a surgical procedure that provides an augmentation in terms of volume for the insertion of dental implants. Materials and Methods. In the iliac crest of six sheep 4 defects were created where an implant was inserted, three of them with different biomaterials and a control site. All animals were sacrificed after a 4-month healing period. All specimens were processed and analyzed with histomorphometry. Statistical evaluation was done to evaluate percentage of bone defect filled by new bone. Results. All experimental groups showed an increase of the new bone. Higher and highly statistically significant differences were found in the percentages of bone defect filled by new bone in group filled with corticocancellous 250–1000 microns particulate porcine bone mix. Conclusions. This study demonstrates that particulate porcine bone mix and porcine corticocancellous collagenate prehydrated bone mix when used as scaffold are able to induce bone regeneration. Moreover, these data suggest that these biomaterials have higher biocompatibility and are capable of inducing faster and greater bone formation. PMID:27413746

  17. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair.

    PubMed

    Wojtowicz, Abigail M; Shekaran, Asha; Oest, Megan E; Dupont, Kenneth M; Templeman, Kellie L; Hutmacher, Dietmar W; Guldberg, Robert E; García, Andrés J

    2010-03-01

    Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in critically-sized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the alpha(2)beta(1) integrin receptor involved in osteogenesis. GFOGER coatings passively adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost-effective and facile approach, translatable into a robust clinical therapy for musculoskeletal applications. PMID:20056517

  18. Coating of Biomaterial Scaffolds with the Collagen-Mimetic Peptide GFOGER for Bone Defect Repair

    PubMed Central

    Wojtowicz, Abigail M.; Shekaran, Asha; Oest, Megan E.; Dupont, Kenneth M.; Templeman, Kellie L.; Hutmacher, Dietmar W.; Guldberg, Robert E.; García, Andrés J.

    2009-01-01

    Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto- and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in critically-sized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the α2β1 integrin receptor involved in osteogenesis. GFOGER coatings passively-adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost effective and facile approach translatable into a robust clinical therapy for musculoskeletal applications. PMID:20056517

  19. Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect.

    PubMed

    Leu, Ann; Stieger, Susanne M; Dayton, Paul; Ferrara, Katherine W; Leach, J Kent

    2009-04-01

    Localized radiation is an effective treatment modality for carcinomas, yet the associated reduction of the host vasculature significantly inhibits the tissue's regenerative capacity. Low concentrations of bioactive glass (BG) possess angiogenic potential, and we hypothesized that localized BG presentation would increase neovascularization and promote healing in an irradiated bone defect. An isolated calvarial region of Sprague-Dawley rats was irradiated 2 weeks before surgery. Bilateral critical-sized defects were created and immediately filled with a BG-loaded collagen sponge or an empty sponge as an internal control. Histological analysis of calvaria collected after 2 weeks demonstrated greater neovascularization within the defect in the presence of BG than with collagen alone. Noninvasive ultrasound imaging at 4 weeks detected less contrast agent in the brain below BG-treated defects than in the nearby untreated defects and images of treated defects acquired at 2 weeks. The reduced ability to detect contrast agent in BG-treated defects suggested greater attenuation of ultrasound signal due to early bone formation. Micro-computed tomography imaging at 12 weeks demonstrated significantly greater bone volume fraction within BG-treated defects than in controls. These results suggest that neovascularization induced by localized BG delivery promotes bone regeneration in this highly compromised model of bone healing and may offer an alternative approach to costly growth factors and their potential side-effects. PMID:18795867

  20. Reconstruction of large tibial bone defects following osteosarcoma resection using bone transport distraction: A report of two cases

    PubMed Central

    Yang, Zhengming; Jin, Libin; Tao, Huimin; Yang, Disheng

    2016-01-01

    The clinical efficiency of bone transport distraction osteogenesis in the reconstruction of large tibial defects following resection of osteosarcoma remains unclear. The current study presents two cases of large tibial defects treated with bone transport distraction using an Orthofix external fixator. Case 1 was a 29-year-old man with a tibial defect 11 cm in length, while case 2 was a 16-year-old girl with a 15-cm-long defect. Bone transport distraction osteogenesis was initiated for the both cases on day 14 following resection of the tibial osteosarcoma. Bone transport distraction in case 1 and 2 was continued for 16 and 28 months, respectively, and the patients were followed up for 51 and 56 months, respectively. The two patients did not exhibit any signs of tumor recurrence or tumor metastasis during the follow-up period. The Musculoskeletal Tumor Society functional scores at final follow-up visits were 22 and 18 for case 1 and 2, respectively. Based on the experience gained in these 2 cases, a bone transport is a viable option for the reconstruction of large tibial defects following osteosarcoma resection.

  1. The repair of segmental bone defects with porous bioglass: an experimental study in goat.

    PubMed

    Nandi, Samit K; Kundu, Biswanath; Datta, Someswar; De, Dipak K; Basu, Debabrata

    2009-02-01

    This study was exclusively conducted to evaluate healing of surgically created defects on the radius of adult Black Bengal goat after implantation of porous bioglass blocks and compare the process kinetics with normal healing. Twelve Black Bengal goats were divided randomly into two groups: control and experimental group implanted with bioglass blocks. Unicortical bone defects in radius were generated in all animals under aseptic condition. Local inflammatory reaction and healing of wound, radiological investigations, histological studies, oxytetracycline leveling and angiographic studies were performed up to 90th day post-operatively and compared with normal healing. It has been found that extensive new bone formation originating from host bone towards the implant whereas in control, the process was active from both the ends; the defect site appeared as homogenous nonfluorescent area. Thus, porous bioglass promoted bone formation over the entire extension of the defect independent of size of block in comparison to control group. PMID:18602125

  2. Effects of implantation of three-dimensional engineered bone tissue with a vascular-like structure on repair of bone defects

    NASA Astrophysics Data System (ADS)

    Nishi, Masanori; Matsumoto, Rena; Dong, Jian; Uemura, Toshimasa

    2012-12-01

    Previously, to create an implantable bone tissue associated with blood vessels, we co-cultured rabbit bone marrow mesenchymal stem cells (MSCs) with MSC-derived endothelial cells (ECs) within a porous polylactic acid-based scaffold utilizing a rotating wall vessel (RWV) bioreactor. Here, this engineered tissue was orthotopically implanted into defects made in femurs of immunodeficient rats, and histological analysis were carried out to examine the repair of the damage and the formation of bone around the implant. The bone defects were better repaired in the implanted group than control group after 3 weeks. The results indicate that the engineered bone could repair bone defects.

  3. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence

    PubMed Central

    2012-01-01

    Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Although there are several methods for bone reconstruction, they all have specific indications and limitations. The concept of using barrier membranes for restoration of bone defects has been developed in an effort to simplify their treatment by offering a sinlge-staged procedure. Research on this field of bone regeneration is ongoing, with evidence being mainly attained from preclinical studies. The purpose of this review is to summarize the current experimental and clinical evidence on the use of barrier membranes for restoration of bone defects in maxillofacial and orthopedic surgery. Although there are a few promising preliminary human studies, before clinical applications can be recommended, future research should aim to establish the 'ideal' barrier membrane and delineate the need for additional bone grafting materials aiming to 'mimic' or even accelerate the normal process of bone formation. Reproducible results and long-term observations with barrier membranes in animal studies, and particularly in large animal models, are required as well as well-designed clinical studies to evaluate their safety, efficacy and cost-effectiveness. PMID:22834465

  4. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects.

    PubMed

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan

    2015-09-01

    Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. PMID:26011163

  5. A perfusion bioreactor system efficiently generates cell‐loaded bone substitute materials for addressing critical size bone defects

    PubMed Central

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne‐Wistrand, Anna; Walles, Heike

    2015-01-01

    Abstract Critical size bone defects and non‐union fractions are still challenging to treat. Cell‐loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor‐made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L‐lactide‐co‐caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. PMID:26011163

  6. Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model

    PubMed Central

    Lee, Jae Yeon; Son, Soo Jin; Son, Jun Sik; Kang, Seong Soo; Choi, Seok Hwa

    2016-01-01

    Bone defects are repaired using either natural or synthetic bone grafts. Poly(ϵ-caprolactone) (PCL), β-tricalcium phosphate (TCP), and poly(lactic-co-glycolic acid) (PLGA) are widely used as synthetic materials for tissue engineering. This study aimed to investigate the bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects and the oxidative stress status of the graft site in a rabbit model. The in vivo performance of 48 healthy New Zealand White rabbits, weighing between 2.5 and 3.5 kg, was evaluated. The rabbits were assigned to the following groups: group 1 (control), group 2 (PCL/PLGA hybrid scaffolds), group 3 (PCL/PLGA/TCP hybrid scaffolds), and group 4 (PCL/PLGA/DB hybrid scaffolds). A 5 mm critical defect was induced in the diaphysis of the left radius. X-ray, micro-CT, and histological analyses were conducted at (time 0) 4, 8, and 12 weeks after implantation. Furthermore, bone formation markers (bone-specific alkaline phosphatase, carboxyterminal propeptide of type I procollagen, and osteocalcin) were measured and oxidative stress status was determined. X-ray, micro-CT, biochemistry, and histological analyses revealed that the PCL/PLGA/duck beak scaffold promotes new bone formation in rabbit radius by inducing repair, suggesting that it could be a good option for the treatment of fracture. PMID:27042660

  7. Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model.

    PubMed

    Lee, Jae Yeon; Son, Soo Jin; Son, Jun Sik; Kang, Seong Soo; Choi, Seok Hwa

    2016-01-01

    Bone defects are repaired using either natural or synthetic bone grafts. Poly(ϵ-caprolactone) (PCL), β-tricalcium phosphate (TCP), and poly(lactic-co-glycolic acid) (PLGA) are widely used as synthetic materials for tissue engineering. This study aimed to investigate the bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects and the oxidative stress status of the graft site in a rabbit model. The in vivo performance of 48 healthy New Zealand White rabbits, weighing between 2.5 and 3.5 kg, was evaluated. The rabbits were assigned to the following groups: group 1 (control), group 2 (PCL/PLGA hybrid scaffolds), group 3 (PCL/PLGA/TCP hybrid scaffolds), and group 4 (PCL/PLGA/DB hybrid scaffolds). A 5 mm critical defect was induced in the diaphysis of the left radius. X-ray, micro-CT, and histological analyses were conducted at (time 0) 4, 8, and 12 weeks after implantation. Furthermore, bone formation markers (bone-specific alkaline phosphatase, carboxyterminal propeptide of type I procollagen, and osteocalcin) were measured and oxidative stress status was determined. X-ray, micro-CT, biochemistry, and histological analyses revealed that the PCL/PLGA/duck beak scaffold promotes new bone formation in rabbit radius by inducing repair, suggesting that it could be a good option for the treatment of fracture. PMID:27042660

  8. Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone.

    PubMed

    Zacchetti, Giovanna; Dayer, Romain; Rizzoli, René; Ammann, Patrick

    2014-01-01

    Rapid bone defect filling with normal bone is a challenge in orthopaedics and dentistry. Strontium ranelate (SrRan) has been shown to in vitro decrease bone resorption and increase bone formation, and represents a potential agent with the capacity to accelerate bone defect filling. In this study, bone tibial defects of 2.5 mm in diameter were created in 6-month-old female rats orally fed SrRan (625 mg/kg/d; 5/7 days) or vehicle for 4, 8, or 12 weeks (10 rats per group per time point) from the time of surgery. Tibias were removed. Micro-architecture was determined by micro-computed tomography (µCT) and material level properties by nanoindentation analysis. µCT analysis showed that SrRan administration significantly improved microarchitecture of trabecular bone growing into the defect after 8 and 12 weeks of treatment compared to vehicle. SrRan treatment also accelerated the growth of cortical bone over the defect, but with different kinetics compared to trabecular bone, as the effects were already significant after 4 weeks. Nanoindentation analysis demonstrated that SrRan treatment significantly increased material level properties of both trabecular bone and cortical bone filling the defect compared to vehicle. SrRan accelerates the filling of bone defect by improving cortical and trabecular bone microarchitecture both quantitatively and qualitatively. PMID:25243150

  9. The reaction of the dura to bone morphogenetic protein (BMP) in repair of skull defects.

    PubMed Central

    Takagi, K; Urist, M R

    1982-01-01

    Trephine defects in the adult rat skull 0.8 cm in diameter, which do not spontaneously heal, were filled with a bovine bone morphogenetic protein (BMP) fraction. The defects healed not only by bony ingrowth from the trephine rim, but also by proliferation of pervascular mesenchymal-type cells (pericytes) of the dura mater. Under the influence of BMP, dural pericytes differentiated into chondroid and woven bone. Between three and four weeks postimplantation, sinusoids formed and the woven bone remodelled into lamellar bone. Concurrently, blood-borne bone marrow cells colonized the bone deposits, and the diploe were restored. Demonstrating that it is soluble in interstitial fluid, and diffusible across a nucleopore membrane (which isolated the bony margins of the skull), BMP induced new bone formation in the underlying dura and complete repair of the defect. The response of the dura to the BMP fraction produced more new bone than the response to allogeneic bone matrix. The BMP-induced repair was dose dependent; the quantity of new bone was proportional to the dose of the implanted BMP. Images Fig. 1a. Fig. 1b. Fig. 1c. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 8. Fig. 9. PMID:7092346

  10. Cell sheet-engineered bones used for the reconstruction of mandibular defects in an animal model

    PubMed Central

    DU, CHUNHUA; YAO, CHAO; LI, NINGYI; WANG, SHUANGYI; FENG, YUANYONG; YANG, XUECAI

    2015-01-01

    The aim of the present study was to investigate the generation of cell sheet-engineered bones used for the reconstruction of mandibular defects. Bone marrow stem cells (BMSCs) were cultured and induced to generate osteoblasts. Poly(lactic-co-glycolic acid) (PLGA) scaffolds were wrapped with or without cell sheets and then implanted into dogs with mandibular defects in the right side (experimental group) or the left side (control group), respectively. Subsequently, X-ray analyses, and hematoxylin and eosin staining were performed at various time points (at 4, 8, 12 or 16 weeks post-implantation; n=4 at each time point). The osteogenesis in the experimental group was significantly improved compared with that in the control group. At 16 weeks after implantation, numerous Haversian systems and a few lamellar bones were observed at the periphery. In the control group, the engineered bone (without BMSC sheets) presented fewer Haversian systems and no lamellar bones. The optical density of the fresh bone in the experimental group was significantly higher compared with that in the control group (P<0.05). In conclusion, tissue-engineered bone with the structure of lamellar bones can be generated using BMSC sheets and implantation of these bones had an improved effects compared with the control group. Cell sheet transplantation was found to enhance bone formation at the reconstruction site of the mandibular defects. PMID:26668619

  11. Different bone regeneration patterns in periimplant circumferential gap defects grafted with two types of osteoconductive biomaterial.

    PubMed

    Lee, Jung-Seok; Sohn, Joo-Yeon; Lim, Hyun-Chang; Jung, Ui-Won; Choi, Seong-Ho

    2016-08-01

    This study aimed to determine healing patterns in periimplant gap defect grafted with demineralized bovine bone mineral (DBBM) and porous titanium granules (PTG), which are known to induce a minimal tissue reaction and to undergo minimal biodegradation in healing process. Experiments were performed using a standardized periimplant gap-defect model in dogs with two observational periods: 4 and 8 weeks. Circumferential defects were surgically induced around dental implants on unilateral mandibles in five dogs, and collagen barrier membranes were placed over the DBBM and PTG grafts at two experimental sites and over a nongrafted site. Four weeks later, the same procedures were performed on the contralateral mandible, and the animals allowed to heal for a further 4 weeks, after which they were sacrificed and their mandibles with graft/control sites harvested for histologic evaluation. Both types of grafted biomaterials significantly enhanced the defect fill with newly formed bone, but the bone-to-implant contact (BIC) was significantly increased only at sites that had been grafted with DBBM. The two experimental sites exhibited different healing patterns, with new bone formation being observed on the surface of the DBBM particles throughout the defect, while there was no de novo bone formation on the PTG surface, but rather appositional bone growth from the base and lateral walls of the defect. It has been suggested that gap-defect filling with DBBM around dental implants may enhance both BIC and defect fill; however, the present findings show that defect grafting with PTG enhances only defect fill and not BIC. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1202-1209, 2016. PMID:26087247

  12. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes.

    PubMed

    van Leeuwen, A C; Huddleston Slater, J J R; Gielkens, P F M; de Jong, J R; Grijpma, D W; Bos, R R M

    2012-04-01

    The present study evaluates a new synthetic degradable barrier membrane based on poly(trimethylene carbonate) (PTMC) for use in guided bone regeneration. A collagen membrane and an expanded polytetrafluoroethylene (e-PTFE) membrane served as reference materials. In 192 male Sprague-Dawley rats, a standardized 5.0mm circular defect was created in the left mandibular angle. New bone formation was demonstrated by post mortem micro-radiography, micro-computed tomography imaging and histological analysis. Four groups (control, PTMC, collagen, e-PTFE) were evaluated at three time intervals (2, 4 and 12 weeks). In the membrane groups the defects were covered; in the control group the defects were left uncovered. Data were analysed using a multiple regression model. In contrast to uncovered mandibular defects, substantial bone healing was observed in defects covered with a barrier membrane. In the latter case, the formation of bone was progressive over 12 weeks. No statistically significant differences between the amount of new bone formed under the PTMC membranes and the amount of bone formed under the collagen and e-PTFE membranes were observed. Therefore, it can be concluded that PTMC membranes are well suited for use in guided bone regeneration. PMID:22186161

  13. A novel intramedullary callus distraction system for the treatment of femoral bone defects.

    PubMed

    Horas, Konstantin; Schnettler, Reinhard; Maier, Gerrit; Horas, Uwe

    2016-08-01

    An intramedullary device has some advantages over external fixation in callus distraction for bone defect reconstruction. There are difficulties controlling motorized intramedullary devices and monitoring the distraction rate which may lead to poor results. The aim of this study was to design a fully implantable and non-motorized simple distraction nail for the treatment of bone defects. The fully implantable device comprises a tube-in-tube system and a wire pulling mechanism for callus distraction. For the treatment of femoral bone defects, a traction wire, attached to the device at one end, is fixed to the tibial tubercle at its other end. Flexion of the knee joint over a predetermined angle generates a traction force on the wire triggering bone segment transport. This callus distraction system was implanted into the femur of four human cadavers (total 8 femora), and bone segment transport was conducted over 60-mm defects with radiographic monitoring. All bone segments were transported reliably to the docking site. From these preliminary results, we conclude that this callus distraction system offers an alternative to the current intramedullary systems for the treatment of bone defects. PMID:27221258

  14. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket

    PubMed Central

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  15. Effects of Er-Zhi-Wan on microarchitecture and regulation of Wnt/β-catenin signaling pathway in alveolar bone of ovariectomized rats.

    PubMed

    Sun, Wei; Wang, Yuan-qin; Yan, Qi; Lu, Rui; Shi, Bin

    2014-02-01

    Recent studies have shown that Er-Zhi-Wan (EZW), a traditional Chinese medicine consisting of Herba Ecliptae (HE) and Fructus Ligustri Lucidi (FLL), had a definite antiosteoporotic effect on osteoporotic femur, but its effect on osteoporosis of alveolar bone remains unknown. In the present study, we investigated the effects of Er-Zhi-Wan (EZW) on the microarchitecture and the regulation of Wnt/β-catenin signaling pathway in the alveolar bone of ovariectomized rats. Thirty Sprague-Dawley rats were randomly divided into three groups: sham operation group (sham, n=10), ovariectomy (OVX) group (n=10), and OVX with EZW treatment group (EZW group, n=10). From one week after ovariectomy, EZW (100 mg/mL) or vehicle (distilled water) was fed (1 mL/100 g) once per day for 12 weeks until the sacrifice of the rats. The body weights were measured weekly. After sacrifice, the sera and mandible were collected and routinely prepared for the measurement of alveolar trabecular microarchitecture, serum levels of E2, bone-specific alkaline phosphatase (BALP) and tartrate-resistant acid phosphatase 5b (TRAP5b), as well as mandibular mRNA expression of Wnt/β-catenin signaling pathway molecules wnt3a, low-density lipoprotein receptor-related protein 5 (LRP5), β-catenin and dickkopf homolog 1 (DKK1). The results showed that EZW treatment significantly prevented the body weight gain, degradation of alveolar trabecular microarchitecture and alveolar bone loss in the OVX rats. Furthermore, we observed that EZW could increase the serum levels of E2 and BALP, and decrease levels of serum TRAP5b in EZW group compared with vehicle group. In addition, RT-PCR results revealed that EZW upregulated the expression levels of wnt3a, LRP5 and β-catenin, and reduced the expression of DKK1 in OVX rats. Taken together, our results suggested that EZW may have potential anti-osteoporotic effects on osteoporotic alveolar bone by stimulating Wnt/LRP5/β-catenin signaling pathway. PMID:24496689

  16. Potential Link between the Sphingosine-1-Phosphate (S1P) System and Defective Alveolar Macrophage Phagocytic Function in Chronic Obstructive Pulmonary Disease (COPD)

    PubMed Central

    Barnawi, Jameel; Tran, Hai; Jersmann, Hubertus; Pitson, Stuart; Roscioli, Eugene; Hodge, Greg; Meech, Robyn; Haberberger, Rainer; Hodge, Sandra

    2015-01-01

    Introduction We previously reported that alveolar macrophages from patients with chronic obstructive pulmonary disease (COPD) are defective in their ability to phagocytose apoptotic cells, with a similar defect in response to cigarette smoke. The exact mechanisms for this defect are unknown. Sphingolipids including ceramide, sphingosine and sphingosine-1-phosphate (S1P) are involved in diverse cellular processes and we hypothesised that a comprehensive analysis of this system in alveolar macrophages in COPD may help to delineate the reasons for defective phagocytic function. Methods We compared mRNA expression of sphingosine kinases (SPHK1/2), S1P receptors (S1PR1-5) and S1P-degrading enzymes (SGPP1, SGPP2, SGPL1) in bronchoalveolar lavage-derived alveolar macrophages from 10 healthy controls, 7 healthy smokers and 20 COPD patients (10 current- and 10 ex-smokers) using Real-Time PCR. Phagocytosis of apoptotic cells was investigated using flow cytometry. Functional associations were assessed between sphingosine signalling system components and alveolar macrophage phagocytic ability in COPD. To elucidate functional effects of increased S1PR5 on macrophage phagocytic ability, we performed the phagocytosis assay in the presence of varying concentrations of suramin, an antagonist of S1PR3 and S1PR5. The effects of cigarette smoking on the S1P system were investigated using a THP-1 macrophage cell line model. Results We found significant increases in SPHK1/2 (3.4- and 2.1-fold increases respectively), S1PR2 and 5 (4.3- and 14.6-fold increases respectively), and SGPL1 (4.5-fold increase) in COPD vs. controls. S1PR5 and SGPL1 expression was unaffected by smoking status, suggesting a COPD “disease effect” rather than smoke effect per se. Significant associations were noted between S1PR5 and both lung function and phagocytosis. Cigarette smoke extract significantly increased mRNA expression of SPHK1, SPHK2, S1PR2 and S1PR5 by THP-1 macrophages, confirming the results in

  17. Oral Rehabilitation of Adult Edentulous Siblings Severely Lacking Alveolar Bone Due to Ectodermal Dysplasia: A Report of 2 Clinical Cases and a Literature Review.

    PubMed

    Wu, Yiqun; Zhang, Chenping; Squarize, Cristiane H; Zou, Duohong

    2015-09-01

    The oral conditions of adult edentulous patients with ectodermal dysplasia (ED) often lead to decreased physical and psychological health, and the negative effects can become as extreme as social and psychological isolation. However, restoring oral function of adult edentulous patients with ED using zygomatic implants (ZIs) or conventional implants (CIs) remains challenging for dentists because of the severe atrophy of these patients' alveolar ridges. This report describes 2 cases of adult edentulous siblings with ED; they exhibited severe alveolar bone atrophy and were treated with ZIs and CIs as bases to augment the bone in their anterior jaws. For these patients, bone augmentation was completed with an autogenous fibular graft. Although there was mild evidence of bone graft resorption in the maxilla, the bone augmentation procedures were successful in the 2 patients. Effective osseointegration of the implants was obtained. After placement, the functional and esthetic results of the oral rehabilitation were acceptable. More importantly, restoration of the patients' oral function enhanced their self-confidence and self-esteem. Therefore, restoring oral function in adult patients with ED and edentulous jaws using ZIs and CIs as the bases for bone augmentation is an effective approach. PMID:25957874

  18. Is alveolar cleft reconstruction still controversial? (Review of literature)

    PubMed Central

    Seifeldin, Sameh A.

    2015-01-01

    Cleft lip and palate (CL/P) is a frequent congenital malformation that manifests in several varieties including unilateral or bilateral and complete or incomplete. Alveolar cleft reconstruction remains controversial with regard to timing, graft materials, surgical techniques, and methods of evaluation. Many studies have been conducted addressing these points to develop an acceptable universal protocol for managing CL/P. The primary goal of alveolar cleft reconstruction in CL/P patients is to provide a bony bridge at the cleft site that allows maxillary arch continuity, oronasal fistula repair, eruption of the permanent dentition into the newly formed bone, enhances nasal symmetry through providing alar base support, orthodontic movement and placement of osseointegrated implants when indicated. Other goals include improving speech, improvement of periodontal conditions, establishing better oral hygiene, and limiting growth disturbances. In order to rehabilitate oral function in CL/P patients alveolar bone grafting is necessary. Secondary bone grafting is the most widely accepted method for treating alveolar clefts. Autogenous bone graft is the primary source for reconstructing alveolar cleft defects and is currently the preferred grafting material. PMID:26792963

  19. Discontinuous release of bone morphogenetic protein-2 loaded within interconnected pores of honeycomb-like polycaprolactone scaffold promotes bone healing in a large bone defect of rabbit ulna.

    PubMed

    Bae, Ji-Hoon; Song, Hae-Ryong; Kim, Hak-Jun; Lim, Hong-Chul; Park, Jung-Ho; Liu, Yuchun; Teoh, Swee-Hin

    2011-10-01

    The choice of an appropriate carrier and its microarchitectural design is integral in directing bone ingrowth into the defect site and determining its subsequent rate of bone formation and remodeling. We have selected a three-dimensional polycaprolactone (PCL) scaffold with an interconnected honeycomb-like porous structure to provide a conduit for vasculature ingrowth as well as an osteoconductive pathway to guide recruited cells responding to a unique triphasic release of osteoinductive bone morphogenetic proteins (BMP) from these PCL scaffolds. We hypothesize that the use of recombinant human bone morphogenetic protein 2 (rhBMP2)-PCL constructs promotes rapid union and bone regeneration of a large defect. Results of our pilot study on a unilateral 15 mm mid-diaphyseal segmental rabbit ulna defect demonstrated enhanced bone healing with greater amount of bone formation and bridging under plain radiography and microcomputed tomography imaging when compared with an empty PCL and untreated group after 8 weeks postimplantation. Quantitative measurements showed significantly higher bone volume fraction and trabecular thickness, with lower trabecular separation in the rhBMP2-treated groups. Histology evaluation also revealed greater mature bone formation spanning across the entire scaffold region compared with other groups, which showed no bone regeneration within the central defect zone. We highlight that it is the uniqueness of the scaffold having a highly porous network of channels that promoted vascular integration and allowed for cellular infiltration, leading to a discontinuous triphasic BMP2 release profile that mimicked the release profile during natural repair mechanisms in vivo. This study serves as preclinical evidence demonstrating the potential of combining osteoinductive rhBMP2 with our PCL constructs for the repair of large defects in a large animal model. PMID:21682591

  20. Preoperative implant planning considering alveolar bone grafting needs and complication prediction using panoramic versus CBCT images

    PubMed Central

    Guerrero, Maria Eugenia; Noriega, Jorge

    2014-01-01

    Purpose This study was performed to determine the efficacy of observers' prediction for the need of bone grafting and presence of perioperative complications on the basis of cone-beam computed tomography (CBCT) and panoramic radiographic (PAN) planning as compared to the surgical outcome. Materials and Methods One hundred and eight partially edentulous patients with a need for implant rehabilitation were referred for preoperative imaging. Imaging consisted of PAN and CBCT images. Four observers carried out implant planning using PAN image datasets, and at least one month later, using CBCT image datasets. Based on their own planning, the observers assessed the need for bone graft augmentation as well as complication prediction. The implant length and diameter, the need for bone graft augmentation, and the occurrence of anatomical complications during planning and implant placement were statistically compared. Results In the 108 patients, 365 implants were installed. Receiver operating characteristic analyses of both PAN and CBCT preoperative planning showed that CBCT performed better than PAN-based planning with respect to the need for bone graft augmentation and perioperative complications. The sensitivity and the specificity of CBCT for implant complications were 96.5% and 90.5%, respectively, and for bone graft augmentation, they were 95.2% and 96.3%, respectively. Significant differences were found between PAN-based planning and the surgery of posterior implant lengths. Conclusion Our findings indicated that CBCT-based preoperative implant planning enabled treatment planning with a higher degree of prediction and agreement as compared to the surgical standard. In PAN-based surgery, the prediction of implant length was poor. PMID:25279342

  1. Supplementation of broccoli or Bifidobacterium longum-fermented broccoli suppresses serum lipid peroxidation and osteoclast differentiation on alveolar bone surface in rats fed a high-cholesterol diet.

    PubMed

    Tomofuji, Takaaki; Ekuni, Daisuke; Azuma, Tetsuji; Irie, Koichiro; Endo, Yasumasa; Yamamoto, Tatsuo; Ishikado, Atsushi; Sato, Takehiko; Harada, Kayo; Suido, Hirohisa; Morita, Manabu

    2012-04-01

    High-cholesterol diet enhances osteoclastic activity on alveolar bone by increasing serum lipid peroxidation. We hypothesized that supplementation with dietary antioxidants, such as found in broccoli and its fermented products, might suppress increases in serum lipid peroxidation, contributing to the inhibition of osteoclastic activity after high-cholesterol diet intake. The purpose of the present study was to investigate the effects of broccoli and fermented broccoli consumption on serum lipid peroxidation and osteoclast differentiation in alveolar bone of rats fed a high-cholesterol diet. In this 12-week study, rats were divided into 4 groups (n = 6/group): a control group (fed regular diet) and 3 experimental groups (fed a high-cholesterol [1% wt/wt] diet, or a high-cholesterol diet supplemented with either broccoli powder [5% wt/wt] or Bifidobacterium longum-fermented broccoli powder [5% wt/wt]). Serum hexanoyl-lysine (HEL) levels were measured as a parameter of lipid peroxidation. The number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in alveolar bone was enumerated to evaluate osteoclast differentiation. When compared with regular diet, the high-cholesterol diet increased serum HEL levels and resulted in a higher number of TRAP-positive osteoclasts at 12 weeks. The high-cholesterol diet supplemented with broccoli or B. longum-fermented broccoli showed lower levels of serum HEL and fewer TRAP-positive osteoclasts than the high-cholesterol diet at 12 weeks. In conclusion, consumption of broccoli, or its fermented product, inhibited the effects of a high-cholesterol diet on osteoclast differentiation in rat alveolar bone by suppressing serum lipid peroxidation. PMID:22575044

  2. Bone scaffolds loaded with siRNA-Semaphorin4d for the treatment of osteoporosis related bone defects

    PubMed Central

    Zhang, Yufeng; Wei, Lingfei; Miron, Richard J.; Shi, Bin; Bian, Zhuan

    2016-01-01

    Osteoporosis is a prominent disorder affecting over 200 million people worldwide. Recently, semaphorins have been implicated in the cell-cell communication between osteoclasts and osteoblasts and have been associated with the progression of osteoporosis. Previously, we demonstrated that knockdown of semaphorin4d (Sema4d) using siRNA delivered with a bone-targeting system prevented bone loss in an osteoporotic animal model. Here, we used this bone-specific technology containing siRNA-Sema4d and fabricated a PLLA scaffold capable of enhancing bone repair following fracture. We investigated the ability of the implant to release siRNA-Sema4d into the surrounding tissues over time and to influence new bone formation in a 3 mm femur osteoporotic defect model in ovariectomized rats. Delivery of the bone-targeting system released from PLLA scaffolds began 2 hours post-implantation, peaked at 1 day, and was sustained over a 21 day period. μCT analysis demonstrated a significantly higher bone volume/total volume bone mineral density and number of osteoblasts in the rats that were transplanted with scaffolds loaded with siRNA-Sema4d. These results confirm the specific role of Sema4d in bone remodeling and demonstrate that significant increases in the speed and quality of new bone formation occur when siRNA-Sema4d is delivered via a PLLA scaffold. PMID:27254469

  3. Bone scaffolds loaded with siRNA-Semaphorin4d for the treatment of osteoporosis related bone defects.

    PubMed

    Zhang, Yufeng; Wei, Lingfei; Miron, Richard J; Shi, Bin; Bian, Zhuan

    2016-01-01

    Osteoporosis is a prominent disorder affecting over 200 million people worldwide. Recently, semaphorins have been implicated in the cell-cell communication between osteoclasts and osteoblasts and have been associated with the progression of osteoporosis. Previously, we demonstrated that knockdown of semaphorin4d (Sema4d) using siRNA delivered with a bone-targeting system prevented bone loss in an osteoporotic animal model. Here, we used this bone-specific technology containing siRNA-Sema4d and fabricated a PLLA scaffold capable of enhancing bone repair following fracture. We investigated the ability of the implant to release siRNA-Sema4d into the surrounding tissues over time and to influence new bone formation in a 3 mm femur osteoporotic defect model in ovariectomized rats. Delivery of the bone-targeting system released from PLLA scaffolds began 2 hours post-implantation, peaked at 1 day, and was sustained over a 21 day period. μCT analysis demonstrated a significantly higher bone volume/total volume bone mineral density and number of osteoblasts in the rats that were transplanted with scaffolds loaded with siRNA-Sema4d. These results confirm the specific role of Sema4d in bone remodeling and demonstrate that significant increases in the speed and quality of new bone formation occur when siRNA-Sema4d is delivered via a PLLA scaffold. PMID:27254469

  4. BMP2 Genetically Engineered MSCs and EPCs Promote Vascularized Bone Regeneration in Rat Critical-Sized Calvarial Bone Defects

    PubMed Central

    He, Xiaoning; Dziak, Rosemary; Yuan, Xue; Mao, Keya; Genco, Robert; Swihart, Mark; Sarkar, Debanjan; Li, Chunyi; Wang, Changdong; Lu, Li; Andreadis, Stelios; Yang, Shuying

    2013-01-01

    Current clinical therapies for critical-sized bone defects (CSBDs) remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs) is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A) scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bone regeneration. Here, we hypothesized that the combination of an injectable and porous nCS/A with bone morphogenetic protein 2 (BMP2) gene-modified MSCs and endothelial progenitor cells (EPCs) could significantly enhance vascularized bone regeneration. Our results demonstrated that delivery of MSCs and EPCs with the injectable nCS/A scaffold did not affect cell viability. Moreover, co-culture of BMP2 gene-modified MSCs and EPCs dramatically increased osteoblast differentiation of MSCs and endothelial differentiation of EPCs in vitro. We further tested the multifunctional bone reconstruction system consisting of an injectable and porous nCS/A scaffold (mimicking the nano-calcium matrix of bone) and BMP2 genetically-engineered MSCs and EPCs in a rat critical-sized (8 mm) caviarial bone defect model. Our in vivo results showed that, compared to the groups of nCS/A, nCS/A+MSCs, nCS/A+MSCs+EPCs and nCS/A+BMP2 gene-modified MSCs, the combination of BMP2 gene -modified MSCs and EPCs in nCS/A dramatically increased the new bone and vascular formation. These results demonstrated that EPCs increase new vascular growth, and that BMP2 gene modification for MSCs and EPCs dramatically promotes bone regeneration. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for CSBDs. PMID:23565253

  5. The effects of photobiomodulation on healing of bone defects in streptozotocin induced diabetic rats

    NASA Astrophysics Data System (ADS)

    Martinez Costa Lino, Maíra D.; Bastos de Carvalho, Fabíola; Ferreira Moraes, Michel; Augusto Cardoso, José; Pinheiro, Antônio L. B.; Maria Pedreira Ramalho, Luciana

    2011-03-01

    Previous studies have shown positive effects of Low level laser therapy (LLLT) on the repair of bone defects, but there are only a few that associates bone healing in the presence of a metabolic disorder as Diabetes Melitus and LLLT. The aim of this study was to assess histologically the effect of LLLT (AsGaAl), 780nm, 70mW, CW, Ø~0.4mm, 16J/cm2 per session) on the repair of surgical defects created in the femur of diabetic and non-diabetic Wistar Albinus rats. Surgical bone defects were created in 60 animals divided into four groups of 15 animals each: Group C (non-diabetic - control); Group CL (non-diabetic + LLLT); Group CD (diabetic); Group CDL (diabetic + LLLT). The animals on the irradiated group received 16 J/cm2 per session divided into four points around the defect, being the first irradiation immediately after surgery and repeated every 48h for 14 days. The animals were killed 15, 21 and 30 days after surgery. The results of the present investigation showed histological evidence of improved amount of collagen fibers at early stages of the bone healing (15 days) and increased amount of well organized bone trabeculae at the end of the experimental period (30 days) on irradiated animals, (diabetic and non-diabetic) compared to non irradiated ones. It is concluded that LLLT has a positive biomodulative effect on the healing process of bone defects, even when diabetes mellitus was present.

  6. Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis.

    PubMed

    Kün-Darbois, Jean-Daniel; Libouban, Hélène; Chappard, Daniel

    2015-08-01

    In man, botulinum toxin type A (BTX) is injected in masticatory muscles for several indications such as trismus, bruxism, or masseter hypertrophy. Bone changes in the mandible following BTX injections in adult animal have therefore became a subject of interest. The aim of this study was to analyze condylar and alveolar bone changes following BTX unilateral injections in masseter and temporal muscles in adult rats. Mature male rats (n = 15) were randomized into 2 groups: control (CTRL; n = 6) and BTX group (n= 9). Rats of the BTX group received a single injection of BTX into right masseter and temporal muscles. Rats of the CTRL group were similarly injected with saline solution. Rats were sacrificed 4 weeks after injections. Masticatory muscles examination and microcomputed tomography (microCT) were performed. A significant difference of weight was found between the 2 groups at weeks 2, 3 and 4 (p < 0.05). Atrophy of the right masseter and temporal muscles was observed in all BTX rats. MicroCT analysis showed significant bone loss in the right alveolar and condylar areas in BTX rats. Decrease in bone volume reached -20% for right alveolar bone and -35% for right condylar bone. A hypertrophic bone metaplasia at the digastric muscle enthesis was found on every right hemimandible in the BTX group and none in the CTRL group. BTX injection in masticatory muscles leads to a significant and major mandible bone loss. These alterations can represent a risk factor for fractures in human. The occurrence of a hypertrophic bone metaplasia at the Mus Digastricus enthesis may constitute an etiological factor for tori. PMID:25857689

  7. Impact of rapid maxillary expansion in unilateral cleft lip and palate patients after secondary alveolar bone grafting: review and case report.

    PubMed

    Yang, Chen-Jie; Pan, Xiao-Gang; Qian, Yu-Fen; Wang, Guo-Ming

    2012-07-01

    The purpose of this article was to analyze the effects and short-term stability of rapid maxillary expansion performed after secondary alveolar bone grafting in unilateral cleft lip and palate (UCLP) patients. Two UCLP patients with severe maxillary constriction who had previous bone grafting were involved in this study. A hyrax rapid expansion appliance was placed on 4 abutment teeth and activated twice daily. An opening of the midpalatal suture was found on the posttreatment occlusal radiographs, which was clinically confirmed by the diastema. Posteroanterior cephalometric tracing analysis demonstrated significant increases in maxillary and dental arch width. No obvious radiographic alteration was observed in the grafted areas. PMID:22732853

  8. Toll-Like Receptor 9-Mediated Inflammation Triggers Alveolar Bone Loss in Experimental Murine Periodontitis

    PubMed Central

    Kim, Paul D.; Xia-Juan, Xia; Crump, Katie E.; Abe, Toshiharu; Hajishengallis, George

    2015-01-01

    Chronic periodontitis is a local inflammatory disease induced by a dysbiotic microbiota and leading to destruction of the tooth-supporting structures. Microbial nucleic acids are abundantly present in the periodontium, derived through release after phagocytic uptake of microbes and/or from biofilm-associated extracellular DNA. Binding of microbial DNA to its cognate receptors, such as Toll-like receptor 9 (TLR9), can trigger inflammation. In this study, we utilized TLR9 knockout (TLR9−/−) mice and wild-type (WT) controls in a murine model of Porphyromonas gingivalis-induced periodontitis and report the first in vivo evidence that TLR9 signaling mediates the induction of periodontal bone loss. P. gingivalis-infected WT mice exhibited significantly increased bone loss compared to that in sham-infected WT mice or P. gingivalis-infected TLR9−/− mice, which were resistant to bone loss. Consistent with this, the expression levels of interleukin 6 (IL-6), tumor necrosis factor (TNF), and receptor-activator of nuclear factor kappa B ligand (RANKL) were significantly elevated in the gingival tissues of the infected WT mice but not in infected TLR9−/− mice compared to their levels in controls. Ex vivo studies using splenocytes and bone marrow-derived macrophages revealed significantly diminished cytokine production in TLR9−/− cells relative to the cytokine production in WT cells in response to P. gingivalis, thereby implicating TLR9 in inflammatory responses to this organism. Intriguingly, compared to the cytokine production in WT cells, TLR9−/− cells exhibited significantly decreased proinflammatory cytokine production upon challenge with lipopolysaccharide (LPS) (TLR4 agonist) or Pam3Cys (TLR2 agonist), suggesting possible cross talk between TLR9, TLR4, and TLR2. Collectively, our results provide the first proof-of-concept evidence implicating TLR9-triggered inflammation in periodontal disease pathogenesis, thereby identifying a new potential

  9. Toll-Like Receptor 9-Mediated Inflammation Triggers Alveolar Bone Loss in Experimental Murine Periodontitis.

    PubMed

    Kim, Paul D; Xia-Juan, Xia; Crump, Katie E; Abe, Toshiharu; Hajishengallis, George; Sahingur, Sinem E

    2015-07-01

    Chronic periodontitis is a local inflammatory disease induced by a dysbiotic microbiota and leading to destruction of the tooth-supporting structures. Microbial nucleic acids are abundantly present in the periodontium, derived through release after phagocytic uptake of microbes and/or from biofilm-associated extracellular DNA. Binding of microbial DNA to its cognate receptors, such as Toll-like receptor 9 (TLR9), can trigger inflammation. In this study, we utilized TLR9 knockout (TLR9(-/-)) mice and wild-type (WT) controls in a murine model of Porphyromonas gingivalis-induced periodontitis and report the first in vivo evidence that TLR9 signaling mediates the induction of periodontal bone loss. P. gingivalis-infected WT mice exhibited significantly increased bone loss compared to that in sham-infected WT mice or P. gingivalis-infected TLR9(-/-) mice, which were resistant to bone loss. Consistent with this, the expression levels of interleukin 6 (IL-6), tumor necrosis factor (TNF), and receptor-activator of nuclear factor kappa B ligand (RANKL) were significantly elevated in the gingival tissues of the infected WT mice but not in infected TLR9(-/-) mice compared to their levels in controls. Ex vivo studies using splenocytes and bone marrow-derived macrophages revealed significantly diminished cytokine production in TLR9(-/-) cells relative to the cytokine production in WT cells in response to P. gingivalis, thereby implicating TLR9 in inflammatory responses to this organism. Intriguingly, compared to the cytokine production in WT cells, TLR9(-/-) cells exhibited significantly decreased proinflammatory cytokine production upon challenge with lipopolysaccharide (LPS) (TLR4 agonist) or Pam3Cys (TLR2 agonist), suggesting possible cross talk between TLR9, TLR4, and TLR2. Collectively, our results provide the first proof-of-concept evidence implicating TLR9-triggered inflammation in periodontal disease pathogenesis, thereby identifying a new potential therapeutic target

  10. Ilizarov Method for Bone Lengthening and Defect Management Review of Contemporary Literature.

    PubMed

    Gubin, Alexander; Borzunov, Dmitry; Malkova, Tatiana

    2016-06-01

    Since its origination in the middle of the past century, the Ilizarov method has advanced greatly and has become a viable method for bone lengthening, severe deformity correc- tion, and defect management. As the reported studies show, it remains one of the most used tools for bone reconstruction. The original method and its modifications continue to be the topic of interest for orthopaedic scientists as evidenced by the number of clinical studies on the Ilizarov method that have been published in orthopaedic journals in the period from 2000 through 2014, most of which present the out- comes of treating large series of patients using distraction osteogenesis for bone lengthening, defect management, and deformity correction. We made a review of contemporary clinical studies on the Ilizarov method used for bone length- ening and defect management. PMID:27281320

  11. In vivo assessment of new resorbable PEG-PPG-PEG copolymer/starch bone wax in bone healing and tissue reaction of bone defect in rabbit model.

    PubMed

    Suwanprateeb, J; Kiertkrittikhoon, S; Kintarak, J; Suvannapruk, W; Thammarakcharoen, F; Rukskul, P

    2014-09-01

    In this study, in vivo performance of novel resorbable bone wax based on a miscible blend between PEG-PPG-PEG copolymer mixtures and pregelatinized starch at 0 and 25 percent by weight including hemostasis, tissue reaction and bone healing in a non-critical size tibia defect model were assessed and compared with commercial non-resorbable bone wax. Systemic reaction was evaluated by blood chemistry while local reaction, bone quantity and quality were evaluated by microcomputed tomography (microCT) and histology analyses. It was observed that the resorbable bone waxes did not show any adverse systemic reaction and resorbed from the defects within approximately 2 days after application. They were as effective as the commercial bone wax in hemostasis, but provided better adherence to the bone surface. The incorporation of pre-gelatinized starch in the formulation could further help in improved molding texture and decreased glove adherence. MicroCT and histology analyses showed that the resorbable bone waxes did not inhibit the osteogenesis whereas commercial bone wax impaired bone healing and displayed inflammation and foreign body reactions. PMID:24913421

  12. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects

    PubMed Central

    Lu, Haiping; Liu, Yi; Guo, Jing; Wu, Huiling; Wang, Jingxiao; Wu, Gang

    2016-01-01

    The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties. PMID:26950123

  13. Adipose derived stem cells for treatment of mandibular bone defects: An autologous study in dogs

    PubMed Central

    Haghighat, Abbas; Akhavan, Ali; Hashemi-Beni, Batool; Deihimi, Parviz; Yadegari, Afshin; Heidari, Fariba

    2011-01-01

    Background: The aim of this research was to evaluate the effect of adipose derived stem cells on bone repair in through and through mandibular bone defects of canine. Materials and Methods: In this prospective comparative study, adipose-derived stem cells were isolated from subcutaneous fat of lateral thoracic area of 4 dogs. The isolated cells were cultured and expanded through 3 passages. The undifferentiated stem cells were seeded in Collatamp and transferred into mandibular bone through-and-through defects. Similar defects on control group were filled with cell-free Collatamp. After 6 weeks, biopsies were taken and histomorphometric analysis was performed. The percentage of new bone formation was measured in each case. The data were subject to statistical analysis using the Wilcoxon test. Differences at P≤0.05 were considered significant. Results: H and E staining of decalcified samples revealed more bone formation in the group, which stem cells were seeded. Cell-free collatamp group revealed an average bone regeneration of %41±13.21, while adipose derived stem cell-seeded collatamp group showed %49±8.24. Conclusion: The use of stem cell seeded collatamp scaffold in mandibular defects caused more bone regeneration. PMID:23372596

  14. Oxidative Nanopatterning of Titanium Surface Influences mRNA and MicroRNA Expression in Human Alveolar Bone Osteoblastic Cells

    PubMed Central

    Wimmers Ferreira, Maidy Rehder; Rodrigo Fernandes, Roger; Freire Assis, Amanda; Dernowsek, Janaína A.; Passos, Geraldo A.; Variola, Fabio; Fittipaldi Bombonato-Prado, Karina

    2016-01-01

    Titanium implants have been extensively used in orthopedic and dental applications. It is well known that micro- and nanoscale surface features of biomaterials affect cellular events that control implant-host tissue interactions. To improve our understanding of how multiscale surface features affect cell behavior, we used microarrays to evaluate the transcriptional profile of osteoblastic cells from human alveolar bone cultured on engineered titanium surfaces, exhibiting the following topographies: nanotexture (N), nano+submicrotexture (NS), and rough microtexture (MR), obtained by modulating experimental parameters (temperature and solution composition) of a simple yet efficient chemical treatment with a H2SO4/H2O2 solution. Biochemical assays showed that cell culture proliferation augmented after 10 days, and cell viability increased gradually over 14 days. Among the treated surfaces, we observed an increase of alkaline phosphatase activity as a function of the surface texture, with higher activity shown by cells adhering onto nanotextured surfaces. Nevertheless, the rough microtexture group showed higher amounts of calcium than nanotextured group. Microarray data showed differential expression of 716 mRNAs and 32 microRNAs with functions associated with osteogenesis. Results suggest that oxidative nanopatterning of titanium surfaces induces changes in the metabolism of osteoblastic cells and contribute to the explanation of the mechanisms that control cell responses to micro- and nanoengineered surfaces. PMID:27200092

  15. Focused low-intensity pulsed ultrasound enhances bone regeneration in rat calvarial bone defect through enhancement of cell proliferation.

    PubMed

    Jung, Yu Jin; Kim, Ran; Ham, Hyun-Joo; Park, Sang In; Lee, Min Young; Kim, Jongmin; Hwang, Jihwan; Park, Moon-Seo; Yoo, Seung-Schik; Maeng, Lee-So; Chang, Woochul; Chung, Yong-An

    2015-04-01

    A number of studies have reported the therapeutic potential of low-intensity pulsed ultrasound (LIPUS) for induction of bone repair. This study investigated whether bone regeneration might be enhanced by application of focused LIPUS to selectively stimulate fractured calvarial bone. To accomplish this, bone defects were surgically created in the middle of the skull of rats that were subsequently exposed to focused LIPUS. Bone regeneration was assessed by repeated computed tomography imaging after the operation, as well as histologic analysis with calcein, hematoxylin and eosin and proliferating cell nuclear antigen assay. At 6 wk after surgery, bone formation in the focused LIPUS-treated group improved significantly relative to the control. Interestingly, new bone tissue sprouted from focused LIPUS target points. Histologic analysis after exposure to focused LIPUS revealed that proliferating cells were significantly increased relative to the control. Taken together, these results suggest that focused LIPUS can improve re-ossification through enhancement of cell proliferation in calvarial defect sites. PMID:25701528

  16. Allogeneic adipose-derived stem cells regenerate bone in a critical-sized ulna segmental defect.

    PubMed

    Wen, Congji; Yan, Hai; Fu, Shibo; Qian, Yunliang; Wang, Danru; Wang, Chen

    2016-07-01

    Adipose-derived stem cells (ASCs) with multilineage potential can be induced into osteoblasts, adipocytes and chondrocytes. ASCs as seed cell are widely used in the field of tissue engineering, but most studies either use autologous cells as the source or an immunodeficient animal as the host. In our present study, we explored the feasibility of applying allogeneic ASCs and demineralized bone matrix (DBM) scaffolds for repairing tubular bone defects without using immunosuppressive therapy. Allogeneic ASCs were expanded and seeded on DBM scaffolds and induced to differentiate along the osteogenic lineage. Eight Sprague-Dawley (SD) rats were used in this study and bilateral critical-sized defects (8 mm) of the ulna were created and divided into two groups: with ASC-DBM constructs or DBM alone. The systemic immune response and the extent of bone healing were evaluated post-operatively. Twenty-four weeks after implantation, digital radiography (DR) testing showed that new bones had formed in the experimental group. By contrast, no bone tissue formation was observed in the control group. This study demonstrated that allogeneic ASCs could promote bone regeneration and repair tubular bone defects combined with DBM by histologically typical bone without systemic immune response. PMID:25819682

  17. Osteogenic effect of a gastric pentadecapeptide, BPC-157, on the healing of segmental bone defect in rabbits: a comparison with bone marrow and autologous cortical bone implantation.

    PubMed

    Sebecić, B; Nikolić, V; Sikirić, P; Seiwerth, S; Sosa, T; Patrlj, L; Grabarević, Z; Rucman, R; Petek, M; Konjevoda, P; Jadrijević, S; Perović, D; Slaj, M

    1999-03-01

    Gastrectomy often results in increased likelihood of osteoporosis, metabolic aberration, and risk of fracture, and there is a need for a gastric peptide with osteogenic activity. A novel stomach pentadecapeptide, BPC-157, improves wound and fracture healing in rats in addition to having an angiogenic effect. Therefore, in the present study, using a segmental osteoperiosteal bone defect (0.8 cm, in the middle of the left radius) that remained incompletely healed in all control rabbits for 6 weeks (assessed in 2 week intervals), pentadecapeptide BPC-157 was further studied (either percutaneously given locally [10 microg/kg body weight] into the bone defect, or applied intramuscularly [intermittently, at postoperative days 7, 9, 14, and 16 at 10 microg/kg body weight] or continuously [once per day, postoperative days 7-21 at 10 microg or 10 ng/kg body weight]). For comparison, rabbits percutaneously received locally autologous bone marrow (2 mL, postoperative day 7). As standard treatment, immediately after its formation, the bone defect was filled with an autologous cortical graft. Saline-treated (2 mL intramuscularly [i.m.] and 2 mL locally into the bone defect), injured animals were used as controls. Pentadecapeptide BPC-157 significantly improved the healing of segmental bone defects. For instance, upon radiographic assessment, the callus surface, microphotodensitometry, quantitative histomorphometry (10 microg/kg body weight i.m. for 14 days), or quantitative histomorphometry (10 ng/kg body weight i.m. for 14 days) the effect of pentadecapeptide BPC-157 was shown to correspond to improvement after local application of bone marrow or autologous cortical graft. Moreover, a comparison of the number of animals with unhealed defects (all controls) or healed defects (complete bony continuity across the defect site) showed that besides pentadecapeptide intramuscular application for 14 days (i.e., local application of bone marrow or autologous cortical graft), also

  18. Association of vitamin D3 with alveolar bone regeneration in dogs

    PubMed Central

    Hong, Hsiang-Hsi; Yen, Tzung-Hai; Hong, Adrienne; Chou, Ting-An

    2015-01-01

    Designed sockets prepared on the mandibles of nine Beagle dogs were divided into three groups: Calcitriol +Alloplast, Alloplast and Empty. Five of the nine dogs received Vit.D3 and calcium supplement (Vit.D/Ca group), while the other four dogs without supplements were assigned to Non-Vit.D/Ca group. After 4 weeks, the extent of vertical ridge resorption (VRR), bone density (density), new bone formation (NBF) and implant stability quotient (ISQ) were measured. Following systemic Vit.D/Ca administration, the Empty subgroup showed significant differences from the Calcitriol + Alloplast subgroup on variants NBF/Density/VRR and the Alloplast subgroup on items NBF/Density/ISQ/VRR. Alternatively, the Calcitriol + Alloplast subgroup revealed higher values of NBF/Density/ISQ (P < 0.001) and a lower VRR value (P = 0.001) than the Alloplast subgroup. Although there were no significant differences in NBF (P = 0.349), density (P = 0.796), ISQ (P = 0.577) and VRR (0.979) comparisons on alloplast treatment between the Vit.D/Ca and Non-Vit.D/Ca groups, local application with Calcitriol + Alloplast demonstrated better NBF/Density/ISQ (P = 0.02 to <0.001) effects than which of Alloplast subgroups. Consequently, the results showed that both systemic and local vitamin D3 treatment might accelerate bone regeneration in dogs. Within the using dose, systemic vitamin D3 treatment displayed a superior stimulating effect than local vitamin D3 application did. PMID:25753943

  19. Large defect-tailored composite scaffolds for in vivo bone regeneration.

    PubMed

    Ronca, Alfredo; Guarino, Vincenzo; Raucci, Maria Grazia; Salamanna, Francesca; Martini, Lucia; Zeppetelli, Stefania; Fini, Milena; Kon, Elisaveta; Filardo, G; Marcacci, Maurilio; Ambrosio, Luigi

    2014-11-01

    The discovery of new strategies to repair large segmental bone defects is currently an open challenge for worldwide clinicians. In the treatment of critical-sized bone defects, an alternative strategy to traditional bone grafting is always more frequently the use of tailor-made scaffolds modelled on the final size and shape of the implant site. Here, poly-ε-caprolactone-based composite scaffolds including poly-L-lactic acid continuous fibres and hyaluronan derivates (i.e. HYAFF11®) have been investigated for the peculiar 3D architecture characterized by interconnected macroporous networks and tunable mechanical properties. Composite scaffolds were immersed in simulated body fluid solution in order to support in vivo tissue in-growth. Scaffolds loaded with autologous cells (bone marrow stromal cells) plus platelet-rich plasma and osteoconductive protein such bone morphogenetic protein-7 were also tested to evaluate eventual enhancement in bone regeneration. The morphological and mechanical properties of poly-L-lactic acid-reinforced composite scaffolds have been studied to identify the optimal scaffold design to match the implant-site requirements of sheep metatarsal defects. Dynamic mechanical tests allowed to underline the viscoelastic response of the scaffold - resulting in elastic moduli from 2.5 to 1.3 MPa, suitable to temporarily support the structural function of damaged bone tissue. In vivo preliminary investigations in a sheep model of metatarsus shaft defect also showed the attitude of the scaffold to promote osteogenesis, preferentially in association with bone marrow stromal cell and platelet-rich plasma, even if the highest amount of mature bone was reached in the case of scaffold loaded with human bone morphogenetic protein-7 released via hydrolytic degradation of HYAFF11® phases in the implant site. PMID:24951457

  20. The facilitatory effects of hyperbaric oxygen treatment on membrane bone wound healing in a rat calvarial defect model.

    PubMed

    Hayashi, Kairi; Takahashi, Toshiyuki; Ikegawa, Mai; Horie, Masaki; Oyaizu, Takuya; Enomoto, Mitsuhiro; Shibata, Shunichi; Yagishita, Kazuyoshi; Ueno, Toshiaki

    2016-01-01

    We examined the effect of hyperbaric oxygen (HBO2) treatment on bone wound healing in a rat calvarial defect. Critical-sized defects were created in the calvaria of adult Wistar rats. The animals were divided into four groups--HBO2, normobaric oxygen, hyperbaric air, and no treatment. Treatments were performed five days a week, for two weeks. Micro-computerized tomography and histological analysis were used to evaluate the bone defects. Regenerated bone areas were calculated as the percentage of new bone in the cross-sectional area of defect. The new bone cross-sectional area was significantly greater in the HBO2 group than in the other groups. There were no significant differences in the numbers of nucleated cells in the new bone areas. Although new bone volume per defect volume was significantly greater in the HBO2 group than in the other groups, no significant differences in bone mineral density in the new bone area were observed. These findings indicate the facilitatory role of HBO2 treatment on bone wound healing in the rat calvarial bone defect, and it does not appear to have any negative effects on bone maturity. We propose that HBO2 treatment would be useful in promoting bone regeneration following injury in the orofacial region. PMID:27265990

  1. Green Tea Modulates Cytokine Expression in the Periodontium and Attenuates Alveolar Bone Resorption in Type 1 Diabetic Rats

    PubMed Central

    Gennaro, Gabriela; Claudino, Marcela; Cestari, Tania Mary; Ceolin, Daniele; Germino, Patrícia; Garlet, Gustavo Pompermaier; de Assis, Gerson Francisco

    2015-01-01

    Diabetes mellitus comprises a heterogeneous group of disorders with the main feature of hyperglycemia. Chronic hyperglycemia increases the severity of periodontal disease via an exacerbated inflammatory response, activated by advanced glycation end products and their receptor, RAGE. Therefore, anti-inflammatory agents represent potential inhibitors of this pathological interaction. In particular, green tea has been shown to possess anti-inflammatory properties mediated by its polyphenol content. Objectives: This study investigated the mechanisms by which green tea attenuates the spontaneous onset of diabetes-induced periodontitis. Methods: Diabetes was induced in rats via a single intraperitoneal injection of streptozotocin (STZ). Diabetic and control animals were divided into water-treated and green tea-treated subgroups and were analyzed at 15, 30, 60 and 90 days after diabetes induction. Immunohistochemistry was performed to quantitatively evaluate tumor necrosis factor-α (TNF-α), receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), interleukin-10 (IL-10) and runt-related transcription factor 2 (RUNX-2) expression in serial sections of each hemimaxilla. Morphometric measurements of the distance from the cementum-enamel junction (CEJ) of the superior distal root of the first molar to the alveolar bone crest (ABC) were performed to assess bone loss. Results: Diabetes resulted in significant bone loss and alterations in the number of cells that stained positive for inflammatory mediators. In the diabetic rats treated with green tea, we observed a decreased number of cells expressing RANKL and TNF-α compared with that observed in the diabetic rats treated with water. Additionally, green tea increased the numbers of cells that stained positive for OPG, RUNX-2 and IL-10 in the diabetic rats. Conclusion: Green tea intake reduces expression of the pro-inflammatory cytokine TNF-α and the osteoclastogenic mediator RANKL to normal levels

  2. RAPID AND RELIABLE HEALING OF CRITICAL SIZE BONE DEFECTS WITH GENETICALLY MODIFIED SHEEP MUSCLE

    PubMed Central

    Liu, F.; Ferreira, E.; Porter, R.M.; Glatt, V.; Schinhan, M.; Shen, Z.; Randolph, M.A.; Kirker-Head, C.A.; Wehling, C.; Vrahas, M.S.; Evans, C.H.; Wells, J.W.

    2015-01-01

    Large segmental defects in bone fail to heal and remain a clinical problem. Muscle is highly osteogenic, and preliminary data suggest that autologous muscle tissue expressing bone morphogenetic protein-2 (BMP-2) efficiently heals critical size defects in rats. Translation into possible human clinical trials requires, inter alia, demonstration of efficacy in a large animal, such as the sheep. Scale-up is fraught with numerous biological, anatomical, mechanical and structural variables, which cannot be addressed systematically because of cost and other practical issues. For this reason, we developed a translational model enabling us to isolate the biological question of whether sheep muscle, transduced with adenovirus expressing BMP-2, could heal critical size defects in vivo. Initial experiments in athymic rats noted strong healing in only about one-third of animals because of unexpected immune responses to sheep antigens. For this reason, subsequent experiments were performed with Fischer rats under transient immunosuppression. Such experiments confirmed remarkably rapid and reliable healing of the defects in all rats, with bridging by 2 weeks and remodelling as early as 3-4 weeks, despite BMP-2 production only in nanogram quantities and persisting for only 1-3 weeks. By 8 weeks the healed defects contained well-organised new bone with advanced neo-cortication and abundant marrow. Bone mineral content and mechanical strength were close to normal values. These data demonstrate the utility of this model when adapting this technology for bone healing in sheep, as a prelude to human clinical trials. PMID:26388615

  3. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model

    NASA Astrophysics Data System (ADS)

    Umoh, Joseph U.; Sampaio, Arthur V.; Welch, Ian; Pitelka, Vasek; Goldberg, Harvey A.; Underhill, T. Michael; Holdsworth, David W.

    2009-04-01

    The rodent calvarial defect model is commonly used to investigate bone regeneration and wound healing. This study presents a micro-computed tomography (micro-CT) methodology for measuring the bone mineral content (BMC) in a rat calvarial defect and validates it by estimating its precision error. Two defect models were implemented. A single 6 mm diameter defect was created in 20 rats, which were imaged in vivo for longitudinal experiments. Three 5 mm diameter defects were created in three additional rats, which were repeatedly imaged ex vivo to determine precision. Four control rats and four rats treated with bone morphogenetic protein were imaged at 3, 6, 9 and 12 weeks post-surgery. Scan parameters were 80 kVp, 0.45 mA and 180 mAs. Images were reconstructed with an isotropic resolution of 45 µm. At 6 weeks, the BMC in control animals (4.37 ± 0.66 mg) was significantly lower (p < 0.05) than that in treated rats (11.29 ± 1.01 mg). Linear regression between the BMC and bone fractional area, from 20 rats, showed a strong correlation (r2 = 0.70, p < 0.0001), indicating that the BMC can be used, in place of previous destructive analysis techniques, to characterize bone growth. The high precision (2.5%) of the micro-CT methodology indicates its utility in detecting small BMC changes in animals.

  4. High-intensity Nd:YAG laser accelerates bone regeneration in calvarial defect models.

    PubMed

    Kim, Kwansik; Kim, In Sook; Cho, Tae Hyung; Seo, Young-Kwon; Hwang, Soon Jung

    2015-08-01

    High-power pulsed lasers have been recently regarded to be anabolic to bone, but in vivo evidence is still lacking. This study aimed to investigate the capacity of bone repair using a high-power, Q-switched, pulsed, neodymium-doped yttrium aluminium garnet (Nd:YAG) laser, using bilateral calvarial defect models having non-critical sized, 5 mm (rat) or 8 mm (rabbit) diameter. One of the bilateral defects, which were all filled with collagen sponge or left empty, was irradiated with a Nd:YAG laser once every 2 days for 2 weeks at a constant total fluence rate (344 J/cm(2) ), output power (0.75 W), pulse repetition rate (15 pps) and wavelength (1064 nm) and examined for the laser effect. The same experimental scheme was designed using a rabbit calvarial defect model implanted with sponge, which was explored for the dose effect of output power at 0.75 and 3 W with the same quantities of the other parameters. New bone formation was evaluated by micro-computed tomography-based analysis and histological observation at 4 weeks after surgery. Laser irradiation significantly increased new bone formation by approximately 45%, not only in the sponge-filled defects of rats but also when the defects were left empty, compared to the non-irradiated group. Consistently, both doses of output power (0.75 and 3 W) enhanced new bone formation, but there was no significant difference between the two doses. This study is one of the first to demonstrate the beneficial effect of Nd:YAG lasers on the regeneration of bone defects which were left empty or filled with collagen sponge, suggesting its great potential in postoperative treatment targeting local bone healing. PMID:24254743

  5. A novel phosphonate for the repair of critical size bone defects.

    PubMed

    Bassi, Ak; Gough, Je; Downes, S

    2012-11-01

    Bone has the ability to spontaneously regenerate itself. However, the treatment of critical size bone defects can be problematic. In this study, the healing potential of critical size neonatal mouse parietal defects was evaluated using a scaffold composed of poly (ε-caprolactone) (PCL) and polyvinyl phosphonic co-acrylic acid (PVPA) (referred to as PCL/PVPA). Full thickness 1.5 mm circular defects were created in parietal bones obtained from one litter of 4-day-old CD1 mice. The bones were divided into two groups and embedded with PCL or PCL/PVPA scaffolds. The healing response was evaluated using microcomputed tomography, dissecting microscopy, phase contrast microscopy, scanning electron microscopy, and energy dispersive spectroscopy. There was a significant increase (P<0.05) in bone fill percentage in the presence of the PCL/PVPA scaffold (63.57%) compared with PCL scaffolds (29.64%). The formation of tissue and deposition of extracellular matrix was confirmed by scanning electron microscopy. There was evidence of collagen fibre deposition as well as hydroxyapatite and overall woven bone formation. PCL/PVPA scaffolds were better integrated into the defect site. The potential formation of hydroxyapatite was evaluated using energy dispersive spectroscopy. Results showed a significant increase in calcium and phosphorus levels in the presence of PCL/PVPA scaffold. Histological analysis using Masson's trichrome staining confirmed the presence of collagen above and below the PCL/PVPA scaffold within the defect site. In conclusion, this study showed that the PCL/PVPA scaffold is a novel system that has the potential for use as a bone graft substitute and in assisting in the healing of critical size defects. PMID:22034438

  6. Biomaterial scaffolds in cartilage-subchondral bone defects influencing the repair of autologous articular cartilage transplants.

    PubMed

    Fan, Wei; Wu, Chengtie; Miao, Xigeng; Liu, Gang; Saifzadeh, Siamak; Sugiyama, Sadahiro; Afara, Isaac; Crawford, Ross; Xiao, Yin

    2013-05-01

    The repair of articular cartilage typically involves the repair of cartilage-subchondral bone tissue defects. Although various bioactive materials have been used to repair bone defects, how these bioactive materials in subchondral bone defects influence the repair of autologous cartilage transplant remains unclear. The aim of this study was to investigate the effects of different subchondral biomaterial scaffolds on the repair of autologous cartilage transplant in a sheep model. Cylindrical cartilage-subchondral bone defects were created in the right femoral knee joint of each sheep. The subchondral bone defects were implanted with hydroxyapatite-β-tricalcium phosphate (HA-TCP), poly lactic-glycolic acid (PLGA)-HA-TCP dual-layered composite scaffolds (PLGA/HA-TCP scaffolds), or autologous bone chips. The autologous cartilage layer was placed on top of the subchondral materials. After 3 months, the effect of different subchondral scaffolds on the repair of autologous cartilage transplant was systematically studied by investigating the mechanical strength, structural integration, and histological responses. The results showed that the transplanted cartilage layer supported by HA-TCP scaffolds had better structural integration and higher mechanical strength than that supported by PLGA/HA-TCP scaffolds. Furthermore, HA-TCP-supported cartilage showed higher expression of acid mucosubstances and glycol-amino-glycan contents than that supported by PLGA/HA-TCP scaffolds. Our results suggested that the physicochemical properties, including the inherent mechanical strength and material chemistry of the scaffolds, play important roles in influencing the repair of autologous cartilage transplants. The study may provide useful information for the design and selection of proper subchondral biomaterials to support the repair of both subchondral bone and cartilage defects. PMID:22684516

  7. Differentiation of rabbit bone mesenchymal stem cells into endothelial cells in vitro and promotion of defective bone regeneration in vivo.

    PubMed

    Liu, Jinzhong; Liu, Chao; Sun, Bin; Shi, Ce; Qiao, Chunyan; Ke, Xiaoliang; Liu, Shutai; Liu, Xia; Sun, Hongchen

    2014-04-01

    Tissue engineering strategies often fail to regenerate bones because of inadequate vascularization, especially in the reconstruction of large segmental bone defects. Large volumes of vascular endothelial cells (ECs) that functionally interact with osteoblasts during osteogenesis are difficult to obtain. In this study, we simulated bone healing by co-culturing differentiated ECs and mesenchymal stem cells (MSCs) either on a culture plate or on a polylactide glycolic acid (PLGA) scaffold in vitro. We also evaluated the effect of osteogenesis in repairing rabbit mandible defects in vivo. In this study, MSCs were separated from rabbit as the seed cells. After passage, the MSCs were cultured in an EC-conditioned medium to differentiate into ECs. Immunohistochemical staining analysis with CD34 showed that the induced cells had the characteristics of ECs and MSC. The induced ECs were co-cultured in vitro, and the induction of MSCs to osteoblast served as the control. Alkaline phosphatase (ALP) and alizarin red (AZR) staining experiments were performed, and the Coomassie brilliant blue total protein and ALP activity were measured. The MSCs proliferated and differentiated into osteoblast-like cells through direct contact between the derived ECs and MSCs. The co-cultured cells were seeded on PLGA scaffold to repair 1 cm mandible defects in the rabbit. The effectiveness of the repairs was assessed through soft X-ray and histological analyses. The main findings indicated that MSCs survived well on the scaffold and that the scaffold is biocompatible and noncytotoxic. The results demonstrated that the co-cultured MSC-derived ECs improved MSC osteogenesis and promoted new bone formation. This study may serve as a basis for the use of in vitro co-culturing techniques as an improvisation to bone tissue engineering for the repair of large bone defects. PMID:23943083

  8. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects

    PubMed Central

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m2/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration. PMID:25609957

  9. Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

    PubMed Central

    2016-01-01

    Objectives The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM and ABB according to a stepwise dry and dip lyophilizing protocol. Histological and microcomputed tomography (µCT) analyses were performed to measure the amount of bone formation and bone volume after 2- and 8-week healing intervals. Results Upon histological observation at two weeks, the DDM and ABB/rhBMP-2 groups showed osteoconductive bone formation, while the DDM/rhBMP-2 group showed osteoconductive and osteoinductive bone formation. New bone formation was higher in DDM/rhBMP-2, DDM and ABB decreasing order. The amounts of bone formation were very similar at two weeks; however, at eight weeks, the DDM/rhBMP-2 group showed a two-fold greater amount of bone formation compared to the DDM and ABB/rhBMP-2 groups. The µCT analysis showed markedly increased bone volume in the DDM/rhBMP-2 group at eight weeks compared with that of the DDM group. Notably, there was a slight decrease in bone volume in the ABB/rhBMP-2 group at eight weeks. There were no significant differences among the DDM, ABB/rhBMP-2, and DDM/rhBMP-2 groups at two or eight weeks. Conclusion Within the limitations of this study, DDM appears to be a suitable carrier for rhBMP-2 in orthotopic sites. PMID:27162749

  10. Effect of Hydroxyapatite on Bone Integration in a Rabbit Tibial Defect Model

    PubMed Central

    Sohn, Sung-Keun; Kim, Kyung-Taek; Kim, Chul-Hong; Ahn, Hee-Bae; Rho, Mee-Sook; Jeong, Min-Ho; Sun, Sang-Kyu

    2010-01-01

    Background The aim of the present study was to prepare hydroxyapatite (HA) and then characterize its effect on bone integration in a rabbit tibial defect model. The bone formation with different designs of HA was compared and the bony integration of several graft materials was investigated qualitatively by radiologic and histologic study. Methods Ten rabbits were included in this study; two holes were drilled bilaterally across the near cortex and the four holes in each rabbit were divided into four treatment groups (HAP, hydroxyapatite powder; HAC, hydroxyapatite cylinder; HA/TCP, hydroxyapatite/tri-calcium phosphate cylinder, and titanium cylinder). The volume of bone ingrowth and the change of bone mineral density were statistically calculated by computed tomography five times for each treatment group at 0, 2, 4, 6, and 8 weeks after grafting. Histologic analysis was performed at 8 weeks after grafting. Results The HAP group showed the most pronounced effect on the bone ingrowth surface area, which seen at 4, 6, and 8 weeks after graft (p < 0.05). On comparing the change of bone mineral density the bone ingrowth surface area among the 4 groups, there were no statistically significant differences among the groups found for any period (p > 0.05). On histological examination, the HAP group revealed well-recovered cortical bone, but the bone was irregularly thickened and haphazardly admixed with powder. The HAC group showed similar histological features to those of the HA/TCP group; the cortical surface of the newly developed bone was smooth and the bone matrix on the surface of the cylinder was regularly arranged. Conclusions We concluded that both the hydroxyapatite powder and cylinder models investigated in our study may be suitable as a bone substitute in the rabbit tibial defect model, but their characteristic properties are quite different. In contrast to hydroxyapatite powder, which showed better results for the bone ingrowth surface, the hydroxyapatite

  11. Management of traumatic tibial diaphyseal bone defect by “induced-membrane technique”

    PubMed Central

    Gupta, Gaurav; Ahmad, Sohail; Mohd. Zahid; Khan, A H; Sherwani, M K A; Khan, Abdul Qayyum

    2016-01-01

    Background: Gap nonunion of long bones is a challenging problem, due to the limitation of conventional reconstructive techniques more so if associated with infection and soft tissue defect. Treatment options such as autograft with non-vascularized fibula and cancellous bone graft, vascularized bone graft, and bone transportation are highly demanding on the part of surgeons and hospital setups and have many drawbacks. This study aims to analyze the outcome of patients with wide diaphyseal bone gap treated with induced-membrane technique (Masquelet technique). Materials and Methods: This study included 9 patients (7 males and 2 females), all with tibial bone-gap. Eight of the 9 patients were infected and in 3 patients there was associated large soft tissue defect requiring flap cover. This technique is two-stage procedure. Stage I surgery included debridement, fracture stabilization, application of spacer between bone ends, and soft tissue reconstruction. Stage II surgery included removal of spacer with preservation of induced membrane formed at spacer surface and filling the bone-gap with morselized iliac crest bone-graft within the membrane sleeve. Average bone-gap of 5.2 cm was treated. The spacer was always found to be encapsulated by a thick glistening membrane which did not collapse after its removal. All patients were followed up for an average period of 21.5 months. Results: Serial Radiographs showed regular uptake of autograft and thus consolidation within themselves in the region of bone gap and also with host bone. Bone-union was documented in all patients and all patients are walking full weight-bearing without support. Conclusions: The study highlights that the technique provide effective and practical management for difficult gap nonunion. It does not require specialized equipment, investigations, and surgery. Thus, it provides a reasonable alternative to the developing infrastructures and is a reliable and reproducible technique. PMID:27293290

  12. Effect of autologous bone marrow-derived cells associated with guided bone regeneration or not in the treatment of peri-implant defects.

    PubMed

    Ribeiro, F V; Suaid, F F; Ruiz, K G S; Rodrigues, T L; Carvalho, M D; Nociti, F H; Sallum, E A; Casati, M Z

    2012-01-01

    This study investigated the effect of bone marrow-derived cells associated with guided bone regeneration in the treatment of dehiscence bone defects around dental implants. Iliac-derived bone marrow cells were harvested from dogs and phenotypically characterized with regard to their osteogenic properties. After teeth extraction, three implant sites were drilled, dehiscences created and implants placed. Dehiscences were randomly assigned to: bone marrow-derived cells, bone marrow-derived cells+guided bone regeneration, and control (no treatment). After 3 months, implants with adjacent tissues were processed histologically, bone-to-implant contact, bone fill within the threads, new bone area in a zone lateral to the implant, new bone height, and new bone weight at the bottom of the defect were determined. Phenotypic characterization demonstrated that bone marrow-derived cells presented osteogenic potential. Statistically higher bone fill within the threads was observed in both bone marrow-derived cells+guided bone regeneration bone marrow-derived cell groups compared with the control group (P<0.05), with no difference between the groups treated with cells (P>0.05). For the other parameters (new bone area, bone-to-implant contact, new bone height and new bone weight), only the bone marrow-derived cells+guided bone regeneration group presented higher values compared with the non-treated control (P<0.05). Bone marrow-derived cells provided promising results for peri-implantar bone regeneration, although the combined approach seems to be relevant, especially to bone formation out of the implant threads. PMID:21924867

  13. Antigen-free bovine cancellous bone loaded with recombinant human bone morphogenetic protein-2 for the repair of tibial bone defects in goat model.

    PubMed

    Li, Donghai; Deng, Liqing; Yang, Zhouyuan; Xie, Xiaowei; Kang, Pengde; Tan, Zhen

    2016-04-01

    Antigen-free bovine cancellous bone has good performances of porous network structures and mechanics with antigen extracted. To develop a bioactive scaffold for enhancing bone repair and evaluate its biological property, rhBMP-2 loaded with antigen-free bovine cancellous bone was used to treat tibial bone defect. Twenty-four healthy adult goats were chosen to establish goat defects model and randomly divided into four groups. The goats were treated with rhBMP-2/antigen-free bovine cancellous bone scaffolds (group A), autogenous cancellous bone graft (group B), porous tricalciumphosphate scaffolds (group C) and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The gray value of radiographs was used to evaluate the healing of the defects, which revealed that the group A had a better outcome of defect healing compared with group C at 4, 8 and 12 weeks, respectively (p < 0.05), while the difference between groups A and B was without significance at each time (p > 0.05). The newly formed bone area was calculated from histological sections, and the results indicated that the amount of new bone in group A increased significantly compared with that in group C (p < 0.05) but was similar to that in group B (p > 0.05) at 4, 8 and 12 weeks, respectively. In addition, the expression of collagen I and vascular endothelial growth factor by real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group C (p = 0.034, p = 0.032, respectively), but no significant differences were found when compared with that in group B (p = 0.36, p = 0.54, respectively). At the same time, group C presented better results than group D on bone defects healing. Therefore, the composites of antigen-free bovine cancellous bone loaded with rhBMP-2 have a good osteoinductive activity and capacity to promote the repair of bone defects. PMID:26801475

  14. A novel silk fibroin nanofibrous membrane for guided bone regeneration: a study in rat calvarial defects

    PubMed Central

    Lu, Shijun; Wang, Peng; Zhang, Feng; Zhou, Xichao; Zuo, Baoqi; You, Xinran; Gao, Yang; Liu, Hongchen; Tang, Hailiang

    2015-01-01

    A novel membrane for guided bone regeneration (GBR), constituting silk fibroin (SF) nanofiber from native silk nanofibril solution, was prepared by electrospinning process. Another barrier membrane, a collagen-type membrane (Bio-Gide®), was used as a comparative sample. Twelve healthy male Sprague-Dawley rats were used in this study. Bilateral round defects were created in the calvarial bone. The bone regenerative efficacy was evaluated in rat calvarial defects. Animals were killed at 4 and 12 weeks. Bone regeneration was analyzed using micro-computed tomography and histological analysis. The SF nanofibrous membrane showed superior results with regard to mechanical tensile properties. At 4 weeks, the bone volume and collagen I positive areas in the SF group were greater than in the Bio-Gide group. At 12 weeks, the defect had completely healed with new bone in both the groups. In conclusion, the SF nanofibrous membranes showed satisfactory mechanical stability, good biocompatibility, slow degradability, and improved new bone regeneration without any adverse inflammatory reactions. Considering the low cost and low risk of disease transmission, the SF nanofibrous membrane is a potential candidate for GBR therapy compared with the widely used collagen membranes. PMID:26807172

  15. Biomimetic coatings for bone tissue engineering of critical-sized defects

    PubMed Central

    Liu, Yuelian; Wu, Gang; de Groot, Klaas

    2010-01-01

    The repair of critical-sized bone defects is still challenging in the fields of implantology, maxillofacial surgery and orthopaedics. Current therapies such as autografts and allografts are associated with various limitations. Cytokine-based bone tissue engineering has been attracting increasing attention. Bone-inducing agents have been locally injected to stimulate the native bone-formation activity, but without much success. The reason is that these drugs must be delivered slowly and at a low concentration to be effective. This then mimics the natural method of cytokine release. For this purpose, a suitable vehicle was developed, the so-called biomimetic coating, which can be deposited on metal implants as well as on biomaterials. Materials that are currently used to fill bony defects cannot by themselves trigger bone formation. Therefore, biological functionalization of such materials by the biomimetic method resulted in a novel biomimetic coating onto different biomaterials. Bone morphogenetic protein 2 (BMP-2)-incorporated biomimetic coating can be a solution for a large bone defect repair in the fields of dental implantology, maxillofacial surgery and orthopaedics. Here, we review the performance of the biomimetic coating both in vitro and in vivo. PMID:20484228

  16. Mutan: A mixed linkage α-[(1,3)- and (1,6)]-d-glucan from Streptococcus mutans, that induces osteoclast differentiation and promotes alveolar bone loss.

    PubMed

    Kwon, Hyun-Jung; Kim, Jung Min; Han, Kook-Il; Jung, Eui-Gil; Kim, Yong Hyun; Patnaik, Bharat Bhusan; Yoon, Mi Sook; Chung, Sung Kyun; Kim, Wan Jong; Han, Man-Deuk

    2016-02-10

    Mutan is an extracellular polysaccharide of Streptococcus mutans (S. mutans) that consists of α-(1,3)-linked glucose residues in main chains and α-(1,6) bonds in side chains. In the present study, mutan was isolated from S. mutans, and its structural characteristics were determined using Fourier-transform infrared spectroscopy (FT-IR) and (13)C nuclear magnetic resonance (NMR) spectroscopy. The effects of mutan on RANKL-induced osteoclast differentiation in RAW 264.7 cells were examined. Furthermore, microCT and morphometric analyses were used to determine the contribution of mutan to alveolar bone loss in the maxilla of a rat periodontitis model. Mutan increased (more than 2-fold) RANKL-induced osteoclast differentiation in a dose-dependent manner. Mutan also enhanced the alveolar bone loss in the rat maxilla 2.3-fold. In mutan-treated rats, the bone mineral density, bone volume, trabecular number, and trabecular thickness decreased, whereas trabecular separation significantly increased. In addition, mutan and lipopolysaccharide (LPS) induced similar microarray profiles in RAW 264.7 cells. A total of 43 genes related to osteoclastogenesis were differentially expressed after either mutan or LPS treatment. Five-fold increases in the expression of several genes, including IL-1β, IL-1α, IL-6, and chemokine ligands, were observed in mutan-treated RAW 264.7 cells. These results suggest a molecular mechanism for the inflammation induced by S. mutans during the establishment of periodontal disease. PMID:26686164

  17. A finite element study to determine the occurrence of abfraction and displacement due to various occlusal forces and with different alveolar bone height

    PubMed Central

    Vandana, Kharidhi Laxman; Deepti, Mittal; Shaimaa, Muneer; Naveen, Karnath; Rajendra, Desai

    2016-01-01

    Background: Noncarious cervical lesions (NCCLs) are rarely described in the periodontal literature, perhaps because no direct link between NCCLs and periodontal lesions has been demonstrated. Aim: The aim of this study is to determine the stress and displacement produced in the tooth at different bone levels under different occlusal load using finite element model (FEM) study. Materials and Methods: Four FEMs of maxillary incisor were designed consisting of the tooth, pulp, periodontal ligament, and alveolar bone at the various level of bone height (25%, 50%, and 75%). Different occlusal load (5 kg, 15 kg, 24 kg, and 29 kg) at an angle of 50° to the long axis of the tooth was applied on the palatal surface at the level of middle third of the crown. All the models were assumed to be isotropic, linear and elastic, and the analysis was performed on a Pentium IV processor computer using the ANSYS software. Results: The maximum stress in the tooth was seen in the cervical region and to a greater extent at the apex for all models. The maximum tooth displacement for all the occlusal loads applied in this study was at the incisal edge with the minimum tooth displacement at the cervical third of the root which shifted apically with the reduction of alveolar bone support. Conclusion: The cumulative effect of increased stress and displacement at the cervical region of the tooth would result in abfraction as the age advances along with other wasting diseases. PMID:27041831

  18. Combination of bone allograft, barrier membrane and doxycycline in the treatment of infrabony periodontal defects: A comparative trial

    PubMed Central

    Agarwal, Ashish; Gupta, N.D.

    2015-01-01

    Aim The purpose of the present study was to compare the regenerative potential of noncontained periodontal infrabony defects treated with decalcified freeze-dried bone allograft (DFDBA) and barrier membrane with or without local doxycycline. Methods This study included 48 one- or two-wall infrabony defects from 24 patients (age: 30–65 years) seeking treatment for chronic periodontitis. Defects were randomly divided into two groups and were treated with a combination of DFDBA and barrier membrane, either alone (combined treatment group) or with local doxycycline (combined treatment + doxycycline group). At baseline (before surgery) and 3 and 6 months after surgery, the pocket probing depth (PPD), clinical attachment level (CAL), radiological bone fill (RBF), and alveolar height reduction (AHR) were recorded. Analysis of variance and the Newman–Keuls post hoc test were used for statistical analysis. A two-tailed p-value of less than 0.05 was considered to be statistically significant. Results In the combined treatment group, the PPD reduction was 2.00 ± 0.38 mm (32%), CAL gain was 1.25 ± 0.31 mm (17.9%), and RBF was 0.75 ± 0.31 mm (20.7%) after 6 months. In the combined treatment + doxycycline group, these values were 2.75 ± 0.37 mm (44%), 1.5 ± 0.27 mm (21.1%), and 1.13 ± 0.23 mm (28.1%), respectively. AHR values for the groups without and with doxycycline were 12.5% and 9.4%, respectively. Conclusion There was no significant difference in the regeneration of noncontained periodontal infrabony defects between groups treated with DFDBA and barrier membrane with or without doxycycline. PMID:26236130

  19. Bone Regeneration of Rat Tibial Defect by Zinc-Tricalcium Phosphate (Zn-TCP) Synthesized from Porous Foraminifera Carbonate Macrospheres

    PubMed Central

    Chou, Joshua; Hao, Jia; Kuroda, Shinji; Bishop, David; Ben-Nissan, Besim; Milthorpe, Bruce; Otsuka, Makoto

    2013-01-01

    Foraminifera carbonate exoskeleton was hydrothermally converted to biocompatible and biodegradable zinc-tricalcium phosphate (Zn-TCP) as an alternative biomimetic material for bone fracture repair. Zn-TCP samples implanted in a rat tibial defect model for eight weeks were compared with unfilled defect and beta-tricalcium phosphate showing accelerated bone regeneration compared with the control groups, with statistically significant bone mineral density and bone mineral content growth. CT images of the defect showed restoration of cancellous bone in Zn-TCP and only minimal growth in control group. Histological slices reveal bone in-growth within the pores and porous chamber of the material detailing good bone-material integration with the presence of blood vessels. These results exhibit the future potential of biomimetic Zn-TCP as bone grafts for bone fracture repair. PMID:24351911

  20. Bone Defect Regeneration by a Combination of a β-Tricalcium Phosphate Scaffold and Bone Marrow Stromal Cells in a Non-Human Primate Model

    PubMed Central

    Masaoka, Tomokazu; Yoshii, Toshitaka; Yuasa, Masato; Yamada, Tsuyoshi; Taniyama, Takashi; Torigoe, Ichiro; Shinomiya, Kenichi; Okawa, Atsushi; Morita, Sadao; Sotome, Shinichi

    2016-01-01

    Background: Reconstruction of large bone defects is a great challenge in orthopedic research. In the present study, we prepared composites of bone marrow-derived stromal cells (BMSCs) and β-tricalcium phosphate (β-TCP) with three novel aspects: proliferation of BMSCs with continuous dexamethasone treatment, cell loading under low pressure, and use of autologous plasma as the cell loading medium. The effectiveness of the resulting composite for large bone-defect reconstruction was tested in a non-human primate model, and the bone union capability of the regenerated bones was examined. Materials and Methods: Primary surgery: Bone defects (5 cm long) were created in the left femurs of nine cynomolgus monkeys with resection of the periosteum (five cases) or without resection (four cases), and porous β-TCP blocks were transplanted into the defects. Secondary surgery: Bone marrow aspirates harvested from seven of the nine monkeys were cultured with dexamethasone, and BMSCs were obtained. BMSCs were suspended in autologous plasma and introduced into a porous β-TCP block under low-pressure conditions. The BMSC/β-TCP composites were transplanted into bone defects created at the same sites as the primary surgery. Bone union evaluation: Five regenerated femurs were shortened by osteotomy surgery 8 to 15 months after transplantation of the β-TCP/BMSC composites, and bone union was evaluated radiographically. Results: After the primary surgery and treatment with β-TCP alone, one of the five periosteum-resected monkeys and two of the four periosteum-preserved monkeys exhibited successful bone reconstruction. In contrast, five of the seven cases treated with the β-TCP/MSC composite showed successful bone regeneration. In four of the five osteotomy cases, bone union was confirmed. Conclusion: We validated the effectiveness of a novel β-TCP/BMSC composite for large bone defect regeneration and confirmed the bone union capability of the regenerated bone. PMID:27073583

  1. Prolonged Survival of Transplanted Osteoblastic Cells Does Not Directly Accelerate the Healing of Calvarial Bone Defects.

    PubMed

    Kitami, Megumi; Kaku, Masaru; Rocabado, Juan Marcelo Rosales; Ida, Takako; Akiba, Nami; Uoshima, Katsumi

    2016-09-01

    Considering the increased interest in cell-based bone regeneration, it is necessary to reveal the fate of transplanted cells and their substantive roles in bone regeneration. The aim of this study was to analyze the fate of transplanted cells and the effect of osteogenic cell transplantation on calvarial bone defect healing. An anti-apoptotic protein, heat shock protein (HSP) 27, was overexpressed in osteoblasts. Then, the treated osteoblasts were transplanted to calvarial bone defect and their fate was analyzed to evaluate the significance of transplanted cell survival. Transient overexpression of Hsp27 rescued MC3T3-E1 osteoblastic cells from H2 O2 -induced apoptosis without affecting osteoblastic differentiation in culture. Transplantation of Hsp27-overexpressing cells, encapsulated in collagen gel, showed higher proliferative activity, and fewer apoptotic cells in comparison with control cells. After 4-week of transplantation, both control cell- and Hsp27 overexpressed cell-transplanted groups showed significantly higher new bone formation in comparison with cell-free gel-transplantation group. Interestingly, the prolonged survival of transplanted osteoblastic cells by Hsp27 did not provide additional effect on bone healing. The transplanted cells in collagen gel survived for up to 4-week but did not differentiate into bone-forming osteoblasts. In conclusion, cell-containing collagen gel accelerated calvarial bone defect healing in comparison with cell-free collagen gel. However, prolonged survival of transplanted cells by Hsp27 overexpression did not provide additional effect. These results strongly indicate that cell transplantation-based bone regeneration cannot be explained only by the increment of osteogenic cells. Further studies are needed to elucidate the practical roles of transplanted cells that will potentiate successful bone regeneration. J. Cell. Physiol. 231: 1974-1982, 2016. © 2016 Wiley Periodicals, Inc. PMID:26754153

  2. Beta-nerve growth factor promotes neurogenesis and angiogenesis during the repair of bone defects

    PubMed Central

    Chen, Wei-hui; Mao, Chuan-qing; Zhuo, Li-li; Ong, Joo L.

    2015-01-01

    We previously showed that the repair of bone defects is regulated by neural and vascular signals. In the present study, we examined the effect of topically applied β-nerve growth factor (β-NGF) on neurogenesis and angiogenesis in critical-sized bone defects filled with collagen bone substitute. We created two symmetrical defects, 2.5 mm in diameter, on either side of the parietal bone of the skull, and filled them with bone substitute. Subcutaneously implanted osmotic pumps were used to infuse 10 μg β-NGF in PBS (β-NGF + PBS) into the right-hand side defect, and PBS into the left (control) defect, over the 7 days following surgery. Immunohistochemical staining and hematoxylin-eosin staining were carried out at 3, 7, 14, 21 and 28 days postoperatively. On day 7, expression of β III-tubulin was lower on the β-NGF + PBS side than on the control side, and that of neurofilament 160 was greater. On day 14, β III-tubulin and protein gene product 9.5 were greater on the β-NGF + PBS side than on the control side. Vascular endothelial growth factor expression was greater on the experimental side than the control side at 7 days, and vascular endothelial growth factor receptor 2 expression was elevated on days 14 and 21, but lower than control levels on day 28. However, no difference in the number of blood vessels was observed between sides. Our results indicate that topical application of β-NGF promoted neurogenesis, and may modulate angiogenesis by promoting nerve regeneration in collagen bone substitute-filled defects. PMID:26330843

  3. Bioactive glass in cavitary bone defects: a comparative experimental study in rabbits

    PubMed Central

    Camargo, André Ferrari de França; Baptista, André Mathias; Natalino, Renato; de Camargo, Olavo Pires

    2015-01-01

    OBJECTIVES: To compare bioactive glass and autograft regarding their histomorphometric characteristics. METHODS: The authors conducted a prospective case-control experimental study on animals in order to compare the histomorphometric characteristics of bioactive glass versus autograft. Eight rabbits underwent surgery in which a cavitary defect was created in both proximal femurs. One side was filled with bioactive glass granules and the other, with autograft grafted from the contralateral side. The sides were randomized. Fourteen days after surgery, the animals were euthanized. RESULTS: Histologic analysis revealed that bone neoformation was equivalent among the two groups and the osteoblasts cell-count was higher in the femurs treated with bioactive glass. The osteocytes cell-count, however, was lower. The similarity in bone formation between both groups was consistent to literature findings. CONCLUSION: Bioactive glass is similar to autograft regarding bone neoformation in this animal model of cavitary bone defects. Level of Evidence III, Case-Control Study. PMID:26327802

  4. Three-dimensional analysis of alveolar bone resorption by image processing of 3-D dental CT images

    NASA Astrophysics Data System (ADS)

    Nagao, Jiro; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Yamada, Shohzoh; Naitoh, Munetaka

    2006-03-01

    We have developed a novel system that provides total support for assessment of alveolar bone resorption, caused by periodontitis, based on three-dimensional (3-D) dental CT images. In spite of the difficulty in perceiving the complex 3-D shape of resorption, dentists assessing resorption location and severity have been relying on two-dimensional radiography and probing, which merely provides one-dimensional information (depth) about resorption shape. However, there has been little work on assisting assessment of the disease by 3-D image processing and visualization techniques. This work provides quantitative evaluation results and figures for our system that measures the three-dimensional shape and spread of resorption. It has the following functions: (1) measures the depth of resorption by virtually simulating probing in the 3-D CT images, taking advantage of image processing of not suffering obstruction by teeth on the inter-proximal sides and much smaller measurement intervals than the conventional examination; (2) visualizes the disposition of the depth by movies and graphs; (3) produces a quantitative index and intuitive visual representation of the spread of resorption in the inter-radicular region in terms of area; and (4) calculates the volume of resorption as another severity index in the inter-radicular region and the region outside it. Experimental results in two cases of 3-D dental CT images and a comparison of the results with the clinical examination results and experts' measurements of the corresponding patients confirmed that the proposed system gives satisfying results, including 0.1 to 0.6mm of resorption measurement (probing) error and fairly intuitive presentation of measurement and calculation results.

  5. Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model

    PubMed Central

    Kaempfen, Alexandre; Todorov, Atanas; Güven, Sinan; Largo, René D.; Jaquiéry, Claude; Scherberich, Arnaud; Martin, Ivan; Schaefer, Dirk J.

    2015-01-01

    The gold standard treatment of large segmental bone defects is autologous bone transfer, which suffers from low availability and additional morbidity. Tissue engineered bone able to engraft orthotopically and a suitable animal model for pre-clinical testing are direly needed. This study aimed to evaluate engraftment of tissue-engineered bone with different prevascularization strategies in a novel segmental defect model in the rabbit humerus. Decellularized bone matrix (Tutobone) seeded with bone marrow mesenchymal stromal cells was used directly orthotopically or combined with a vessel and inserted immediately (1-step) or only after six weeks of subcutaneous “incubation” (2-step). After 12 weeks, histological and radiological assessment was performed. Variable callus formation was observed. No bone formation or remodeling of the graft through TRAP positive osteoclasts could be detected. Instead, a variable amount of necrotic tissue formed. Although necrotic area correlated significantly with amount of vessels and the 2-step strategy had significantly more vessels than the 1-step strategy, no significant reduction of necrotic area was found. In conclusion, the animal model developed here represents a highly challenging situation, for which a suitable engineered bone graft with better prevascularization, better resorbability and higher osteogenicity has yet to be developed. PMID:26053395

  6. Intravertebral vacuum cleft sign: a cause of vertebral cold defect on bone scan.

    PubMed

    Kim, Heeyoung; Jun, Sungmin; Park, Se Kyoung; Kim, Geun-Tae; Park, Seol Hoon

    2016-05-01

    A 67-year-old female presented with an acute compression fracture with an intravertebral vacuum cleft (IVC) sign of the T12 vertebra. Her bone scan demonstrated a cold defect of the fractured vertebra. Although the IVC sign is related to vertebral osteonecrosis, to the best of our knowledge, a cold defect on a bone scan has not been reported in an acute compression fracture with an IVC sign. In this case review, various imaging findings of osteonecrotic compression fractures are discussed along with a review of the current literature. PMID:26758604

  7. Autologous cranial particulate bone grafting reduces the frequency of osseous defects after cranial expansion.

    PubMed

    Gao, Lin Lin; Rogers, Gary F; Clune, James E; Proctor, Mark R; Meara, John G; Mulliken, John B; Greene, Arin K

    2010-03-01

    Primary autologous particulate bone grafting has been demonstrated to heal osseous defects after fronto-orbital advancement. We sought to determine if this technique was equally effective for larger defects resulting from major cranial expansion procedures. We studied children who underwent cranial expansion (other than fronto-orbital advancement) between 1989 and 2008. Defects either were left to heal spontaneously (group 1) or had autologous cranial particulate bone graft placed over dura at the time of cranial expansion (group 2). Particulate bone graft was harvested from the endocortical or ectocortical surface using a hand-driven brace and bit. Outcome variables were ossification and need for revision cranioplasty. The study included 53 children. Mean (SD) age at procedure was 12.2 (8.1) months (range, 1.0-36.0 months) for group 1 (n = 15) and 20.2 (15.1) months (range, 3.3-78.6 months) for group 2 (n = 38) (P = 0.06). There were palpable bony defects in 33.0% (n = 5) of group 1 patients versus 7.9% (n = 3) of group 2 patients (P = 0.03). Corrective cranioplasty was needed in 26.7% of group 1 patients and only 5.3% of those in group 2 (P = 0.04). Primary cranial particulate bone grafting significantly reduced the frequency of osseous defects and secondary cranioplasty following cranial remodeling. PMID:20186093

  8. Raman study of the effect of LED light on grafted bone defects

    NASA Astrophysics Data System (ADS)

    Soares, Luiz G. G. P.; Aciole, Jouber M. S.; Aciole, Gilbeth T. S.; Barbosa, Artur F. S.; Silveira-Júnior, Landulfo; Pinheiro, Antônio L. B.

    2013-03-01

    Benefits of the isolated or combined use light and biomaterials on bone healing have been suggested. Our group has used several models to assess the effects of laser on bone. A Raman spectral analysis on surgical bone defects grafted or not with Hydroxyapatite (HA), treated or not with LED was carried out. 40 rats were divided into 4 groups. On Group I the defect was filled with the clot. On Group II, the defect was filled with the HA. On groups III the defect was filled with Clot and further irradiated with LED and on group IV the defects was filled with the HA and further irradiated with LED. LED (λ850 +/- 10nm, 150mW, A= 0.5cm2, 68s, 20 J/cm2 per session, 140 J/cm2 per treatment) was applied at 48 h intervals during 15 days. Specimens were taken after 15 and 30 days after surgery and kept on liquid nitrogen, and underwent Raman analysis. For this, the peak of hydroxyapatite (~960 cm-1) was used as marker of bone mineralization. Significant difference was observed at both times (p<0.05). When the biomaterial was used higher peaks were observed. Association with LED further improved the intensity. Conclusion: It is concluded that LED light improved the effect of the HA.

  9. Natural composite of wood as replacement material for ostechondral bone defects.

    PubMed

    Aho, Allan J; Rekola, Jami; Matinlinna, Jukka; Gunn, Jarmo; Tirri, Teemu; Viitaniemi, Pertti; Vallittu, Pekka

    2007-10-01

    Deciduous wood, birch, pretreated by a technique combining heat and water vapor was applied for the reconstruction of bone defects in the knee joint of rabbits. It was observed that wood showed characteristic properties to be incorporated by the host bone during observation time of 4, 8, and 20 weeks. The natural channel structure of wood served as a porous scaffold, allowing host bone growth as small islets into the wood implants. The other properties of heat-treated wood, such as bioactivity, good handling properties, and sufficient biomechanical properties, might be additional favorable factors for the application of wood as a natural composite material for bone and cartilage repair. At the interface of the surfaces of wood and living bone, bonding occurred. The Chemical Interface Model for bonding bone to wood consists of the reactive ions, such as hydroxyl groups --OH, and covalent bonding as well as hydrogen bonding, which originate from both wood and bone. The bone tissue trauma, with its reactive Ca(2+) and PO(4) (3-) ions, proteins, and collagen, available for interaction at ionic and nanolevel, are associated with the complicated chemistry in the cellular response of the early bone healing process. It was concluded that heat-treated wood acted like a porous biomaterial scaffold, allowing ongrowth and ingrowth of bone and cartilage differentiation on its surface, and demonstrating osteoconductive contact, bonding at the interface. PMID:17318823

  10. Bipolar bone defect in the shoulder anterior dislocation.

    PubMed

    Di Giacomo, Giovanni; de Gasperis, Nicola; Scarso, Paolo

    2016-02-01

    In the anterior shoulder instability with glenoid bone loss among 25 % or more of the inferior glenoid diameter (inverted-pear glenoid), the consensus of recent authors is that glenoid bone grafting (Latarjet procedure) should be performed. The engaging Hill-Sachs lesion has been recognized as a risk factor for recurrent anterior shoulder instability. We have developed a method using radiographic and arthroscopic studies and the concept of the glenoid track to determine whether a Hill-Sachs lesion will engage the anterior glenoid rim, whether or not there is concomitant anterior glenoid bone loss. If the Hill-Sachs lesion engages, it is called an "off-track" Hill-Sachs lesion; if it does not engage, it is an "on-track" lesion. On the basis of our quantitative method, we have developed a treatment paradigm with specific surgical criteria for all patients with anterior shoulder instability (first dislocation or recurrent dislocation), both with and without bipolar bone loss. PMID:26704802

  11. A biodegradable antibiotic-eluting PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects.

    PubMed

    Gao, Jianting; Huang, Guofeng; Liu, Guojun; Liu, Yan; Chen, Qi; Ren, Lei; Chen, Changqing; Ding, Zhenqi

    2016-08-01

    We fabricated a biodegradable antibiotic-eluting poly(d,l)-lactide-co-glycolide nanofiber-loaded deproteinized bone (ANDB) scaffold that provided sustained delivery of vancomycin to repair methicillin-resistant Staphylococcus aureus bone defects. To fabricate the biodegradable ANDB, poly(d,l)-lactide-co-glycolide and vancomycin were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propano. The solution was then electrospun to produce biodegradable antibiotic-eluting membranes that were deposited on the surface of bovine deproteinized cancellous bone. We used scanning electron microscopy to determine the properties of the scaffold. Both elution and high-performance liquid chromatography assays were used to evaluate the in vitro vancomycin release rate from the ANDB scaffold. Three types of scaffolds were co-cultured with bacteria to confirm the in vitro antibacterial activity. The infected bone defect rabbit model was induced by injecting 10(7) colony forming units of a methicillin-resistant Staphylococcus aureus strain into the radial defect of rabbits. Animals were then separated into treatment groups and implanted according to the following scheme: ANDB scaffold in group A, poly(d,l)-lactide-co-glycolide nanofiber-loaded deproteinized bone (NDB) scaffold with intravenous (i.v.) vancomycin in group B, and NDB scaffold alone in group C. Treatment efficacy was evaluated after eight weeks using radiological, microbiological, and histological examinations. In vitro results revealed that biodegradable ANDB scaffolds released concentrations of vancomycin that were greater than the minimum inhibitory concentration for more than four weeks. Bacterial inhibition tests also confirmed antibacterial efficacy lasted for approximately four weeks. Radiological and histological scores obtained in vivo revealed significant differences between groups A, B and C. Importantly, group A had significantly lower bacterial load and better bone regeneration when compared to either group B

  12. Histological evaluation of an impacted bone graft substitute composed of a combination of mineralized and demineralized allograft in a sheep vertebral bone defect.

    PubMed

    Fujishiro, Takaaki; Bauer, Thomas W; Kobayashi, Naomi; Kobayashi, Hideo; Sunwoo, Moon Hae; Seim, Howard B; Turner, A Simon

    2007-09-01

    Demineralized bone matrix (DBMs) preparations are a potential alternative or supplement to autogenous bone graft, but many DBMs have not been adequately tested in clinically relevant animal models. The aim of current study was to compare the efficacy of a new bone graft substitute composed of a combination of mineralized and demineralized allograft, along with hyaluronic acid (AFT Bone Void Filler) with several other bone graft materials in a sheep vertebral bone void model. A drilled defect in the sheep vertebral body was filled with either the new DBM preparation, calcium sulfate (OsteoSet), autologous bone graft, or left empty. The sheep were euthanized after 6 or 12 weeks, and the defects were examined by histology and quantitative histomorphometry. The morphometry data were analyzed by one-way analysis of variance with the post hoc Tukey-Kramer test or the Student's t-test. All of the bone defects in the AFT DBM preparation group showed good new bone formation with variable amounts of residual DBM and mineralized bone graft. The DBM preparation group at 12 weeks contained significantly more new bone than the defects treated with calcium sulfate or left empty (respectively, p < 0.05, p < 0.01). There was no significant difference between the DBM and autograft groups. No adverse inflammatory reactions were associated with any of the three graft materials. The AFT preparation of a mixture of mineralized and demineralized allograft appears to be an effective autograft substitute as tested in this sheep vertebral bone void model. PMID:17309059

  13. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model.

    PubMed

    Chen, Guobao; Yang, Li; Lv, Yonggang

    2016-04-01

    To promote bone healing, bone repair biomaterials are increasingly designed to incorporate growth factors. However, the impact of matrix mechanics of cell-free scaffold independent of microstructure on the osteogenic differentiation of endogenous osteoprogenitor cells orchestrating bone repair and regeneration remains not to be fully understood. In our recent study, three-dimensional (3D) scaffolds with different stiffness but same microstructure have been successfully fabricated by coating decellularized bone with collagen/hydroxyapatite (HA) mixture with different collagen rations. It has been demonstrated that the scaffold with optimal stiffness can induce the osteogenic differentiation of MSCs in vitro and in the subcutaneous tissue. The present in vivo study further investigated the repair efficiency of these scaffolds in a rabbit radius with a critical-sized segmental defect model and its potential mechanism. Micro-computed tomography (μ-CT), X-ray and histological analysis were carried out to evaluate the repair capacity of these scaffolds. The results demonstrated that the cell-free scaffold with optimal stiffness incorporation of endogenous osteoprogenitor cells significantly promoted the repair and reconstruction quality of mass bone defect. One of the crucial mechanisms was that hypoxia and stromal cell-derived factor-1α (SDF-1α) mediated mesenchymal stem cells (MSCs) migration by which matrix mechanics exerted influence on bone fracture healing. These findings suggested that only modulating the matrix stiffness of cell-free scaffold can be one of the most attractive strategies for promoting the progression of bone healing. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 833-841, 2016. PMID:26650620

  14. Photobiomodulation and bone healing in diabetic rats: evaluation of bone response using a tibial defect experimental model.

    PubMed

    Magri, Angela Maria Paiva; Fernandes, Kelly Rossetti; Assis, Lívia; Mendes, Nathalia Antal; da Silva Santos, Ana Lúcia Yaeko; de Oliveira Dantas, Edilson; Rennó, Ana Claudia

    2015-09-01

    Diabetes mellitus (DM) leads to a delay in bone healing. Thus, some therapeutic approaches have been used to accelerate the process of bone repair such as photobiomodulation (PBM). Therefore, the present study aimed to evaluate the effects of PBM, in different fluences, in bone repair in an experimental model of tibial bone defects in diabetic rats. Sixty-four Wistar rats were submitted to a surgical procedure to perform bone defect and distributed in four groups: diabetic control group (DCG), diabetic laser group 30 J/cm(2) (L30), diabetic laser group 60 J/cm(2) (L60), and diabetic laser group 120 J/cm(2) (L120). A 808 nm Ga-Al-As (DMC Equipment, São Carlos, SP, Brazil) laser, 100 mW; 0.028 cm(2); 3.57 W/cm(2); 30, 60, and 120 J/cm(2); 0.84, 1.68, and 3.36 J; 8, 16, and 33 s was used. Animals were euthanized 15 and 30 days after the surgery. Histological, morphometric, immunohistochemistry, and biomechanical analyses were performed. In the histological and morphometric evaluation, all laser-treated groups showed a better histological pattern and a higher amount of newly formed bone compared to DCG. An intense RUNX2 immunoexpression was observed in the laser-treated groups, 15 days after the surgery. Receptor activator of nuclear factor κ-β ligand (RANK-L) immunohistochemistry analysis showed a significant decrease in the immunoreactivity for L30 and L120, 30 days after surgery. There was no statistical difference in the biomechanical analysis among the groups. In conclusion, PBM, in all fluences used, showed an osteogenic potential in bone healing of diabetic rats. PMID:26223384

  15. Increased tooth mobility because of loss of alveolar bone support: a hazard for zirconia two-unit cantilever resin-bonded FDPs in vitro?

    PubMed

    Sterzenbach, Guido; Tunjan, Rene; Rosentritt, Martin; Naumann, Michael

    2014-02-01

    This study evaluates in vitro the impact of increased abutment tooth mobility on survival of zirconia-based two-unit cantilever resin-bonded fixed dental prosthesis (RB-FDP) by long-term dynamic loading in a chewing simulator. Human maxillary central incisors (n = 32) were endodontically treated and alveolar bone loss was simulated: 0% (group B), 25% (group C), and 50% (group D). RB-FDPs were adhesively luted. Zirconia full crown two-unit FDPs served as control (group A). Specimens were exposed to simulated clinical function by two subsequent sequences of thermal-cycling (2 × 3.000) parallel to mechanical loading (1.2 × 10(6) load cycles) (TCML; first sequence: load 1-25 N; second sequence: load 1-50 N). Tooth mobility increased significantly as the simulated bone level decreased (p < 0.001). Log-rank tests revealed no significant differences between experimental groups (p = 0.479). The results support the assumption that zirconia-based two-unit cantilever RB-FDPs may be an appropriate treatment option, even if abutment tooth mobility increase because of alveolar bone loss. However, debonding of zirconia-based two-unit RB-FDPs will be a likely event, whereas fatal failures of the abutment teeth may not occur. PMID:23997026

  16. Alveolar bone thickness and lower incisor position in skeletal Class I and Class II malocclusions assessed with cone-beam computed tomography

    PubMed Central

    Ucar, Faruk Izzet; Buyuk, Suleyman Kutalmis; Ozer, Torun; Uysal, Tancan

    2013-01-01

    Objective To evaluate lower incisor position and bony support between patients with Class II average- and high-angle malocclusions and compare with the patients presenting Class I malocclusions. Methods CBCT records of 79 patients were divided into 2 groups according to sagittal jaw relationships: Class I and II. Each group was further divided into average- and high-angle subgroups. Six angular and 6 linear measurements were performed. Independent samples t-test, Kruskal-Wallis, and Dunn post-hoc tests were performed for statistical comparisons. Results Labial alveolar bone thickness was significantly higher in Class I group compared to Class II group (p = 0.003). Lingual alveolar bone angle (p = 0.004), lower incisor protrusion (p = 0.007) and proclination (p = 0.046) were greatest in Class II average-angle patients. Spongious bone was thinner (p = 0.016) and root apex was closer to the labial cortex in high-angle subgroups when compared to the Class II average-angle subgroup (p = 0.004). Conclusions Mandibular anterior bony support and lower incisor position were different between average- and high-angle Class II patients. Clinicians should be aware that the range of lower incisor movement in high-angle Class II patients is limited compared to average- angle Class II patients. PMID:23814708

  17. Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect

    PubMed Central

    Grigolato, Roberto; Pizzi, Natalia; Brotto, Maria C; Corrocher, Giovanni; Desando, Giovanna; Grigolo, Brunella

    2015-01-01

    The aim of this study was to evaluate the clinical performance of a magnesium-enriched hydroxyapatite biomaterial used as bone substitute in a case of mandibular ameloblastoma treated with conservative surgery. A 63 year old male patient was treated for an ameloblastoma in the anterior mandibular profile. After tissue excision, the bone defect was filled with a synthetic hydroxyapatite biomaterial enriched with magnesium ions, in order to promote bone tissue regeneration and obtain a good aesthetic result. Twenty-five months after surgery, due to ameloblastoma recurrence in an area adjacent to the previously treated one, the patient underwent to a further surgery. In that occasion the surgeon performed a biopsy in the initially treated area, in order to investigate the nature of the newly-formed tissue and to evaluate the bone regenerative potential of this biomaterial by clinical, radiographic and histological analyses. The clinical, radiographic and histological evaluations showed various characteristics of bone remodeling stage with an ongoing osteogenic formation and a good osteo-integration. In conclusion, magnesium-enriched hydroxyapatite used as bone substitute in a mandibular defect due to ameloblastoma excision showed an effective bone regeneration at 25 months follow-up, demonstrating an excellent biocompatibility and a high osteo-integration property. PMID:25784998

  18. How bone forms in large cancellous defects: critical analysis based on experimental work and literature.

    PubMed

    Draenert, K; Draenert, M; Erler, M; Draenert, A; Draenert, Y

    2011-09-01

    The behaviour of physiological biomaterials, β-tricalciumphosphate and hydroxyapatite, is analysed based on current literature and our own experimental work. The properties of graft substitutes based on ceramic materials are clearly defined according to their scientific efficiency. The strength of the materials and their biodegradability are still not fully evaluated. Strength and degradability have a direct proportional relationship and are considered the most efficient way to be adapted by their properties to the needs for the treatment of bone defects. New technologies for the manufacturing process are presented that increase those properties and thus open up new indications and easier application of the ceramic materials. The implantation process as well is carefully validated by animal experiments to avoid failures. Based on the experiments, a completely new approach is defined as to how primary bone formation with osteoconductive ceramics can be achieved. The milestones in that approach comprise a synthetically manufactured replica of the bone marrow spaces as osteoconductive ladder, whereas the bead is defined as bone-forming element. As a result, materials are available with high strength if the ceramic is solid or highly porous and possesses a micro-structure. The injection moulding process allows for the combination of high strength of the material with high porosity. Based on the strong capillary forces, micro-chambered beads fulfil most expectations for primary bone formation in cancellous bone defects, including drug delivery, mechanical strengthening if necessary, and stable implantation in situ by coagulation of the blood and bone marrow suctioned in. PMID:21742327

  19. Histologic Evaluation of Critical Size Defect Healing With Natural and Synthetic Bone Grafts in the Pigeon ( Columba livia ) Ulna.

    PubMed

    Tunio, Ahmed; Jalila, Abu; Goh, Yong Meng; Shameha-Intan; Shanthi, Ganabadi

    2015-06-01

    Fracture and bone segment loss are major clinical problems in birds. Achieving bone formation and clinical union in a fracture case is important for the survival of the bird. To evaluate the efficacy of bone grafts for defect healing in birds, 2 different bone grafts were investigated in the healing of a bone defect in 24 healthy pigeons ( Columba livia ). In each bird, a 1-cm critical size defect (CSD) was created in the left ulna, and the fracture was stabilized with external skeletal fixation (ESF). A graft of hydroxyapatite (HA) alone (n = 12 birds) or demineralized bone matrix (DBM) combined with HA (n = 12 birds) was implanted in the CSD. The CSD healing was evaluated at 3 endpoints: 3, 6, and 12 weeks after surgery. Four birds were euthanatized at each endpoint from each treatment group, and bone graft healing in the ulna CSD was evaluated by histologic examination. The CSD and graft implants were evaluated for quality of union, cortex development, and bone graft incorporation. Results showed no graft rejection in any bird, and all birds had connective tissue formation in the defect because of the bone graft application. These results suggest that bone defect healing can be achieved by a combination of osteoinductive and osteoconductive bone graft materials for clinical union and new bone regeneration in birds. The combination of DBM and HA resulted in a better quality bone graft (P < .05) than did HA alone, but there was no significant differences in cortex development or bone graft incorporation at 3, 6, or 12 weeks. From the results of this study, we conclude that HA bone grafts, alone or in combination with DBM, with external skeletal fixation is suitable and safe for bone defect and fracture treatment in pigeons. PMID:26115209

  20. Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds.

    PubMed

    Roohani-Esfahani, S I; Dunstan, C R; Davies, B; Pearce, S; Williams, R; Zreiqat, H

    2012-11-01

    This is the first reported study to prepare highly porous baghdadite (Ca₃ZrSi₂O₉) scaffolds with and without surface modification and investigate their ability to repair critical-sized bone defects in a rabbit radius under normal load. The modification was carried out to improve the mechanical properties of the baghdadite scaffolds (particularly to address their brittleness) by coating their surfaces with a thin layer (∼400 nm) of polycaprolactone (PCL)/bioactive glass nanoparticles (nBGs). The β-tricalcium phosphate/hydroxyapatite (TCP/HA) scaffolds with and without modification were used as the control groups. All of the tested scaffolds had an open and interconnected porous structure with a porosity of ∼85% and average pore size of 500 μm. The scaffolds (six per scaffold type and size of 4 mm × 4 mm × 15 mm) were implanted (press-fit) into the rabbit radial segmental defects for 12 weeks. Micro-computed tomography and histological evaluations were used to determine bone ingrowth, bone quality, and implant integration after 12 weeks of healing. Extensive new bone formation with complete bridging of the radial defect was evident with the baghdadite scaffolds (modified/unmodified) at the periphery and in close proximity to the ceramics within the pores, in contrast to TCP/HA scaffolds (modified/unmodified), where bone tended to grow between the ulna adjacent to the implant edge. Although the modification of the baghdadite scaffolds significantly improved their mechanical properties, it did not show any significant effect on in vivo bone formation. Our findings suggest that baghdadite scaffolds with and without modification can serve as a potential material to repair critical sized bone defects. PMID:22842031

  1. The effect of bone allografts combined with bone marrow stromal cells on the healing of segmental bone defects in a sheep model

    PubMed Central

    2014-01-01

    Background The repair of large bone defects is a major orthopedic challenge because autologous bone grafts are not available in large amounts and because harvesting is often associated with donor-site morbidity. Considering that bone marrow stromal cells (BMSC) are responsible for the maintenance of bone turnover throughout life, we investigated bone repair at a site of a critically sized segmental defect in sheep tibia treated with BMSCs loaded onto allografts. The defect was created in the mid-portion of the tibial diaphysis of eight adult sheep, and the sheep were treated with ex-vivo expanded autologous BMSCs isolated from marrow aspirates and loaded onto cortical allografts (n = 4). The treated sheep were compared with control sheep that had been treated with cell-free allografts (n = 4) obtained from donors of the same breed as the receptor sheep. Results The healing response was monitored by radiographs monthly and by computed tomography and histology at six, ten, fourteen, and eighteen weeks after surgery. For the cell-loaded allografts, union was established more rapidly at the interface between the host bone and the allograft, and the healing process was more conspicuous. Remodeling of the allograft was complete at 18 weeks in the cell-treated animals. Histologically, the marrow cavity was reestablished, with intertrabecular spaces being filled with adipose marrow and with evidence of focal hematopoiesis. Conclusions Allografts cellularized with AOCs (allografts of osteoprogenitor cells) can generate great clinical outcomes to noncellularized allografts to consolidate, reshape, structurally and morphologically reconstruct bone and bone marrow in a relatively short period of time. These features make this strategy very attractive for clinical use in orthopedic bioengineering. PMID:24495743

  2. Study of bone-like hydroxyapatite/polyamino acid composite materials for their biological properties and effects on the reconstruction of long bone defects

    PubMed Central

    Yan, Ling; Jiang, Dian-ming

    2015-01-01

    Purpose The purpose of this study was to investigate the effect of bone-like hydroxyapatite/polyamino acid (BHA/PAA) in the osteogenesis and reconstruction of long segmental bone defects. Methods In vitro, MG63 cells were cultured with BHA/PAA. The osteoinductive activity of the BHA/PAA material was evaluated using inverted microscopy, scanning electron microscopy, MTT proliferation assay, and the determination of alkaline phosphatase activity and Ca2+ content. In vivo, the radial bone defect was made in 20 New Zealand White rabbits, and then these animal were randomly divided into two groups (n=10), the experimental group (with BHA/PAA) and the control group (without BHA/PAA). Postoperatively, the osteogenesis effect of BHA/PAA was evaluated through X-ray, hematoxylin–eosin staining, observation of the gross bone specimen, immunohistochemistry, and fluorescent confocal scanning microscopy. Results In vitro, BHA/PAA promoted the adhesion, growth, and calcium nodule formation of MG63 cells, and it had good osteogenesis activity. In vivo, with BHA/PAA material degradation and absorption, the new bone gradually formed, and the bone defect gradually recovered in the experimental group. In the control group, a limited bone formation was found at the bone broken ends, and the bone defect was obviously visible. Conclusion In vitro and in vivo, we confirmed that BHA/PAA was effective in inducing osteogenesis and reconstructing a long segmental bone defect. PMID:26719675

  3. Effect of sumac extract on serum oxidative status, RANKL/OPG system and alveolar bone loss in experimental periodontitis in rats

    PubMed Central

    SAĞLAM, Mehmet; KÖSEOĞLU, Serhat; HATİPOĞLU, Mükerrem; ESEN, Hacı Hasan; KÖKSAL, Ekrem

    2015-01-01

    Objectives Sumac (Rhus coriaria L.) is widely used spice which has several properties such as antioxidant, anti-inflammatory and antimicrobial. The purpose of this animal study was to evaluate the effects of sumac extract on levels of receptor activator of nuclear factor-kappa B ligand (RANKL), osteoprotegerin (OPG) expression, serum oxidative status, and alveolar bone loss in experimental periodontitis. Material and Methods Twenty-four Wistar rats were separated into three groups: non-ligated (NL, n=8), ligature only (LO, n=8), and ligature and treated with sumac extract (S, n=8) (20 mg/kg per day for 11 days). A 4/0 silk suture was placed around the mandibular right first molars subgingivally; after 11 days, the rats were sacrificed, and alveolar bone loss was histometrically measured. The detection of RANKL and OPG were immunohistochemically performed. Levels of serum total antioxidant status (TAS)/total oxidant status (TOS), and oxidative stress index (OSI) were also analyzed. Results Alveolar bone loss was significantly greater in the LO group compared to the S and NL groups (p<0.05). The number of inflammatory cell infiltrate (ICI) and osteoclasts in the LO group was significantly higher than that of the NL and S groups (p<0.05). The number of osteoblasts in the LO and S groups was significantly higher than that of the NL group (p<0.05). There were significantly more RANKL-positive cells in the LO group than in the S and NL groups (p<0.05). OPG-positive cells were higher in S group than in LO and NL groups (p<0.05). TOS and OSI levels were significantly reduced in S group compared to LO group (P<0.05) and TAS levels were similar in S and NL group (p>0.05). Conclusions The present study showed that systemic administration of sumac extract may reduce alveolar bone loss by affecting RANKL/OPG balance, TOS and OSI levels in periodontal disease in rats. PMID:25760266

  4. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    PubMed Central

    Fu, Yin-Chih; Wang, Yan-Hsiung; Chen, Chung-Hwan; Wang, Chih-Kuang; Wang, Gwo-Jaw; Ho, Mei-Ling

    2015-01-01

    Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid) microspheres (SIM/PLGA) that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS) bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration of bone in the clinical setting. PMID:26664114

  5. Reconstructive Effects of Percutaneous Electrical Stimulation Combined with GGT Composite on Large Bone Defect in Rats

    PubMed Central

    Huang, Tzung-Chi; Chen, Yueh-Sheng; Yao, Chun-Hsu

    2013-01-01

    Previous studies have shown the electromagnetic stimulation improves bone remodeling and bone healing. However, the effect of percutaneous electrical stimulation (ES) was not directly explored. The purpose of this study was to evaluate effect of ES on improvement of bone repair. Twenty-four adult male Sprague-Dawley rats were used for cranial implantation. We used a composite comprising genipin cross-linked gelatin mixed with tricalcium phosphate (GGT). Bone defects of all rats were filled with the GGT composites, and the rats were assigned into six groups after operation. The first three groups underwent 4, 8, and 12 weeks of ES, and the anode was connected to the backward of the defect on the neck; the cathode was connected to the front of the defect on the head. Rats were under inhalation anesthesia during the stimulation. The other three groups only received inhalation anesthesia without ES, as control groups. All the rats were examined afterward at 4, 8, and 12 weeks. Radiographic examinations including X-ray and micro-CT showed the progressive bone regeneration in the both ES and non-ES groups. The amount of the newly formed bone increased with the time between implantation and examination in the ES and non-ES groups and was higher in the ES groups. Besides, the new bone growth trended on bilateral sides in ES groups and accumulated in U-shape in non-ES groups. The results indicated that ES could improve bone repair, and the effect is higher around the cathode. PMID:23818928

  6. Defective bone repair in mast cell deficient mice with c-Kit loss of function.

    PubMed

    Behrends, D A; Cheng, L; Sullivan, M B; Wang, M H; Roby, G B; Zayed, N; Gao, C; Henderson, J E; Martineau, P A

    2014-01-01

    KitW-sh mice carry an inactivating mutation in the gene encoding the receptor for stem cell factor, which is expressed at high levels on the surface of haematopoietic precursor cells. The mutation results in mast cell deficiency, a variety of defects in innate immunity and poorly defined abnormalities in bone. The present study was designed to characterise healing of a cortical window defect in skeletally mature KitW-sh mice using high-resolution micro computed tomographic imaging and histological analyses. The cortical bone defect healed completely in all wild type mice but failed to heal in about half of the KitW-sh mice by 12 weeks post-operative. Defective healing was associated with premature and excessive expression of TRAP positive cells embedded in fibrous marrow but with little change in ALP activity. Immuno-histochemical analyses revealed reduced CD34 positive vascular endothelial cells and F4/80 positive macrophages at 1 and 2 weeks post-operative. Impaired bone healing in the KitW-sh mice was therefore attributed to altered catabolic activity, impaired re-vascularisation and compromised replacement of woven with compact bone. PMID:25284141

  7. VALUE OF PREOPERATIVE RADIOGRAPHIC EVALUATIONS ON KNEE BONE DEFECTS FOR REVISION ARTHROPLASTY

    PubMed Central

    Iamaguchi, Mauricio Masasi; Helito, Camilo Partezani; Gobbi, Riccardo Gomes; Demange, Marco Kawamura; Tirico, Luiz Eduardo Passarelli; Pecora, Jose Ricardo; Camanho, Gilberto Luis

    2015-01-01

    Objective: To evaluate the value of preoperative radiographic evaluations for total knee arthroplasty (TKA) revision. Methods: Thirty-one knees that were operated between 2006 and 2008, in a consecutive series of cases of TKA revision surgery were analyzed retrospectively. The following criteria were evaluated: number of wedges or structured bone grafts used for filling the bone defects; locations of the wedges and bone grafts used; and mean thickness of the polyethylene used. The AORI classification was previously established based on preoperative radiographs, using preestablished criteria. After the analysis, the knees were divided into four groups (I, IIA, IIB and III). Results: The mean number of wedges or grafts used in each knee progressively increased among the groups (group I: 1.33; group IIA: 2; group IIB: 4.33; and group III: 4.83) (P = 0.0012). The commonest locations were medial in the tibia and posteromedial in the femur. There were no statistically significant differences in the thickness of the polyethylene used. Conclusion: The AORI classification for bone defects in the knee, based on preoperative radiographs, showed a correlation with increasing need to use wedges and/or structured grafts in TKA revisions. However, up to 46% of the knees in groups I and IIA presented bone defects of up to 5 mm that were not diagnosed by means of preoperative radiographs. PMID:27047889

  8. Alveolar graft in the cleft lip and palate patient: Review of 104 cases

    PubMed Central

    Tobella-Camps, María L.; Rivera-Baró, Alejandro

    2014-01-01

    Introduction: Alveolar bone grafting is a vital part of the rehabilitation of cleft patients. The factors that have been most frequently associated with the success of the graft are the age at grafting and the pre-grafting orthodontic treatment. Objectives: 1) Describe the cases of alveolar bone grafts performed at the Maxilofacial Unit of Hospital Sant Joan de Déu, Barcelona (HSJD); and 2) Analyze the success/failure of alveolar grafts and related variables. Material and Methods: Descriptive retrospective study using a sample of 104 patients who underwent a secondary alveolar graft at the Craniofacial Unit of HSJD between 1998 and 2012. The graft was done by the same surgeon in all patients using bone from the iliac crest. Results: 70% of the patients underwent the procedure before the age of 15 (median 14.45 years); 70% of the graft patients underwent pre-graft maxillary expansion. A total of 100 cases were recorded as successful (median age of 14.58 years, 68 underwent pre-graft expansion) and only 4 were recorded as failures (median age of 17.62 years, 3 underwent pre-graft expansion). We did not find statistically significant differences in age at the time of grafting or pre-surgical expansion when comparing the success and failure groups. We found the success rate of the graft to be 96.2%. Conclusions: The number of failures was too small to establish a statistically significant conclusion in our sample regarding the age at grafting and pre-grafting expansion. The use of alveolar bone grafting from the iliac crest has a very high success rate with a very low incidence of complications. Existing controversies regarding secondary bone grafting and the wide range of success rates found in the literature suggest that it is necessary to establish a specific treatment protocol that ensures the success of this procedure. Key words:Alveolar graft, cleft lip and palate, alveolar cleft, alveolar defect. PMID:24880440

  9. Pullulan/dextran/nHA Macroporous Composite Beads for Bone Repair in a Femoral Condyle Defect in Rats

    PubMed Central

    Schlaubitz, Silke; Derkaoui, Sidi Mohammed; Marosa, Lydia; Miraux, Sylvain; Renard, Martine; Catros, Sylvain; Le Visage, Catherine; Letourneur, Didier; Amédée, Joëlle; Fricain, Jean-Christophe

    2014-01-01

    The repair of bone defects is of particular interest for orthopedic, oral, maxillofacial, and dental surgery. Bone loss requiring reconstruction is conventionally addressed through bone grafting. Depending on the size and the location of the defect, this method has limits and risks. Biomaterials can offer an alternative and have features supporting bone repair. Here, we propose to evaluate the cellular penetration and bone formation of new macroporous beads based on pullulan/dextran that has been supplemented with nanocrystalline hydroxyapatite in a rat model. Cross-linked beads of 300–500 µm diameters were used in a lateral femoral condyle defect and analyzed by magnetic resonance imaging, micro-computed tomography, and histology in comparison to the empty defects 15, 30, and 70 days after implantation. Inflammation was absent for both conditions. For empty defects, cellularisation and mineralization started from the periphery of the defect. For the defects containing beads, cellular structures filling out the spaces between the scaffolds with increasing interconnectivity and trabecular-like organization were observed over time. The analysis of calcified sections showed increased mineralization over time for both conditions, but was more pronounced for the samples containing beads. Bone Mineral Density and Bone Mineral Content were both significantly higher at day 70 for the beads in comparison to empty defects as well as compared with earlier time points. Analysis of newly formed tissue around the beads showed an increase of osteoid tissue, measured as percentage of the defect surface. This study suggests that the use of beads for the repair of small size defects in bone may be expanded on to meet the clinical need for a ready-to-use fill-up material that can favor bone formation and mineralization, as well as promote vessel ingrowth into the defect site. PMID:25330002

  10. Modified Whale's tail technique for the management of bone-defect in anterior teeth.

    PubMed

    Kuriakose, Anu; Ambooken, Majo; Jacob, Jayan; John, Priya

    2015-01-01

    The purpose of this case report is to describe the efficacy of a modified Whale's tail technique to achieve primary closure and thereby aid in regeneration of an interdental osseous defect between maxillary central incisors complicated by an aberrant frenal attachment. A healthy 32-year-old female patient reported with the complaint of spacing between her upper front teeth. Clinical examination revealed an aberrant frenum extending into the interdental papilla in relation to the central incisors. There was a 6 mm periodontal pocket in relation to the mesiopalatal aspect of maxillary left central incisor. Intraoral periapical radiograph showed vertical bone loss in relation to mesial aspect of maxillary left central incisor. A modified Whale's tail flap was employed to access the area. The defect was filled with an alloplastic graft. Six months postoperative review showed complete elimination of the pocket along with radiographic bone fill of the defect. PMID:25810604

  11. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation

    PubMed Central

    Zeng, Xiao Bo; Hu, Hao; Xie, Li Qin; Lan, Fang; Jiang, Wen; Wu, Yao; Gu, Zhong Wei

    2012-01-01

    Introduction In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. A type of magnetic scaffold composed of magnetic nanoparticles (MNPs) and hydroxyapatite (HA) for bone repair has been developed by our research group. Aim and methods In this study, to investigate the influence of the MNP content (in the scaffolds) on the cell behaviors and the interactions between the magnetic scaffold and the exterior magnetic field, a series of MNP-HA magnetic scaffolds with different MNP contents (from 0.2% to 2%) were fabricated by immersing HA scaffold into MNP colloid. ROS 17/2.8 and MC3T3-E1 cells were cultured on the scaffolds in vitro, with and without an exterior magnetic field, respectively. The cell adhesion, proliferation and differentiation were evaluated via scanning electron microscopy; confocal laser scanning microscopy; and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase, and bone gla protein activity tests. Results The results demonstrated the positive influence of the magnetic scaffolds on cell adhesion, proliferation, and differentiation. Further, a higher amount of MNPs on the magnetic scaffolds led to more significant stimulation. Conclusion The magnetic scaffold can respond to the exterior magnetic field and engender some synergistic effect to intensify the stimulating effect of a magnetic field to the proliferation and differentiation of cells. PMID:22848165

  12. Biocompatibility and manageability of a new fixable bone graft for the treatment of localized bone defects: preliminary study in a dog model.

    PubMed

    Fontana, Filippo; Rocchietta, Isabella; Dellavia, Claudia; Nevins, Myron; Simion, Massimo

    2008-12-01

    The present investigation was performed to compare the biocompatibility, safety, and manageability of a newly developed bone block and a deproteinized bovine bone block (Bio-Oss) for the treatment of localized bone defects in a dog model. Two male beagle dogs were used for this study. The mandibular premolars were extracted and two saddle-type defects were created bilaterally in the edentulous area. The defects were filled according to a randomized design with Bio-Oss bone block or with an equine hydroxyapatite plus collagen bone block (eHAC). Most control and test sites developed dehiscences during healing. After 4 weeks, the animals were euthanized and each hemimandible was prepared for histologic examination. No significant difference in terms of local tolerance was observed between test and control sites, and test and control sites showed similar histologic findings. However, a significant difference was noticed between the Bio-Oss block and the new bone block in terms of manageability. PMID:19146056

  13. Exogenous phytoestrogenic molecule icaritin incorporated into a porous scaffold for enhancing bone defect repair.

    PubMed

    Wang, Xin-Luan; Xie, Xin-Hui; Zhang, Ge; Chen, Shi-Hui; Yao, Dong; He, Kai; Wang, Xiao-Hong; Yao, Xin-Sheng; Leng, Yang; Fung, Kwok-Pui; Leung, Kwok-Sui; Qin, Ling

    2013-01-01

    This study was designed to develop a bioactive scaffold to enhance bone defect repair in steroid-associated osteonecrosis (SAON). Icaritin, a metabolite of the herb Epimedium, has been identified as an angiogenic and osteogenic phytomolecule. Icaritin was homogenized into poly lactic-co-glycolic acid/tricalcium phosphate (PLGA/TCP) to form an icaritin-releasing porous composite scaffold (PLGA/TCP/icaritin) by fine-spinning technology. In vitro, high performance liquid chromatography was used to determine the release of icaritin during degradation of PLGA/TCP/icaritin. The osteogenic effects of PLGA/TCP/icaritin were evaluated using rat bone marrow mesenchymal stem cells (BMSCs). In vivo, the osteogenic effect of PLGA/TCP/icaritin was determined within a bone tunnel after core decompression in SAON rabbits and angiography within scaffolds was examined in rabbit muscle pouch model. In vitro study confirmed the sustainable release of icaritin from PLGA/TCP/icaritin with the bioactive scaffold promoting the proliferation and osteoblastic differentiation of rat BMSCs. In vivo study showed that PLGA/TCP/icaritin significantly promoted new bone formation within the bone defect after core decompression in SAON rabbits and enhanced neovascularization in the rabbit muscle pouch experiment. In conclusion, PLGA/TCP/icaritin is an innovative local delivery system that demonstrates sustainable release of osteogenic phytomolecule icaritin enhancing bone repair in an SAON rabbit model. The supplement of scaffold materials with bioactive phytomolecule(s) might improve treatment efficiency in challenging orthopedic conditions. PMID:22807243

  14. THE BISPHOSPHONATE ZOLEDRONIC ACID DECREASES TUMOR GROWTH IN BONE IN MICE WITH DEFECTIVE OSTEOCLASTS*

    PubMed Central

    Hirbe, Angela C.; Roelofs, Anke J.; Floyd, Desiree H.; Deng, Hongju; Becker, Stephanie N.; Lanigan, Lisa G.; Apicelli, Anthony J.; Xu, Zhiqiang; Prior, Julie L.; Eagleton, Mark C.; Piwnica-Worms, David; Rogers, Michael J.; Weilbaecher, Katherine

    2009-01-01

    Bisphosphonates (BPs), bone targeted drugs that disrupt osteoclast function, are routinely used to treat complications of bone metastasis. Studies in preclinical models of cancer have shown that BPs reduce skeletal tumor burden and increase survival. Similarly, we observed in the present study that administration of the Nitrogen-containing BP (N-BP), zoledronic acid (ZA) to osteolytic tumor-bearing Tax+ mice beginning at 6 months of age led to resolution of radiographic skeletal lesions. N-BPs inhibit farnesyl diphosphate (FPP) synthase, thereby inhibiting protein prenylation and causing cellular toxicity. We found that ZA decreased Tax+ tumor and B16 melanoma viability and caused the accumulation of unprenylated Rap1a proteins in vitro. However, it is presently unclear whether N-BPs exert anti-tumor effects in bone independent of inhibition of osteoclast (OC) function in vivo. Therefore, we evaluated the impact of treatment with ZA on B16 melanoma bone tumor burden in irradiated mice transplanted with splenic cells from src-/- mice, which have non-functioning OCs. OC-defective mice treated with ZA demonstrated a significant 88% decrease in tumor growth in bone compared to vehicle-treated OC-defective mice. These data support an osteoclast-independent role for N-BP therapy in bone metastasis. PMID:19442620

  15. Experiment K-310: The effect of space flight on ostenogenesis and dentinogenesis in the mandible of rats. Supplement 1: The effects of space flight on alveolar bone modeling and remodeling in the rat mandible

    NASA Technical Reports Server (NTRS)

    Van, P. T.; Vignery, A.; Bacon, R.

    1981-01-01

    The histomorphometric study of alveolar bone, a non-weight-bearing bone submitted mainly to the mechanical stimulations of mastication, showed that space flight decreases the remodeling activity but does not induce a negative balance between resorption and formation. The most dramatic effect of space flight has been observed along the periosteal surface, and especially in areas not covered with masticatory muscles, where bone formation almost stopped completely during the flight period. This bone, having been submitted to the same mechanical forces in the flight animals and the controls, leads to the conclusion that factors other than mechanical loading might be involved in the decreased bone formation during flight.

  16. Guided Self-Generation of Vascularized Neo-Bone for Autologous Reconstruction of Large Mandibular Defects.

    PubMed

    Wei, Jiao; Herrler, Tanja; Dai, Chuanchang; Liu, Kai; Han, Dong; Li, Qingfeng

    2016-06-01

    Reconstruction of large mandibular defects is complex and challenging. The authors aimed to individually self-generate a large vascularized bone construct for autologous transplantation without the use of exogenous additives based on the concept of guided self-generation. Using computer-aided design and manufacturing a large size goat mandibular bone was reconstructed in 3 dimensions. Its negative mold printed from hydroxylapatite was temporarily embedded into the costal periosteum along with a contralateral demineralized bone matrix scaffold as control. After 3 months, a mandibular bone construct was obtained and used for autologous transplantation. Osteogenesis and angiogenesis were assessed by real-time imaging, histology, and biomechanical tests during neo-bone formation and up to 6 months after transplantation surgery. A total of 20 animals received implantation of a mandibular bone negative mold along with a contralateral demineralized bone matrix scaffold. Resulting negative mold mandibular bone constructs showed anatomically, histologically, and functionally similar characteristics compared with native controls. Only 1 goat presented partial fibrosis during construct generation with subsequent absorbtion after reconstruction. The absence of exogenous cells, growth factors, and scaffolds facilitated direct translation of this novel concept into clinical application. Further studies are needed to determine functional long-term outcomes and possible extensions to other tissues and organs. PMID:27213741

  17. Functional reconstruction of a bilateral maxillectomy defect using a fibula osteocutaneous flap with osseointegrated implants.

    PubMed

    Nakayama, B; Matsuura, H; Ishihara, O; Hasegawa, H; Mataga, I; Torii, S

    1995-10-01

    We have achieved functional reconstruction for a bilateral upper alveolar bone, gingival, and palatal defect that has various problems originating from instability of the prosthesis using the fibula osteocutaneous flap with osseointegrated implants. The flap had three bone segments and two skin paddles. The combined bone segments created the upper alveolar arch, and the skin paddles closed the palatal defect. Nine months later, prosthodontic treatment was performed successfully. Our procedure restored the patient to masticatory function of the upper jaw, intelligible speech, and natural facial appearance. As a result, quality of life of the patient was extremely improved. PMID:7568500

  18. Bone regeneration in calvarial defects in a rat model by implantation of human bone marrow-derived mesenchymal stromal cell spheroids.

    PubMed

    Suenaga, Hideyuki; Furukawa, Katsuko S; Suzuki, Yukako; Takato, Tsuyoshi; Ushida, Takashi

    2015-11-01

    Mesenchymal stem cell (MSC) condensation contributes to membrane ossification by enhancing their osteodifferentiation. We investigated bone regeneration in rats using the human bone marrow-derived MSC-spheroids prepared by rotation culture, without synthetic or exogenous biomaterials. Bilateral calvarial defects (8 mm) were created in nude male rats; the left-sided defects were implanted with MSC-spheroids, β-tricalcium phosphate (β-TCP) granules, or β-TCP granules + MSC-spheroids, while the right-sided defects served as internal controls. Micro-computed tomography and immunohistochemical staining for osteocalcin/osteopontin indicated formation of new, full-thickness bones at the implantation sites, but not at the control sites in the MSC-spheroid group. Raman spectroscopy revealed similarity in the spectral properties of the repaired bone and native calvarial bone. Mechanical performance of the bones in the MSC-implanted group was good (50 and 60% those of native bones, respectively). All tests showed poor bone regeneration in the β-TCP and β-TCP + MSC-spheroid groups. Thus, significant bone regeneration was achieved with MSC-spheroid implantation into bone defects, justifying further investigation. PMID:26449444

  19. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2.

    PubMed

    Ribeiro, Frederico O; Gómez-Benito, María José; Folgado, João; Fernandes, Paulo R; García-Aznar, José Manuel

    2015-01-01

    The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2) has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies. PMID:26043112

  20. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2

    PubMed Central

    2015-01-01

    The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2) has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies. PMID:26043112

  1. Evaluation of Qualitative Changes in Simulated Periodontal Ligament and Alveolar Bone Using a Noncontact Electromagnetic Vibration Device with a Laser Displacement Sensor

    PubMed Central

    Kobayashi, Hiroshi; Hayashi, Makoto; Yamaoka, Masaru; Yasukawa, Takuya; Ibi, Haruna; Ogiso, Bunnai

    2016-01-01

    Evaluating periodontal tissue condition is an important diagnostic parameter in periodontal disease. Noncontact electromagnetic vibration device (NEVD) was previously developed to monitor this condition using mechanical parameters. However, this system requires accelerometer on the target tooth. This study assessed application of laser displacement sensor (LDS) to NEVD without accelerometer using experimental tooth models. Tooth models consisted of cylindrical rod, a tissue conditioner, and polyurethane or polyurethane foam to simulate tooth, periodontal ligament, and alveolar bone, respectively. Tissue conditioner was prepared by mixing various volumes of liquid with powder. Mechanical parameters (resonant frequency, elastic modulus, and coefficient of viscosity) were assessed using NEVD with the following methods: Group A, measurement with accelerometer; Group B, measurement with LDS in the presence of accelerometer; and Group C, measurement with LDS in the absence of accelerometer. Mechanical parameters significantly decreased with increasing liquid volume. Significant differences were also observed between the polyurethane and polyurethane foam models. Meanwhile, no statistically significant differences were observed between Groups A and B; however, most mechanical parameters in Group C were significantly larger and more distinguishable than those of Groups A and B. LDS could measure mechanical parameters more accurately and clearly distinguished the different periodontal ligament and alveolar bone conditions. PMID:27274995

  2. Evaluation of Qualitative Changes in Simulated Periodontal Ligament and Alveolar Bone Using a Noncontact Electromagnetic Vibration Device with a Laser Displacement Sensor.

    PubMed

    Kobayashi, Hiroshi; Hayashi, Makoto; Yamaoka, Masaru; Yasukawa, Takuya; Ibi, Haruna; Ogiso, Bunnai

    2016-01-01

    Evaluating periodontal tissue condition is an important diagnostic parameter in periodontal disease. Noncontact electromagnetic vibration device (NEVD) was previously developed to monitor this condition using mechanical parameters. However, this system requires accelerometer on the target tooth. This study assessed application of laser displacement sensor (LDS) to NEVD without accelerometer using experimental tooth models. Tooth models consisted of cylindrical rod, a tissue conditioner, and polyurethane or polyurethane foam to simulate tooth, periodontal ligament, and alveolar bone, respectively. Tissue conditioner was prepared by mixing various volumes of liquid with powder. Mechanical parameters (resonant frequency, elastic modulus, and coefficient of viscosity) were assessed using NEVD with the following methods: Group A, measurement with accelerometer; Group B, measurement with LDS in the presence of accelerometer; and Group C, measurement with LDS in the absence of accelerometer. Mechanical parameters significantly decreased with increasing liquid volume. Significant differences were also observed between the polyurethane and polyurethane foam models. Meanwhile, no statistically significant differences were observed between Groups A and B; however, most mechanical parameters in Group C were significantly larger and more distinguishable than those of Groups A and B. LDS could measure mechanical parameters more accurately and clearly distinguished the different periodontal ligament and alveolar bone conditions. PMID:27274995

  3. A 4 year follow-up study of alveolar bone height influenced by two dissimilar Class II amalgam restorations.

    PubMed

    Fisher, D; Markitziu, A; Fishel, D; Brayer, L

    1984-07-01

    Fifty-four paired, approximal amalgam fillings, extended (E) versus unextended (NE) were placed in forty-three patients and followed up to 4 years. Yearly measurements between the alveolar crest and (a) the apical margin of the fillings (E, NE), and (b) the cemento-enamel junction of the control group, were performed using bite-wing radiographs joined to a translucent grid magnified ten-fold. The rate of alveolar crest resorption was similar for the control (C) and the unextended filling (NE) and reached 0.45 mm after 4 years of follow-up. The resorption of the alveolar crest under the extended (E) filling was significantly higher and reached 0.80 mm after 4 years (P less than 0.001). PMID:6589386

  4. Bone regeneration via novel macroporous CPC scaffolds in critical-sized cranial defects in rats

    PubMed Central

    Lee, Kangwon; Weir, Michael D.; Lippens, Evi; Mehta, Manav; Wang, Ping; Duda, Georg N.; Kim, Woo S.; Mooney, David J.; Xu, Hockin H. K.

    2014-01-01

    Objectives Calcium phosphate cement (CPC) is promising for dental and craniofacial applications due to its ability to be injected or filled into complex-shaped bone defects and molded for esthetics, and its resorbability and replacement by new bone. The objective of this study was to investigate bone regeneration via novel macroporous CPC containing absorbable fibers, hydrogel microbeads and growth factors in critical-sized cranial defects in rats. Methods Mannitol porogen and alginate hydrogel microbeads were incorporated into CPC. Absorbable fibers were used to provide mechanical reinforcement to CPC scaffolds. Six CPC groups were tested in rats: (1) Control CPC without macropores and microbeads; (2) Macroporous CPC + large fiber; (3) Macroporous CPC + large fiber + nanofiber; (4) Same as (3), but with rhBMP2 in CPC matrix; (5) Same as (3), but with rhBMP2 in CPC matrix + rhTGF-β1 in microbeads; (6) Same as (3), but with rhBMP2 in CPC matrix + VEGF in microbeads. Rats were sacrificed at 4 and 24 weeks for histological and micro-CT analyses. Results The macroporous CPC scaffolds containing porogen, absorbable fibers and hydrogel microbeads had mechanical properties similar to cancellous bone. At 4 weeks, the new bone area fraction (mean ± sd; n = 5) in CPC control group was the lowest at (14.8 ± 3.3)%, and that of group 6 (rhBMP2 + VEGF) was (31.0 ± 13.8)% (p < 0.05). At 24 weeks, group 4 (rhBMP2) had the most new bone of (38.8 ± 15.6)%, higher than (12.7 ± 5.3)% of CPC control (p < 0.05). Micro-CT revealed nearly complete bridging of the critical-sized defects with new bone for several macroporous CPC groups, compared to much less new bone formation for CPC control. Significance Macroporous CPC scaffolds containing porogen, fibers and microbeads with growth factors were investigated in rat cranial defects for the first time. Macroporous CPCs had new bone up to 2-fold that of traditional CPC control at 4 weeks, and 3-fold that of traditional CPC at 24 weeks

  5. Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects

    PubMed Central

    Kim, Sungwoo; Bedigrew, Katherine; Guda, Teja; Maloney, William J.; Park, Sangwon; Wenke, Joseph C.; Yang, Yunzhi Peter

    2014-01-01

    The purpose of this study was to develop and characterize a novel photo-cross-linkable chitosan-lactide-fibrinogen (CLF) hydrogel and evaluate the efficacy of bone morphogenetic protein-2 (BMP-2) containing CLF hydrogel for osteogenesis in vitro and in vivo. We synthesized the CLF hydrogels and characterized their chemical structure, degradation rate, compressive modulus, and in vitro BMP-2 release kinetics. We evaluated bioactivities of the BMP-2 containing CLF hydrogels (0, 50, 100, and 500 ng/ml) in vitro using W-20-17 preosteoblast mouse bone marrow stromal cells and C2C12 mouse myoblast cells. The effect of BMP-2 containing CLF gels (0, 0.5, 1, 2, and 5μg) on bone formation was evaluated using rat critical size segmental bone defects for 4 weeks. FTIR spectra and SEM images showed chemical and structural changes by addition of fibrinogen into chitosan-lactide copolymer. Incorporation of fibrinogen molecules significantly increased compressive modulus of the hydrogels. In vitro BMP-2 release study showed initial burst releases from the CLF hydrogels followed by sustained releases, regardless of the concentration of the BMP-2 over 4 weeks. Cells in all groups were viable in the presence of the hydrogels regardless of BMP-2 doses, indicating non-cytotoxicity of hydrogels. Alkaline phosphate activity and mineralization of cells exhibited dose dependence on BMP-2 containing CLF hydrogels. Radiographs, microcomputed tomography, and histology confirmed that the BMP-2 containing CLF hydrogels prompted neo-osteogenesis and accelerated healing of the defects in a dose-dependent manner. Thus the CLF hydrogel is a promising delivery system of growth factors for bone regeneration. PMID:25174669

  6. Efficacy of guided bone regeneration using composite bone graft and resorbable collagen membrane in Seibert's Class I ridge defects: radiological evaluation.

    PubMed

    Saravanan, Pushparajan; Ramakrishnan, T; Ambalavanan, N; Emmadi, Pamela; John, Thomas Libby

    2013-08-01

    The purpose of the study was to evaluate radiologically the efficacy of guided bone regeneration using composite bone graft (autogenous bone graft and anorganic bovine bone graft [Bio-Oss]) along with resorbable collagen membrane (BioMend Extend) in the augmentation of Seibert's class I ridge defects in maxilla. Bone width was evaluated using computerized tomography at day 0 and at day 180 at 2 mm, 4 mm, and 6 mm from the crest. There was a statistically significant increase in bone width between day 0 and day 180 at 2 mm, 4 mm, and 6 mm from the crest. The results of the study demonstrated an increase in bone width of Seibert's class I ridge defects in the maxilla of the study patients. PMID:23964779

  7. Characterization of stem cells from alveolar periodontal ligament.

    PubMed

    Wang, Lei; Shen, Huan; Zheng, Wei; Tang, Liang; Yang, Zhenhua; Gao, Yuan; Yang, Qingtian; Wang, Chen; Duan, Yinzhong; Jin, Yan

    2011-04-01

    Complete and predicable regeneration of complex periodontal structures, which include cementum, periodontal ligament (PDL), and alveolar bone, has been a great challenge for periodontal researchers. It is generally believed that human PDL from the root surface contains stem cells (r-PDLSCs), which can enhance cementum/PDL-like tissues regeneration in vivo. In this work, PDL was found to possess asymmetrically distributed stem cells observed by long-term bromodeoxyuridine (BrdU) labeling. Putative stem cells from human PDL on the alveolar bone surface (a-PDLSCs) were then isolated and characterized. It was shown that a-PDLSCs exhibited strong proliferation capability and expressed high percentages of mesenchymal stem cell markers. Comparatively, a-PDLSCs had higher multilineage differentiation potential than r-PDLSCs with regard to both osteogenic and adipogenic differentiation. Alkaline phosphatase activity and the expression of mineralization-related markers of a-PDLSCs were also higher than those of r-PDLSCs. In vivo, a-PDLSCs could regenerate bone/PDL-like structures and repair critical-size defects created in calvarial bone of NOD/SCID mice. Autologous PDLSC-mediated periodontal regeneration showed that a-PDLSCs could accomplish reconstruction of alveolar bone more perfectly than r-PDLSCs. Our data suggest that PDLSCs may have quite different characteristics depending on locations. a-PDLSCs may take a synergistic effect with r-PDLSCs in periodontal regeneration. PMID:21186958

  8. Citrate-Based Biphasic Scaffolds for the Repair of Large Segmental Bone Defects

    PubMed Central

    Guo, Ying; Tran, Richard T.; Xie, Denghui; Nguyen, Dianna Y.; Gerhard, Ethan; Guo, Jinshan; Wang, Yuchen; Tang, Jiajun; Zhang, Zhongming; Bai, Xiaochun; Yang, Jian

    2014-01-01

    Attempts to replicate native tissue architecture have lead to the design of biomimetic scaffolds focused on improving functionality. In this study, biomimetic citrate-based poly (octanediol citrate) – click hydroxyapatite (POC-Click-HA) scaffolds were developed to simultaneously replicate the compositional and architectural properties of native bone tissue while providing immediate structural support for large segmental defects following implantation. Biphasic scaffolds were fabricated with 70% internal phase porosity and various external phase porosities (between 5–50%) to mimic the bimodal distribution of cancellous and cortical bone, respectively. Biphasic POC-Click-HA scaffolds displayed compressive strengths up to 37.45 ± 3.83 MPa, which could be controlled through the external phase porosity. The biphasic scaffolds were also evaluated in vivo for the repair of 10-mm long segmental radial defects in rabbits and compared to scaffolds of uniform porosity as well as autologous bone grafts after 5, 10, and 15 weeks of implantation. The results showed that all POC-Click-HA scaffolds exhibited good biocompatibility and extensive osteointegration with host bone tissue. Biphasic scaffolds significantly enhanced new bone formation with higher bone densities in the initial stages after implantation. Biomechanical and histomorphometric analysis supported a similar outcome with biphasic scaffolds providing increased compression strength, interfacial bone ingrowth, and periosteal remodeling in early time points, but were comparable to all experimental groups after 15 weeks. These results confirm the ability of biphasic scaffold architectures to restore bone tissue and physiological functions in the early stages of recovery, and the potential of citrate-based biomaterials in orthopedic applications. PMID:24829094

  9. Characterization of an Ovine Bilateral Critical Sized Bone Defect Iliac Wing Model to Examine Treatment Modalities Based on Bone Tissue Engineering

    PubMed Central

    Lansdowne, Jennifer L.; Eberli, Ursula; Emans, Pieter; Welting, Tim J. M.; Odekerken, Jim C. E.; Schiuma, Damiano; Thalhauser, Martin; Bouré, Ludovic

    2014-01-01

    Critical sized bone defect (CSBD) animal models are used to evaluate and confirm efficacy and potency of new treatment modalities based on bone tissue engineering before the latter can be applied in clinical practice. In this study, a bilateral CSBD model in the iliac wings of sheep is described in detail. To demonstrate that this is a large animal CSBD model in sheep, bone healing within the defect left empty (negative control) or filled with autologous corticocancellous bone graft (clinical gold standard, positive control) was assessed using micro-CT, histology, histomorphometric, and fluorochrome analysis. After three months, new bone into the defect site was formed across the whole defect in the positive controls but limited to the edge of the defects in the negative controls. Bone volume in the positive controls was statistically higher than in the negative controls, with the latter having less than 10% new bone growth. There were no intraoperative or postoperative complications. The model described here represents a reliable and reproducible bilateral CSBD in sheep with low morbidity that can be used for in vivo evaluation of new treatment modalities based on bone tissue engineering. PMID:24696845

  10. A novel tissue-engineered bone in repairing femoral head defect and necrosis

    PubMed Central

    Peng, Wuxun; Wang, Lei; Zhang, Jian; Deng, Jin; Gong, Yuekun; Li, Shihe; Hu, Yunyu

    2015-01-01

    Objective: To evaluate the therapeutic effects of AACB/BMP/bFGF, a novel tissue-engineered bone, in repairing femoral head defect and necrosis in dog models. Methods: Dog models of avascular necrosis of femoral head (ANFH) were established by liquid nitrogen freezing method. Group A was untreated; Groups B, C, and D were implanted with AACB, AACB/BMP, and AACB/BMP/bFGF complex, respectively; Group E was grafted with autologous cancellous bone. Samples were collected at 3 w, 6 w, and 12 w after operation. A series of examinations were carried out to investigate the effects of the materials in repairing femoral head defect, including anatomical observation, X-ray examination, histological analysis, and vascular immunohistochemical staining. Results: Our results indicated that, compared with AACB alone and AACB/BMP, AACB/BMP/bFGF complex could exert the most efficient therapeutic effects in dog ANFH models. X-ray examination further confirmed that AACB/BMP/bFGF complex could effectively repair the injuries in dog ANFH models, almost to a comparable level with cancellous bone autografts. Moreover, histological analysis indicated that AACB/BMP/bFGF complex greatly enhanced the new bone formation, which would contribute to the healing of ANFH. Furthermore, vascular immunohistochemical staining revealed that AACB/BMP/bFGF complex could significantly stimulate the revascularization in defect areas, reflecting the post-injury healing process in these models. Conclusion: AACB/BMP/bFGF complex has great potential in repairing femoral head defect by enhancing osteogenesis and revascularization. The novel tissue-engineered bone would be widely used in clinical applications for ANFH treatment, especially as an alternative for autografts. PMID:25785097

  11. Metal block augmentation for bone defects of the medial tibia during primary total knee arthroplasty

    PubMed Central

    2013-01-01

    Background Stable and well-aligned placement of tibial components during primary total knee arthroplasty is challenging in patients with bone defects. Although rectangular block-shaped augmentations are widely used to reduce the shearing force between the tibial tray and bone compared with wedge-shaped augmentations, the clinical result remains unclear. This study aimed to evaluate the outcome of primary total knee arthroplasty with metal block augmentation. Methods We retrospectively reviewed the 3- to 6-year follow-up results of 33 knees that underwent total knee arthroplasty with metal block augmentation (metal-augmented group) for bone defects of the medial tibia and 132 varus knees without bone defects as the control group. All surgeries were performed using posterior-stabilized cemented prostheses in both groups. Cemented stems were routinely augmented when the metal block was used. Results There were no differences in implant survival rates (100% in metal-augmented and 99.2% in control) or knee function scores (82 points in metal-augmented and 84 points in control) between the two groups at the final follow-up examination (P = 0.60 and P = 0.09, respectively). No subsidence or loosening of the tibial tray was observed. Of 33 metal-augmented total knee arthroplasties, a nonprogressive radiolucent line beneath the metal was detected in 10 knees (30.3%), and rounding of the medial edge of the tibia was observed in 17 knees (51.5%). Conclusions The clinical results of total knee arthroplasty with metal augmentation were not inferior to those in patients without bone defects. However, radiolucent lines were observed in 30.3%. PMID:24139483

  12. An Alginate-based Hybrid System for Growth Factor Delivery in the Functional Repair of Large Bone Defects

    PubMed Central

    Kolambkar, Yash M.; Dupont, Kenneth M.; Boerckel, Joel D.; Huebsch, Nathaniel; Mooney, David J.; Hutmacher, Dietmar W.

    2010-01-01

    The treatment of challenging fractures and large osseous defects presents a formidable problem for orthopaedic surgeons. Tissue engineering/regenerative medicine approaches seek to solve this problem by delivering osteogenic signals within scaffolding biomaterials. In this study, we introduce a hybrid growth factor delivery system that consists of an electrospun nanofiber mesh tube for guiding bone regeneration combined with peptide-modified alginate hydrogel injected inside the tube for sustained growth factor release. We tested the ability of this system to deliver recombinant bone morphogenetic protein-2 (rhBMP-2) for the repair of critically-sized segmental bone defects in a rat model. Longitudinal μ-CT analysis and torsional testing provided quantitative assessment of bone regeneration. Our results indicate that the hybrid delivery system resulted in consistent bony bridging of the challenging bone defects. However, in the absence of rhBMP-2, the use of nanofiber mesh tube and alginate did not result in substantial bone formation. Perforations in the nanofiber mesh accelerated the rhBMP-2 mediated bone repair, and resulted in functional restoration of the regenerated bone. μ-CT based angiography indicated that perforations did not significantly affect the revascularization of defects, suggesting that some other interaction with the tissue surrounding the defect such as improved infiltration of osteoprogenitor cells contributed to the observed differences in repair. Overall, our results indicate that the hybrid alginate/nanofiber mesh system is a promising growth factor delivery strategy for the repair of challenging bone injuries. PMID:20864165

  13. Three-D imaging of dental alveolar bone change after fixed orthodontic treatment in patients with periodontitis

    PubMed Central

    Ma, Zhi-Gui; Yang, Chi; Fang, Bing; Xia, Yun-Hui; Mao, Li-Xia; Feng, Yi-Miao

    2015-01-01

    Objectives: The objective of this study was to radiographically quantify bone height and bone density in patients with periodontitis after fixed orthodontic treatment using cone beam computed tomography (CBCT). Materials and methods: A total of 81 patients including 40 patients with chronic periodontitis (group 1) and 41 patients with normal periodontal tissues (group 2) were selected. CBCT scanning for anterior teeth were taken before and after orthodontic treatment. Measurements of bone height and bone density were performed using CBCT software. Results: The group 1 presented a statistically lesser bone density and bone height when compared to group 2 before treatment. There was a significant loss of bone density for both groups after orthodontic treatment, but bone density loss was significantly greater in the group 1. There was no statistically significant bone height change in two groups after treatment. Conclusions: This study demonstrated that orthodontic treatment can preserve bone height but not capable of maintaining bone density, especially for patients with periodontitis. It is indicated that the change of bone density may be more susceptible than that of bone height when radiographically evaluating bone status under this combined periodontal and orthodontic therapy. PMID:25932177

  14. Transposition of the tendo calcaneus for post-traumatic bone defects of the tibia.

    PubMed

    Ger, R

    1978-04-01

    Certain post-traumatic defects of the lower extremity present difficult problems in therapy and current methods of management do not offer satisfactory solutions. One such defect is an ulcerative lesion of the lower limb eroding the tibia and forming a chronic, rigid-walled cavity. We describe an operation in which the bone cavity is filled by viable tissue which acts as a bed for a skin graft. In chronic stasis ulcers it has been established that the tendo calcaneus will accept a skin graft, provided the paratenon is left undisturbred. PMID:348707

  15. Effects of the dichloromethane fraction of Dipsaci Radix on the osteoblastic differentiation of human alveolar bone marrow-derived mesenchymal stem cells.

    PubMed

    Kim, Beom-Su; Kim, Yoon-Chul; Zadeh, Homa; Park, Yoon-Jeong; Pi, Sung-Hee; Shin, Hyung-Shik; You, Hyung-Keun

    2011-01-01

    Dipsaci Radix is the dried root of Dipsacus asper Wall. It has been used in Korean herbal medicine to treat bone fractures. In this study, we examined the effect of the dichloromethane fraction of Dipsaci Radix (DR(DM)) on the osteoblastic differentiation of human alveolar bone marrow-derived MSCs (ABM-MSCs). The ABM-MSCs were isolated from healthy subjects and cultured in vitro, followed by phenotypic characterization. They showed a fibroblast-like morphology and expressed CD29, CD44, CD73, and CD105, but not CD34. Calcified nodules were generated in response to both dexamethasone (DEX) and DR(DM). There was a significant increase in the alkaline phosphatase (ALP) activity and protein expression of bone sialoprotein (BSP) and osteocalcin (OC) in response to DEX and DR(DM) as compared to control. These results provide evidence for the osteogenic potential of cultured ABM-MSCs in response to DR(DM). Also, an active single compound was additionally isolated from DR(DM). The single compound (hederagenin 3-O-(2-O-acetyl)-α-L-arabinopyranoside) also significantly increased ALP activity and the level of protein expression of BSP and OC. These results highlight the possible clinical applications of DR(DM) and hederagenin 3-O-(2-O-acetyl)-α-L-arabinopyranoside in bone regeneration. PMID:21228489

  16. A retrospective study of digital subtraction technique to detect sclerotic changes in alveolar bone on intraoral radiographs of bisphosphonate-treated patients

    PubMed Central

    Zaman, M U; Nakamoto, T; Tanimoto, K

    2013-01-01

    Objectives: Several reports have suggested that sclerotic changes in cancellous bone of the jaw and thickening of the lamina dura are characteristic radiographic changes of an early silent stage of bisphosphonate (BP)-related osteonecrosis of the jaw. No quantitative evaluation has been reported to support this hypothesis. Emago® software (Oral Diagnostic Systems, Amsterdam, Netherlands) can perform digital subtraction on intraoral radiographs even if they were obtained by non-standardized radiography, provided the dimensional error is within a certain limit. The purpose of this study was to evaluate whether sclerotic changes of alveolar bone or thickening of lamina dura in patients using BP can be detected using the subtraction function of Emago. Methods: The authors selected 46 pairs of intraoral radiographs of the mandibular molar area in dental patients. All radiographs were obtained at intervals of 6 months or more. Among the 46 pairs, 7 pairs were from patients who were being treated with BP (study subjects), and 39 pairs were from patients who had not been using BP (controls). All pairs of radiographs underwent digital subtraction by Emago. The number of pixels of the sclerotic areas was counted and compared between subjects and controls. Results: The sclerotic changes were significantly distinguishable in two of the seven subjects (28.6%) using BP. Conclusions: Digital subtraction function of Emago was able to detect sclerotic changes in alveolar bone. Therefore, it is suggested that the subtraction function of Emago is a useful tool for quantitatively detecting sclerotic changes that are observed at an early, silent stage of BP-related osteonecrosis of the jaw. PMID:24170801

  17. Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells.

    PubMed

    Fawzy El-Sayed, Karim M; Dörfer, Christof; Ungefroren, Hendrick; Kassem, Neemat; Wiltfang, Jörg; Paris, Sebastian

    2014-07-01

    The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p < 0.05; Two-way ANOVA/Bonferroni) with no mineralized nodule formation. Under in-vitro conditions, Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation. PMID:24080138

  18. A treatment algorithm for patients with large skull bone defects and first results.

    PubMed

    Lethaus, Bernd; Ter Laak, Marielle Poort; Laeven, Paul; Beerens, Maikel; Koper, David; Poukens, Jules; Kessler, Peter

    2011-09-01

    Large skull bone defects resulting from craniotomies due to cerebral insults, trauma or tumours create functional and aesthetic disturbances to the patient. The reconstruction of large osseous defects is still challenging. A treatment algorithm is presented based on the close interaction of radiologists, computer engineers and cranio-maxillofacial surgeons. From 2004 until today twelve consecutive patients have been operated on successfully according to this treatment plan. Titanium and polyetheretherketone (PEEK) were used to manufacture the implants. The treatment algorithm is proved to be reliable. No corrections had to be performed either to the skull bone or to the implant. Short operations and hospitalization periods are essential prerequisites for treatment success and justify the high expenses. PMID:21055960

  19. [Experimental study on application recombinant human bone morphogenetic protein 2(rhBMP-2)/poly-lactide-co-glycolic acid (PLGA)/fibrin sealant(FS) on repair of rabbit radial bone defect].

    PubMed

    Fan, Zhongkai; Cao, Yang; Zhang, Zhe; Zhang, Mingchao; Lu, Wei; Tang, Lei; Yao, Qi; Lu, Gang

    2012-10-01

    This paper is aimed to investigate the repair of rabbit radial bone defect by the recombinant human bone morphogenetic protein 2/poly-lactideco-glycolic acid microsphere with fibrin sealant (rhBMP-2/PLGA/FS). The radial bone defect models were prepared using New Zealand white rabbits, which were randomly divided into 3 groups, experiment group which were injected with eMP-2/PLGA/FS at bone defect location, control group which were injected with FS at bone defect location, and blank control group without treatment. The ability of repairing bone defect was evaluated with X-ray radiograph. Bone mineral density in the defect regions was analysed using the level of ossification. The osteogenetic ability of repairing bone defect, the degradation of the material, the morphologic change and the bone formation were assessed by HE staining and Masson staining. The result showed that rhBMP-2/PLGA/FS had overwhelming superiority in the osteogenetic ability and quality of bone defect over the control group, and it could promote the repair of bone defect and could especially repair the radial bone defect of rabbit well. It may be a promising and efficient synthetic bone graft. PMID:23198432

  20. Healing patterns of critical size bony defects in rats after grafting with bone substitutes soaked in recombinant human bone morphogenetic protein-2: histological and histometric evaluation.

    PubMed

    Mokbel, N; Naaman, N; Nohra, J; Badawi, N

    2013-09-01

    The aim of the study was to evaluate the effect of different bone substitutes soaked in recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of critical size defects in calvarial bone. Defects were created in 24 Sprague Dawley rats. The rhBMP-2 was diluted to obtain a final concentration of 0.2mg/ml. Rats were divided into four groups and treated as follows: in the first group the defect was filled with anorganic bovine bone mineral (ABBM) and rhBMP-2, the second group was treated with freeze-dried bone allograft (FDBA) and rhBMP-2, and the third group was treated with autogenous bone (AUTO). In the control group the defects were left untreated. Animals were killed after 8weeks and calcified histological sections prepared. Histometric measurements showed that mean (SD) bone formation was 4.00 (1.69)mm(2) in the ABBM group, 2.56 (1.06)mm(2) in the FDBA group, and 2.30 (0.34)mm(2) in the AUTO group. The difference between the ABBM group and the other 3 groups was significant (p<0.0001) with a mean bone formation of 0.82 (0.25)mm(2) in the control group. There was no significant difference between the FDBA and the AUTO groups (p=0.96). Within the limits of this study we concluded that the addition of rhBMP-2 to bone substitutes was efficacious in regenerating bone in critical size bone defects in calveria in rats. PMID:22939894

  1. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat

    PubMed Central

    Nandi, Samit Kumar; Ghosh, Samir Kumar; De, Dipak Kumar; Basu, Debabrata

    2008-01-01

    The present study was undertaken to evaluate porous hydroxyapatite (HAp), the powder of which was prepared by a novel aqueous solution combustion technique, as a bone substitute in healing bone defects in vivo, as assessed by radiologic and histopathologic methods, oxytetracycline labeling, and angiogenic features in Bengal goat. Bone defects were created in the diaphysis of the radius and either not filled (group I) or filled with a HAp strut (group II). The radiologic study in group II showed the presence of unabsorbed implants which acted as a scaffold for new bone growth across the defect, and the quality of healing of the bone defect was almost indistinguishable from the control group, in which the defect was more or less similar, although the newly formed bony tissue was more organized when HAp was used. Histologic methods showed complete normal ossification with development of Haversian canals and well-defined osteoblasts at the periphery in group II, whereas the control group had moderate fibro-collagenization and an adequate amount of marrow material, fat cells, and blood vessels. An oxytetracycline labeling study showed moderate activity of new bone formation with crossing-over of new bone trabeculae along with the presence of resorption cavities in group II, whereas in the control group, the process of new bone formation was active from both ends and the defect site appeared as a homogenous non-fluoroscent area. Angiograms of the animals in the control group showed uniform angiogenesis in the defect site with establishment of trans-transplant angiogenesis, whereas in group II there was complete trans-transplant shunting of blood vessel communication. Porous HAp ceramic prepared by an aqueous combustion technique promoted bone formation over the defect, confirming their biologic osteoconductive property. PMID:18487940

  2. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat.

    PubMed

    Nandi, Samit Kumar; Kundu, Biswanath; Ghosh, Samir Kumar; De, Dipak Kumar; Basu, Debabrata

    2008-06-01

    The present study was undertaken to evaluate porous hydroxyapatite (HAp), the powder of which was prepared by a novel aqueous solution combustion technique, as a bone substitute in healing bone defects in vivo, as assessed by radiologic and histopathologic methods, oxytetracycline labeling, and angiogenic features in Bengal goat. Bone defects were created in the diaphysis of the radius and either not filled (group I) or filled with a HAp strut (group II). The radiologic study in group II showed the presence of unabsorbed implants which acted as a scaffold for new bone growth across the defect, and the quality of healing of the bone defect was almost indistinguishable from the control group, in which the defect was more or less similar, although the newly formed bony tissue was more organized when HAp was used. Histologic methods showed complete normal ossification with development of Haversian canals and well-defined osteoblasts at the periphery in group II, whereas the control group had moderate fibro-collagenization and an adequate amount of marrow material, fat cells, and blood vessels. An oxytetracycline labeling study showed moderate activity of new bone formation with crossing-over of new bone trabeculae along with the presence of resorption cavities in group II, whereas in the control group, the process of new bone formation was active from both ends and the defect site appeared as a homogenous non-fluoroscent area. Angiograms of the animals in the control group showed uniform angiogenesis in the defect site with establishment of trans-transplant angiogenesis, whereas in group II there was complete trans-transplant shunting of blood vessel communication. Porous HAp ceramic prepared by an aqueous combustion technique promoted bone formation over the defect, confirming their biologic osteoconductive property. PMID:18487940

  3. Inorganic-organic shape memory polymers and foams for bone defect repairs

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei

    The ultimate goal of this research was to develop a "self-fitting" shape memory polymer (SMP) scaffold for the repair of craniomaxillofacial (CMF) bone defects. CMF defects may be caused by trauma, tumor removal or congenital abnormalities and represent a major class of bone defects. Their repair with autografts is limited by availability, donor site morbidity and complex surgical procedures. In addition, shaping and positioning of these rigid grafts into irregular defects is difficult. Herein, we have developed SMP scaffolds which soften at T > ˜56 °C, allowing them to conformally fit into a bone defect. Upon cooling to body temperature, the scaffold becomes rigid and mechanically locks in place. This research was comprised of four major studies. In the first study, photocrosslinkable acrylated (AcO) SMP macromers containing a poly(epsilon-caprolactone) (PCL) segment and polydimethylsiloxane (PDMS) segments were synthesized with the general formula: AcO-PCL40-block-PDMS m-block-PCL40-OAc. By varying the PDMS segment length (m), solid SMPs with highly tunable mechanical properties and excellent shape memory abilities were prepared. In the second study, porous SMP scaffolds were fabricated based on AcO-PCL 40-block-PDMS37-block-PCL 40-OAc via a revised solvent casting particulate leaching (SCPL) method. By tailoring scaffold parameters including salt fusion, macromer concentration and salt size, scaffold properties (e.g. pore features, compressive modulus and shape memory behavior) were tuned. In the third study, porous SMP scaffolds were produced from macromers with variable PDMS segment lengths (m = 0 -- 130) via an optimized SCPL method. The impact on pore features, thermal, mechanical, and shape memory properties as well as degradation rates were investigated. In the final study, a bioactive polydopamine coating was applied onto pore surfaces of the SMP scaffold prepared from PCL diacrylate. The thin coating did not affect intrinsic bulk properties of the

  4. Bone Healing Properties of Autoclaved Autogenous Bone Grafts Incorporating Recombinant Human Bone Morphogenetic Protein-2 and Comparison of Two Delivery Systems in a Segmental Rabbit Radius Defect

    PubMed Central

    Choi, Eun Joo; Kang, Sang-Hoon; Kwon, Hyun-Jin; Cho, Sung-Won; Kim, Hyung Jun

    2014-01-01

    Purpose: This study aims to validate the effect of autoclaved autogenous bone (AAB), incorporating Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2), on critical-sized, segmental radius defects in rabbits. Delivery systems using absorbable collagen sponge (ACS) and fibrin glue (FG) were also evaluated. Methods: Radius defects were made in 12 New Zealand white rabbits. After autoclaving, the resected bone was reinserted and fixed. The animals were classified into three groups: only AAB reinserted (group 1, control), and AAB and ErhBMP-2 inserted using an ACS (group 2) or FG (group 3) as a carrier. Animals were sacrificed six or 12 weeks after surgery. Specimens were evaluated using radiology and histology. Results: Micro-computed tomography images showed the best bony union in group 2 at six and 12 weeks after operation. Quantitative analysis showed all indices except trabecular thickness were the highest in group 2 and the lowest in group 1 at twelve weeks. Histologic results showed the greatest bony union between AAB and radial bone at twelve weeks, indicating the highest degree of engraftment. Conclusion: ErhBMP-2 increases bony healing when applied on AAB graft sites. In addition, the ACS was reconfirmed as a useful delivery system for ErhBMP-2. PMID:27489818

  5. The Influence of Hyperbaric Oxygen Treatment on the Healing of Experimental Defects Filled with Different Bone Graft Substitutes

    PubMed Central

    Sirin, Yigit; Olgac, Vakur; Dogru-Abbasoglu, Semra; Tapul, Leyla; Aktas, Samil; Soley, Sinan

    2011-01-01

    To assess potential effects of hyperbaric oxygen (HBOT) on artificial bone grafts, β - Tricalcium phosphate (β-TCP) and calcium phosphate coated bovine bone (CPCBB) substitutes were applied to standard bone defects in rat tibiae. The control defects were left empty. Half of the animals received 60 minutes of 2.4 atmosphere absolute (ATA) of HBOT. Rats were sacrificed at one, two and four weeks. Bone healing was assessed histologically and histomorphometrically using light microscopy. The periosteum over the bone defects was examined ultrastructurally. Cardiac blood was collected to determine the serum osteocalcin levels. The HBOT increased new bone formation in the unfilled controls and β-TCP groups and significantly decreased cartilage matrix and fibrous tissue formations in all groups. Active osteoblasts and highly organized collagen fibrils were prominent in the periosteum of β-TCP and control groups. Serum osteocalcin levels also increased with HBOT. The healing of defects filled with CPCBB was similar to the controls and it did not respond to HBOT. These findings suggested that the HBOT had beneficial effects on the healing of unfilled bone defects and those filled with β-TCP bone substitute but not with CPCBB, indicating a material-specific influence pattern of HBOT. PMID:21326954

  6. Porous bioactive scaffolds: characterization and biological performance in a model of tibial bone defect in rats.

    PubMed

    Kido, Hueliton Wilian; Tim, Carla Roberta; Bossini, Paulo Sérgio; Parizotto, Nivaldo Antônio; de Castro, Cynthia Aparecida; Crovace, Murilo Camuri; Rodrigues, Ana Candida Martins; Zanotto, Edgar Dutra; Peitl Filho, Oscar; de Freitas Anibal, Fernanda; Rennó, Ana Claudia Muniz

    2015-02-01

    The aim of this study was to evaluate the effects of highly porous Biosilicate(®) scaffolds on bone healing in a tibial bone defect model in rats by means of histological evaluation (histopathological and immunohistochemistry analysis) of the bone callus and the systemic inflammatory response (immunoenzymatic assay). Eighty Wistar rats (12 weeks-old, weighing±300 g) were randomly divided into 2 groups (n=10 per experimental group, per time point): control group and Biosilicate® group (BG). Each group was euthanized 3, 7, 14 and 21 days post-surgery. Histological findings revealed a similar inflammatory response in both experimental groups, 3 and 7 days post-surgery. During the experimental periods (3-21 days post-surgery), it was observed that the biomaterial degradation, mainly in the periphery region, provided the development of the newly formed bone into the scaffolds. Immunohistochemistry analysis demonstrated that the Biosilicate® scaffolds stimulated cyclooxygenase-2, vascular endothelial growth factor and runt-related transcription factor 2 expression. Furthermore, in the immunoenzymatic assay, BG presented no difference in the level of tumor necrosis factor alpha in all experimental periods. Still, BG showed a higher level of interleukin 4 after 14 days post-implantation and a lower level of interleukin 10 in 21 days post-surgery. Our results demonstrated that Biosilicate® scaffolds can contribute for bone formation through a suitable architecture and by stimulating the synthesis of markers related to the bone repair. PMID:25631271

  7. Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds.

    PubMed

    Kutikov, Artem B; Skelly, Jordan D; Ayers, David C; Song, Jie

    2015-03-01

    Effective repair of critical-size long bone defects presents a significant clinical challenge. Electrospun scaffolds can be exploited to deliver protein therapeutics and progenitor cells, but their standalone application for long bone repair has not been explored. We have previously shown that electrospun composites of amphiphilic poly(d,l-lactic acid)-co-poly(ethylene glycol)-co-poly(d,l-lactic acid) (PELA) and hydroxyapatite (HA) guide the osteogenic differentiation of bone marrow stromal cells (MSCs), making these scaffolds uniquely suited for evaluating cell-based bone regeneration approaches. Here we examine whether the in vitro bioactivity of these electrospun scaffolds can be exploited for long bone defect repair, either through the participation of exogenous MSCs or through the activation of endogenous cells by a low dose of recombinant human bone morphogenetic protein-2 (rhBMP-2). In critical-size rat femoral segmental defects, spiral-wrapped electrospun HA-PELA with preseeded MSCs resulted in laminated endochondral ossification templated by the scaffold across the longitudinal span of the defect. Using GFP labeling, we confirmed that the exogenous MSCs adhered to HA-PELA survived at least 7 days postimplantation, suggesting direct participation of these exogenous cells in templated bone formation. When loaded with 500 ng of rhBMP-2, HA-PELA spirals led to more robust but less clearly templated bone formation than MSC-bearing scaffolds. Both treatment groups resulted in new bone bridging over the majority of the defect by 12 weeks. This study is the first demonstration of a standalone bioactive electrospun scaffold for templated bone formation in critical-size long bone defects. PMID:25695310

  8. Hydroxyapatite crystallinity does not affect the repair of critical size bone defects

    PubMed Central

    CONZ, Marcio Baltazar; GRANJEIRO, José Mauro; SOARES, Gloria de Almeida

    2011-01-01

    Objective The physicochemical properties of hydroxyapatite (HA) granules were observed to affect the biological behavior of graft materials. The aim of this work was to analyze the tissue response of two HA granules with different crystallinity and Ca/P ratio in vivo. Material and Methods The HA granules were produced in the Biomaterials Laboratory (COPPE/UFRJ). The testing materials were HA granules presenting a Ca/P molar ratio of 1.60 and 28% crystallinity (HA-1), and a Ca/P molar ratio of 1.67 and 70% crystallinity (HA-2). Both HAs were implanted into a critical-size calvaria rat defects. Results To note, in the control group, the bone defects were filled with blood clot only. Descriptive and histomorphometric analyses after 1, 3, and 6 months postoperatively showed mild inflammatory infiltrate, mainly comprising macrophage-like and multinucleated giant cells, and an increase in the volume density of the fibrous tissues (p<0.05), which was in contrast to the similar volume density of the newly formed bone and biomaterials in relation to the control group. Conclusion Thus, we concluded that HA-1 and HA-2 are biocompatible and non-degradable, and that crystallinity does not affect bone repair of critical size defects. PMID:21655775

  9. The Effects of Topical Application of Polycal (a 2:98 (g/g) Mixture of Polycan and Calcium Gluconate) on Experimental Periodontitis and Alveolar Bone Loss in Rats.

    PubMed

    Park, Sang-In; Kang, Su-Jin; Han, Chang-Hyun; Kim, Joo-Wan; Song, Chang-Hyun; Lee, Sang-Nam; Ku, Sae-Kwang; Lee, Young-Joon

    2016-01-01

    The aim of this study was to observe whether Polycal has inhibitory activity on ligation-induced experimental periodontitis and related alveolar bone loss in rats following topical application to the gingival regions. One day after the ligation placements, Polycal (50, 25, and 12.5 mg/mL solutions at 200 μL/rat) was topically applied to the ligated gingival regions daily for 10 days. Changes in bodyweight, alveolar bone loss index, and total number of buccal gingival aerobic bacterial cells were monitored, and the anti-inflammatory effects were investigated via myeloperoxidase activity and levels of the pro-inflammatory cytokines IL-1β and TNF-α. The activities of inducible nitric oxide synthase (iNOS) and lipid peroxidation (MDA) were also evaluated. Bacterial proliferation, periodontitis, and alveolar bone loss induced by ligature placements were significantly inhibited after 10 days of continuous topical application of Polycal. These results indicate that topical application of Polycal has a significant inhibitory effect on periodontitis and related alveolar bone loss in rats mediated by antibacterial, anti-inflammatory, and anti-oxidative activities. PMID:27110759

  10. Bone generation in the reconstruction of a critical size calvarial defect in an experimental model.

    PubMed

    Por, Yong-Chen; Barceló, C Raul; Salyer, Kenneth E; Genecov, David G; Troxel, Karen; Gendler, El; Elsalanty, Mohammed E; Opperman, Lynne A

    2008-03-01

    This study was designed to investigate the optimal combination of known osteogenic biomaterials with shape conforming struts to achieve calvarial vault reconstruction, using a canine model. Eighteen adolescent beagles were divided equally into 6 groups. A critical-size defect of 6 x 2 cm traversed the sagittal suture. The biomaterials used for calvarial reconstruction were demineralized perforated bone matrix (DBM), recombinant human bone morphogenetic protein 2 (rhBMP2), and autogenous platelet-rich plasma (PRP). The struts used were cobalt chrome (metal) or resorbable plate. The groupings were as follows: 1) DBM + metal, 2) DBM + PRP + metal, 3) DBM + PRP + resorbable plate, 4) DBM + rhBMP2 + metal, 5) DBM + rhBMP2 + PRP + metal, and 6) DBM + rhBMP2 + resorbable plate. Animals were killed at 3 months after surgery. There was no mortality or major complications. Analysis was performed macroscopically and histologically and with computed tomography. There was complete bony regeneration in the rhBMP2 groups only. Non-rhBMP2 groups had minimal bony ingrowth from the defect edges and on the dural surface, a finding confirmed by computed tomographic scan and histology. Platelet-rich plasma did not enhance bone regeneration. Shape conformation was good with both metal and resorbable plate. rhBMP2, but not PRP, accelerated calvarial regeneration in 3 months. The DBMs in the rhBMP2 groups were substituted by new trabecular bone. Shape molding was good with both metal and resorbable plate. PMID:18362715

  11. The role of cages in the management of severe acetabular bone defects at revision arthroplasty.

    PubMed

    Mäkinen, T J; Fichman, S G; Watts, E; Kuzyk, P R T; Safir, O A; Gross, A E

    2016-01-01

    An uncemented hemispherical acetabular component is the mainstay of acetabular revision and gives excellent long-term results. Occasionally, the degree of acetabular bone loss means that a hemispherical component will be unstable when sited in the correct anatomical location or there is minimal bleeding host bone left for biological fixation. On these occasions an alternative method of reconstruction has to be used. A major column structural allograft has been shown to restore the deficient bone stock to some degree, but it needs to be off-loaded with a reconstruction cage to prevent collapse of the graft. The use of porous metal augments is a promising method of overcoming some of the problems associated with structural allograft. If the defect is large, the augment needs to be protected by a cage to allow ingrowth to occur. Cup-cage reconstruction is an effective method of treating chronic pelvic discontinuity and large contained or uncontained bone defects. This paper presents the indications, surgical techniques and outcomes of various methods which use acetabular reconstruction cages for revision total hip arthroplasty. PMID:26733646

  12. A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    PubMed Central

    El Backly, Rania M.; Chiapale, Danilo; Muraglia, Anita; Tromba, Giuliana; Ottonello, Chiara; Santolini, Federico; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2014-01-01

    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX®) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX®) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute. PMID:25610828

  13. The Role of Resorbable Plate and Artificial Bone Substitute in Reconstruction of Large Orbital Floor Defect

    PubMed Central

    Kwon, Ho; Kim, Ho Jun; Jeong, Yeon Jin; Jung, Sung-No

    2016-01-01

    It is essential to reduce and reconstruct bony defects adequately in large orbital floor fracture and defect. Among many reconstructive methods, alloplastic materials have attracted attention because of their safety and ease of use. We have used resorbable plates combined with artificial bone substitutes in large orbital floor defect reconstructions and have evaluated their long-term reliability compared with porous polyethylene plate. A total of 147 patients with traumatic orbital floor fracture were included in the study. Surgical results were evaluated by clinical evaluations, exophthalmometry, and computed tomography at least 12 months postoperatively. Both orbital floor height discrepancy and orbital volume change were calculated and compared with preoperative CT findings. The average volume discrepancy and vertical height discrepancies were not different between two groups. Also, exophthalmometric measurements were not significantly different between the two groups. No significant postoperative complication including permanent diplopia, proptosis, and enophthalmos was noted. Use of a resorbable plate with an artificial bone substitute to repair orbital floor defects larger than 2.5 cm2 in size yielded long-lasting, effective reconstruction without significant complications. We therefore propose our approach as an effective alternative method for large orbital floor reconstructions. PMID:27517041

  14. A modified rabbit ulna defect model for evaluating periosteal substitutes in bone engineering: a pilot study.

    PubMed

    El Backly, Rania M; Chiapale, Danilo; Muraglia, Anita; Tromba, Giuliana; Ottonello, Chiara; Santolini, Federico; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2014-01-01

    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX(®)) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12-16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX(®)) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute. PMID:25610828

  15. In vitro comparison of chlorhexidine and povidone-iodine on the long-term proliferation and functional activity of human alveolar bone cells.

    PubMed

    Cabral, Cristina Trigo; Fernandes, Maria Helena

    2007-06-01

    This work reports the behaviour of osteoblastic human alveolar bone cells (first subculture) in the presence of chlorhexidine (CHX) and povidone-iodine (PI). Short contact (2 min) of 24-h cultures with CHX, at 0.12 and 0.2%, and PI, at 5 and 10%, caused cell death within minutes; contact with 1% PI resulted in loss of the elongated characteristic cell shape. Cell adhesion was adversely affected at concentrations higher than 5 x 10(-5)% CHX or 0.05% PI. Long-term exposure to CHX at 10(-5) and 10(-4)% or PI at 10(-4)% had little effect on cell growth and caused an induction in the synthesis of alkaline phosphatase (ALP). Concentrations of CHX and PI similar and higher than, respectively, 5 x 10(-4)% or 0.05% caused dose-dependent deleterious effects. CHX affected mainly the cell growth, whereas the effects of PI were observed mostly in ALP production and matrix mineralization. Considering the levels of CHX and PI used routinely in the oral cavity, results suggest that CHX has a higher cytotoxicity profile than PI. This observation might have some clinical relevance regarding the potential utility of PI in the prevention of alveolar osteitis. PMID:17216529

  16. An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects.

    PubMed

    Yilgor, P; Yilmaz, G; Onal, M B; Solmaz, I; Gundogdu, S; Keskil, S; Sousa, R A; Reis, R L; Hasirci, N; Hasirci, V

    2013-09-01

    The hypothesis of this study was that the extent of bone regeneration could be enhanced by using scaffolds with appropriate geometry, and that such an effect could be further increased by mimicking the natural timing of appearance of bone morphogenetic proteins BMP-2 and BMP-7 after fracture. Bioplotted poly(ε-caprolactone) (PCL) disks with four different fibre organizations were used to study the effect of 3D scaffold architecture on the healing of bone defects in a rat pelvis model. Moreover, one PCL construct was further modified by introducing a nanoparticulate sequential BMP-2/BMP-7 delivery system into this scaffold. Scaffolds and functionalized construct along with free nanocapsules were implanted using a rat iliac crest defect model. Six weeks post-implantation, the defects were evaluated by CT scan and histology. Analysis revealed that the basic architecture, having the highest pore volume for tissue ingrowth, presented the highest bone formation as determined by the bone mineral density (BMD) within the defect (144.2 ± 7.1); about four-fold higher than that of the empty defect (34.9 ± 10.7). It also showed the highest histological analysis scores with a high amount of bone formation within the defect, within the scaffold pores and along the outer surfaces of the scaffold. The basic scaffold carrying the BMP-2/BMP-7 delivery system showed significantly higher bone formation than the growth factor-free basic scaffold at 6 weeks (BMD 206.8 ± 15.7). Histological analysis also revealed new bone formation in close to or in direct contact with the construct interface. This study indicates the importance of open and interconnecting pore geometry on the better healing of bone defects, and that this effect could be further increased by supplying growth factors, as is the case in nature. PMID:22396311

  17. Radiological Assessment of Bioengineered Bone in a Muscle Flap for the Reconstruction of Critical-Size Mandibular Defect

    PubMed Central

    Al-Fotawei, Randa; Ayoub, Ashraf F.; Heath, Neil; Naudi, Kurt B.; Tanner, K. Elizabeth; Dalby, Matthew J.; McMahon, Jeremy

    2014-01-01

    This study presents a comprehensive radiographic evaluation of bone regeneration within a pedicled muscle flap for the reconstruction of critical size mandibular defect. The surgical defect (20 mm×15 mm) was created in the mandible of ten experimental rabbits. The masseter muscle was adapted to fill the surgical defect, a combination of calcium sulphate/hydroxyapatite cement (CERAMENT™ |SPINE SUPPORT), BMP-7 and rabbit mesenchymal stromal cells (rMSCs) was injected inside the muscle tissue. Radiographic assessment was carried out on the day of surgery and at 4, 8, and 12 weeks postoperatively. At 12 weeks, the animals were sacrificed and cone beam computerized tomography (CBCT) scanning and micro-computed tomography (µ-CT) were carried out. Clinically, a clear layer of bone tissue was identified closely adherent to the border of the surgical defect. Sporadic radio-opaque areas within the surgical defect were detected radiographically. In comparison with the opposite non operated control side, the estimated quantitative scoring of the radio-opacity was 46.6% ±15, the mean volume of the radio-opaque areas was 63.4% ±20. Areas of a bone density higher than that of the mandibular bone (+35% ±25%) were detected at the borders of the surgical defect. The micro-CT analysis revealed thinner trabeculae of the regenerated bone with a more condensed trabecular pattern than the surrounding native bone. These findings suggest a rapid deposition rate of the mineralised tissue and an active remodelling process of the newly regenerated bone within the muscle flap. The novel surgical model of this study has potential clinical application; the assessment of bone regeneration using the presented radiolographic protocol is descriptive and comprehensive. The findings of this research confirm the remarkable potential of local muscle flaps as local bioreactors to induce bone formation for reconstruction of maxillofacial bony defects. PMID:25226170

  18. Bone tumor

    MedlinePlus

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  19. Effects of Calcium Sulfate Combined with Platelet-rich Plasma on Restoration of Long Bone Defect in Rabbits

    PubMed Central

    Chen, Hua; Ji, Xin-Ran; Zhang, Qun; Tian, Xue-Zhong; Zhang, Bo-Xun; Tang, Pei-Fu

    2016-01-01

    Background: The treatment for long bone defects has been a hot topic in the field of regenerative medicine. This study aimed to evaluate the therapeutic effects of calcium sulfate (CS) combined with platelet-rich plasma (PRP) on long bone defect restoration. Methods: A radial bone defect model was constructed through an osteotomy using New Zealand rabbits. The rabbits were randomly divided into four groups (n = 10 in each group): a CS combined with PRP (CS-PRP) group, a CS group, a PRP group, and a positive (recombinant human bone morphogenetic protein-2) control group. PRP was prepared from autologous blood using a two-step centrifugation process. CS-PRP was obtained by mixing hemihydrate CS with PRP. Radiographs and histologic micrographs were generated. The percentage of bone regenerated bone area in each rabbit was calculated at 10 weeks. One-way analysis of variance was performed in this study. Results: The radiographs and histologic micrographs showed bone restoration in the CS-PRP and positive control groups, while nonunion was observed in the CS and PRP groups. The percentages of bone regenerated bone area in the CS-PRP (84.60 ± 2.87%) and positive control (52.21 ± 4.53%) groups were significantly greater than those in the CS group (12.34 ± 2.17%) and PRP group (16.52 ± 4.22%) (P < 0.001). In addition, the bone strength of CS-PRP group (43.10 ± 4.10%) was significantly greater than that of the CS group (20.10 ± 3.70%) or PRP group (25.10 ± 2.10%) (P < 0.001). Conclusion: CS-PRP functions as an effective treatment for long bone defects through stimulating bone regeneration and enhancing new bone strength. PMID:26904990

  20. Transgenic expression of Dspp partially rescued the long bone defects of Dmp1-null mice.

    PubMed

    Jani, Priyam H; Gibson, Monica P; Liu, Chao; Zhang, Hua; Wang, Xiaofang; Lu, Yongbo; Qin, Chunlin

    2016-01-01

    Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) belong to the Small Integrin-Binding Ligand N-linked Glycoprotein (SIBLING) family. In addition to the features common to all SIBLING members, DMP1 and DSPP share several unique similarities in chemical structure, proteolytic activation and tissue localization. Mutations in, or deletion of DMP1, cause autosomal recessive hypophosphatemic rickets along with dental defects; DSPP mutations or its ablation are associated with dentinogenesis imperfecta. While the roles and functional mechanisms of DMP1 in osteogenesis have been extensively studied, those of DSPP in long bones have been studied only to a limited extent. Previous studies by our group revealed that transgenic expression of Dspp completely rescued the dentin defects of Dmp1-null (Dmp1(-/-)) mice. In this investigation, we assessed the effects of transgenic Dspp on osteogenesis by analyzing the formation and mineralization of the long bones in Dmp1(-/-) mice that expresses a transgene encoding full-length DSPP driven by a 3.6-kb rat Col1a1 promoter (referred as "Dmp1(-/-);Dspp-Tg mice"). We characterized the long bones of the Dmp1(-/-);Dspp-Tg mice at different ages and compared them with those from Dmp1(-/-) and Dmp1(+/-) (normal control) mice. Our analyses showed that the long bones of Dmp1(-/-);Dspp-Tg mice had a significant increase in cortical bone thickness, bone volume and mineral density along with a remarkable restoration of trabecular thickness compared to those of the Dmp1(-/-) mice. The long bones of Dmp1(-/-);Dspp-Tg mice underwent a dramatic reduction in the amount of osteoid, significant improvement of the collagen fibrillar network, and better organization of the lacunocanalicular system, compared to the Dmp1(-/-) mice. The elevated levels of biglycan, bone sialoprotein and osteopontin in Dmp1(-/-) mice were also noticeably corrected by the transgenic expression of Dspp. These findings suggest that DSPP and DMP1 may function

  1. The effect of enamel matrix derivative (Emdogain®) on gene expression profiles of human primary alveolar bone cells.

    PubMed

    Yan, X Z; Rathe, F; Gilissen, C; van der Zande, M; Veltman, J; Junker, R; Yang, F; Jansen, J A; Walboomers, X F

    2014-06-01

    Emdogain® is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain® on expression profiles of human-derived bone cells with the help of the micro-array, and subsequent validation. Bone was harvested from non-smoking patients during dental implant surgery. After outgrowth, cells were cultured until subconfluence, treated for 24 h with either Emdogain® (100 µg/ml) or control medium, and subsequently RNA was isolated and micro-array was performed. The most important genes de