Science.gov

Sample records for am-241 radioactive stoffe

  1. Lunar Surface Stirling Power Systems Using Am-241

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2009-01-01

    For many years NASA has used the decay of Pu-238 (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTG), which have provided electrical power for many NASA missions. While RTG's have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency (-5% efficiency) and the scarcity of Plutoinium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14 earth days) isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 watts with 2 GPHS modules at the beginning of life (BOL) (-30% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a 4-fold reduction in the number of GPHS modules. This study considers the use of Americium 241 (Am-241) as a substitute for the Pu-238 in Stirling convertor based Radioisotope Power Systems (RPS) for power levels from 1 O's of watts to 5 kWe. The Am-241 is used as a replacement for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about 1/5 while maintaining approximately the same system mass. In order to obtain the nominal 160 watts electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and

  2. High resolution measurements of the Am241(n,2n) reaction cross section

    NASA Astrophysics Data System (ADS)

    Sage, C.; Semkova, V.; Bouland, O.; Dessagne, P.; Fernandez, A.; Gunsing, F.; Nästren, C.; Noguère, G.; Ottmar, H.; Plompen, A. J. M.; Romain, P.; Rudolf, G.; Somers, J.; Wastin, F.

    2010-06-01

    Measurements of the Am241(n,2n) reaction cross section have been performed at the Joint Research Centre (JRC) Geel in the frame of a collaboration between the European Commission (EC) JRC and French laboratories from CNRS and the Commissariat à L’Energie Atomique (CEA) Cadarache. Raw material coming from the Atalante facility of CEA Marcoule has been transformed by JRC Karlsruhe into suitable Am241O2 samples embedded in Al2O3 matrices specifically designed for these measurements. The irradiations were carried out at the 7-MV Van de Graaff accelerator. The Am241(n,2n) reaction cross section was determined relative to the Al27(n,α)Na24 standard cross section. The measurements were performed in four sessions, using quasi-mono-energetic neutrons with energies ranging from 8 to 21 MeV produced via the H2(d,n)He3 and the H3(d,n)He4 reactions. The induced activity was measured by standard γ-ray spectrometry using a high-purity germanium detector. Below 15 MeV, the present results are in agreement with data obtained earlier. Above 15 MeV, these measurements allowed the experimental investigation of the Am241(n,2n) reaction cross section for the first time. The present data are in good agreement with predictions obtained with the talys code that uses an optical and fission model developed at CEA.

  3. Direct high-precision mass measurements on Am241,243, Pu244, and Cf249

    NASA Astrophysics Data System (ADS)

    Eibach, M.; Beyer, T.; Blaum, K.; Block, M.; Düllmann, Ch. E.; Eberhardt, K.; Grund, J.; Nagy, Sz.; Nitsche, H.; Nörtershäuser, W.; Renisch, D.; Rykaczewski, K. P.; Schneider, F.; Smorra, C.; Vieten, J.; Wang, M.; Wendt, K.

    2014-06-01

    The absolute masses of four long-lived transuranium nuclides, Am241,243, Pu244, Pu244, and Cf249, in the vicinity of the deformed N =152 neutron shell closure have been measured directly with the Penning-trap mass spectrometer TRIGA-TRAP. Our measurements confirm the AME2012 mass values of Am241,243 and Pu244 within one standard deviation, which were indirectly determined, by decay spectroscopy studies. In the case of the Cf249 mass, a discrepancy of more than three standard deviations has been observed, affecting absolute masses even in the superheavy element region. The implementation of the mass values into the AME2012 network yields a reduced mass uncertainty for 84 nuclides, particularly for Pu244 and its strongly correlated α decay chains.

  4. Preliminary Analysis: Am-241 RHU/TEG Electric Power Source for Nanosatellites

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.; Young, David; Cunningham, Karen; Kim, Tony; Ambrosi, Richard M.; Williams, Hugo R.

    2014-01-01

    The Februay 2013 Space Works Commercial report indicates a strong increase in nano/microsatellite (1-50 kg) launch demand globally in future years. Nanosatellites (NanoSats) are small spacecraft in the 1-10 kg range, which present a simple, low-cost option for developing quickly-deployable satellites. CubeSats, a special category of NanoSats, are even being considered for interplanetary missions. However, the small dimensions of CubeSats and the limited mass of the NanoSat class in general place limits of capability on their electrical power systems (especially where typical power sources such as solar panels are considered) and stored energy reserves; restricting the power budget and overall functionality. For example, leveraging NanoSat clusters for computationally intensive problems that are solved collectively becomes more challenging with power related restrictions on communication and data-processing. Further, interplanetary missions that would take NanoSats far from the sun, make the use of solar panels less effective as a power source as their required area would become quite large. To overcome these limitations, americium 241 (Am-241) has been suggested as a low power source option. The Idaho National Laboratory, Center for Space Nuclear Research reports that: ? (Production) requires small quantities of isotope - 62.5 g of Pu-238; 250 g Am- 241 (for 5 We); Am-241 is available at around 1 kg/yr commercially; Am-241 produces 59 kev gammas which are stopped readily by tungsten so the radiation field is very low. Whereby, an Am-241 source could be placed in among the instruments and the waste heat used to heat the platform; and ? amounts of isotope are so low that launch approval may be easier, especially with tungsten encapsulation. As further reported, Am-241 has a half-life that is approximately five times greater than that of Pu- 238 and it has been determined that the neutron yield of a 241-AmO(sub 2) source is approximately an order of magnitude lower

  5. Estimating Am-241 activity in the body: comparison of direct measurements and radiochemical analyses

    SciTech Connect

    Lynch, Timothy P.; Tolmachev, Sergei Y.; James, Anthony C.

    2009-06-01

    The assessment of dose and ultimately the health risk from intakes of radioactive materials begins with estimating the amount actually taken into the body. An accurate estimate provides the basis to best assess the distribution in the body, the resulting dose, and ultimately the health risk. This study continues the time-honored practice of evaluating the accuracy of results obtained using in vivo measurement methods and techniques. Results from the radiochemical analyses of the 241Am activity content of tissues and organs from four donors to the United States Transuranium and Uranium Registries were compared to the results from direct measurements of radioactive material in the body performed in vivo and post mortem. Two were whole body donations and two were partial body donations The skeleton was the organ with the highest deposition of 241Am activity in all four cases. The activities ranged from 30 Bq to 300 Bq. The skeletal estimates obtained from measurements over the forehead were within 20% of the radiochemistry results in three cases and differed by 78% in one case. The 241Am lung activity estimates ranged from 1 Bq to 30 Bq in the four cases. The results from the direct measurements were within 40% of the radiochemistry results in 3 cases and within a factor of 3 for the other case. The direct measurement estimates of liver activity ranged from 2 Bq to 60 Bq and were generally lower than the radiochemistry results. The results from this study suggest that the measurement methods and calibration techniques used at the In Vivo Radiobioassay and Research Facility to quantify the activity in the lungs, skeleton and liver are reasonable under the most challenging conditions where there is 241Am activity in multiple organs. These methods and techniques are comparable to those used at other Department of Energy sites. This suggests that the current in vivo methods and calibration techniques provide reasonable estimates of radioactive material in the body. Not

  6. EURADOS intercomparison exercise on MC modelling for the in-vivo monitoring of AM-241 in skull phantoms (Part II and III).

    NASA Astrophysics Data System (ADS)

    Vrba, Tomas; Broggio, David; Caldeira, Margarida; Capello, Kevin; Fantínová, Karin; Franck, Didier; Gómez-Ros, Jose Maria; Hunt, John; Kinase, Sakae; Leone, Debora; Lombardo, Pasquale Alessandro; Manohari, Murugan; Marzocchi, Olaf; Moraleda, Montserrat; Nogueira, Pedro; Ośko, Jakub; Arron, Shutt; Suhl, Soheigh; Takahashi, Masa; Teles, Pedro; Tremblay, Marilyn; Tymińska, Katarzyna; Lopez, Maria Antonia; Tanner, Rick

    2015-08-01

    An intercomparison on in-vivo monitoring for determination of Am-241 in three skull phantoms was launched by EURADOS in 2011. The project focused on measurement and estimation of the activity of Am-241 in the human skull. Three human skull phantoms of different complexity were used. A Monte Carlo (MC) intercomparison exercise with the voxel representations of the physical phantom was launched additionally in September of 2012. The main goals of the action were (1) to investigate the different methodologies for developing MC calibrations that might arise from a complex radiological assessment and (2) to compare individual approaches of the participating laboratories in order to determine international guidance for best practice. The MC exercise consisted of three tasks with increasing difficulty, in order to test the extent of skills needed by the participating laboratory. The first task was to simulate a given detector and a well-defined semi-skull phantom. The second and third tasks presented in this paper-introduced more complex simulations with individual geometry and real detector modelling. The paper provides an overview of the participant's results, analyses of the observed issues concerning tasks two and three, and a general evaluation of the whole project.

  7. Neutron irradiation of Am-241 effectively produces curium

    NASA Technical Reports Server (NTRS)

    Anderson, R. W.; Milstead, J.; Stewart, D. C.

    1967-01-01

    Computer study was made on the production of multicurie amounts of highly alpha-active curium 242 from americium 241 irradiation. The information available includes curium 242 yields, curium composition, irradiation data, and production techniques and safeguards.

  8. Peat: a natural repository for low-level radioactive waste

    SciTech Connect

    Thomas, E.D.

    1985-12-01

    A study has been initiated to evaluate the possibility of using peat as a natural repository for the disposal of low-level radioactive waste. One aspect of this study was to determine the retentive properties of the peat through measurements of the distribution coefficients (K/sub d/) for Am-241, Ru-106, Cs-137, Co-57, and Sr-85 in two layers of mountain top peat bogs from Lefgren's, NY, and Spruce Flats, PA. These K/sub d/ values were then compared to literature values of various sediment/water systems at similar environmental conditions. Am-241, Ru-106, Co-57, and Sr-85 attained distribution coefficients in the organic rich layers of the bogs two orders of magnitude greater than those obtained previously at pH 4.0. Although, the Cs-137 sorbed strongly to the inorganic rich layer of the Spruce Flats, PA, bog, the K/sub d/ values obtained for this isotope were, again, comparable or higher than those reported previously at pH 4.0, indicating the greater retentive properties of the peat. A chromatographic ''theoretical plate'' model was used to describe the field migration of Cs-137. The advection and diffusion coefficients were higher in the Lefgren's Bog, NY, than those obtained for the Spruce Flats Bog, PA. These field data were substantiated by the lower Cs-137 K/sub d/ values determined in the laboratory for the Lefgren's Bog, NY, compared to the Spruce Flats Bog. Although this model gave a good indication of the field migration, it neglected the process of sorption as defined by the sorption isotherm. Based on the time series data on distribution ratio measurements, a Cameron-Klute type of sorption isotherm was indicated, with rapid equilibrium initially superimposed onto a slower first order linear reversible equilibrium. This sorption isotherm can then be used in the final form of a model to describe the migration of radionuclides in a peat bog. 19 refs., 15 figs., 10 tabs.

  9. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    SciTech Connect

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.; Paunica, I.

    2003-02-25

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassembling and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of

  10. Residual radioactivity guidelines for the heavy water components test reactor at the Savannah River Site

    SciTech Connect

    Owen, M.B. Smith, R.; McNeil, J.

    1997-04-01

    Guidelines were developed for acceptable levels of residual radioactivity in the Heavy Water Components Test Reactor (HWCTR) facility at the conclusion of its decommissioning. Using source terms developed from data generated in a detailed characterization study, the RESRAD and RASRAD-BUILD computer codes were used to calculate derived concentration guideline levels (DCGLs) for the radionuclides that will remain in the facility. The calculated DCGLs, when compared to existing concentrations of radionuclides measured during a 1996 characterization program, indicate that no decontamination of concrete surfaces will be necessary. Also, based on the results of the calculations, activated concrete in the reactor biological shield does not have to be removed, and imbedded radioactive piping in the facility can remain in place. Viewed in another way, the results of the calculations showed that the present inventory of residual radioactivity in the facility (not including that associated with the reactor vessel and steam generators) would produce less than one millirem per year above background to a hypothetical individual on the property. The residual radioactivity is estimated to be approximately 0.04 percent of the total inventory in the facility as of March, 1997. According to the results, the only radionuclides that would produce greater than 0.0.1-millirem per year are Am-241 (0.013 mrem/yr at 300 years), C-14 (0.022 mrem/yr at 1000 years) and U-238 (0.034 mrem/yr at 6000 years). Human exposure would occur only through the groundwater pathways, that is, from water drawn from, a well on the property. The maximum exposure would be approximately one percent of the 4 millirem per year ground water exposure limit established by the U.S. Environmental Protection Agency. 11 refs., 13 figs., 15 tabs.

  11. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2014. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:26420096

  12. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:27620100

  13. Radioactivity Calculations

    ERIC Educational Resources Information Center

    Onega, Ronald J.

    1969-01-01

    Three problems in radioactive buildup and decay are presented and solved. Matrix algebra is used to solve the second problem. The third problem deals with flux depression and is solved by the use of differential equations. (LC)

  14. Simulated Radioactivity

    ERIC Educational Resources Information Center

    Boettler, James L.

    1972-01-01

    Describes the errors in the sugar-cube experiment related to radioactivity as described in Project Physics course. The discussion considers some of the steps overlooked in the experiment and generalizes the theory beyond the sugar-cube stage. (PS)

  15. Concentrating Radioactivity

    ERIC Educational Resources Information Center

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  16. RADIOACTIVE BATTERY

    DOEpatents

    Birden, J.H.; Jordan, K.C.

    1959-11-17

    A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

  17. Radioactive Waste.

    ERIC Educational Resources Information Center

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  18. Radioactive wastes

    SciTech Connect

    Devarakonda, M.S.; Hickox, J.A.

    1996-11-01

    This paper provides a review of literature published in 1995 on the subject of radioactive wastes. Topics covered include: national programs; waste repositories; mixed wastes; decontamination and decommissioning; remedial actions and treatment; and environmental occurrence and transport of radionuclides. 155 refs.

  19. Regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees. Draft report for comment

    SciTech Connect

    McGuire, S.A.

    1985-06-01

    Potential accidents for 15 types of fuel cycle and other radioactive material licensees were analyzed. The most potentially hazardous accident, by a large margin, was determined to be the sudden rupture of a heated multi-ton cylinder of UF/sub 6/. Acute fatalities offsite are probably not credible. Acute permanent injuries may be possible for many hundreds of meters, and clinically observable transient effects of unknown long term consequences may be possible for distances up to a few miles. These effects would be caused by the chemical toxicity of the UF/sub 6/. Radiation doses would not be significant. The most potentially hazardous accident due to radiation exposure was determined to be a large fire at certain facilities handling large quantities of alpha-emitting radionuclides (i.e., Po-210, Pu-238, Pu-239, Am-241, Cm-242, Cm-244) or radioiodines (I-125 and I-131). However, acute fatalities or injuries to people offsite due to accidental releases of these materials do not seem plausible. The only other significant accident was identified as a long-term pulsating criticality at fuel cycle facilities handling high-enriched uranium or plutonium. An important feature of the most serious accidents is that releases are likely to start without prior warning. The releases would usually end within about half an hour. Thus protective actions would have to be taken quickly to be effective. There is not likely to be enough time for dose projections, complicated decisionmaking during the accident, or the participation of personnel not in the immediate vicinity of the site. The appropriate response by the facility is to immediately notify local fire, police, and other emergency personnel and give them a brief predetermined message recommending protective actions. Emergency personnel are generally well qualified to respond effectively to small accidents of these types.

  20. RADIO-ACTIVE TRANSDUCER

    DOEpatents

    Wanetick, S.

    1962-03-01

    ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

  1. Abscess scan - radioactive

    MedlinePlus

    Radioactive abscess scan; Abscess scan; Indium Scan; Indium-labelled white blood cell scan ... the white blood cells are tagged with a radioactive substance called indium. The cells are then injected ...

  2. Radioactive iodine uptake

    MedlinePlus

    ... the testing center so that the amount of radioactivity in the thyroid gland can be measured. This ... The amount of radioactivity is very small, and there have been no documented side effects. The amount of iodine used is less than ...

  3. Radioactive diagnostic agent

    SciTech Connect

    Shigematsu, A.; Aihara, M.; Matsuda, M.; Suzuki, A.; Tsuya, A.

    1984-02-07

    A radioactive diagnostic agent for renal cortex, adrenal cortex, myocardium, brain stem, spinal nerve, etc., which comprises as an essential component monoiodoacetic acid wherein the iodine atom is radioactive.

  4. EURADOS intercomparison exercise on MC modeling for the in-vivo monitoring of Am-241 in skull phantoms (Part I)

    NASA Astrophysics Data System (ADS)

    Vrba, Tomas; Nogueira, Pedro; Broggio, David; Caldeira, Margarida; Capello, Kevin; Fantínová, Karin; Figueira, Catarina; Hunt, John; Leone, Debora; Murugan, Manohari; Marzocchi, Olaf; Moraleda, Montse; Shutt, Arron; Suh, Soheigh; Takahashi, Masa; Tymińska, Katarzyna; Antonia Lopez, Maria; Tanner, Rick

    2014-11-01

    An intercomparison on in-vivo monitoring for determination of 241Am in three skull phantoms was launched by EURADOS in 2011. The project focused on the measurement and estimation of 241Am activity in the human skull. Three human skull phantoms of different complexity were used. A Monte Carlo (MC) exercise with the voxel representations of the real phantoms was also launched in September 2012. The main goals of the project were to investigate the use of MC techniques for efficiency calibrations for body monitoring systems for a special calibration exercise and compare the approaches of participating laboratories. The full MC exercise consisted of three tasks with increasing difficulty, to test the extent of the skills of each participating laboratory. The first task in this intercomparison was to simulate a specified detector and a well defined semi-skull phantom. All parameters of the simulation, including photon yield, material property and geometry were fixed. This paper provides an overview of the participants’ results and analyses of the issues presented by this first task. The majority of the responses did not need any correction and the number of incorrect results was less than in a previous exercise of a similar kind. Overall knowledge in this research area utilising MC techniques appears to have improved and the repetition of the intercomparison exercise has positively affected the skills of the participating laboratories.

  5. Radioactivity and food

    SciTech Connect

    Olszyna-Marzys, A.E. )

    1990-03-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references.

  6. Radioactive Waste Management Basis

    SciTech Connect

    Perkins, B K

    2009-06-03

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  7. Radioactive Wastes. Revised.

    ERIC Educational Resources Information Center

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  8. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  9. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  10. A Remote Radioactivity Experiment

    ERIC Educational Resources Information Center

    Jona, Kemi; Vondracek, Mark

    2013-01-01

    Imagine a high school with very few experimental resources and limited budgets that prevent the purchase of even basic laboratory equipment. For example, many high schools do not have the means of experimentally studying radioactivity because they lack Geiger counters and/or good radioactive sources. This was the case at the first high school one…

  11. Temporary Personal Radioactivity

    NASA Astrophysics Data System (ADS)

    Myers, Fred

    2012-11-01

    As part of a bone scan procedure to look for the spread of prostate cancer, I was injected with radioactive technetium. In an effort to occupy/distract my mind, I used a Geiger counter to determine if the radioactive count obeyed the inverse-square law as a sensor was moved away from my bladder by incremental distances.

  12. Understanding radioactive waste

    SciTech Connect

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  13. Radioactive gold ring dermatitis

    SciTech Connect

    Miller, R.A.; Aldrich, J.E. )

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  14. Container for radioactive materials

    DOEpatents

    Fields, Stanley R.

    1985-01-01

    A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

  15. Dynamic radioactive particle source

    DOEpatents

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  16. Temporary Personal Radioactivity

    ERIC Educational Resources Information Center

    Myers, Fred

    2012-01-01

    As part of a bone scan procedure to look for the spread of prostate cancer, I was injected with radioactive technetium. In an effort to occupy/distract my mind, I used a Geiger counter to determine if the radioactive count obeyed the inverse-square law as a sensor was moved away from my bladder by incremental distances. (Contains 1 table and 2…

  17. Biodegradation of radioactive animals

    SciTech Connect

    Party, N.; Party, E.; Wilkerson, A.

    1995-06-01

    The two most common disposal alternatives for animals contaminated with radioactive materials are incineration and burial. For most of the country burial has entailed shipping the carcasses to a commercial disposal facility at Barnwell, South Carolina, where it was landfilled along with other solid radioactive waste. Unfortunately, since 30 June 1994, this facility accepts waste generated by the states of the Southeast Compact only. Therefore, burial is no longer an option for most of the country`s generators and incineration is an option only for those institutions which have, or have access to, an incinerator that is permitted to burn radioactive materials and that accepts animal carcasses with de minimis levels of radioactive contaminants. Many institutions, especially those in congested urban areas where the public does not support incineration, do not have viable outlets for radioactive animal carcasses. Interim, on-site storage poses problems of its own. Biodegradation of animal carcasses with dermestid beetles is an inexpensive approach to this waste management problem. 7 refs., 3 figs., 1 tab.

  18. Radioactivity in food crops

    SciTech Connect

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  19. Radioactivity of Consumer Products

    NASA Astrophysics Data System (ADS)

    Peterson, David; Jokisch, Derek; Fulmer, Philip

    2006-11-01

    A variety of consumer products and household items contain varying amounts of radioactivity. Examples of these items include: FiestaWare and similar glazed china, salt substitute, bananas, brazil nuts, lantern mantles, smoke detectors and depression glass. Many of these items contain natural sources of radioactivity such as Uranium, Thorium, Radium and Potassium. A few contain man-made sources like Americium. This presentation will detail the sources and relative radioactivity of these items (including demonstrations). Further, measurements of the isotopic ratios of Uranium-235 and Uranium-238 in several pieces of china will be compared to historical uses of natural and depleted Uranium. Finally, the presenters will discuss radiation safety as it pertains to the use of these items.

  20. Radioactive mixed waste disposal

    SciTech Connect

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  1. Container for radioactive materials

    DOEpatents

    Fields, S.R.

    1984-05-30

    A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

  2. Detecting Illicit Radioactive Sources

    SciTech Connect

    McDonald, Joseph C.; Coursey, Bert; Carter, Michael

    2004-11-01

    Specialized instruments have been developed to detect the presence of illicit radioactive sources that may be used by terrorists in radiation dispersal devices, so-called ''dirty bombs'' or improvised nuclear devices. This article discusses developments in devices to detect and measure radiation.

  3. Radioactivity: A Natural Phenomenon.

    ERIC Educational Resources Information Center

    Ronneau, C.

    1990-01-01

    Discussed is misinformation people have on the subject of radiation. The importance of comparing artificial source levels of radiation to natural levels is emphasized. Measurements of radioactivity, its consequences, and comparisons between the risks induced by radiation in the environment and from artificial sources are included. (KR)

  4. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  5. Viewer Makes Radioactivity "Visible"

    NASA Technical Reports Server (NTRS)

    Yin, L. I.

    1983-01-01

    Battery operated viewer demonstrates feasibility of generating threedimensional visible light simulations of objects that emit X-ray or gamma rays. Ray paths are traced for two pinhold positions to show location of reconstructed image. Images formed by pinholes are converted to intensified visible-light images. Applications range from radioactivity contamination surveys to monitoring radioisotope absorption in tumors.

  6. AIR RADIOACTIVITY MONITOR

    DOEpatents

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  7. TABLE OF RADIOACTIVE ELEMENTS.

    SciTech Connect

    HOLDEN,N.E.

    2001-06-29

    For those chemical elements which have no stable nuclides with a terrestrial isotopic composition, the data on radioactive half-lives and relative atomic masses for the nuclides of interest and importance have been evaluated and the recommended values and uncertainties are listed.

  8. Environmental Radioactivity, Temperature, and Precipitation.

    ERIC Educational Resources Information Center

    Riland, Carson A.

    1996-01-01

    Reports that environmental radioactivity levels vary with temperature and precipitation and these effects are due to radon. Discusses the measurement of this environmental radioactivity and the theory behind it. (JRH)

  9. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  10. Method for calcining radioactive wastes

    DOEpatents

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  11. International radioactive material recycling challenges

    SciTech Connect

    Greeves, John T.; Lieberman, James

    2007-07-01

    The paper explores current examples of successful International radioactive recycling programs and also explores operational regulatory and political challenges that need to be considered for expanding international recycling world-wide. Most countries regulations are fully consistent with the International Atomic Agency (IAEA) Code of Practice on the International Transboundary Movement of Radioactive Material and the IAEA Code of Conduct on the Safety and Security of Radioactive Sources. IAEA member States reported on the status of their efforts to control transboundary movement of radioactive material recently during the Joint Convention on the Safety of Spent Fuel management and on the Safety of Radioactive Waste Management meeting in May 2006. (authors)

  12. Radioactive ion detector

    DOEpatents

    Bower, Kenneth E.; Weeks, Donald R.

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  13. Radioactive ion detector

    DOEpatents

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  14. PROCESSING OF RADIOACTIVE WASTE

    DOEpatents

    Johnson, B.M. Jr.; Barton, G.B.

    1961-11-14

    A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

  15. Table of radioactive elements

    SciTech Connect

    Holden, N.E.

    1985-01-01

    As has been the custom in the past, the Commission publishes a table of relative atomic masses and halflives of selected radionuclides. The information contained in this table will enable the user to calculate the atomic weight for radioactive materials with a variety of isotopic compositions. The atomic masses have been taken from the 1984 Atomic Mass Table. Some of the halflives have already been documented.

  16. MARE: Mars Radioactivity Experiment

    NASA Astrophysics Data System (ADS)

    di Lellis, A. M.; Capria, M. T.; Espinasse, S.; Magni, G.; Orosei, R.; Piccioni, G.; Federico, C.; Minelli, G.; Pauselli, C.; Scarpa, G.

    1999-09-01

    MARE is an experiment for the measurement of the beta and gamma radioactivity in space and in the Martian soil, both at the surface and in the subsurface. This will be accomplished by means of a dosimeter and a spectrometer. The radiation dose rate to which crews will be exposed is one of the hazards that has to be quantified before the human exploration of Mars may begin. Data for evaluating radioactivity levels at Martian surface are of great interest for environmental studies related to life in general. The dosimeter will be able to measure the beta and gamma radiation dose received, with a responsivity which is very close to that of a living organism. The dosimeter is based on thermo-luminescence pills which emit an optical signal proportional to the absorbed dose when heated. Radioactive elements ((40) K, (235) U, (238) U and (232) Th) can be used as a mean of tracing the evolution of a terrestrial planet. These radioactive elements are the source of the internal heat, which drives convection in the mantle. They have been redistributed in this process and they are now concentrated in the crust where they are accessible for study. Their different behavior during the fractionation process can be used as a mean to investigate the geochemical characteristic of Mars. The spectrometer, a scintillation radiation absorber system for single event counting, is capable of detecting gamma photons with energies between 200 KeV and 10 MeV. The detected events will be processed in such a way to allow the recognition of the spectral signature of different decay processes, and thus the identification and the measurement of the concentrations of different radionuclides in the Martian soil.

  17. Radioactive deposits of Nevada

    USGS Publications Warehouse

    Lovering, T.G.

    1953-01-01

    Thirty-five occurrences of radioactive rocks had been reported from Nevada prior to 1952. Twenty-five of these had been investigated by the U. S. Geological Survey and the U. S. Atomic Energy Commission. Of those investigated, uranium minerals were identified in 13; two contained a thorium mineral (monazite); the source of radioactivity on 7 properties was not ascertained; and one showed no abnormal radioactivity. Of the other reported occurrences, one is said to contain uraniferous hydrocarbons and 9 are placers containing thorian monazite. Pitchblende occurs at two localities; the East Walker River area, and the Stalin's Present prospect, where it is sparsely disseminated in tabular bodies cutting granitic rocks. Other uranium minerals found in the state include: carnotite, tyuyamunite, autunite, torbernite, gummite, uranophane, kasolite, and an unidentified mineral which may be dumontit. Monazite is the only thorium mineral of possible economic importance that has been reported. From an economic standpoint 9 only 4 of the properties examined showed reserves of uranium ore in 1952; these are: the Green Monster mine, which shipped 5 tons of ore to Marysvale, Utah, during 1951, the Majuba Hill mine, the Stalin's Present prospect, and the West Willys claim in the Washington district. Reserves of ore grade are small on all of these properties and probably cannot be developed commercially unless an ore-buying station is set up nearby. No estimate has been made of thorium reserves and no commercial deposits of thorium are known.

  18. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    SciTech Connect

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

  19. PERSPECTIVE: Fireworks and radioactivity

    NASA Astrophysics Data System (ADS)

    Breitenecker, Katharina

    2009-09-01

    both reaction products and unburnt constituents of a pyrotechnic mixture. One major environmental concern in pyrotechnics focuses on the emission of heavy metals. This is the topic discussed in the article by Georg Steinhauser and Andreas Musilek in this issue [4]. A possible interrelationship between respiratory effects and fireworks emissions of barium-rich aerosols was also raised last year [5]. In recent years the potential hazard of naturally occurring radioactive material has become of importance to the scientific community. Naturally occurring radionuclides can be of terrestrial or cosmological origin. Terrestrial radionuclides were present in the presolar cloud that later contracted in order to build our solar system. These radionuclides—mainly heavy metals—and their non-radioactive isotopes are nowadays fixed in the matrix of the Earth's structure. Usually, their percentage is quite small compared to their respective stable isotopes—though there are exceptions like in the case of radium. The problem with environmental pollution due to naturally occurring radioactive material begins when this material is concentrated due to mining and milling, and later further processed [6]. Environmental pollution due to radioactive material goes back as far as the Copper and Iron Ages, when the first mines were erected in order to mine ores (gold, silver, copper, iron, etc), resulting in naturally occurring radioactive material being set free with other dusts into the atmosphere. So where is the link between pyrotechnics and radioactivity? In this article presented by Georg Steinhauser and Andreas Musilek [4], the pyrotechnic ingredients barium nitrate and strontium nitrate are explored with respect to their chemical similarities to radium. The fundamental question, therefore, was whether radium can be processed together with barium and strontium. If so, the production and ignition of these pyrotechnic ingredients could cause atmospheric pollution with radium aerosols

  20. Study of proton radioactivities

    SciTech Connect

    Davids, C.N.; Back, B.B.; Henderson, D.J.

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  1. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  2. Radioactive and magnetic investigations

    NASA Technical Reports Server (NTRS)

    Heye, D.; Beiersdorf, H.

    1979-01-01

    Age and growth pattern determination of manganese nodules were explored. Two methods are discussed: (1) measurement of the presence of radioactive iodine isotopes; which is effective only up to 3.105 years, and (2) measurements of magnetism. The growth rates of three nodules were determined. The surface of the nodule was recent, and the overall age of the nodule could be determined with accuracy of better than 30%. Measurement of paleomagnetic effect was attempted to determine wider age ranges, however, the measured sign changes could not be interpreted as paleomagnetic reversals.

  3. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  4. Material for radioactive protection

    DOEpatents

    Taylor, R.S.; Boyer, N.W.

    A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  5. RADIOACTIVE MATERIALS SENSORS

    SciTech Connect

    Mayo, Robert M.; Stephens, Daniel L.

    2009-09-15

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  6. Simpler radioactive wastewater processing.

    PubMed

    Rodríguez, José Canga; Luh, Volker

    2011-11-01

    José Canga Rodríguez, key account manager, Pharmaceutical and Life Sciences, EnviroChemie, and Volker Luh, CEO of EnviroDTS, describe the development, and recent successful application, of a new technology for dealing safely and effectively with the radioactive "wastewater" generated by patients who have undergone radiotherapy in nuclear medicine facilities. The BioChroma process provides what is reportedly not only a more flexible means than traditional "delay and decay" systems of dealing with this "by-product" of medical treatment, but also one that requires less plant space, affords less risk of leakage or cross-contamination, and is easier to install. PMID:22368885

  7. Levels of radioactivity in Qatar

    SciTech Connect

    Al-Thani, A.A.; Abdul-Majid, S.; Mohammed, K.

    1995-12-31

    The levels of natural and man-made radioactivity in soil and seabed were measured in Qatar to assess radiation exposure levels and to evaluate any radioactive contamination that may have reached the country from fallout or due to the Chernobyl accident radioactivity release. Qatar peninsula is located on the Arabian Gulf, 4500 km from Chernobyl, and has an area of {approximately}11,600 km{sup 2} and a population of {approximately}600,000.

  8. Radioactive waste processing apparatus

    DOEpatents

    Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  9. Radioactivity in Urals

    NASA Astrophysics Data System (ADS)

    Interest in the problems due to the radioactive contamination of the environment has been frequently stimulated by rumors of an occurrence of severe contamination of lakes and rivers in areas of the Ural Mountains. Occasional evidence appearing in publications and provided by Soviet emigrants has been pieced together and seems to suggest that there is an ideal opportunity for groundwater geochemists and others to evaluate such major radioactivity in the environment. The reasons that such a study probably will not take place is that the contamination may have been caused for the most part by a nuclear explosion in a Soviet weapons plant.F. Parker, an environmental scientist at Vanderbilt University, in a study for the Department of Energy, deduced that a large explosion occurred in 1958 at a nuclear fuels reprocessing plant at Kyshtym in the Ural Mountains, according to a recent report (Science, July 8, 1983). The report refers to the original interpretations of Z. Medvedev, a Soviet geneticist, who concluded that nuclear fallout has contaminated a very extensive area around Kyshtym.

  10. Stefan Meyer: Pioneer of Radioactivity

    NASA Astrophysics Data System (ADS)

    Reiter, Wolfgang L.

    2001-03-01

    Stefan Meyer was one of the pioneers in radioactivity research and director of the Vienna Radium Institute, the first institution in the world devoted exclusively to radioactivity. I give here a biographical sketch of Meyer and of some of his colleagues and an overview of the research activities at the Radium Institute.

  11. Radioactive elements in stellar atmospheres

    SciTech Connect

    Gopka, Vira; Yushchenko, Alexander; Goriely, Stephane; Shavrina, Angelina; Kang, Young Woon

    2006-07-12

    The identification of lines of radioactive elements (Tc, Pm and elements with 83radioactive decay of Th and U in the upper levels of stellar atmospheres, contamination of stellar atmosphere by recent SN explosion, and spallation reactions.

  12. Heavy fragment radioactivities

    SciTech Connect

    Price, P.B.

    1987-12-10

    This recently discovered mode of radioactive decay, like alpha decay and spontaneous fission, is believed to involve tunneling through the deformation-energy barrier between a very heavy nucleus and two separated fragments the sum of whose masses is less than the mass of the parent nucleus. In all known cases the heavier of the two fragments is close to doubly magic /sup 208/Pb, and the lighter fragment has even Z. Four isotopes of Ra are known to emit /sup 14/C nuclei; several isotopes of U as well as /sup 230/Th and /sup 231/Pa emit Ne nuclei; and /sup 234/U exhibits four hadronic decay modes: alpha decay, spontaneous fission, Ne decay and Mg decay.

  13. PERSPECTIVE: Fireworks and radioactivity

    NASA Astrophysics Data System (ADS)

    Breitenecker, Katharina

    2009-09-01

    both reaction products and unburnt constituents of a pyrotechnic mixture. One major environmental concern in pyrotechnics focuses on the emission of heavy metals. This is the topic discussed in the article by Georg Steinhauser and Andreas Musilek in this issue [4]. A possible interrelationship between respiratory effects and fireworks emissions of barium-rich aerosols was also raised last year [5]. In recent years the potential hazard of naturally occurring radioactive material has become of importance to the scientific community. Naturally occurring radionuclides can be of terrestrial or cosmological origin. Terrestrial radionuclides were present in the presolar cloud that later contracted in order to build our solar system. These radionuclides—mainly heavy metals—and their non-radioactive isotopes are nowadays fixed in the matrix of the Earth's structure. Usually, their percentage is quite small compared to their respective stable isotopes—though there are exceptions like in the case of radium. The problem with environmental pollution due to naturally occurring radioactive material begins when this material is concentrated due to mining and milling, and later further processed [6]. Environmental pollution due to radioactive material goes back as far as the Copper and Iron Ages, when the first mines were erected in order to mine ores (gold, silver, copper, iron, etc), resulting in naturally occurring radioactive material being set free with other dusts into the atmosphere. So where is the link between pyrotechnics and radioactivity? In this article presented by Georg Steinhauser and Andreas Musilek [4], the pyrotechnic ingredients barium nitrate and strontium nitrate are explored with respect to their chemical similarities to radium. The fundamental question, therefore, was whether radium can be processed together with barium and strontium. If so, the production and ignition of these pyrotechnic ingredients could cause atmospheric pollution with radium aerosols

  14. Radioactive waste processing apparatus

    DOEpatents

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  15. Environmental radioactive intercomparison program and radioactive standards program

    SciTech Connect

    Dilbeck, G.

    1993-12-31

    The Environmental Radioactivity Intercomparison Program described herein provides quality assurance support for laboratories involved in analyzing public drinking water under the Safe Drinking Water Act (SDWA) Regulations, and to the environmental radiation monitoring activities of various agencies. More than 300 federal and state nuclear facilities and private laboratories participate in some phase of the program. This presentation describes the Intercomparison Program studies and matrices involved, summarizes the precision and accuracy requirements of various radioactive analytes, and describes the traceability determinations involved with radioactive calibration standards distributed to the participants. A summary of program participants, sample and report distributions, and additional responsibilities of this program are discussed.

  16. Radioactive deposits in California

    USGS Publications Warehouse

    Walker, George W.; Lovering, Tom G.

    1954-01-01

    Reconnaissance examination by Government geologists of many areas, mine properties, and prospects in California during the period between 1948 and 1953 has confirmed the presence of radioactive materials in place at more than 40 localities. Abnormal radioactivity at these localities is due to concentrations of primary and secondary uranium minerals, to radon gas, radium (?), and to thorium minerals. Of the known occurrences only three were thought to contain uranium oxide (uranitite or pitchblende), 4 contained uranium-bearing columbate, tantalate, or titanate minerals, 12 contained secondary uranium minerals, such as autunite, carnotite, and torbernite, one contained radon gas, 7 contained thorium minerals, and, at the remaining 16 localities, the source of the anomalous radiation was not positively determined. The occurrences in which uranium oxide has been tentatively identified include the Rathgeb mine (Calaveras County), the Yerih group of claims (San Bernardino County), and the Rainbow claim (Madera County). Occurrences of secondary uranium minerals are largely confined to the arid desert regions of south-eastern California including deposits in San Bernardino, Kern, Inyo, and Imperial Counties. Uranium-bearing columbate, tantalate, or titanate minerals have been reported from pegmatite and granitic rock in southeastern and eastern California. Thorium minerals have been found in vein deposits in eastern San Bernardino County and from pegmatites and granitic rocks in various parts of southeastern California; placer concentrations of thorium minerals are known from nearly all areas in the State that are underlain, in part, by plutonic crystalline rocks. The primary uranium minerals occur principally as minute accessory crystals in pegmatite or granitic rock, or with base-metal sulfide minerals in veins. Thorium minerals also occur as accessory crystals in pegmatite or granitic rock, in placer deposits derived from such rock, and, at Mountain Pass, in veins

  17. Automatic Searching Radioactive Sources by Airborne Radioactive Survey Using Multicopter

    NASA Astrophysics Data System (ADS)

    Rim, H.; Eun, S. B.; Kim, K.; Park, S.; Jung, H. K.

    2015-12-01

    In order to prepare emergency situation lost a dangerous radioelement source in advance and to search a radioactive source automatically, we develop airborne radioelement survey system by multicopter. This multicopter radioelement survey system consists of a small portable customized BGO (Bismuth Germanate Oxide) detector, video recording part, wireless connecting part to ground pilot, GPS, and several equipments for automatic flight. This system is possible to search flight by preprogramed lines. This radioactive detecting system are tested to find intentional hidden source, The performance of detecting a source is well proved with very low flight altitude in spite of depending on the magnitude of radioelement sources. The advantage of multicopter system, one of UAV (Unmanned Aerial Vehicle), is to avoid the potential of close access to a dangerous radioactive source by using fully automatic searching capability. In this paper, we introduce our multicopter system for detecting radioactive source and synthetic case history for demonstrating this system.

  18. Final disposal of radioactive waste

    NASA Astrophysics Data System (ADS)

    Freiesleben, H.

    2013-06-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste - LLW, intermediate-level waste - ILW, high-level waste - HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  19. RADIOACTIVE CONCENTRATOR AND RADIATION SOURCE

    DOEpatents

    Hatch, L.P.

    1959-12-29

    A method is presented for forming a permeable ion exchange bed using Montmorillonite clay to absorb and adsorb radioactive ions from liquid radioactive wastes. A paste is formed of clay, water, and a material that fomns with clay a stable aggregate in the presence of water. The mixture is extruded into a volume of water to form clay rods. The rods may then be used to remove radioactive cations from liquid waste solutions. After use, the rods are removed from the solution and heated to a temperature of 750 to 1000 deg C to fix the ratioactive cations in the clay.

  20. SELF SINTERING OF RADIOACTIVE WASTES

    DOEpatents

    McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

    1959-12-29

    A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

  1. Star formation and extinct radioactivities

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1984-01-01

    An assessment is made of the evidence for the existence of now-extinct radioactivities in primitive solar system material, giving attention to implications for the early stages of sun and solar system formation. The characteristics of possible disturbances in dense molecular clouds which can initiate the formation of cloud cores is discussed, with emphasis on these disturbances able to generate fresh radioactivities. A one-solar mass red giant star on the asymptotic giant branch appears to have been the best candidate to account for the short-lived extinct radioactivities in the early solar system.

  2. Cleanup levels for Am-241, Pu-239, U-234, U-235 & U-238 in soils at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Roberts, R.; Colby, B.; Brooks, L.; Slaten, S.

    1997-07-03

    This presentation briefly outlines a cleanup program at a Rocky Flats site through viewgraphs and an executive summary. Exposure pathway analyses to be performed are identified, and decontamination levels are listed for open space and office worker exposure areas. The executive summary very briefly describes the technical approach, RESRAD computer code to be used for analyses, recommendations for exposure levels, and application of action levels to multiple radionuclide contamination. Determination of action levels for surface and subsurface soils, based on radiation doses, is discussed. 1 tab.

  3. Radioactive Waste Management

    NASA Astrophysics Data System (ADS)

    Baisden, P. A.; Atkins-Duffin, C. E.

    Issues related to the management of radioactive wastes are presented with specific emphasis on high-level wastes generated as a result of energy and materials production using nuclear reactors. The final disposition of these high-level wastes depends on which nuclear fuel cycle is pursued, and range from once-through burning of fuel in a light water reactor followed by direct disposal in a geologic repository to more advanced fuel cycles (AFCs) where the spent fuel is reprocessed or partitioned to recover the fissile material (primarily 235U and 239Pu) as well as the minor actinides (MAs) (neptunium, americium, and curium) and some long-lived fission products (e.g., 99Tc and 129I). In the latter fuel cycle, the fissile materials are recycled through a reactor to produce more energy, the short-lived fission products are vitrified and disposed of in a geologic repository, and the minor actinides and long-lived fission products are converted to less radiotoxic or otherwise stable nuclides by a process called transmutation. The advantages and disadvantages of the various fuel cycle options and the challenges to the management of nuclear wastes they represent are discussed.

  4. Naturally Occurring Radioactive Materials (NORM)

    SciTech Connect

    Gray, P.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).

  5. Progresses in proton radioactivity studies

    NASA Astrophysics Data System (ADS)

    Ferreira, L. S.; Maglione, E.

    2016-07-01

    In the present talk, we will discuss recent progresses in the theoretical study of proton radioactivity and their impact on the present understanding of nuclear structure at the extremes of proton stability.

  6. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  7. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  8. Radioactivity studies. Progress report, January 1-December 31, 1982

    SciTech Connect

    Cohen, N.

    1983-06-01

    During the last year, the research program in actinide biokinetics in nonhuman primates has been expanded to include preliminary studies of the element neptunium. Recently, Np-237, which is known to be present in high-level nuclear reactor waste, has received increased attention as a potential long-range hazard to man. In addition to the neptunium studies, the metabolism of protactinium-233, the daughter of Np-237, has been investigated. Although characterization of Pa-233 metabolism was originally conducted in order to correct for Pa-233 interference during in vivo and in vitro gamma spectrometry of Np-237, several other considerations indicated that Pa might be of radiological concern itself and should thereby warrant further investigation. Due to the limited amount of data in the literature defining the biokinetics of both neptunium and protactinium, metabolis studies of these nuclides are now being conducted in adult female baboons in a manner similar to that which has been successfully performed at this laboratory for Am-241 and Cm-243,244. Procedures routinely performed include external whole-body counting, excreta collection (separation and measurement), blood sampling, biopsies of liver and bone, and complete tissue and organ analysis after sacrifice.

  9. Nuclear electric power sources

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    Measurements on radioactive commercial p-n junction silicon cells show that these units are capable of delivering several hundred microwatts per curie of Am-241 alpha source, indicating their usefulness in such electronic devices as hearing aids, heart pacemakers, electronic watches, delay timers and nuclear dosimeter chargers. It is concluded that the Am-241 sources are superior to the beta sources used previously, because of higher alpha specific ionization and simultaneous production of low energy photons which are easily converted into photoelectrons for additional power.

  10. Radioactivity of the Cooling Water

    DOE R&D Accomplishments Database

    Wigner, E. P.

    1943-03-01

    The most important source of radioactivity at the exit manifold of the pile will be due to O{sup 19}, formed by neutron absorption of O{sup 18}. A recent measurement of Fermi and Weil permits to estimate that it will be safe to stay about 80 minutes daily close to the exit manifolds without any shield. Estimates are given for the radioactivities from other sources both in the neighborhood and farther away from the pile.

  11. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations. PMID:7883556

  12. Storage depot for radioactive material

    DOEpatents

    Szulinski, Milton J.

    1983-01-01

    Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

  13. 49 CFR 172.556 - RADIOACTIVE placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false RADIOACTIVE placard. 172.556 Section 172.556... SECURITY PLANS Placarding § 172.556 RADIOACTIVE placard. (a) Except for size and color, the RADIOACTIVE... on the RADIOACTIVE placard must be white in the lower portion with a yellow triangle in the...

  14. 49 CFR 172.556 - RADIOACTIVE placard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false RADIOACTIVE placard. 172.556 Section 172.556... SECURITY PLANS Placarding § 172.556 RADIOACTIVE placard. (a) Except for size and color, the RADIOACTIVE... on the RADIOACTIVE placard must be white in the lower portion with a yellow triangle in the...

  15. 49 CFR 172.556 - RADIOACTIVE placard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false RADIOACTIVE placard. 172.556 Section 172.556... SECURITY PLANS Placarding § 172.556 RADIOACTIVE placard. (a) Except for size and color, the RADIOACTIVE... on the RADIOACTIVE placard must be white in the lower portion with a yellow triangle in the...

  16. 49 CFR 172.556 - RADIOACTIVE placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false RADIOACTIVE placard. 172.556 Section 172.556... SECURITY PLANS Placarding § 172.556 RADIOACTIVE placard. (a) Except for size and color, the RADIOACTIVE... on the RADIOACTIVE placard must be white in the lower portion with a yellow triangle in the...

  17. 49 CFR 172.556 - RADIOACTIVE placard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false RADIOACTIVE placard. 172.556 Section 172.556... SECURITY PLANS Placarding § 172.556 RADIOACTIVE placard. (a) Except for size and color, the RADIOACTIVE... on the RADIOACTIVE placard must be white in the lower portion with a yellow triangle in the...

  18. Endangered and Extinct Radioactivity

    NASA Astrophysics Data System (ADS)

    Leising, M. D.

    1993-07-01

    Gamma ray spectroscopy holds great promise for probing nucleosynthesis in individual nucleosynthesis events, via observations of short-lived radioactivity, and for measuring global galactic nucleosynthesis today with detections of longer-lived radioactivity. Many of the astrophysical issues addressed by these observations are precisely those that must be understood in order to interpret observations of extinct radioactivity in meteorites. It was somewhat surprising that the former case was realized first for a Type II supernova, when both 56Co [1] and 57Co [2] were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions. Live 26Al in the galaxy might come from Type II supernovae and their progenitors, and if this is eventually shown to be the case, can constrain massive star evolution, supernova nucleosynthesis, the galactic Type II supernova rate, and even models of the chemical evolution of the galaxy [3]. Titanium-44 is produced primarily in the alpha-rich freezeout from nuclear statistical equilibrium, possibly in Type Ia [4] and almost certainly in Type II supernovae [5]. The galactic recurrence time of these events is comparable to the 44Ti lifetime, so we expect to be able to see at most a few otherwise unseen 44Ti remnants at any given time. No such remnants have been detected yet [6]. Very simple arguments lead to the expectation that about 4 x 10^-4 M(sub)solar mass of 44Ca are produced per century. The product of the supernova frequency times the 44Ti yield per event must equal this number. Even assuming that only the latest event would be seen, rates in excess of 2 century^-1 are ruled out at >=99% confidence by the gamma ray limits. Only rates less than 0.3 century^-1 are acceptable at >5% confidence, and this means that the yield per event must be >10^-3 M(sub)solar mass to produce the requisite 44Ca. Rates this low are incompatible with current estimates for Type II supernovae and yields this high are also very

  19. Radioactive Nanomaterials for Multimodality Imaging

    PubMed Central

    Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao

    2016-01-01

    Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167

  20. Enhanced Radioactive Material Source Security.

    PubMed

    Klinger, Joseph G

    2016-02-01

    Requirements for additional security measures for sealed radioactive sources have evolved since they were first implemented after the terrorist events of 11 September 2001. This paper will describe the sequence of those measures, commencing with the early orders issued by the U.S. Nuclear Regulatory Commission to the May 2013 adoption of 10 CFR Part 37, Physical Protections of Category 1 and Category 2 Quantities of Radioactive Material. Part 37 requirements will be discussed in detail, as the 37 NRC Agreement States, which regulate approximately 88% of the radioactive material licensees, will be required to enact by 19 March 2016. In addition to the Part 37 requirements, the paper will also highlight some of the other ongoing efforts of the U.S. Department of Energy's National Nuclear Security Administration's Global Threat Reduction Initiative and the Conference of Radiation Control Program Directors. PMID:26717170

  1. Sorting of solid radioactive wastes

    SciTech Connect

    Marek, J.; Pecival, I.; Hejtman, J.; Wildman, J.; Cechak, T.

    1993-12-31

    In the nuclear power plants solid radioactive wastes are produced during regular operation and during small repairs. It is necessary to sort them into the highly contaminated wastes for which a special procedure for storage is necessary and waste that is not radioactive and can be stored in the environment under specific regulations. The aim of the project was to propose and to construct equipment, which is able to sort the waste with a high degree of reliability and to distinguish highly contaminated wastes from wastes which are less dangerous to the environment. The sensitivity of the detection system was tested by a mathematical model. The radioactive wastes from the primary part of the nuclear power plant can have three composition types. Details of the composition of the radioisotopes mixture are presented.

  2. Storage containers for radioactive material

    DOEpatents

    Groh, Edward F.; Cassidy, Dale A.; Dates, Leon R.

    1981-01-01

    A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

  3. Radioactive dating of the elements

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Thielemann, Friedrich-Karl; Truran, James W.

    1991-01-01

    The extent to which an accurate determination of the age of the Galaxy, and thus a lower bound on the age of the universe, can be obtained from radioactive dating is discussed. Emphasis is given to the use of the long-lived radioactive nuclei Re-187, Th-232, U-238, and U-235. The nature of the production sites of these and other potential Galactic chronometers is examined along with their production ratios. Age determinations from models of nucleocosmochronology are reviewed and compared with age determination from stellar sources and age constraints form cosmological considerations.

  4. Storage containers for radioactive material

    DOEpatents

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  5. Induced radioactivity in LDEF components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1992-01-01

    A systematic study of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is being carried out in order to gather information about the low earth orbit radiation environment and its effects on materials. The large mass of the LDEF spacecraft, its stabilized configuration, and long mission duration have presented an opportunity to determine space radiation-induced radioactivities with a precision not possible before. Data presented include preliminary activities for steel and aluminum structural samples, and activation subexperiment foils. Effects seen in the data show a clear indication of the trapped proton anisotropy in the South Atlantic Anomaly and suggest contributions from different sources of external radiation fluxes.

  6. Radioactivity and the Biology Teacher

    ERIC Educational Resources Information Center

    Hornsey, D. J.

    1974-01-01

    Discusses minimum necessary nuclear fundamentals of radioactive isotopes such as levels of activity, specific activity and the use of carrier materials. Corrections that need to be taken into account in using an isotope to obtain a valid result are also described and statistics for a valid result are included. (BR)

  7. Mass measurement of radioactive isotopes

    NASA Astrophysics Data System (ADS)

    Kluge, H.-J.; Blaum, K.; Scheidenberger, C.

    2004-10-01

    The highest precision in mass measurements on short-lived radionuclides is obtained using trapping and cooling techniques. Here, the experimental storage ring (ESR) at GSI/Darmstadt and the tandem Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN play an important role. Status and recent results on mass measurements of radioactive nuclides with ESR and ISOLTRAP are summarized.

  8. RadioActive101 Practices

    ERIC Educational Resources Information Center

    Brites, Maria José; Ravenscroft, Andrew; Dellow, James; Rainey, Colin; Jorge, Ana; Santos, Sílvio Correia; Rees, Angela; Auwärter, Andreas; Catalão, Daniel; Balica, Magda; Camilleri, Anthony F.

    2014-01-01

    In keeping with the overarching RadioActive101 (RA101) spirit and ethos, this report is the product of collaborative and joined-up thinking from within the European consortium spread across five countries. As such, it is not simply a single voice reporting on the experiences and knowledge gained during the project. Rather it is a range of…

  9. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  10. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1990-09-30

    This report discusses the nuclear structure of the following isotopes as a result of radioactive decays: neutron-deficient iridium isotopes; neutron-deficient platinum isotopes; neutron-deficient gold isotopes; neutron-deficient mercury isotopes; neutron-deficient thallium isotopes; neutron-deficient lead isotopes; neutron-deficient promethium isotopes; and neutron-deficient samarium isotopes.

  11. Radioactive particles in dose assessments.

    PubMed

    Dale, P; Robertson, I; Toner, M

    2008-10-01

    Radioactive particles present a novel exposure pathway for members of the public. For typical assessments of potential doses received by members of the public, habit surveys and environmental monitoring combine to allow the assessment to occur. In these circumstances it is believed that the probability of encounter/consumption is certain. The potential detriment is assessed through sampling the use of environmental monitoring data and dose coefficients such as that in ICRP 60 [ICRP, 1990. 1990 Recommendations of the international commission on radiological protection. Publication 60. Annals of the ICRP 21 (1-3)]. However, radioactive particles often represent a hazard that is difficult to quantify and where the probability of encounter is less than certain as are the potential effects on health. Normal assessment methodologies through sampling and analysis are not appropriate for assessing the impact of radioactive particles either prospectively or retrospectively. This paper details many of the issues that should be considered when undertaking an assessment of the risk to health posed by radioactive particles. PMID:18657886

  12. Electrodynamic radioactivity detector for microparticles

    NASA Astrophysics Data System (ADS)

    Ward, T. L.; Davis, E. J.; Jenkins, R. W., Jr.; McRae, D. D.

    1989-03-01

    A new technique for the measurement of the radioactive decay of single microparticles has been demonstrated. Although the experiments were made with droplets of order 20 μm in diameter, microparticles in the range 0.1-100 μm can be accommodated. An electrodynamic balance and combination light-scattering photometer were used to measure the charge-loss rate and size of a charged microsphere suspended in a laser beam by superposed ac and dc electrical fields. The charged particle undergoes charge loss in the partially ionized gas atmosphere which results from radioactive decay of 14C-tagged compounds, and the rate of charge loss is proportional to the rate of decay here. The charge on a particle was determined by measuring the dc voltage necessary to stably suspend the particle against gravity while simultaneously determining the droplet size by light-scattering techniques. The parameters which affect the operation of the electrodynamic balance as a radioactivity detector are examined, and the limits of its sensitivity are explored. Radioactivity levels as low as 120 pCi have been measured, and it appears that by reducing the background contamination inside our balance activity levels on the order of 10 pCi can be detected. This new technique has application in the measurement of activity levels and source discrimination of natural and man-made aerosols and smokes and is also useful for studies involving specifically labeled radio-chemical probes.

  13. 49 CFR 175.705 - Radioactive contamination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present...

  14. 49 CFR 175.705 - Radioactive contamination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present...

  15. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (NRC) under 10 CFR parts 30 and 34. (b) Stowage of radioactive materials must conform to the... 46 Shipping 5 2010-10-01 2010-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials....

  16. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (NRC) under 10 CFR parts 30 and 34. (b) Stowage of radioactive materials must conform to the... 46 Shipping 5 2013-10-01 2013-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials....

  17. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (NRC) under 10 CFR parts 30 and 34. (b) Stowage of radioactive materials must conform to the... 46 Shipping 5 2011-10-01 2011-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials....

  18. 10 CFR 39.47 - Radioactive markers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radioactive markers. 39.47 Section 39.47 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.47 Radioactive markers. The licensee may use radioactive markers in wells only if the individual markers...

  19. 10 CFR 39.47 - Radioactive markers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radioactive markers. 39.47 Section 39.47 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.47 Radioactive markers. The licensee may use radioactive markers in wells only if the individual markers...

  20. 10 CFR 39.47 - Radioactive markers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radioactive markers. 39.47 Section 39.47 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.47 Radioactive markers. The licensee may use radioactive markers in wells only if the individual markers...

  1. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (NRC) under 10 CFR parts 30 and 34. (b) Stowage of radioactive materials must conform to the... 46 Shipping 5 2012-10-01 2012-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials....

  2. 10 CFR 39.47 - Radioactive markers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radioactive markers. 39.47 Section 39.47 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.47 Radioactive markers. The licensee may use radioactive markers in wells only if the individual markers...

  3. 10 CFR 39.47 - Radioactive markers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radioactive markers. 39.47 Section 39.47 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.47 Radioactive markers. The licensee may use radioactive markers in wells only if the individual markers...

  4. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (NRC) under 10 CFR parts 30 and 34. (b) Stowage of radioactive materials must conform to the... 46 Shipping 5 2014-10-01 2014-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials....

  5. 49 CFR 175.705 - Radioactive contamination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present...

  6. 49 CFR 175.705 - Radioactive contamination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present...

  7. 49 CFR 175.705 - Radioactive contamination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present...

  8. Radioactive waste treatment technologies and environment

    SciTech Connect

    HORVATH, Jan; KRASNY, Dusan

    2007-07-01

    The radioactive waste treatment and conditioning are the most important steps in radioactive waste management. At the Slovak Electric, plc, a range of technologies are used for the processing of radioactive waste into a form suitable for disposal in near surface repository. These technologies operated by JAVYS, PLc. Nuclear and Decommissioning Company, PLc. Jaslovske Bohunice are described. Main accent is given to the Bohunice Radwaste Treatment and Conditioning Centre, Bituminization plant, Vitrification plant, and Near surface repository of radioactive waste in Mochovce and their operation. Conclusions to safe and effective management of radioactive waste in the Slovak Republic are presented. (authors)

  9. Method for solidifying radioactive wastes

    SciTech Connect

    Dippel, T.; Loida, A.

    1985-08-13

    A process is claimed for solidifying radioactive wastes by producing compact blocks which are to be disposed in transporting or permanent storage containers. The compact blocks are produced from prefabricated ceramic tablets which contain radioactive substances and a matrix which continuously surrounds these ceramic tablets and is solid in its final state. Glass powder or a mixture of oxidic non-clay minerals or a mixture of both is used as the matrix material. The ceramic tablets and the matrix material are filled into the container and are compressed. The resulting compressed mixture is heated to a temperature in the range from 1423/sup 0/ K. to 1623/sup 0/ K., is held at this temperate range for one to three hours, and is finally gradually cooled to room temperature.

  10. Radioactive waste shredding: Preliminary evaluation

    SciTech Connect

    Soelberg, N.R.; Reimann, G.A.

    1994-07-01

    The critical constraints for sizing solid radioactive and mixed wastes for subsequent thermal treatment were identified via a literature review and a survey of shredding equipment vendors. The types and amounts of DOE radioactive wastes that will require treatment to reduce the waste volume, destroy hazardous organics, or immobilize radionuclides and/or hazardous metals were considered. The preliminary steps of waste receipt, inspection, and separation were included because many potential waste treatment technologies have limits on feedstream chemical content, physical composition, and particle size. Most treatment processes and shredding operations require at least some degree of feed material characterization. Preliminary cost estimates show that pretreatment costs per unit of waste can be high and can vary significantly, depending on the processing rate and desired output particle size.

  11. Public attitudes about radioactive waste

    SciTech Connect

    Bisconti, A.S.

    1992-12-31

    Public attitudes about radioactive waste are changeable. That is my conclusion from eight years of social science research which I have directed on this topic. The fact that public attitudes about radioactive waste are changeable is well-known to the hands-on practitioners who have opportunities to talk with the public and respond to their concerns-practitioners like Ginger King, who is sharing the podium with me today. The public`s changeability and open-mindedness are frequently overlooked in studies that focus narrowly on fear and dread. Such studies give the impression that the outlook for waste disposal solutions is dismal. I believe that impression is misleading, and I`d like to share research findings with you today that give a broader perspective.

  12. Radioactive substances in tap water.

    PubMed

    Atsuumi, Ryo; Endo, Yoshihiko; Suzuki, Akihiko; Kannotou, Yasumitu; Nakada, Masahiro; Yabuuchi, Reiko

    2014-01-01

    A 9.0 magnitude (M) earthquake with an epicenter off the Sanriku coast occurred at 14: 46 on March 11, 2011. TEPCO Fukushima Daiichi Nuclear Power Plant (F-1 NPP) was struck by the earthquake and its resulting tsunami. Consequently a critical nuclear disaster developed, as a large quantity of radioactive materials was released due to a hydrogen blast. On March 16(th), 2011, radioiodine and radioactive cesium were detected at levels of 177 Bq/kg and 58 Bq/kg, respectively, in tap water in Fukushima city (about 62km northwest of TEPCO F-1 NPP). On March 20th, radioiodine was detected in tap water at a level of 965 Bq/kg, which is over the value-index of restrictions on food and drink intake (radioiodine 300 Bq/kg (infant intake 100 Bq/kg)) designated by the Nuclear Safety Commission. Therefore, intake restriction measures were taken regarding drinking water. After that, although the all intake restrictions were lifted, in order to confirm the safety of tap water, an inspection system was established to monitor all tap water in the prefecture. This system has confirmed that there has been no detection of radioiodine or radioactive cesium in tap water in the prefecture since May 5(th), 2011. Furthermore, radioactive strontium ((89) Sr, (90)Sr) and plutonium ((238)Pu, (239)Pu+(240)Pu) in tap water and the raw water supply were measured. As a result, (89) Sr, (238)Pu, (239)Pu+(240)Pu were undetectable and although (90)Sr was detected, its committed effective dose of 0.00017 mSv was much lower than the yearly 0.1 mSv of the World Health Organization guidelines for drinking water quality. In addition, the results did not show any deviations from past inspection results. PMID:25030724

  13. Environmental Geochemistry of Radioactive Contamination

    NASA Astrophysics Data System (ADS)

    Siegel, M. D.; Bryan, C. R.

    2003-12-01

    Psychometric studies of public perception of risk have shown that dangers associated with radioactive contamination are considered the most dreaded and among the least understood hazards (Slovic, 1987). Fear of the risks associated with nuclear power and associated contamination has had important effects on policy and commercial decisions in the last few decades. In the US, no new nuclear power plants were ordered between 1978 and 2002, even though it has been suggested that the use of nuclear power has led to significantly reduced CO2 emissions and may provide some relief from the potential climatic changes associated with fossil fuel use. The costs of the remediation of sites contaminated by radioactive materials and the projected costs of waste disposal of radioactive waste in the US dwarf many other environmental programs. The cost of disposal of spent nuclear fuel at the proposed repository at Yucca Mountain will likely exceed 10 billion. The estimated total life cycle cost for remediation of US Department of Energy (DOE) weapons production sites ranged from 203-247 billion dollars in constant 1999 dollars, making the cleanup the largest environmental project on the planet (US DOE, 2001). Estimates for the cleanup of the Hanford site alone exceeded $85 billion through 2046 in some of the remediation plans.Policy decisions concerning radioactive contamination should be based on an understanding of the potential migration of radionuclides through the geosphere. In many cases, this potential may have been overestimated, leading to decisions to clean up contaminated sites unnecessarily and exposing workers to unnecessary risk. It is important for both the general public and the scientific community to be familiar with information that is well established, to identify the areas of uncertainty and to understand the significance of that uncertainty to the assessment of risk.

  14. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1991-09-30

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models.

  15. Radioactive Waste Management BasisApril 2006

    SciTech Connect

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  16. Radioactive material packaging performance testing

    SciTech Connect

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation's hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation's system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations.

  17. Radioactive material packaging performance testing

    SciTech Connect

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation`s hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation`s system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations.

  18. Radioactivity of spent TRIGA fuel

    NASA Astrophysics Data System (ADS)

    Usang, M. D.; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P.

    2015-04-01

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  19. Radioactivity of spent TRIGA fuel

    SciTech Connect

    Usang, M. D. Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P.

    2015-04-29

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  20. Disposition of intravenous radioactive acyclovir

    SciTech Connect

    de Miranda, P.; Good, S.S.; Laskin, O.L.; Krasny, H.C.; Connor, J.D.; Lietman, P.S.

    1981-11-01

    The kinetic and metabolic disposition of (8-14C)acyclovir (ACV) was investigated in five subjects with advanced malignancy. The drug was administered by 1-hr intravenous infusion at doses of 0.5 and 2.5 mg/kg. Plasma and blood radioactivity-time, and plasma concentration-time data were defined by a two-compartment open kinetic model. There was nearly equivalent distribution of radioactivity in blood and plasma. The overall mean plasma half-life and total body clearance +/- SD of ACV were 2.1 +/- 0.5 hr and 297 +/- 53 ml/min/1.73 m2. Binding of ACV to plasma proteins was 15.4 +/- 4.4%. Most of the radioactive dose excreted was recovered in the urine (71% to 99%) with less than 2% excretion in the feces and only trace amounts in the expired Co2. Analyses by reverse-phase high-performance liquid chromatography indicated that 9-(carboxymethoxymethyl)guanine was the only significant urinary metabolite of ACV, accounting for 8.5% to 14.1% of the dose. A minor metabolite (less than 0.2% of dose) had the retention time of 8-hydroxy-9-((2-hydroxyethoxy)methyl)guanine. Unchanged urinary ACV ranged from 62% to 91% of the dose. There was no indication of ACV cleavage to guanine. Renal clearance of ACV was approximately three times the corresponding creatinine clearances.

  1. Radioactivity

    SciTech Connect

    Baratta, E.J.

    1997-01-01

    Cesium-134 and -137 in Foods, Gamma-Ray Spectrophotometric Methods. The method entitled {open_quotes}Cs-134 and Cs-137 in Foods, Gamma-Ray Spectrophotometric Method{close_quotes} has been adopted official first action, with minor revisions. Iodine 131: The method {open_quotes}Iodine-131 in Milk, Radiochemical Separation Method{close_quotes} has been accepted by the Committee on Residues and Related Topics and has been recommended to the Methods Committee for adoption first action. Search is continuing for a new Associated Referee. Plutonium-239: The Associate Referee is doing a literature search for a method for the determination of plutonium in foods. When one is selected, she will prepared a protocol for a collaborative study and submit it for approval. Radium-228: Search is ongoing for a new Associate Referee. When one is appointed, a method should be selected and tested. Strontium-89 and -90: The Associate Referee is investigating methods using resin discs and/or resin columns for these radionuclides. These methods are now being used in analyses for strontium-89 and -90 in water. She will now attempt to apply it to milk. If successful, she will prepare a protocol for a collaborative study and submit it for approval. Tritium: Search is continuing for a new Associate Referee for this topic.

  2. Radioactivity

    SciTech Connect

    Baratta, E.J.

    1987-01-01

    This report of the General Referee was presented at the 100th AOAC Annual International Meeting, Sept. 15-18, 1986, at Scottsdale, AZ. The method for determining cesium-137 and iodine-131 in milk and other foods by gamma-ray spectroscopy has been adopted official first action. Results have been received from 5 collaborators. A sixth collaborator was found and is in the process of analyzing the sample. When all results are in, the Associate Referee will perform a statistical analysis of the data. Other topics of interest include; plutonium; radium-228; and strontium-89 and -90. Recommendations are included which were reviewed by the Committee on Residues.

  3. SHIPPING CONTAINER FOR RADIOACTIVE MATERIAL

    DOEpatents

    Nachbar, H.D.; Biggs, B.B.; Tariello, P.J.; George, K.O.

    1963-01-15

    A shipping container is described for transponting a large number of radioactive nuclear fuel element modules which produce a substantial amount of heat. The container comprises a primary pressure vessel and shield, and a rotatable head having an access port that can be indexed with module holders in the container. In order to remove heat generated in the fuel eleme nts, a heat exchanger is arranged within the container and in contact with a heat exchange fluid therein. The heat exchanger communicates with additional external heat exchangers, which dissipate heat to the atmosphere. (AEC)

  4. Laser trapping of radioactive atoms

    SciTech Connect

    Freedman, S.J.

    1995-04-01

    The capability of manipulating neutral atoms with the force of resonant scattered laser light is being exploited in several different areas of research. The author discusses applications in particle and nuclear physics by expediting some measurements of the subtle effects of the fundamental weak interaction in atoms and nuclei. It was shown in two recent experiments that it is possible to efficiently cool accelerator produced short-lived isotopes and load them into magneto-optic traps. These demonstrations open up new possibilities for obtaining the required precision in experiments involving rare radioactive isotopes.

  5. Radioactive Waste Management BasisSept 2001

    SciTech Connect

    Goodwin, S S

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  6. [Microbiological Aspects of Radioactive Waste Storage].

    PubMed

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix). PMID:26310021

  7. The Model 9977 Radioactive Material Packaging Primer

    SciTech Connect

    Abramczyk, G.

    2015-10-09

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, the package must maintain its radioactive material as subcritical

  8. SEPARATION OF RADIOACTIVE COLUMBIUM TRACER

    DOEpatents

    Glendenin, L.E.; Gest, H.

    1958-08-26

    A process is presented for the recovery of radioactive columbium from solutions containing such columbium together with radioactive tellurium. The columbium and tellurium values are separated from such solutions by means of an inorganic oxide carrier precipitate, such as MnO/sub 2/. This oxide carrier precipitate and its associated columbium and telluriuan values are then dissolved in an aqueous acidic solution and nonradioactive tellurium, in an ionic form, is then introduced into such solution, for example in the form of H/sub 2/TeO/sub 3/. The tellurium present in the solution is then reduced to the elemental state and precipitates, and is then separated from the supernataat solution. A basic acetate precipitate is formed in the supernatant and carries the remaining columblum values therefrom. After separation, this basic ferric acetate precipitate is dissolved, and the ferric ions are removed by means of an organic solvent extraction process utilizing ether. The remaining solution contains carrier-free columbium as its only metal ion.

  9. Cosmic radioactivity and INTEGRAL results

    SciTech Connect

    Diehl, Roland

    2014-05-02

    Gamma-ray lines from radioactive decay of unstable isotopes co-produced by nucleosynthesis in massive stars and supernova have been measured since more than thirty years. Over the past ten years, INTEGRAL complemented the first sky survey made by COMPTEL. The {sup 26}A1 isotope with 1 My decay time had been first direct proof of currently-ongoing nucleosynthesis in our Galaxy. This has now become a tool to study the ∼My history of specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy, where Doppler shifted lines add to the astronomical information about bar and spiral structure. Recent findings suggest that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. {sup 60}Fe is co-produced by the sources of {sup 26}A1, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. {sup 56}Ni and {sup 44}Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we report latest results using the accumulated multi-year database of INTEGRAL observations, and discuss their astrophysical interpretations, connecting to other traces of cosmic radioactivity and to other cosmic messengers.

  10. Radioactivity in the galactic plane

    NASA Technical Reports Server (NTRS)

    Walraven, G. D.; Haymes, R. C.

    1976-01-01

    The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.

  11. Induced radioactivity in LDEF components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1991-01-01

    The systematics of induced radioactivity on the Long Duration Exposure Facility (LDEF) were studied in a wide range of materials using low level background facilities for detection of gamma rays. Approx. 400 samples of materials processed from structural parts of the spacecraft, as well as materials from onboard experiments, were analyzed at national facilities. These measurements show the variety of radioisotopes that are produced with half-lives greater than 2 wks, most of which are characteristic of proton induced reactions above 20 MeV. For the higher activity, long lived isotopes, it was possible to map the depth and directional dependences of the activity. Due to the stabilized configuration of the LDEF, the induced radioactivity data clearly show contributions from the anisotropic trapped proton flux in the South Atlantic Anomaly. This effect is discussed, along with evidence for activation by galactic protons and thermal neutrons. The discovery of Be-7 was made on leading side parts of the spacecraft, although this was though not to be related to the in situ production of radioisotopes from external particle fluxes.

  12. Experimental assessment of non-treated bentonite as the buffer material of a radioactive waste repository.

    PubMed

    Choi, J; Kang, C H; Whang, J

    2001-05-01

    The bentonite-based material being evaluated in several countries as potential barriers and seals for a nuclear waste disposal system is of mostly sodium type, whereas most bentonite available in Korea is known to be of calcium type. In order to investigate whether local Korean bentonite could be useful as a buffer or sealing material in an HLW repository system, raw bentonites sampled from the south-east area of Korea were examined in terms of their physicochemical properties such as surface area, CEC, swelling rate, and distribution coefficient. The diffusion behavior of some radionuclides of interest in compacted bentonite was also investigated. Considering that HLW generates decay heat over a long time, the thermal effect on the physicochemical properties of bentonite was also included. Four local samples were identified as Ca-bentonite through XRD and chemical analysis. Of the measured values of surface area, CEC and swelling rate of the local samples, Sample-A was found to have the greatest properties as the most likely candidate barrier material. The distribution coefficients of Cs-137, Sr-85, Co-60 and Am-241 for Sample-A sample were measured by the batch method. Sorption equilibrium was reached in around 8 to 10 days, but that of Sr was found to be reached earlier. Comparing the results of this study with the reference data, domestic bentonite was found to have a relatively high sorption ability. For the effect of varying concentration on sorption, the values of Kd peaked at 10(-9)-10(-7) mol/l of radionuclide concentration. In XRD analysis, the (001) peak of Sample-A was fully collapsed above 200 degrees C. The shoulder appearing at about 150 degrees C in the DSC curve was found to be evidence that Sample-A is predominated by Ca-montmorillonite. The loss of swelling capacity and CEC of Sample-A started at about 100 degrees C. The swelling data and the (001) peak intensity of the heat-treated sample showed that they were linearly interrelated. The measured

  13. Cyclotrons for the production of radioactive beams

    SciTech Connect

    Clark, D.J.

    1990-01-01

    This paper describes the characteristics and design choices for modern cyclotrons. Cyclotrons can be used in 3 areas in the radioactive beam field: the production of high energy heavy ion beams for use in fragmentation, the spallation of targets with high energy protons, and the acceleration of radioactive beams from low energy to the MeV/u range. 16 refs., 6 figs.

  14. 46 CFR 148.300 - Radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radioactive materials defined in 49 CFR 173.403 as Low Specific Activity Material, LSA-1, or Surface... 46 Shipping 5 2013-10-01 2013-10-01 false Radioactive materials. 148.300 Section 148.300 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.300...

  15. A storage ring for radioactive beams

    SciTech Connect

    Moltz, D.M.

    1994-05-01

    Preliminary ideas are presented for the scientific justification of a storage ring for radioactive beams. This storage ring would be suitable for many nuclear and atomic physics experiments. Ideally, it would be constructed and tested at an existing low-energy heavy-ion facility before relocation to a major radioactive beam facility.

  16. 46 CFR 148.300 - Radioactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... radioactive materials defined in 49 CFR 173.403 as Low Specific Activity Material, LSA-1, or Surface... 46 Shipping 5 2014-10-01 2014-10-01 false Radioactive materials. 148.300 Section 148.300 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.300...

  17. 46 CFR 148.300 - Radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radioactive materials defined in 49 CFR 173.403 as Low Specific Activity Material, LSA-1, or Surface... 46 Shipping 5 2011-10-01 2011-10-01 false Radioactive materials. 148.300 Section 148.300 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.300...

  18. System for radioactive waste cementation

    SciTech Connect

    Dmitriev, S.A.; Barinov, A.S.; Varlakov, A.P.; Volkov, A.S.; Karlin, S.V.

    1995-12-31

    NPP, research reactors and radiochemical enterprises produce a great amount of liquid radioactive waste (LRW). One of the methods of LRW solidification is cementation. The recent investigations demonstrated possible inclusion of sufficient amount of waste in the cement matrix (up to 20--30 mass% on dry residue). In this case the cementation process becomes competitive with bituminization process, where the matrix can include 40--50 mass% and the solidified product volume is equal to the volume, obtained by cementation. Additionally, the cement matrix in contrast with the bituminous one is unburnable. Many countries are investigating the cementation process. The main idea governing technological process is the waste and cement mixing method and type of mixer. In world practice some principal types of cementation systems are used. The paper describes the SIA Radon industrial plant in Moscow.

  19. Radioactive Target Production at RIA

    NASA Astrophysics Data System (ADS)

    Blackmon, J. C.

    2002-12-01

    We explore the production of samples of long-lived isotopes (t1/2 >1 h) at an advanced radioactive ion beam facility, RIA. Production yields at RIA are compared to capabilities at stable beam facilities and at high-flux reactors. Long-lived neutron-rich nuclei can generally be produced more efficiently in a nuclear reactor if appropriate target samples are available. As a result, only two s process branch point nuclei, 135Cs and 163Ho, seem suitable for sample production at RIA. In contrast, samples of many long-lived proton-rich nuclei are produced effectively at RIA, including isotopes important for the p process. Sample production at RIA is more favored when the lifetime of the isotope is shorter.

  20. Radioactive liquid waste treatment facility

    SciTech Connect

    Black, R.L.

    1984-07-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) at Argonne National Laboratory-West (ANL-W) in Idaho provides improved treatment for low-level aqueous waste compared to conventional systems. A unique, patented evaporated system is used in the RLWTF. SHADE (shielded hot air drum evaporator, US Patent No. 4,305,780) is a low-cost disposable unit constructed from standard components and is self-shielded. The results of testing and recent operations indicate that evaporation rates of 2 to 6 gph (8 to 23 L/h) can be achieved with a single unit housed in a standard 30-gal (114-L) drum container. The operating experience has confirmed the design evaporation rate of 60,000 gal (227,000 L) per year, using six SHADE's. 2 references, 2 figures, 2 tables.

  1. Microbiological treatment of radioactive wastes

    SciTech Connect

    Francis, A.J.

    1992-12-31

    The ability of microorganisms which are ubiquitous throughout nature to bring about information of organic and inorganic compounds in radioactive wastes has been recognized. Unlike organic contaminants, metals cannot be destroyed, but must be either removed or converted to a stable form. Radionuclides and toxic metals in wastes may be present initially in soluble form or, after disposal may be converted to a soluble form by chemical or microbiological processes. The key microbiological reactions include (i) oxidation/reduction; (ii) change in pH and Eh which affects the valence state and solubility of the metal; (iii) production of sequestering agents; and (iv) bioaccumulation. All of these processes can mobilize or stabilize metals in the environment.

  2. Radioactive effluents in Savannah River

    SciTech Connect

    Winn, W.G.

    1991-11-27

    During 1990, low-level radiometric studies of the Savannah River continued to distinguish between effluent contributions from Plant Vogtle and the Savannah River Site. Measurements of these radioactive effluents are of mutual interest to both institutions, as they can address disturbing trends before they become health and legal concerns. The Environmental Technology Section (ETS) has conducted radiometric studies of Plant Vogtle since late 1986, prior to its startup. The plant has two 1100 MWe pressurized water reactors developed by Westinghouse. Unit 1 started commercial operations in June 1987, and Unit 2 began in May 1989. During powered operations, ETS has routinely detected neutron-activated isotopes in controlled releases but all activities have been several orders of magnitude below the DOE guide values. In 1990, processing improvements for Vogtle effluents have yielded even lower activities in the river. The Vogtle release data and the ETS measurements have tracked well over the past four years.

  3. Method for immobilizing radioactive iodine

    DOEpatents

    Babad, Harry; Strachan, Denis M.

    1980-01-01

    Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M.sub.2 O.3Al.sub.2 O.sub.3. 6SiO.sub.2.2MX, where M=alkali metal; X=I.sup.- or IO.sub.3.sup.-) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800.degree. to 1100.degree. C.) for a time sufficient to form sodalite.

  4. Diverter assembly for radioactive material

    DOEpatents

    Andrews, Katherine M.; Starenchak, Robert W.

    1989-01-01

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which mvoes between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place.

  5. Diverter assembly for radioactive material

    DOEpatents

    Andrews, K.M.; Starenchak, R.W.

    1988-04-11

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

  6. Radioactive decontamination apparatus and process

    SciTech Connect

    Jackson, O.L.

    1983-08-30

    Apparatus for removing radioactive contamination from metal objects is disclosed, consisting of three of three separate pieces. The first is an electro- polishing tank, pump and filter assembly, ventilation duct and filter assembly, and DC power supply. The second is a rinse tank and a pump and filter assembly therefor. The third is a divot crane. The electro-polishing tank assembly and the rinse tank assembly are each separately mounted on pallets to facilitate moving. The filter systems of the electro-polishing tank and the rinse tank are designed to remove the radioactive contamination from the fluids in those tanks. Heavy items or highly contaminated items are handled with the divot crane constructed of stainless steel. The electro- polishing tank and the rinse tank are also made of stainless steel. The ventilation system on the electro- polishing tank exhausts acid fumes resulting from the tank heaters and the electro-polishing process. Inside the electro-polishing tank are two swinging arms that carry two stainless steel probes that hang down in the electrolyte fluid. These negative DC probes and are electrically isolated from the tank and the rest of the system. Across the top center of the tank is a copper pipe, which is also electrically isolated from the tank. This is the positive side of the DC system. To decontaminate a metal object, it is suspended from the positive copper pipe, with good electrical contact, into the electrolyte fluid. The negative probes are then moved on their swinging arms to a close proximity to the object being decontaminated, without making contact.

  7. The safe disposal of radioactive wastes

    PubMed Central

    Kenny, A. W.

    1956-01-01

    A comprehensive review is given of the principles and problems involved in the safe disposal of radioactive wastes. The first part is devoted to a study of the basic facts of radioactivity and of nuclear fission, the characteristics of radioisotopes, the effects of ionizing radiations, and the maximum permissible levels of radioactivity for workers and for the general public. In the second part, the author describes the different types of radioactive waste—reactor wastes and wastes arising from the use of radioisotopes in hospitals and in industry—and discusses the application of the maximum permissible levels of radioactivity to their disposal and treatment, illustrating his discussion with an account of the methods practised at the principal atomic energy establishments. PMID:13374534

  8. Apparatus and method for radioactive waste screening

    DOEpatents

    Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

    2012-09-04

    An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

  9. Influence of Radioactivity on Surface Interaction Forces

    SciTech Connect

    Walker, Mark E; McFarlane, Joanna; Glasgow, David C; Chung, Eunhyea; Taboada Serrano, Patricia L; Yiacoumi, Sotira; Tsouris, Costas

    2010-01-01

    Although some differences have been observed, the transport behavior of radioactive aerosol particles has often been assumed to be analogous to the behavior of nonradioactive aerosols in dispersion models. However, radioactive particles can become electrostatically charged as a result of the decay process. Theories have been proposed to describe this self-charging phenomenon, which may have a significant effect on how these particles interact with one another and with charged surfaces in the environment. In this study, atomic force microscopy (AFM) was employed to quantify surface forces between a particle and a planar surface and to compare measurements with and without the involvement of radioactivity. The main objective of this work is to assess directly the effects of radioactivity on the surface interactions of radioactive aerosols via the measurement of the adhesion force. The adhesion force between a silicon nitride AFM tip and an activated gold substrate was measured so that any possible effects due to radioactivity could be observed. The adhesion force between the tip and the gold surface increased significantly when the gold substrate (25 mm{sup 2} surface area) was activated to a level of approximately 0.6 mCi. The results of this investigation will prompt further work into the effects of radioactivity in particle-surface interactions.

  10. Radioactive Beams and Exploding Stars at ORNL

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.

    2006-07-01

    Beams of radioactive nuclei from the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) are being used to make direct and indirect measurements of reactions important in novae, X-ray bursts, supernovae, and our Sun. Experimental results are used in nuclear data evaluations and element synthesis calculations to determine their astrophysical impact. Recent accomplishments include: the first neutron transfer reaction [(d, p)] measurements on nuclei in the r-process path in supernovae; precision measurements with radioactive 18F beams for novae; and a direct 7Be(p,γ)8B measurement relevant for the solar neutrino flux determination.

  11. Science with radioactive beams: the alchemist's dream

    NASA Astrophysics Data System (ADS)

    Gelletly, W.

    2001-05-01

    Nuclear science is being transformed by a new capacity to create beams of radioactive nuclei. Until now all of our knowledge of nuclear physics and the applications which flow from it has been derived from studies of radioactive decay and nuclear reactions induced by beams of the 283 stable or long-lived nuclear species we can find on Earth. Here we describe first how beams of radioactive nuclei can be created. The present status of nuclear physics is then reviewed before potential applications to nuclear physics, nuclear astrophysics, materials science, bio-medical, and environmental studies are described.

  12. Radioactive anomaly discrimination from spectral ratios

    DOEpatents

    Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

    2013-08-20

    A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

  13. Evaluation of Terrorist Interest in Radioactive Wastes

    SciTech Connect

    McFee, J.N.; Langsted, J.M.; Young, M.E.; Day, J.E.

    2006-07-01

    Since September 11, 2001, intelligence gathered from Al Qaeda training camps in Afghanistan, and the ensuing terrorist activities, indicates nuclear material security concerns are valid. This paper reviews available information on sealed radioactive sources thought to be of interest to terrorists, and then examines typical wastes generated during environmental management activities to compare their comparative 'attractiveness' for terrorist diversion. Sealed radioactive sources have been evaluated in numerous studies to assess their security and attractiveness for use as a terrorist weapon. The studies conclude that tens of thousands of curies in sealed radioactive sources are available for potential use in a terrorist attack. This risk is mitigated by international efforts to find lost and abandoned sources and bring them under adequate security. However, radioactive waste has not received the same level of scrutiny to ensure security. This paper summarizes the activity and nature of radioactive sources potentially available to international terrorists. The paper then estimates radiation doses from use of radioactive sources as well as typical environmental restoration or decontamination and decommissioning wastes in a radioactive dispersal device (RDD) attack. These calculated doses indicate that radioactive wastes are, as expected, much less of a health risk than radioactive sources. The difference in radiation doses from wastes used in an RDD are four to nine orders of magnitude less than from sealed sources. We then review the International Atomic Energy Agency (IAEA) definition of 'dangerous source' in an adjusted comparison to common radioactive waste shipments generated in environmental management activities. The highest waste dispersion was found to meet only category 1-3.2 of the five step IAEA scale. A category '3' source by the IAEA standard 'is extremely unlikely, to cause injury to a person in the immediate vicinity'. The obvious conclusion of the

  14. Radioactive Beams and Exploding Stars at ORNL

    SciTech Connect

    Smith, Michael S.

    2006-07-12

    Beams of radioactive nuclei from the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) are being used to make direct and indirect measurements of reactions important in novae, X-ray bursts, supernovae, and our Sun. Experimental results are used in nuclear data evaluations and element synthesis calculations to determine their astrophysical impact. Recent accomplishments include: the first neutron transfer reaction [(d, p)] measurements on nuclei in the r-process path in supernovae; precision measurements with radioactive 18F beams for novae; and a direct 7Be(p,{gamma})8B measurement relevant for the solar neutrino flux determination.

  15. [CME: Radioactive iodine therapy in thyroid cancer].

    PubMed

    Steinert, Hans C; Aberle, Susanne

    2015-11-11

    Differentiated thyroid carcinomas represent about 90% of all thyroid tumors and are divided in papillary and follicular carcinomas. Their prognosis is good, however, recurrences are not rare. Their ability to accumulate iodine is used for the radioactive iodine treatment. The aim of the postoperative radioactive iodine ablation therapy is the complete elimination of remnant thyroid cells and sensitive staging (Fig. 1). The recurrence rate decreases after a complete thyroid ablation. Furthermore, thyroglobulin can be used as a sensitive tumor marker. Radioactive iodine treatment by itself describes the therapy of metastases. An exception is the papillary microcarcinoma, which in general is treated by a lobectomy alone. PMID:26558927

  16. Evaluation of americium-241 toxicity influence on the microbial growth of organic wastes

    SciTech Connect

    Takehiro Marumo, Julio; Padua Ferreira, Rafael Vicente de; Keiko Isiki, Vera Lucia; Miyamoto, Hissae; Sayuri Takara, Aline; Kazumi Sakata, Solange; Bellini, Maria Helena; Cardoso Pedroso de Lima, Luis Filipe

    2007-07-01

    Available in abstract form only. Full text of publication follows: Since the licenses for using radioactive sources in radioactive lightning rods were lifted by the Brazilian national nuclear authority, in 1989, the radioactive devices have been replaced by Franklin type and collected as radioactive waste. However, only 20 percent of the estimated total number of installed rods was delivered to Brazilian Nuclear Commission. This situation causes concern, due to, first, the possibility of the rods being disposed as domestic waste, and second, the americium, the most commonly employed radionuclide, is classified as a high-toxicity element. In the present study, Am-241 migration experiments were performed by a lysimeter system, in order to evaluate the risk of contamination caused by radioactive lightning rods disposed as a common solid waste. Besides the risk evaluation, it is important to know the mechanism of the Am-241 release or retention in waste as well as its influence in the waste decomposition processes. Many factors are involved, but microorganisms present in the waste play an important role in its degradation, which control the physical and chemical processes. The objective of this work was to evaluate the Am-241 influence on the microbial population by counting number of cells in lysimeters leachate. Preliminary results suggest that americium may influence significantly the bacteria growth in organic waste, evidenced by culture under aerobiosis and an-aerobiosis and the antimicrobial resistance test. (authors)

  17. Radioactivities related to coal mining.

    PubMed

    Seddeek, Mostafa K; Sharshar, Taher; Ragab, Hossam S; Badran, Hussein M

    2005-08-01

    Natural radioactivity concentrations due to the coal mining in Gabal El-Maghara, North Sinai, Egypt, were determined using gamma-ray spectroscopy. Coal, water and soil samples were investigated in this study. The (226)Ra, (232)Th and (40)K activity concentrations in coal before extraction were 18.5 +/- 0.5, 29.5 +/- 1.2 and 149.0 +/- 8.4 Bq kg(-1), respectively. These concentrations were reduced to 18-22% after extraction due to the clay removal of the coal ore. The activity contents of the water and soil samples collected from the surrounding area did not show any evidence of enhancement due to the mining activities. Absorbed dose rate and effective dose equivalent in the mine environment were 29.4 nGy h(-1) and 128.0 microSv a(-1), respectively. The measured activity concentrations in the mine environment and the surrounding areas (5 km away from the mine) are similar to that found in other regions in North and South Sinai. Based on the measurements of gamma-ray emitting radionuclides, the mine activity does not lead to any enhancement in the local area nor represents any human risk. PMID:16049576

  18. The Discovery of Artificial Radioactivity

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco; Leone, Matteo; Robotti, Nadia

    2012-03-01

    We reconstruct Frédéric Joliot and Irène Curie's discovery of artificial radioactivity in January 1934 based in part on documents preserved in the Joliot-Curie Archives in Paris, France. We argue that their discovery followed from the convergence of two parallel lines of research, on the neutron and on the positron, that were focused on a well-defined experimental problem, the nuclear transmutation of aluminum and other light elements. We suggest that a key role was played by a suggestion that Francis Perrin made at the seventh Solvay Conference at the end of October 1933, that the alpha-particle bombardment of aluminum produces an intermediate unstable isotope of phosphorus, which then decays by positron emission. We also suggest that a further idea that Perrin published in December 1933, and the pioneering theory of beta decay that Enrico Fermi also first published in December 1933, established a new theoretical framework that stimulated Joliot to resume the researches that he and Curie had interrupted after the Solvay Conference, now for the first time using a Geiger-Müller counter to detect the positrons emitted when he bombarded aluminum with polonium alpha particles.

  19. Radioactive materials shipping cask anticontamination enclosure

    DOEpatents

    Belmonte, Mark S.; Davis, James H.; Williams, David A.

    1982-01-01

    An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

  20. Radioactive isotopes in solid state physics

    NASA Astrophysics Data System (ADS)

    Forkel-Wirth, D.

    1996-04-01

    A wide range of solid state physics techniques is using radioactive ion beams, both from on-line and off-line separators. The different techniques can be roughly subdivided into two classes: one, including the hyperfine techniques like Mößbauer spectroscopy (MS), Perturbed Angular Correlation (PAC) spectroscopy, β-NMR and the ion-beam technique of Emission Channeling (EC). They all crucially depend on the availability of radioactive isotopes with very specific decay properties. The second group comprises radio-tracer techniques which combine radioactive probe atoms with conventional semiconductor physics methods like Deep Level Transient Spectroscopy (DLTS), Capacitance Voltage measurements (CV), Hall-effect measurements or Photoluminescence Spectroscopy (PL). They are perfectly feasible without any radioactive probe atom, however, using such isotopes enables the unambiguous chemical identification of impurities. The present paper gives an overview on the potential of nuclear techniques by describing some typical experiments.

  1. Computed tomography of radioactive objects and materials

    NASA Astrophysics Data System (ADS)

    Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.

    1990-12-01

    Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.

  2. Method for storing radioactive combustible waste

    DOEpatents

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  3. Transection of Radioactive Seeds in Breast Specimens.

    PubMed

    Gilcrease, Michael Z; Dogan, Basak E; Black, Dalliah M; Contreras, Alejandro; Dryden, Mark J; Jimenez, Sandra M

    2016-10-01

    Radioactive seed localization is a new procedure for localizing breast lesions that has several advantages over the standard wire-localization procedure. It is reported to be safe for both patients and medical personnel. Although it is theoretically possible to transect the titanium-encapsulated seed while processing the breast specimen in the pathology laboratory, the likelihood of such an event is thought to be exceedingly low. In fact, there are no previous reports of such an event in the literature to date. We recently encountered 2 cases in which a radioactive seed was inadvertently transected while slicing a breast specimen at the grossing bench. In this report, we describe each case and offer recommendations for minimizing radioactive exposure to personnel and for preventing radioactive contamination of laboratory equipment. PMID:27627744

  4. Issues of natural radioactivity in phosphates

    SciTech Connect

    Schnug, E.; Haneklaus, S.; Schnier, C.; Scholten, L.C.

    1996-12-31

    The fertilization of phosphorus (P) fertilizers is essential in agricultural production, but phosphates contain in dependence on their origin different amounts of trace elements. The problem of cadmium (Cd) loads and other heavy metals is well known. However, only a limited number of investigations examined the contamination of phosphates with the two heaviest metals, uranium (U) and thorium (Th), which are radioactive. Also potassium (K) is lightly radioactive. Measurements are done n the radioactivity content of phosphates, P fertilizers and soils. The radiation doses to workers and public as well as possible contamination of soils from phosphate rock or fertilizer caused by these elements or their daughter products is of interest with regard to radiation protection. The use of P fertilizers is necessary for a sustainable agriculture, but it involves radioactive contamination of soils. The consequences of the use of P fertilizers is discussed, also with regard to existing and proposed legislation. 11 refs., 2 figs., 7 tabs.

  5. Radioactivity in man: levels, effects and unknowns

    SciTech Connect

    Rundo, J.

    1980-01-01

    The report discusses the potential for significant human exposure to internal radiation. Sources of radiation considered include background radiation, fallout, reactor accidents, radioactive waste, and occupational exposure to various radioisotopes. (ACR)

  6. Radioactive Dating: A Method for Geochronology.

    ERIC Educational Resources Information Center

    Rowe, M. W.

    1985-01-01

    Gives historical background on the discovery of natural radiation and discusses various techniques for using knowledge of radiochemistry in geochronological studies. Indicates that of these radioactive techniques, Potassium-40/Argon-40 dating is used most often. (JN)

  7. Computer Model Buildings Contaminated with Radioactive Material

    Energy Science and Technology Software Center (ESTSC)

    1998-05-19

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material.

  8. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  9. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  10. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  11. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Transfer of radioactive material. 76.83 Section 76.83... Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as... paragraphs (c) and (d) of this section, the Corporation may transfer radioactive material: (1) From...

  12. 10 CFR 835.1201 - Sealed radioactive source control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Sealed radioactive source control. 835.1201 Section 835.1201 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1201 Sealed radioactive source control. Sealed radioactive sources shall be used, handled,...

  13. 10 CFR 835.1201 - Sealed radioactive source control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Sealed radioactive source control. 835.1201 Section 835.1201 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1201 Sealed radioactive source control. Sealed radioactive sources shall be used, handled,...

  14. 49 CFR 172.436 - RADIOACTIVE WHITE-I label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false RADIOACTIVE WHITE-I label. 172.436 Section 172.436... SECURITY PLANS Labeling § 172.436 RADIOACTIVE WHITE-I label. (a) Except for size and color, the RADIOACTIVE... background on the RADIOACTIVE WHITE-I label must be white. The printing and symbol must be black, except...

  15. 10 CFR 835.1201 - Sealed radioactive source control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Sealed radioactive source control. 835.1201 Section 835.1201 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1201 Sealed radioactive source control. Sealed radioactive sources shall be used, handled,...

  16. 49 CFR 172.436 - RADIOACTIVE WHITE-I label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false RADIOACTIVE WHITE-I label. 172.436 Section 172.436... SECURITY PLANS Labeling § 172.436 RADIOACTIVE WHITE-I label. (a) Except for size and color, the RADIOACTIVE... background on the RADIOACTIVE WHITE-I label must be white. The printing and symbol must be black, except...

  17. 10 CFR 835.1202 - Accountable sealed radioactive sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Accountable sealed radioactive sources. 835.1202 Section 835.1202 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1202 Accountable sealed radioactive sources. (a) Each accountable sealed radioactive...

  18. 10 CFR 835.1202 - Accountable sealed radioactive sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Accountable sealed radioactive sources. 835.1202 Section 835.1202 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1202 Accountable sealed radioactive sources. (a) Each accountable sealed radioactive...

  19. 10 CFR 835.1202 - Accountable sealed radioactive sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Accountable sealed radioactive sources. 835.1202 Section 835.1202 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1202 Accountable sealed radioactive sources. (a) Each accountable sealed radioactive...

  20. 10 CFR 835.1202 - Accountable sealed radioactive sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Accountable sealed radioactive sources. 835.1202 Section 835.1202 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1202 Accountable sealed radioactive sources. (a) Each accountable sealed radioactive...

  1. 10 CFR 835.1201 - Sealed radioactive source control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Sealed radioactive source control. 835.1201 Section 835.1201 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1201 Sealed radioactive source control. Sealed radioactive sources shall be used, handled,...

  2. 10 CFR 835.1201 - Sealed radioactive source control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Sealed radioactive source control. 835.1201 Section 835.1201 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1201 Sealed radioactive source control. Sealed radioactive sources shall be used, handled,...

  3. 49 CFR 172.436 - RADIOACTIVE WHITE-I label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false RADIOACTIVE WHITE-I label. 172.436 Section 172.436... SECURITY PLANS Labeling § 172.436 RADIOACTIVE WHITE-I label. (a) Except for size and color, the RADIOACTIVE... background on the RADIOACTIVE WHITE-I label must be white. The printing and symbol must be black, except...

  4. 10 CFR 835.1202 - Accountable sealed radioactive sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Accountable sealed radioactive sources. 835.1202 Section 835.1202 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1202 Accountable sealed radioactive sources. (a) Each accountable sealed radioactive...

  5. 49 CFR 172.436 - RADIOACTIVE WHITE-I label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false RADIOACTIVE WHITE-I label. 172.436 Section 172.436... SECURITY PLANS Labeling § 172.436 RADIOACTIVE WHITE-I label. (a) Except for size and color, the RADIOACTIVE... background on the RADIOACTIVE WHITE-I label must be white. The printing and symbol must be black, except...

  6. 49 CFR 172.436 - RADIOACTIVE WHITE-I label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false RADIOACTIVE WHITE-I label. 172.436 Section 172.436... SECURITY PLANS Labeling § 172.436 RADIOACTIVE WHITE-I label. (a) Except for size and color, the RADIOACTIVE... background on the RADIOACTIVE WHITE-I label must be white. The printing and symbol must be black, except...

  7. Public involvement in radioactive waste management decisions

    SciTech Connect

    1994-04-01

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

  8. Undiagnosed illnesses and radioactive warfare.

    PubMed

    Duraković, Asaf

    2003-10-01

    The internal contamination with depleted uranium (DU) isotopes was detected in British, Canadian, and United States Gulf War veterans as late as nine years after inhalational exposure to radioactive dust in the Persian Gulf War I. DU isotopes were also identified in a Canadian veteran's autopsy samples of lung, liver, kidney, and bone. In soil samples from Kosovo, hundreds of particles, mostly less than 5 microm in size, were found in milligram quantities. Gulf War I in 1991 resulted in 350 metric tons of DU deposited in the environment and 3-6 million grams of DU aerosol released into the atmosphere. Its legacy, Gulf War disease, is a complex, progressive, incapacitating multiorgan system disorder. The symptoms include incapacitating fatigue, musculoskeletel and joint pains, headaches, neuropsychiatric disorders, affect changes, confusion, visual problems, changes of gait, loss of memory, lymphadenopathies, respiratory impairment, impotence, and urinary tract morphological and functional alterations. Current understanding of its etiology seems far from being adequate. After the Afghanistan Operation Anaconda (2002), our team studied the population of Jalalabad, Spin Gar, Tora Bora, and Kabul areas, and identified civilians with the symptoms similar to those of Gulf War syndrome. Twenty-four-hour urine samples from 8 symptomatic subjects were collected by the following criteria: 1) the onset of symptoms relative to the bombing raids; 2) physical presence in the area of the bombing; and 3) clinical manifestations. Control subjects were selected among the sympotom-free residents in non-targeted areas. All samples were analyzed for the concentration and ratio of four uranium isotopes, (234)U, (235)U, (236)U and (238)U, by using a multicollector, inductively coupled plasma ionization mass spectrometry. The first results from the Jalalabad province revealed urinary excretion of total uranium in all subjects significantly exceeding the values in the nonexposed population

  9. CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT

    SciTech Connect

    Marra, J.

    2010-05-05

    The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense

  10. Radioactivity of the moon and planets

    NASA Astrophysics Data System (ADS)

    Surkov, Iu. A.

    The major results of studies of the radioactivity of the moon and terrestrial planets are reviewed. Measurements of the cosmogenic and natural radioactivity of the moon and Mars were obtained from planetary orbiter measurements, and those of Venus by in situ measurements, in addition to measurements of lunar samples brought back to earth. For the case of the moon, the Western maria on the near side are found to be the most radioactive areas, with highlands on both sides of the moon exhibiting lower radioactivity than the maria and lunar radioactivity levels in general less than those of the earth, which is correlated with different chemical compositions of the two bodies. The potassium, uranium and thorium contents of the landing sites of Veneras 8, 9 and 10 are shown to differ from each other, but be similar to those of terrestrial basalts, which they also resemble in density. Gamma-radiation and X-ray fluorescence measurements of Mars indicate the content of natural radioelements to be similar to that of the eruptive rocks of the earth crust, with Martian rocks of volcanic formations similar to terrestrial and lunar basalts, and those of the ancient terra formations more closely resembling the anorthosite-norite-troctolite association of the lunar highlands. It is pointed out that natural radioelements contents of all the bodies examined indicate a single chemical differentiation process, while cosmogenic radiation contents can aid in determining cosmic ray intensities as well as the sequences of geological events.

  11. Radioactive Waste Management in A Hospital

    PubMed Central

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  12. Laser decontamination of the radioactive lightning rods

    NASA Astrophysics Data System (ADS)

    Potiens, A. J.; Dellamano, J. C.; Vicente, R.; Raele, M. P.; Wetter, N. U.; Landulfo, E.

    2014-02-01

    Between 1970 and 1980 Brazil experienced a significant market for radioactive lightning rods (RLR). The device consists of an air terminal with one or more sources of americium-241 attached to it. The sources were used to ionize the air around them and to increase the attraction of atmospheric discharges. Because of their ineffectiveness, the nuclear regulatory authority in Brazil suspended the license for manufacturing, commerce and installation of RLR in 1989, and determined that the replaced RLR were to be collected to a centralized radioactive waste management facility for treatment. The first step for RLR treatment is to remove the radioactive sources. Though they can be easily removed, some contaminations are found all over the remaining metal scrap that must decontaminated for release, otherwise it must be treated as radioactive waste. Decontamination using various chemicals has proven to be inefficient and generates large amounts of secondary wastes. This work shows the preliminary results of the decontamination of 241Am-contaminated metal scrap generated in the treatment of radioactive lightning rods applying laser ablation. A Nd:YAG nanoseconds laser was used with 300 mJ energy leaving only a small amount of secondary waste to be treated.

  13. Type A radioactive liquid sample packaging family

    SciTech Connect

    Edwards, W.S.

    1995-11-01

    Westinghouse Hanford Company (WHC) has developed two packagings that can be used to ship Type A quantities of radioactive liquids. WHC designed these packagings to take advantage of commercially available items where feasible to reduce the overall packaging cost. The Hedgehog packaging can ship up to one liter of Type A radioactive liquid with no shielding and 15 cm of distance between the liquid and the package exterior, or 30 ml of liquid with 3.8 cm of stainless steel shielding and 19 cm of distance between the liquid and the package exterior. The One Liter Shipper can ship up to one liter of Type A radioactive liquid that does not require shielding.

  14. Radioactive tank waste remediation focus area

    SciTech Connect

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  15. Radioactive source security: the cultural challenges.

    PubMed

    Englefield, Chris

    2015-04-01

    Radioactive source security is an essential part of radiation protection. Sources can be abandoned, lost or stolen. If they are stolen, they could be used to cause deliberate harm and the risks are varied and significant. There is a need for a global security protection system and enhanced capability to achieve this. The establishment of radioactive source security requires 'cultural exchanges'. These exchanges include collaboration between: radiation protection specialists and security specialists; the nuclear industry and users of radioactive sources; training providers and regulators/users. This collaboration will facilitate knowledge and experience exchange for the various stakeholder groups, beyond those already provided. This will promote best practice in both physical and information security and heighten security awareness generally. Only if all groups involved are prepared to open their minds to listen to and learn from, each other will a suitable global level of control be achieved. PMID:25377752

  16. Security in the Transport of Radioactive Materials

    SciTech Connect

    Pope, Ron; Rawl, Richard R

    2010-01-01

    The United States Department of Energy National Nuclear Security Administration's (DOE/NNSA)Global Threat Reduction Initiative (GTRI), the International Atomic Energy Agency (IAEA) and active IAEA Donor States are working together to strengthen the security of nuclear and radioactive materials during transport to mitigate the risks of theft, diversion, or sabotage. International activities have included preparing and publishing the new IAEA guidance document Security in the Transport of Radioactive Material while ensuring that security recommendations do not conflict with requirements for safety during transport, and developing and providing training programs to assist other countries in implementing radioactive material transport security programs. This paper provides a brief update on the status of these transportation security efforts.

  17. Low radioactivity spectral gamma calibration facility

    SciTech Connect

    Mathews, M.A.; Bowman, H.R.; Huang, L., H.; Lavelle, M.J.; Smith, A.R.; Hearst, J.R.; Wollenberg, H.A.; Flexser, S.

    1986-01-01

    A low radioactivity calibration facility has been constructed at the Nevada Test Site (NTS). This facility has four calibration models of natural stone that are 3 ft in diameter and 6 ft long, with a 12 in. cored borehole in the center of each model and a lead-shielded run pipe below each model. These models have been analyzed by laboratory natural gamma ray spectroscopy (NGRS) and neutron activation analysis (NAA) for their K, U, and Th content. Also, 42 other elements were analyzed in the NAA. The /sup 222/Rn emanation data were collected. Calibrating the spectral gamma tool in this low radioactivity calibration facility allows the spectral gamma log to accurately aid in the recognition and mapping of subsurface stratigraphic units and alteration features associated with unusual concentrations of these radioactive elements, such as clay-rich zones.

  18. Completion of the Radioactive Materials Packaging Handbook

    SciTech Connect

    Shappert, L.B.

    1998-02-01

    The Radioactive Materials Packaging Handbook: Design, Operation and Maintenance, which will serve as a replacement for the Cask Designers Guide (Shappert, 1970), has now been completed and submitted to the Oak Ridge National Laboratory (ORNL) electronics publishing group for layout and printing; it is scheduled to be printed in late spring 1998. The Handbook, written by experts in their particular fields, is a compilation of technical chapters that address the design aspects of a package intended for transporting radioactive material in normal commerce; it was prepared under the direction of M. E. Wangler of the US Department of Energy (DOE) and is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators on specific aspects of package design, and the types of analyses that should be considered when designing a package to carry radioactive materials.

  19. Landscape of two-proton radioactivity.

    PubMed

    Olsen, E; Pfützner, M; Birge, N; Brown, M; Nazarewicz, W; Perhac, A

    2013-05-31

    Ground-state two-proton (2p) radioactivity is a decay mode found in isotopes of elements with even atomic numbers located beyond the two-proton drip line. So far, this exotic process has been experimentally observed in a few light- and medium-mass nuclides with Z≤30. In this study, using state-of-the-art nuclear density functional theory, we globally analyze 2p radioactivity and for the first time identify 2p-decay candidates in elements heavier than strontium. We predict a few cases where the competition between 2p emission and α decay may be observed. In nuclei above lead, the α-decay mode is found to be dominating and no measurable candidates for the 2p radioactivity are expected. PMID:23767715

  20. Wide range radioactive gas concentration detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  1. Nondestructive measurement of environmental radioactive strontium

    NASA Astrophysics Data System (ADS)

    Saiba, Shuntaro; Okamiya, Tomohiro; Tanaka, Saki; Tanuma, Ryosuke; Totsuka, Yumi; Murata, Jiro

    2014-03-01

    The Fukushima Daiichi nuclear power plant accident was triggered by the 2011 Great East Japan Earthquake. The main radioactivity concerns after the accident are I-131 (half-life: 8.0 days), Cs-134 (2.1 years), Cs-137 (30 years), Sr-89 (51 days), and Sr-90 (29 years). We are aiming to establish a new nondestructive measurement and detection technique that will enable us to realize a quantitative evaluation of strontium radioactivity without chemical separation processing. This technique is needed to detect radiation contained in foods, environmental water, and soil, to prevent us from undesired internal exposure to radiation.

  2. Technology applications for radioactive waste minimization

    SciTech Connect

    Devgun, J.S.

    1994-07-01

    The nuclear power industry has achieved one of the most successful examples of waste minimization. The annual volume of low-level radioactive waste shipped for disposal per reactor has decreased to approximately one-fifth the volume about a decade ago. In addition, the curie content of the total waste shipped for disposal has decreased. This paper will discuss the regulatory drivers and economic factors for waste minimization and describe the application of technologies for achieving waste minimization for low-level radioactive waste with examples from the nuclear power industry.

  3. Pump station for radioactive waste water

    DOEpatents

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  4. Microwave remediation of hazardous and radioactive wastes

    SciTech Connect

    Wicks, G.G.

    2000-04-28

    A team from the Westinghouse Savannah River Technology Center (WSRC - a DOE Laboratory), and the University of Florida (UF - academia), has been active for about a decade in development of microwave technology for specialized waste management applications. This interaction has resulted in the development of unique equipment and uses of microwave energy for a variety of important applications for remediation of hazardous and radioactive wastes. Discussed are results of this unique technology for processing of electronic circuitry and components, medical wastes, discarded tires, and transuranic radioactive wastes.

  5. Microwave processing of radioactive materials-I

    SciTech Connect

    White, T.L.; Berry, J.B.

    1989-01-01

    This paper is the first of two papers that reviews the major past and present applications of microwave energy for processing radioactive materials, with particular emphasis on processing radioactive wastes. Microwave heating occurs through the internal friction produced inside a dielectric material when its molecules vibrate in response to an oscillating microwave field. For this presentation, we shall focus on the two FCC-approved microwave frequencies for industrial, scientific, and medical use, 915 and 2450 MHz. Also, because of space limitations, we shall postpone addressing plasma processing of hazardous wastes using microwave energy until a later date. 13 refs., 4 figs.

  6. Induced radioactivity from industrial radiation processing

    NASA Astrophysics Data System (ADS)

    Lone, M. A.

    1990-12-01

    Analytic expressions are developed for quantitative analysis of radioactivity induced by radiation processing of products with electrons or photons. These expressions provide reasonable estimates of induced activity much faster than Monte Carlo simulations. Analysis of radioactivity from processing of meat with 10 MeV electrons shows an induced activity of less than 10 mBq/(kgkGy) just after irradiation. This is 4 orders of magnitude less than the natural background activity of about 100 Bq/kg found in meat. Five days after processing the induced activity will reduce by a factor of 300.

  7. Perspectives of Radioactive Contamination in Nuclear War

    PubMed Central

    Waters, W. R.

    1967-01-01

    The degrees of risk associated with the medical, industrial and military employment of nuclear energy are compared. The nature of radioactive contamination of areas and of persons resulting from the explosion of nuclear weapons, particularly the relationship between the radiation exposure and the amount of physical debris, is examined. Some theoretical examples are compared quantitatively. It is concluded that the amount of radio-activity that may be carried on the contaminated person involves a minor health hazard from gamma radiation, compared to the irradiation arising from contaminated areas. PMID:6015741

  8. Decontamination of protective clothing against radioactive contamination.

    PubMed

    Vošahlíková, I; Otáhal, P

    2014-11-01

    The aim of this study is to describe the experimental results of external surface mechanical decontamination of the studied materials forming selected suits. Seven types of personal protective suits declaring protection against radioactive aerosol contamination in different price ranges were selected for decontamination experiments. The outcome of this study is to compare the efficiency of a double-step decontamination process on various personal protective suits against radioactive contamination. A comparison of the decontamination effectiveness for the same type of suit, but for the different chemical mixtures ((140)La in a water-soluble or in a water-insoluble compound), was performed. PMID:25084793

  9. Annual radioactive waste tank inspection program - 1992

    SciTech Connect

    McNatt, F.G.

    1992-12-31

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1992 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  10. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  11. Recycling and Reuse of Radioactive Materials

    ERIC Educational Resources Information Center

    O'Dou, Thomas Joseph

    2012-01-01

    The Radiochemistry Program at the University of Nevada, Las Vegas (UNLV) has a Radiation Protection Program that was designed to provide students with the ability to safely work with radioactive materials in quantities that are not available in other academic environments. Requirements for continuous training and supervision make this unique…

  12. METHOD OF REMOVING RADIOACTIVE IODINE FROM GASES

    DOEpatents

    Silverman, L.

    1962-01-23

    A method of removing radioactive iodine from a gaseous medium is given in which the gaseous medium is adjusted to a temperature not exceeding 400 deg C and then passed over a copper fibrous pad having a coating of cupric sulfide deposited thereon. An ionic exchange on the pad results in the formation of cupric iodide and the release of sulfur. (AEC)

  13. [Loss and uncontrolled use of radioactive sources].

    PubMed

    Govaerts, P

    2005-01-01

    In the course of history, exposure to radioactive sources escaping regular control, has been the main cause of fatal accidents, with the exception of the reactor accident at Chernobyl. After the disintegration of the Soviet Union, numerous lost sources have been found, sometimes with serious physical damage. The attacks of September 11, 2001 have focussed the attention on the possibility of nuclear terrorism. Although the risks of fatal consequences are rather limited, the possible uncontrolled exposure to ionizing radiation has an important psycho-social impact on the population. After a brief survey of the types of radioactive sources for medical and industrial applications and a discussion of the risks and exposure routes, possible scenarios are illustrated by well documented case histories. The main conclusions of this analysis are: Radioactive materials are not unique as a potential threat by toxic materials. The most serious consequences for individuals occur as the result of external radiation, mostly with skin contact with medium-active sources which are relatively easily accessible. The collective impact is mostly psycho-social and is more important for a dispersed contamination of the environment. Many sources are detected via medical complaints. The knowledge of the specific symptoms is consequently very important. A dispersion of radioactive contamination has usually considerable economic consequences. Accidents occur particularly, but certainly not exclusively, in relatively unstable countries. Change of owner or final evacuation of the source constitute a critical phase in many scenarios. PMID:16408827

  14. Helium-Shell Nucleosynthesis and Extinct Radioactivities

    NASA Astrophysics Data System (ADS)

    Meyer, B. S.; The, L.-S.; Clayton, D. D.; El Eid, M. F.

    2004-03-01

    We present details of explosive nucleosynthesis in the helium-burning shell of a 25 solar mass star. We describe the production of short-lived radioactivities in this environment. We finally describe how to access the details of our calculations over the world-wide web.

  15. Physics with energetic radioactive ion beams

    SciTech Connect

    Henning, W.F.

    1996-12-31

    Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized.

  16. A Sensitive Cloud Chamber without Radioactive Sources

    ERIC Educational Resources Information Center

    Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka

    2012-01-01

    We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)

  17. 46 CFR 148.300 - Radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radioactive materials defined in 49 CFR 173.403 as Low Specific Activity Material, LSA-1, or Surface... uCi/cm2;) for beta and gamma emitters and low toxicity alpha emitters, natural uranium, natural.../cm2 (10−5 uCi/cm2) for all other alpha emitters....

  18. Method for solidifying liquid radioactive wastes

    DOEpatents

    Berreth, Julius R.

    1976-01-01

    The quantity of nitrous oxides produced during the solidification of liquid radioactive wastes containing nitrates and nitrites can be substantially reduced by the addition to the wastes of a stoichiometric amount of urea which, upon heating, destroys the nitrates and nitrites, liberating nontoxic N.sub.2, CO.sub.2 and NH.sub.3.

  19. Remediation of groundwater contaminated with radioactive compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both naturally radioactive isotopes and isotopes from man-made sources may appear in groundwater. Depending on the physical and chemical characteristics of the contaminant, different types of treatment methods must be applied to reduce the concentration. The following chapter discusses treatment opt...

  20. Annual Radioactive Waste Tank Inspection Program 1994

    SciTech Connect

    McNatt, F.G. Sr.

    1995-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1994 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  1. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, Donald K.; Van Cleve, Jr., John E.

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  2. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008

    SciTech Connect

    West, B.; Waltz, R.

    2009-06-11

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  3. Ion beam analysis of radioactive samples

    NASA Astrophysics Data System (ADS)

    Raepsaet, C.; Khodja, H.; Bossis, P.; Pipon, Y.; Roudil, D.

    2009-06-01

    The nuclear microprobe facility of the Pierre Süe Laboratory is fitted with two microbeam lines. One is dedicated to non-active samples. The other one, located in a controlled shielded area, offers the unique feature of being devoted to radioactive samples. Operational since 1998, it is strongly linked to nuclear research programs and has been dimensioned to accept radioactive but non-contaminant radioactive samples, including small quantities of UOX or MOX irradiated fuel. The samples, transported in a shipping cask, are unloaded and handled in hot cells with slaved arms. The analysis chamber, situated in a concrete cell, is equipped with charged particle detectors and a Si(Li) X-ray detector, shielded in order to reduce the radioactive noise produced by the sample, allowing ERDA, RBS, NRA and PIXE. After a description of the facility, including the sample handling in the hot cells and the analysis chamber, we will give an overview of the various experimental programs which have been performed, with an emphasis on the determination of the hydrogen distribution and local content in nuclear fuel cladding tubes.

  4. Nondestructive assay of boxed radioactive waste

    SciTech Connect

    Gilles, W.P.; Roberts, R.J.; Jasen, W.G.

    1992-12-01

    This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described.

  5. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  6. Obtaining and Investigating Unconventional Sources of Radioactivity

    ERIC Educational Resources Information Center

    Lapp, David R.

    2010-01-01

    This paper provides examples of naturally radioactive items that are likely to be found in most communities. Additionally, there is information provided on how to acquire many of these items inexpensively. I have found that the presence of these materials in the classroom is not only useful for teaching about nuclear radiation and debunking the…

  7. Simplifying the Mathematical Treatment of Radioactive Decay

    ERIC Educational Resources Information Center

    Auty, Geoff

    2011-01-01

    Derivation of the law of radioactive decay is considered without prior knowledge of calculus or the exponential series. Calculus notation and exponential functions are used because ultimately they cannot be avoided, but they are introduced in a simple way and explained as needed. (Contains 10 figures, 1 box, and 1 table.)

  8. High-level radioactive wastes. Supplement 1

    SciTech Connect

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  9. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, Lane A.

    1996-01-01

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  10. Calculation of wet deposition from radioactive plumes

    SciTech Connect

    Brenk, H.D.; Vogt, K.J.

    1981-05-01

    A reevaluation of the current wet deposition models for radioactive plumes of the Gaussian type is presented. The application of the methodology to routine and accidental activity releases from nuclear facilities is discussed. A set of washout parameters for a simplified model has been included.