Sample records for amazon tree boa

  1. Predation of a squirrel monkey (Saimiri sciureus) by an Amazon tree boa (Corallus hortulanus): even small boids may be a potential threat to small-bodied platyrrhines.

    PubMed

    Ribeiro-Júnior, Marco Antônio; Ferrari, Stephen Francis; Lima, Janaina Reis Ferreira; da Silva, Claudia Regina; Lima, Jucivaldo Dias

    2016-07-01

    Predation has been suggested to play a major role in the evolution of primate ecology, although reports of predation events are very rare. Mammalian carnivores, raptors, and snakes are known predators of Neotropical primates, and most reported attacks by snakes are attributed to Boa constrictor (terrestrial boas). Here, we document the predation of a squirrel monkey (Saimiri sciureus) by an Amazon tree boa (Corallus hortulanus), the first record of the predation of a platyrrhine primate by this boid. The event was recorded during a nocturnal herpetological survey in the Piratuba Lake Biological Reserve, in the north-eastern Brazilian Amazon. The snake was encountered at 20:00 hours on the ground next to a stream, at the final stage of ingesting the monkey. The C. hortulanus specimen was 1620 mm in length (SVL) and weighed 650 g, while the S. sciureus was a young adult female weighing 600 g, 92 % of the body mass of the snake and the largest prey item known to have been ingested by a C. hortulanus. The evidence indicates that the predation event occurred at the end of the afternoon or early evening, and that, while capable of capturing an agile monkey like Saimiri, C. hortulanus may be limited to capturing small platyrrhines such as callitrichines.

  2. Vulnerability of Amazon forests to storm-driven tree mortality

    NASA Astrophysics Data System (ADS)

    Negrón-Juárez, Robinson I.; Holm, Jennifer A.; Magnabosco Marra, Daniel; Rifai, Sami W.; Riley, William J.; Chambers, Jeffrey Q.; Koven, Charles D.; Knox, Ryan G.; McGroddy, Megan E.; Di Vittorio, Alan V.; Urquiza-Muñoz, Jose; Tello-Espinoza, Rodil; Alegria Muñoz, Waldemar; Ribeiro, Gabriel H. P. M.; Higuchi, Niro

    2018-05-01

    Tree mortality is a key driver of forest community composition and carbon dynamics. Strong winds associated with severe convective storms are dominant natural drivers of tree mortality in the Amazon. Why forests vary with respect to their vulnerability to wind events and how the predicted increase in storm events might affect forest ecosystems within the Amazon are not well understood. We found that windthrows are common in the Amazon region extending from northwest (Peru, Colombia, Venezuela, and west Brazil) to central Brazil, with the highest occurrence of windthrows in the northwest Amazon. More frequent winds, produced by more frequent severe convective systems, in combination with well-known processes that limit the anchoring of trees in the soil, help to explain the higher vulnerability of the northwest Amazon forests to winds. Projected increases in the frequency and intensity of convective storms in the Amazon have the potential to increase wind-related tree mortality. A forest demographic model calibrated for the northwestern and the central Amazon showed that northwestern forests are more resilient to increased wind-related tree mortality than forests in the central Amazon. Our study emphasizes the importance of including wind-related tree mortality in model simulations for reliable predictions of the future of tropical forests and their effects on the Earth’ system.

  3. Basin-Wide Amazon Forest Tree Mortality From a Large 2005 Storm

    NASA Astrophysics Data System (ADS)

    Negron Juarez, R. I.; Chambers, J. Q.; Guimaraes, G.; Zeng, H.; Raupp, C.; Marra, D. M.; Ribeiro, G.; Saatchi, S. S.; Higuchi, N.

    2010-12-01

    Blowdowns are a recurrent characteristic of Amazon forests and are produced, among others, by squall lines. Squall lines are aligned clusters (typical length of 1000 km, width of 200 km) of deep convective cells that produce heavy rainfall during the dry season and significant rainfall during the wet season. These squall lines (accompanied by intense downbursts from convective cells) have been associated with large blowdowns characterized by uprooted, snapped trees, and trees being dragged down by other falling trees. Most squall lines in Amazonia form along the northeastern coast of South America as sea breeze-induced instability lines and propagate inside the continent. They occur frequently (~4 times per month), and can reach the central and even extreme western parts of Amazonia. Squall lines can also be generated inside the Amazon and propagate toward the equator. In January 2005 a squall line propagated from south to north across the entire Amazon basin producing widespread forest tree mortality and contributed to the elevated mortality observed that year. Over the Manaus region (3.4 x104 km2), disturbed forest patches generated by the squall produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. The elevated mortality observed in the Central Amazon in 2005 is unlikely to be related to the 2005 Amazon drought since drought did not affect Central or Eastern Amazonia. Assuming a similar rate of forest mortality across the basin, the squall line could have potentially produced tree mortality estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. This vulnerability is likely to increase in a warming climate with models projecting an increase in storm intensity.

  4. Large emissions from floodplain trees close the Amazon methane budget.

    PubMed

    Pangala, Sunitha R; Enrich-Prast, Alex; Basso, Luana S; Peixoto, Roberta Bittencourt; Bastviken, David; Hornibrook, Edward R C; Gatti, Luciana V; Marotta, Humberto; Calazans, Luana Silva Braucks; Sakuragui, Cassia Mônica; Bastos, Wanderley Rodrigues; Malm, Olaf; Gloor, Emanuel; Miller, John Bharat; Gauci, Vincent

    2017-12-14

    Wetlands are the largest global source of atmospheric methane (CH 4 ), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH 4 in the tropics, consistently underestimate the atmospheric burden of CH 4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH 4 emissions. Here we report CH 4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH 4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ 13 C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH 4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a 'top-down' regional estimate of CH 4 emissions of 42.7 ± 5.6 teragrams of CH 4 a year for the Amazon basin, based on regular vertical lower-troposphere CH 4 profiles covering the period 2010-2013. We find close agreement between our 'top-down' and combined 'bottom-up' estimates, indicating that large CH 4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH 4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH 4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH 4 source when trees are combined with other emission sources.

  5. Large emissions from floodplain trees close the Amazon methane budget

    NASA Astrophysics Data System (ADS)

    Pangala, Sunitha R.; Enrich-Prast, Alex; Basso, Luana S.; Peixoto, Roberta Bittencourt; Bastviken, David; Hornibrook, Edward R. C.; Gatti, Luciana V.; Marotta, Humberto; Calazans, Luana Silva Braucks; Sakuragui, Cassia Mônica; Bastos, Wanderley Rodrigues; Malm, Olaf; Gloor, Emanuel; Miller, John Bharat; Gauci, Vincent

    2017-12-01

    Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010-2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources.

  6. Extreme Drought Events Revealed in Amazon Tree Ring Records

    NASA Astrophysics Data System (ADS)

    Jenkins, H. S.; Baker, P. A.; Guilderson, T. P.

    2010-12-01

    The Amazon basin is a center of deep atmospheric convection and thus acts as a major engine for global hydrologic circulation. Yet despite its significance, a full understanding of Amazon rainfall variability remains elusive due to a poor historical record of climate. Temperate tree rings have been used extensively to reconstruct climate over the last thousand years, however less attention has been given to the application of dendrochronology in tropical regions, in large part due to a lower frequency of tree species known to produce annual rings. Here we present a tree ring record of drought extremes from the Madre de Dios region of southeastern Peru over the last 190 years. We confirm that tree ring growth in species Cedrela odorata is annual and show it to be well correlated with wet season precipitation. This correlation is used to identify extreme dry (and wet) events that have occurred in the past. We focus on drought events identified in the record as drought frequency is expected to increase over the Amazon in a warming climate. The Cedrela chronology records historic Amazon droughts of the 20th century previously identified in the literature and extends the record of drought for this region to the year 1816. Our analysis shows that there has been an increase in the frequency of extreme drought (mean recurrence interval = 5-6 years) since the turn of the 20th century and both Atlantic and Pacific sea surface temperature (SST) forcing mechanisms are implicated.

  7. Tree rings and rainfall in the equatorial Amazon

    NASA Astrophysics Data System (ADS)

    Granato-Souza, Daniela; Stahle, David W.; Barbosa, Ana Carolina; Feng, Song; Torbenson, Max C. A.; de Assis Pereira, Gabriel; Schöngart, Jochen; Barbosa, Joao Paulo; Griffin, Daniel

    2018-05-01

    The Amazon basin is a global center of hydroclimatic variability and biodiversity, but there are only eight instrumental rainfall stations with continuous records longer than 80 years in the entire basin, an area nearly the size of the coterminous US. The first long moisture-sensitive tree-ring chronology has been developed in the eastern equatorial Amazon of Brazil based on dendrochronological analysis of Cedrela cross sections cut during sustainable logging operations near the Rio Paru. The Rio Paru chronology dates from 1786 to 2016 and is significantly correlated with instrumental precipitation observations from 1939 to 2016. The strength and spatial scale of the precipitation signal vary during the instrumental period, but the Rio Paru chronology has been used to develop a preliminary reconstruction of February to November rainfall totals from 1786 to 2016. The reconstruction is related to SSTs in the Atlantic and especially the tropical Pacific, similar to the stronger pattern of association computed for the instrumental rainfall data from the eastern Amazon. The tree-ring data estimate extended drought and wet episodes in the mid- to late-nineteenth century, providing a valuable, long-term perspective on the moisture changes expected to emerge over the Amazon in the coming century due to deforestation and anthropogenic climate change.

  8. Monitoring stress-related mass variations in Amazon trees using accelerometers

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Steele-Dunne, S. C.; Gentine, P.; Hut, R.; Guerin, M. F.; Leus, G.; Oliveira, R. S.; Van De Giesen, N.

    2016-12-01

    Containing half of the world's rainforests, the Amazon plays a key role in the global water and carbon budget. However, the Amazon remains poorly understood, but appears to be vulnerable to increasing moisture stress, and future droughts have the potential to considerably change the global water and carbon budget. Field measurements will allow further investigations of the effects of moisture stress and droughts on tree dynamics, and its impact on the water and carbon budget. This study focuses on studying the diurnal mass variations of seven Amazonian tree species. The mass of trees is influenced by physiological processes within the tree (e.g. transpiration and root water uptake), as well as external loads (e.g. intercepted precipitation). Depending on the physiological traits of an individual tree, moisture stress and drought affect processes such as photosynthesis, assimilation, transpiration, and root water uptake. In turn, these have their influence on diurnal mass variations of a tree. Our study uses measured three-dimensional displacement and acceleration of trees, to detect and quantify their diurnal (bio)mass variations. Nineteen accelerometers and dendrometers were installed on seven different tree species in the Amazon rainforest, covering an area of 250 x 250 m. The selected species span a wide range in wood density (0.5 - 1.1), diameter (15 - 40 cm) and height (25 - 60 m). Acceleration was measured with a frequency of 10 Hz, from August 2015 to June 2016, covering both the wet and dry season. On-site additional measurements of net radiation, wind speed at three heights, temperature, and precipitation as available every 15 minutes. Dendrometers measured variation in xylem and bark thickness every 5 minutes. The MUltiple SIgnal Classification (MUSIC) algorithm was applied to the acceleration time series to estimate the frequency spectrum of each tree. A correction was necessary to account for the dominant effect of wind. The resulting spectra reveal

  9. Dispersal assembly of rain forest tree communities across the Amazon basin

    PubMed Central

    Lavin, Mathew; Torke, Benjamin M.; Twyford, Alex D.; Kursar, Thomas A.; Coley, Phyllis D.; Drake, Camila; Hollands, Ruth; Pennington, R. Toby

    2017-01-01

    We investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga. We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia, Protieae, and Guatteria. Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin. PMID:28213498

  10. Dispersal assembly of rain forest tree communities across the Amazon basin.

    PubMed

    Dexter, Kyle G; Lavin, Mathew; Torke, Benjamin M; Twyford, Alex D; Kursar, Thomas A; Coley, Phyllis D; Drake, Camila; Hollands, Ruth; Pennington, R Toby

    2017-03-07

    We investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia , Protieae, and Guatteria Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin.

  11. Predation of Alouatta puruensis by Boa constrictor.

    PubMed

    Quintino, Erika Patrícia; Bicca-Marques, Júlio César

    2013-10-01

    Reports of successful predator attacks on primates are rare. Primates from all major radiations are particularly susceptible to raptors, carnivores, and snakes. Among New World primates, reports of snake predation are limited to medium- and small-bodied species. Here, we report the first documented case of successful predation of an atelid by a snake-an adult female Purús red howler monkey, Alouatta puruensis, that was subdued by a ca. 2-m-long Boa constrictor in an arboreal setting at a height of 7.5 m above the ground. The victim belonged to a group composed of six individuals (one adult male, two adult females, two juveniles, and one infant) that inhabited a ca. 2.5-ha forest fragment in the State of Rondônia, western Brazilian Amazon. The boa applied the species' typical hunting behavior of striking and immediately coiling around its prey and then killing it through constriction (probably in less than 5 min), but the entire restraint period lasted 38 min. The attack occurred around noon. The howler was swallowed head-first in 76 min. The only group member to respond to the distress vocalization emitted by the victim was the other adult female, which was closest to the location where the attack occurred. This female ran toward the snake, also vocalizing, and hit it with her hands several times, but the snake did not react and she moved off to a nearby tree from where she watched most of the interaction. The remaining group members stayed resting at a height approximately 15 m above the victim in a nearby tree without showing any overt signs of stress, except for a single whimper vocalization. This event indicates that even large-bodied atelids are vulnerable to predation by large snakes and suggests that B. constrictor may be a more common predator of primates.

  12. Tree ring reconstructed rainfall over the southern Amazon Basin

    NASA Astrophysics Data System (ADS)

    Lopez, Lidio; Stahle, David; Villalba, Ricardo; Torbenson, Max; Feng, Song; Cook, Edward

    2017-07-01

    Moisture sensitive tree ring chronologies of Centrolobium microchaete have been developed from seasonally dry forests in the southern Amazon Basin and used to reconstruct wet season rainfall totals from 1799 to 2012, adding over 150 years of rainfall estimates to the short instrumental record for the region. The reconstruction is correlated with the same atmospheric variables that influence the instrumental measurements of wet season rainfall. Anticyclonic circulation over midlatitude South America promotes equatorward surges of cold and relatively dry extratropical air that converge with warm moist air to form deep convection and heavy rainfall over this sector of the southern Amazon Basin. Interesting droughts and pluvials are reconstructed during the preinstrumental nineteenth and early twentieth centuries, but the tree ring reconstruction suggests that the strong multidecadal variability in instrumental and reconstructed wet season rainfall after 1950 may have been unmatched since 1799.

  13. Tree-Ring Reconstruction of Wet Season Rainfall Totals in the Amazon

    NASA Astrophysics Data System (ADS)

    Stahle, D. W.; Lopez, L.; Granato-Souza, D.; Barbosa, A. C. M. C.; Torbenson, M.; Villalba, R.; Pereira, G. D. A.; Feng, S.; Schongart, J.; Cook, E. R.

    2017-12-01

    The Amazon Basin is a globally important center of deep atmospheric convection, energy balance, and biodiversity, but only a handful of weather stations in this vast Basin have recorded rainfall measurements for at least 50 years. The available rainfall and river level observations suggest that the hydrologic cycle in the Amazon may have become amplified in the last 40-years, with more extreme rainfall and streamflow seasonality, deeper droughts, and more severe flooding. These changes in the largest hydrological system on earth may be early evidence of the expected consequences of anthropogenic climate change and deforestation in the coming century. Placing these observed and simulated changes in the context of natural climate variability during the late Holocene is a significant challenge for high-resolution paleoclimatology. We have developed exactly dated and well-replicated annual tree-ring chronologies from two native Amazonian tree species (Cedrela sp and Centrolobium microchaete). These moisture sensitive chronologies have been used to compute two reconstructions of wet season rainfall totals, one in the southern Amazon based on Centrolobium and another in the eastern equatorial Amazon using Cedrela. Both reconstructions are over 200-years long and extend the available instrumental observations in each region by over 150-years. These reconstructions are well correlated with the same regional and large-scale climate dynamics that govern the inter-annual variability of the instrumental wet season rainfall totals. Increased multi-decadal variability is reconstructed after 1950 with the Centrolobium chronologies in the southern Amazon. The Cedrela reconstruction from the eastern Amazon exhibits changes in the spatial pattern of correlation with regional rainfall stations and the large-scale sea surface temperature field after 1990 that may be consistent with recent changes in the mean position of the Inter-Tropical Convergence Zone in March over the western

  14. Water Stress Impacts Tree-Atmosphere Interaction in the Amazon

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Steele-Dunne, S. C.; Gentine, P.; Oliveira, R. S.; Van De Giesen, N.

    2017-12-01

    Land-atmosphere interactions depend on momentum exchange from the atmosphere to the canopy, which depends on the tree drag coefficient. It is known that the drag coefficient, and thus tree-atmosphere interaction, can vary strongly within a canopy. Yet, only few measurements are available to study the variation of tree-atmosphere interaction in time and space, and in response to vegetation water stress. Recent work [1] demonstrated how accelerometers can be used to study tree properties and responses. For this study, accelerometers were used to derive a measure of tree-atmosphere interaction for 19 individual trees of seven different species in the Brazilian Amazon. This study demonstrates that under field conditions, tree-atmosphere interaction can vary considerably in time and space. The five month measurement period included the transitioning from the wet to the dry season. We demonstrate that increased tree water deficit, measured with dendrometers, is related to observed changes in tree-atmosphere interaction, which is hypothesized to be caused by water stress induced changes in tree mass. References [1]. van Emmerik, T.; Steele-Dunne, S.; Hut, R.; Gentine, P.; Guerin, M.; Oliveira, R.S.; Wagner, J.; Selker, J.; van de Giesen, N. Measuring Tree Properties and Responses Using Low-Cost Accelerometers. Sensors 2017, 17, 1098.

  15. Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon.

    PubMed

    Rifai, Sami W; Urquiza Muñoz, José D; Negrón-Juárez, Robinson I; Ramírez Arévalo, Fredy R; Tello-Espinoza, Rodil; Vanderwel, Mark C; Lichstein, Jeremy W; Chambers, Jeffrey Q; Bohlman, Stephanie A

    2016-10-01

    Wind disturbance can create large forest blowdowns, which greatly reduces live biomass and adds uncertainty to the strength of the Amazon carbon sink. Observational studies from within the central Amazon have quantified blowdown size and estimated total mortality but have not determined which trees are most likely to die from a catastrophic wind disturbance. Also, the impact of spatial dependence upon tree mortality from wind disturbance has seldom been quantified, which is important because wind disturbance often kills clusters of trees due to large treefalls killing surrounding neighbors. We examine (1) the causes of differential mortality between adult trees from a 300-ha blowdown event in the Peruvian region of the northwestern Amazon, (2) how accounting for spatial dependence affects mortality predictions, and (3) how incorporating both differential mortality and spatial dependence affect the landscape level estimation of necromass produced from the blowdown. Standard regression and spatial regression models were used to estimate how stem diameter, wood density, elevation, and a satellite-derived disturbance metric influenced the probability of tree death from the blowdown event. The model parameters regarding tree characteristics, topography, and spatial autocorrelation of the field data were then used to determine the consequences of non-random mortality for landscape production of necromass through a simulation model. Tree mortality was highly non-random within the blowdown, where tree mortality rates were highest for trees that were large, had low wood density, and were located at high elevation. Of the differential mortality models, the non-spatial models overpredicted necromass, whereas the spatial model slightly underpredicted necromass. When parameterized from the same field data, the spatial regression model with differential mortality estimated only 7.5% more dead trees across the entire blowdown than the random mortality model, yet it estimated 51

  16. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhl, C.; Kauffman, J.B.

    1990-04-01

    In the state of Para, Brazil, in the eastern Amazon, the authors studied the potential for sustained fire events within four dominant vegetation cover types (undisturbed rain forest, selectively logged forest, second-growth forest, and open pasture), by measuring fuel availability, microclimate, and rates of fuel moisture loss. They also estimated the potential tree mortality that might result from a wide-scale Amazon forest fire by measuring the thermal properties of bark for all trees in a 5-ha stand of mature forest, followed by measurements of heat flux through bark during simulated fires. In pastures the average midday temperature was almost 10{degree}Cmore » greater and the average midday relative humidity was 30% lower than in primary forest. The most five-prone ecosystem was the open pasture followed by selectively logged forest, second growth forest, and undisturbed rain forest in which sustained combustion was not possible even after prolonged rainless periods. Even though the autogenic factors in primary forest of the eastern Amazon create a microclimate that virtually eliminates the probability of fire, they are currently a common event in disturbed areas of Amazonia. As many as 8 {times} 10{sup 6} ha burned in the Amazon Basin of Brazil in 1987 alone. In terms of current land-use patterns, altered microclimates, and fuel mass, there are also striking similarities between the eastern Amazon and East Kalimantan, Indonesia (the site of recent rain forest wildfires that burned 3.5 {times} 10{sup 6} ha).« less

  17. Neogene origins and implied warmth tolerance of Amazon tree species

    PubMed Central

    Dick, Christopher W; Lewis, Simon L; Maslin, Mark; Bermingham, Eldredge

    2013-01-01

    Tropical rain forest has been a persistent feature in South America for at least 55 million years. The future of the contemporary Amazon forest is uncertain, however, as the region is entering conditions with no past analogue, combining rapidly increasing air temperatures, high atmospheric carbon dioxide concentrations, possible extreme droughts, and extensive removal and modification by humans. Given the long-term Cenozoic cooling trend, it is unknown whether Amazon forests can tolerate air temperature increases, with suggestions that lowland forests lack warm-adapted taxa, leading to inevitable species losses. In response to this uncertainty, we posit a simple hypothesis: the older the age of a species prior to the Pleistocene, the warmer the climate it has previously survived, with Pliocene (2.6–5 Ma) and late-Miocene (8–10 Ma) air temperature across Amazonia being similar to 2100 temperature projections under low and high carbon emission scenarios, respectively. Using comparative phylogeographic analyses, we show that 9 of 12 widespread Amazon tree species have Pliocene or earlier lineages (>2.6 Ma), with seven dating from the Miocene (>5.6 Ma) and three >8 Ma. The remarkably old age of these species suggest that Amazon forests passed through warmth similar to 2100 levels and that, in the absence of other major environmental changes, near-term high temperature-induced mass species extinction is unlikely. PMID:23404439

  18. Colloquium paper: how many tree species are there in the Amazon and how many of them will go extinct?

    PubMed

    Hubbell, Stephen P; He, Fangliang; Condit, Richard; Borda-de-Agua, Luís; Kellner, James; Ter Steege, Hans

    2008-08-12

    New roads, agricultural projects, logging, and mining are claiming an ever greater area of once-pristine Amazonian forest. The Millennium Ecosystems Assessment (MA) forecasts the extinction of a large fraction of Amazonian tree species based on projected loss of forest cover over the next several decades. How accurate are these estimates of extinction rates? We use neutral theory to estimate the number, relative abundance, and range size of tree species in the Amazon metacommunity and estimate likely tree-species extinctions under published optimistic and nonoptimistic Amazon scenarios. We estimate that the Brazilian portion of the Amazon Basin has (or had) 11,210 tree species that reach sizes >10 cm DBH (stem diameter at breast height). Of these, 3,248 species have population sizes >1 million individuals, and, ignoring possible climate-change effects, almost all of these common species persist under both optimistic and nonoptimistic scenarios. At the rare end of the abundance spectrum, however, neutral theory predicts the existence of approximately 5,308 species with <10,000 individuals each that are expected to suffer nearly a 50% extinction rate under the nonoptimistic deforestation scenario and an approximately 37% loss rate even under the optimistic scenario. Most of these species have small range sizes and are highly vulnerable to local habitat loss. In ensembles of 100 stochastic simulations, we found mean total extinction rates of 20% and 33% of tree species in the Brazilian Amazon under the optimistic and nonoptimistic scenarios, respectively.

  19. Ultrasound imaging of the anterior section of the eye of five different snake species.

    PubMed

    Lauridsen, Henrik; Da Silva, Mari-Ann O; Hansen, Kasper; Jensen, Heidi M; Warming, Mads; Wang, Tobias; Pedersen, Michael

    2014-12-30

    Nineteen clinically normal snakes: six ball pythons (Python regius), six Burmese pythons (Python bivittatus), one Children's python (Antaresia childreni), four Amazon tree boas (Corallus hortulanus), and two Malagasy ground boas (Acrantophis madagascariensis) were subjected to ultrasound imaging with 21 MHz (ball python) and 50 MHz (ball python, Burmese python, Children's python, Amazon tree boa, Malagasy ground boa) transducers in order to measure the different structures of the anterior segment in clinically normal snake eyes with the aim to review baseline values for clinically important ophthalmic structures. The ultrasonographic measurements included horizontal spectacle diameter, spectacle thickness, depth of sub-spectacular space and corneal thickness. For comparative purposes, a formalin-fixed head of a Burmese python was subjected to micro computed tomography. In all snakes, the spectacle was thinner than the cornea. There was significant difference in spectacle diameter, and spectacle and corneal thickness between the Amazon tree boa and the Burmese and ball pythons. There was no difference in the depth of the sub-spectacular space. The results obtained in the Burmese python with the 50 MHz transducer were similar to the results obtained with micro computed tomography. Images acquired with the 21 MHz transducer included artifacts which may be misinterpreted as ocular structures. Our measurements of the structures in the anterior segment of the eye can serve as orientative values for snakes examined for ocular diseases. In addition, we demonstrated that using a high frequency transducer minimizes the risk of misinterpreting artifacts as ocular structures.

  20. Molecular systematics and historical biogeography of tree boas (Corallus spp.).

    PubMed

    Colston, Timothy J; Grazziotin, Felipe G; Shepard, Donald B; Vitt, Laurie J; Colli, Guarino R; Henderson, Robert W; Blair Hedges, S; Bonatto, Sandro; Zaher, Hussam; Noonan, Brice P; Burbrink, Frank T

    2013-03-01

    Inferring the evolutionary and biogeographic history of taxa occurring in a particular region is one way to determine the processes by which the biodiversity of that region originated. Tree boas of the genus Corallus are an ancient clade and occur throughout Central and South America and the Lesser Antilles, making it an excellent group for investigating Neotropical biogeography. Using sequenced portions of two mitochondrial and three nuclear loci for individuals of all recognized species of Corallus, we infer phylogenetic relationships, present the first molecular analysis of the phylogenetic placement of the enigmatic C. cropanii, develop a time-calibrated phylogeny, and explore the biogeographic history of the genus. We found that Corallus diversified within mainland South America, via over-water dispersals to the Lesser Antilles and Central America, and via the traditionally recognized Panamanian land bridge. Divergence time estimates reject the South American Caribbean-Track as a general biogeographic model for Corallus and implicate a role for events during the Oligocene and Miocene in diversification such as marine incursions and the uplift of the Andes. Our findings also suggest that recognition of the island endemic species, C. grenadensis and C. cookii, is questionable as they are nested within the widely distributed species, C. hortulanus. Our results highlight the importance of using widespread taxa when forming and testing biogeographic hypotheses in complex regions and further illustrate the difficulty of forming broadly applicable hypotheses regarding patterns of diversification in the Neotropical region. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Estimating drought induced tree mortality in the Amazon rainforest: A simulation study with a focus on plant hydraulic processes

    NASA Astrophysics Data System (ADS)

    Papastefanou, P.; Fleischer, K.; Hickler, T.; Grams, T.; Lapola, D.; Quesada, C. A.; Zang, C.; Rammig, A.

    2017-12-01

    The Amazon basin was recently hit by severe drought events that were unprecedented in their severity and spatial extent, e.g. during 2005, 2010 and 2015/2016. Significant amounts of biomass were lost, turning large parts of the rainforest from a carbon sink into a carbon source. It is assumed that drought-induced tree mortality from hydraulic failure played an important role during these events and may become more frequent in the Amazon region in the future. Many state-of-the-art dynamic vegetation models do not include plant hydraulic processes and fail to reproduce observed rainforest responses to drought events, such as e.g. increased tree mortality. We address this research gap by developing a simple plant-hydraulic module for the dynamic vegetation model LPJ-GUESS. This plant-hydraulic module uses leaf water potential and cavitation as baseline processes to simulate tree mortality under drought stress. Furthermore, we introduce different plant strategies in the model, which describe e.g. differences in the stomatal regulation under drought stress. To parameterize and evaluate our hydraulic module, we use a set of available observational data from the Amazon region. We apply our model to the Amazon Basin and highlight similarities and differences across other measured and predicted drought responses, e.g. extrapolated observations and data derived from satellite measurements. Our results highlight the importance of including plant hydraulic processes in dynamic vegetation models to correctly predict vegetation dynamics under drought stress and show major differences on the vegetation dynamics depending on the selected plant strategies. We also identify gaps in process understanding of the triggering factors, the extent and the consequences of drought responses that hampers our ability to predict potential impact of future drought events on the Amazon rainforest.

  2. Penicillium excelsum sp. nov from the Brazil Nut Tree Ecosystem in the Amazon Basin'.

    PubMed

    Taniwaki, Marta Hiromi; Pitt, John I; Iamanaka, Beatriz T; Massi, Fernanda P; Fungaro, Maria Helena P; Frisvad, Jens C

    2015-01-01

    A new Penicillium species, P. excelsum, is described here using morphological characters, extrolite and partial sequence data from the ITS, β-tubulin and calmodulin genes. It was isolated repeatedly using samples of nut shells and flowers from the brazil nut tree, Bertolletia excelsa, as well as bees and ants from the tree ecosystem in the Amazon rainforest. The species produces andrastin A, curvulic acid, penicillic acid and xanthoepocin, and has unique partial β-tubulin and calmodulin gene sequences. The holotype of P. excelsum is CCT 7772, while ITAL 7572 and IBT 31516 are cultures derived from the holotype.

  3. Penicillium excelsum sp. nov from the Brazil Nut Tree Ecosystem in the Amazon Basin’

    PubMed Central

    Taniwaki, Marta Hiromi; Pitt, John I.; Iamanaka, Beatriz T.; Massi, Fernanda P.; Fungaro, Maria Helena P.; Frisvad, Jens C.

    2015-01-01

    A new Penicillium species, P. excelsum, is described here using morphological characters, extrolite and partial sequence data from the ITS, β-tubulin and calmodulin genes. It was isolated repeatedly using samples of nut shells and flowers from the brazil nut tree, Bertolletia excelsa, as well as bees and ants from the tree ecosystem in the Amazon rainforest. The species produces andrastin A, curvulic acid, penicillic acid and xanthoepocin, and has unique partial β-tubulin and calmodulin gene sequences. The holotype of P. excelsum is CCT 7772, while ITAL 7572 and IBT 31516 are cultures derived from the holotype. PMID:26717519

  4. Sampling procedures for inventory of commercial volume tree species in Amazon Forest.

    PubMed

    Netto, Sylvio P; Pelissari, Allan L; Cysneiros, Vinicius C; Bonazza, Marcelo; Sanquetta, Carlos R

    2017-01-01

    The spatial distribution of tropical tree species can affect the consistency of the estimators in commercial forest inventories, therefore, appropriate sampling procedures are required to survey species with different spatial patterns in the Amazon Forest. For this, the present study aims to evaluate the conventional sampling procedures and introduce the adaptive cluster sampling for volumetric inventories of Amazonian tree species, considering the hypotheses that the density, the spatial distribution and the zero-plots affect the consistency of the estimators, and that the adaptive cluster sampling allows to obtain more accurate volumetric estimation. We use data from a census carried out in Jamari National Forest, Brazil, where trees with diameters equal to or higher than 40 cm were measured in 1,355 plots. Species with different spatial patterns were selected and sampled with simple random sampling, systematic sampling, linear cluster sampling and adaptive cluster sampling, whereby the accuracy of the volumetric estimation and presence of zero-plots were evaluated. The sampling procedures applied to species were affected by the low density of trees and the large number of zero-plots, wherein the adaptive clusters allowed concentrating the sampling effort in plots with trees and, thus, agglutinating more representative samples to estimate the commercial volume.

  5. Toward a Tree-of-Life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling.

    PubMed

    Graham Reynolds, R; Niemiller, Matthew L; Revell, Liam J

    2014-02-01

    Snakes in the families Boidae and Pythonidae constitute some of the most spectacular reptiles and comprise an enormous diversity of morphology, behavior, and ecology. While many species of boas and pythons are familiar, taxonomy and evolutionary relationships within these families remain contentious and fluid. A major effort in evolutionary and conservation biology is to assemble a comprehensive Tree-of-Life, or a macro-scale phylogenetic hypothesis, for all known life on Earth. No previously published study has produced a species-level molecular phylogeny for more than 61% of boa species or 65% of python species. Using both novel and previously published sequence data, we have produced a species-level phylogeny for 84.5% of boid species and 82.5% of pythonid species, contextualized within a larger phylogeny of henophidian snakes. We obtained new sequence data for three boid, one pythonid, and two tropidophiid taxa which have never previously been included in a molecular study, in addition to generating novel sequences for seven genes across an additional 12 taxa. We compiled an 11-gene dataset for 127 taxa, consisting of the mitochondrial genes CYTB, 12S, and 16S, and the nuclear genes bdnf, bmp2, c-mos, gpr35, rag1, ntf3, odc, and slc30a1, totaling up to 7561 base pairs per taxon. We analyzed this dataset using both maximum likelihood and Bayesian inference and recovered a well-supported phylogeny for these species. We found significant evidence of discordance between taxonomy and evolutionary relationships in the genera Tropidophis, Morelia, Liasis, and Leiopython, and we found support for elevating two previously suggested boid species. We suggest a revised taxonomy for the boas (13 genera, 58 species) and pythons (8 genera, 40 species), review relationships between our study and the many other molecular phylogenetic studies of henophidian snakes, and present a taxonomic database and alignment which may be easily used and built upon by other researchers

  6. Widespread Amazon forest tree mortality from a single cross-basin squall line event

    NASA Astrophysics Data System (ADS)

    Negrón-Juárez, Robinson I.; Chambers, Jeffrey Q.; Guimaraes, Giuliano; Zeng, Hongcheng; Raupp, Carlos F. M.; Marra, Daniel M.; Ribeiro, Gabriel H. P. M.; Saatchi, Sassan S.; Nelson, Bruce W.; Higuchi, Niro

    2010-08-01

    Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent α = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system.

  7. Palms versus trees: water use characteristics of native fruit-bearing plant species in the Central Amazon

    NASA Astrophysics Data System (ADS)

    Kunert, N.; Barros, P.; Higuchi, N.

    2012-12-01

    Native fruiting plants are widely cultivated in the Amazon but only little information on their water use characteristics can be found in the literature. Due to the growing local consumption and the increasing popularity for new "exotic" fruits all over Brazil and worldwide, additional new plantations cultivating such fruit-bearing species might be established in the Amazon in the future. These new plantations will affect the water table of the cultivated areas, however, the impact of these changes on the regional hydrology are not known. We, therefore, decided to study plant water use characteristics of two native fruit plants commonly occurring in the Amazon region, a tree species (Cupuaçu, Theobroma grandiflorum, (Willd. ex Spreng.) Schum., Malvaceae) and a palm species (Açai, Euterpe oleraceae Mart., Arecaceae). This study was conducted in a fruit plantation close to the city of Manaus, in the Central Amazon, Brazil. The objectives of our study were 1) to compare variables controlling plant water use and 2) to identify differences in water use between woody monocot and dicot plant species. We chose three representative individuals with well-sun-exposed crowns for each species, which were equipped with Granier-type thermal dissipation probes to measure sap flux density continuously for six weeks from August 1st 2011 until September 6th 2011. We used a simple sap flux model with two environmental variables, photosynthetic photon flux density and vapor pressure deficit, to compare sap flux densities between species. We achieved a good model fit and modeled sap flux densities corresponded very well with the actual measured values. No significant differences among species in sap flux densities were indicated by the model. Overall, palms had a 3.5 fold higher water consumption compared to trees with similar diameter. Water use scaled independent from species with the size of the conductive xylem area (r2 = 0.85), so that the higher water use of the palms was

  8. Large-scale wind disturbances promote tree diversity in a Central Amazon forest.

    PubMed

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q; Higuchi, Niro; Trumbore, Susan E; Ribeiro, Gabriel H P M; Dos Santos, Joaquim; Negrón-Juárez, Robinson I; Reu, Björn; Wirth, Christian

    2014-01-01

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m(2)) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583 ± 46 trees ha(-1)) (mean ± 99% Confidence Interval) and basal area (26.7 ± 2.4 m(2) ha(-1)). Highly impacted areas had tree density and basal area as low as 120 trees ha(-1) and 14.9 m(2) ha(-1), respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m(2)) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind

  9. Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest

    PubMed Central

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro; Trumbore, Susan E.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Negrón-Juárez, Robinson I.; Reu, Björn; Wirth, Christian

    2014-01-01

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha−1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m2 ha−1). Highly impacted areas had tree density and basal area as low as 120 trees ha−1 and 14.9 m2 ha−1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the

  10. Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m 2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 tomore » 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha -1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m 2 ha -1). Highly impacted areas had tree density and basal area as low as 120 trees ha -1 and 14.9 m 2 ha -1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m 2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances

  11. Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest

    DOE PAGES

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro; ...

    2014-08-06

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m 2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 tomore » 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha -1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m 2 ha -1). Highly impacted areas had tree density and basal area as low as 120 trees ha -1 and 14.9 m 2 ha -1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m 2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances

  12. Valvulopathy consistent with endocarditis in an Argentine boa (Boa constrictor occidentalis).

    PubMed

    Wernick, Morena B; Novo-Matos, José; Ebling, Alessia; Kühn, Karolin; Ruetten, Maja; Hilbe, Monika; Howard, Judith; Chang, Rita; Prohaska, Sarah; Hatt, Jean-Michel

    2015-03-01

    An Argentine boa (Boa constrictor occidentalis) of 5 yr 7 mo of age was presented for respiratory problems and regurgitation. Radiographs revealed evidence of cardiomegaly and pneumonia. Blood smear examination revealed the presence of intracytoplasmic inclusion bodies in peripheral lymphocytes, consistent with inclusion body disease. Cultures of a tracheal wash sample resulted in growth of Ochrobactrum intermedium and Pseudomonas putida. Echocardiographic examination revealed a large vegetative lesion on the right atrioventricular valve with valvular insufficiency, a mildly dilated right atrium, and pulmonary hypertension. Postmortem examination confirmed the presence of pneumonia and bacterial endocarditis with dystrophic mineralization of the right atrioventricular valve, associated with different bacteria than those cultured from the tracheal wash. The present case is the first report of endocarditis in a boa constrictor and contributes to the rare reports of cardiac disease in snakes.

  13. Effects of Natural and Experimental Drought on Growth and Water Use Efficiency in Amazon trees

    NASA Astrophysics Data System (ADS)

    Vadeboncoeur, M. A.; Brum, M., Jr.; Oliveira, R. S.; Moutinho, V. H. P.; Flores, C. F.; Llerena, C. A.; Palace, M. W.; Asbjornsen, H.

    2016-12-01

    Severe regional droughts in the Amazon basin, mostly associated with El Nino events, have attracted considerable attention over the past decade, especially with regard to their effects on tree mortality, vulnerability to fire, and changes in the terrestrial budgets of carbon, water, and energy. Understanding the complex responses of forest ecosystems to such droughts is key to predicting how these globally critical forest ecosystems will respond to a changing climate with higher temperatures and greater precipitation variability. Though tree rings are not formed by all tropical tree species, they offer a unique retrospective approach for investigating patterns of climatic responses in both carbon cycling (primary production inferred from diameter growth) and water cycling (water use efficiency calculated from stable C isotope ratios). We sampled increment cores from 40 tree species at the Tapajos National Forest in Brazil, as well as the Cocha Cashu Biological Station in Peru, for an isotopic dendrochronological investigation into the effects of past droughts on the growth and water-use efficiency of canopy and mid-story tree species. We found that many but not all trees responded to drought years with periods of reduced growth lasting 2-3 years. Forthcoming data on carbon isotope ratios will allow us to compare the sensitivity of species and sites in terms of water use under drought conditions.

  14. Structure and tree species composition in different habitats of savanna used by indigenous people in the Northern Brazilian Amazon.

    PubMed

    de Oliveira, Rodrigo Leonardo Costa; Farias, Hugo Leonardo Sousa; Perdiz, Ricardo de Oliveira; Scudeller, Veridiana Vizoni; Imbrozio Barbosa, Reinaldo

    2017-01-01

    Woody plant diversity from the Amazonian savannas has been poorly quantified. In order to improve the knowledge on wood plants of these regional ecosystems, a tree inventory was carried out in four different habitats used by indigenous people living in the savanna areas of the Northern Brazilian Amazon. The habitats were divided into two types (or groups) of vegetation formations: forest (riparian forest, forest island, and buritizal = Mauritia palm formation) and non-forest (typical savanna). The inventory was carried out in two hectares established in the Darora Indigenous Community region, north of the state of Roraima. The typical savanna is the most densely populated area (709 stems ha -1 ); however, it has the lowest tree species richness (nine species, seven families) in relation to typical forest habitats: riparian forest (22 species, 13 families and 202 stems ha -1 ), forest islands (13 species, 10 families and 264 stems ha -1 ), and buritizal (19 species, 15 families and 600 stems ha -1 ). The tree structure (density and dominance) of the forest habitats located in the savanna areas studied in this work is smaller in relation to forest habitats derived from continuous areas of other parts of the Amazon. These environments are derived from Paleoclimatic fragmentation, and are currently affected by the impact of intensive use of natural resources as timberselective logging and some land conversion for agriculture.

  15. Crop damage of Eriotheca gracilipes (Bombacaceae) by the Blue-Fronted Amazon (Amazona aestiva, Psittacidae), in the Brazilian Cerrado.

    PubMed

    Ragusa-Netto, J

    2014-11-01

    Seed predation has major effects on the reproductive success of individuals, spatial patterns of populations, genetic variability, interspecific interactions and ultimately in the diversity of tree communities. At a Brazilian savanna, I evaluated the proportional crop loss of Eriotheca gracilipes due the Blue-Fronted Amazon (Amazona aestiva) during a fruiting period. Also, I analyzed the relationship between proportional crop loss to Amazons and both fruit crop size and the distance from the nearest damaged conspecific. Trees produced from 1 to 109 fruits, so that Amazons foraged more often on trees bearing larger fruit crop size, while seldom visited less productive trees. Moreover, the relationship between fruit crop sizes and the number of depredated fruits was significant. However, when only damaged trees were assessed, I found a negative and significant relation between fruit crop size and proportional crop loss to Blue-Fronted Amazons. Taking into account this as a measure more directly related to the probability of seed survival, a negative density dependent effect emerged. Also, Amazons similarly damaged the fruit crops of either close or distant neighboring damaged trees. Hence, in spite of Blue-Fronted Amazons searched for E. gracilipes bearing large fruit crops, they were swamped due to the presence of more fruits than they could eat. Moderate seed predation by Blue-Fronted Amazons either at trees with large fruit crops or in areas where fruiting trees were aggregated implies in an enhanced probability of E. gracilipes seed survival and consequent regeneration success.

  16. Tree Regeneration Under Different Land-Use Mosaics in the Brazilian Amazon's "Arc of Deforestation".

    PubMed

    Do Vale, Igor; Miranda, Izildinha Souza; Mitja, Danielle; Grimaldi, Michel; Nelson, Bruce Walker; Desjardins, Thierry; Costa, Luiz Gonzaga Silva

    2015-08-01

    We studied the tree-regeneration patterns in three distinct agricultural settlements in the Eastern Amazon to test the influence of land-use mosaics. The following questions are addressed: are the floristic structure and composition of regenerating trees affected by the various land-use types applied in the agricultural settlements? Do tree-regeneration patterns respond similarly to distinct land-use mosaics? Is there a relationship between tree regeneration and soil characteristics among the land-use types? The regeneration was inventoried at 45 sampling points in each settlement. At each sampling point, fourteen soil variables were analyzed. Nine different land-use types were considered. The floristic structure and composition of the settlements showed differences in the density of individuals and species and high species heterogeneity among the land-use types. The maximum Jaccard similarity coefficient found between land-use types was only 29%. Shade-tolerant species were the most diverse functional group in most land-use types, including pasture and annual crops, ranging from 91% of the number of species in the conserved and exploited forests of Travessão 338-S to 53% in the invaded pastures of Maçaranduba. The land-use types influenced significantly the floristic structure and composition of regenerating trees in two agricultural settlements, but not in third the settlement, which had greater forest cover. This finding demonstrates that the composition of each land-use mosaic, established by different management approaches, affects regeneration patterns. Tree regeneration was related to soil characteristics in all mosaics. Preparation of the area by burning was most likely the determining factor in the differences in soil characteristics between forests and agricultural areas.

  17. Amazon plant diversity revealed by a taxonomically verified species list.

    PubMed

    Cardoso, Domingos; Särkinen, Tiina; Alexander, Sara; Amorim, André M; Bittrich, Volker; Celis, Marcela; Daly, Douglas C; Fiaschi, Pedro; Funk, Vicki A; Giacomin, Leandro L; Goldenberg, Renato; Heiden, Gustavo; Iganci, João; Kelloff, Carol L; Knapp, Sandra; Cavalcante de Lima, Haroldo; Machado, Anderson F P; Dos Santos, Rubens Manoel; Mello-Silva, Renato; Michelangeli, Fabián A; Mitchell, John; Moonlight, Peter; de Moraes, Pedro Luís Rodrigues; Mori, Scott A; Nunes, Teonildes Sacramento; Pennington, Terry D; Pirani, José Rubens; Prance, Ghillean T; de Queiroz, Luciano Paganucci; Rapini, Alessandro; Riina, Ricarda; Rincon, Carlos Alberto Vargas; Roque, Nádia; Shimizu, Gustavo; Sobral, Marcos; Stehmann, João Renato; Stevens, Warren D; Taylor, Charlotte M; Trovó, Marcelo; van den Berg, Cássio; van der Werff, Henk; Viana, Pedro Lage; Zartman, Charles E; Forzza, Rafaela Campostrini

    2017-10-03

    Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests.

  18. Morphological and molecular identification of ticks infesting Boa constrictor (Squamata, Boidae) in Manaus (Central Brazilian Amazon).

    PubMed

    Fiorini, Leonardo Costa; Craveiro, Adriana Bentes; Mendes, Márcia Cristina; Chiesorin Neto, Laerzio; Silveira, Ronis Da

    2014-01-01

    The Boa constrictor is one of the world's largest vertebrate carnivores and is often found in urban areas in the city of Manaus, Brazil. The morphological identification of ticks collected from 27 snakes indicated the occurrence of Amblyomma dissimile Koch 1844 on all individuals sampled. In contrast, Amblyomma rotundatum Koch was found on only two snakes. An analysis of the 16S rRNA molecular marker confirmed the morphological identification of these ectoparasites.

  19. Amazon plant diversity revealed by a taxonomically verified species list

    PubMed Central

    Cardoso, Domingos; Särkinen, Tiina; Alexander, Sara; Amorim, André M.; Bittrich, Volker; Celis, Marcela; Daly, Douglas C.; Fiaschi, Pedro; Funk, Vicki A.; Giacomin, Leandro L.; Heiden, Gustavo; Iganci, João; Kelloff, Carol L.; Knapp, Sandra; Cavalcante de Lima, Haroldo; Machado, Anderson F. P.; dos Santos, Rubens Manoel; Mello-Silva, Renato; Michelangeli, Fabián A.; Mitchell, John; Moonlight, Peter; de Moraes, Pedro Luís Rodrigues; Mori, Scott A.; Nunes, Teonildes Sacramento; Pennington, Terry D.; Pirani, José Rubens; Prance, Ghillean T.; de Queiroz, Luciano Paganucci; Rapini, Alessandro; Rincon, Carlos Alberto Vargas; Roque, Nádia; Shimizu, Gustavo; Sobral, Marcos; Stehmann, João Renato; Stevens, Warren D.; Taylor, Charlotte M.; Trovó, Marcelo; van den Berg, Cássio; van der Werff, Henk; Viana, Pedro Lage; Zartman, Charles E.; Forzza, Rafaela Campostrini

    2017-01-01

    Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests. PMID:28923966

  20. Hydrologic resilience and Amazon productivity.

    PubMed

    Ahlström, Anders; Canadell, Josep G; Schurgers, Guy; Wu, Minchao; Berry, Joseph A; Guan, Kaiyu; Jackson, Robert B

    2017-08-30

    The Amazon rainforest is disproportionately important for global carbon storage and biodiversity. The system couples the atmosphere and land, with moist forest that depends on convection to sustain gross primary productivity and growth. Earth system models that estimate future climate and vegetation show little agreement in Amazon simulations. Here we show that biases in internally generated climate, primarily precipitation, explain most of the uncertainty in Earth system model results; models, empirical data and theory converge when precipitation biases are accounted for. Gross primary productivity, above-ground biomass and tree cover align on a hydrological relationship with a breakpoint at ~2000 mm annual precipitation, where the system transitions between water and radiation limitation of evapotranspiration. The breakpoint appears to be fairly stable in the future, suggesting resilience of the Amazon to climate change. Changes in precipitation and land use are therefore more likely to govern biomass and vegetation structure in Amazonia.Earth system model simulations of future climate in the Amazon show little agreement. Here, the authors show that biases in internally generated climate explain most of this uncertainty and that the balance between water-saturated and water-limited evapotranspiration controls the Amazon resilience to climate change.

  1. Boa constrictor (Boa constrictor): foraging behavior

    USGS Publications Warehouse

    Sorrell, G.G.; Boback, M.S.; Reed, R.N.; Green, S.; Montgomery, Chad E.; DeSouza, L.S.; Chiaraviglio, M.

    2011-01-01

    Boa constrictor is often referred to as a sit-and-wait or ambush forager that chooses locations to maximize the likelihood of prey encounters (Greene 1983. In Janzen [ed.], Costa Rica Natural History, pp. 380-382. Univ. Chicago Press, Illinois). However, as more is learned about the natural history of snakes in general, the dichotomy between active versus ambush foraging is becoming blurred. Herein, we describe an instance of diurnal active foraging by a B. constrictor, illustrating that this species exhibits a range of foraging behaviors.

  2. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties

    Treesearch

    Michael Palace; Michael Keller; Gregory P. Asner; Stephen Hagen; Bobby Braswell

    2008-01-01

    We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75◦ S, 48.37◦ W) in the eastern Amazon, and then compared with forest...

  3. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees.

    PubMed

    Powell, Thomas L; Wheeler, James K; de Oliveira, Alex A R; da Costa, Antonio Carlos Lola; Saleska, Scott R; Meir, Patrick; Moorcroft, Paul R

    2017-10-01

    Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P 50 ), leaf turgor loss point (TLP), cellular osmotic potential (π o ), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P 50 , TLP, and π o , but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and

  4. Water stress detection in the Amazon using radar

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  5. Forest-rainfall cascades buffer against drought across the Amazon

    NASA Astrophysics Data System (ADS)

    Staal, Arie; Tuinenburg, Obbe A.; Bosmans, Joyce H. C.; Holmgren, Milena; van Nes, Egbert H.; Scheffer, Marten; Zemp, Delphine Clara; Dekker, Stefan C.

    2018-06-01

    Tree transpiration in the Amazon may enhance rainfall for downwind forests. Until now it has been unclear how this cascading effect plays out across the basin. Here, we calculate local forest transpiration and the subsequent trajectories of transpired water through the atmosphere in high spatial and temporal detail. We estimate that one-third of Amazon rainfall originates within its own basin, of which two-thirds has been transpired. Forests in the southern half of the basin contribute most to the stability of other forests in this way, whereas forests in the south-western Amazon are particularly dependent on transpired-water subsidies. These forest-rainfall cascades buffer the effects of drought and reveal a mechanism by which deforestation can compromise the resilience of the Amazon forest system in the face of future climatic extremes.

  6. Uptake and translocation of phytochemical 2-benzoxazolinone (BOA) in radish seeds and seedlings.

    PubMed

    Chiapusio, Geneviève; Pellissier, François; Gallet, Christiane

    2004-07-01

    The molecular aspects of phytochemical interactions between plants, especially the process of phytochemical translocation by the target plant, remain challenging for those studying allelopathy. 2-Benzoxazolinone (BOA) is a natural chemical produced by rye (Secale cereale) and is known to have phytotoxic effects on weed seeds and seedlings. The translocation of BOA into target plants has been poorly investigated. Therefore, the total absorption of [ring U 14C] BOA was estimated by oxidizing whole seedlings of Raphanus sativus cv. for 8 days and quantifying the radioactivity. Non-radiolabelled BOA in seedlings was also estimated by HPLC. BOA applied at 10(-3) M was readily taken up by germinated radish at a rate of 1556 nmol g(-1) FW. At these same concentrations, BOA reduced radish germination by 50% and caused a delay in radicle elongation. Exogenous BOA was responsible for the observed germination inhibition. At a concentration of 10(-5) M, BOA was taken up by germinated seeds (31 nmol g(-1) FW), but this quantity did not affect radish germination. Labelled BOA was not mineralized in the culture medium during seedling growth as no 14CO2 was recovered. Both 10(-3) and 10(-5) M BOA were translocated into radish organs, mainly into roots and cotyledons. These organs were then identified as potential physiological target sites. Cotyledons remained the target sink (44% of the total radioactivity). The kinetics of BOA uptake at 10(-3) and 10(-5) M in radish seedlings was identical: BOA accumulation was proportional to its initial concentration. A comparison between radioactivity and HPLC quantification for 10(-3) M BOA indicated that BOA (along with some metabolites) could effectively be recovered in radish organs using chromatography.

  7. An ecological risk assessment of nonnative boas and pythons as potentially invasive species in the United States.

    PubMed

    Reed, Robert N

    2005-06-01

    The growing international trade in live wildlife has the potential to result in continuing establishment of nonnative animal populations in the United States. Snakes may pose particularly high risks as potentially invasive species, as exemplified by the decimation of Guam's vertebrate fauna by the accidentally introduced brown tree snake. Herein, ecological and commercial predictors of the likelihood of establishment of invasive populations were used to model risk associated with legal commercial imports of 23 species of boas, pythons, and relatives into the United States during the period 1989-2000. Data on ecological variables were collected from multiple sources, while data on commercial variables were collated from import records maintained by the U.S. Fish and Wildlife Service. Results of the risk-assessment models indicate that species including boa constrictors (Boa constrictor), ball pythons (Python regius), and reticulated pythons (P. reticulatus) may pose particularly high risks as potentially invasive species. Recommendations for reducing risk of establishment of invasive populations of snakes and/or pathogens include temporary quarantine of imports to increase detection rates of nonnative pathogens, increasing research attention to reptile pathogens, reducing the risk that nonnative snakes will reach certain areas with high numbers of federally listed species (such as the Florida Keys), and attempting to better educate individuals purchasing reptiles.

  8. BOA detoxification of four summer weeds during germination and seedling growth.

    PubMed

    Schulz, Margot; Marocco, Adriano; Tabaglio, Vincenzo

    2012-07-01

    A recent greenhouse study revealed a significant reduction of germination and growth of redroot pigweed (Amaranthus retroflexus) and common purslane (Portulaca oleracea) by rye mulch, whereas velvetleaf (Abutilon theophrasti) and common lambsquarters (Chenopodium album) were not suppressed. Since BOA detoxification by metabolic alteration may influence the relation between the benzoxazinoid content of the soil mulch and weed suppression, we tested the dynamics in BOA detoxification in different plant organs of three and 10-day-old seedlings of four warm season weeds incubated with five BOA concentrations (4, 20, 40, 80, and 200 μmol g(-1) fresh weight). In addition, germination and length of 3-day-old seedlings were measured after exposure to 0, 0.3, 1.5, 3, 6, and 15 μmol BOA. Finally, we tested the influence of the MDR translocator inhibitors verapamil, nifedipine, and the GST inhibitor ethycrynic acid on BOA accumulation and detoxification activity. Due to BOA-detoxification, all weeds were able to grow in environments with low BOA contents. At higher contents, Abutilon theophrasti and Chenopodium album had a better chance to survive because of highly active mechanisms that avoided the uptake of BOA (A. theophrasti) and of efficient detoxification activities in youngest seedlings (C. album). The interpretation of all of the data gave the following sequence of increasing sensitivity: A. theophrasti < C. album < P. oleracea ≤ A. retroflexus. The results were in agreement with recent findings of the suppression of these weeds by rye mulches and their benzoxazinoid contents. Our studies demonstrate for the first time that the detoxification of BOA influences the survival of certain weeds in environments enriched with this allelochemical. Therefore, detoxification processes affect the potential for weed suppression by soil allelochemicals in sustainable weed management.

  9. Detection of nidoviruses in live pythons and boas.

    PubMed

    Marschang, Rachel E; Kolesnik, Ekaterina

    2017-02-09

    Nidoviruses have recently been described as a putative cause of severe respiratory disease in pythons in the USA and Europe. The objective of this study was to establish the use of a conventional PCR for the detection of nidoviruses in samples from live animals and to extend the list of susceptible species. A PCR targeting a portion of ORF1a of python nidoviruses was used to detect nidoviruses in diagnostic samples from live boas and pythons. A total of 95 pythons, 84 boas and 22 snakes of unknown species were included in the study. Samples tested included oral swabs and whole blood. Nidoviruses were detected in 27.4% of the pythons and 2.4% of the boas tested. They were most commonly detected in ball pythons (Python [P.] regius) and Indian rock pythons (P. molurus), but were also detected for the first time in other python species, including Morelia spp. and Boa constrictor. Oral swabs were most commonly tested positive. The PCR described here can be used for the detection of nidoviruses in oral swabs from live snakes. These viruses appear to be relatively common among snakes in captivity in Europe and screening for these viruses should be considered in the clinical work-up. Nidoviruses are believed to be an important cause of respiratory disease in pythons, but can also infect boas. Detection of these viruses in live animals is now possible and can be of interest both in diseased animals as well as in quarantine situations.

  10. Slow growth rates of Amazonian trees: Consequences for carbon cycling

    PubMed Central

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B.; Selhorst, Diogo; Chambers, Jeffrey Q.; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-01-01

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only ≈1mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests. PMID:16339903

  11. The Amazon forest-rainfall feedback: the roles of transpiration and interception

    NASA Astrophysics Data System (ADS)

    Dekker, Stefan; Staal, Arie; Tuinenburg, Obbe

    2017-04-01

    In the Amazon, deep-rooted trees increase local transpiration and high tree cover increase local interception evaporation. These increased local evapotranspiration fluxes to the atmosphere have both positive effects on forests down-wind, as they stimulate rainfall. Although important for the functioning of the Amazon, we have an inadequate assessment on the strength and the timing of these forest-rainfall feedbacks. In this study we (i) estimate local forest transpiration and local interception evaporation, (ii) simulate the trajectories of these moisture flows through the atmosphere and (iii) quantify their contributions to the forest-rainfall feedback for the whole Amazon basin. To determine the atmospheric moisture flows in tropical South America we use a Lagrangian moisture tracking algorithm on 0.25° (c. 25 km) resolution with eight atmospheric layers on a monthly basis for the period 2003-2015. With our approach we account for multiple re-evaporation cycles of this moisture. We also calculate for each month the potential effects of forest loss on evapotranspiration. Combined, these calculations allow us to simulate the effects of land-cover changes on rainfall in downwind areas and estimate the effect on the forest. We found large regional and temporal differences in the importance how forest contribute to rainfall. The transpiration-rainfall feedback is highly important during the dry season. Between September-November, when large parts of the Amazon are at the end of the dry season, more than 50% of the rainfall is caused by the forests upstream. This means that droughts in the Amazon are alleviated by the forest. Furthermore, we found that much moisture cycles several times during its trajectory over the Amazon. After one evapotranspiration-rainfall cycle, more than 40% of the moisture is re-evaporated again. The interception-evaporation feedback is less important during droughts. Finally from our analysis, we show that the forest-rainfall feedback is

  12. Modelling basin-wide variations in Amazon forest photosynthesis

    NASA Astrophysics Data System (ADS)

    Mercado, Lina; Lloyd, Jon; Domingues, Tomas; Fyllas, Nikolaos; Patino, Sandra; Dolman, Han; Sitch, Stephen

    2010-05-01

    Given the importance of Amazon rainforest in the global carbon and hydrological cycles, there is a need to use parameterized and validated ecosystem gas exchange and vegetation models for this region in order to adequately simulate present and future carbon and water balances. Recent research has found major differences in above-ground net primary productivity (ANPP), above ground biomass and tree dynamics across Amazonia. West Amazonia is more dynamic, with younger trees, higher stem growth rates and lower biomass than central and eastern Amazon (Baker et al. 2004; Malhi et al. 2004; Phillips et al. 2004). A factor of three variation in above-ground net primary productivity has been estimated across Amazonia by Malhi et al. (2004). Different hypotheses have been proposed to explain the observed spatial variability in ANPP (Malhi et al. 2004). First, due to the proximity to the Andes, sites from western Amazonia tend to have richer soils than central and eastern Amazon and therefore soil fertility could possibly be highly related to the high wood productivity found in western sites. Second, if GPP does not vary across the Amazon basin then different patterns of carbon allocation to respiration could also explain the observed ANPP gradient. However since plant growth depends on the interaction between photosynthesis, transport of assimilates, plant respiration, water relations and mineral nutrition, variations in plant gross photosynthesis (GPP) could also explain the observed variations in ANPP. In this study we investigate whether Amazon GPP can explain variations of observed ANPP. We use a sun and shade canopy gas exchange model that has been calibrated and evaluated at five rainforest sites (Mercado et al. 2009) to simulate gross primary productivity of 50 sites across the Amazon basin during the period 1980-2001. Such simulation differs from the ones performed with global vegetation models (Cox et al. 1998; Sitch et al. 2003) where i) single plant functional

  13. Generation of Anti-Boa Immunoglobulin Antibodies for Serodiagnostic Applications, and Their Use to Detect Anti-Reptarenavirus Antibodies in Boa Constrictor.

    PubMed

    Korzyukov, Yegor; Hetzel, Udo; Kipar, Anja; Vapalahti, Olli; Hepojoki, Jussi

    2016-01-01

    Immunoglobulins (Igs), the key effectors of the adaptive immune system, mediate the specific recognition of foreign structures, i.e. antigens. In mammals, IgM production commonly precedes the production of IgG in the response to an infection. The reptilian counterpart of IgG is IgY, but the exact kinetics of the reptilian immune response are less well known. Boid inclusion body disease (BIBD), an often fatal disease of captive boas and pythons has been linked to reptarenavirus infection, and BIBD is believed to be immunosuppressive. However, so far, the study of the serological response towards reptarenaviruses in BIBD has been hampered by the lack of reagents. Thus we set up a purification protocol for boa constrictor IgY and IgM, which should also be applicable for other snake species. We used centrifugal filter units, poly ethylene glycol precipitation and gel permeation chromatography to purify and separate the IgM and IgY fractions from boa constrictor serum, which we further used to immunise rabbits. We affinity purified IgM and IgY specific reagents from the produced antiserum, and labelled the reagents with horseradish peroxidase. Finally, using the sera of snakes with known exposure to reptarenaviruses we demonstrated that the newly generated reagents can be utilised for serodiagnostic purposes, such as immunoblotting and immunofluorescent staining. To our knowledge, this is the first report to show reptarenavirus-specific antibodies in boa constrictors.

  14. Generation of Anti-Boa Immunoglobulin Antibodies for Serodiagnostic Applications, and Their Use to Detect Anti-Reptarenavirus Antibodies in Boa Constrictor

    PubMed Central

    Korzyukov, Yegor; Hetzel, Udo; Kipar, Anja; Vapalahti, Olli; Hepojoki, Jussi

    2016-01-01

    Immunoglobulins (Igs), the key effectors of the adaptive immune system, mediate the specific recognition of foreign structures, i.e. antigens. In mammals, IgM production commonly precedes the production of IgG in the response to an infection. The reptilian counterpart of IgG is IgY, but the exact kinetics of the reptilian immune response are less well known. Boid inclusion body disease (BIBD), an often fatal disease of captive boas and pythons has been linked to reptarenavirus infection, and BIBD is believed to be immunosuppressive. However, so far, the study of the serological response towards reptarenaviruses in BIBD has been hampered by the lack of reagents. Thus we set up a purification protocol for boa constrictor IgY and IgM, which should also be applicable for other snake species. We used centrifugal filter units, poly ethylene glycol precipitation and gel permeation chromatography to purify and separate the IgM and IgY fractions from boa constrictor serum, which we further used to immunise rabbits. We affinity purified IgM and IgY specific reagents from the produced antiserum, and labelled the reagents with horseradish peroxidase. Finally, using the sera of snakes with known exposure to reptarenaviruses we demonstrated that the newly generated reagents can be utilised for serodiagnostic purposes, such as immunoblotting and immunofluorescent staining. To our knowledge, this is the first report to show reptarenavirus-specific antibodies in boa constrictors. PMID:27355360

  15. El Niño drought increased canopy turnover in Amazon forests.

    PubMed

    Leitold, Veronika; Morton, Douglas C; Longo, Marcos; Dos-Santos, Maiza Nara; Keller, Michael; Scaranello, Marcos

    2018-03-25

    Amazon droughts, including the 2015-2016 El Niño, may reduce forest net primary productivity and increase canopy tree mortality, thereby altering both the short- and the long-term net forest carbon balance. Given the broad extent of drought impacts, inventory plots or eddy flux towers may not capture regional variability in forest response to drought. We used multi-temporal airborne Lidar data and field measurements of coarse woody debris to estimate patterns of canopy turnover and associated carbon losses in intact and fragmented forests in the central Brazilian Amazon between 2013-2014 and 2014-2016. Average annualized canopy turnover rates increased by 65% during the drought period in both intact and fragmented forests. The average size and height of turnover events was similar for both time intervals, in contrast to expectations that the 2015-2016 El Niño drought would disproportionally affect large trees. Lidar-biomass relationships between canopy turnover and field measurements of coarse woody debris were modest (R 2  ≈ 0.3), given similar coarse woody debris production and Lidar-derived changes in canopy volume from single tree and multiple branch fall events. Our findings suggest that El Niño conditions accelerated canopy turnover in central Amazon forests, increasing coarse woody debris production by 62% to 1.22 Mg C ha -1  yr -1 in drought years . No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  16. The Discovery of XY Sex Chromosomes in a Boa and Python.

    PubMed

    Gamble, Tony; Castoe, Todd A; Nielsen, Stuart V; Banks, Jaison L; Card, Daren C; Schield, Drew R; Schuett, Gordon W; Booth, Warren

    2017-07-24

    For over 50 years, biologists have accepted that all extant snakes share the same ZW sex chromosomes derived from a common ancestor [1-3], with different species exhibiting sex chromosomes at varying stages of differentiation. Accordingly, snakes have been a well-studied model for sex chromosome evolution in animals [1, 4]. A review of the literature, however, reveals no compelling support that boas and pythons possess ZW sex chromosomes [2, 5]. Furthermore, phylogenetic patterns of facultative parthenogenesis in snakes and a sex-linked color mutation in the ball python (Python regius) are best explained by boas and pythons possessing an XY sex chromosome system [6, 7]. Here we demonstrate that a boa (Boa imperator) and python (Python bivittatus) indeed possess XY sex chromosomes, based on the discovery of male-specific genetic markers in both species. We use these markers, along with transcriptomic and genomic data, to identify distinct sex chromosomes in boas and pythons, demonstrating that XY systems evolved independently in each lineage. This discovery highlights the dynamic evolution of vertebrate sex chromosomes and further enhances the value of snakes as a model for studying sex chromosome evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Conformational risk factors of brachycephalic obstructive airway syndrome (BOAS) in pugs, French bulldogs, and bulldogs

    PubMed Central

    Troconis, Eileen L.; Kalmar, Lajos; Price, David J.; Wright, Hattie E.; Adams, Vicki J.

    2017-01-01

    Extremely brachycephalic, or short-muzzled, dog breeds such as pugs, French bulldogs, and bulldogs are prone to the conformation-related respiratory disorder—brachycephalic obstructive airway syndrome (BOAS). Affected dogs present with a wide range of clinical signs from snoring and exercise intolerance, to life-threatening events such as syncope. In this study, conformational risk factors for BOAS that could potentially aid in breeding away from BOAS were sought. Six hundred and four pugs, French bulldogs, and bulldogs were included in the study. Soft tape measurements of the head and body were used and the inter-observer reproducibility was evaluated. Breed-specific models were developed to assess the associations between the conformational factors and BOAS status based on functional grading. The models were further validated by means of a BOAS index, which is an objective measurement of respiratory function using whole-body barometric plethysmography. The final models have good predictive power for discriminating BOAS (-) and BOAS (+) phenotypes indicated by the area under the curve values of >80% on the receiver operating curves. When other factors were controlled, stenotic nostrils were associated with BOAS in all three breeds; pugs and bulldogs with higher body condition scores (BCS) had a higher risk of developing BOAS. Among the standardized conformational measurements (i.e. craniofacial ratio (CFR), eye width ratio (EWR), skull index (SI), neck girth ratio (NGR), and neck length ratio (NLR)), for pugs EWR and SI, for French bulldogs NGR and NLR, and for bulldogs SI and NGR showed significant associations with BOAS status. However, the NGR in bulldogs was the only significant predictor that also had satisfactory inter-observer reproducibility. A NGR higher than 0.71 in male bulldogs was predictive of BOAS with approximately 70% sensitivity and specificity. In conclusion, stenotic nostrils, BCS, and NGR were found to be valid, easily applicable predictors

  18. Coordination of physiological and structural traits in Amazon forest trees

    NASA Astrophysics Data System (ADS)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2012-02-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants integrate their structural and physiological investments, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1020 individual trees (encompassing 661 species) located in 52 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C, and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five taxonomically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to some components of the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components for tropical tree species. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions influenced structural traits with ρx of individual species decreasing with increased soil fertility and higher temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus, although genetically determined foliar traits such as those associated with leaf

  19. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon.

    PubMed

    Fine, Paul V A; Daly, Douglas C; Villa Muñoz, Gorky; Mesones, Italo; Cameron, Kenneth M

    2005-07-01

    Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular-based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white-sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty-six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white-sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white-sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.

  20. Long-term decline of the Amazon carbon sink.

    PubMed

    Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J

    2015-03-19

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

  1. Individual tree detection in intact forest and degraded forest areas in the north region of Mato Grosso State, Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Santos, E. G.; Jorge, A.; Shimabukuro, Y. E.; Gasparini, K.

    2017-12-01

    The State of Mato Grosso - MT has the second largest area with degraded forest among the states of the Brazilian Legal Amazon. Land use and land cover change processes that occur in this region cause the loss of forest biomass, releasing greenhouse gases that contribute to the increase of temperature on earth. These degraded forest areas lose biomass according to the intensity and magnitude of the degradation type. The estimate of forest biomass, commonly performed by forest inventory through sample plots, shows high variance in degraded forest areas. Due to this variance and complexity of tropical forests, the aim of this work was to estimate forest biomass using LiDAR point clouds in three distinct forest areas: one degraded by fire, another by selective logging and one area of intact forest. The approach applied in these areas was the Individual Tree Detection (ITD). To isolate the trees, we generated Canopy Height Models (CHM) images, which are obtained by subtracting the Digital Elevation Model (MDE) and the Digital Terrain Model (MDT), created by the cloud of LiDAR points. The trees in the CHM images are isolated by an algorithm provided by the Quantitative Ecology research group at the School of Forestry at Northern Arizona University (SILVA, 2015). With these points, metrics were calculated for some areas, which were used in the model of biomass estimation. The methodology used in this work was expected to reduce the error in biomass estimate in the study area. The cloud points of the most representative trees were analyzed, and thus field data was correlated with the individual trees found by the proposed algorithm. In a pilot study, the proposed methodology was applied generating the individual tree metrics: total height and area of the crown. When correlating 339 isolated trees, an unsatisfactory R² was obtained, as heights found by the algorithm were lower than those obtained in the field, with an average difference of 2.43 m. This shows that the

  2. Windthrows increase soil carbon stocks in a central Amazon forest

    NASA Astrophysics Data System (ADS)

    dos Santos, Leandro T.; Magnabosco Marra, Daniel; Trumbore, Susan; de Camargo, Plínio B.; Negrón-Juárez, Robinson I.; Lima, Adriano J. N.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Higuchi, Niro

    2016-03-01

    Windthrows change forest structure and species composition in central Amazon forests. However, the effects of widespread tree mortality associated with wind disturbances on soil properties have not yet been described in this vast region. We investigated short-term effects (7 years after disturbance) of widespread tree mortality caused by a squall line event from mid-January of 2005 on soil carbon stocks and concentrations in a central Amazon terra firme forest. The soil carbon stock (averaged over a 0-30 cm depth profile) in disturbed plots (61.4 ± 8.2 Mg ha-1, mean ±95 % confidence interval) was marginally higher (p = 0.09) than that from undisturbed plots (47.7 ± 13.6 Mg ha-1). The soil organic carbon concentration in disturbed plots (2.0 ± 0.17 %) was significantly higher (p < 0.001) than that from undisturbed plots (1.36 ± 0.24 %). Moreover, soil carbon stocks were positively correlated with soil clay content (r2 = 0.332, r = 0.575 and p = 0.019) and with tree mortality intensity (r2 = 0.257, r = 0.506 and p = 0.045). Our results indicate that large inputs of plant litter associated with large windthrow events cause a short-term increase in soil carbon content, and the degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest regrowth and increase vegetation resilience.

  3. Spatial Pattern of Standing Timber Value across the Brazilian Amazon

    PubMed Central

    Ahmed, Sadia E.; Ewers, Robert M.

    2012-01-01

    The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome. PMID:22590520

  4. Revisiting mechanisms underlying tree mortality induced by drought in the Amazon: from observation to modeling

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Poulter, B.; Ciais, P.; Sala, A.; Sack, L.; Bartlett, M.

    2015-12-01

    In the past decade, two extreme droughts experienced by the Amazon rainforest led to a perturbation of carbon cycle dynamics and forest structure, partly through an increase in tree mortality. While there is a relatively strong consensus in CMIP5 projections for an increase in both frequency and intensity of droughts across the Amazon, the potential for forest die-off constitutes a large uncertainty in projections of climate impacts on terrestrial ecosystems and carbon cycle feedbacks. Two long-term through fall exclusion experiments (TFE) provided novel observations of Amazonian ecosystem responses under drought. These experiments also provided a great opportunity to evaluate and improve models' behavior under drought by comparing simulations and observations. While current DGVM use a wide array of algorithms to represent mortality, most are associated with large uncertainty for representing drought-induced mortality, and require updating to include current information of physiological processes. During very strong droughts, the leaves desiccate and stems may undergo catastrophic embolism. However, even before that point, stomata close, to minimize excessive water loss and risk of hydraulic failure, which reduces carbon assimilation. To maintain respiration and other functions, plants may eventually deplete stored non-structural carbon compounds (NSC), which may have negative impacts on plant and eventually increase the probability of mortality.Here, we describe a new parameterization of the mortality process induced by drought using the ORCHIDEE-CAN dynamic vegetation model and test it using the two TFE results. We first updated and evaluated both the representation of hydraulic architecture and the NSC pool dynamics using in situ data. We implemented a direct climate effect on mortality through catastrophic stem embolism, based on hydraulic vulnerability curves. In addition, we explored the role of NSC on hydraulic failure and mortality by coupling in the model

  5. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    PubMed Central

    Jardine, Kolby J.; Chambers, Jeffrey Q.; Holm, Jennifer; Jardine, Angela B.; Fontes, Clarissa G.; Zorzanelli, Raquel F.; Meyers, Kimberly T.; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O.; de O. Piva, Luani R.; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O.

    2015-01-01

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress. PMID:27135346

  6. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    PubMed

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  7. Abrupt Increases in Amazonian Tree Mortality Due to Drought-Fire Interactions

    NASA Technical Reports Server (NTRS)

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silverio, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nobrega, Caroline C.; hide

    2014-01-01

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, longterm experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW x m(exp -1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with less than 1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.

  8. Abrupt increases in Amazonian tree mortality due to drought-fire interactions.

    PubMed

    Brando, Paulo Monteiro; Balch, Jennifer K; Nepstad, Daniel C; Morton, Douglas C; Putz, Francis E; Coe, Michael T; Silvério, Divino; Macedo, Marcia N; Davidson, Eric A; Nóbrega, Caroline C; Alencar, Ane; Soares-Filho, Britaldo S

    2014-04-29

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW ⋅ m(-1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.

  9. Abrupt increases in Amazonian tree mortality due to drought–fire interactions

    PubMed Central

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silvério, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nóbrega, Caroline C.; Alencar, Ane; Soares-Filho, Britaldo S.

    2014-01-01

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW⋅m−1). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change. PMID:24733937

  10. Computed tomography-guided bone biopsies for evaluation of proliferative vertebral lesions in two boa constrictors (Boa constrictor imperator).

    PubMed

    Di Girolamo, Nicola; Selleri, Paolo; Nardini, Giordano; Corlazzoli, Daniele; Fonti, Paolo; Rossier, Christophe; Della Salda, Leonardo; Schilliger, Lionel; Vignoli, Massimo; Bongiovanni, Laura

    2014-12-01

    Two boa constrictors (Boa constrictor imperator) presented with paresis of the trunk originating cranial to the cloaca. Radiographs were consistent with proliferative bone lesions involving several vertebrae. Computed tomography (CT) demonstrated the presence of lytic/expansile lesions. Computed tomography-guided biopsies of the lesions were performed without complications. Histology was consistent with bacterial osteomyelitis and osteoarthritis. Gram-negative bacteria (Salmonella sp. and Pseudomonas sp.) were isolated from cultures of the biopsies. Medical treatment with specific antibiotics was attempted for several weeks in both cases without clinical or radiographic improvements. The animals were euthanized, and necropsy confirmed the findings observed upon CT. To the authors' knowledge, this is the first report of the use of CT-guided biopsies to evaluate proliferative vertebral lesions in snakes. In the present report, CT-guided biopsies were easily performed, and both histologic and microbiologic results were consistent with the final diagnosis.

  11. Differential Disease Susceptibilities in Experimentally Reptarenavirus-Infected Boa Constrictors and Ball Pythons

    PubMed Central

    Sanchez-Migallon Guzman, David; Garcia, Valentina E.; Layton, Marylee L.; Hoon-Hanks, Laura L.; Boback, Scott M.; Keel, M. Kevin; Drazenovich, Tracy

    2017-01-01

    ABSTRACT Inclusion body disease (IBD) is an infectious disease originally described in captive snakes. It has traditionally been diagnosed by the presence of large eosinophilic cytoplasmic inclusions and is associated with neurological, gastrointestinal, and lymphoproliferative disorders. Previously, we identified and established a culture system for a novel lineage of arenaviruses isolated from boa constrictors diagnosed with IBD. Although ample circumstantial evidence suggested that these viruses, now known as reptarenaviruses, cause IBD, there has been no formal demonstration of disease causality since their discovery. We therefore conducted a long-term challenge experiment to test the hypothesis that reptarenaviruses cause IBD. We infected boa constrictors and ball pythons by cardiac injection of purified virus. We monitored the progression of viral growth in tissues, blood, and environmental samples. Infection produced dramatically different disease outcomes in snakes of the two species. Ball pythons infected with Golden Gate virus (GoGV) and with another reptarenavirus displayed severe neurological signs within 2 months, and viral replication was detected only in central nervous system tissues. In contrast, GoGV-infected boa constrictors remained free of clinical signs for 2 years, despite high viral loads and the accumulation of large intracellular inclusions in multiple tissues, including the brain. Inflammation was associated with infection in ball pythons but not in boa constrictors. Thus, reptarenavirus infection produces inclusions and inclusion body disease, although inclusions per se are neither necessarily associated with nor required for disease. Although the natural distribution of reptarenaviruses has yet to be described, the different outcomes of infection may reflect differences in geographical origin. IMPORTANCE New DNA sequencing technologies have made it easier than ever to identify the sequences of microorganisms in diseased tissues, i

  12. Windthrows increase soil carbon stocks in a Central Amazon forest

    NASA Astrophysics Data System (ADS)

    dos Santos, L. T.; Magnabosco Marra, D.; Trumbore, S.; Camargo, P. B.; Chambers, J. Q.; Negrón-Juárez, R. I.; Lima, A. J. N.; Ribeiro, G. H. P. M.; dos Santos, J.; Higuchi, N.

    2015-12-01

    Windthrows change forest structure and species composition in Central Amazon forests. However, the effects of widespread tree mortality associated with wind-disturbances on soil properties have not yet been described. In this study, we investigated short-term effects (seven years after disturbance) of a windthrow event on soil carbon stocks and concentrations in a Central Amazon terra firme forest. The soil carbon stock (averaged over a 0-30 cm depth profile) in disturbed plots (61.4 ± 4.18 Mg ha-1, mean ± standard error) was marginally higher (p = 0.009) than that from undisturbed plots (47.7 ± 6.95 Mg ha-1). The soil organic carbon concentration in disturbed plots (2.0 ± 0.08 %) was significantly higher (p < 0.001) than that from undisturbed plots (1.36 ± 0.12 %). Moreover, soil carbon stocks were positively correlated with soil clay content (r = 0.575 and p = 0.019) and with tree mortality intensity (r = 0.493 and p = 0.045). Our results indicate that large inputs of plant litter associated with large windthrow events cause a short-term increase in soil carbon content, and the degree of increase is related to soil clay content and tree mortality intensity. Higher nutrient availability in soils from large canopy gaps created by wind disturbance may increase vegetation resilience and favor forest recovery.

  13. Windthrows increase soil carbon stocks in a central Amazon forest

    DOE PAGES

    dos Santos, Leandro T.; Magnabosco Marra, Daniel; Trumbore, Susan; ...

    2016-03-02

    Windthrows change forest structure and species composition in central Amazon forests. However, the effects of widespread tree mortality associated with wind disturbances on soil properties have not yet been described in this vast region. We investigated short-term effects (7 years after disturbance) of widespread tree mortality caused by a squall line event from mid-January of 2005 on soil carbon stocks and concentrations in a central Amazon terra firme forest. The soil carbon stock (averaged over a 0–30 cm depth profile) in disturbed plots (61.4 ± 8.2 Mg ha -1, mean ±95 % confidence interval) was marginally higher ( p =more » 0.09) than that from undisturbed plots (47.7 ± 13.6 Mg ha -1). The soil organic carbon concentration in disturbed plots (2.0 ± 0.17 %) was significantly higher ( p < 0.001) than that from undisturbed plots (1.36 ± 0.24 %). Moreover, soil carbon stocks were positively correlated with soil clay content ( r 2 = 0.332, r = 0.575 and p = 0.019) and with tree mortality intensity ( r 2 = 0.257, r = 0.506 and p = 0.045). Our results indicate that large inputs of plant litter associated with large windthrow events cause a short-term increase in soil carbon content, and the degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest regrowth and increase vegetation resilience.« less

  14. Windthrows increase soil carbon stocks in a central Amazon forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    dos Santos, Leandro T.; Magnabosco Marra, Daniel; Trumbore, Susan

    Windthrows change forest structure and species composition in central Amazon forests. However, the effects of widespread tree mortality associated with wind disturbances on soil properties have not yet been described in this vast region. We investigated short-term effects (7 years after disturbance) of widespread tree mortality caused by a squall line event from mid-January of 2005 on soil carbon stocks and concentrations in a central Amazon terra firme forest. The soil carbon stock (averaged over a 0–30 cm depth profile) in disturbed plots (61.4 ± 8.2 Mg ha -1, mean ±95 % confidence interval) was marginally higher ( p =more » 0.09) than that from undisturbed plots (47.7 ± 13.6 Mg ha -1). The soil organic carbon concentration in disturbed plots (2.0 ± 0.17 %) was significantly higher ( p < 0.001) than that from undisturbed plots (1.36 ± 0.24 %). Moreover, soil carbon stocks were positively correlated with soil clay content ( r 2 = 0.332, r = 0.575 and p = 0.019) and with tree mortality intensity ( r 2 = 0.257, r = 0.506 and p = 0.045). Our results indicate that large inputs of plant litter associated with large windthrow events cause a short-term increase in soil carbon content, and the degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest regrowth and increase vegetation resilience.« less

  15. Did egg-laying boas break Dollo's law? Phylogenetic evidence for reversal to oviparity in sand boas (Eryx: Boidae).

    PubMed

    Lynch, Vincent J; Wagner, Günter P

    2010-01-01

    Re-evolution of lost complex morphological characters has been proposed for several characters, including insect wings, limbs, eyes in snakes, and digits in lizards, among others. There has also been much interest in whether the transition from oviparity to viviparity is reversible, particularly in squamate reptiles where the transition to viviparity has occurred more times than in any other lineage. Here, we present a phylogenetic analysis of boid snakes based on a concatenated multigene study of all genera of erycines, New and Old World boines, plus other groups thought to be closely related with boines such as monotypic species Calabaria and Casarea. We reconstruct ancestral parity mode on this phylogeny and present statistical evidence that oviparity reevolved in a species of Old World sand boa in the genus Eryx nearly 60 million years after the initial boid transition to viviparity. Remarkably, like other viviparous boas hatchlings of oviparous Eryx lack an egg-tooth providing independent evidence that oviparity is a derived state in these species.

  16. Projections of future meteorological drought and wet periods in the Amazon

    PubMed Central

    Duffy, Philip B.; Brando, Paulo; Asner, Gregory P.; Field, Christopher B.

    2015-01-01

    Future intensification of Amazon drought resulting from climate change may cause increased fire activity, tree mortality, and emissions of carbon to the atmosphere across large areas of Amazonia. To provide a basis for addressing these issues, we examine properties of recent and future meteorological droughts in the Amazon in 35 climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that the CMIP5 climate models, as a group, simulate important properties of historical meteorological droughts in the Amazon. In addition, this group of models reproduces observed relationships between Amazon precipitation and regional sea surface temperature anomalies in the tropical Pacific and the North Atlantic oceans. Assuming the Representative Concentration Pathway 8.5 scenario for future drivers of climate change, the models project increases in the frequency and geographic extent of meteorological drought in the eastern Amazon, and the opposite in the West. For the region as a whole, the CMIP5 models suggest that the area affected by mild and severe meteorological drought will nearly double and triple, respectively, by 2100. Extremes of wetness are also projected to increase after 2040. Specifically, the frequency of periods of unusual wetness and the area affected by unusual wetness are projected to increase after 2040 in the Amazon as a whole, including in locations where annual mean precipitation is projected to decrease. Our analyses suggest that continued emissions of greenhouse gases will increase the likelihood of extreme events that have been shown to alter and degrade Amazonian forests. PMID:26460046

  17. An assessment of the impact of the pet trade on five CITES-Appendix II case studies - Boa constrictor imperator

    USGS Publications Warehouse

    Montgomery, Chad E.; Boback, Scott M.; Reed, Robert N.; Frazier, Julius A.

    2015-01-01

    Boa constrictor is a wide ranging snake species that is common in the pet trade and is currently listed in CITES Appendix II. Hog Island boas, or Cayos Cochinos boas, are a dwarf, insular race of Boa constrictor imperator endemic to the Cayos Cochinos Archipelago, Honduras. Cayos Cochinos boas are prized in the international pet trade for their light pink dorsal coloration, as well as for being much smaller and more docile than mainland boas (Porras, 1999; Russo, 2007). The boa population in the Cayos Cochinos was heavily exploited for the pet trade from 1979 to 1993, and researchers reported finding no boas on the islands during a five day herpetological survey trip in the early 1990s (Wilson and CruzDiaz, 1993), leading to the speculation that the population had been extirpated (e.g., Russo, 2007). The Cayos Cochinos Archipelago Natural Marine Monument has been managed by the Honduran Coral Reef Foundation since 1994 and prohibits removal of boas from the area. Poaching for the pet trade continues today, although at a lower level. Due to the endemic nature of this island morph of B. c. imperator it is imperative that we understand the dynamics of the populations and the ongoing threats that could negatively impact their long-term survival.

  18. Evolutionary heritage influences Amazon tree ecology.

    PubMed

    Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R

    2016-12-14

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.

  19. Evolutionary heritage influences Amazon tree ecology

    PubMed Central

    Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517

  20. NTFP harvesters as citizen scientists: Validating traditional and crowdsourced knowledge on seed production of Brazil nut trees in the Peruvian Amazon.

    PubMed

    Thomas, Evert; Valdivia, Jheyson; Alcázar Caicedo, Carolina; Quaedvlieg, Julia; Wadt, Lucia Helena O; Corvera, Ronald

    2017-01-01

    Understanding the factors that underlie the production of non-timber forest products (NTFPs), as well as regularly monitoring production levels, are key to allow sustainability assessments of NTFP extractive economies. Brazil nut (Bertholletia excelsa, Lecythidaceae) seed harvesting from natural forests is one of the cornerstone NTFP economies in Amazonia. In the Peruvian Amazon it is organized in a concession system. Drawing on seed production estimates of >135,000 individual Brazil nut trees from >400 concessions and ethno-ecological interviews with >80 concession holders, here we aimed to (i) assess the accuracy of seed production estimates by Brazil nut seed harvesters, and (ii) validate their traditional ecological knowledge (TEK) about the variables that influence Brazil nut production. We compared productivity estimates with actual field measurements carried out in the study area and found a positive correlation between them. Furthermore, we compared the relationships between seed production and a number of phenotypic, phytosanitary and environmental variables described in literature with those obtained for the seed production estimates and found high consistency between them, justifying the use of the dataset for validating TEK and innovative hypothesis testing. As expected, nearly all TEK on Brazil nut productivity was corroborated by our data. This is reassuring as Brazil nut concession holders, and NTFP harvesters at large, rely on their knowledge to guide the management of the trees upon which their extractive economies are based. Our findings suggest that productivity estimates of Brazil nut trees and possibly other NTFP-producing species could replace or complement actual measurements, which are very expensive and labour intensive, at least in areas where harvesters have a tradition of collecting NTFPs from the same trees over multiple years or decades. Productivity estimates might even be sourced from harvesters through registers on an annual basis

  1. NTFP harvesters as citizen scientists: Validating traditional and crowdsourced knowledge on seed production of Brazil nut trees in the Peruvian Amazon

    PubMed Central

    Thomas, Evert; Valdivia, Jheyson; Alcázar Caicedo, Carolina; Quaedvlieg, Julia; Wadt, Lucia Helena O.; Corvera, Ronald

    2017-01-01

    Understanding the factors that underlie the production of non-timber forest products (NTFPs), as well as regularly monitoring production levels, are key to allow sustainability assessments of NTFP extractive economies. Brazil nut (Bertholletia excelsa, Lecythidaceae) seed harvesting from natural forests is one of the cornerstone NTFP economies in Amazonia. In the Peruvian Amazon it is organized in a concession system. Drawing on seed production estimates of >135,000 individual Brazil nut trees from >400 concessions and ethno-ecological interviews with >80 concession holders, here we aimed to (i) assess the accuracy of seed production estimates by Brazil nut seed harvesters, and (ii) validate their traditional ecological knowledge (TEK) about the variables that influence Brazil nut production. We compared productivity estimates with actual field measurements carried out in the study area and found a positive correlation between them. Furthermore, we compared the relationships between seed production and a number of phenotypic, phytosanitary and environmental variables described in literature with those obtained for the seed production estimates and found high consistency between them, justifying the use of the dataset for validating TEK and innovative hypothesis testing. As expected, nearly all TEK on Brazil nut productivity was corroborated by our data. This is reassuring as Brazil nut concession holders, and NTFP harvesters at large, rely on their knowledge to guide the management of the trees upon which their extractive economies are based. Our findings suggest that productivity estimates of Brazil nut trees and possibly other NTFP-producing species could replace or complement actual measurements, which are very expensive and labour intensive, at least in areas where harvesters have a tradition of collecting NTFPs from the same trees over multiple years or decades. Productivity estimates might even be sourced from harvesters through registers on an annual basis

  2. Spatial ecology of Puerto Rican boas (Epicrates inornatus) in a hurricane impacted forest

    Treesearch

    Joseph M. Wunderle; Javier E. Mercado; Bernard Parresol; Esteban Terranova

    2004-01-01

    Spatial ecology of Puerto Rican boas (Epicrates inornatus, Boidae) was studied with radiotelemetry in a subtropical wet forest recovering from a major hurricane (7–9 yr previous) when Hurricane Georges struck. Different boas were studied during three periods relative to Hurricane Georges: before only; before and after; and after only. Mean daily...

  3. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts.

    PubMed

    Longo, Marcos; Knox, Ryan G; Levine, Naomi M; Alves, Luciana F; Bonal, Damien; Camargo, Plinio B; Fitzjarrald, David R; Hayek, Matthew N; Restrepo-Coupe, Natalia; Saleska, Scott R; da Silva, Rodrigo; Stark, Scott C; Tapajós, Raphael P; Wiedemann, Kenia T; Zhang, Ke; Wofsy, Steven C; Moorcroft, Paul R

    2018-05-22

    The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km 2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  4. Spatial Ecology of Puerto Rican Boas (Epicrates inornatus) in a Hurricane Impacted Forest.

    Treesearch

    Joseph M. Wunderle Jr.; Javier E. Mercado Bernard Parresol Esteban Terranova 2

    2004-01-01

    Spatial ecology of Puerto Rican boas (Epicrates inornatus, Boidae) was studied with radiotelemetry in a subtropical wet forest recovering from a major hurricane (7–9 yr previous) when Hurricane Georges struck. Different boas were studied during three periods relative to Hurricane Georges: before only; before and after; and after only. Mean daily movement per month...

  5. Vapor Pressure Deficit and Sap Velocity Dynamic Coupling in Canopy Dominant Trees in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Chambers, J. Q.; Gimenez, B.; Jardine, K.; Negron Juarez, R. I.; Cobello, L. O.; Fontes, C.; Dawson, T. E.; Higuchi, N.

    2017-12-01

    In order to improve our ability to predict terrestrial water fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, especially in tropical forests which recycle large fluxes of water to the atmosphere. This need has become more relevant due to observed records in global temperature. In this study we show a strong temporal correlation between sap velocity and leaf-to-air vapor pressure deficit (VPD) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As VPDs in the upper canopy (20-30 m) varied throughout the day and night, basal sap velocity (1.5 m) responded rapidly without an observable delay (< 15 min). Sap velocity showed a sigmoidal dependence on VPDs including an exponential increase, an inflection point, and a plateau, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity, stomatal conductance, and leaf water potential was evident with morning periods showing higher sensitivities to VPD than afternoon and night periods. Diurnal leaf gas exchange observations revealed a morning to midday peak in stomatal conductance, but midday to afternoon peak in transpiration and VPD. Thus, our study confirms that the temporal lag between the Gs peak and VPD peak are the major regulators of the hysteresis phenomenon as previously described by other studies. Moreover, out study provide direct evidence for the role of decreased stomatal conductance in the warm afternoon periods to reduce transpiration and allow for the partial recovery of leaf water potential to less negative values. Our results suggests the possibility of predicting evapotranspiration fluxes from ecosystem to regional scales using remote sensing of vegetation temperature from, for example, thermal images of satellites and drones.

  6. Parthenogenesis in a Brazilian rainbow boa (Epicrates cenchria cenchria).

    PubMed

    Kinney, Matthew E; Wack, Raymund F; Grahn, Robert A; Lyons, Leslie

    2013-03-01

    A 22-year-old captive Brazilian rainbow boa (Epicrates cenchria cenchria) gave birth to four offspring after being housed with a vasectomized male. Sexual reproduction as a result of failed prior vasectomy, recanalization of the vas deferens, or prolonged sperm storage was ruled out using the clinical history, histopathology, and gross necropsy. Short tandem repeat (STR) DNA markers were genotyped in the male, female, and four offspring. None of the offspring possessed a diagnostic STR allele present in the potential sire. In addition, all offspring were homozygous at each STR locus evaluated, supporting parthenogenetic reproduction. This is the first report of parthenogenesis in a Brazilian rainbow boa and has implications for the conservation of reptiles maintained in captive breeding programs. © 2012 Wiley Periodicals, Inc.

  7. A long-term perspective on deforestation rates in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Velasco Gomez, M. D.; Beuchle, R.; Shimabukuro, Y.; Grecchi, R.; Simonetti, D.; Eva, H. D.; Achard, F.

    2015-04-01

    Monitoring tropical forest cover is central to biodiversity preservation, terrestrial carbon stocks, essential ecosystem and climate functions, and ultimately, sustainable economic development. The Amazon forest is the Earth's largest rainforest, and despite intensive studies on current deforestation rates, relatively little is known as to how these compare to historic (pre 1985) deforestation rates. We quantified land cover change between 1975 and 2014 in the so-called Arc of Deforestation of the Brazilian Amazon, covering the southern stretch of the Amazon forest and part of the Cerrado biome. We applied a consistent method that made use of data from Landsat sensors: Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI). We acquired suitable images from the US Geological Survey (USGS) for five epochs: 1975, 1990, 2000, 2010, and 2014. We then performed land cover analysis for each epoch using a systematic sample of 156 sites, each one covering 10 km x 10 km, located at the confluence point of integer degree latitudes and longitudes. An object-based classification of the images was performed with five land cover classes: tree cover, tree cover mosaic, other wooded land, other land cover, and water. The automatic classification results were corrected by visual interpretation, and, when available, by comparison with higher resolution imagery. Our results show a decrease of forest cover of 24.2% in the last 40 years in the Brazilian Arc of Deforestation, with an average yearly net forest cover change rate of -0.71% for the 39 years considered.

  8. Highly reactive light-dependent monoterpenes in the Amazon

    DOE PAGES

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; ...

    2015-03-06

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissionsmore » of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.« less

  9. Highly reactive light-dependent monoterpenes in the Amazon

    NASA Astrophysics Data System (ADS)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-01

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  10. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support.

    PubMed

    Wilcox, Thomas P; Zwickl, Derrick J; Heath, Tracy A; Hillis, David M

    2002-11-01

    Four New World genera of dwarf boas (Exiliboa, Trachyboa, Tropidophis, and Ungaliophis) have been placed by many systematists in a single group (traditionally called Tropidophiidae). However, the monophyly of this group has been questioned in several studies. Moreover, the overall relationships among basal snake lineages, including the placement of the dwarf boas, are poorly understood. We obtained mtDNA sequence data for 12S, 16S, and intervening tRNA-val genes from 23 species of snakes representing most major snake lineages, including all four genera of New World dwarf boas. We then examined the phylogenetic position of these species by estimating the phylogeny of the basal snakes. Our phylogenetic analysis suggests that New World dwarf boas are not monophyletic. Instead, we find Exiliboa and Ungaliophis to be most closely related to sand boas (Erycinae), boas (Boinae), and advanced snakes (Caenophidea), whereas Tropidophis and Trachyboa form an independent clade that separated relatively early in snake radiation. Our estimate of snake phylogeny differs significantly in other ways from some previous estimates of snake phylogeny. For instance, pythons do not cluster with boas and sand boas, but instead show a strong relationship with Loxocemus and Xenopeltis. Additionally, uropeltids cluster strongly with Cylindrophis, and together are embedded in what has previously been considered the macrostomatan radiation. These relationships are supported by both bootstrapping (parametric and nonparametric approaches) and Bayesian analysis, although Bayesian support values are consistently higher than those obtained from nonparametric bootstrapping. Simulations show that Bayesian support values represent much better estimates of phylogenetic accuracy than do nonparametric bootstrap support values, at least under the conditions of our study. Copyright 2002 Elsevier Science (USA)

  11. Coordination of physiological and structural traits in Amazon forest trees

    NASA Astrophysics Data System (ADS)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2011-05-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants modulate their structural investments to best maintain and utilise their physiological capabilities, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1040 tree species located in 53 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five genetically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions also influenced structural traits with ρx decreasing with increased soil fertility and decreasing with increased temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus although genetically determined foliar traits such as those associated with leaf construction costs coordinate

  12. COS FUV BOA performance at LP4

    NASA Astrophysics Data System (ADS)

    White, James

    2016-10-01

    This is a program to observe the photometric standard star G191-B2B with the bright object aperture (BOA) for one external orbit. Spectra will be obtained in the G130M, G160M, and G140L gratings at one cenwave each to 1) roughly measure the spectral resolution and 2) obtain the cross-dispersion profiles

  13. Parallel selective pressures drive convergent diversification of phenotypes in pythons and boas.

    PubMed

    Esquerré, Damien; Scott Keogh, J

    2016-07-01

    Pythons and boas are globally distributed and distantly related radiations with remarkable phenotypic and ecological diversity. We tested whether pythons, boas and their relatives have evolved convergent phenotypes when they display similar ecology. We collected geometric morphometric data on head shape for 1073 specimens representing over 80% of species. We show that these two groups display strong and widespread convergence when they occupy equivalent ecological niches and that the history of phenotypic evolution strongly matches the history of ecological diversification, suggesting that both processes are strongly coupled. These results are consistent with replicated adaptive radiation in both groups. We argue that strong selective pressures related to habitat-use have driven this convergence. Pythons and boas provide a new model system for the study of macro-evolutionary patterns of morphological and ecological evolution and they do so at a deeper level of divergence and global scale than any well-established adaptive radiation model systems. © 2016 John Wiley & Sons Ltd/CNRS.

  14. Measuring (bio)physical tree properties using accelerometers

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf; Gentine, Pierre; Selker, John; van de Giesen, Nick

    2017-04-01

    Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of heat, water, and CO2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree dynamics are often expensive, or difficult due to challenging environments. We demonstrate the potential of measuring (bio)physical properties of trees using robust and affordable acceleration sensors. Tree sway is dependent on e.g. mass and wind energy absorption of the tree. By measuring tree acceleration we can relate the tree motion to external loads (e.g. precipitation), and tree (bio)physical properties (e.g. mass). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, precipitation, and canopy drag. This presentation aims to show the concept of using accelerometers to measure tree dynamics, and we acknowledge that the presented example applications is not an exhaustive list. Further analyses are the scope of current research, and we hope to inspire others to explore additional applications.

  15. Phylogeographic and population genetic analyses reveal multiple species of Boa and independent origins of insular dwarfism.

    PubMed

    Card, Daren C; Schield, Drew R; Adams, Richard H; Corbin, Andrew B; Perry, Blair W; Andrew, Audra L; Pasquesi, Giulia I M; Smith, Eric N; Jezkova, Tereza; Boback, Scott M; Booth, Warren; Castoe, Todd A

    2016-09-01

    Boa is a Neotropical genus of snakes historically recognized as monotypic despite its expansive distribution. The distinct morphological traits and color patterns exhibited by these snakes, together with the wide diversity of ecosystems they inhabit, collectively suggest that the genus may represent multiple species. Morphological variation within Boa also includes instances of dwarfism observed in multiple offshore island populations. Despite this substantial diversity, the systematics of the genus Boa has received little attention until very recently. In this study we examined the genetic structure and phylogenetic relationships of Boa populations using mitochondrial sequences and genome-wide SNP data obtained from RADseq. We analyzed these data at multiple geographic scales using a combination of phylogenetic inference (including coalescent-based species delimitation) and population genetic analyses. We identified extensive population structure across the range of the genus Boa and multiple lines of evidence for three widely-distributed clades roughly corresponding with the three primary land masses of the Western Hemisphere. We also find both mitochondrial and nuclear support for independent origins and parallel evolution of dwarfism on offshore island clusters in Belize and Cayos Cochinos Menor, Honduras. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Measuring Tree Properties and Responses Using Low-Cost Accelerometers

    PubMed Central

    van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf; Gentine, Pierre; Guerin, Marceau; Oliveira, Rafael S.; Wagner, Jim; Selker, John; van de Giesen, Nick

    2017-01-01

    Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of momentum, heat, water, and CO2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree properties such as mass and canopy interception of precipitation are often expensive or difficult due to challenging environments. This paper aims to demonstrate the concept of using robust and affordable accelerometers to measure tree properties and responses. Tree sway is dependent on mass, canopy structure, drag coefficient, and wind forcing. By measuring tree acceleration, we can relate the tree motion to external forcing (e.g., wind, precipitation and related canopy interception) and tree physical properties (e.g., mass, elasticity). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, canopy interception of precipitation, and canopy–atmosphere turbulent exchange. PMID:28492477

  17. Are ecologically important tree species the most useful? A case study from indigenous people in the Bolivian Amazon.

    PubMed

    Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria

    2014-03-01

    Researchers have argued that indigenous peoples preferably use the most apparent plant species, particularly for medicinal uses. However, the association between the ecological importance of a species and its usefulness remains unclear. In this paper we quantify such association for six use categories (firewood, construction, materials, food, medicines and other uses). We collected data on the uses of 58 tree species, as reported by 93 informants in 22 villages in the Tsimane' territory (Bolivian Amazon). We calculated the ecological importance of the same species by deriving their importance value index (IVI) in 48 0.1-ha old-growth forest plots. Matching both data sets, we found a positive relation between the IVI of a species and its overall use value (UV) as well as with its UV for construction and materials. We found a negative relation between IVI and UV for species that were reportedly used for medicine and food uses, and no clear pattern for the other categories. We hypothesize that species used for construction or crafting purposes because of their physical properties are more easily substitutable than species used for medicinal or edible purposes because of their chemical properties.

  18. Are ecologically important tree species the most useful? A case study from indigenous people in the Bolivian Amazon

    PubMed Central

    Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J.; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria

    2015-01-01

    Researchers have argued that indigenous peoples preferably use the most apparent plant species, particularly for medicinal uses. However, the association between the ecological importance of a species and its usefulness remains unclear. In this paper we quantify such association for six use categories (firewood, construction, materials, food, medicines and other uses). We collected data on the uses of 58 tree species, as reported by 93 informants in 22 villages in the Tsimane’ territory (Bolivian Amazon). We calculated the ecological importance of the same species by deriving their importance value index (IVI) in 48 0.1-ha old-growth forest plots. Matching both data sets, we found a positive relation between the IVI of a species and its overall use value (UV) as well as with its UV for construction and materials. We found a negative relation between IVI and UV for species that were reportedly used for medicine and food uses, and no clear pattern for the other categories. We hypothesize that species used for construction or crafting purposes because of their physical properties are more easily substitutable than species used for medicinal or edible purposes because of their chemical properties. PMID:26097243

  19. The phenology pattern of rubber trees in plantation and its impacts on rubber tree structure, water and carbon cycles

    NASA Astrophysics Data System (ADS)

    Liu, W.; Giambelluca, T. W.; Mudd, R. G.

    2012-12-01

    Commercial rubber (Hevea Brasiliensis) is originally native to the Amazon rainforest and it has become one of the important commercial crops in Mainland Southeast Asia. Similarly to some trees species in Amazon but quite distinctly from other native forests in Southeast Asia, rubber tree sheds its leaves in the middle of dry season and flushes new leaves before the onset of the wet season. Moreover, the mountane mainland Southeast Asia is heavily influenced by the monsoon climate which has most the precipitation in the wet season while almost no rainfall in the dry season. It is believed that the phenology pattern of rubber interacted with local climate would not only regulate the seasonal rubber plantation structures but also further alter the local energy and water budget. However, it is still lack of solid understandings of how the phenology patterns in terms of the leaf area index (LAI) changes of the rubber tree response to environmental drivers. The study tries to shed lights on the issue from analyses of a various types of in-situ field data combined with 3 years' tower flux measurements collected within the rubber plantations. It concludes that: 1) Both the monthly tree height increment and the monthly biomass accumulation are highly correlated with the LAI changes, which have the low rate of changes in the dry season versus the relative high rate of changes in the wet season; 2) the daily evapotranspiration (ET) of the rubber tree is very sensitive to the daily LAI changes in the dry season (R2 > 0.9); 3) the LAI changes, especially the leaf drops, are majorly determined by the accumulated precipitation in the past three months.

  20. Diphtheroid colitis in a Boa constrictor infected with amphibian Entamoeba sp.

    PubMed

    Richter, Barbara; Kübber-Heiss, Anna; Weissenböck, Herbert

    2008-05-06

    A female boa (Boa constrictor) from a zoological collection was submitted for necropsy after sudden death. Prominent pathological findings included a diphtheroid colitis, endoparasitism, focal pneumonia and inclusion bodies typical for inclusion body disease (IBD). In the colon entamoebae were identified, which differed in size and distribution from Entamoeba invadens. Gene sequence analysis of the 18S ribosomal RNA revealed 100% similarity with an Entamoeba species from the African bullfrog (Pyxicephalus adspersus), probably Entamoeba ranarum. The snake was possibly immunosuppressed, and the source of infection remains unclear. This is the first report of an infection with an amphibian Entamoeba species associated with colitis in a snake.

  1. Lidar observed seasonal variation of vertical canopy structure in the Amazon evergreen forests

    NASA Astrophysics Data System (ADS)

    Tang, H.; Dubayah, R.

    2017-12-01

    Both light and water are important environmental factors governing tree growth. Responses of tropical forests to their changes are complicated and can vary substantially across different spatial and temporal scales. Of particular interest is the dry-season greening-up of Amazon forests, a phenomenon undergoing considerable debates whether it is real or a "light illusion" caused by artifacts of passive optical remote sensing techniques. Here we analyze seasonal dynamic patterns of vertical canopy structure in the Amazon forests using lidar observations from NASA's Ice, Cloud, and and land Elevation Satellite (ICESat). We found that the net greening of canopy layer coincides with the wet-to-dry transition period, and its net browning occurs mostly at the late dry season. The understory also shows a seasonal cycle, but with an opposite variation to canopy and minimal correlation to seasonal variations in rainfall or radiation. Our results further suggest a potential interaction between canopy layers in the light regime that can optimize the growth of Amazon forests during the dry season. This light regime variability that exists in both spatial and temporal domains can better reveal the dry-season greening-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  2. GuiaTreeKey, a multi-access electronic key to identify tree genera in French Guiana.

    PubMed

    Engel, Julien; Brousseau, Louise; Baraloto, Christopher

    2016-01-01

    The tropical rainforest of Amazonia is one of the most species-rich ecosystems on earth, with an estimated 16000 tree species. Due to this high diversity, botanical identification of trees in the Amazon is difficult, even to genus, often requiring the assistance of parataxonomists or taxonomic specialists. Advances in informatics tools offer a promising opportunity to develop user-friendly electronic keys to improve Amazonian tree identification. Here, we introduce an original multi-access electronic key for the identification of 389 tree genera occurring in French Guiana terra-firme forests, based on a set of 79 morphological characters related to vegetative, floral and fruit characters. Its purpose is to help Amazonian tree identification and to support the dissemination of botanical knowledge to non-specialists, including forest workers, students and researchers from other scientific disciplines. The electronic key is accessible with the free access software Xper ², and the database is publicly available on figshare: https://figshare.com/s/75d890b7d707e0ffc9bf (doi: 10.6084/m9.figshare.2682550).

  3. Seasonal variations in the stable oxygen isotope ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest.

    PubMed

    Ohashi, Shinta; Durgante, Flávia M; Kagawa, Akira; Kajimoto, Takuya; Trumbore, Susan E; Xu, Xiaomei; Ishizuka, Moriyoshi; Higuchi, Niro

    2016-03-01

    In Amazonian non-flooded forests with a moderate dry season, many trees do not form anatomically definite annual rings. Alternative indicators of annual rings, such as the oxygen (δ(18)Owc) and carbon stable isotope ratios of wood cellulose (δ(13)Cwc), have been proposed; however, their applicability in Amazonian forests remains unclear. We examined seasonal variations in the δ(18)Owc and δ(13)Cwc of three common species (Eschweilera coriacea, Iryanthera coriacea, and Protium hebetatum) in Manaus, Brazil (Central Amazon). E. coriacea was also sampled in two other regions to determine the synchronicity of the isotopic signals among different regions. The annual cyclicity of δ(18)Owc variation was cross-checked by (14)C dating. The δ(18)Owc showed distinct seasonal variations that matched the amplitude observed in the δ(18)O of precipitation, whereas seasonal δ(13)Cwc variations were less distinct in most cases. The δ(18)Owc variation patterns were similar within and between some individual trees in Manaus. However, the δ(18)Owc patterns of E. coriacea differed by region. The ages of some samples estimated from the δ(18)Owc cycles were offset from the ages estimated by (14)C dating. In the case of E. coriacea, this phenomenon suggested that missing or wedging rings may occur frequently even in well-grown individuals. Successful cross-dating may be facilitated by establishing δ(18)Owc master chronologies at both seasonal and inter-annual scales for tree species with distinct annual rings in each region.

  4. Evidence for viable, non-clonal but fatherless Boa constrictors.

    PubMed

    Booth, Warren; Johnson, Daniel H; Moore, Sharon; Schal, Coby; Vargo, Edward L

    2011-04-23

    Parthenogenesis in vertebrates is considered an evolutionary novelty. In snakes, all of which exhibit genetic sex determination with ZZ : ZW sex chromosomes, this rare form of asexual reproduction has failed to yield viable female WW offspring. Only through complex experimental manipulations have WW females been produced, and only in fish and amphibians. Through microsatellite DNA fingerprinting, we provide the first evidence of facultative parthenogenesis in a Boa constrictor, identifying multiple, viable, non-experimentally induced females for the first time in any vertebrate lineage. Although the elevated homozygosity of the offspring in relation to the mother suggests that the mechanism responsible may be terminal fusion automixis, no males were produced, potentially indicating maternal sex chromosome hemizygosity (WO). These findings provide the first evidence of parthenogenesis in the family Boidae (Boas), and suggest that WW females may be more common within basal reptilian lineages than previously assumed.

  5. Evidence for viable, non-clonal but fatherless Boa constrictors

    PubMed Central

    Booth, Warren; Johnson, Daniel H.; Moore, Sharon; Schal, Coby; Vargo, Edward L.

    2011-01-01

    Parthenogenesis in vertebrates is considered an evolutionary novelty. In snakes, all of which exhibit genetic sex determination with ZZ : ZW sex chromosomes, this rare form of asexual reproduction has failed to yield viable female WW offspring. Only through complex experimental manipulations have WW females been produced, and only in fish and amphibians. Through microsatellite DNA fingerprinting, we provide the first evidence of facultative parthenogenesis in a Boa constrictor, identifying multiple, viable, non-experimentally induced females for the first time in any vertebrate lineage. Although the elevated homozygosity of the offspring in relation to the mother suggests that the mechanism responsible may be terminal fusion automixis, no males were produced, potentially indicating maternal sex chromosome hemizygosity (WO). These findings provide the first evidence of parthenogenesis in the family Boidae (Boas), and suggest that WW females may be more common within basal reptilian lineages than previously assumed. PMID:21047849

  6. Consecutive virgin births in the new world boid snake, the Colombian rainbow Boa, Epicrates maurus.

    PubMed

    Booth, Warren; Million, Larry; Reynolds, R Graham; Burghardt, Gordon M; Vargo, Edward L; Schal, Coby; Tzika, Athanasia C; Schuett, Gordon W

    2011-01-01

    Until recently, facultative automictic parthenogenesis within the squamate reptiles exhibiting ZZ:ZW genetic sex determination has resulted in single reproductive events producing male (ZZ) or female (ZW) offspring. With the recent discovery of viable parthenogenetically produced female (WW) Boa constrictors, the existence of further parthenogenetic events resulting in WW females was questioned. Here, we provide genetic evidence for consecutive virgin births by a female Colombian rainbow boa (Epicrates maurus), resulting in the production of WW females likely through terminal fusion automixis. Samples were screened at 22 microsatellite loci with 12 amplifying unambiguous products. Of these, maternal heterozygosity was observed in 4, with the offspring differentially homozygous at each locus. This study documents the first record of parthenogenesis within the genus Epicrates, a second within the serpent lineage Boidae, and the third genetically confirmed case of consecutive virgin births of viable offspring within any vertebrate lineage. Unlike the recent record in Boa constrictors, the female described here was isolated from conspecifics from birth, demonstrating that males are not required to stimulate parthenogenetic reproduction in this species and possibly other Boas.

  7. Molecular identification of wild triatomines of the genus Rhodnius in the Bolivian Amazon: Strategy and current difficulties.

    PubMed

    Brenière, Simone Frédérique; Condori, Edwin Wily; Buitrago, Rosio; Sosa, Luis Fernando; Macedo, Catarina Lopes; Barnabé, Christian

    2017-07-01

    The Amazon region has recently been considered as endemic in Latin America. In Bolivia, the vast Amazon region is undergoing considerable human migrations and substantial anthropization of the environment, potentially renewing the danger of establishing the transmission of Chagas disease. The cases of human oral contamination occurring in 2010 in the town of Guayaramerín provided reasons to intensify research. As a result, the goal of this study was to characterize the species of sylvatic triatomines circulating in the surroundings of Yucumo (Beni, Bolivia), a small Amazonian city at the foot of the Andes between the capital (La Paz) and Trinidad the largest city of Beni. The triatomine captures were performed with mice-baited adhesive traps mostly settled in palm trees in forest fragments and pastures. Species were identified by morphological observation, dissection of genitalia, and sequencing of three mitochondrial gene fragments and one nuclear fragment. Molecular analysis was based on (i) the identity score of the haplotypes with GenBank sequences through the BLAST algorithm and (ii) construction of phylogenetic trees. Thirty-four triatomines, all belonging to the Rhodnius genus, of which two were adult males, were captured in palm trees in forest fragments and pastures (overall infestation rate, 12.3%). The morphology of the phallic structures in the two males confirmed the R. stali species. For the other specimens, after molecular sequencing, only one specimen was identified with confidence as belonging to Rhodnius robustus, the others belonged to one of the species of the Rhodnius pictipes complex, probably Rhodnius stali. The two species, R. robustus and R. stali, had previously been reported in the Alto Beni region (edge of the Amazon region), but not yet in the Beni department situated in the Amazon region. Furthermore, the difficulties of molecular characterization of closely related species within the three complexes of the genus Rhodnius are

  8. Fast demographic traits promote high diversification rates of Amazonian trees

    PubMed Central

    Baker, Timothy R; Pennington, R Toby; Magallon, Susana; Gloor, Emanuel; Laurance, William F; Alexiades, Miguel; Alvarez, Esteban; Araujo, Alejandro; Arets, Eric J M M; Aymard, Gerardo; de Oliveira, Atila Alves; Amaral, Iêda; Arroyo, Luzmila; Bonal, Damien; Brienen, Roel J W; Chave, Jerome; Dexter, Kyle G; Di Fiore, Anthony; Eler, Eduardo; Feldpausch, Ted R; Ferreira, Leandro; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje; Higuchi, Niro; Honorio, Eurídice; Huamantupa, Isau; Killeen, Tim J; Laurance, Susan; Leaño, Claudio; Lewis, Simon L; Malhi, Yadvinder; Marimon, Beatriz Schwantes; Marimon Junior, Ben Hur; Monteagudo Mendoza, Abel; Neill, David; Peñuela-Mora, Maria Cristina; Pitman, Nigel; Prieto, Adriana; Quesada, Carlos A; Ramírez, Fredy; Ramírez Angulo, Hirma; Rudas, Agustin; Ruschel, Ademir R; Salomão, Rafael P; de Andrade, Ana Segalin; Silva, J Natalino M; Silveira, Marcos; Simon, Marcelo F; Spironello, Wilson; ter Steege, Hans; Terborgh, John; Toledo, Marisol; Torres-Lezama, Armando; Vasquez, Rodolfo; Vieira, Ima Célia Guimarães; Vilanova, Emilio; Vos, Vincent A; Phillips, Oliver L; Wiens, John

    2014-01-01

    The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits – short turnover times – are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests. PMID:24589190

  9. Size and frequency of natural forest disturbances and the Amazon forest carbon balance

    PubMed Central

    Espírito-Santo, Fernando D.B.; Gloor, Manuel; Keller, Michael; Malhi, Yadvinder; Saatchi, Sassan; Nelson, Bruce; Junior, Raimundo C. Oliveira; Pereira, Cleuton; Lloyd, Jon; Frolking, Steve; Palace, Michael; Shimabukuro, Yosio E.; Duarte, Valdete; Mendoza, Abel Monteagudo; López-González, Gabriela; Baker, Tim R.; Feldpausch, Ted R.; Brienen, Roel J.W.; Asner, Gregory P.; Boyd, Doreen S.; Phillips, Oliver L.

    2014-01-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and satellite remote sensing data. We find that small-scale mortality events are responsible for aboveground biomass losses of ~1.7 Pg C y−1 over the entire Amazon region. We also find that intermediate-scale disturbances account for losses of ~0.2 Pg C y−1, and that the largest-scale disturbances as a result of blow-downs only account for losses of ~0.004 Pg C y−1. Simulation of growth and mortality indicates that even when all carbon losses from intermediate and large-scale disturbances are considered, these are outweighed by the net biomass accumulation by tree growth, supporting the inference of an Amazon carbon sink. PMID:24643258

  10. Size and frequency of natural forest disturbances and the Amazon forest carbon balance.

    PubMed

    Espírito-Santo, Fernando D B; Gloor, Manuel; Keller, Michael; Malhi, Yadvinder; Saatchi, Sassan; Nelson, Bruce; Junior, Raimundo C Oliveira; Pereira, Cleuton; Lloyd, Jon; Frolking, Steve; Palace, Michael; Shimabukuro, Yosio E; Duarte, Valdete; Mendoza, Abel Monteagudo; López-González, Gabriela; Baker, Tim R; Feldpausch, Ted R; Brienen, Roel J W; Asner, Gregory P; Boyd, Doreen S; Phillips, Oliver L

    2014-03-18

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and satellite remote sensing data. We find that small-scale mortality events are responsible for aboveground biomass losses of ~1.7 Pg C y(-1) over the entire Amazon region. We also find that intermediate-scale disturbances account for losses of ~0.2 Pg C y(-1), and that the largest-scale disturbances as a result of blow-downs only account for losses of ~0.004 Pg C y(-1). Simulation of growth and mortality indicates that even when all carbon losses from intermediate and large-scale disturbances are considered, these are outweighed by the net biomass accumulation by tree growth, supporting the inference of an Amazon carbon sink.

  11. Tropical forest carbon balance: effects of field- and satellite-based mortality regimes on the dynamics and the spatial structure of Central Amazon forest biomass

    NASA Astrophysics Data System (ADS)

    Di Vittorio, Alan V.; Negrón-Juárez, Robinson I.; Higuchi, Niro; Chambers, Jeffrey Q.

    2014-03-01

    Debate continues over the adequacy of existing field plots to sufficiently capture Amazon forest dynamics to estimate regional forest carbon balance. Tree mortality dynamics are particularly uncertain due to the difficulty of observing large, infrequent disturbances. A recent paper (Chambers et al 2013 Proc. Natl Acad. Sci. 110 3949-54) reported that Central Amazon plots missed 9-17% of tree mortality, and here we address ‘why’ by elucidating two distinct mortality components: (1) variation in annual landscape-scale average mortality and (2) the frequency distribution of the size of clustered mortality events. Using a stochastic-empirical tree growth model we show that a power law distribution of event size (based on merged plot and satellite data) is required to generate spatial clustering of mortality that is consistent with forest gap observations. We conclude that existing plots do not sufficiently capture losses because their placement, size, and longevity assume spatially random mortality, while mortality is actually distributed among differently sized events (clusters of dead trees) that determine the spatial structure of forest canopies.

  12. Natural variation of selenium in Brazil nuts and soils from the Amazon region.

    PubMed

    Silva Junior, E C; Wadt, L H O; Silva, K E; Lima, R M B; Batista, K D; Guedes, M C; Carvalho, G S; Carvalho, T S; Reis, A R; Lopes, G; Guilherme, L R G

    2017-12-01

    Brazil nut tree (Bertholletia excelsa) is native of the Amazon rainforest. Brazil nuts are consumed worldwide and are known as the richest food source of selenium (Se). Yet, the reasoning for such Se contents is not well stablished. We evaluated the variation in Se concentration of Brazil nuts from Brazilian Amazon basin, as well as soil properties, including total Se concentration, of the soils sampled directly underneath the trees crown, aiming to investigate which soil properties influence Se accumulation in the nuts. The median Se concentration in Brazil nuts varied from 2.07 mg kg - 1 (in Mato Grosso state) to 68.15 mg kg - 1 (in Amazonas state). Therefore, depending on its origin, a single Brazil nut could provide from 11% (in the Mato Grosso state) up to 288% (in the Amazonas state) of the daily Se requirement for an adult man (70 μg). The total Se concentration in the soil also varied considerably, ranging from <65.76 to 625.91 μg kg - 1 , with highest Se concentrations being observed in soil samples from the state of Amazonas. Se accumulation in Brazil nuts generally increased in soils with higher total Se content, but decreased under acidic conditions in the soil. This indicates that, besides total soil Se concentration, soil acidity plays a major role in Se uptake by Brazil nut trees, possibly due to the importance of this soil property to Se retention in the soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Measuring Tree Properties and Responses Using Low-Cost Accelerometers

    DOE PAGES

    van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf; ...

    2017-05-11

    Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of momentum, heat, water, and CO 2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree properties such as mass and canopy interception of precipitation are often expensive or difficult due to challenging environments. This paper aims to demonstrate the concept of using robust and affordable accelerometers to measure tree properties and responses. Tree sway is dependent on mass, canopy structure, drag coefficient, and wind forcing.more » By measuring tree acceleration, we can relate the tree motion to external forcing (e.g., wind, precipitation and related canopy interception) and tree physical properties (e.g., mass, elasticity). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, canopy interception of precipitation, and canopy–atmosphere turbulent exchange.« less

  14. Measuring Tree Properties and Responses Using Low-Cost Accelerometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf

    Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of momentum, heat, water, and CO 2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree properties such as mass and canopy interception of precipitation are often expensive or difficult due to challenging environments. This paper aims to demonstrate the concept of using robust and affordable accelerometers to measure tree properties and responses. Tree sway is dependent on mass, canopy structure, drag coefficient, and wind forcing.more » By measuring tree acceleration, we can relate the tree motion to external forcing (e.g., wind, precipitation and related canopy interception) and tree physical properties (e.g., mass, elasticity). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, canopy interception of precipitation, and canopy–atmosphere turbulent exchange.« less

  15. Identification, Characterization, and In Vitro Culture of Highly Divergent Arenaviruses from Boa Constrictors and Annulated Tree Boas: Candidate Etiological Agents for Snake Inclusion Body Disease

    PubMed Central

    Stenglein, Mark D.; Sanders, Chris; Kistler, Amy L.; Ruby, J. Graham; Franco, Jessica Y.; Reavill, Drury R.; Dunker, Freeland; DeRisi, Joseph L.

    2012-01-01

    ABSTRACT Inclusion body disease (IBD) is an infectious fatal disease of snakes typified by behavioral abnormalities, wasting, and secondary infections. At a histopathological level, the disease is identified by the presence of large eosinophilic cytoplasmic inclusions in multiple tissues. To date, no virus or other pathogen has been definitively characterized or associated with the disease. Using a metagenomic approach to search for candidate etiologic agents in snakes with confirmed IBD, we identified and de novo assembled the complete genomic sequences of two viruses related to arenaviruses, and a third arenavirus-like sequence was discovered by screening an additional set of samples. A continuous boa constrictor cell line was established and used to propagate and isolate one of the viruses in culture. Viral nucleoprotein was localized and concentrated within large cytoplasmic inclusions in infected cells in culture and tissues from diseased snakes. In total, viral RNA was detected in 6/8 confirmed IBD cases and 0/18 controls. These viruses have a typical arenavirus genome organization but are highly divergent, belonging to a lineage separate from that of the Old and New World arenaviruses. Furthermore, these viruses encode envelope glycoproteins that are more similar to those of filoviruses than to those of other arenaviruses. These findings implicate these viruses as candidate etiologic agents of IBD. The presence of arenaviruses outside mammals reveals that these viruses infect an unexpectedly broad range of species and represent a new reservoir of potential human pathogens. PMID:22893382

  16. Population structure of an endemic vulnerable species, the Jamaican boa (Epicrates subflavus).

    PubMed

    Tzika, Athanasia C; Koenig, Susan; Miller, Ricardo; Garcia, Gerardo; Remy, Christophe; Milinkovitch, Michel C

    2008-01-01

    The Jamaican boa (Epicrates subflavus; also called Yellow boa) is an endemic species whose natural populations greatly and constantly declined since the late 19th century, mainly because of predation by introduced species, human persecution, and habitat destruction. In-situ conservation of the Jamaican boa is seriously hindered by the lack of information on demographic and ecological parameters as well as by a poor understanding of the population structure and species distribution in the wild. Here, using nine nuclear microsatellite loci and a fragment of the mitochondrial cytochrome b gene from 87 wild-born individuals, we present the first molecular genetic analyses focusing on the diversity and structure of the natural populations of the Jamaican boa. A model-based clustering analysis of multilocus microsatellite genotypes identifies three groups that are also significantly differentiated on the basis of F-statistics. Similarly, haplotypic network reconstruction methods applied on the cytochrome b haplotypes isolated here identify two well-differentiated haplogroups separated by four to six fixed mutations. Bayesian and metaGA analyses of the mitochondrial data set combined with sequences from other Boidae species indicate that rooting of the haplotypic network occurs most likely between the two defined haplogroups. Both analyses (based on nuclear and mitochondrial markers) underline an Eastern vs. (Western + Central) pattern of differentiation in agreement with geological data and patterns of differentiation uncovered in other vertebrate and invertebrate Jamaican species. Our results provide important insights for improving management of ex-situ captive populations and for guiding the development of proper in-situ species survival and habitat management plans for this spectacular, yet poorly known and vulnerable, snake.

  17. Increased Frequency of Large Blowdown Formation in Years With Hotter Dry Seasons in the Northwestern Amazon

    NASA Astrophysics Data System (ADS)

    Rifai, S. W.; Anderson, L. O.; Bohlman, S.

    2015-12-01

    Blowdowns, which are large tree mortality events caused by downbursts, create large pulses of carbon emissions in the short term and alter successional dynamics and species composition of forests, thus affecting long term biogeochemical cycling of tropical forests. Changing climate, especially increasing temperatures and frequency of extreme climate events, may cause changes in the frequency of blowdowns, but there has been little spatiotemporal analysis to associate the interannual variation in the frequency of blowdowns with annual climate parameters. We mapped blowdowns greater than 25 ha using a time series of Landsat images from 1984-2012 in the northwestern Amazon to estimate the annual size distribution of these blowdowns. The difference in forest area affected by blowdowns between the years with the highest and lowest blowdown activity were on the order of 10 - 30 times greater depending on location. Spatially, we found the probability of large blowdowns to be higher in regions with higher annual rainfall. Temporally, we found a positive correlation between the probability of large blowdown events and maximum dry season air temperature (R2 = 0.1-0.46). Mean and maximum blowdown size also increased with maximum dry season air temperature. The strength of these relationships varied between scene locations which may be related to cloud cover obscuring the land surface in the satellite images, or biophysical characteristics of the sites. Potentially, elevated dry season temperatures during the transition from the dry season to the wet season (October - December) may exacerbate atmospheric instabilities, which promote downburst occurrences. Most global circulation models predict dry season air temperatures to increase 2-5 ℃ in the northwestern Amazon by 2050. Should the blowdown disturbance regime continue increasing with elevated dry season temperatures, the northwestern Amazon is likely to experience more catastrophic tree mortality events which has direct

  18. Habitat Association, Size, Stomach Contents, and Reproductive Condition of Puerto Rican Boas (Epicrates inornatus)

    Treesearch

    JAMES W. WILEY

    2003-01-01

    The Puerto Rican boa occurs in a variety of habitats, including wet montane forest, lowland wet forest, mangrove forest, wet limestone karst, and offshore cays, and from sea level to 480 m. Mean SVL of 49 encountered boas (live and road-killed) was 136.9 ± 35.1 (range = 38.8–205 cm), with a mean mass of 952.1 ± 349.0 g (n = 47; range = 140–1662 g). Prey in digestive...

  19. Short-term effects of reduced-impact logging on Copaifera spp. (Fabaceae) regeneration in eastern Amazon

    Treesearch

    Carine Klauberg; Edson Vidal; Carlos Alberto Silva; Andrew Thomas Hudak; Manuela Oliveira; Pedro Higuchi

    2017-01-01

    Timber management directly influences the population dynamics of tree species, like Copaifera spp. (copaíba), which provide oil-resin with ecological and economic importance. The aim of this study was to evaluate the structure and population dynamics of Copaifera in unmanaged and managed stands by reduced-impact logging (RIL) in eastern Amazon in Pará state, Brazil....

  20. Amazon forests did not green up during the 2005 drought

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Ganguly, S.; Hashimoto, H.; Devadiga, S.; Vermote, E. F.; Knyazikhin, Y.; Nemani, R. R.; Myneni, R. B.

    2009-12-01

    The sensitivity of Amazon rainforests to dry-season droughts remains unresolved with reports of enhanced tree mortality and forest fires, on one hand, and, excessive forest green-up, on the other. Here using the latest and improved version of satellite-derived vegetation greenness data - Collection 5 (C5) Enhanced Vegetation Index (EVI) - we report that the there is no evidence of large-scale greening of the Amazon during the 2005 drought - approximately 11%-12% of these forests display greening, while, 28%-29% show browning or no-change, and for the rest the data are not of sufficient quality to characterize any changes. In addition, independent satellite-derived data on precipitation, surface radiation and aerosols do not substantiate underlying assumptions of the hypothesis of enhanced photosynthetic capacity of intact Amazon forests stimulated by increased light availability during a drought. First, interannual changes in dry-season greenness are unrelated to concurrent changes in light availability. Second, the 2005 drought cannot be used as a surrogate for light availability to these rainforests owing to persistently high aerosol loads in the atmosphere. Third, the spatial extent and magnitude of greening do not change systematically with drought severity. Finally, the changes in vegetation activity of these forests during the drought-stricken dry season of 2005 are not unique in comparison to that observed during dry seasons of non-drought years. Our analysis also demonstrates the critical role of biomass burning aerosols in limiting light availability to water stressed Amazon forests during the dry season of 2005. This will have important implications for the sensitivity of these forests to similar droughts in future.

  1. FREUD, JUNG AND BOAS: THE PSYCHOANALYTIC ENGAGEMENT WITH ANTHROPOLOGY REVISITED.

    PubMed

    Kenny, Robert

    2015-06-20

    Sigmund Freud's and C. G. Jung's turn to evolutionist anthropological material after 1909 is usually seen as a logical progression of their long-term interest in such material. It is also seen that they used this material ignorant of the significant challenges to the evolutionist paradigm underpinning such material, in particular the challenges led by Franz Boas. This paper argues otherwise: that both psychologists' turnings to such material was a new development, that neither had shown great interest in such material before 1909, and that their turnings to such material, far from being taken in ignorance of the challenges to evolutionist anthropology, were engagements with those challenges, because the evolutionist paradigm lay at the base of psychoanalysis. It argues that it is no coincidence that this engagement occurred after their return from America in 1909, where they had come into first-hand contact with the challenges of Franz Boas.

  2. Repeat-Pass Multi-Temporal Interferometric SAR Coherence Variations with Amazon Floodplain and Lake Habitats

    NASA Astrophysics Data System (ADS)

    Jung, H.; Alsdorf, D.

    2006-12-01

    Monitoring discharge in the main channels of rivers and upland tributaries as well as storage changes in floodplain lakes is necessary for understanding flooding hazards, methane production, sediment transport, and nutrient exchange. Interferometric processing of synthetic aperture radar (SAR) data may enable hydrologists to detect environmental and ecological changes in hydrological systems over space and time. An aim of our experiments is to characterize interferometric SAR coherence variations that occur in Amazon aquatic habitats. We analyze coherence variations in JERS-1 data at three central Amazon sites; Lake Balbina, the Cabaliana floodplain, and the confluence of the Purus and Amazon rivers. Because radar pulse interactions with inundated vegetation typically follow a double-bounce travel path which returns energy to the antenna, coherence will vary with vegetation type, physical baseline, and temporal baseline. Balbina's vegetation consists mostly of forest and inundated trunks of dead, leafless trees as opposed to Cabaliana and Amazon- Purus (dominated by flooded forests), thus it serves to isolate the vegetation signal. Coherence variations with baselines were determined from 253 interferograms at Balbina, 210 at Calbaliana, and 153 at Purus. The average temporal and perpendicular baselines (mean std.) are 574 394 days and 1708 1159 m at Balbina, 637 435 days and 1381 981 m at Cabaliana, and 587 425 days and 1430 964 m at Purus. Balbina has a stronger coherence than either Cabaliana or Amazon-Purus. With results of Mann-Whitney statistical tests, Balbina has a difference between terre-firme and flooded coherence values plotted with perpendicular baseline but Cabaliana and Amazon-Purus do not show this difference. Balbina has a linearly decreasing trend in coherence plotted with temporal baseline whereas Cabaliana and Amazon-Purus have a steep drop-off, non- linear change. A strong annual periodicity is evident on power spectrums of the coherence values

  3. Questioning the Influence of Sunspots on Amazon Hydrology: Even a Broken Clock Tells the Right Time Twice a Day

    NASA Astrophysics Data System (ADS)

    Baker, J. C. A.; Gloor, M.; Boom, A.; Neill, D. A.; Cintra, B. B. L.; Clerici, S. J.; Brienen, R. J. W.

    2018-02-01

    It was suggested in a recent article that sunspots drive decadal variation in Amazon River flow. This conclusion was based on a novel time series decomposition method used to extract a decadal signal from the Amazon River record. We have extended this analysis back in time, using a new hydrological proxy record of tree ring oxygen isotopes (δ18OTR). Consistent with the findings of Antico and Torres, we find a positive correlation between sunspots and the decadal δ18OTR cycle from 1903 to 2012 (r = 0.60, p < 0.001). However, the relationship does not persist into the preceding century and even becomes weakly negative (r = -0.30, p = 0.11, 1799-1902). This result casts considerable doubt over the mechanism by which sunspots are purported to influence Amazon hydrology.

  4. The importance of chemosensory clues in Aguaruna tree classification and identification.

    PubMed

    Jernigan, Kevin A

    2008-05-03

    The ethnobotanical literature still contains few detailed descriptions of the sensory criteria people use for judging membership in taxonomic categories. Olfactory criteria in particular have been explored very little. This paper will describe the importance of odor for woody plant taxonomy and identification among the Aguaruna Jívaro of the northern Peruvian Amazon, focusing on the Aguaruna category númi (trees excluding palms). Aguaruna informants almost always place trees that they consider to have a similar odor together as kumpají - 'companions,' a metaphor they use to describe trees that they consider to be related. The research took place in several Aguaruna communities in the upper Marañón region of the Peruvian Amazon. Structured interview data focus on informant criteria for membership in various folk taxa of trees. Informants were also asked to explain what members of each group of related companions had in common. This paper focuses on odor and taste criteria that came to light during these structured interviews. Botanical voucher specimens were collected, wherever possible. Of the 182 tree folk genera recorded in this study, 51 (28%) were widely considered to possess a distinctive odor. Thirty nine of those (76%) were said to have odors similar to some other tree, while the other 24% had unique odors. Aguaruna informants very rarely described tree odors in non-botanical terms. Taste was used mostly to describe trees with edible fruits. Trees judged to be related were nearly always in the same botanical family. The results of this study illustrate that odor of bark, sap, flowers, fruit and leaves are important clues that help the Aguaruna to judge the relatedness of trees found in their local environment. In contrast, taste appears to play a more limited role. The results suggest a more general ethnobotanical hypothesis that could be tested in other cultural settings: people tend to consider plants with similar odors to be related, but say that

  5. Modeling the Complex Impacts of Timber Harvests to Find Optimal Management Regimes for Amazon Tidal Floodplain Forests

    PubMed Central

    Fortini, Lucas B.; Cropper, Wendell P.; Zarin, Daniel J.

    2015-01-01

    At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine

  6. Modeling the complex impacts of timber harvests to find optimal management regimes for Amazon tidal floodplain forests

    USGS Publications Warehouse

    Fortini, Lucas B.; Cropper, Wendell P.; Zarin, Daniel J.

    2015-01-01

    At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine

  7. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon.

    PubMed

    Zuleta, Daniel; Duque, Alvaro; Cardenas, Dairon; Muller-Landau, Helene C; Davies, Stuart J

    2017-10-01

    Extreme climatic events affecting the Amazon region are expected to become more frequent under ongoing climate change. In this study, we assessed the responses to the 2010 drought of over 14,000 trees ≥10 cm dbh in a 25 ha lowland forest plot in the Colombian Amazon and how these responses varied among topographically defined habitats, with tree size, and with species wood density. Tree mortality was significantly higher during the 2010-2013 period immediately after the drought than in 2007-2010. The post-drought increase in mortality was stronger for trees located in valleys (+243%) than for those located on slopes (+67%) and ridges (+57%). Tree-based generalized linear mixed models showed a significant negative effect of species wood density on mortality and no effect of tree size. Despite the elevated post-drought mortality, aboveground biomass increased from 2007 to 2013 by 1.62 Mg ha -1  yr -1 (95% CI 0.80-2.43 Mg ha -1  yr -1 ). Biomass change varied among habitats, with no significant increase on the slopes (1.05, 95% CI -0.76 to 2.85 Mg ha -1  yr -1 ), a significant increase in the valleys (1.33, 95% CI 0.37-2.34 Mg ha -1  yr -1 ), and a strong increase on the ridges (2.79, 95% CI 1.20-4.21 Mg ha -1  yr -1 ). These results indicate a high carbon resilience of this forest to the 2010 drought due to habitat-associated and interspecific heterogeneity in responses including directional changes in functional composition driven by enhanced performance of drought-tolerant species that inhabit the drier ridges. © 2017 by the Ecological Society of America.

  8. Preliminary Genetic Analysis Supports Cave Populations as Targets for Conservation in the Endemic Endangered Puerto Rican Boa (Boidae: Epicrates inornatus)

    PubMed Central

    Revell, Liam J.

    2013-01-01

    The endemic Puerto Rican boa (Epicrates inornatus) has spent 42 years on the Endangered Species List with little evidence for recovery. One significant impediment to effective conservation planning has been a lack of knowledge of the distribution of genetic variability in the species. It has previously been suggested that boas might best be protected around caves that harbor large populations of bats. Prior study has found Puerto Rican boas at relatively high densities in and around bat caves, which they use both to feed and seek shelter. However, it is unknown whether these behaviorally distinctive populations represent a distinct evolutionary lineage, or (conversely) whether caves harbor representative genetic diversity for the species across the island. We provide the first genetic study of the Puerto Rican boa, and we examine and compare genetic diversity and divergence among two cave populations and two surface populations of boas. We find three haplogroups and an apparent lack of phylogeographic structure across the island. In addition, we find that the two cave populations appear no less diverse than the two surface populations, and harbor multiple mtDNA lineages. We discuss the conservation implications of these findings, including a call for the immediate protection of the remaining cave-associated populations of boas. PMID:23691110

  9. Preliminary genetic analysis supports cave populations as targets for conservation in the endemic endangered Puerto Rican boa (Boidae: Epicrates inornatus).

    PubMed

    Puente-Rolón, Alberto R; Reynolds, R Graham; Revell, Liam J

    2013-01-01

    The endemic Puerto Rican boa (Epicrates inornatus) has spent 42 years on the Endangered Species List with little evidence for recovery. One significant impediment to effective conservation planning has been a lack of knowledge of the distribution of genetic variability in the species. It has previously been suggested that boas might best be protected around caves that harbor large populations of bats. Prior study has found Puerto Rican boas at relatively high densities in and around bat caves, which they use both to feed and seek shelter. However, it is unknown whether these behaviorally distinctive populations represent a distinct evolutionary lineage, or (conversely) whether caves harbor representative genetic diversity for the species across the island. We provide the first genetic study of the Puerto Rican boa, and we examine and compare genetic diversity and divergence among two cave populations and two surface populations of boas. We find three haplogroups and an apparent lack of phylogeographic structure across the island. In addition, we find that the two cave populations appear no less diverse than the two surface populations, and harbor multiple mtDNA lineages. We discuss the conservation implications of these findings, including a call for the immediate protection of the remaining cave-associated populations of boas.

  10. Freud, Jung and Boas: the psychoanalytic engagement with anthropology revisited

    PubMed Central

    Kenny, Robert

    2015-01-01

    Sigmund Freud's and C. G. Jung's turn to evolutionist anthropological material after 1909 is usually seen as a logical progression of their long-term interest in such material. It is also seen that they used this material ignorant of the significant challenges to the evolutionist paradigm underpinning such material, in particular the challenges led by Franz Boas. This paper argues otherwise: that both psychologists' turnings to such material was a new development, that neither had shown great interest in such material before 1909, and that their turnings to such material, far from being taken in ignorance of the challenges to evolutionist anthropology, were engagements with those challenges, because the evolutionist paradigm lay at the base of psychoanalysis. It argues that it is no coincidence that this engagement occurred after their return from America in 1909, where they had come into first-hand contact with the challenges of Franz Boas. PMID:26665301

  11. Dimethyl sulfide in the Amazon rain forest: DMS in the Amazon

    DOE PAGES

    Jardine, K.; Yañez-Serrano, A. M.; Williams, J.; ...

    2015-01-08

    Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate 44 through the formation of gaseous sulfuric acid, which can yield secondary sulfate 45 aerosols and contribute to new particle formation. While oceans are generally 46 considered the dominant source of DMS, a shortage of ecosystem observations prevents 47 an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified 48 ambient DMS mixing ratios within and above a primary rainforest ecosystem in the 49 central Amazon Basin in real-time (2010-2011) and at high vertical resolution (2013-50 2014). Elevated but highly variable DMS mixing ratios were observed within themore » 51 canopy, showing clear evidence of a net ecosystem source to the atmosphere during 52 both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios 53 lasting up to 8 hours (up to 160 ppt) often occurred within the canopy and near the 54 surface during many evenings and nights. Daytime gradients showed mixing ratios (up 55 to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain 56 event. The spatial and temporal distribution of DMS suggests that ambient levels and 57 their potential climatic impacts are dominated by local soil and plant emissions. A soil 58 source was confirmed by measurements of DMS emission fluxes from Amazon soils as 59 a function of temperature and soil moisture. Furthermore, light and temperature 60 dependent DMS emissions were measured from seven tropical tree species. Our study 61 has important implications for understanding terrestrial DMS sources and their role in 62 coupled land-atmosphere climate feedbacks. 63« less

  12. Fatal attack on black-tufted-ear marmosets (Callithrix penicillata) by a Boa constrictor: a simultaneous assault on two juvenile monkeys.

    PubMed

    Teixeira, Danilo Simonini; dos Santos, Edmilson; Leal, Silvana Gomes; de Jesus, Andrea Karla; Vargas, Waldemir Paixão; Dutra, Irapuan; Barros, Marilia

    2016-01-01

    Here we report the first witnessed attack on a marmoset by a constrictor snake. The incident occurred mid-morning in a gallery forest within an altered landscape of the Cerrado region of central Brazil and refers to a fatal attack by a Boa constrictor on two juvenile black-tufted-ear marmosets (Callithrix penicillata) simultaneously. The snake captured both individuals at a height of ~ 4 m while a group of eight marmosets traveled through the subcanopy. The actual strike was not seen. After 2 min, the boa fell to the ground with both marmosets in its coils and proceeded to kill one animal at a time through constriction. Two adult marmosets immediately descended to where the snake held its victims on the ground and attacked it. The snake showed no apparent reaction, and after ~ 1-2 min, the adults rejoined the remaining group members that were mobbing and vocalizing from 5 to 6 m above. The group left the scene ~ 7 min after the onset of the attack and was not seen again. The snake loosened its coils 10 min after its initial strike, left the two carcasses on the ground and stayed behind a nearby tree. Thus, we are not sure if the victims were in fact ingested. This report confirms that marmosets are vulnerable to boid snakes and capable of highly organized and cooperative antipredation behavior. It also suggests that snakes pose a greater threat to callitrichids than previously thought.

  13. Trees of the Tapajós: a photographic field guide

    Treesearch

    John A. Parrotta; John K. Francis; Rionaldo R. de Almeida

    1995-01-01

    This book contains illustrations and descriptions, in English and Portuguese, of 172 tree species com­monly found in primary and secondary forests of the centrai Brazilian Amazon region, focussing on the Tapajos National Forest in western Para State. Photographic illustrations for each species include foliage (plus flowers and/or fruits for some species), seedling,...

  14. A new species of Tropidopedia from the Amazon rainforest, Brazil (Hymenoptera: Apidae), with a revised phylogenetic overview of the genus.

    PubMed

    Mahlmann, Thiago; De Oliveira, Marcio L

    2015-10-15

    We describe a new species of the bee tribe Tapinotaspidini, Tropidopedia guaranae Mahlmann & Oliveira sp. n. from the Amazon rainforest, Amazonas, Brazil. We emend the phylogenetic tree of Aguiar & Melo (2007) to include the new species and comment upon some characters presented by those authors.

  15. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis.

    PubMed

    Brienen, Roel J W; Zuidema, Pieter A

    2005-11-01

    Many tropical regions show one distinct dry season. Often, this seasonality induces cambial dormancy of trees, particularly if these belong to deciduous species. This will often lead to the formation of annual rings. The aim of this study was to determine whether tree species in the Bolivian Amazon region form annual rings and to study the influence of the total amount and seasonal distribution of rainfall on diameter growth. Ring widths were measured on stem discs of a total of 154 trees belonging to six rain forest species. By correlating ring width and monthly rainfall data we proved the annual character of the tree rings for four of our study species. For two other species the annual character was proved by counting rings on trees of known age and by radiocarbon dating. The results of the climate-growth analysis show a positive relationship between tree growth and rainfall in certain periods of the year, indicating that rainfall plays a major role in tree growth. Three species showed a strong relationship with rainfall at the beginning of the rainy season, while one species is most sensitive to the rainfall at the end of the previous growing season. These results clearly demonstrate that tree ring analysis can be successfully applied in the tropics and that it is a promising method for various research disciplines.

  16. Reconstructing evolutionary trees in parallel for massive sequences.

    PubMed

    Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam

    2017-12-14

    Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .

  17. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)

    NASA Astrophysics Data System (ADS)

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.; Manzi, A. O.; Souza, R. A. F.; Schumacher, C.; Wang, J.; Andreae, M. O.; Barbosa, H. M. J.; Fan, J.; Fisch, G.; Goldstein, A. H.; Guenther, A.; Jimenez, J. L.; Pöschl, U.; Silva Dias, M. A.; Smith, J. N.; Wendisch, M.

    2015-11-01

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin during two years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from the Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the Introduction to the GoAmazon2014/5 Special Issue, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the two-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. The G1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs also correspond to the clean

  18. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)

    NASA Astrophysics Data System (ADS)

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.; Manzi, A. O.; Souza, R. A. F.; Schumacher, C.; Wang, J.; Andreae, M. O.; Barbosa, H. M. J.; Fan, J.; Fisch, G.; Goldstein, A. H.; Guenther, A.; Jimenez, J. L.; Pöschl, U.; Silva Dias, M. A.; Smith, J. N.; Wendisch, M.

    2016-04-01

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from the Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the introduction to the special issue of GoAmazon2014/5, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G-1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the 2-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. The G-1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs also correspond to the clean and

  19. Flexible mating system in a logged population of Swietenia macrophylla King (Meliaceae): implications for the management of a threatened neotropical tree species

    Treesearch

    Maristerra R. Lemes; Dario Grattapaglia; James Grogan; John Proctor; Rog& eacute Gribel; rio

    2007-01-01

    Microsatellites were used to evaluate the mating system of the remaining trees in a logged population of Swietenia macrophylla, a highly valuable and threatened hardwood species, in the Brazilian Amazon. A total of 25 open pollinated progeny arrays of 16 individuals, with their mother trees, were genotyped using eight highly polymorphic...

  20. Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from themore » Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the introduction to the special issue of GoAmazon2014/5, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G-1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the 2-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. In addition, the G-1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs

  1. Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5)

    DOE PAGES

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.; ...

    2016-04-19

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from themore » Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the introduction to the special issue of GoAmazon2014/5, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G-1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the 2-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. In addition, the G-1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs

  2. Amazon peatlands: quantifying ecosytem's stocks, GHG fluxes and their microbial connections

    NASA Astrophysics Data System (ADS)

    Cadillo-Quiroz, Hinsby; Lähteenoja, Outi; Buessecker, Steffen; van Haren, Joost

    2017-04-01

    Reports of hundreds of peatlands across basins in the West and Central Amazon suggest they play an important, previously not considered regional role in organic carbon (OC) and GHG dynamics. Amazon peatlands store ˜3-6 Gt of OC in their waterlogged soils with strong potential for conversion and release of GHG, in fact our recent, and others', efforts have confirmed variable levels of GHG emissions (CO2, N2O, CH4), as well as variable microbial communities across rich to poor soil peatlands. Here, we report early results of quantification of different components making up the aboveground C stocks, the rates and paths for GHG release, and microbial organisms occurring in three ecologically distinct peatland types in the Pastaza-Marañon region of the Peruvian Amazon. Evaluations were done in duplicated continuous monitoring plots established since 2015 at a "palm swamp" (PS), poor "pole forest" (pPF) and a rich "forested" (rF) peatlands. Although overall vegetation "structure" with a few dominant plus several low frequency species was common across the three sites, their botanical composition and tree density was highly contrasting. Aboveground C stocks content showed the following order among sites: rF>PS>pPF, and hence we tested whether this differences can have a direct effect on CH4 emissions rates. CH4 emissions rates from soils were observed in average at 11, 6, and 0.8 mg-C m-2 h-1for rF, PS, and pPF respectively. However, these estimated fluxes needed to be revised when we develop quantifications of CH4 emissions from tree stems. Tree stem fluxes were detected showing a broad variation with nearly nill emissions in some species all the way to maximum fluxes near to ˜90 mg-C m-2 h-1 in other species. Mauritia flexuosa, a highly dominant palm species in PS and ubiquitous to the region, showed the highest ranges of CH4 flux. In the PS site, overall CH4 flux estimate increased by ˜50% when including stem emission weighted by trees' species, density and heights

  3. Deforestation effects on Amazon forest resilience

    NASA Astrophysics Data System (ADS)

    Zemp, D. C.; Schleussner, C.-F.; Barbosa, H. M. J.; Rammig, A.

    2017-06-01

    Through vegetation-atmosphere feedbacks, rainfall reductions as a result of Amazon deforestation could reduce the resilience on the remaining forest to perturbations and potentially lead to large-scale Amazon forest loss. We track observation-based water fluxes from sources (evapotranspiration) to sinks (rainfall) to assess the effect of deforestation on continental rainfall. By studying 21st century deforestation scenarios, we show that deforestation can reduce dry season rainfall by up to 20% far from the deforested area, namely, over the western Amazon basin and the La Plata basin. As a consequence, forest resilience is systematically eroded in the southwestern region covering a quarter of the current Amazon forest. Our findings suggest that the climatological effects of deforestation can lead to permanent forest loss in this region. We identify hot spot regions where forest loss should be avoided to maintain the ecological integrity of the Amazon forest.

  4. Patents on periphery of the Amazon rainforest.

    PubMed

    de Moura, Emanoel G; Araújo, José R G; Monroe, Paulo H M; de O Nascimento, Ivaneide; Aguiar, Alana C F

    2009-06-01

    In the humid tropics, on the edges of the Amazon forest, the technological challenges to establishing and maintaining productive and sustainable agricultural systems have yet to be overcome. The groups involved in agriculture in the north of Brazil still engage in the practice of slash and burn in order to prepare and fertilize the soil. This produces negative effects for the local and global environment, without the counter-effect of providing social benefits to rural communities. Whether this process continues is of fundamental importance to many countries because it means that slash and burn agriculture is advancing on the Amazon rainforest, with a negative effect on every dimension of national policy. Beyond social political problems the biggest challenge for researchers in the field of tropical agriculture is to offer technological alternatives that can sustain agriculture in soils derived from sedimentary rocks that have been subjected to a high degree of weathering. In this article patented information is also discussed. Experiments undertaken in this region recommend taking advantage of the rapid growth of plants in the tropics. We aimed at proposing a suitable alternative system for a sustainable soil management in the particular conditions of humid tropics, named as "no-till in alley cropping using tree leguminous mulch." This system offers the advantages of: bringing together, in the same space and at the same time, the processes of cultivation and the regeneration of soil fertility.

  5. Contrasting the microbiomes from forest rhizosphere and deeper bulk soil from an Amazon rainforest reserve.

    PubMed

    Fonseca, Jose Pedro; Hoffmann, Luisa; Cabral, Bianca Catarina Azeredo; Dias, Victor Hugo Giordano; Miranda, Marcio Rodrigues; de Azevedo Martins, Allan Cezar; Boschiero, Clarissa; Bastos, Wanderley Rodrigues; Silva, Rosane

    2018-02-05

    Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon

  6. Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions.

    PubMed

    Phillips, Oliver L; Brienen, Roel J W

    2017-12-01

    Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale

  7. Ecological specialization and morphological diversification in Greater Antillean boas.

    PubMed

    Reynolds, R Graham; Collar, David C; Pasachnik, Stesha A; Niemiller, Matthew L; Puente-Rolón, Alberto R; Revell, Liam J

    2016-08-01

    Colonization of islands can dramatically influence the evolutionary trajectories of organisms, with both deterministic and stochastic processes driving adaptation and diversification. Some island colonists evolve extremely large or small body sizes, presumably in response to unique ecological circumstances present on islands. One example of this phenomenon, the Greater Antillean boas, includes both small (<90 cm) and large (4 m) species occurring on the Greater Antilles and Bahamas, with some islands supporting pairs or trios of body-size divergent species. These boas have been shown to comprise a monophyletic radiation arising from a Miocene dispersal event to the Greater Antilles, though it is not known whether co-occurrence of small and large species is a result of dispersal or in situ evolution. Here, we provide the first comprehensive species phylogeny for this clade combined with morphometric and ecological data to show that small body size evolved repeatedly on separate islands in association with specialization in substrate use. Our results further suggest that microhabitat specialization is linked to increased rates of head shape diversification among specialists. Our findings show that ecological specialization following island colonization promotes morphological diversity through deterministic body size evolution and cranial morphological diversification that is contingent on island- and species-specific factors. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  8. CASL L1 Milestone report : CASL.P4.01, sensitivity and uncertainty analysis for CIPS with VIPRE-W and BOA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Yixing; Adams, Brian M.; Secker, Jeffrey R.

    2011-12-01

    The CASL Level 1 Milestone CASL.P4.01, successfully completed in December 2011, aimed to 'conduct, using methodologies integrated into VERA, a detailed sensitivity analysis and uncertainty quantification of a crud-relevant problem with baseline VERA capabilities (ANC/VIPRE-W/BOA).' The VUQ focus area led this effort, in partnership with AMA, and with support from VRI. DAKOTA was coupled to existing VIPRE-W thermal-hydraulics and BOA crud/boron deposit simulations representing a pressurized water reactor (PWR) that previously experienced crud-induced power shift (CIPS). This work supports understanding of CIPS by exploring the sensitivity and uncertainty in BOA outputs with respect to uncertain operating and model parameters. Thismore » report summarizes work coupling the software tools, characterizing uncertainties, and analyzing the results of iterative sensitivity and uncertainty studies. These studies focused on sensitivity and uncertainty of CIPS indicators calculated by the current version of the BOA code used in the industry. Challenges with this kind of analysis are identified to inform follow-on research goals and VERA development targeting crud-related challenge problems.« less

  9. Habitat association, size, stomach contents, and reproductive condition of Puerto Rican boas (Epicrates inornatus)

    USGS Publications Warehouse

    Wiley, J.W.

    2003-01-01

    The Puerto Rican boa occurs in a variety of habitats, including wet montane forest, lowland wet forest, mangrove forest, wet limestone karst, and offshore cays, and from sea level to 480 m. Mean SVL of 49 encountered boas (live and road-killed) was 136.9 ?? 35.1 (range = 38.8-205 cm), with a mean mass of 952.1 ?? 349.0 g (n = 47; range = 140-1662 g). Prey in digestive tracts (n = 29) included remains of black rats, house mice, three species of anoles, bats, common ground-doves, domestic fowl chicks, and invertebrates. Females were in reproductive condition in late April through mid-August and had an average brood size of 21.8 ?? 6.0 (n = 9, range = 13-30 ).

  10. Morphological and genetic diversity of camu-camu [Myrciaria dubia (Kunth) McVaugh] in the Peruvian Amazon

    PubMed Central

    Šmíd, Jan; Kalousová, Marie; Mandák, Bohumil; Houška, Jakub; Chládová, Anna; Pinedo, Mario

    2017-01-01

    Camu-camu [Myrciaria dubia (Kunth) McVaugh] is currently an important and promising fruit species grown in the Peruvian Amazon, as well as in Brazil, Colombia, and Bolivia. The species is valued for its high content of fruit-based vitamin C. Large plantations have been established only in the last two decades, and a substantial part of the production is still obtained by collecting fruits from the wild. Domestication of the species is at an early stage; most farmers cultivate the plants without any breeding, or only through a simple mass selection process. The main objective of the study was to characterize morphological and genetic variation within and among cultivated and natural populations of camu-camu in the Peruvian Amazon. In total, we sampled 13 populations: ten wild in the Iquitos region, and three cultivated in the Pucallpa region in the Peruvian Amazon. To assess the genetic diversity using seven microsatellite loci, we analyzed samples from ten individual trees per each population (n = 126). Morphological data was collected from five trees from each population (n = 65). The analysis did not reveal statistically significant differences for most of the morphological descriptors. For wild and cultivated populations, the observed heterozygosity was 0.347 and 0.404 (expected 0.516 and 0.506), and the fixation index was 0.328 and 0.200, respectively. Wild populations could be divided into two groups according to the UPGMA and STRUCTURE analysis. In cultivated populations, their approximate origin was determined. Our findings indicate a high genetic diversity among the populations, but also a high degree of inbreeding within the populations. This can be explained by either the isolation of these populations from each other or the low number of individuals in some populations. This high level of genetic diversity can be explored for the selection of superior individuals for further breeding. PMID:28658316

  11. Morphological and genetic diversity of camu-camu [Myrciaria dubia (Kunth) McVaugh] in the Peruvian Amazon.

    PubMed

    Šmíd, Jan; Kalousová, Marie; Mandák, Bohumil; Houška, Jakub; Chládová, Anna; Pinedo, Mario; Lojka, Bohdan

    2017-01-01

    Camu-camu [Myrciaria dubia (Kunth) McVaugh] is currently an important and promising fruit species grown in the Peruvian Amazon, as well as in Brazil, Colombia, and Bolivia. The species is valued for its high content of fruit-based vitamin C. Large plantations have been established only in the last two decades, and a substantial part of the production is still obtained by collecting fruits from the wild. Domestication of the species is at an early stage; most farmers cultivate the plants without any breeding, or only through a simple mass selection process. The main objective of the study was to characterize morphological and genetic variation within and among cultivated and natural populations of camu-camu in the Peruvian Amazon. In total, we sampled 13 populations: ten wild in the Iquitos region, and three cultivated in the Pucallpa region in the Peruvian Amazon. To assess the genetic diversity using seven microsatellite loci, we analyzed samples from ten individual trees per each population (n = 126). Morphological data was collected from five trees from each population (n = 65). The analysis did not reveal statistically significant differences for most of the morphological descriptors. For wild and cultivated populations, the observed heterozygosity was 0.347 and 0.404 (expected 0.516 and 0.506), and the fixation index was 0.328 and 0.200, respectively. Wild populations could be divided into two groups according to the UPGMA and STRUCTURE analysis. In cultivated populations, their approximate origin was determined. Our findings indicate a high genetic diversity among the populations, but also a high degree of inbreeding within the populations. This can be explained by either the isolation of these populations from each other or the low number of individuals in some populations. This high level of genetic diversity can be explored for the selection of superior individuals for further breeding.

  12. Distribution of Aboveground Live Biomass in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  13. Branch xylem density variations across the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Patiño, S.; Lloyd, J.; Paiva, R.; Baker, T. R.; Quesada, C. A.; Mercado, L. M.; Schmerler, J.; Schwarz, M.; Santos, A. J. B.; Aguilar, A.; Czimczik, C. I.; Gallo, J.; Horna, V.; Hoyos, E. J.; Jimenez, E. M.; Palomino, W.; Peacock, J.; Peña-Cruz, A.; Sarmiento, C.; Sota, A.; Turriago, J. D.; Villanueva, B.; Vitzthum, P.; Alvarez, E.; Arroyo, L.; Baraloto, C.; Bonal, D.; Chave, J.; Costa, A. C. L.; Herrera, R.; Higuchi, N.; Killeen, T.; Leal, E.; Luizão, F.; Meir, P.; Monteagudo, A.; Neil, D.; Núñez-Vargas, P.; Peñuela, M. C.; Pitman, N.; Priante Filho, N.; Prieto, A.; Panfil, S. N.; Rudas, A.; Salomão, R.; Silva, N.; Silveira, M.; Soares Dealmeida, S.; Torres-Lezama, A.; Vásquez-Martínez, R.; Vieira, I.; Malhi, Y.; Phillips, O. L.

    2009-04-01

    Xylem density is a physical property of wood that varies between individuals, species and environments. It reflects the physiological strategies of trees that lead to growth, survival and reproduction. Measurements of branch xylem density, ρx, were made for 1653 trees representing 598 species, sampled from 87 sites across the Amazon basin. Measured values ranged from 218 kg m-3 for a Cordia sagotii (Boraginaceae) from Mountagne de Tortue, French Guiana to 1130 kg m-3 for an Aiouea sp. (Lauraceae) from Caxiuana, Central Pará, Brazil. Analysis of variance showed significant differences in average ρx across regions and sampled plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that species identity (family, genera and species) accounted for 33% with environment (geographic location and plot) accounting for an additional 26%; the remaining "residual" variance accounted for 41% of the total variance. Variations in plot means, were, however, not only accountable by differences in species composition because xylem density of the most widely distributed species in our dataset varied systematically from plot to plot. Thus, as well as having a genetic component, branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing in a predictable manner. Within the analysed taxa, exceptions to this general rule seem to be pioneer species belonging for example to the Urticaceae whose branch xylem density is more constrained than most species sampled in this study. These patterns of variation of branch xylem density across Amazonia suggest a large functional diversity amongst Amazonian trees which is not well understood.

  14. Socio-ecological costs of Amazon nut and timber production at community household forests in the Bolivian Amazon.

    PubMed

    Soriano, Marlene; Mohren, Frits; Ascarrunz, Nataly; Dressler, Wolfram; Peña-Claros, Marielos

    2017-01-01

    The Bolivian Amazon holds a complex configuration of people and forested landscapes in which communities hold secure tenure rights over a rich ecosystem offering a range of livelihood income opportunities. A large share of this income is derived from Amazon nut (Bertholletia excelsa). Many communities also have long-standing experience with community timber management plans. However, livelihood needs and desires for better living conditions may continue to place these resources under considerable stress as income needs and opportunities intensify and diversify. We aim to identify the socioeconomic and biophysical factors determining the income from forests, husbandry, off-farm and two keystone forest products (i.e., Amazon nut and timber) in the Bolivian Amazon region. We used structural equation modelling tools to account for the complex inter-relationships between socioeconomic and biophysical factors in predicting each source of income. The potential exists to increase incomes from existing livelihood activities in ways that reduce dependency upon forest resources. For example, changes in off-farm income sources can act to increase or decrease forest incomes. Market accessibility, social, financial, and natural and physical assets determined the amount of income community households could derive from Amazon nut and timber. Factors related to community households' local ecological knowledge, such as the number of non-timber forest products harvested and the number of management practices applied to enhance Amazon nut production, defined the amount of income these households could derive from Amazon nut and timber, respectively. The (inter) relationships found among socioeconomic and biophysical factors over income shed light on ways to improve forest-dependent livelihoods in the Bolivian Amazon. We believe that our analysis could be applicable to other contexts throughout the tropics as well.

  15. Socio-ecological costs of Amazon nut and timber production at community household forests in the Bolivian Amazon

    PubMed Central

    Mohren, Frits; Ascarrunz, Nataly; Dressler, Wolfram; Peña-Claros, Marielos

    2017-01-01

    The Bolivian Amazon holds a complex configuration of people and forested landscapes in which communities hold secure tenure rights over a rich ecosystem offering a range of livelihood income opportunities. A large share of this income is derived from Amazon nut (Bertholletia excelsa). Many communities also have long-standing experience with community timber management plans. However, livelihood needs and desires for better living conditions may continue to place these resources under considerable stress as income needs and opportunities intensify and diversify. We aim to identify the socioeconomic and biophysical factors determining the income from forests, husbandry, off-farm and two keystone forest products (i.e., Amazon nut and timber) in the Bolivian Amazon region. We used structural equation modelling tools to account for the complex inter-relationships between socioeconomic and biophysical factors in predicting each source of income. The potential exists to increase incomes from existing livelihood activities in ways that reduce dependency upon forest resources. For example, changes in off-farm income sources can act to increase or decrease forest incomes. Market accessibility, social, financial, and natural and physical assets determined the amount of income community households could derive from Amazon nut and timber. Factors related to community households’ local ecological knowledge, such as the number of non-timber forest products harvested and the number of management practices applied to enhance Amazon nut production, defined the amount of income these households could derive from Amazon nut and timber, respectively. The (inter) relationships found among socioeconomic and biophysical factors over income shed light on ways to improve forest-dependent livelihoods in the Bolivian Amazon. We believe that our analysis could be applicable to other contexts throughout the tropics as well. PMID:28235090

  16. Security of the Brazilian Amazon Area

    DTIC Science & Technology

    1992-04-01

    effect in Amazonia". Brazil’s Institute for Space Research. Sio Paulo, April 1991: 5-6. Thompson, Dick. "A Global Agenda for the Amazon." Time, 18...to be overcome as Brazil pursues settlement and development of the Amazon. The natural ecologic systems of the Amazon must be defended with...agricultural techniques appropriate to the region and developed within the context of a comprehensive, responsible program that meets Brazil’s needs for

  17. Xylem vulnerability curves of canopy branches of mature trees from Caxiuana and Tapajos National Forests, Para, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Thomas; Moorcroft, Paul

    Raw data for xylem vulnerability curves measured on upper canopy branches of mature trees from the Caxiuana and Tapajos National Forests, Para, Brazil. Tapajos samples were harvested from km67 transects, which is nearby the decommissioned throughfall-exclusion, drought-experiment plots. Caxiuana samples were harvested from trees growing in the throughfall-exclusion, drought-experiment plots. Data were collected in 2011 and 2012. Dataset includes: date of measurement, site ID, plot ID, tree ID (species, tree tag #), xylem pressure, percent loss of conductivity. Air injection method was used. Data reference: Powell et al. (2017) Differences in xylem cavitation resistance and leaf hydraulic traits explain differencesmore » in drought tolerance among mature Amazon rainforest trees. Global Change Biology.« less

  18. Identification of snake arenaviruses in live boas and pythons in a zoo in Germany.

    PubMed

    Aqrawi, T; Stöhr, A C; Knauf-Witzens, T; Krengel, A; Heckers, K O; Marschang, R E

    2015-01-01

    Recent studies have described the detection and characterisation of new, snake specific arenaviruses in boas and pythons with inclusion body disease (IBD). The objective of this study was to detect arenaviral RNA in live snakes and to determine if these were associated with IBD in all cases. Samples for arenavirus detection in live animals were compared. Detected viruses were compared in order to understand their genetic variability. Esophageal swabs and whole blood was collected from a total of 28 boas and pythons. Samples were tested for arenaviral RNA by RT-PCR. Blood smears from all animals were examined for the presence of inclusion bodies. Internal tissues from animals that died or were euthanized during the study were examined for inclusions and via RT-PCR for arenaviral RNA. All PCR products were sequenced and the genomic sequences phylogenetically analysed. Nine live animals were found to be arenavirus-positive. Two additional snakes tested positive following necropsy. Five new arenaviruses were detected and identified. The detected viruses were named "Boa Arenavirus Deutschland (Boa Av DE) numbers 1-4" and one virus detected in a python (Morelia viridis) was named "Python Av DE1". Results from sequence analyses revealed considerable similarities to a portion of the glycoprotein genes of recently identified boid snake arenaviruses. Both oral swabs and whole blood can be used for the detection of arenaviruses in snakes. In most cases, but not in all, the presence of arenaviral RNA correlated with the presence of inclusions in the tissues of infected animals. There was evidence that some animals may be able to clear arenavirus infection without development of IBD. This is the first detection of arenaviruses in live snakes. The detection of arenaviruses in live snakes is of importance for both disease detection and prevention and for use in quarantine situations. The findings in this study support the theory that arenaviruses are the cause of IBD, but

  19. "Handbook of biomedical optics", edited by David A. Boas, Constantinos Pitris, and Nimmi Ramanujam

    PubMed Central

    2012-01-01

    David A. Boas, Constantinos Pitris, and Nimmi Ramanujam, Eds.: Handbook of Biomedical Optics CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2011 ISBN: 978-1-4200-9036-9 (Hardback), 787 pages

  20. Amazon Forest Responses to Drought and Fire

    NASA Astrophysics Data System (ADS)

    Morton, D. C.

    2015-12-01

    Deforestation and agricultural land uses provide a consistent source of ignitions along the Amazon frontier during the dry season. The risk of understory fires in Amazon forests is amplified by drought conditions, when fires at the forest edge may spread for weeks before rains begin. Fire activity also impacts the regional response of intact forests to drought through diffuse light effects and nutrient redistribution, highlighting the complexity of feedbacks in this coupled human and natural system. This talk will focus on recent advances in our understanding of fire-climate feedbacks in the Amazon, building on research themes initiated under NASA's Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA). NASA's LBA program began in the wake of the 1997-1998 El Niño, a strong event that exposed the vulnerability of Amazon forests to drought and fire under current climate and projections of climate change. With forecasts of another strong El Niño event in 2015-2016, this talk will provide a multi-scale synthesis of Amazon forest responses to drought and fire based on field measurements, airborne lidar data, and satellite observations of fires, rainfall, and terrestrial water storage. These studies offer new insights into the mechanisms governing fire season severity in the southern Amazon and regional variability in carbon losses from understory fires. The contributions from remote sensing to our understanding of drought and fire in Amazon forests reflect the legacy of NASA's LBA program and the sustained commitment to interdisciplinary research across the Amazon region.

  1. Hydraulic Strategies and Response to El Niño Drought in Amazon Rainforest

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Oliveira, R. S.; Brum, M., Jr.; Prohaska, N.; Albert, L.; Taylor, T.; Fatichi, S.; Agee, E.; Saleska, S. R.; Oliveira Junior, R. C.; Dye, D. G.; Wiedemann, K. T.

    2016-12-01

    Variability of tree-scale carbon and water uptake strategies is increasingly recognized to be of paramount importance for understanding the limits of drought resilience of tropical rainforests. Here, we present evidence of such variations using a set of ecohydrologic data collected through the DOE "GoAmazon" project, with a specific emphasis on the response of a seasonal rainforest in eastern Amazonia to the strong 2015 El Niño drought. Data from 50 sapflow sensors are combined with high-frequency observations on stem and leaf water potential as well as precision dendrometry. The emerging behavior shows a spectrum of successfully co-existing hydraulic strategies, ranging from tight control against xylem failure to a near lack of regulation of the water flux through the stomata, implying the existence of other mechanisms to deal with extreme tissue dehydration. These strategies also exhibit coupling with tree growth patterns and dynamics of non-structural carbohydrates, with the latter type of trees allocating more carbon to growth and less to internal reserves, while the opposite is true for the former tree type. The results suggest a new approach for integrating hydraulic traits and carbon-cycle dynamics, and a strategy for mapping traits to function in the next generation of predictive models of ecosystem dynamics.

  2. Boverhof's App Earns Honorable Mention in Amazon's Web Services

    Science.gov Websites

    » Boverhof's App Earns Honorable Mention in Amazon's Web Services Competition News & Publications News Publications Facebook Google+ Twitter Boverhof's App Earns Honorable Mention in Amazon's Web Services by Amazon Web Services (AWS). Amazon officially announced the winners of its EC2 Spotathon on Monday

  3. The Amazon Region; A Vision of Sovereignty

    DTIC Science & Technology

    1998-04-06

    and SPOT remote sensing satellites images, about 90% of the Amazon jungle remains almost untouched9. This 280 million hectares of vegetation hold...increasing energy needs, remain unanswered. Indian rights Has the Indian population been jeopardized by the development of the Amazon Region...or government agency. STRATEGY RESEARCH PROJECT THE AMAZON REGION; A VISION OF SOVEREIGNTY BY LIEUTENANT COLONEL EDUARDO JOSE BARBOSA

  4. Dimethyl sulfide in the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Yañez-Serrano, A. M.; Williams, J.; Kunert, N.; Jardine, A.; Taylor, T.; Abrell, L.; Artaxo, P.; Guenther, A.; Hewitt, C. N.; House, E.; Florentino, A. P.; Manzi, A.; Higuchi, N.; Kesselmeier, J.; Behrendt, T.; Veres, P. R.; Derstroff, B.; Fuentes, J. D.; Martin, S. T.; Andreae, M. O.

    2015-01-01

    Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate through the formation of gaseous sulfuric acid, which can yield secondary sulfate aerosols and contribute to new particle formation. While oceans are generally considered the dominant sources of DMS, a shortage of ecosystem observations prevents an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified ambient DMS mixing ratios within and above a primary rainforest ecosystem in the central Amazon Basin in real-time (2010-2011) and at high vertical resolution (2013-2014). Elevated but highly variable DMS mixing ratios were observed within the canopy, showing clear evidence of a net ecosystem source to the atmosphere during both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios lasting up to 8 h (up to 160 parts per trillion (ppt)) often occurred within the canopy and near the surface during many evenings and nights. Daytime gradients showed mixing ratios (up to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain event. The spatial and temporal distribution of DMS suggests that ambient levels and their potential climatic impacts are dominated by local soil and plant emissions. A soil source was confirmed by measurements of DMS emission fluxes from Amazon soils as a function of temperature and soil moisture. Furthermore, light- and temperature-dependent DMS emissions were measured from seven tropical tree species. Our study has important implications for understanding terrestrial DMS sources and their role in coupled land-atmosphere climate feedbacks.

  5. Efficiently approximating the Pareto frontier: Hydropower dam placement in the Amazon basin

    USGS Publications Warehouse

    Wu, Xiaojian; Gomes-Selman, Jonathan; Shi, Qinru; Xue, Yexiang; Garcia-Villacorta, Roosevelt; Anderson, Elizabeth; Sethi, Suresh; Steinschneider, Scott; Flecker, Alexander; Gomes, Carla P.

    2018-01-01

    Real–world problems are often not fully characterized by a single optimal solution, as they frequently involve multiple competing objectives; it is therefore important to identify the so-called Pareto frontier, which captures solution trade-offs. We propose a fully polynomial-time approximation scheme based on Dynamic Programming (DP) for computing a polynomially succinct curve that approximates the Pareto frontier to within an arbitrarily small > 0 on treestructured networks. Given a set of objectives, our approximation scheme runs in time polynomial in the size of the instance and 1/. We also propose a Mixed Integer Programming (MIP) scheme to approximate the Pareto frontier. The DP and MIP Pareto frontier approaches have complementary strengths and are surprisingly effective. We provide empirical results showing that our methods outperform other approaches in efficiency and accuracy. Our work is motivated by a problem in computational sustainability concerning the proliferation of hydropower dams throughout the Amazon basin. Our goal is to support decision-makers in evaluating impacted ecosystem services on the full scale of the Amazon basin. Our work is general and can be applied to approximate the Pareto frontier of a variety of multiobjective problems on tree-structured networks.

  6. Evaluation of radiographic, computed tomographic, and cadaveric anatomy of the head of boa constrictors.

    PubMed

    Banzato, Tommaso; Russo, Elisa; Di Toma, Anna; Palmisano, Giuseppe; Zotti, Alessandro

    2011-12-01

    To evaluate the radiographic, computed tomographic (CT), and cadaveric anatomy of the head of boa constrictors. 4 Boa constrictor imperator cadavers. Cadavers weighed 3.4 to 5.6 kg and had a body length ranging from 189 to 221 cm. Radiographic and CT images were obtained with a high-detail screen-film combination, and conventional CT was performed with a slice thickness of 1.5 mm. Radiographic images were obtained in ventrodorsal, dorsoventral, and left and right laterolateral recumbency; CT images were obtained with the animals positioned in ventral recumbency directly laying on a plastic support. At the end of the radiographic and CT imaging session, 2 heads were sectioned following a stratigraphic approach; the other 2, carefully maintained in the same position on the plastic support, were moved into a freezer (-20°C) until completely frozen and then sectioned into 3-mm slices, respecting the imaging protocol. The frozen sections were cleaned and then photographed on each side. Anatomic structures were identified and labeled on gross anatomic images and on the corresponding CT or radiographic image with the aid of available literature. Radiographic and CT images provided high detail for visualization of bony structures; soft tissues were not easily identified on radiographic and CT images. Results provide an atlas of stratigraphic and cross-sectional gross anatomy and radiographic and CT anatomy of the heads of boa constrictors that might be useful in the interpretation of any imaging modality in this species.

  7. Geochemistry of the Amazon Estuary

    USGS Publications Warehouse

    Smoak, Joseph M.; Krest, James M.; Swarzenski, Peter W

    2006-01-01

    The Amazon River supplies more freshwater to the ocean than any other river in the world. This enormous volume of freshwater forces the estuarine mixing out of the river channel and onto the continental shelf. On the continental shelf, the estuarine mixing occurs in a very dynamic environment unlike that of a typical estuary. The tides, the wind, and the boundary current that sweeps the continental shelf have a pronounced influence on the chemical and biological processes occurring within the estuary. The dynamic environment, along with the enormous supply of water, solutes and particles makes the Amazon estuary unique. This chapter describes the unique features of the Amazon estuary and how these features influence the processes occurring within the estuary. Examined are the supply and cycling of major and minor elements, and the use of naturally occurring radionuclides to trace processes including water movement, scavenging, sediment-water interaction, and sediment accumulation rates. The biogeochemical cycling of carbon, nitrogen, and phosphorus, and the significances of the Amazon estuary in the global mass balance of these elements are examined.

  8. Measuring Water Storage in the Amazon

    NASA Image and Video Library

    2010-07-07

    This image is from data taken by NASA Gravity Recovery and Climate Experiment showing the Amazon basin in South America. The amount of water stored in the Amazon basin varies from month to month. Animations are available at the Photojournal.

  9. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites.

    PubMed

    Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; Ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L

    2014-08-01

    The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1. Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species

  10. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

    PubMed Central

    Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L

    2014-01-01

    Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities

  11. GoAmazon 2014/15. SRI-PTR-ToFMS Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenther, A.

    Our science team, including Dr. Alex Guenther (previously at Pacific Northwest National Laboratory (PNNL) and now at the University of California, Irvine) Dr. Saewung Kim and Dr. Roger Seco, and Dr. Jim Smith (previously at NCAR and now at UC Irvine), deployed a selected reagent ion – proton transfer reaction – time-of-flight mass spectrometer (SRI-PTR-TOFMS) to the T3 site during the GoAmazon study. One of the major uncertainties in climate model simulations is the effects of aerosols on radiative forcing, and a better understanding of the factors controlling aerosol distributions and life cycle is urgently needed. Aerosols contribute directly tomore » the Earth’s radiation balance by scattering or absorbing light as a function of their physical properties and indirectly through particle-cloud interactions that lead to cloud formation and the modification of cloud properties. On a global scale, the dominant source of organic aerosol is biogenic volatile organic compounds (BVOC) emitted from terrestrial ecosystems. These organic aerosols are a major part of the total mass of all airborne particles and are currently not sufficiently represented in climate models. To incorporate quantitatively the effects of BVOCs and their oxidation products on biogenic organic aerosol (BOA) requires parameterization of their production in terrestrial ecosystems and their atmospheric transformations. This project was designed to reduce the gaps in our understanding of how these processes control BVOCs and BOAs, and their impact on climate. This was accomplished by wet and dry season measurements at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility T3 site along with a comprehensive suite of complementary measurements. The specific goals were to 1) measure and mechanistically understand the factors affecting aerosol distributions over a tropical rain forest, especially the effects of anthropogenic pollution as a

  12. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation

    NASA Astrophysics Data System (ADS)

    Rappaport, Danielle I.; Morton, Douglas C.; Longo, Marcos; Keller, Michael; Dubayah, Ralph; Nara dos-Santos, Maiza

    2018-06-01

    Despite sustained declines in Amazon deforestation, forest degradation from logging and fire continues to threaten carbon stocks, habitat, and biodiversity in frontier forests along the Amazon arc of deforestation. Limited data on the magnitude of carbon losses and rates of carbon recovery following forest degradation have hindered carbon accounting efforts and contributed to incomplete national reporting to reduce emissions from deforestation and forest degradation (REDD+). We combined annual time series of Landsat imagery and high-density airborne lidar data to characterize the variability, magnitude, and persistence of Amazon forest degradation impacts on aboveground carbon density (ACD) and canopy structure. On average, degraded forests contained 45.1% of the carbon stocks in intact forests, and differences persisted even after 15 years of regrowth. In comparison to logging, understory fires resulted in the largest and longest-lasting differences in ACD. Heterogeneity in burned forest structure varied by fire severity and frequency. Forests with a history of one, two, and three or more fires retained only 54.4%, 25.2%, and 7.6% of intact ACD, respectively, when measured after a year of regrowth. Unlike the additive impact of successive fires, selective logging before burning did not explain additional variability in modeled ACD loss and recovery of burned forests. Airborne lidar also provides quantitative measures of habitat structure that can aid the estimation of co-benefits of avoided degradation. Notably, forest carbon stocks recovered faster than attributes of canopy structure that are critical for biodiversity in tropical forests, including the abundance of tall trees. We provide the first comprehensive look-up table of emissions factors for specific degradation pathways at standard reporting intervals in the Amazon. Estimated carbon loss and recovery trajectories provide an important foundation for assessing the long-term contributions from forest

  13. Triatoma maculata colonises urban domicilies in Boa Vista, Roraima, Brazil.

    PubMed

    Ricardo-Silva, Alice; Gonçalves, Teresa Cristina Monte; Luitgards-Moura, José Francisco; Lopes, Catarina Macedo; Silva, Silvano Pedrosa da; Bastos, Amanda Queiroz; Vargas, Nathalia Coelho; Freitas, Maria-Rosa Goreti

    2016-11-01

    During a medical entomology course in Boa Vista, Roraima, colonies of Triatoma maculata closely associated with pigeon nests were observed in concrete air-conditioner box located on the external plastered and cemented walls of a modern brick-built apartment block. In only one eight-hole ceramic brick, located inside one air-conditioner box, 127 specimens of T. maculata were collected. T. maculata is a recognised vector of Trypanosoma cruzi in the surrounding area and its domiciliation increases the risk of Chagas disease transmission.

  14. Drought-induced changes in Amazon forest structure from repeat airborne lidar

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Leitold, V.; Longo, M.; Keller, M.; dos-Santos, M. N.; Scaranello, M. A., Sr.

    2017-12-01

    Drought events in tropical forests, including the 2015-2016 El Niño, may reduce net primary productivity and increase canopy tree mortality, thereby altering the short and long-term net carbon balance of tropical forests. Given the broad extent of drought impacts, forest inventory plots or eddy flux towers may not capture regional variability in forest response to drought. Here, we analyzed repeat airborne lidar data to evaluate canopy turnover from branch and tree fall before (2013-2014) and during (2014-2016) the recent El Niño drought in the eastern and central Brazilian Amazon. Coincident field surveys for a 16-ha subset of the lidar coverage provided complementary information to classify turnover areas by mechanism (branch, multiple branch, tree fall, multiple tree fall) and estimate the total coarse woody debris volume from canopy and understory tree mortality. Annualized rates of canopy turnover increased by 50%, on average, during the drought period in both intact and fragmented forests near Santarém, Pará. Turnover increased uniformly across all size classes, and there was limited evidence that taller trees contributed a greater proportion of turnover events in any size class in 2014-2016 compared to 2013-2014. This short-term increase in canopy turnover differs from findings in multi-year rainfall exclusion experiments that large trees were more sensitive to drought impacts. Field measurements confirmed the separability of the smallest (single branch) and largest damage classes (multiple tree falls), but single tree and multiple branch fall events generated similar coarse woody debris production and lidar-derived changes in canopy volume. Large-scale sampling possible with repeat airborne lidar data also captured strong local and regional gradients in canopy turnover. Differences in slope partially explained the north-south gradient in canopy turnover dynamics near Santarém, with larger increases in turnover on flatter terrain. Regional variability

  15. Modelling conservation in the Amazon basin.

    PubMed

    Soares-Filho, Britaldo Silveira; Nepstad, Daniel Curtis; Curran, Lisa M; Cerqueira, Gustavo Coutinho; Garcia, Ricardo Alexandrino; Ramos, Claudia Azevedo; Voll, Eliane; McDonald, Alice; Lefebvre, Paul; Schlesinger, Peter

    2006-03-23

    Expansion of the cattle and soy industries in the Amazon basin has increased deforestation rates and will soon push all-weather highways into the region's core. In the face of this growing pressure, a comprehensive conservation strategy for the Amazon basin should protect its watersheds, the full range of species and ecosystem diversity, and the stability of regional climates. Here we report that protected areas in the Amazon basin--the central feature of prevailing conservation approaches--are an important but insufficient component of this strategy, based on policy-sensitive simulations of future deforestation. By 2050, current trends in agricultural expansion will eliminate a total of 40% of Amazon forests, including at least two-thirds of the forest cover of six major watersheds and 12 ecoregions, releasing 32 +/- 8 Pg of carbon to the atmosphere. One-quarter of the 382 mammalian species examined will lose more than 40% of the forest within their Amazon ranges. Although an expanded and enforced network of protected areas could avoid as much as one-third of this projected forest loss, conservation on private lands is also essential. Expanding market pressures for sound land management and prevention of forest clearing on lands unsuitable for agriculture are critical ingredients of a strategy for comprehensive conservation.

  16. Anti-inflammatory activity of animal oils from the Peruvian Amazon.

    PubMed

    Schmeda-Hirschmann, Guillermo; Delporte, Carla; Valenzuela-Barra, Gabriela; Silva, Ximena; Vargas-Arana, Gabriel; Lima, Beatriz; Feresin, Gabriela E

    2014-10-28

    Animal oils and fats from the fishes Electrophorus electricus and Potamotrygon motoro, the reptiles Boa constrictor, Chelonoidis denticulata (Geochelone denticulata) and Melanosuchus niger and the riverine dolphin Inia geoffrensis are used as anti-inflammatory agents in the Peruvian Amazon. The aim of the study was to assess the topic anti-inflammatory effect of the oils/fats as well as to evaluate its antimicrobial activity and fatty acid composition. The oils/fats were purchased from a traditional store at the Iquitos market of Belen, Peru. The topic anti-inflammatory effect was evaluated by the mice ear edema induced by arachidonic acid (AA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) at the dose of 3mg oil/ear. Indomethacine and nimesulide were used as reference anti-inflammatory drugs. The application resembles the traditional topical use of the oils. The antimicrobial effect of the oils/fats was assessed by the microdilution test against reference strains of Escherichia coli, Staphylococcus aureus and Salmonella enteritidis. The fatty acid composition of the oils/fats (as methyl esters) was determined by GC and GC-MS analysis after saponification. All oils/fats showed topic anti-inflammatory activity, with better effect in the TPA-induced mice ear edema assay. The most active drugs were Potamotrygon motoro, Melanosuchus niger and Geochelone denticulata. In the AA-induced assay, the best activity was found for Potamotrygon motoro and Electrophorus electricus oil. The oil of Electrophorus electricus also showed a weak antimicrobial effect with MIC values of 250 µg/mL against Escherichia coli ATCC 25922 and Salmonella enteritidis-MI. The main fatty acids in the oils were oleic, palmitic and linoleic acids. Topical application of all the oils/fats investigated showed anti-inflammatory activity in the mice ear edema assay. The effect can be related with the identity and composition of the fatty acids in the samples. This study gives support to the traditional

  17. Confluence of the Amazon and Topajos Rivers, Brazil, South America

    NASA Image and Video Library

    1991-08-11

    This view shows the confluence of the Amazon and the Topajos Rivers at Santarem, Brazil (2.0S, 55.0W). The Am,azon flows from lower left to upper right of the photo. Below the river juncture of the Amazon and Tapajos, there is considerable deforestation activity along the Trans-Amazon Highway.

  18. Triatoma maculata colonises urban domicilies in Boa Vista, Roraima, Brazil

    PubMed Central

    Ricardo-Silva, Alice; Gonçalves, Teresa Cristina Monte; Luitgards-Moura, José Francisco; Lopes, Catarina Macedo; da Silva, Silvano Pedrosa; Bastos, Amanda Queiroz; Vargas, Nathalia Coelho; Freitas, Maria-Rosa Goreti

    2016-01-01

    During a medical entomology course in Boa Vista, Roraima, colonies of Triatoma maculata closely associated with pigeon nests were observed in concrete air-conditioner box located on the external plastered and cemented walls of a modern brick-built apartment block. In only one eight-hole ceramic brick, located inside one air-conditioner box, 127 specimens of T. maculata were collected. T. maculata is a recognised vector of Trypanosoma cruzi in the surrounding area and its domiciliation increases the risk of Chagas disease transmission. PMID:27759767

  19. Identification, characterization, and in vitro culture of highly divergent arenaviruses from boa constrictors and annulated tree boas: candidate etiological agents for snake inclusion body disease.

    PubMed

    Stenglein, Mark D; Sanders, Chris; Kistler, Amy L; Ruby, J Graham; Franco, Jessica Y; Reavill, Drury R; Dunker, Freeland; Derisi, Joseph L

    2012-01-01

    Inclusion body disease (IBD) is an infectious fatal disease of snakes typified by behavioral abnormalities, wasting, and secondary infections. At a histopathological level, the disease is identified by the presence of large eosinophilic cytoplasmic inclusions in multiple tissues. To date, no virus or other pathogen has been definitively characterized or associated with the disease. Using a metagenomic approach to search for candidate etiologic agents in snakes with confirmed IBD, we identified and de novo assembled the complete genomic sequences of two viruses related to arenaviruses, and a third arenavirus-like sequence was discovered by screening an additional set of samples. A continuous boa constrictor cell line was established and used to propagate and isolate one of the viruses in culture. Viral nucleoprotein was localized and concentrated within large cytoplasmic inclusions in infected cells in culture and tissues from diseased snakes. In total, viral RNA was detected in 6/8 confirmed IBD cases and 0/18 controls. These viruses have a typical arenavirus genome organization but are highly divergent, belonging to a lineage separate from that of the Old and New World arenaviruses. Furthermore, these viruses encode envelope glycoproteins that are more similar to those of filoviruses than to those of other arenaviruses. These findings implicate these viruses as candidate etiologic agents of IBD. The presence of arenaviruses outside mammals reveals that these viruses infect an unexpectedly broad range of species and represent a new reservoir of potential human pathogens. Inclusion body disease (IBD) is a common infectious disease of captive snakes. IBD is fatal and can cause the loss of entire animal collections. The cause of the disease has remained elusive, and no treatment exists. In addition to being important to pet owners, veterinarians, breeders, zoological parks, and aquariums, the study of animal disease is significant since animals are the source of

  20. The importance of forest structure for carbon fluxes of the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Rödig, Edna; Cuntz, Matthias; Rammig, Anja; Fischer, Rico; Taubert, Franziska; Huth, Andreas

    2018-05-01

    Precise descriptions of forest productivity, biomass, and structure are essential for understanding ecosystem responses to climatic and anthropogenic changes. However, relations between these components are complex, in particular for tropical forests. We developed an approach to simulate carbon dynamics in the Amazon rainforest including around 410 billion individual trees within 7.8 million km2. We integrated canopy height observations from space-borne LIDAR in order to quantify spatial variations in forest state and structure reflecting small-scale to large-scale natural and anthropogenic disturbances. Under current conditions, we identified the Amazon rainforest as a carbon sink, gaining 0.56 GtC per year. This carbon sink is driven by an estimated mean gross primary productivity (GPP) of 25.1 tC ha‑1 a‑1, and a mean woody aboveground net primary productivity (wANPP) of 4.2 tC ha‑1 a‑1. We found that successional states play an important role for the relations between productivity and biomass. Forests in early to intermediate successional states are the most productive, and woody above-ground carbon use efficiencies are non-linear. Simulated values can be compared to observed carbon fluxes at various spatial resolutions (>40 m). Notably, we found that our GPP corresponds to the values derived from MODIS. For NPP, spatial differences can be observed due to the consideration of forest successional states in our approach. We conclude that forest structure has a substantial impact on productivity and biomass. It is an essential factor that should be taken into account when estimating current carbon budgets or analyzing climate change scenarios for the Amazon rainforest.

  1. Isoprene over the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.

    1988-01-01

    Data obtained during the 1985 ABLE expedition to the Amazon are used to describe the diurnal and vertical variations of isoprene. Isoprene is a natural hydrocarbon emitted by many species of trees, particularly those in tropical forests. The concentrations of isoprene at lower levels in the atmosphere undergo large diurnal variations, with the highest concentrations during midday and the lowest during the night. At ground level, outside the forest, peak concentrations of about 3-parts per billion by volume (ppbv) of isoprene were observed around midday. Concentrations were nearly zero before sunrise, increased to their maximum values during the day, and declined after sunset. Concentrations of 1-2 ppbv of isoprene were observed up to 300 m. Near the canopy level, up to 8 ppbv of isoprene were observed. In the forest, concentrations are generally quite low below the canopy and are highest at the level of the canopy. Since the reaction of isoprene with OH radicals is extremely fast, its concentrations fall off rapidly with altitude, so that practically none of it was seen above the boundary layer. During nighttime, however, concentrations comparable to daytime values were observed at altitudes of 300 m and above.

  2. Amazon Forests Response to Droughts: A Perspective from the MAIAC Product

    NASA Technical Reports Server (NTRS)

    Bi, Jian; Myneni, Ranga; Lyapustin, Alexei; Wang, Yujie; Park, Taejin; Chi, Chen; Yan, Kai; Knyazikhin, Yuri

    2016-01-01

    Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth's climate system. It is only possible to assess Amazon forests' response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) data to assess Amazon forests' response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6) MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1) the droughts decreased the greenness (i.e., photosynthetic activity) of Amazon forests; (2) the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3) in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.

  3. Fragmentation of Andes-to-Amazon connectivity by hydropower dams

    PubMed Central

    Anderson, Elizabeth P.; Jenkins, Clinton N.; Heilpern, Sebastian; Maldonado-Ocampo, Javier A.; Carvajal-Vallejos, Fernando M.; Encalada, Andrea C.; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M.; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A.

    2018-01-01

    Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems—the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services. PMID:29399629

  4. Fragmentation of Andes-to-Amazon connectivity by hydropower dams.

    PubMed

    Anderson, Elizabeth P; Jenkins, Clinton N; Heilpern, Sebastian; Maldonado-Ocampo, Javier A; Carvajal-Vallejos, Fernando M; Encalada, Andrea C; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A

    2018-01-01

    Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems-the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services.

  5. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    NASA Technical Reports Server (NTRS)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  6. Proliferation of Hydroelectric Dams in the Andean Amazon and Implications for Andes-Amazon Connectivity

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics. PMID:22529979

  7. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    PubMed

    Finer, Matt; Jenkins, Clinton N

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  8. Business as Usual: Amazon.com and the Academic Library

    ERIC Educational Resources Information Center

    Van Ullen, Mary K.; Germain, Carol Anne

    2002-01-01

    In 1999, Steve Coffman proposed that libraries form a single interlibrary loan based entity patterned after Amazon.com. This study examined the suitability of Amazon.com's Web interface and record enhancements for academic libraries. Amazon.com could not deliver circulating monographs in the University at Albany Libraries' collection quickly…

  9. Evapotranspiration seasonality across the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  10. Rapid tree carbon stock recovery in managed Amazonian forests.

    PubMed

    Rutishauser, Ervan; Hérault, Bruno; Baraloto, Christopher; Blanc, Lilian; Descroix, Laurent; Sotta, Eleneide Doff; Ferreira, Joice; Kanashiro, Milton; Mazzei, Lucas; d'Oliveira, Marcus V N; de Oliveira, Luis C; Peña-Claros, Marielos; Putz, Francis E; Ruschel, Ademir R; Rodney, Ken; Roopsind, Anand; Shenkin, Alexander; da Silva, Katia E; de Souza, Cintia R; Toledo, Marisol; Vidal, Edson; West, Thales A P; Wortel, Verginia; Sist, Plinio

    2015-09-21

    While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production. Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity. Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al. found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin to assess the main drivers of time-to-recovery of post-logging tree carbon (Table S1). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Selective logging in the Brazilian Amazon.

    Treesearch

    G. P. Asner; D. E. Knapp; E. N. Broadbent; P. J. C. Oliveira; M Keller; J. N. Silva

    2005-01-01

    Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square...

  12. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape.

    PubMed

    Chambers, Jeffrey Q; Negron-Juarez, Robinson I; Marra, Daniel Magnabosco; Di Vittorio, Alan; Tews, Joerg; Roberts, Dar; Ribeiro, Gabriel H P M; Trumbore, Susan E; Higuchi, Niro

    2013-03-05

    Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling. Results demonstrate that a steady state of patches of varying successional age occurs over a relatively large spatial scale, with important implications for detecting temporal trends on plots that sample a small fraction of the landscape. Long highly significant stochastic runs averaging 1.0 Mg biomass⋅ha(-1)⋅y(-1) were often punctuated by episodic disturbance events, resulting in a sawtooth time series of hectare-scale tree biomass. To maximize the detection of temporal trends for this Central Amazon site (e.g., driven by CO2 fertilization), plots larger than 10 ha would provide the greatest sensitivity. A model-based analysis of fractional mortality across all gap sizes demonstrated that 9.1-16.9% of tree mortality was missing from plot-based approaches, underscoring the need to combine plot and remote-sensing methods for estimating net landscape carbon balance. Old-growth tropical forests can exhibit complex large-scale structure driven by disturbance and recovery cycles, with ecosystem and community attributes of hectare-scale plots exhibiting continuous dynamic departures from a steady-state condition.

  13. Parallel diversifications of Cremastosperma and Mosannona (Annonaceae), tropical rainforest trees tracking Neogene upheaval of South America

    PubMed Central

    Maas, Paul J. M.; Melchers-Sharrott, Heleen

    2018-01-01

    Much of the immense present day biological diversity of Neotropical rainforests originated from the Miocene onwards, a period of geological and ecological upheaval in South America. We assess the impact of the Andean orogeny, drainage of Lake Pebas and closure of the Panama isthmus on two clades of tropical trees (Cremastosperma, ca 31 spp.; and Mosannona, ca 14 spp.; both Annonaceae). Phylogenetic inference revealed similar patterns of geographically restricted clades and molecular dating showed diversifications in the different areas occurred in parallel, with timing consistent with Andean vicariance and Central American geodispersal. Ecological niche modelling approaches show phylogenetically conserved niche differentiation, particularly within Cremastosperma. Niche similarity and recent common ancestry of Amazon and Guianan Mosannona species contrast with dissimilar niches and more distant ancestry of Amazon, Venezuelan and Guianan species of Cremastosperma, suggesting that this element of the similar patterns of disjunct distributions in the two genera is instead a biogeographic parallelism, with differing origins. The results provide further independent evidence for the importance of the Andean orogeny, the drainage of Lake Pebas, and the formation of links between South and Central America in the evolutionary history of Neotropical lowland rainforest trees. PMID:29410860

  14. Parallel diversifications of Cremastosperma and Mosannona (Annonaceae), tropical rainforest trees tracking Neogene upheaval of South America.

    PubMed

    Pirie, Michael D; Maas, Paul J M; Wilschut, Rutger A; Melchers-Sharrott, Heleen; Chatrou, Lars W

    2018-01-01

    Much of the immense present day biological diversity of Neotropical rainforests originated from the Miocene onwards, a period of geological and ecological upheaval in South America. We assess the impact of the Andean orogeny, drainage of Lake Pebas and closure of the Panama isthmus on two clades of tropical trees ( Cremastosperma , ca 31 spp.; and Mosannona , ca 14 spp.; both Annonaceae). Phylogenetic inference revealed similar patterns of geographically restricted clades and molecular dating showed diversifications in the different areas occurred in parallel, with timing consistent with Andean vicariance and Central American geodispersal. Ecological niche modelling approaches show phylogenetically conserved niche differentiation, particularly within Cremastosperma . Niche similarity and recent common ancestry of Amazon and Guianan Mosannona species contrast with dissimilar niches and more distant ancestry of Amazon, Venezuelan and Guianan species of Cremastosperma , suggesting that this element of the similar patterns of disjunct distributions in the two genera is instead a biogeographic parallelism, with differing origins. The results provide further independent evidence for the importance of the Andean orogeny, the drainage of Lake Pebas, and the formation of links between South and Central America in the evolutionary history of Neotropical lowland rainforest trees.

  15. Integrating the avoidance of forest degradation into systematic conservation planning in the Eastern Amazon

    NASA Astrophysics Data System (ADS)

    Ferreira, J.; Barlow, J.; Thompson, J.; Berenguer, E.; Aragão, L. E.; Lees, A.; Lennox, G.; Brancalion, P.; Ferraz, S.; Moura, N.; Oliveira, V. H.; Louzada, J.; Solar, R.; Nunes, S.; Parry, L.; Fonseca, T.; Garrett, R.; Vieira, I.; MacNally, R.; Gardner, T.

    2017-12-01

    Undisturbed forests are becoming increasingly rare in the tropics. The area of forest degraded by some form of disturbance, such as logging or fire, in the Brazilian Amazon now greatly exceeds that which had been deforested. Yet forest policy in the Amazon, as elsewhere in the tropics, remains overwhelmingly focused curbing the rate of forest loss without considering impacts on forest quality. We use a unique data set from the Sustainable Amazon Network (RAS), in the eastern Brazilian Amazon to assess the impacts of forest disturbance on biodiversity and assess the benefits of including avoided degradation measures in conservation planning. Biodiversity data on trees and fauna from two large regions, Santarém and Paragominas, were combined with remote sensing data to model biodiversity patterns as well as estimates of above-ground carbon stocks across a range of land-use types and forest conditions. We found that impact of forest disturbance on biodiversity loss in the state of Pará equates to double that lost from deforestation alone, -the equivalent of losing 92,000-139,000 km2 of primary forest. We found a strong positive relationship between increasing carbon stocks and higher biodiversity in varyingly disturbed forests. Simulations demonstrated that a carbon-focused conservation strategy is least effective at conserving biodiversity in the least disturbed forests, highlighting the importance of on-the-ground biodiversity surveys to prioritise conservation investments in the most species rich forests. We explored trade-offs among management actions to guide priorities for habitat protection, avoided degradation and restoration and found that where restoration imposes significant opportunity and implementation costs, efforts to avoid and reverse the degradation of existing forests can deliver greater returns on investment for biodiversity conservation. Systemic planning of forest management options at regional scales can substantially improve biodiversity

  16. Spatial trends in leaf size of Amazonian rainforest trees

    NASA Astrophysics Data System (ADS)

    Malhado, A. C. M.; Malhi, Y.; Whittaker, R. J.; Ladle, R. J.; Ter Steege, H.; Phillips, O. L.; Butt, N.; Aragão, L. E. O. C.; Quesada, C. A.; Araujo-Murakami, A.; Arroyo, L.; Peacock, J.; Lopez-Gonzalez, G.; Baker, T. R.; Anderson, L. O.; Almeida, S.; Higuchi, N.; Killeen, T. J.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R. P.; Vásquez-Martínez, R.; Laurance, W. F.

    2009-08-01

    Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing from southwest to northeast) and length of the dry season (increasing from northwest to south and east). Here we describe the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25-182.25 cm2). The geographic distribution of species and individuals with large leaves (>20.25 cm2) is complex but is generally characterized by a higher proportion of such trees in the northwest of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.

  17. Ancestry informative markers in Amerindians from Brazilian Amazon.

    PubMed

    Luizon, Marcelo Rizzatti; Mendes-Junior, Celso Teixeira; De Oliveira, Silviene Fabiana; Simões, Aguinaldo Luiz

    2008-01-01

    Ancestry informative markers (AIMs) are genetic loci with large frequency differences between the major ethnic groups and are very useful in admixture estimation. However, their frequencies are poorly known within South American indigenous populations, making it difficult to use them in admixture studies with Latin American populations, such as the trihybrid Brazilian population. To minimize this problem, the frequencies of the AIMs FY-null, RB2300, LPL, AT3-I/D, Sb19.3, APO, and PV92 were determined via PCR and PCR-RFLP in four tribes from Brazilian Amazon (Tikúna, Kashinawa, Baníwa, and Kanamarí), to evaluate their potential for discriminating indigenous populations from Europeans and Africans, as well as discriminating each tribe from the others. Although capable of differentiating tribes, as evidenced by the exact test of population differentiation, a neighbor-joining tree suggests that the AIMs are useless in obtaining reliable reconstructions of the biological relationships and evolutionary history that characterize the villages and tribes studied. The mean allele frequencies from these AIMs were very similar to those observed for North American natives. They discriminated Amerindians from Africans, but not from Europeans. On the other hand, the neighbor-joining dendrogram separated Africans and Europeans from Amerindians with a high statistical support (bootstrap = 0.989). The relatively low diversity (G(ST) = 0.042) among North American natives and Amerindians from Brazilian Amazon agrees with the lack of intra-ethnic variation previously reported for these markers. Despite genetic drift effects, the mean allelic frequencies herein presented could be used as Amerindian parental frequencies in admixture estimates in urban Brazilian populations. (c) 2007 Wiley-Liss, Inc.

  18. Mouths of the Amazon River, Brazil, South America

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In this view of the Amazon River Mouth (0.0, 51.0W), a large sediment plume can be seen expanding outward into the Atlantic Ocean. The sediment plume can be seen hugging the coast north of the delta as a result of the northwest flowing coastal Guyana Current. In recent years, the flow of the Amazon has become heavily laden with sediment as soil runoff from the denuded landscape of the interior enters the Amazon River (and other rivers) drainage system.

  19. The dispersal of the Amazon's water

    NASA Technical Reports Server (NTRS)

    Muller-Karger, Frank E.; Mcclain, Charles R.; Richardson, Philip L.

    1988-01-01

    New information obtained with NASA's Coastal Zone Color Scanner and with drifting buoys reveals that the discharge of the Amazon is carried offshore around a retroflection of the North Brazil Current and into the North Equatorial Countercurrent towards Africa between June and January each year. From about February to May, the countercurrent and the retroflection weaken or vanish, and Amazon water flows northwestward toward the Caribbean Sea.

  20. The Amazon and climate

    NASA Technical Reports Server (NTRS)

    Nobre, C. A.

    1984-01-01

    The climatologies of cloudiness and precipitation for the Amazon, are reviewed and the physical causes of some of the observed features and those which are not well known are explained. The atmospheric circulation over the Amazon is discussed on the large scale tropical circulations forced by deep diabatic heating sources. Weather deforestation which leads to a reduction in evapotranspiration into the atmosphere, and a reduction in precipitation and its implicated for the gobal climate is discussed. It is indicated that a large scale clearing of tropical rainforests there would be a reduction in rainfall which would have global effects on climate and weather both in the tropical and extratropical regions.

  1. Climate drivers of the Amazon forest greening.

    PubMed

    Wagner, Fabien Hubert; Hérault, Bruno; Rossi, Vivien; Hilker, Thomas; Maeda, Eduardo Eiji; Sanchez, Alber; Lyapustin, Alexei I; Galvão, Lênio Soares; Wang, Yujie; Aragão, Luiz E O C

    2017-01-01

    Our limited understanding of the climate controls on tropical forest seasonality is one of the biggest sources of uncertainty in modeling climate change impacts on terrestrial ecosystems. Combining leaf production, litterfall and climate observations from satellite and ground data in the Amazon forest, we show that seasonal variation in leaf production is largely triggered by climate signals, specifically, insolation increase (70.4% of the total area) and precipitation increase (29.6%). Increase of insolation drives leaf growth in the absence of water limitation. For these non-water-limited forests, the simultaneous leaf flush occurs in a sufficient proportion of the trees to be observed from space. While tropical cycles are generally defined in terms of dry or wet season, we show that for a large part of Amazonia the increase in insolation triggers the visible progress of leaf growth, just like during spring in temperate forests. The dependence of leaf growth initiation on climate seasonality may result in a higher sensitivity of these ecosystems to changes in climate than previously thought.

  2. Damming the rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Arima, Eugenio Y.; Dunne, Thomas; Park, Edward; Baker, Victor R.; D'Horta, Fernando M.; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A.; Ribas, Camila C.; Norgaard, Richard B.; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C.

    2017-06-01

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin’s floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  3. Damming the rivers of the Amazon basin.

    PubMed

    Latrubesse, Edgardo M; Arima, Eugenio Y; Dunne, Thomas; Park, Edward; Baker, Victor R; d'Horta, Fernando M; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A; Ribas, Camila C; Norgaard, Richard B; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C

    2017-06-14

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin's floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  4. New estimates of temperature response of leaf photosynthesis in Amazon forest trees, its acclimation to mean temperature change and consequences for modelling climate response to rain forests.

    NASA Astrophysics Data System (ADS)

    Kruijt, B.; Jans, W.; Vasconcelos, S.; Tribuzy, E. S.; Felsemburgh, C.; Eliane, M.; Rowland, L.; da Costa, A. C. L.; Meir, P.

    2014-12-01

    In many dynamic vegetation models, degradation of the tropical forests is induced because they assume that productivity falls rapidly when temperatures rise in the region of 30-40°C. Apart plant respiration, this is due to the assumptions on the temperature optima of photosynthetic capacity, which are low and can differ widely between models, where in fact hardly any empirical information is available for tropical forests. Even less is known about the possibility that photosynthesis will acclimate to changing temperatures. The objective of this study to is to provide better estimates for optima, as well as to determine whether any acclimation to temperature change is to be expected. We present both new and hitherto unpublished data on the temperature response of photosynthesis of Amazon rainforest trees, encompassing three sites, several species and five field campaigns. Leaf photosynthesis and its parameters were determined at a range of temperatures. To study the long-term (seasonal) acclimation of this response, this was combined with an artificial, in situ, multi-season leaf heating experiment. The data show that, on average for all non-heated cases, the photosynthetic parameter Vcmax weakly peaks between 35 and 40 ˚C, while heating does not have a clearly significant effect. Results for Jmax are slightly different, with sharper peaks. Scatter was relatively high, which could indicate weak overall temperature dependence. The combined results were used to fit new parameters to the various temperature response curve functions in a range of DGVMs. The figure shows a typical example: while the default Jules model assumes a temperature optimum for Vcmax at around 33 ˚C, the data suggest that Vcmax keeps rising up to at least 40 ˚C. Of course, calculated photosynthesis, obtained by applying this Vcmax in the Farquhar model, peaks at lower temperature. Finally, the implication of these new model parameters for modelled climate change impact on modelled Amazon

  5. Multi-model analysis of the Atlantic influence on Southern Amazon rainfall

    DOE PAGES

    Yoon, Jin -Ho

    2015-12-07

    Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Niño/Southern Oscillation. Also, the Sea Surface Temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational datasets were used to support the Atlantic influence on Amazon rainfall. Furthermore, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount.

  6. Shifts in indigenous culture relate to forest tree diversity: a case study from the Tsimane', Bolivian Amazon.

    PubMed

    Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria

    2015-06-01

    Understanding how indigenous peoples' management practices relate to biological diversity requires addressing contemporary changes in indigenous peoples' way of life. This study explores the association between cultural change among a Bolivian Amazonian indigenous group, the Tsimane', and tree diversity in forests surrounding their villages. We interviewed 86 informants in six villages about their level of attachment to traditional Tsimane' values, our proxy for cultural change. We estimated tree diversity (Fisher's Alpha index) by inventorying trees in 48 0.1-ha plots in old-growth forests distributed in the territory of the same villages. We used multivariate models to assess the relation between cultural change and alpha tree diversity. Cultural change was associated with alpha tree diversity and the relation showed an inverted U-shape, thus suggesting that tree alpha diversity peaked in villages undergoing intermediate cultural change. Although the results do not allow for testing the direction of the relation, we propose that cultural change relates to tree diversity through the changes in practices and behaviors that affect the traditional ecological knowledge of Tsimane' communities; further research is needed to determine the causality. Our results also find support in the intermediate disturbance hypothesis, and suggest that indigenous management can be seen as an intermediate form of anthropogenic disturbance affecting forest communities in a subtle, non-destructive way.

  7. Shifts in indigenous culture relate to forest tree diversity: a case study from the Tsimane’, Bolivian Amazon

    PubMed Central

    Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J.; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria

    2015-01-01

    Understanding how indigenous peoples’ management practices relate to biological diversity requires addressing contemporary changes in indigenous peoples’ way of life. This study explores the association between cultural change among a Bolivian Amazonian indigenous group, the Tsimane’, and tree diversity in forests surrounding their villages. We interviewed 86 informants in six villages about their level of attachment to traditional Tsimane’ values, our proxy for cultural change. We estimated tree diversity (Fisher’s Alpha index) by inventorying trees in 48 0.1-ha plots in old-growth forests distributed in the territory of the same villages. We used multivariate models to assess the relation between cultural change and alpha tree diversity. Cultural change was associated with alpha tree diversity and the relation showed an inverted U-shape, thus suggesting that tree alpha diversity peaked in villages undergoing intermediate cultural change. Although the results do not allow for testing the direction of the relation, we propose that cultural change relates to tree diversity through the changes in practices and behaviors that affect the traditional ecological knowledge of Tsimane’ communities; further research is needed to determine the causality. Our results also find support in the intermediate disturbance hypothesis, and suggest that indigenous management can be seen as an intermediate form of anthropogenic disturbance affecting forest communities in a subtle, non-destructive way. PMID:26097240

  8. Amazon River investigations, reconnaissance measurements of July 1963

    USGS Publications Warehouse

    Oltman, Roy Edwin; Sternberg, H. O'R.; Ames, F.C.; Davis, L.C.

    1964-01-01

    The first measurements of the flow of the Amazon River were made in July 1963 as a joint project of the University of Brazil, the Brazilian Navy, and the U.S. Geological Survey. The discharge of the Amazon River at Obidos was 7,640,000 cfs at an annual flood stage somewhat lower than the average. For comparison the maximum known discharge of the Mississippi River at Vicksburg is about 2,300,000 cfs. Dissolved-solids concentrations and sediment loads of the Amazon River and of several major tributaries were found to be low.

  9. Monitoring vegetation dynamics in the Amazon with RapidScat

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron C.; van de Giesen, Nick

    2017-04-01

    Several studies affiliated diurnal variations in radar backscatter over the Amazon [1,2] with vegetation water stress. Recent studies on tree and corn canopies [3,4] have demonstrated that during periods of low soil moisture availability, the total radar backscatter is primarily sensitive to changes in leaf water content, highlighting the potential of radar for water stress detection. The RapidScat mission (Ku-band, 13.4GHz), mounted on the International Space Station, observes the Earth in a non-sun-synchronous orbit [5]. This unique orbit allows for reconstructing diurnal cycles of radar backscatter. We hypothesize that the state of the canopy is a significant portion of the diurnal variations observed in the radar backscatter. Recent, yet inconclusive, analyses support the theory of the impact of vegetation water content on diurnal variation in RapidScat radar backscatter over the Amazon and Congo. Linking ground measurements of canopy dynamics to radar backscatter will allow further exploration of the possibilities for monitoring vegetation dynamics. Our presentation focuses of two parts. First, we reconstruct diurnal cycles of RapidScat backscatter over the Amazon, and study its variation over time. Second, we analyze the pre-dawn backscatter over time. The water content at this time of day is a measure of water stress, and might therefore be visible in the backscatter time series. References [1] Frolking, S., et al.: "Tropical forest backscatter anomaly evident in SeaWinds scatterometer morning overpass data during 2005 drought in Amazonia", Remote Sensing of Environment, 2011. [2] Jaruwatanadilok, S., and B. Stiles: "Trends and variation in Ku-band backscatter of natural targets on land observed in QuikSCAT data", IEEE Transactions on Geoscience and Remote Sensing , 2014. [3] Steele-Dunne, S., et al.: "Using diurnal variation in backscatter to detect vegetation water stress", IEEE Transactions on Geoscience and Remote Sensing, 2012. [4] van Emmerik, T., et

  10. Surveillance, health promotion and control of Chagas disease in the Amazon Region - Medical attention in the Brazilian Amazon Region: a proposal

    PubMed Central

    Coura, José Rodrigues; Junqueira, Angela CV

    2015-01-01

    We refer to Oswaldo Cruz's reports dating from 1913 about the necessities of a healthcare system for the Brazilian Amazon Region and about the journey of Carlos Chagas to 27 locations in this region and the measures that would need to be adopted. We discuss the risks of endemicity of Chagas disease in the Amazon Region. We recommend that epidemiological surveillance of Chagas disease in the Brazilian Amazon Region and Pan-Amazon region should be implemented through continuous monitoring of the human population that lives in the area, their housing, the environment and the presence of triatomines. The monitoring should be performed with periodic seroepidemiological surveys, semi-annual visits to homes by health agents and the training of malaria microscopists and healthcare technicians to identify Trypanosoma cruzi from patients' samples and T. cruzi infection rates among the triatomines caught. We recommend health promotion and control of Chagas disease through public health policies, especially through sanitary education regarding the risk factors for Chagas disease. Finally, we propose a healthcare system through base hospitals, intermediate-level units in the areas of the Brazilian Amazon Region and air transportation, considering the distances to be covered for medical care. PMID:26560976

  11. Imaging Laser Altimetry in the Amazon: Mapping Large Areas of Topography, Vegetation Height and Structure, and Biomass

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Nelson, B.; dosSantos, J.; Valeriano, D.; Houghton, R.; Hofton, M.; Lutchke, S.; Sun, Q.

    2002-01-01

    A flight mission of NASA GSFC's Laser Vegetation Imaging Sensor (LVIS) is planned for June-August 2003 in the Amazon region of Brazil. The goal of this flight mission is to map the vegetation height and structure and ground topography of a large area of the Amazon. This data will be used to produce maps of true ground topography, vegetation height, and estimated above-ground biomass and for comparison with and potential calibration of Synthetic Aperture Radar (SAR) data. Approximately 15,000 sq. km covering various regions of the Amazon will be mapped. The LVIS sensor has the unique ability to accurately sense the ground topography beneath even the densest of forest canopies. This is achieved by using a high signal-to-noise laser altimeter to detect the very weak reflection from the ground that is available only through small gaps in between leaves and between tree canopies. Often the amount of ground signal is 1% or less of the total returned echo. Once the ground elevation is identified, that is used as the reference surface from which we measure the vertical height and structure of the vegetation. Test data over tropical forests have shown excellent correlation between LVIS measurements and biomass, basal area, stem density, ground topography, and canopy height. Examples of laser altimetry data over forests and the relationships to biophysical parameters will be shown. Also, recent advances in the LVIS instrument will be discussed.

  12. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks.

    PubMed

    Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M J; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-03-13

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.

  13. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    NASA Astrophysics Data System (ADS)

    Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M. J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-03-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.

  14. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    PubMed Central

    Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M. J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-01-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation–atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10–13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest. PMID:28287104

  15. Flooding dynamics on the lower Amazon floodplain

    NASA Astrophysics Data System (ADS)

    Rudorff, C.; Melack, J. M.; Bates, P. D.

    2013-05-01

    We analyzed flooding dynamics of a large floodplain lake in the lower reach of the Amazon River for the period between 1995 through 2010. Floodplain inundation was simulated using the LISFLOOD-FP model, which combines one-dimensional river routing with two-dimensional overland flow, and a local hydrological model. Accurate representation of floodplain flows and inundation extent depends on the quality of the digital elevation model (DEM). We combined digital topography (derived from the Shuttle Radar Topography Mission) with extensive floodplain echo-sounding data to generate a hydraulically sound DEM. Analysis of daily water balances revealed that the dominant source of inflow alternated seasonally among direct rain and local runoff (October through January), Amazon River (March through August), and seepage (September). As inflows from the Amazon River increase during the rising limb of the hydrograph, regional floodwaters encounter the floodplain partially inundated from local hydrological inputs. At peak flow the floodplain routes, on average, 2.5% of the total discharge for this reach. The falling limb of the hydrograph coincides with the locally dry period, allowing seepage of water stored in sediments to become a dominant source. The average annual inflow from the Amazon River was 58.8 km3 (SD = 33.5), representing more than three thirds (80%) of inputs from all sources, with substantial inter-annual variability. The average annual net export of water from the floodplain to the Amazon River was 7.9 km3 (SD = 2.7).

  16. What We Can Learn from Amazon for Clinical Decision Support Systems.

    PubMed

    Abid, Sidra; Keshavjee, Karim; Karim, Arsalan; Guergachi, Aziz

    2017-01-01

    Health care continue to lag behind other industries, such as retail and financial services, in the use of decision-support-like tools. Amazon is particularly prolific in the use of advanced predictive and prescriptive analytics to assist its customers to purchase more, while increasing satisfaction, retention, repeat-purchases and loyalty. How can we do the same in health care? In this paper, we explore various elements of the Amazon website and Amazon's data science and big data practices to gather inspiration for re-designing clinical decision support in the health care sector. For each Amazon element we identified, we present one or more clinical applications to help us better understand where Amazon's.

  17. Ozone measurements in the Amazon

    NASA Astrophysics Data System (ADS)

    Kirchhoff, V. W. J. H.

    Several scientists of the Brazilian Institute for Space Research (Instituto de Pesquisas Espacias, or INPE; headquarters at Sāo Jose dos Campos, Sao Paulo) went to Manaus (3°S, 60°W), in the central region of the Amazon forest during July-August 1985 to study the atmosphere of the equatorial rainforest. The expedition to the Amazon was part of a large binational atmospheric chemistry field campaign that was organized to measure several atmospheric gases of the forest environment. This was definitely the largest scientific field expedition in this field ever performed on Brazilian territory.

  18. Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.

    Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunitiesmore » to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.« less

  19. Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment

    DOE PAGES

    Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.; ...

    2017-12-06

    Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunitiesmore » to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.« less

  20. Spatial trends in leaf size of Amazonian rainforest trees

    NASA Astrophysics Data System (ADS)

    Malhado, A. C. M.; Malhi, Y.; Whittaker, R. J.; Ladle, R. J.; Ter Steege, H.; Aragão, L. E. O. C.; Quesada, C. A.; Araujo-Murakami, A.; Phillips, O. L.; Peacock, J.; Lopez-Gonzalez, G.; Baker, T. R.; Butt, N.; Anderson, L. O.; Arroyo, L.; Almeida, S.; Higuchi, N.; Killeen, T. J.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R. P.; Silva, N.; Vásquez-Martínez, R.; Laurance, W. F.

    2009-02-01

    Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots (e.g. RAINFOR, ATDN) has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing south to northeast) and length of the dry season (increasing from northwest to south and east). Here we describe the results of the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that, as predicted, the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25-182.25 cm2). The geographic distribution of species and individuals with large leaves (>20.25 cm2) is complex but is generally characterized by a higher proportion of such trees in the north-west of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.

  1. Constancy in the vegetation of the Amazon Basin during the late Pleistocene: Evidence from the organic matter composition of Amazon deep sea fan sediments

    NASA Astrophysics Data System (ADS)

    Kastner, Thomas P.; Goñi, Miguel A.

    2003-04-01

    Analyses of more than 60 sediment samples from the Amazon deep sea fan show remarkably constant terrigenous biomarkers (lignin phenols and cutin acids) and stable carbon isotopic compositions of organic matter (δ13COM) deposited from 10 to 70 ka. Sediments from the nine Amazon deep sea fan channel-levee systems investigated in this study yielded relatively narrow ranges for diagnostic parameters such as organic carbon (OC) normalized total lignin yields (Λ = 3.1 ± 1.1 mg/100 mg OC), syringyl:vanillyl phenol ratios (S/V = 0.84 ± 0.06), cinnamyl:vanillyl phenol ratios (C/V = 0.08 ± 0.02), isomeric abundances of cutin-derived dihydroxyhexadecanoic acid (f10,16-OH = 0.65 ± 0.02), and δ13COM (-27.6% ± 0.6 ‰). Our measurements support the hypothesis that the vegetation of the Amazon Basin did not change significantly during the late Pleistocene, even during the Last Glacial Maximum. Moreover, the compositions obtained from the Amazon deep sea fan are similar to those of modern Amazon River suspended sediments. Such results strongly indicate that the current tropical rainforest vegetation has been a permanent and dominant feature of the Amazon River watershed over the past 70 k.y. Specifically, we found no evidence for the development of large savannas that had been previously postulated as indicators of increased glacial aridity in Amazonia. Climate models need to be modified to account for the uninterrupted input of moisture to the tropical Amazon region over the late Pleistocene Holocene period.

  2. Carbon Emissions from Deforestation in the Brazilian Amazon Region

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from

  3. Extratropical Respones to Amazon Deforestation

    NASA Astrophysics Data System (ADS)

    Badger, A.; Dirmeyer, P.

    2014-12-01

    Land-use change (LUC) is known to impact local climate conditions through modifications of land-atmosphere interactions. Large-scale LUC, such as Amazon deforestation, could have a significant effect on the local and regional climates. The question remains as to what the global impact of large-scale LUC could be, as previous modeling studies have shown non-local responses due to Amazon deforestation. A common shortcoming in many previous modeling studies is the use of prescribed ocean conditions, which can act as a boundary condition to dampen the global response with respect to changes in the mean and variability. Using fully coupled modeling simulations with the Community Earth System Model version 1.2.0, the Amazon rainforest has been replaced with a distribution of representative tropical crops. Through the modifications of local land-atmosphere interactions, a significant change in the region, both at the surface and throughout the atmosphere, can be quantified. Accompanying these local changes are significant changes to the atmospheric circulation across all scales, thus modifying regional climates in other locales. Notable impacts include significant changes in precipitation, surface fluxes, basin-wide sea surface temperatures and ENSO behavior.

  4. The Amazon, measuring a mighty river

    USGS Publications Warehouse

    ,

    1967-01-01

    The Amazon, the world's largest river, discharges enough water into the sea each day to provide fresh water to the City of New York for over 9 years. Its flow accounts for about 15 percent of all the fresh water discharged into the oceans by all the rivers of the world. By comparison, the Amazon's flow is over 4 times that of the Congo River, the world's second largest river. And it is 10 times that of the Mississippi, the largest river on the North American Continent.

  5. Mapping and spatiotemporal characterization of degraded forests in the Brazilian Amazon through remote sensing

    NASA Astrophysics Data System (ADS)

    de Souza, Carlos Moreira, Jr.

    Sinop region were successfully applied to forty Landsat images covering other regions of the Brazilian Amazon. Standard fractions and NDFI images were computed for these other regions and both physically and spatially consistent results were obtained. An automated decision tree classification using genetic algorithm was implemented successfully to classify land cover types and sub-classes of degraded forests. The remote sensing techniques proposed in this dissertation are fully automated and have the potential to be used in tropical forest monitoring programs.

  6. Technical and institutional innovation in agroforestry for protected areas management in the Brazilian Amazon: opportunities and limitations.

    PubMed

    Schroth, Götz; da Mota, Maria do Socorro S

    2013-08-01

    Tropical forest countries are struggling with the partially conflicting policy objectives of socioeconomic development, forest conservation, and safeguarding the livelihoods of local forest-dependent people. We worked with communities in the lower Tapajós region of the central Brazilian Amazon for over 10 years to understand their traditional and present land use practices, the constraints, and decision making processes imposed by their biophysical, socioeconomic, and political environment, and to facilitate development trajectories to improve the livelihoods of forest communities while conserving the forest on the farms and in the larger landscape. The work focused on riverine communities initially in the Tapajós National Forest and then in the Tapajós-Arapiuns Extractive Reserve. These communities have a century-old tradition of planting rubber agroforests which despite their abandonment during the 1990s still widely characterize the vegetation of the river banks, especially in the two protected areas where they are safe from the recent expansion of mechanized rice and soybean agriculture. The project evolved from the capacity-building of communities in techniques to increase the productivity of the rubber agroforests without breaking their low-input and low-risk logic, to the establishment of a community enterprise that allowed reserve inhabitants to reforest their own land with tree species of their choice and sell reforestation (not carbon) credits to local timber companies while retaining the ownership of the trees. By making land use practices economically more viable and ecologically more appropriate for protected areas, the project shows ways to strengthen the system of extractive and sustainable development reserves that protects millions of hectares of Amazon forest with the consent of the communities that inhabit them.

  7. Technical and Institutional Innovation in Agroforestry for Protected Areas Management in the Brazilian Amazon: Opportunities and Limitations

    NASA Astrophysics Data System (ADS)

    Schroth, Götz; da Mota, Maria do Socorro S.

    2013-08-01

    Tropical forest countries are struggling with the partially conflicting policy objectives of socioeconomic development, forest conservation, and safeguarding the livelihoods of local forest-dependent people. We worked with communities in the lower Tapajós region of the central Brazilian Amazon for over 10 years to understand their traditional and present land use practices, the constraints, and decision making processes imposed by their biophysical, socioeconomic, and political environment, and to facilitate development trajectories to improve the livelihoods of forest communities while conserving the forest on the farms and in the larger landscape. The work focused on riverine communities initially in the Tapajós National Forest and then in the Tapajós-Arapiuns Extractive Reserve. These communities have a century-old tradition of planting rubber agroforests which despite their abandonment during the 1990s still widely characterize the vegetation of the river banks, especially in the two protected areas where they are safe from the recent expansion of mechanized rice and soybean agriculture. The project evolved from the capacity-building of communities in techniques to increase the productivity of the rubber agroforests without breaking their low-input and low-risk logic, to the establishment of a community enterprise that allowed reserve inhabitants to reforest their own land with tree species of their choice and sell reforestation (not carbon) credits to local timber companies while retaining the ownership of the trees. By making land use practices economically more viable and ecologically more appropriate for protected areas, the project shows ways to strengthen the system of extractive and sustainable development reserves that protects millions of hectares of Amazon forest with the consent of the communities that inhabit them.

  8. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure.

    PubMed

    Tang, Hao; Dubayah, Ralph

    2017-03-07

    Light-regime variability is an important limiting factor constraining tree growth in tropical forests. However, there is considerable debate about whether radiation-induced green-up during the dry season is real, or an apparent artifact of the remote-sensing techniques used to infer seasonal changes in canopy leaf area. Direct and widespread observations of vertical canopy structures that drive radiation regimes have been largely absent. Here we analyze seasonal dynamic patterns between the canopy and understory layers in Amazon evergreen forests using observations of vertical canopy structure from a spaceborne lidar. We discovered that net leaf flushing of the canopy layer mainly occurs in early dry season, and is followed by net abscission in late dry season that coincides with increasing leaf area of the understory layer. Our observations of understory development from lidar either weakly respond to or are not correlated to seasonal variations in precipitation or insolation, but are strongly related to the seasonal structural dynamics of the canopy layer. We hypothesize that understory growth is driven by increased light gaps caused by seasonal variations of the canopy. This light-regime variability that exists in both spatial and temporal domains can better reveal the drought-induced green-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  9. Detecting tree-fall gap disturbances in tropical rain forests with airborne lidar

    NASA Astrophysics Data System (ADS)

    Espirito-Santo, F. D. B.; Saatchi, S.; Keller, M.

    2017-12-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of tree-fall gap disturbances in natural forests of tropical forests using a novel combination of forest inventory and airborne lidar data. We quantify gap size frequency distribution along vertical and horizontal dimensions in ten Neotropical forest canopies distributed across gradients of climate and landscapes using airborne lidar measurements. We assessed all canopy openings related to each class of tree height which yields a three dimensional structure of the distribution of canopy gaps. Gap frequency distributions from lidar CHM data vary markedly with minimum gap size thresholds, but we found that natural forest disturbances (tree-fall gaps) follow a power-law distribution with narrow range of power-law exponents (-1.2 to -1.3). These power-law exponents from gap frequency distributions provide insights into how natural forest disturbances are distributed over tropical forest landscape.

  10. Plant Family-Specific Impacts of Petroleum Pollution on Biodiversity and Leaf Chlorophyll Content in the Amazon Rainforest of Ecuador.

    PubMed

    Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Tellkamp, Markus

    2017-01-01

    In recent decades petroleum pollution in the tropical rainforest has caused significant environmental damage in vast areas of the Amazon region. At present the extent of this damage is not entirely clear. Little is known about the specific impacts of petroleum pollution on tropical vegetation. In a field expedition to the Ecuadorian Amazon over 1100 leaf samples were collected from tropical trees in polluted and unpolluted sites. Plant families were identified for 739 of the leaf samples and compared between sites. Plant biodiversity indices show a reduction of the plant biodiversity when the site was affected by petroleum pollution. In addition, reflectance and transmittance were measured with a field spectroradiometer for every leaf sample and leaf chlorophyll content was estimated using reflectance model inversion with the radiative tranfer model PROSPECT. Four of the 15 plant families that are most representative of the ecoregion (Melastomataceae, Fabaceae, Rubiaceae and Euphorbiaceae) had significantly lower leaf chlorophyll content in the polluted areas compared to the unpolluted areas. This suggests that these families are more sensitive to petroleum pollution. The polluted site is dominated by Melastomataceae and Rubiaceae, suggesting that these plant families are particularly competitive in the presence of pollution. This study provides evidence of a decrease of plant diversity and richness caused by petroleum pollution and of a plant family-specific response of leaf chlorophyll content to petroleum pollution in the Ecuadorian Amazon using information from field spectroscopy and radiative transfer modelling.

  11. Plant Family-Specific Impacts of Petroleum Pollution on Biodiversity and Leaf Chlorophyll Content in the Amazon Rainforest of Ecuador

    PubMed Central

    Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Tellkamp, Markus

    2017-01-01

    In recent decades petroleum pollution in the tropical rainforest has caused significant environmental damage in vast areas of the Amazon region. At present the extent of this damage is not entirely clear. Little is known about the specific impacts of petroleum pollution on tropical vegetation. In a field expedition to the Ecuadorian Amazon over 1100 leaf samples were collected from tropical trees in polluted and unpolluted sites. Plant families were identified for 739 of the leaf samples and compared between sites. Plant biodiversity indices show a reduction of the plant biodiversity when the site was affected by petroleum pollution. In addition, reflectance and transmittance were measured with a field spectroradiometer for every leaf sample and leaf chlorophyll content was estimated using reflectance model inversion with the radiative tranfer model PROSPECT. Four of the 15 plant families that are most representative of the ecoregion (Melastomataceae, Fabaceae, Rubiaceae and Euphorbiaceae) had significantly lower leaf chlorophyll content in the polluted areas compared to the unpolluted areas. This suggests that these families are more sensitive to petroleum pollution. The polluted site is dominated by Melastomataceae and Rubiaceae, suggesting that these plant families are particularly competitive in the presence of pollution. This study provides evidence of a decrease of plant diversity and richness caused by petroleum pollution and of a plant family-specific response of leaf chlorophyll content to petroleum pollution in the Ecuadorian Amazon using information from field spectroscopy and radiative transfer modelling. PMID:28103307

  12. The role of immigrants in the assembly of the South American rainforest tree flora.

    PubMed Central

    Pennington, R Toby; Dick, Christopher W

    2004-01-01

    The Amazon lowland rainforest flora is conventionally viewed as comprising lineages that evolved in biogeographic isolation after the split of west Gondwana (ca. 100 Myr ago). Recent molecular phylogenies, however, identify immigrant lineages that arrived in South America during its period of oceanic isolation (ca. 100-3 Myr ago). Long-distance sweepstakes dispersal across oceans played an important and possibly predominant role. Stepping-stone migration from Africa and North America through hypothesized Late Cretaceous and Tertiary island chains may have facilitated immigration. An analysis of inventory plot data suggests that immigrant lineages comprise ca. 20% of both the species and individuals of an Amazon tree community in Ecuador. This is more than an order of magnitude higher than previous estimates. We also present data on the community-level similarity between South American and palaeotropical rainforests, and suggest that most taxonomic similarity derives from trans-oceanic dispersal, rather than a shared Gondwanan history. PMID:15519976

  13. Logging concessions enable illegal logging crisis in the Peruvian Amazon.

    PubMed

    Finer, Matt; Jenkins, Clinton N; Sky, Melissa A Blue; Pine, Justin

    2014-04-17

    The Peruvian Amazon is an important arena in global efforts to promote sustainable logging in the tropics. Despite recent efforts to achieve sustainability, such as provisions in the US-Peru Trade Promotion Agreement, illegal logging continues to plague the region. We present evidence that Peru's legal logging concession system is enabling the widespread illegal logging via the regulatory documents designed to ensure sustainable logging. Analyzing official government data, we found that 68.3% of all concessions supervised by authorities were suspected of major violations. Of the 609 total concessions, nearly 30% have been cancelled for violations and we expect this percentage to increase as investigations continue. Moreover, the nature of the violations indicate that the permits associated with legal concessions are used to harvest trees in unauthorized areas, thus threatening all forested areas. Many of the violations pertain to the illegal extraction of CITES-listed timber species outside authorized areas. These findings highlight the need for additional reforms.

  14. Logging Concessions Enable Illegal Logging Crisis in the Peruvian Amazon

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.; Sky, Melissa A. Blue; Pine, Justin

    2014-01-01

    The Peruvian Amazon is an important arena in global efforts to promote sustainable logging in the tropics. Despite recent efforts to achieve sustainability, such as provisions in the US–Peru Trade Promotion Agreement, illegal logging continues to plague the region. We present evidence that Peru's legal logging concession system is enabling the widespread illegal logging via the regulatory documents designed to ensure sustainable logging. Analyzing official government data, we found that 68.3% of all concessions supervised by authorities were suspected of major violations. Of the 609 total concessions, nearly 30% have been cancelled for violations and we expect this percentage to increase as investigations continue. Moreover, the nature of the violations indicate that the permits associated with legal concessions are used to harvest trees in unauthorized areas, thus threatening all forested areas. Many of the violations pertain to the illegal extraction of CITES-listed timber species outside authorized areas. These findings highlight the need for additional reforms. PMID:24743552

  15. Logging Concessions Enable Illegal Logging Crisis in the Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Finer, Matt; Jenkins, Clinton N.; Sky, Melissa A. Blue; Pine, Justin

    2014-04-01

    The Peruvian Amazon is an important arena in global efforts to promote sustainable logging in the tropics. Despite recent efforts to achieve sustainability, such as provisions in the US-Peru Trade Promotion Agreement, illegal logging continues to plague the region. We present evidence that Peru's legal logging concession system is enabling the widespread illegal logging via the regulatory documents designed to ensure sustainable logging. Analyzing official government data, we found that 68.3% of all concessions supervised by authorities were suspected of major violations. Of the 609 total concessions, nearly 30% have been cancelled for violations and we expect this percentage to increase as investigations continue. Moreover, the nature of the violations indicate that the permits associated with legal concessions are used to harvest trees in unauthorized areas, thus threatening all forested areas. Many of the violations pertain to the illegal extraction of CITES-listed timber species outside authorized areas. These findings highlight the need for additional reforms.

  16. Future drying of the southern Amazon and central Brazil

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Zeng, N.; Cook, B.

    2008-12-01

    Recent climate modeling suggests that the Amazon rainforest could exhibit considerable dieback under future climate change, a prediction that has raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable. However, the periphery, notably the southern edge, is in danger of drying out, driven by two main processes. First, a decline in precipitation of 24% in the southern Amazon lengthens the dry season and reduces soil moisture, despite of an increase in precipitation during the wet season, due to the nonlinear response in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season precipitation: (1) a stronger north-south tropical Atlantic sea surface temperature gradient; (2) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure. Secondly, evaporation will increase due to the general warming, thus also reducing soil moisture. As a consequence, the median of the models projects a reduction of vegetation by 20%, and enhanced fire carbon flux by 10-15% in the southern Amazon, central Brazil, and parts of the Andean Mountains. Because the southern Amazon is also under intense human influence, the double pressure of deforestation and climate change may subject the region to dramatic changes in the 21st century.

  17. Phenological observations and tree seed characteristics in an equatorial moist forest at Trombetas, Pará State, Brazil

    Treesearch

    Oliver H. Knowles; John A. Parrotta

    1997-01-01

    Seasonal patterns of flowering and fruiting were studìed over an 18-vear period in an upland (terra firme) primary forest area near Trombetas, Pará ìn centrai Amazonìa. The study included 160 common tree taxa. While a number of specìes produced flowers and fruits during all months, distinct seasonal patterns were observed. Flowerìng peaks usually occurred during the...

  18. Mouth of the Amazon

    NASA Image and Video Library

    2001-02-07

    Flowing over 6450 kilometers eastward across Brazil, the Amazon River originates in the Peruvian Andes as tiny mountain streams that eventually combine to form one of the world mightiest rivers as shown in this image from NASA Terra satellite.

  19. Lipid Panel Reference Intervals for Amazon Parrots (Amazona species).

    PubMed

    Ravich, Michelle; Cray, Carolyn; Hess, Laurie; Arheart, Kristopher L

    2014-09-01

    The lipoprotein panel is a useful diagnostic tool that allows clinicians to evaluate blood lipoprotein fractions. It is a standard diagnostic test in human medicine but is poorly understood in avian medicine. Amazon parrots (Amazona species) are popular pets that frequently lead a sedentary lifestyle and are customarily fed high-fat diets. Similar to people with comparable diets and lifestyles, Amazon parrots are prone to obesity and atherosclerosis. In human medicine, these conditions are typically correlated with abnormalities in the lipoprotein panel. To establish reference intervals for the lipoprotein panel in Amazon parrots, plasma samples from 31 captive Amazon parrots were analyzed for concentrations of cholesterol, triglycerides, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL). The data were also grouped according to sex, diet, body condition score, and age. Aside from HDL levels, which were significantly different between male and female parrots, no intergroup differences were found for any of the lipoprotein fractions.

  20. Spectrometry of Pasture Condition and Biogeochemistry in the Central Amazon

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Townsend, Alan R.; Bustamante, Mercedes M. C.

    1999-01-01

    Regional analyses of Amazon cattle pasture biogeochemistry are difficult due to the complexity of human, edaphic, biotic and climatic factors and persistent cloud cover in satellite observations. We developed a method to estimate key biophysical properties of Amazon pastures using hyperspectral reflectance data and photon transport inverse modeling. Remote estimates of live and senescent biomass were strongly correlated with plant-available forms of soil phosphorus and calcium. These results provide a basis for monitoring pasture condition and biogeochemistry in the Amazon Basin using spaceborne hyperspectral sensors.

  1. Phylogeny of Amazona barbadensis and the Yellow-headed Amazon complex (Aves: Psittacidae): a new look at South American parrot evolution.

    PubMed

    Urantówka, Adam Dawid; Mackiewicz, Paweł; Strzała, Tomasz

    2014-01-01

    The Yellow-shouldered Amazon (Amazona barbadensis) is the sole parrot of the genus Amazona that inhabits only dry forests. Its population has been dropping; therefore it has been the topic of many studies and conservation efforts. However, the phylogenetic relationship of this species to potential relatives classified within the Yellow-Headed Amazon (YHA) complex are still not clear. Therefore, we used more extensive data sets, including the newly sequenced mitochondrial genome of A. barbadensis, to conduct phylogenetic analyses. Various combinations of genes and many phylogenetic approaches showed that A. barbadensis clustered significantly with A. ochrocephala ochrocephala from Colombia and Venezuela, which created the Northern South American (NSA) lineage, clearly separated from two other lineages within the YHA complex, the Central (CA) and South American (SA). Tree topology tests and exclusion of rapidly evolving sites provided support for a NSA+SA grouping. We propose an evolutionary scenario for the YHA complex and its colonization of the American mainland. The NSA lineage likely represents the most ancestral lineage, which derived from Lesser Antillean Amazons and colonized the northern coast of Venezuela about a million years ago. Then, Central America was colonized through the Isthmus of Panama, which led to the emergence of the CA lineage. The southward expansion to South America and the origin of the SA lineage happened almost simultaneously. However, more intensive or prolonged gene flow or migrations have led to much weaker geographic differentiation of genetic markers in the SA than in the CA lineage.

  2. "Different by Degree": Ella Cara Deloria, Zora Neale Hurston, and Franz Boas Contend with Race and Ethnicity.

    ERIC Educational Resources Information Center

    Hoefel, Roseanne

    2001-01-01

    American Indian ethnographer and linguist Ella Cara Deloria and African American folklorist and writer Zora Neale Hurston did fieldwork for Franz Boas, the father of modern anthropology. Both were shocked by how American racism empowered white people's historical actions. By correcting stereotypes through their work, they reasserted the role of…

  3. Surface Soil Changes Following Selective Logging in an Eastern Amazon Forest

    NASA Technical Reports Server (NTRS)

    Olander, Lydia P.; Bustamante, Mercedes M.; Asner, Gregory P.; Telles, Everaldo; Prado, Zayra; Camargo, Plinio B.

    2005-01-01

    In the Brazilian Amazon, selective logging is second only to forest conversion in its extent. Conversion to pasture or agriculture tends to reduce soil nutrients and site productivity over time unless fertilizers are added. Logging removes nutrients in bole wood, enough that repeated logging could deplete essential nutrients over time. After a single logging event, nutrient losses are likely to be too small to observe in the large soil nutrient pools, but disturbances associated with logging also alter soil properties. Selective logging, particularly reduced-impact logging, results in consistent patterns of disturbance that may be associated with particular changes in soil properties. Soil bulk density, pH, carbon (C), nitrogen (N), phosphorus (P), calcium (Ca), magnesium (Mg), potassium (K), iron (Fe), aluminum (Al), delta(sup 3)C, delta(sup 15)N, and P fractionations were measured on the soils of four different types of loggingrelated disturbances: roads, decks, skids, and treefall gaps. Litter biomass and percent bare ground were also determined in these areas. To evaluate the importance of fresh foliage inputs from downed tree crowns in treefall gaps, foliar nutrients for mature forest trees were also determined and compared to that of fresh litterfall. The immediate impacts of logging on soil properties and how these might link to the longer-term estimated nutrient losses and the observed changes in soils were studied.

  4. Mouths of the Amazon River, Brazil, South America

    NASA Image and Video Library

    1992-08-08

    STS046-80-009 (31 July-8 Aug. 1992) --- A view of the mouth of the Amazon River and the Amazon Delta shows a large sediment plume expanding outward into the Atlantic Ocean. The sediment plume can be seen hugging the coast north of the Delta. This is caused by the west-northwest flowing Guyana Current. The large island of Marajo is partially visible through the clouds.

  5. East of the Andes: The genetic profile of the Peruvian Amazon populations.

    PubMed

    Di Corcia, T; Sanchez Mellado, C; Davila Francia, T J; Ferri, G; Sarno, S; Luiselli, D; Rickards, O

    2017-06-01

    Assuming that the differences between the Andes and the Amazon rainforest at environmental and historical levels have influenced the distribution patterns of genes, languages, and cultures, the maternal and paternal genetic reconstruction of the Peruvian Amazon populations was used to test the relationships within and between these two extreme environments. We analyzed four Peruvian Amazon communities (Ashaninka, Huambisa, Cashibo, and Shipibo) for both Y chromosome (17 STRs and 8 SNPs) and mtDNA data (control region sequences, two diagnostic sites of the coding region, and one INDEL), and we studied their variability against the rest of South America. We detected a high degree of genetic diversity in the Peruvian Amazon people, both for mtDNA than for Y chromosome, excepting for Cashibo people, who seem to have had no exchanges with their neighbors, in contrast with the others communities. The genetic structure follows the divide between the Andes and the Amazon, but we found a certain degree of gene flow between these two environments, as particularly emerged with the Y chromosome descent cluster's (DCs) analysis. The Peruvian Amazon is home to an array of populations with differential rates of genetic exchanges with their neighbors and with the Andean people, depending on their peculiar demographic histories. We highlighted some successful Y chromosome lineages expansions originated in Peru during the pre-Columbian history which involved both Andeans and Amazon Arawak people, showing that at least a part of the Amazon rainforest did not remain isolated from those exchanges. © 2017 Wiley Periodicals, Inc.

  6. The changing hydrology of a dammed Amazon

    PubMed Central

    Timpe, Kelsie; Kaplan, David

    2017-01-01

    Developing countries around the world are expanding hydropower to meet growing energy demand. In the Brazilian Amazon, >200 dams are planned over the next 30 years, and questions about the impacts of current and future hydropower in this globally important watershed remain unanswered. In this context, we applied a hydrologic indicator method to quantify how existing Amazon dams have altered the natural flow regime and to identify predictors of alteration. The type and magnitude of hydrologic alteration varied widely by dam, but the largest changes were to critical characteristics of the flood pulse. Impacts were largest for low-elevation, large-reservoir dams; however, small dams had enormous impacts relative to electricity production. Finally, the “cumulative” effect of multiple dams was significant but only for some aspects of the flow regime. This analysis is a first step toward the development of environmental flows plans and policies relevant to the Amazon and other megadiverse river basins. PMID:29109972

  7. A century of Amazon burning driven by Atlantic climate

    NASA Astrophysics Data System (ADS)

    Makou, M.; Thompson, L. G.; Davis, M. E.; Eglinton, T. I.

    2011-12-01

    Very little is known about annual burning trends in the Amazon Basin prior to remote sensing of fires beginning in the late 1970's. Fires reduce Amazon forest biomass and species richness, release pollutant aerosols, and impact the carbon cycle, compelling further investigation of fire-climate dynamics. We measured organic compounds derived from vegetation burning in ice core samples from the Quelccaya Ice Cap in Peru at better than annual resolution to reconstruct wet and dry season burning throughout the Twentieth Century. Variations in the abundance of methyl hexadecanoate, which is produced by thermal alteration of vascular plant alkanoic acids, were used as a proxy for past fire activity. Concentrations of this compound in Quelccaya ice varied strongly on seasonal, interannual, and decadal time scales over the last 100 years, with high-amplitude dry season variability and muted, decadal-scale changes in wet season fire activity. Decade-long periods of repeatedly enhanced burning occurred during the 1930's and 1960's when dry season precipitation was perpetually reduced, as evidenced by low stages of the Rio Negro. These decadal trends suggest that changes in dry season precipitation drive fire activity in the western Amazon and highlight the potential of Amazon forests to undergo repeated strong burning. Fires occurred during years when sea surface temperatures (SSTs) in the north tropical Atlantic were elevated and the north-south tropical Atlantic SST gradient was enhanced; this SST pattern likely displaced the intertropical convergence zone northward, driving subsidence and drought in the western and southern Amazon basin. Thus, our novel ice core record suggests that Amazon forest fire activity during the Twentieth Century was driven primarily by Atlantic climate processes, and future forest health will depend heavily on the evolution of tropical climate.

  8. Backwater effects in the Amazon River basin of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  9. Seasonal and interannual variability of climate and vegetation indices across the Amazon

    PubMed Central

    Brando, Paulo M.; Goetz, Scott J.; Baccini, Alessandro; Nepstad, Daniel C.; Beck, Pieter S. A.; Christman, Mary C.

    2010-01-01

    Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996−2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002–2005. Using improved enhanced vegetation index (EVI) measurements (2000–2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development. PMID:20679201

  10. Seasonal and interannual variability of climate and vegetation indices across the Amazon.

    PubMed

    Brando, Paulo M; Goetz, Scott J; Baccini, Alessandro; Nepstad, Daniel C; Beck, Pieter S A; Christman, Mary C

    2010-08-17

    Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996-2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002-2005. Using improved enhanced vegetation index (EVI) measurements (2000-2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development.

  11. Following Saharan Dust Outbreak Toward The Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Koren, I.; Rudich, Y.; Flores, M.

    2008-12-01

    The role of the Amazon rainforest on earth climatic system is well recognized. To keep forest wellbeing and the fragile balance between the rainforest and the atmosphere, the Amazon must contain a satisfactory amount of nutrients to support the plants. The extensive rain and floods wash most of the soluble nutrients from the rainforest soil, leaving behind acidic kaolinite clay or sandy soil, with limited minerals for plant growth. It was suggested that lack of mineral in the soil may be replenished by deposition of Saharan mineral dust. Using remote sensing data (from the A-train satellites constellation) following with in-situ measurements (as part of the AMazonian Aerosol CharacteriZation Experiment (AMZE) campaign), ground-based data (from AErosol RObotic NETwork (AERONET)) and back trajectory calculations, we analyzed Saharan dust transport toward the Amazon basin during the AMZE period (Feb 7 to Mar 14, 2008). Dust mass, sink, vertical distribution and surface wind speeds were analyzed over the Bodele depression (located in Chad), where most of the dust is emitted, along the Atlantic Ocean and near the Brazilian coastline. Using an integrated data analysis approach we followed dust packages from their emission in the Sahara to their sink in the Amazon forest.

  12. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate

    NASA Astrophysics Data System (ADS)

    Quesada, C. A.; Phillips, O. L.; Schwarz, M.; Czimczik, C. I.; Baker, T. R.; Patiño, S.; Fyllas, N. M.; Hodnett, M. G.; Herrera, R.; Almeida, S.; Alvarez Dávila, E.; Arneth, A.; Arroyo, L.; Chao, K. J.; Dezzeo, N.; Erwin, T.; di Fiore, A.; Higuchi, N.; Honorio Coronado, E.; Jimenez, E. M.; Killeen, T.; Lezama, A. T.; Lloyd, G.; López-González, G.; Luizão, F. J.; Malhi, Y.; Monteagudo, A.; Neill, D. A.; Núñez Vargas, P.; Paiva, R.; Peacock, J.; Peñuela, M. C.; Peña Cruz, A.; Pitman, N.; Priante Filho, N.; Prieto, A.; Ramírez, H.; Rudas, A.; Salomão, R.; Santos, A. J. B.; Schmerler, J.; Silva, N.; Silveira, M.; Vásquez, R.; Vieira, I.; Terborgh, J.; Lloyd, J.

    2012-06-01

    Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the

  13. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013

    PubMed Central

    Tyukavina, Alexandra; Hansen, Matthew C.; Potapov, Peter V.; Stehman, Stephen V.; Smith-Rodriguez, Kevin; Okpa, Chima; Aguilar, Ricardo

    2017-01-01

    Deforestation rates in primary humid tropical forests of the Brazilian Legal Amazon (BLA) have declined significantly since the early 2000s. Brazil’s national forest monitoring system provides extensive information for the BLA but lacks independent validation and systematic coverage outside of primary forests. We use a sample-based approach to consistently quantify 2000–2013 tree cover loss in all forest types of the region and characterize the types of forest disturbance. Our results provide unbiased forest loss area estimates, which confirm the reduction of primary forest clearing (deforestation) documented by official maps. By the end of the study period, nonprimary forest clearing, together with primary forest degradation within the BLA, became comparable in area to deforestation, accounting for an estimated 53% of gross tree cover loss area and 26 to 35% of gross aboveground carbon loss. The main type of tree cover loss in all forest types was agroindustrial clearing for pasture (63% of total loss area), followed by small-scale forest clearing (12%) and agroindustrial clearing for cropland (9%), with natural woodlands being directly converted into croplands more often than primary forests. Fire accounted for 9% of the 2000–2013 primary forest disturbance area, with peak disturbances corresponding to droughts in 2005, 2007, and 2010. The rate of selective logging exploitation remained constant throughout the study period, contributing to forest fire vulnerability and degradation pressures. As the forest land use transition advances within the BLA, comprehensive tracking of forest transitions beyond primary forest loss is required to achieve accurate carbon accounting and other monitoring objectives. PMID:28439536

  14. Living Rivers: Importance of Andes-Amazon Connectivity and Consequences of Hydropower Development

    NASA Astrophysics Data System (ADS)

    Anderson, E.

    2016-12-01

    The inherent dynamism of rivers along elevational and longitudinal gradients underpins freshwater biodiversity, ecosystem function, and ecosystem services in the Andean-Amazon. While this region covers only a small part of the entire Amazon Basin, its influences on downstream ecology, biogeochemistry, and human wellbeing are disproportionate with its relative small size. Seasonal flow pulses from Andean rivers maintain habitat, signal migratory fishes, and export sediment, nutrients, and organic matter to distant ecosystems—like lowland Amazonia and the Atlantic coast of Brazil. Rivers are key transportation routes, and freshwater fisheries are a primary protein source for the >30 million people that inhabit the Amazon Basin. Numerous cultural traditions depend on free-flowing Andean rivers; examples include Kukama beliefs in the underwater cities of the Marañon River, where people who have drowned in rivers whose bodies are not recovered go to live, or the pre-dawn bathing rituals of the Peruvian Shawi, who gain energy and connect with ancestors in cold, fast-flowing Andean waters. Transformations in the Andean-Amazon landscape—in particular from dams—threaten to compromise flows critical for human and ecosystem wellbeing. Presently, at least 250 hydropower dams are in operation, under construction, or proposed for Andean-Amazon rivers. This presentation will discuss regional trends in hydropower development, quantify effects of existing and proposed dams on Andean-Amazon connectivity, and examine the social and cultural importance of free-flowing Andean-Amazon rivers.

  15. The Impacts of Amazon Deforestation on Pacific Climate

    NASA Astrophysics Data System (ADS)

    Lindsey, Leah

    Variability in eastern Pacific sea surface temperatures (SSTs) associated with the El Nino Southern Oscillation are known to affect Amazonian precipitation, but to what extent do changing Amazonian vegetation and rainfall impact eastern Pacific SST? The Amazon rainforest is threatened by many factors including climate change and clearing for agricultural reasons. Forest fires and dieback are more likely due to increased frequency and intensity of droughts in the region. It is possible that extensive Amazon deforestation can enhance El Nino conditions by weakening the Walker circulation. Correlations between annual rainfall rates over the Amazon and other atmospheric parameters (global precipitation, surface air temperature, low cloud amount, 500 hPa vertical velocity, surface winds, and 200 hPa winds) over the eastern Pacific indicate strong relationships among these fields. Maps of these correlations (teleconnection maps) reveal that when the Amazon is rainy SSTs in the central and eastern Pacific are cold, rainfall is suppressed over the central and eastern Pacific, low clouds are prominent over the eastern and southeastern Pacific, and subsidence over the central and eastern Pacific is enhanced. Precipitation in the Amazon is also consistent with a strong Walker circulation (La Nina conditions), manifest as strong correlations with the easterly surface and westerly 200 hPa zonal winds. Coupling between Amazon rainfall and these fields are seen in observations and model data. Correlations were calculated using data from observations, reanalysis data, two models under the Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP), and an AMIP run with the model used in this study, the Community Earth System Model (CESM1.1.1). Although the correlations between Amazon precipitation and the aforementioned fields are strong, they do not show causality. In order to investigate the impact of tropical South American deforestation on the

  16. Tree growth rates in an Amazonian evergreen forest: seasonal patterns and correlations with leaf phenology

    NASA Astrophysics Data System (ADS)

    Wu, J.; Silva Campos, K.; Prohaska, N.; Ferreira, M. L.; Nelson, B. W.; Saleska, S. R.; da Silva, R.

    2014-12-01

    Metabolism and phenology of tropical forests significantly influence global dynamics of climate, carbon and water. However, there is still lack of mechanistic understanding of the controls on tropical forest metabolism, particularly at individual tree level. In this study, we are interested in investigating (1) what is the seasonal pattern of woody growth for tropical trees and (2) what is the mechanistic controls onwoody growth at individual level?To explore the above questions,we use two data sources from an evergreen tropical forest KM67 site (near Santarem, Brazil). They are: (1) image time series from a tower mounted RGB imaging system, with images recordedin10 minutes interval since October 2013.Images near local noon homogeneous diffuse lighting were selectedfor leaf phenologymonitoring; (2) ground based bi-weekly biometry survey (via dendrometry band technique) for 25 trees from random sampling since September 2013. 12 among 25 trees are within the tower mounted camera image view. Our preliminary resultsdemonstrate that 20 trees among 25 trees surveyed significantly increase woody growth (or "green up") in dry season. Our results also find thatamong those 20 trees, 12 trees reaches the maximum woody increment rate in late dry season with a mean DBH (Diameter at Breast Height) around 30 cm,while 8 trees reaching the maximum in the middle of wet season, with a mean DBH around 90 cm. This study,though limited in the sample size, mightprovide another line of evidence that Amazon rainforests "green up" in dry season. As for mechanistic controls on tropical tree woody control, we hypothesize both climate and leaf phenology control individual woody growth. We would like to link both camera based leaf phenology and climate data in the next to explorethe reason as to the pattern found in this study that bigger trees might have different seasonal growth pattern as smaller trees.

  17. There's no place like home: seedling mortality contributes to the habitat specialisation of tree species across Amazonia.

    PubMed

    Fortunel, Claire; Paine, C E Timothy; Fine, Paul V A; Mesones, Italo; Goret, Jean-Yves; Burban, Benoit; Cazal, Jocelyn; Baraloto, Christopher

    2016-10-01

    Understanding the mechanisms generating species distributions remains a challenge, especially in hyperdiverse tropical forests. We evaluated the role of rainfall variation, soil gradients and herbivory on seedling mortality, and how variation in seedling performance along these gradients contributes to habitat specialisation. In a 4-year experiment, replicated at the two extremes of the Amazon basin, we reciprocally transplanted 4638 tree seedlings of 41 habitat-specialist species from seven phylogenetic lineages among the three most important forest habitats of lowland Amazonia. Rainfall variation, flooding and soil gradients strongly influenced seedling mortality, whereas herbivory had negligible impact. Seedling mortality varied strongly among habitats, consistent with predictions for habitat specialists in most lineages. This suggests that seedling performance is a primary determinant of the habitat associations of adult trees across Amazonia. It further suggests that tree diversity, currently mostly harboured in terra firme forests, may be strongly impacted by the predicted climate changes in Amazonia. © 2016 John Wiley & Sons Ltd/CNRS.

  18. Amazon Surveillance System (SIVAM): U.S. and Brazilian Cooperation

    DTIC Science & Technology

    1999-12-01

    Controle de Träfe go Aereo) Clutter Effects Model Parliamentary Investigation Commission (Comissäo Parlamentär de Inqutrito) Weather Forecasting...de Pesquisas Espaciais) INPA National Institute of Amazon Research (Instituto Nacional de Pesquisas da Amazonia ) IR Infrared KW Kilowatt (a...VSAT System for Surveillance of the Amazon (Sistema de Vigiläncia da Amazonia ) Brazilian Intelligence Agency (Subsecretaria de Inteligencia

  19. Metagenome sequencing of the microbial community of two Brazilian anthropogenic Amazon dark earth sites, Brazil.

    PubMed

    Lemos, Leandro Nascimento; de Souza, Rosineide Cardoso; de Souza Cannavan, Fabiana; Patricio, André; Pylro, Victor Satler; Hanada, Rogério Eiji; Mui, Tsai Siu

    2016-12-01

    The Anthropogenic Amazon Dark Earth soil is considered one of the world's most fertile soils. These soils differs from conventional Amazon soils because its higher organic content concentration. Here we describe the metagenome sequencing of microbial communities of two sites of Anthropogenic Amazon Dark Earth soils from Amazon Rainforest, Brazil. The raw sequence data are stored under Short Read Accession number: PRJNA344917.

  20. Herbivores promote habitat specialization by trees in Amazonian forests.

    PubMed

    Fine, Paul V A; Mesones, Italo; Coley, Phyllis D

    2004-07-30

    In an edaphically heterogeneous area in the Peruvian Amazon, clay soils and nutrient-poor white sands each harbor distinctive plant communities. To determine whether a trade-off between growth and antiherbivore defense enforces habitat specialization on these two soil types, we conducted a reciprocal transplant study of seedlings of 20 species from six genera of phylogenetically independent pairs of edaphic specialist trees and manipulated the presence of herbivores. Clay specialist species grew significantly faster than white-sand specialists in both soil types when protected from herbivores. However, when unprotected, white-sand specialists dominated in white-sand forests and clay specialists dominated in clay forests. Therefore, habitat specialization in this system results from an interaction of herbivore pressure with soil type.

  1. Petrobras eyes LNG project in Amazon region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-07

    The Brazilian state oil company has proved gas reserves in the Rio Urucu area of the Amazon jungle totaling 1.84 tcf. That compares with 3.08 tcf contained in the offshore Campos basin, source of most of Brazil`s oil and gas production. The environmentally sensitive Urucu region is one of the most dense, remote jungles in the world. Because of environmental concerns about pipelines in the rain forest and a government emphasis on boosting the natural gas share of Brazil`s energy mix, a small liquefied natural gas project is shaping up as the best option for developing and marketing Urucu gas.more » The amazon campaign underscores a government initiative to boost Brazilian consumption of natural gas. In Brazil natural gas accounts for only 4% of primary energy consumption. Some years ago, the government set an official goal of boosting the gas share of the primary energy mix to 10% by 2000. The paper discusses current drilling activities, gas production and processing, the logistics of the upper Amazon, and gas markets.« less

  2. Seasonality of Central Amazon Forest Leaf Flush Using Tower-Mounted RGB Camera

    NASA Astrophysics Data System (ADS)

    Wu, J.; Nelson, B. W.; Tavares, J. V.; Valeriano, D. M.; Lopes, A. P.; Marostica, S. F.; Martins, G.; Prohaska, N.; Albert, L.; De Araujo, A. C.; Manzi, A. O.; Saleska, S. R.; Huete, A. R.

    2014-12-01

    Tower-mounted RGB cameras can contribute data to the debate on seasonality of photosynthesis in Amazon upland forests and to improved modelling of forest response to climate change. In late 2010 we began monitoring upper crown surfaces of ~65 living trees or vines from a 54m tall eddy-flux tower on a well-drained clay-soil plateau. This Central Amazon site (60.2091 W, 2.6092 S) is in a large forest reserve. We deployed a Stardot Netcam XL RGB camera with a 1024 x 768 resolution CMOS sensor, 66o HFOV lens, fixed oblique south view, fixed iris, fixed white balance and auto-exposure. Images were logged every 15 seconds to a passively cooled FitPC2i with heat-tolerant SSD drive. Camera and PC automatically rebooted after power outages. Here we report results for two full years, from 1 Dec 2011 through 30 Nov 2013. Images in six day intervals were selected near local noon for homogeneous diffuse lighting under cloudy sky and for a standard reflected radiance (± 10%). Crowns showing two easily recognized phenophases were tallied: (1) massive flushing of new light-green leaves and (2) complete or nearly complete leaf loss. On average, 60% of live crowns flushed a massive amount of new leaves each year. Each crown flush was completed within 30 days. During the five driest months (Jun-Oct), 44% of all live crowns, on average, exhibited such massive leaf flush. In the five wettest months (Dec-Apr) only 11% of live crowns mass-flushed new leaves. In each year 23% of all live crowns became deciduous, usually a brief (1-2 week) preamble to flushing. Additional crowns lost old dark-green leaves partially and more gradually, becoming semi-deciduous prior to flushing. From these two years of camera data we infer that highly efficient leaves of 2-6 months age (high maximum carboxylation rate) are most abundant from the late dry season (October) through the mid wet season (March). This coincides with peak annual photosynthesis (Gross Ecosystem Productivity) reported for this same

  3. Reconstruction of the Amazon Basin effective moisture availability over the past 14,000 years.

    PubMed

    Maslin, M A; Burns, S J

    2000-12-22

    Quantifying the moisture history of the Amazon Basin is essential for understanding the cause of rain forest diversity and its potential as a methane source. We reconstructed the Amazon River outflow history for the past 14,000 years to provide a moisture budget for the river drainage basin. The oxygen isotopic composition of planktonic foraminifera recovered from a marine sediment core in a region of Amazon River discharge shows that the Amazon Basin was extremely dry during the Younger Dryas, with the discharge reduced by at least 40% as compared with that of today. After the Younger Dryas, a meltwater-driven discharge event was followed by a steady increase in the Amazon Basin effective moisture throughout the Holocene.

  4. Impact of Climate Variability on Forest Dynamics in Eastern Amazon: the Role of Large-Scale Droughts, Local Droughts, and Other Disturbances

    NASA Astrophysics Data System (ADS)

    Longo, M.; Hayek, M.; Alves, L. F.; Bonal, D.; Camargo, P. B.; Restrepo-Coupe, N.; Fitzjarrald, D. R.; Knox, R. G.; Saleska, S. R.; da Silva, R.; Stark, S.; Tapajos, R.; Wiedemann, K. T.; Moorcroft, P. R.; Wofsy, S. C.

    2012-12-01

    Droughts in the Amazon - especially in the southern and eastern regions - are likely to become more frequent and severe with climate change, potentially resulting in significant losses of biomass. Therefore, understanding the ecosystem response to past events, such as the major Amazonian drought of 2005, is fundamental to forecast the ecosystem resilience to extreme droughts in case they become more frequent. In this study we evaluate whether and how large-scale droughts affected the forest dynamics both in terms of productivity and in mortality, and what is the relative contribution of other factors, such as windthrow and smaller local droughts, to explain the observed dynamics. We focus on two sites in Eastern Amazon: Tapajos National Forest near Santarem, Brazil (S67), and Guyaflux tower at Paracou Field Station in French Guiana (GYF). We analyzed site-level observations from eddy flux towers, biometric measurements, and simulated the environment with the Ecosystem Demography Model, version 2 (ED2). This model has the advantage to represent the forest structure in size and functional type, and also biophysical processes within and above canopy, making comparisons with observations more direct. Preliminary results indicate that while the large-scale 2005 drought influenced productivity at both sites, local droughts and windthrow had also a significant contribution to the variation in productivity and mortality rates. Mortality in S67 increased significantly between 2005 and 2007, and was slightly higher in GYF between 2006 and 2008. In both cases, however, higher incidence of uprooted and broken trees suggests a significant contribution from windthrow to mortality. In S67, preliminary simulations using ED2 indicate that water stress reduced productivity during a local but severe drought at the end of 2006, followed by an increase in mortality particularly among trees with diameter at breast height less than 35 cm and early successional trees. In GYF, both ED2 and

  5. Lessons from forest FACE experiments provide guidance for Amazon-FACE science plan (Invited)

    NASA Astrophysics Data System (ADS)

    Norby, R. J.; Lapola, D. M.

    2013-12-01

    size and diversity of the forest) are substantial, preliminary evaluation and past experience from temperate forest FACE experiments have supported the feasibility of an experiment comprising replicated 30-m diameter FACE plots in primary forest. The proposed site is the ZF2 research area 60 km north of Manaus and administered by Brazil's National Institute for Amazonia Research (INPA). The vegetation is representative of a dominant fraction of the forests occurring in the Amazon basin: old-growth closed-canopy terra firme (non-flooded) forest with trees 30-35 m in height on well drained clay soils. The major science questions guiding the experiment are closely informed by results of past FACE experiment and involve carbon metabolism, water use, nutrient cycling, interactions with environmental stressors, and the relationship between plant functional traits and community composition. FACE experiments can define ecological processes and mechanisms of responses for predictive models of ecosystem response, and models of CO2 response can define critical uncertainties and testable hypotheses for experiments; hence, the Amazon FACE experiment will feature a close integration of modeling and experimental approaches.

  6. Quantifying the contribution of root systems to community and individual drought resilience in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; Oliveira, R. S.; Brum, M., Jr.; Saleska, S. R.; Bisht, G.; Prohaska, N.; Taylor, T.; Oliveira Junior, R. C.; Restrepo-Coupe, N.

    2017-12-01

    The increased intensity and severity of droughts within the Amazon Basin region has emphasized the question of vulnerability and resilience of tropical forests to water limitation. During the recent 2015-2016 drought caused by the anomalous El Nino episode, we monitored a large, diverse sample of trees within the Tapajos National Forest, Brazil, in the footprint of the K67 eddy covariance tower. The observed trees exhibited differential responses in terms of stem water potential and sap flow among species: their regulation of ecophysiological strategies varied from very conservative (`isohydric') behavior, to much less restrained, atmosphere-controlled (`anisohydric') type of response. While much attention has been paid to forest canopies, it remains unclear how the regulation of individual tree root system and root spatial interactions contribute to the emergent individual behavior and the ecosystem-scale characterization of drought resilience. Given the inherent difficulty in monitoring below-ground phenomena, physically-based models are valuable for examining different strategies and properties to reduce the uncertainty of characterization. We use a modified version of the highly parallel DOE PFLOTRAN model to simulate the three-dimensional variably saturated flows and root water uptake for over one thousand individuals within a two-hectare area. Root morphology and intrinsic hydraulic properties are assigned based on statistical distributions developed for tropical trees, which account for the broad spectrum of hydraulic strategies in biodiverse environments. The results demonstrate the dynamic nature of active zone of root water uptake based on local soil water potential gradients. The degree of the corresponding shifts in uptake and root collar potential depend not only on assigned hydraulic properties but also on spatial orientation and size relative to community members. This response highlights the importance of not only tree individual hydraulic traits

  7. Phylogeny of Amazona barbadensis and the Yellow-Headed Amazon Complex (Aves: Psittacidae): A New Look at South American Parrot Evolution

    PubMed Central

    Strzała, Tomasz

    2014-01-01

    The Yellow-shouldered Amazon (Amazona barbadensis) is the sole parrot of the genus Amazona that inhabits only dry forests. Its population has been dropping; therefore it has been the topic of many studies and conservation efforts. However, the phylogenetic relationship of this species to potential relatives classified within the Yellow-Headed Amazon (YHA) complex are still not clear. Therefore, we used more extensive data sets, including the newly sequenced mitochondrial genome of A. barbadensis, to conduct phylogenetic analyses. Various combinations of genes and many phylogenetic approaches showed that A. barbadensis clustered significantly with A. ochrocephala ochrocephala from Colombia and Venezuela, which created the Northern South American (NSA) lineage, clearly separated from two other lineages within the YHA complex, the Central (CA) and South American (SA). Tree topology tests and exclusion of rapidly evolving sites provided support for a NSA+SA grouping. We propose an evolutionary scenario for the YHA complex and its colonization of the American mainland. The NSA lineage likely represents the most ancestral lineage, which derived from Lesser Antillean Amazons and colonized the northern coast of Venezuela about a million years ago. Then, Central America was colonized through the Isthmus of Panama, which led to the emergence of the CA lineage. The southward expansion to South America and the origin of the SA lineage happened almost simultaneously. However, more intensive or prolonged gene flow or migrations have led to much weaker geographic differentiation of genetic markers in the SA than in the CA lineage. PMID:24823658

  8. From where does the Amazon forest gets its water?

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, G.; Fan, Y.

    2016-12-01

    The Amazon receives abundant annual rainfall but parts of it experience a multi-month dry season. Here we ask: what is the water source that sustains the dry-season ET? Where over the Amazon it is largely local and recent rain (hence ET shutting down in dry season), or past rain that is stored in the deep soils and the groundwater (deep roots tapping deep reservoirs sustaining ET), or is it rain that fell on higher grounds (through topography-driven lateral convergence)? Using synthesis of isotope and other tracer observations and basin-wide inverse modeling (shallow soil, deep soil, with and without groundwater, with and without dynamic rooting depth), we attempt to tease out these components. The results shed light on likely ET sources and how future global change may preferentially impact Amazon ecosystem functioning.

  9. Tropical Tree Trait Diversity Enhances Forest Biomass Resilience in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Sakschewski, B.; Kirsten, T.; von Bloh, W.; Poorter, L.; Pena-Claros, M.; Boit, A.

    2016-12-01

    Functional diversity of ecosystems has been found to increase ecosystem functions and therefore enhance ecosystem resilience against environmental stressors. However, global carbon-cycle and biosphere models still classify the global vegetation into a relatively small number of distinct plant functional types (PFT) with constant features over space and time. Therefore, those models might underestimate the resilience and adaptive capacity of natural vegetation under climate change by ignoring positive effects that functional diversity might bring about. We diversified a set a of selected tree traits in a dynamic global vegetation model (LPJmL). In the new subversion, called LPJmL-FIT, Amazon region biomass stocks and forest structure appear significantly more resilient against climate change. Enhanced tree trait diversity enables the simulated rainforests to adjust to new environmental conditions via ecological sorting. These results may stimulate a new debate on the value of biodiversity for climate change mitigation.

  10. Mining drives extensive deforestation in the Brazilian Amazon.

    PubMed

    Sonter, Laura J; Herrera, Diego; Barrett, Damian J; Galford, Gillian L; Moran, Chris J; Soares-Filho, Britaldo S

    2017-10-18

    Mining poses significant and potentially underestimated risks to tropical forests worldwide. In Brazil's Amazon, mining drives deforestation far beyond operational lease boundaries, yet the full extent of these impacts is unknown and thus neglected in environmental licensing. Here we quantify mining-induced deforestation and investigate the aspects of mining operations, which most likely contribute. We find mining significantly increased Amazon forest loss up to 70 km beyond mining lease boundaries, causing 11,670 km 2 of deforestation between 2005 and 2015. This extent represents 9% of all Amazon forest loss during this time and 12 times more deforestation than occurred within mining leases alone. Pathways leading to such impacts include mining infrastructure establishment, urban expansion to support a growing workforce, and development of mineral commodity supply chains. Mining-induced deforestation is not unique to Brazil; to mitigate adverse impacts of mining and conserve tropical forests globally, environmental assessments and licensing must considered both on- and off-lease sources of deforestation.

  11. Boundary layer ozone - An airborne survey above the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Browell, Edward V.; Warren, Linda S.

    1988-01-01

    Ozone data obtained over the forest canopy of the Amazon Basin during July and August 1985 in the course of NASA's Amazon Boundary Layer Experiment 2A are discussed, and ozone profiles obtained during flights from Belem to Tabatinga, Brazil, are analyzed to determine any cross-basin effects. The analyses of ozone data indicate that the mixed layer of the Amazon Basin, for the conditions of undisturbed meteorology and in the absence of biomass burning, is a significant sink for tropospheric ozone. As the coast is approached, marine influences are noted at about 300 km inland, and a transition from a forest-controlled mixed layer to a marine-controlled mixed layer is noted.

  12. Selective logging in the Brazilian Amazon.

    PubMed

    Asner, Gregory P; Knapp, David E; Broadbent, Eben N; Oliveira, Paulo J C; Keller, Michael; Silva, Jose N

    2005-10-21

    Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square kilometers per year (+/-14%) between 1999 and 2002, equivalent to 60 to 123% of previously reported deforestation area. Up to 1200 square kilometers per year of logging were observed on conservation lands. Each year, 27 million to 50 million cubic meters of wood were extracted, and a gross flux of approximately 0.1 billion metric tons of carbon was destined for release to the atmosphere by logging.

  13. Biogeochemistry and biodiversity interact to govern N2 fixers (Fabaceae) across Amazon tropical forests

    NASA Astrophysics Data System (ADS)

    Batterman, Sarah; Hedin, Lars; Lloyd, Jon; Quesada, Beto

    2015-04-01

    Dinitrogen (N2)-fixing trees in the Fabaceae fulfill a central role in tropical rainforests by supplying nitrogen from the atmosphere, yet whether they will support a forest CO2 sink in the future by alleviating nitrogen limitation may depend on whether and how they are controlled by local environmental conditions. Theory predicts that soil nutrients govern the function of N2 fixers, yet there have been no large-scale field-based tests of this idea. Moreover, recent findings indicate that N2-fixing species behave differently in biogeochemical cycles, suggesting that any environmental control may differ by species, and that the diversity of N2-fixing trees may be critical for ensuring tropical forest function. In this talk, we will use the RAINFOR dataset of 108 (~1.0 ha) lowland tropical rainforest plots from across the Amazon Basin to test whether the abundance and diversity of N2-fixing trees are controlled by soil nutrient availability (i.e., increasing with phosphorus and decreasing with nitrogen), or if fixer abundance and diversity simply follow the dynamics of all tree species. We also test an alternative - but not mutually exclusive - hypothesis that the governing factor for fixers is forest disturbance. Results show a surprising lack of control by local nutrients or disturbance on the abundance or diversity of N2 fixers. The dominant driver of fixer diversity was the total number of tree species, with fixers comprising 10% of all species in a forest plot (R2 = 0.75, linear regression). When considering the dominant taxa of N2 fixers (Inga, Swartzia, Tachigali) alone, environmental factors (nitrogen, phosphorus and disturbance) became important and clearly governed their abundance. These taxa, which contain >60% of N2-fixing trees in the data set, appear to have evolved to specialize in different local environmental conditions. The strong biogeochemistry-by-biodiversity interaction observed here points to a need to consider individual species or taxa of N2

  14. Impact of Atmospheric Albedo on Amazon Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Lopes, A. V.; Thompson, S. E.; Dracup, J. A.

    2013-12-01

    The vulnerability of the Amazon region to climate and anthropogenic driven disturbances has been the subject of extensive research efforts, given its importance in the global and regional climate and ecologic systems. The evaluation of such vulnerabilities requires the proper understanding of physical mechanisms controlling water and energy balances and how the disturbances change them. Among those mechanisms, the effects of atmospheric albedo on evapotranspiration have not been fully explored yet and are explored in this study. Evapotranspiration in the Amazon is sustained at high levels across all seasons and represents a large fraction of water and energy surface budgets. In this study, statistical analysis of data from four flux towers installed at Amazon primary forest sites was employed to quantify the impact of atmospheric albedo, mostly resulted from cloudiness, on evapotranspiration and to compare it to the effect of water limitation. Firstly, the difference in eddy-flux derived evapotranspiration at the flux towers under rainy and non-rainy antecedent conditions was tested for significance. Secondly, the same statistical comparison was performed under cloudy and clear sky conditions at hourly and daily time scales, using the reduction in incoming solar radiation as an indicator of cloudiness. Finally, the sensitivity of seasonal evapotranspiration totals to atmospheric albedo resulted from rainfall patterns is evaluated. That was done by sampling daily evapotranspiration estimates from empirical probability distribution functions conditioned to rainfall occurrence and then varying the number of dry days in each season. It was found that light limitation is much more important than water limitation in the Amazon, resulting in up to 43% reduction in daily evapotranspiration. Also, this effect varies by location and by season, the largest impact being in wet season, from December do January. Moreover, seasonal evapotranspiration totals were found to be

  15. Development of behavioural profile in the Northern common boa (Boa imperator): Repeatable independent traits or personality?

    PubMed Central

    Šimková, Olga; Frýdlová, Petra; Žampachová, Barbora; Frynta, Daniel; Landová, Eva

    2017-01-01

    Recent studies of animal personality have focused on its proximate causation and ecological and evolutionary significance in particular, but the question of its development was largely overlooked. The attributes of personality are defined as between-individual differences in behaviour, which are consistent over time (differential consistency) and contexts (contextual generality) and both can be affected by development. We assessed several candidates for personality variables measured in various tests with different contexts over several life-stages (juveniles, older juveniles, subadults and adults) in the Northern common boa. Variables describing foraging/feeding decision and some of the defensive behaviours expressed as individual average values are highly repeatable and consistent. We found two main personality axes—one associated with foraging/feeding and the speed of decision, the other reflecting agonistic behaviour. Intensity of behaviour in the feeding context changes during development, but the level of agonistic behaviour remains the same. The juveniles and adults have a similar personality structure, but there is a period of structural change of behaviour during the second year of life (subadults). These results require a new theoretical model to explain the selection pressures resulting in this developmental pattern of personality. We also studied the proximate factors and their relationship to behavioural characteristics. Physiological parameters (heart and breath rate stress response) measured in adults clustered with variables concerning the agonistic behavioural profile, while no relationship between the juvenile/adult body size and personality concerning feeding/foraging and the agonistic behavioural profile was found. Our study suggests that it is important for studies of personality development to focus on both the structural and differential consistency, because even though behaviour is differentially consistent, the structure can change. PMID

  16. Development of behavioural profile in the Northern common boa (Boa imperator): Repeatable independent traits or personality?

    PubMed

    Šimková, Olga; Frýdlová, Petra; Žampachová, Barbora; Frynta, Daniel; Landová, Eva

    2017-01-01

    Recent studies of animal personality have focused on its proximate causation and ecological and evolutionary significance in particular, but the question of its development was largely overlooked. The attributes of personality are defined as between-individual differences in behaviour, which are consistent over time (differential consistency) and contexts (contextual generality) and both can be affected by development. We assessed several candidates for personality variables measured in various tests with different contexts over several life-stages (juveniles, older juveniles, subadults and adults) in the Northern common boa. Variables describing foraging/feeding decision and some of the defensive behaviours expressed as individual average values are highly repeatable and consistent. We found two main personality axes-one associated with foraging/feeding and the speed of decision, the other reflecting agonistic behaviour. Intensity of behaviour in the feeding context changes during development, but the level of agonistic behaviour remains the same. The juveniles and adults have a similar personality structure, but there is a period of structural change of behaviour during the second year of life (subadults). These results require a new theoretical model to explain the selection pressures resulting in this developmental pattern of personality. We also studied the proximate factors and their relationship to behavioural characteristics. Physiological parameters (heart and breath rate stress response) measured in adults clustered with variables concerning the agonistic behavioural profile, while no relationship between the juvenile/adult body size and personality concerning feeding/foraging and the agonistic behavioural profile was found. Our study suggests that it is important for studies of personality development to focus on both the structural and differential consistency, because even though behaviour is differentially consistent, the structure can change.

  17. Chagas disease and globalization of the Amazon.

    PubMed

    Briceño-León, Roberto

    2007-01-01

    The increasing number of autochthonous cases of Chagas disease in the Amazon since the 1970s has led to fear that the disease may become a new public health problem in the region. This transformation in the disease's epidemiological pattern in the Amazon can be explained by environmental and social changes in the last 30 years. The current article draws on the sociological theory of perverse effects to explain these changes as the unwanted result of the shift from the "inward" development model prevailing until the 1970s to the "outward" model that we know as globalization, oriented by industrial forces and international trade. The current article highlights the implementation of five new patterns in agriculture, cattle-raising, mining, lumbering, and urban occupation that have generated changes in the environment and the traditional indigenous habitat and have led to migratory flows, deforestation, sedentary living, the presence of domestic animals, and changes in the habitat that facilitate colonization of human dwellings by vectors and the domestic and work-related transmission of the disease. The expansion of Chagas disease is thus a perverse effect of the globalization process in the Amazon.

  18. Geographical Variation in Community Divergence: Insights from Tropical Forest Monodominance by Ectomycorrhizal Trees.

    PubMed

    Fukami, Tadashi; Nakajima, Mifuyu; Fortunel, Claire; Fine, Paul V A; Baraloto, Christopher; Russo, Sabrina E; Peay, Kabir G

    2017-08-01

    Convergence occurs in both species traits and community structure, but how convergence at the two scales influences each other remains unclear. To address this question, we focus on tropical forest monodominance, in which a single, often ectomycorrhizal (EM) tree species occasionally dominates forest stands within a landscape otherwise characterized by diverse communities of arbuscular mycorrhizal (AM) trees. Such monodominance is a striking potential example of community divergence resulting in alternative stable states. However, it is observed only in some tropical regions. A diverse suite of AM and EM trees locally codominate forest stands elsewhere. We develop a hypothesis to explain this geographical difference using a simulation model of plant community assembly. Simulation results suggest that in a region with a few EM species (e.g., South America), EM trees experience strong selection for convergent traits that match the abiotic conditions of the environment. Consequently, EM species successfully compete against other species to form monodominant stands via positive plant-soil feedbacks. By contrast, in a region with many EM species (e.g., Southeast Asia), species maintain divergent traits because of complex plant-soil feedbacks, with no species having traits that enable monodominance. An analysis of plant trait data from Borneo and Peruvian Amazon was inconclusive. Overall, this work highlights the utility of geographical comparison in understanding the relationship between trait convergence and community convergence.

  19. Potential groundwater contribution to Amazon evapotranspiration

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Miguez-Macho, G.

    2010-07-01

    Climate and land ecosystem models simulate a dry-season vegetation stress in the Amazon forest, but observations show enhanced growth in response to higher radiation under less cloudy skies, indicating an adequate water supply. Proposed mechanisms include larger soil water store and deeper roots in nature and the ability of roots to move water up and down (hydraulic redistribution). Here we assess the importance of the upward soil water flux from the groundwater driven by capillarity. We present a map of water table depth from observations and groundwater modeling, and a map of potential capillary flux these water table depths can sustain. The maps show that the water table beneath the Amazon can be quite shallow in lowlands and river valleys (<5 m in 36% and <10 m in 60% of Amazonia). The water table can potentially sustain a capillary flux of >2.1 mm day-1 to the land surface averaged over Amazonia, but varies from 0.6 to 3.7 mm day-1 across nine study sites. Current models simulate a large-scale reduction in dry-season photosynthesis under today's climate and a possible dieback under projected future climate with a longer dry season, converting the Amazon from a net carbon sink to a source and accelerating warming. The inclusion of groundwater and capillary flux may modify the model results.

  20. Sustainable settlement in the Brazilian Amazon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, A.L.O.; Campari, J.S.

    1996-02-01

    Presents and analyzes the largest and most complete data set ever produced on the economic variables that influence deforestation by small farmers in the Amazon. This landmark study presents the largest and most analytically complete data set ever produced on the economic variables that influence deforestation by small farmers in the Amazon. The authors examine the changing character of the Amazon frontier based on field surveys conducted during twenty years of settlement experience. By observing the economic behavior of small farmers from colonization during the 1970s until the chaotic aftermath of the early 1990s, the authors are able to pinpointmore » a central paradox: unsuccessful farmers tend to be unstable, moving on to new frontiers where they will again destroy forests. Successful farmers tend to increase deforestation in the places where they remain. The findings reveal that much of the Amazonian frontier land cleared by pioneers in the 1970s is becoming agriculturally unproductive. Small farmers should be rewarded for staying where they are and for pursuing sustainable farming. Good farming methods must be promoted, and deforestation must be penalized. The authors recommend the implementation of innovative economic policies and new forms of cooperation between environmental and economic agencies, including the World Bank, at both local and international levels. The aim of these policies should be to raise agricultural incomes and reduce environmental aggression.« less

  1. Soluble iron nutrients in Saharan dust over the central Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.

    2017-02-01

    The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the

  2. The Green Ocean: Precipitation Insights from the GoAmazon2014/5 Experiment

    DOE PAGES

    Wang, Die; Giangrande, Scott E.; Bartholomew, Mary Jane; ...

    2018-02-07

    This study summarizes the precipitation properties collected during the GoAmazon2014/5 campaign near Manaus in central Amazonia, Brazil. Precipitation breakdowns, summary radar rainfall relationships and self-consistency concepts from a coupled disdrometer and radar wind profiler measurements are presented. The properties of Amazon cumulus and associated stratiform precipitation are discussed, including segregations according to seasonal (Wet/Dry regime) variability, cloud echo-top height and possible aerosol influences on the apparent oceanic characteristics of the precipitation drop size distributions. Overall, we observe that the Amazon precipitation straddles behaviors found during previous U.S. Department of Energy Atmospheric Radiation Measurements program (ARM) tropical deployments, with distributions favoringmore » higher concentrations of smaller drops than ARM continental examples. Oceanic type precipitation characteristics are predominantly observed during the Amazon Wet seasons. Finally, an exploration of the controls on Wet season precipitation properties reveals that wind direction, as compared with other standard radiosonde thermodynamic parameters or aerosol count/regime classifications performed at the ARM site, provides a good indicator for those Wet season Amazon events having an oceanic character for their precipitation drop size distributions.« less

  3. The Green Ocean: Precipitation Insights from the GoAmazon2014/5 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Die; Giangrande, Scott E.; Bartholomew, Mary Jane

    This study summarizes the precipitation properties collected during the GoAmazon2014/5 campaign near Manaus in central Amazonia, Brazil. Precipitation breakdowns, summary radar rainfall relationships and self-consistency concepts from a coupled disdrometer and radar wind profiler measurements are presented. The properties of Amazon cumulus and associated stratiform precipitation are discussed, including segregations according to seasonal (Wet/Dry regime) variability, cloud echo-top height and possible aerosol influences on the apparent oceanic characteristics of the precipitation drop size distributions. Overall, we observe that the Amazon precipitation straddles behaviors found during previous U.S. Department of Energy Atmospheric Radiation Measurements program (ARM) tropical deployments, with distributions favoringmore » higher concentrations of smaller drops than ARM continental examples. Oceanic type precipitation characteristics are predominantly observed during the Amazon Wet seasons. Finally, an exploration of the controls on Wet season precipitation properties reveals that wind direction, as compared with other standard radiosonde thermodynamic parameters or aerosol count/regime classifications performed at the ARM site, provides a good indicator for those Wet season Amazon events having an oceanic character for their precipitation drop size distributions.« less

  4. The Importance of Tree Size and Fecundity for Wind Dispersal of Big-Leaf Mahogany

    PubMed Central

    Norghauer, Julian M.; Nock, Charles A.; Grogan, James

    2011-01-01

    Seed dispersal by wind is a critical yet poorly understood process in tropical forest trees. How tree size and fecundity affect this process at the population level remains largely unknown because of insufficient replication across adults. We measured seed dispersal by the endangered neotropical timber species big-leaf mahogany (Swietenia macrophylla King, Meliaceae) in the Brazilian Amazon at 25 relatively isolated trees using multiple 1-m wide belt transects extended 100 m downwind. Tree diameter and fecundity correlated positively with increased seed shadow extent; but in combination large, high fecundity trees contributed disproportionately to longer-distance dispersal events (>60 m). Among three empirical models fitted to seed density vs. distance in one dimension, the Student-t (2Dt) generally fit best (compared to the negative exponential and inverse power). When seedfall downwind was modelled in two dimensions using a normalised sample, it peaked furthest downwind (c. 25 m) for large, high-fecundity trees; with the inverse Gaussian and Weibull functions providing comparable fits that were slightly better than the lognormal. Although most seeds fell within 30 m of parent trees, relatively few juveniles were found within this distance, resulting in juvenile-to-seed ratios peaking at c. 35–45 m. Using the 2Dt model fits to predict seed densities downwind, coupled with known fecundity data for 2000–2009, we evaluated potential Swietenia regeneration near adults (≤30 m dispersal) and beyond 30 m. Mean seed arrival into canopy gaps >30 m downwind was more than 3× greater for large, high fecundity trees than small, high-fecundity trees. Tree seed production did not necessarily scale up proportionately with diameter, and was not consistent across years, and this resulting intraspecific variation can have important consequences for local patterns of dispersal in forests. Our results have important implications for management and conservation of big

  5. Emerging Chagas disease: trophic network and cycle of transmission of Trypanosoma cruzi from palm trees in the Amazon.

    PubMed Central

    Teixeira, A. R.; Monteiro, P. S.; Rebelo, J. M.; Argañaraz, E. R.; Vieira, D.; Lauria-Pires, L.; Nascimento, R.; Vexenat, C. A.; Silva, A. R.; Ault, S. K.; Costa, J. M.

    2001-01-01

    A trophic network involving molds, invertebrates, and vertebrates, ancestrally adapted to the palm tree (Attalaea phalerata) microhabitat, maintains enzootic Trypanosoma cruzi infections in the Amazonian county Paço do Lumiar, state of Maranhão, Brazil. We assessed seropositivity for T. cruzi infections in the human population of the county, searched in palm trees for the triatomines that harbor these infections, and gathered demographic, environmental, and socioeconomic data. Rhodnius pictipes and R. neglectus in palm-tree frond clefts or in houses were infected with T. cruzi (57% and 41%, respectively). Human blood was found in 6.8% of R. pictipes in houses, and 9 of 10 wild Didelphis marsupialis had virulent T. cruzi infections. Increasing human population density, rain forest deforestation, and human predation of local fauna are risk factors for human T. cruzi infections. PMID:11266300

  6. An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon

    NASA Astrophysics Data System (ADS)

    Venticinque, Eduardo; Forsberg, Bruce; Barthem, Ronaldo; Petry, Paulo; Hess, Laura; Mercado, Armando; Cañas, Carlos; Montoya, Mariana; Durigan, Carlos; Goulding, Michael

    2016-11-01

    Despite large-scale infrastructure development, deforestation, mining and petroleum exploration in the Amazon Basin, relatively little attention has been paid to the management scale required for the protection of wetlands, fisheries and other aspects of aquatic ecosystems. This is due, in part, to the enormous size, multinational composition and interconnected nature of the Amazon River system, as well as to the absence of an adequate spatial model for integrating data across the entire Amazon Basin. In this data article we present a spatially uniform multi-scale GIS framework that was developed especially for the analysis, management and monitoring of various aspects of aquatic systems in the Amazon Basin. The Amazon GIS-Based River Basin Framework is accessible as an ESRI geodatabase at doi:10.5063/F1BG2KX8.

  7. The Climate Effects of Deforestation the Amazon Rainforest under Global Warming Conditions

    NASA Astrophysics Data System (ADS)

    Werth, D.; Avissar, R.

    2006-12-01

    Replacement of tropical rainforests has been observed to have a strong drying effect in Amazon simulations, with effects reaching high into the atmospheric column and into the midlatitudes. The drying effects of deforestation, however, can be moderated by the effects of global warming, which should accelerate the hydrologic cycle of the Amazon. The effects of a prescribed, time-varying Amazon deforestation done in conjunction with a steady, moderate increase in CO2 concentrations are determined using a climate model. The model agrees with previous studies when each forcing is applied individually - compared to a control run, Amazon deforestation decreases the local precipitation and global warming increases it. When both are applied, however, the precipitation and other hydrologic variables decrease, but to a lesser extent than when deforestation alone was applied. In effect, the two effects act opposite to one another and bring the simulated climate closer to that of the control.

  8. Metagenomics Analysis of Microorganisms in Freshwater Lakes of the Amazon Basin.

    PubMed

    Toyama, Danyelle; Kishi, Luciano Takeshi; Santos-Júnior, Célio Dias; Soares-Costa, Andrea; de Oliveira, Tereza Cristina Souza; de Miranda, Fernando Pellon; Henrique-Silva, Flávio

    2016-12-22

    The Amazon Basin is the largest hydrographic basin on the planet, and the dynamics of its aquatic microorganisms strongly impact global biogeochemical cycles. However, it remains poorly studied. This metagenome project was performed to obtain a snapshot of prokaryotic microbiota from four important lakes in the Amazon Basin. Copyright © 2016 Toyama et al.

  9. Seroprevalence of Toxoplasma gondii in free-living Amazon river dolphins (Inia geoffrensis) from central Amazon, Brazil

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii is an important pathogen in aquatic mammals and its presence in these animals may indicate water contamination of aquatic environment by oocysts. Serum samples from 95 dolphins from free-living Amazon River dolphins (Inia geoffrensis) from Sustainable Development Reserve Mamirauá (...

  10. Seroprevalence of Toxoplasma gondii in free-living amazon river dolphins (Inia geoffrensis) from central Amazon, Brazil

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii is an important pathogen in aquatic mammals and its presence in these animals may indicate water contamination of aquatic environment by oocysts. Serum samples from 95 dolphins from free-living Amazon River dolphins (Inia geoffrensis) from Sustainable Development Reserve Mamirauá (...

  11. Sedative Effects of Intranasal Midazolam Administration in Wild Caught Blue-fronted Amazon (Amazona aestiva) and Orange-winged Amazon (Amazona amazonica) Parrots.

    PubMed

    Schaffer, Débora P H; de Araújo, Nayone L L C; Raposo, Ana Cláudia S; Filho, Emanoel F Martins; Vieira, João Victor R; Oriá, Arianne P

    2017-09-01

    Safe and effective sedation protocols are important for chemical restraint of birds in clinical and diagnostic procedures, such as clinical evaluations, radiographic positioning, and blood collection. These protocols may reduce stress and ease the management of wild-caught birds, which are susceptible to injury or death when exposed to stressful situations. We compare the sedative effect of intranasal midazolam in wild-caught blue-fronted (Amazona aestiva) and orange-winged (Amazona amazonica) Amazon parrots. Ten adult parrots of each species (n = 20), of unknown sex, weighing 0.337 ± 0.04 (blue-fronted) and 0.390 ± 0.03 kg (orange-winged), kg were used. Midazolam (2 mg/kg) was administered intranasally and the total volume of the drug was divided equally between the 2 nostrils. Onset time and total sedation time were assessed. Satisfactory sedation for clinical evaluation was induced in all birds. Onset time and total sedation times were similar in both species: 5.36 ± 1.16 and 25.40 ± 5.72 minutes, respectively, for blue-fronted Amazons and 5.09 ± 0.89 and 27.10 ± 3.73 minutes, respectively, for orange-winged Amazons. A total of 15 animals showed absence of vocalization, with moderate muscle relaxation and wing movement upon handling, and 2 animals presented with lateral recumbence, with intense muscle relaxation and no wing movement, requiring no restraint. Three blue-fronted Amazons had no effective sedation. Intranasally administered midazolam at a dose of 2 mg/kg effectively promoted sedative effects with a short latency time and fast recovery in wild-caught parrots.

  12. The Amazon Basin in transition

    Treesearch

    Eric A. Davidson; Alessandro C. de Araujo; Paulo Artaxo; Jennifer K. Balch; I. Foster Brown; Mercedes M.C. Bustamente; Michael T. Coe; Ruth S. DeFriess; Michael Keller; Marcos Longo; J. William Munger; Wilfrid Schroeder; Britaldo Soares-Filho; Carlos M. Souza, Jr.; Steven C. Wofsy

    2012-01-01

    Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional...

  13. AmazonFACE: Assessing the Effects of Increasing Atmospheric CO2 on the Resilience of the Amazon Forest through Integrative Model-Experiment Research

    NASA Astrophysics Data System (ADS)

    Lapola, D. M.

    2015-12-01

    The existence, magnitude and duration of a supposed "CO2 fertilization" effect in tropical forests remains largely undetermined, despite being suggested for nearly 20 years as a key knowledge gap for understanding the future resilience of Amazonian forests and its impact on the global carbon cycle. Reducing this uncertainty is critical for assessing the future of the Amazon region as well as its vulnerability to climate change. The AmazonFACE (Free-Air CO2 Enrichment) research program is an integrated model-experiment initiative of unprecedented scope in an old-growth Amazon forest near Manaus, Brazil - the first of its kind in tropical forest. The experimental treatment will simulate an atmospheric CO2 concentration [CO2] of the future in order to address the question: "How will rising atmospheric CO2 affect the resilience of the Amazon forest, the biodiversity it harbors, and the ecosystem services it provides, in light of projected climatic changes?" AmazonFACE is divided into three phases: (I) pre-experimental ecological characterization of the research site; (II) pilot experiment comprised of two 30-m diameter plots, with one treatment plot maintained at elevated [CO2] (ambient +200 ppmv), and the other control plot at ambient [CO2]; and (III) a fully-replicated long-term experiment comprised of four pairs of control/treatment FACE plots maintained for 10 years. A team of scientists from Brazil, USA, Australia and Europe will employ state-of-the-art methods to study the forest inside these plots in terms of carbon metabolism and cycling, water use, nutrient cycling, forest community composition, and interactions with environmental stressors. All project phases also encompass ecosystem-modeling activities in a way such that models provide hypothesis to be verified in the experiment, which in turn will feed models to ultimately produce more accurate projections of the environment. Resulting datasets and analyses will be a valuable resource for a broad community

  14. The AmazonFACE research program: assessing the effects of increasing atmospheric CO2 on the ecology and resilience of the Amazon forest

    NASA Astrophysics Data System (ADS)

    Lapola, David; Quesada, Carlos; Norby, Richard; Araújo, Alessandro; Domingues, Tomas; Hartley, Iain; Kruijt, Bart; Lewin, Keith; Meir, Patrick; Ometto, Jean; Rammig, Anja

    2016-04-01

    The existence, magnitude and duration of a supposed "CO2 fertilization" effect in tropical forests remains largely undetermined, despite being suggested for nearly 20 years as a key knowledge gap for understanding the future resilience of Amazonian forests and its impact on the global carbon cycle. Reducing this uncertainty is critical for assessing the future of the Amazon region as well as its vulnerability to climate change. The AmazonFACE (Free-Air CO2 Enrichment) research program is an integrated model-experiment initiative of unprecedented scope in an old-growth Amazon forest near Manaus, Brazil - the first of its kind in tropical forest. The experimental treatment will simulate an atmospheric CO2 concentration [CO2] of the future in order to address the question: "How will rising atmospheric CO2 affect the resilience of the Amazon forest, the biodiversity it harbors, and the ecosystem services it provides, in light of projected climatic changes?" AmazonFACE is divided into three phases: (I) pre-experimental ecological characterization of the research site; (II) pilot experiment comprised of two 30-m diameter plots, with one treatment plot maintained at elevated [CO2] (ambient +200 ppmv), and the other control plot at ambient [CO2]; and (III) a fully-replicated long-term experiment comprised of four pairs of control/treatment FACE plots maintained for 10 years. A team of scientists from Brazil, USA, Australia and Europe will employ state-of-the-art methods to study the forest inside these plots in terms of carbon metabolism and cycling, water use, nutrient cycling, forest community composition, and interactions with environmental stressors. All project phases also encompass ecosystem-modeling activities in a way such that models provide hypothesis to be verified in the experiment, which in turn will feed models to ultimately produce more accurate projections of the environment. Resulting datasets and analyses will be a valuable resource for a broad community

  15. Amazon Deforestation Fires Increase Plant Productivity through Changes in Diffuse Radiation

    NASA Astrophysics Data System (ADS)

    Rap, A.; Reddington, C.; Spracklen, D. V.; Mercado, L.; Haywood, J. M.; Bonal, D.; Butt, N.; Phillips, O.

    2013-12-01

    Over the past few decades a large increase in carbon storage has been observed in undisturbed forests across Amazonia. The reason for such a sink is unclear, although many possible mechanisms have been suggested, including changes in temperature, carbon dioxide, precipitation, clouds, and solar radiation. In this work we focus on one such mechanism, namely the increase in plant photosynthesis due to changes in diffuse radiation caused by atmospheric aerosols from large-scale deforestation fires that now occur throughout the Amazon region. We estimate that this mechanism has increased dry season (August-September) net primary productivity (NPP) by up to 30% across wide regions of the Amazon. We conclude that aerosol from deforestation fires may be responsible for a substantial fraction of the Amazon carbon sink that has been observed. Our approach is based on the combined use of three models: (i) the Global Model of Aerosol Processes (GLOMAP), (ii) the Edwards-Slingo radiation model, and (iii) the UK Met Office JULES land-surface scheme, constrained against in-situ aerosol and radiation observation datasets from several Amazonian sites. A 10 year (1999-2008) GLOMAP simulation using GFED3 biomass burning emissions is first evaluated against aerosol observations, indicating that the model is able to capture the Amazon aerosol seasonality, with enhanced concentrations during the dry season driven by biomass burning. The radiation scheme is then shown to be in good agreement with total and diffuse radiation in-situ observations, the model being able to capture the high total and low diffuse radiation flux in the dry season, as well as the low total and high diffuse radiation flux in the wet season. We then use our modelling framework to quantify the contribution of deforestation fires to diffuse/direct radiation fraction and forest productivity. We calculate that deforestation fires increase dry season diffuse radiation by up to 60% or 30 Wm-2. Finally, we use the JULES

  16. Condition and fate of logged forests in the Brazilian Amazon.

    PubMed

    Asner, Gregory P; Broadbent, Eben N; Oliveira, Paulo J C; Keller, Michael; Knapp, David E; Silva, José N M

    2006-08-22

    The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest. Across 2,030,637 km2 of the Brazilian Amazon from 1999 to 2004, at least 76% of all harvest practices resulted in high levels of canopy damage sufficient to leave forests susceptible to drought and fire. We found that 16+/-1% of selectively logged areas were deforested within 1 year of logging, with a subsequent annual deforestation rate of 5.4% for 4 years after timber harvests. Nearly all logging occurred within 25 km of main roads, and within that area, the probability of deforestation for a logged forest was up to four times greater than for unlogged forests. In combination, our results show that logging in the Brazilian Amazon is dominated by highly damaging operations, often followed rapidly by deforestation decades before forests can recover sufficiently to produce timber for a second harvest. Under the management regimes in effect at the time of our study in the Brazilian Amazon, selective logging would not be sustained.

  17. Social and health dimensions of climate change in the Amazon.

    PubMed

    Brondízio, Eduardo S; de Lima, Ana C B; Schramski, Sam; Adams, Cristina

    2016-07-01

    The Amazon region has been part of climate change debates for decades, yet attention to its social and health dimensions has been limited. This paper assesses literature on the social and health dimensions of climate change in the Amazon. A conceptual framework underscores multiple stresses and exposures created by interactions between climate change and local social-environmental conditions. Using the Thomson-Reuter Web of Science, this study bibliometrically assessed the overall literature on climate change in the Amazon, including Physical Sciences, Social Sciences, Anthropology, Environmental Science/Ecology and Public, Environmental/Occupational Health. From this assessment, a relevant sub-sample was selected and complemented with literature from the Brazilian database SciELO. This sample discusses three dimensions of climate change impacts in the region: livelihood changes, vector-borne diseases and microbial proliferation, and respiratory diseases. This analysis elucidates imbalance and disconnect between ecological, physical and social and health dimensions of climate change and between continental and regional climate analysis, and sub-regional and local levels. Work on the social and health implications of climate change in the Amazon falls significantly behind other research areas, limiting reliable information for analytical models and for Amazonian policy-makers and society at large. Collaborative research is called for.

  18. Sediment supply as a driver of river evolution in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ahmed, Joshua; Constantine, José Antonio; Dunne, Thomas; Legleiter, Carl; Lazarus, Eli D.

    2015-04-01

    The Amazon represents the only large river basin in the world where there is a sufficient range of sediment supplies and a lack of engineering controls to assess how sediment supply drives the evolution of meandering rivers. Despite recent analytical advances (Asahi et al., 2013; Pittaluga and Seminara, 2011), modern theory does not yet identify or explain the effects of externally imposed sediment supplies, a fundamental river characteristic, on meandering river evolution. These sediment supplies would be radically reduced by the construction of large dams proposed for the Amazon Basin (Finer and Jenkins, 2012). Here, we demonstrate that the sediment loads imposed by their respective drainage basins determine planform changes in lowland rivers across the Amazon. Our analysis, based on Landsat image sequences, indicates that rivers with high sediment loads draining the Andes and associated foreland basin experience annual migration rates that are on average four times faster than rivers with lower sediment loads draining the Central Amazon Trough and shields. Incidents of meander cutoff also occur more frequently along the rivers of the Andes and foreland basin, where the number of oxbows in the floodplains is more than twice that observed in the floodplains of the Central Amazon Trough and shields. Our results, which cannot be explained by differences in channel slope or hydrology, highlight the importance of sediment supply in modulating the ability of meandering alluvial rivers to reshape the floodplain environment through river migration. Asahi, K., Shimizu, Y., Nelson, J., Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2013JF002752. Finer, M., Jenkins, C.N., 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS One, 7(4), e35126. Pittaluga, M.B., Seminara, G., 2011. Nonlinearity and unsteadiness in river

  19. How Do Tropical Sea Surface Temperatures Influence the Seasonal Distribution of Precipitation in the Equatorial Amazon?.

    NASA Astrophysics Data System (ADS)

    Fu, Rong; Dickinson, Robert E.; Chen, Mingxuan; Wang, Hui

    2001-10-01

    Although the correlation between precipitation over tropical South America and sea surface temperatures (SSTs) over the Pacific and Atlantic has been documented since the early twentieth century, the impact of each ocean on the timing and intensity of the wet season over tropical South America and the underlying mechanisms have remained unclear. Numerical experiments have been conducted using the National Center for Atmospheric Research Community Climate Model Version 3 to explore these impacts. The results suggest the following.1)Seasonality of SSTs in the tropical Pacific and Atlantic has an important influence on precipitation in the eastern Amazon during the equinox seasons. The eastern side of the Amazon is influenced both by the direct thermal circulation of the Atlantic intertropical convergence zone (ITCZ) and by Rossby waves. These processes are enhanced by the seasonal cycles of SSTs in the tropical Atlantic and Pacific. SSTs affect Amazon precipitation much less during the solstice seasons and in the western Amazon.2)The seasonality of SSTs in the Atlantic more strongly affects Amazon rainfall than does that of the Pacific. Without the former, austral spring in the eastern equatorial Amazon would be a wet season, rather than the observed dry season. As a consequence of the lag at that time of the southward seasonal migration of the Atlantic SSTs behind that of the insolation, the Atlantic ITCZ centers itself near 10°N, instead of at the equator, imposing subsidence and low-level anticyclonic flow over the eastern equatorial Amazon, thus drying the air above the planetary boundary layer and reducing the low-level moisture convergence. Consequently, convection in the eastern Amazon is suppressed despite strong surface heating.3)Seasonality of the SSTs in the tropical Pacific also tends to reduce precipitation in the eastern Amazon during both spring and fall. In spring, subsidence is enhanced not only through a zonal direct circulation, but also through

  20. Osteoma in a blue-fronted Amazon parrot (Amazona aestiva).

    PubMed

    Cardoso, João Felipe Rito; Levy, Marcelo Guilherme Bezerra; Liparisi, Flavia; Romão, Mario Antonio Pinto

    2013-09-01

    Osteoma is an uncommon bone formation documented in avian species and other animals. A blue-fronted Amazon parrot (Amazona aestiva) with clinical respiratory symptoms was examined because of a hard mass present on the left nostril. Radiographs suggested a bone tumor, and the mass was surgically excised. Histopathologic examination revealed features of an osteoma. To our knowledge, this is the first description of an osteoma in a blue-fronted Amazon parrot. Osteoma should be considered as a differential diagnosis in birds with respiratory distress and swelling of the nostril.

  1. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    DOE PAGES

    Martin, S. T.; Artaxo, P.; Machado, L.; ...

    2017-05-15

    The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraftmore » to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Here in this paper, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less

  2. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, S. T.; Artaxo, P.; Machado, L.

    The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraftmore » to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Here in this paper, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less

  3. Continental-scale patterns of canopy tree composition and function across Amazonia.

    PubMed

    ter Steege, Hans; Pitman, Nigel C A; Phillips, Oliver L; Chave, Jerome; Sabatier, Daniel; Duque, Alvaro; Molino, Jean-François; Prévost, Marie-Françoise; Spichiger, Rodolphe; Castellanos, Hernán; von Hildebrand, Patricio; Vásquez, Rodolfo

    2006-09-28

    The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.

  4. Continental-scale patterns of canopy tree composition and function across Amazonia

    NASA Astrophysics Data System (ADS)

    Ter Steege, Hans; Pitman, Nigel C. A.; Phillips, Oliver L.; Chave, Jerome; Sabatier, Daniel; Duque, Alvaro; Molino, Jean-François; Prévost, Marie-Françoise; Spichiger, Rodolphe; Castellanos, Hernán; von Hildebrand, Patricio; Vásquez, Rodolfo

    2006-09-01

    The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.

  5. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    DOE PAGES

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; ...

    2016-10-24

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- andmore » ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. Lastly, this rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.« less

  6. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.

    2016-11-01

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  7. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.

    PubMed

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M J; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A F; Springston, Stephen R; Tomlinson, Jason M; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N; Kulmala, Markku; Machado, Luiz A T; Artaxo, Paulo; Andreae, Meinrat O; Petäjä, Tuukka; Martin, Scot T

    2016-11-17

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  8. Biomarkers of Mercury Exposure in the Amazon

    PubMed Central

    de Castro, Nathália Santos Serrão; Lima, Marcelo de Oliveira

    2014-01-01

    Mercury exposure in the Amazon has been studied since the 1980s decade and the assessment of human mercury exposure in the Amazon is difficult given that the natural occurrence of this metal is high and the concentration of mercury in biological samples of this population exceeds the standardized value of normality established by WHO. Few studies have focused on the discovery of mercury biomarkers in the region's population. In this way, some studies have used genetics as well as immunological and cytogenetic tools in order to find a molecular biomarker for assessing the toxicological effect of mercury in the Amazonian population. Most of those studies focused attention on the relation between mercury exposure and autoimmunity and, because of that, they will be discussed in more detail. Here we introduce the general aspects involved with each biomarker that was studied in the region in order to contextualize the reader and add information about the Amazonian life style and health that may be considered for future studies. We hope that, in the future, the toxicological studies in this field use high technological tools, such as the next generation sequencing and proteomics skills, in order to comprehend basic questions regarding the metabolic route of mercury in populations that are under constant exposure, such as in the Amazon. PMID:24895619

  9. Isoprene photochemistry over the Amazon rainforest

    PubMed Central

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; Rivera-Rios, Jean C.; Seco, Roger; Bates, Kelvin H.; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N.; Kim, Saewung; Goldstein, Allen H.; Guenther, Alex B.; Manzi, Antonio O.; Souza, Rodrigo A. F.; Springston, Stephen R.; Watson, Thomas B.; McKinney, Karena A.

    2016-01-01

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4–0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest. PMID:27185928

  10. Isoprene photochemistry over the Amazon rainforest.

    PubMed

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R; Rivera-Rios, Jean C; Seco, Roger; Bates, Kelvin H; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N; Kim, Saewung; Goldstein, Allen H; Guenther, Alex B; Manzi, Antonio O; Souza, Rodrigo A F; Springston, Stephen R; Watson, Thomas B; McKinney, Karena A; Martin, Scot T

    2016-05-31

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.

  11. Isoprene photochemistry over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; Rivera-Rios, Jean C.; Seco, Roger; Bates, Kelvin H.; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N.; Kim, Saewung; Goldstein, Allen H.; Guenther, Alex B.; Manzi, Antonio O.; Souza, Rodrigo A. F.; Springston, Stephen R.; Watson, Thomas B.; McKinney, Karena A.; Martin, Scot T.

    2016-05-01

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.

  12. The economic value of the climate regulation ecosystem service provided by the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Heil Costa, Marcos; Pires, Gabrielle; Fontes, Vitor; Brumatti, Livia

    2017-04-01

    The rainy Amazon climate allowed important activities to develop in the region as large rainfed agricultural lands and hydropower plants. The Amazon rainforest is an important source of moisture to the regional atmosphere and helps regulate the local climate. The replacement of forest by agricultural lands decreases the flux of water vapor into the atmosphere and changes the precipitation patterns, which may severely affect such economic activities. Assign an economic value to this ecosystem service may emphasize the significance to preserve the Amazon rainforest. In this work, we provide a first approximation of the quantification of the climate regulation ecosystem service provided by the Amazon rainforest using the marginal production method. We use climate scenarios derived from Amazon deforestation scenarios as input to crop and runoff models to assess how land use change would affect agriculture and hydropower generation. The effects of forest removal on soybean production and on cattle beef production can both be as high as US 16 per year per ha deforested, and the effects on hydropower generation can be as high as US 8 per year per ha deforested. We consider this as a conservative estimate of a permanent service provided by the rainforest. Policy makers and other Amazon agriculture and energy businesses must be aware of these numbers, and consider them while planning their activities.

  13. [Ground-clearing fires in the amazon and respiratory disease].

    PubMed

    Gonçalves, Karen dos Santos; de Castro, Hermano Albuquerque; Hacon, Sandra de Souza

    2012-06-01

    The intentional burning of forest biomass commonly known as "ground-clearing fires" is an age-old and widespread practice in the country and is seen as a major contributor to global emissions of greenhouse gases. However, global awareness of their potential impact is relatively recent. The occurrence of large ground-clearing fires in the Brazilian and international scenarios drew attention to the problem, but the measures taken to prevent and/or control the fires are still insufficient. In the Amazon region, with distinct geographical and environmental features from the rest of the country, with its historic process of land occupation, every year the ground-clearing fires expose larger portions of the population making them vulnerable to its effects. In this context, this non-systematic review presents the papers written over the past five years about the fires in the Brazilian Amazon and respiratory illness. The main objective is to provide information for managers and leaders on environmental issues about the problems related to biomass burning in the Amazon region.

  14. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  15. Condition and fate of logged forests in the Brazilian Amazon

    PubMed Central

    Asner, Gregory P.; Broadbent, Eben N.; Oliveira, Paulo J. C.; Keller, Michael; Knapp, David E.; Silva, José N. M.

    2006-01-01

    The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest. Across 2,030,637 km2 of the Brazilian Amazon from 1999 to 2004, at least 76% of all harvest practices resulted in high levels of canopy damage sufficient to leave forests susceptible to drought and fire. We found that 16 ± 1% of selectively logged areas were deforested within 1 year of logging, with a subsequent annual deforestation rate of 5.4% for 4 years after timber harvests. Nearly all logging occurred within 25 km of main roads, and within that area, the probability of deforestation for a logged forest was up to four times greater than for unlogged forests. In combination, our results show that logging in the Brazilian Amazon is dominated by highly damaging operations, often followed rapidly by deforestation decades before forests can recover sufficiently to produce timber for a second harvest. Under the management regimes in effect at the time of our study in the Brazilian Amazon, selective logging would not be sustained. PMID:16901980

  16. Molecular characterization of an earliest cacao (Theobroma cacao L.) collection from Peruvian Amazon using microsatllite DNA markers

    USDA-ARS?s Scientific Manuscript database

    Cacao (Theobroma cacao L.) is indigenous to the Amazon region of South America. The Peruvian Amazon harbors a large number of diverse cacao populations. Since the 1930s, several numbers of populations have been collected from the Peruvian Amazon and maintained as ex situ germplasm repositories in ...

  17. Satellite Observation of El Nino Effects on Amazon Forest Phenology and Productivity

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Townsend, Alan R.; Braswell, Bobby H.

    2000-01-01

    Climate variability may affect the functioning of Amazon moist tropical forests, and recent modeling analyses suggest that the carbon dynamics of the region vary interannually in response to precipitation and temperature anomalies. However, due to persistent orbital and atmospheric artifacts in the satellite record, remote sensing observations have not provided quantitative evidence that climate variation affects Amazon forest phenology or productivity, We developed a method to minimize and quantify non-biological artifacts in NOAA AVHRR satellite data, providing a record of estimated forest phenological variation from 1982-1993. The seasonal Normalized Difference Vegetation Index (NDVI) amplitude (a proxy for phenology) increased throughout much of the basin during El Nino periods when rainfall was anomalously low. Wetter La Nina episodes brought consistently smaller NDVI amplitudes. Using radiative transfer and terrestrial biogeochemical models driven by these satellite data, we estimate that canopy-energy absorption and net primary production of Amazon forests varied interannually by as much as 21% and 18%, respectively. These results provide large-scale observational evidence for interannual sensitivity to El Nino of plant phenology and carbon flux in Amazon forests.

  18. Revisiting the hierarchy of urban areas in the Brazilian Amazon: a multilevel approach

    PubMed Central

    Costa, Sandra; Brondízio, Eduardo

    2012-01-01

    The Legal Brazilian Amazon, while the largest rainforest in the world, is also a region where most residents are urban. Despite close linkages between rural and urban processes in the region, rural areas have been the predominant focus of Amazon-based population-environment scholarship. Offering a focus on urban areas within the Brazilian Amazon, this paper examines the emergence of urban hierarchies within the region. Using a combination of nationally representative data and community based surveys, applied to a multivariate cluster methodology (Grade of Membership), we observe the emergence of sub-regional urban networks characterized by economic and political inter-dependency, population movement, and provision of services. These networks link rural areas, small towns, and medium and large cities. We also identify the emergence of medium-size cities as important nodes at a sub-regional level. In all, the work provides insight on the proposed model of ‘disarticulated urbanization’ within the Amazon by calling attention to the increasing role of regional and sub-regional urban networks in shaping the future expansion of land use and population distribution in the Amazon. We conclude with a discussion of implications for increasing intra-regional connectivity and fragmentation of conservation areas and ecosystems in the region. PMID:23129877

  19. Reserves Protect against Deforestation Fires in the Amazon

    PubMed Central

    Adeney, J. Marion; Christensen, Norman L.; Pimm, Stuart L.

    2009-01-01

    Background Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. Methodology/Principal Findings Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. Conclusions/Significance Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon. PMID:19352423

  20. Protecting the Amazon with protected areas

    PubMed Central

    Walker, Robert; Moore, Nathan J.; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio

    2009-01-01

    This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively. PMID:19549819

  1. Drought sensitivity of the Amazon rainforest.

    PubMed

    Phillips, Oliver L; Aragão, Luiz E O C; Lewis, Simon L; Fisher, Joshua B; Lloyd, Jon; López-González, Gabriela; Malhi, Yadvinder; Monteagudo, Abel; Peacock, Julie; Quesada, Carlos A; van der Heijden, Geertje; Almeida, Samuel; Amaral, Iêda; Arroyo, Luzmila; Aymard, Gerardo; Baker, Tim R; Bánki, Olaf; Blanc, Lilian; Bonal, Damien; Brando, Paulo; Chave, Jerome; de Oliveira, Atila Cristina Alves; Cardozo, Nallaret Dávila; Czimczik, Claudia I; Feldpausch, Ted R; Freitas, Maria Aparecida; Gloor, Emanuel; Higuchi, Niro; Jiménez, Eliana; Lloyd, Gareth; Meir, Patrick; Mendoza, Casimiro; Morel, Alexandra; Neill, David A; Nepstad, Daniel; Patiño, Sandra; Peñuela, Maria Cristina; Prieto, Adriana; Ramírez, Fredy; Schwarz, Michael; Silva, Javier; Silveira, Marcos; Thomas, Anne Sota; Steege, Hans Ter; Stropp, Juliana; Vásquez, Rodolfo; Zelazowski, Przemyslaw; Alvarez Dávila, Esteban; Andelman, Sandy; Andrade, Ana; Chao, Kuo-Jung; Erwin, Terry; Di Fiore, Anthony; Honorio C, Eurídice; Keeling, Helen; Killeen, Tim J; Laurance, William F; Peña Cruz, Antonio; Pitman, Nigel C A; Núñez Vargas, Percy; Ramírez-Angulo, Hirma; Rudas, Agustín; Salamão, Rafael; Silva, Natalino; Terborgh, John; Torres-Lezama, Armando

    2009-03-06

    Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.

  2. Protecting the Amazon with protected areas.

    PubMed

    Walker, Robert; Moore, Nathan J; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio

    2009-06-30

    This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively.

  3. Climatic and ecological future of the Amazon: likelihood and causes of change

    NASA Astrophysics Data System (ADS)

    Cook, B.; Zeng, N.; Yoon, J.-H.

    2010-05-01

    Some recent climate modeling results suggested a possible dieback of the Amazon rainforest under future climate change, a prediction that raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable as rainfall is projected to increase in nearly all models. However, the periphery, notably the southern edge of the Amazon and further south in central Brazil, are in danger of drying out, driven by two main processes. Firstly, a decline in precipitation of 22% in the southern Amazon's dry season (May-September) reduces soil moisture, despite an increase in precipitation during the wet season, due to nonlinear responses in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season rainfall: (1) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure; (2) a stronger north-south tropical Atlantic sea surface temperature gradient, and to lesser degree a warmer eastern equatorial Pacific. Secondly, evaporation demand will increase due to the general warming, further reducing soil moisture. In terms of ecosystem response, higher maintenance cost and reduced productivity under warming may also have additional adverse impact. The drying corresponds to a lengthening of the dry season by 11 days. As a consequence, the median of the models projects a reduction of 20% in vegetation carbon stock in the southern Amazon, central Brazil, and parts of the Andean Mountains. Further, VEGAS predicts enhancement of fire risk by 10-15%. The increase in fire is primarily due to the reduction in soil moisture, and the decrease in dry season rainfall, which

  4. Tree Diametric Increment and Litterfall Production in an Eastern Amazonian Forest: the Role of Functional Groups

    NASA Astrophysics Data System (ADS)

    Camargo, P. B. D.; Ferreira, M. L.; Oliveira Junior, R. C.; Saleska, S. R.

    2014-12-01

    Tree growth is a biotic variable of great importance in understanding the dynamics of tree communities and may be used as a tool in studies of biological or climate modeling. Some climate models predict more recurrent climate anomalies in this century, which may alter the functioning of tropical forests with serious structural and demographic implications. The present study aimed to evaluate the profile of tree growth and litterfall production in an eastern Amazon forest, which has suffered recent climatic disturbances. We contrasted different functional groups based on wood density (stem with 0.55; 0.56-0.7; >0.7 g cm-3), light availability (crown illumination index; high illuminated crown - IIC1 until shaded crown - IIC5), and, size class (trees 10-22.5; 22.6-35; 35.1-55; 55,1-90; >90 cm dbh). Tree diameter increment was monthly measured from November 2011 to September 2013 by using dendrometer bands installed on 850 individuals from different families. Litterfall was collected in 64 circular traps, oven dried and weighed, separated into leaves, twigs, reproductive parts and miscellaneous. During the rainy season the sampled trees had the highest rates of tree diametric increment. When analyzing the data by functional groups, large trees had faster growth, but when grouped by wood density, trees with wood density up to 0.55 and between 0.56 and 0.7 g cm-3 had the fastest rates of growth. When grouped by crown illumination index, trees exposed to higher levels of light grew more in comparison to partially shaded trees. Maximum daily air temperature and precipitation were the most important environmental variables in determining the diametric increment profile of the trees. Litterfall production was estimated to be 7.1 Mg ha-1.year-1 and showed a strong seasonal pattern, with dry season production being higher than in the rainy season. Leaves formed the largest fraction of the litterfall, followed by twigs, reproductive parts, and finally miscellaneous. These

  5. Inclusion body disease in snakes: a review and description of three cases in boa constrictors in Belgium.

    PubMed

    Vancraeynest, D; Pasmans, F; Martel, A; Chiers, K; Meulemans, G; Mast, J; Zwart, P; Ducatelle, R

    2006-06-03

    Inclusion body disease, a fatal disorder in Boidae, is reviewed, and three cases in boa constrictors, the first reported cases in Belgium, are described. The snakes showed nervous signs, and numerous eosinophilic intracytoplasmic inclusions, which are considered to be characteristic of the disease, were found in the liver and pancreas. The disease is suspected to be caused by a retrovirus, but transmission electron microscopic examinations of several tissues from one of the snakes did not reveal particles with a typical retroviral morphology.

  6. Evidence of new species for malaria vector Anopheles nuneztovari sensu lato in the Brazilian Amazon region.

    PubMed

    Scarpassa, Vera Margarete; Cunha-Machado, Antonio Saulo; Saraiva, José Ferreira

    2016-04-12

    Anopheles nuneztovari sensu lato comprises cryptic species in northern South America, and the Brazilian populations encompass distinct genetic lineages within the Brazilian Amazon region. This study investigated, based on two molecular markers, whether these lineages might actually deserve species status. Specimens were collected in five localities of the Brazilian Amazon, including Manaus, Careiro Castanho and Autazes, in the State of Amazonas; Tucuruí, in the State of Pará; and Abacate da Pedreira, in the State of Amapá, and analysed for the COI gene (Barcode region) and 12 microsatellite loci. Phylogenetic analyses were performed using the maximum likelihood (ML) approach. Intra and inter samples genetic diversity were estimated using population genetics analyses, and the genetic groups were identified by means of the ML, Bayesian and factorial correspondence analyses and the Bayesian analysis of population structure. The Barcode region dataset (N = 103) generated 27 haplotypes. The haplotype network suggested three lineages. The ML tree retrieved five monophyletic groups. Group I clustered all specimens from Manaus and Careiro Castanho, the majority of Autazes and a few from Abacate da Pedreira. Group II clustered most of the specimens from Abacate da Pedreira and a few from Autazes and Tucuruí. Group III clustered only specimens from Tucuruí (lineage III), strongly supported (97 %). Groups IV and V clustered specimens of A. nuneztovari s.s. and A. dunhami, strongly (98 %) and weakly (70 %) supported, respectively. In the second phylogenetic analysis, the sequences from GenBank, identified as A. goeldii, clustered to groups I and II, but not to group III. Genetic distances (Kimura-2 parameters) among the groups ranged from 1.60 % (between I and II) to 2.32 % (between I and III). Microsatellite data revealed very high intra-population genetic variability. Genetic distances showed the highest and significant values (P = 0.005) between Tucuruí and

  7. Deforestation, floodplain dynamics, and carbon biogeochemistry in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.; Dunne, T.; Richey, J.; Melack, J.; Simonett, D. S.; Woodwell, G.

    1984-01-01

    Three aspects of the physical geographic environment of the Amazon Basin are considered: (1) deforestation and reforestation, (2) floodplain dynamics, and (3) fluvial geomorphology. Three independent projects are coupled in this experiment to improve the in-place research and to ensure that the Shuttle Imaging Radar-B (SIR-B) experiment stands on a secure base of ongoing work. Major benefits to be obtained center on: (1) areal and locational information, (2) data from various depression angles, and (3) digital radar signatures. Analysis will be conducted for selected sites to define how well SIR-B data can be used for: (1) definition of extent and location of deforestation in a tropical moist forest, (2) definition and quantification of the nature of the vegetation and edaphic conditions on the (floodplain) of the Amazon River, and (3) quantification of the accuracy with which the geometry and channel shifting of the Amazon River may be mapped using SIR-B imagery in conjunction with other remote sensing data.

  8. Amazon rain-forest fires.

    PubMed

    Sanford, R L; Saldarriaga, J; Clark, K E; Uhl, C; Herrera, R

    1985-01-04

    Charcoal is common in the soils of mature rain forests within 75 kilometers of San Carlos de Rio Negro in the north central Amazon Basin. Carbon-14 dates of soil charcoal from this region indicate that numerous fires have occurred since the mid-Holocene epoch. Charcoal is most common in tierra firme forest Oxisols and Ultisols and less common in caatinga and igapo forest soils. Climatic changes or human activities, or both, have caused rain-forest fires.

  9. Separating the Effects of Tropical Atlantic and Pacific SST-driven Climate Variability on Amazon Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Liptak, J.; Keppel-Aleks, G.

    2016-12-01

    Amazon forests store an estimated 25% percent of global terrestrial carbon per year1, 2, but the responses of Amazon carbon uptake to climate change is highly uncertain. One source of this uncertainty is tropical sea surface temperature variability driven by teleconnections. El Nino-Southern Oscillation (ENSO) is a key driver of year-to-year Amazon carbon exchange, with associated temperature and precipitation changes favoring net carbon storage in La Nina years, and net carbon release during El Nino years3. To determine how Amazon climate and terrestrial carbon fluxes react to ENSO alone and in concert with other SST-driven teleconnections such as the Atlantic Multidecadal Oscillation (AMO), we force the atmosphere (CAM5) and land (CLM4) components of the CESM(BGC) with prescribed monthly SSTs over the period 1950—2014 in a Historical control simulation. We then run an experiment (PAC) with time-varying SSTs applied only to the tropical equatorial Pacific Ocean, and repeating SST seasonal cycle climatologies elsewhere. Limiting SST variability to the equatorial Pacific indicates that other processes enhance ENSO-driven Amazon climate anomalies. Compared to the Historical control simulation, warming, drying and terrestrial carbon loss over the Amazon during El Nino periods are lower in the PAC simulation, especially prior to 1990 during the cool phase of the AMO. Cooling, moistening, and net carbon uptake during La Nina periods are also reduced in the PAC simulation, but differences are greater after 1990 during the warm phase of the AMO. By quantifying the relationships among climate drivers and carbon fluxes in the Historical and PAC simulations, we both assess the sensitivity of these relationships to the magnitude of ENSO forcing and quantify how other teleconnections affect ENSO-driven Amazon climate feedbacks. We expect that these results will help us improve hypotheses for how Atlantic and Pacific climate trends will affect future Amazon carbon carbon

  10. Isoprene photochemistry over the Amazon rainforest

    DOE PAGES

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; ...

    2016-05-31

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO 2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK +more » MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4–0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. Also, a value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). In conclusion, this abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.« less

  11. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest

    PubMed Central

    Paredes, Omar Stalin Landázuri; Norris, Darren; de Oliveira, Tadeu Gomes

    2017-01-01

    Terrestrial vertebrate frugivores constitute one of the major guilds in tropical forests. Previous studies show that the meso-scale distribution of this group is only weakly explained by variables such as altitude and tree basal area in lowland Amazon forests. For the first time we test whether seasonally limiting resources (water and fallen fruit) affect the dry season distribution in 25 species of terrestrial vertebrates. To examine the effects of the spatial availability of fruit and water on terrestrial vertebrates we used a standardized, regularly spaced arrangement of camera-traps within 25km2 of lowland Amazon forest. Generalized linear models (GLMs) were then used to examine the influence of four variables (altitude, distance to large rivers, distance to nearest water, and presence vs absence of fruits) on the number of photos on five functional groups (all frugivores, small, medium, large and very large frugivores) and on seven of the most abundant frugivore species (Cuniculus paca, Dasyprocta leporina, Mazama americana, Mazama nemorivaga, Myoprocta acouchy, Pecari tajacu and Psophia crepitans). A total of 279 independent photos of 25 species were obtained from 900 camera-trap days. For most species and three functional groups, the variation in the number of photos per camera was significantly but weakly explained by the GLMs (deviance explained ranging from 6.2 to 48.8%). Generally, we found that the presence of water availability was more important than the presence of fallen fruit for the groups and species studied. Medium frugivores, large-bodied frugivores, and two of the more abundant species (C. paca and P. crepitans) were recorded more frequently closer to water bodies; while none of the functional groups nor the most abundant species showed any significant relationship with the presence of fallen fruit. Two functional groups and two of the seven most common frugivore species assessed in the GLMs showed significant results with species

  12. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest.

    PubMed

    Paredes, Omar Stalin Landázuri; Norris, Darren; Oliveira, Tadeu Gomes de; Michalski, Fernanda

    2017-01-01

    Terrestrial vertebrate frugivores constitute one of the major guilds in tropical forests. Previous studies show that the meso-scale distribution of this group is only weakly explained by variables such as altitude and tree basal area in lowland Amazon forests. For the first time we test whether seasonally limiting resources (water and fallen fruit) affect the dry season distribution in 25 species of terrestrial vertebrates. To examine the effects of the spatial availability of fruit and water on terrestrial vertebrates we used a standardized, regularly spaced arrangement of camera-traps within 25km2 of lowland Amazon forest. Generalized linear models (GLMs) were then used to examine the influence of four variables (altitude, distance to large rivers, distance to nearest water, and presence vs absence of fruits) on the number of photos on five functional groups (all frugivores, small, medium, large and very large frugivores) and on seven of the most abundant frugivore species (Cuniculus paca, Dasyprocta leporina, Mazama americana, Mazama nemorivaga, Myoprocta acouchy, Pecari tajacu and Psophia crepitans). A total of 279 independent photos of 25 species were obtained from 900 camera-trap days. For most species and three functional groups, the variation in the number of photos per camera was significantly but weakly explained by the GLMs (deviance explained ranging from 6.2 to 48.8%). Generally, we found that the presence of water availability was more important than the presence of fallen fruit for the groups and species studied. Medium frugivores, large-bodied frugivores, and two of the more abundant species (C. paca and P. crepitans) were recorded more frequently closer to water bodies; while none of the functional groups nor the most abundant species showed any significant relationship with the presence of fallen fruit. Two functional groups and two of the seven most common frugivore species assessed in the GLMs showed significant results with species

  13. The Amazon hydrometeorology: Climatology, variability and links to changes in weather patterns

    NASA Astrophysics Data System (ADS)

    Fernandes, Katia De Avila

    My thesis focuses on improving the quantification of the hydrological cycle and understanding the atmospheric processes that link weather to climate in the Amazon River basin. By using ERA40 and independent observations, I assess how well we can estimate the surface water budget in the Amazon River basin. I find that ERA40 basin wide annual precipitation (P) overall agrees with observations showing a slight underestimation of 10% in average, whereas runoff (R) is underestimated by a larger margin (˜25%). Observed residual of precipitation and runoff (denoted as P-R) is better estimated by ERA40 P-R than actual ET which includes soil moisture nudging. The causes for said discrepancies were found to partly relate to soil moisture nudging that needs to be applied during the dry season to produce realistic ET and compensate for the low soil moisture recharge during the previous wet season. Insufficient recharge may in part be caused by underestimation of rainfall amount and intensity; moreover the shallow root layer in the model does not represent the deep soil water reservoir characteristic of the Amazonian forest. Whether the hydrological cycle and weather patterns in the Amazon have changed during the past few decades is a highly debatable but central question for detecting climate change in the region. The second part of my thesis focus on the physical links between rainfall changes detected in observations, and changes of synoptic scale systems as represented by ERA40. My results suggest that an observed delayed wet season onset is consistent with a decreasing number of cold air incursion (CAI) days in southern Amazon for the period 1979--2001. The variability of CAI into southern Amazon is related to the variability of SST upstream of South America in the tropical Pacific and Indian Oceans. A Singular Value Decomposition Analysis (SVD) between CAI days and global SST reveal three main modes of co-variability. The first mode describes the effect of the El Nino

  14. Atmospheric correction analysis on LANDSAT data over the Amazon region. [Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dias, L. A. V.; Dossantos, J. R.; Formaggio, A. R.

    1983-01-01

    The Amazon Region natural resources were studied in two ways and compared. A LANDSAT scene and its attributes were selected, and a maximum likelihood classification was made. The scene was atmospherically corrected, taking into account Amazonic peculiarities revealed by (ground truth) of the same area, and the subsequent classification. Comparison shows that the classification improves with the atmospherically corrected images.

  15. Multispecies Fisheries in the Lower Amazon River and Its Relationship with the Regional and Global Climate Variability

    PubMed Central

    Buss de Souza, Ronald; Freire, Juan; Isaac, Victoria Judith

    2016-01-01

    This paper aims to describe the spatial-temporal variability in catch of the main fishery resources of the Amazon River and floodplain lakes of the Lower Amazon, as well as relating the Catch per Unit of Effort with anomalies of some of the Amazon River, atmosphere and Atlantic Ocean system variables, determining the influence of the environment on the Amazonian fishery resources. Finfish landings data from the towns and villages of the Lower Amazon for the fisheries of three sites (Óbidos, Santarém and Monte Alegre), were obtained for the period between January 1993 and December 2004. Analysis of variance, detrended correspondence analysis, redundancy analysis and multiple regression techniques were used for the statistical analysis of the distinct time series. Fisheries production in the Lower Amazon presents differences between the Amazon River and the floodplain lakes. Production in the Amazon River is approximately half of the one of the floodplain lakes. This variability occurs both along the Lower Amazon River region (longitudinal gradient) and laterally (latitudinal gradient) for every fishing ground studied here. The distinct environmental variables alone or in association act differently on the fishery stocks and the success of catches in each fishery group studied here. Important variables are the flooding events; the soil the sea surface temperatures; the humidity; the wind and the occurence of El Niño-Southern Oscillation events. Fishery productivity presents a large difference in quantity and distribution patterns between the river and floodplain lakes. This variability occurs in the region of the Lower Amazon as well as laterally for each fishery group studied, being dependent on the ecological characteristics and life strategies of each fish group considered here. PMID:27314951

  16. Foraminifera and Thecamoebians as hydrodynamic indicators for Amazon estuarine system

    NASA Astrophysics Data System (ADS)

    Laut, L. L.; Figueiredo, A. G.; Santos, V. F.; Souza-Vieira, S.

    2007-05-01

    The Amazon mangrove forest in Brazilian territory is one of the most extended in the world. It goes from Ponta do Tubarao (4S e 43W) to Cape Orange (5N e 51W) along 2,250 km of coast line. Because the Amazon River System influence, it can be divided into two regions; one with river influence toward north and the other without river influence. In order to characterize the mangrove environment hydrodynamic on both sides of the Amazon River System, foraminifera and thecamoebians assemblages were investigated in the sediment of two estuaries; Araguari to the North (1 15S - 50 30W) and Caete to the South (0 50S - 46 30W). For both estuaries forams and thecamoebians species distribution are atypical relative to other world regions. In both, there are only few calcareous forams and almost all are small and possible of being transported in suspension. Typical estuarine species were not identified. The typical mangrove forams which are agglutinated species were dominant in both estuaries. However, the Caete estuary has a large number of forams species (29), indicating better efficiency in mixing fresh and salt water in comparison to the Araguari. On the other hand, the Araguari has big richness of thecamoebians species (15) indicating fresh water prevalence. The fresh water predominance is due to the Amazon water plume being diverted to the Amapa coast where the Araguari estuary is located. The foraminifera species was also used to determine the salt water penetration in the estuary. In the Caete estuary, salt water penetrates to about 40 km while in the Araguari it does coincide with the limit of the bore tide wave "pororoca" penetration, 45 km. Based on the species succession (forams to thecamoebians species) the Araguary estuary can be divided into three regions controlled by turbidity: the outer, middle and inner estuary. The Caete species succession is not that clear and only could be divided based on salinity into outer and inner estuary. In both estuaries forams and

  17. Quantifying How Climate Affects Vegetation in the Amazon Rainforest

    NASA Astrophysics Data System (ADS)

    Das, K.; Kodali, A.; Szubert, M.; Ganguly, S.; Bongard, J.

    2016-12-01

    Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this

  18. Rainfall trends in the Brazilian Amazon Basin in the past eight decades

    NASA Astrophysics Data System (ADS)

    Satyamurty, Prakki; de Castro, Aline Anderson; Tota, Julio; da Silva Gularte, Lucia Eliane; Manzi, Antonio Ocimar

    2010-01-01

    Rainfall series at 18 stations along the major rivers of the Brazilian Amazon Basin, having data since 1920s or 1930s, are analyzed to verify if there are appreciable long-term trends. Annual, rainy-season, and dry-season rainfalls are individually analyzed for each station and for the region as a whole. Some stations showed positive trends and some negative trends. The trends in the annual rainfall are significant at only six stations, five of which reporting increasing trends (Barcelos, Belem, Manaus, Rio Branco, and Soure stations) and just one (Itaituba station) reporting decreasing trend. The climatological values of rainfall before and after 1970 show significant differences at six stations (Barcelos, Belem, Benjamin Constant, Iaurete, Itaituba, and Soure). The region as a whole shows an insignificant and weak downward trend; therefore, we cannot affirm that the rainfall in the Brazilian Amazon basin is experiencing a significant change, except at a few individual stations. Subregions with upward and downward trends are interspersed in space from the far eastern Amazon to western Amazon. Most of the seasonal trends follow the annual trends, thus, indicating a certain consistency in the datasets and analysis.

  19. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  20. Amazon forests maintain consistent canopy structure and greenness during the dry season.

    PubMed

    Morton, Douglas C; Nagol, Jyoteshwar; Carabajal, Claudia C; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D; Vermote, Eric F; Harding, David J; North, Peter R J

    2014-02-13

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  1. Oil and gas projects in the Western Amazon: threats to wilderness, biodiversity, and indigenous peoples.

    PubMed

    Finer, Matt; Jenkins, Clinton N; Pimm, Stuart L; Keane, Brian; Ross, Carl

    2008-08-13

    The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or "blocks" that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover approximately 688,000 km(2) of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories.

  2. Oil and Gas Projects in the Western Amazon: Threats to Wilderness, Biodiversity, and Indigenous Peoples

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.; Pimm, Stuart L.; Keane, Brian; Ross, Carl

    2008-01-01

    Background The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. Methodology/Principal Findings We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or “blocks” that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover ∼688,000 km2 of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. Conclusions/Significance Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories. PMID:18716679

  3. [Globalization and environmentalism: polyphonic ethnicities in the Amazon].

    PubMed

    Garnelo, Luiza; Sampaio, Sully

    2005-01-01

    The article examines the issue of globalization, along with its contradictions and the ways in which it guides and shapes specific situations within the Amazon's present-day reality, while simultaneously engendering the uniformization of economic production and the valorization of cultural differences. The discussion explores the nuances of implementing a massified, standardized productive base that paradoxically fosters the valorization of cultural differences and favors alliances between, on the one hand, ethno-political leaders from indigenous Amazon groups and, on the other, environmentalists and other transworld actors who wield strong decision-making power. The article analyzes the indigenous movement's network of alliances and highlights the polyphony of the different political agents that come to clash with each other within this post-modern geopolitical setting.

  4. Hydrological Retrospective of floods and droughts: Case study in the Amazon

    NASA Astrophysics Data System (ADS)

    Wongchuig Correa, Sly; Cauduro Dias de Paiva, Rodrigo; Carlo Espinoza Villar, Jhan; Collischonn, Walter

    2017-04-01

    Recent studies have reported an increase in intensity and frequency of hydrological extreme events in many regions of the Amazon basin over last decades, these events such as seasonal floods and droughts have originated a significant impact in human and natural systems. Recently, methodologies such as climatic reanalysis are being developed in order to create a coherent register of climatic systems, thus taking this notion, this research efforts to produce a methodology called Hydrological Retrospective (HR), that essentially simulate large rainfall datasets over hydrological models in order to develop a record over past hydrology, enabling the analysis of past floods and droughts. We developed our methodology on the Amazon basin, thus we used eight large precipitation datasets (more than 30 years) through a large scale hydrological and hydrodynamic model (MGB-IPH), after that HR products were validated against several in situ discharge gauges dispersed throughout Amazon basin, given focus in maximum and minimum events. For better HR results according performance metrics, we performed a forecast skill of HR to detect floods and droughts considering in-situ observations. Furthermore, statistical temporal series trend was performed for intensity of seasonal floods and drought in the whole Amazon basin. Results indicate that better HR represented well most past extreme events registered by in-situ observed data and also showed coherent with many events cited by literature, thus we consider viable to use some large precipitation datasets as climatic reanalysis mainly based on land surface component and datasets based in merged products for represent past regional hydrology and seasonal hydrological extreme events. On the other hand, an increase trend of intensity was realized for maximum annual discharges (related to floods) in north-western regions and for minimum annual discharges (related to drought) in central-south regions of the Amazon basin, these features were

  5. Assessing the Amazon Cloud Suitability for CLARREO's Computational Needs

    NASA Technical Reports Server (NTRS)

    Goldin, Daniel; Vakhnin, Andrei A.; Currey, Jon C.

    2015-01-01

    In this document we compare the performance of the Amazon Web Services (AWS), also known as Amazon Cloud, with the CLARREO (Climate Absolute Radiance and Refractivity Observatory) cluster and assess its suitability for computational needs of the CLARREO mission. A benchmark executable to process one month and one year of PARASOL (Polarization and Anistropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) data was used. With the optimal AWS configuration, adequate data-processing times, comparable to the CLARREO cluster, were found. The assessment of alternatives to the CLARREO cluster continues and several options, such as a NASA-based cluster, are being considered.

  6. Amazon Flooded Forest. Teacher Resource Guide.

    ERIC Educational Resources Information Center

    Duvall, Todd

    This teacher's resource guide was created to accompany the Amazon Flooded Forest exhibit at the Oregon Zoo. The enclosed lessons and activities are designed to extend into several aspects of daily curriculum including science, math, reading, writing, speaking, and geography. The materials are intended for use in grades 3-6 although most activities…

  7. The Amazon Boundary Layer Experiment (ABLE 2A) - Dry season 1985

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Browell, E. V.; Hoell, J. M., Jr.; Bendura, R. J.; Beck, S. M.; Wofsy, S. C.; Mcneal, R. J.; Navarro, R. L.; Riley, J. T.; Snell, R. L.

    1988-01-01

    The Amazon Boundary Layer Experiment (ABLE 2A) used data from aircraft, ground-based, and satellite platforms to characterize the chemistry and dynamics of the lower atmosphere over the Amazon Basin during the early-to-middle dry season, July and August 1985. This paper reports the conceptual framework and experimental approach used in ABLE 2A and serves as an introduction to the detailed papers which follow in this issue. The results of ABLE 2A demonstrate that isoprene, methane, carbon dioxide, nitric oxide, dimethylsulfide, and organic aerosol emissions from soils and vegetation play a major role in determining the chemical composition of the atmospheric mixed layer over undisturbed forest and wetland environments. As the dry season progresses, emissions from both local and distant biomass burning become an important source of carbon monoxide, nitric oxide and ozone in the atmosphere over the central Amazon Basin.

  8. El Niño Could Drive Intense Season for Amazon Fires

    NASA Image and Video Library

    2017-12-08

    El Niño conditions in 2015 and early 2016 altered rainfall patterns around the world. In the Amazon, El Niño reduced rainfall during the wet season, leaving the region drier at the start of the 2016 dry season than any year since 2002, according to NASA satellite data. Wildfire risk for the dry season months of July to October this year now exceeds fire risk in 2005 and 2010, drought years when wildfires burned large areas of Amazon rainforest, said Doug Morton, an Earth scientist at NASA’s Goddard Space Flight Center who helped create the fire forecast. "Severe drought conditions at the start of the dry season set the stage for extreme fire risk in 2016 across the southern Amazon," Morton said. The Amazon fire forecast uses the relationship between climate and active fire detections from NASA satellites to predict fire season severity during the region’s dry season. Developed in 2011 by scientists at University of California, Irvine and NASA’s Goddard Space Flight Center, the forecast model is focused particularly on the link between sea surface temperatures and fire activity. Warmer sea surface temperatures in the tropical Pacific (El Niño) and Atlantic oceans shift rainfall away from the Amazon region, increasing the risk of fires during dry season months. Read more: go.nasa.gov/2937ADt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Granular cell tumor in an endangered Puerto Rican Amazon parrot (Amazon vittata)

    USGS Publications Warehouse

    Quist, C.F.; Latimer, K.S.; Goldade, S.L.; Rivera, A.; Dein, F.J.

    1999-01-01

    A 3 cm diameter mass from the metacarpus of a Puerto Rican Amazon parrot was diagnosed as a granular cell tumour based on light microscopy. The cytoplasmic granules were periodic-acid Schiff positive and diastase resistant. Ultrastructural characteristics of the cells included convoluted nuclei and the presence of numerous cytoplasmic tertiary lysosomes. This is only the second granular cell tumour reported in a bird. We speculate that most granular cell tumours are derived from cells that are engaged in some type of cellular degradative process, creating a similar morphologic appearance, but lacking a uniform histogenesis.

  10. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.

    PubMed

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.

  11. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010

    PubMed Central

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S.; Hansen, Matthew C.; Townshend, John R.

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates―critical inputs for setting reference emission levels for REDD+―are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr−1 and 0.18 ± 0.07 Pg C•yr−1 respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha−1, ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha−1). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha−1•yr−1 from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts

  12. Cancer mortality and oil production in the Amazon Region of Ecuador, 1990-2005.

    PubMed

    Kelsh, Michael A; Morimoto, Libby; Lau, Edmund

    2009-02-01

    To compare cancer mortality rates in Amazon cantons (counties) with and without long-term oil exploration and extraction activities. Mortality (1990 through 2005) and population census (1990 and 2001) data for cantons in the provinces of the northern Amazon Region (Napo, Orellana, Sucumbios, and Pastaza), as well as the province with the capital city of Quito (Pichincha province) were obtained from the National Statistical Office of Ecuador, Instituto Nacional del Estadistica y Censos (INEC). Age- and sex-adjusted mortality rate ratios (RR) and 95% confidence intervals (CI) were estimated to evaluate total and cause-specific mortality in the study regions. Among Amazon cantons with long-term oil extraction, activities there was no evidence of increased rates of death from all causes (RR = 0.98; 95% CI = 0.95-1.01) or from overall cancer (RR = 0.82; 95% CI = 0.73-0.92), and relative risk estimates were also lower for most individual site-specific cancer deaths. Mortality rates in the Amazon provinces overall were significantly lower than those observed in Pichincha for all causes (RR = 0.82; 95% CI = 0.81-0.83), overall cancer (RR = 0.46; 95% CI = 0.43-0.49), and for all site-specific cancers. In regions with incomplete cancer registration, mortality data are one of the few sources of information for epidemiologic assessments. However, epidemiologic assessments in this region of Ecuador are limited by underreporting, exposure and disease misclassification, and study design limitations. Recognizing these limitations, our analyses of national mortality data of the Amazon Region in Ecuador does not provide evidence for an excess cancer risk in regions of the Amazon with long-term oil production. These findings were not consistent or supportive of earlier studies in this region that suggested increased cancer risks.

  13. Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures.

    PubMed

    Tinbergen, Jan; Wilts, Bodo D; Stavenga, Doekele G

    2013-12-01

    The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or blue-green wavelength range. The blue-green spongy structures are partly enveloped by a blue-absorbing, yellow-colouring pigment acting as a spectral filter, thus yielding a green coloured barb. Applying reflection and transmission spectroscopy, we characterized the Amazons' pigments and spongy structures, and investigated how they contribute to the feather coloration. The reflectance spectra of Amazon feathers are presumably tuned to the sensitivity spectra of the visual photoreceptors.

  14. Forecasting Malaria in the Western Amazon

    NASA Astrophysics Data System (ADS)

    Pan, W. K.; Zaitchik, B. F.; Pizzitutti, F.; Berky, A.; Feingold, B.; Mena, C.; Janko, M.

    2017-12-01

    Reported cases of malaria in the western Amazon regions of Peru, Colombia and Ecuador have more than tripled since 2011. Responding to this epidemic has been challenging given large-scale environmental impacts and demographic changes combined with changing financial and political priorities. In Peru alone, malaria cases increased 5-fold since 2011. Reasons include changes in the Global Malaria Fund, massive flooding in 2012, the "mega" El Nino in 2016, and continued natural resource extraction via logging and mining. These challenges prompted the recent creation of the Malaria Cero program in 2017 with the goal to eradicate malaria by 2021. To assist in malaria eradiation, a team of investigators supported by NASA have been developing an Early Warning System for Malaria. The system leverages demographic, epidemiological, meteorological and land use/cover data to develop a four-component system that will improve detection of malaria across the western Amazon Basin. System components include a land data assimilation system (LDAS) to estimate past and future hydrological states and flux, a seasonal human population model to estimate population at risk and spatial connectivity to high risk transmission areas, a sub-regional statistical model to identify when and where observed malaria cases have exceeded those expected, and an Agent Based Model (ABM) to integrate human, environmental, and entomological transmission dynamics with potential strategies for control. Data include: daily case detection reports between 2000 and 2017 from all health posts in the region of Loreto in the northern Peruvian Amazon; LDAS outputs (precipitation, temperature, humidity, solar radiation) at a 1km and weekly scale; satellite-derived estimates of land cover; and human population size from census and health data. This presentation will provide an overview of components, focusing on how the system identifies an outbreak and plans for technology transfer.

  15. Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments

    NASA Astrophysics Data System (ADS)

    Sun, Shuwen; Schefuß, Enno; Mulitza, Stefan; Chiessi, Cristiano M.; Sawakuchi, André O.; Zabel, Matthias; Baker, Paul A.; Hefter, Jens; Mollenhauer, Gesine

    2017-05-01

    The Amazon River transports large amounts of terrestrial organic carbon (OCterr) from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC), and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al / Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (-26.1 to -29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S / V) and cinnamyl to vanillyl (C / V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and Λ8 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon

  16. Radionuclide tracers of sediment-water interactions on the Amazon shelf

    NASA Astrophysics Data System (ADS)

    Moore, Willard S.; DeMaster, David J.; Smoak, Joseph M.; McKee, Brent A.; Swarzenski, Peter W.

    1996-04-01

    A comprehensive study of a variety of radionuclide tracers has been coupled with other geochemical investigations and with sedimentary and physical oceanographic measurements to elucidate processes and their characteristic time scales at the mouth of the Amazon River. This two-year field study on the Amazon continental shelf involved four cruises designed to provide information during different stages of the river hydrograph. Although the cruises were coordinated with river stage, other physical variables including spring-neap tidal stages, the flow of the North Brazil Current and trade-wind stress caused important effects on the shelf environment. Partitioning of uranium among dissolved, colloidal and particulate phases was investigated during AmasSeds. A detailed examination of uranium water-column behavior during low river discharge found that most (89%) of the uranium near the Amazon River mouth was associated with the particulate phase and that most (92%) of the riverine dissolved-phase uranium was in the colloidal size fraction (0.001-0.4 μm). A non-conservative uranium/salinity distribution was observed for dissolved uranium, indicating large-scale uranium removal from surface waters with salinities less than 20 ppt. Colloidal uranium was non-conservative across the entire salinity regime, exhibiting removal of colloidal uranium from waters with salinities less than 12 ppt and a significant input at higher salinities. A short-lived particle-reactive tracer, 234Th, was used to evaluate the rates of particle scavenging on the shelf. Suspended-sediment concentrations respond to each turn of the tide, thus limiting the time available for equilibrium to be established between the particles and the tracers. Experiments demonstrated that on the Amazon shelf the partitioning and distribution of trace elements are governed by particle dynamics (particle residence times < sorption times). The high suspended load, including fluid muds, retards the incorporation of

  17. Implications of Scientific Collaboration Networks on Studies of Aquatic Vertebrates in the Brazilian Amazon.

    PubMed

    Salinero, María Celeste; Michalski, Fernanda

    2016-01-01

    The quantity of wildlife extracted from the Amazon has increased in the past decades as a consequence of an increase in human population density and income growth. To evaluate the spatial distribution of studies on subsistence and/or commercial hunting conducted in the Brazilian Amazon, we selected eight mid-sized and large-bodied aquatic vertebrate species with a history of human exploitation in the region. We used a combination of searches in the gray and scientific literature from the past 24 years to provide an updated distributional map of studies on the target species. We calculated the distances between the study sites and the locations of the research institutes/universities that the first and last authors of the same study were affiliated to. For the period of 1990 to 2014, we found 105 studies on the subsistence and/or commercial hunting of aquatic vertebrates in the Brazilian Amazon in 271 locations that involved 43 institutions (37 Brazilian and 6 international). The spatial distribution of the studies across the Brazilian Amazon varied, but over 80% took place in the northeast and central Amazon, encompassing three States of the Legal Brazilian Amazon (Amazonas, 51.42%; Pará, 19.05%; and Amapá, 16.19%). Over half of the research study sites (52.91%) were within 500 km of the research institute/university of the first or last authors. Some research institutes/universities did not have any inter-institutional collaborations, while others collaborated with eight or more institutes. Some research institutes/universities conducted many studies, had an extensive collaboration network, and contributed greatly to the network of studies on Amazonian aquatic vertebrates. Our research contributes to the knowledge of studies on the subsistence and/or commercial hunting of the most exploited aquatic vertebrates of the Brazilian Amazon, illustrates the impact that collaboration networks have on research, and highlights potential areas for improvement and the

  18. Implications of Scientific Collaboration Networks on Studies of Aquatic Vertebrates in the Brazilian Amazon

    PubMed Central

    Salinero, María Celeste; Michalski, Fernanda

    2016-01-01

    The quantity of wildlife extracted from the Amazon has increased in the past decades as a consequence of an increase in human population density and income growth. To evaluate the spatial distribution of studies on subsistence and/or commercial hunting conducted in the Brazilian Amazon, we selected eight mid-sized and large-bodied aquatic vertebrate species with a history of human exploitation in the region. We used a combination of searches in the gray and scientific literature from the past 24 years to provide an updated distributional map of studies on the target species. We calculated the distances between the study sites and the locations of the research institutes/universities that the first and last authors of the same study were affiliated to. For the period of 1990 to 2014, we found 105 studies on the subsistence and/or commercial hunting of aquatic vertebrates in the Brazilian Amazon in 271 locations that involved 43 institutions (37 Brazilian and 6 international). The spatial distribution of the studies across the Brazilian Amazon varied, but over 80% took place in the northeast and central Amazon, encompassing three States of the Legal Brazilian Amazon (Amazonas, 51.42%; Pará, 19.05%; and Amapá, 16.19%). Over half of the research study sites (52.91%) were within 500 km of the research institute/university of the first or last authors. Some research institutes/universities did not have any inter-institutional collaborations, while others collaborated with eight or more institutes. Some research institutes/universities conducted many studies, had an extensive collaboration network, and contributed greatly to the network of studies on Amazonian aquatic vertebrates. Our research contributes to the knowledge of studies on the subsistence and/or commercial hunting of the most exploited aquatic vertebrates of the Brazilian Amazon, illustrates the impact that collaboration networks have on research, and highlights potential areas for improvement and the

  19. Hallux amputation after a freshwater stingray injury in the Brazilian Amazon.

    PubMed

    Monteiro, Wuelton Marcelo; Oliveira, Sâmella Silva de; Sachett, Jacqueline de Almeida Gonçalves; Silva, Iran Mendonça da; Ferreira, Luiz Carlos de Lima; Lacerda, Marcus Vinícius Guimarães

    2016-01-01

    Freshwater stingray injuries are a common problem in the Brazilian Amazon, affecting mostly riverine and indigenous populations. These injuries cause severe local and regional pain, swelling and erythema, as well as complications, such as local necrosis and bacterial infection. Herein, we report a case of bacterial infection and hallux necrosis, after a freshwater stingray injury in the Brazilian Amazon, which eventually required amputation. Different antimicrobial regimens were administered at different stages of the disease; however, avoiding amputation through effective treatment was not achieved.

  20. 75 FR 11808 - Injurious Wildlife Species; Listing the Boa Constrictor, Four Python Species, and Four Anaconda...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DeSchauensee's anaconda-- were shown to pose a medium risk. None of the large constrictors that were assessed... Brazilian island of Marajo, nearby areas around the mouth of the Amazon River, and several drainages in... risk of establishment ranged from medium (reticulated python, DeSchauensee's anaconda, green anaconda...

  1. The Amazons and an analysis of breast mutilation from a plastic surgeon's perspective.

    PubMed

    Karacalar, Ahmet

    2007-03-01

    The Amazon philosophy has been increasing in popularity because of the evolving status of women in society. Many references point to Themiscrya on the southern coast of the Black Sea in Anatolia as the Amazon homeland. The primary objective of this article is to discuss the different femininity of the Amazons and their breast mutilation from the perspective of a plastic surgeon who has been living in this region that the Amazons inhabited. Findings from archaeology, linguistics, anthropology, medicine, history, psychology, and the fine arts were integrated. The hypotheses that have been proposed to explain the method of breast mutilation include amputation, cauterization, breast searing, and breast pinching. It is generally believed that the primary purpose was to facilitate the efficient use of a bow. Another explanation would be that breast mutilation was performed for medical reasons, including the prevention of breast pain, the development of a tender lump, or cancer. There is another school of thought on this involving religious and sociological reasons that breast mutilation was a badge of honor for warrior women and a sign that a woman had become a real warrior and a sacrifice to Artemis as a sign of service. Much indirect proof and archaeological evidence point to their historical existence. The Amazons, who lived in an autonomous and original social model, changed their image and function to suit the needs of the society and the times.

  2. Modeling Diurnal and Seasonal 3D Light Profiles in Amazon Forests

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Rubio, J.; Gastellu-Etchegorry, J.; Cook, B. D.; Hunter, M. O.; Yin, T.; Nagol, J. R.; Keller, M. M.

    2013-12-01

    The complex horizontal and vertical structure in tropical forests generates a diversity of light environments for canopy and understory trees. These 3D light profiles are dynamic on diurnal and seasonal time scales based on changes in solar illumination and the fraction of diffuse light. Understanding this variability is critical for improving ecosystem models and interpreting optical and LiDAR remote sensing data from tropical forests. Here, we initialized the Discrete Anisotropic Radiative Transfer (DART) model using dense airborne LiDAR data (>20 returns m2) from three forest sites in the central and eastern Amazon. Forest scenes derived from airborne LiDAR data were tested using modeled and observed large-footprint LiDAR data from the ICESat-GLAS sensor. Next, diurnal and seasonal profiles of photosynthetically active radiation (PAR) for each forest site were simulated under clear sky and cloudy conditions using DART. Incident PAR was summarized for canopy, understory, and ground levels. Our study illustrates the importance of realistic canopy models for accurate representation of LiDAR and optical radiative transfer. In particular, canopy rugosity and ground topography information from airborne LiDAR data provided critical 3D information that cannot be recreated using stem maps and allometric relationships for crown dimensions. The spatial arrangement of canopy trees altered PAR availability, even for dominant individuals, compared to downwelling measurements from nearby eddy flux towers. Pseudo-realistic branch and leaf architecture was also essential for recreating multiple scattering within canopies at near-infrared wavelengths commonly used for LiDAR remote sensing and quantifying PAR attenuation from shading within and between canopies. These findings point to the need for more spatial information on forest structure to improve the representation of light availability in models of tropical forest productivity.

  3. Epidemiology of Spotted Fever Group and Typhus Group Rickettsial Infection in the Amazon Basin of Peru

    DTIC Science & Technology

    2010-01-01

    MediCine and Hyg1cne Epidemiology of Spotted Fever Group and Typhus Group Rickettsial Infection in the Amazon Basin of Peru Brett M. Forshey, Allison...approximately 4% of acute febrile episodes detected in Iquitos, a city located in the Amazon region of northeast- ern Peru , could be attributed to SFGR...2010 to 00-00-2010 4. TITLE AND SUBTITLE Epidemiology Of Spotted Fever Group And Typhus Group Rickettsial Infection In The Amazon Basin Of Peru 5a

  4. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.

    2014-12-01

    While a majority of global climate models project drier and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC (Interaction Soil-Biosphere-Atmosphere Carbon Cycle) land surface model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent throughfall exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different water stress functions (WSFs) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentrations, the increased water-use efficiency (WUE) mitigates the sensitivity of ISBACC to drought. While one of the proposed WSF formulations improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.

  5. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.

    2014-08-01

    While a majority of Global Climate Models project dryer and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC Land Surface Model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent ThroughFall Exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different Water Stress Function (WSF) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentration, the increased Water Use Efficiency (WUE) mitigates the ISBACC's sensitivity to drought. While one of the proposed WSF formulation improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.

  6. Downstream impacts of a Central Amazonian hydroelectric dam on tree growth and mortality in floodplain forests

    NASA Astrophysics Data System (ADS)

    Resende, A. F. D.; Silva, T. S. F.; Silva, J. D. S.; Piedade, M. T. F.; Streher, A. S.; Ferreira-Ferreira, J.; Schongart, J.

    2017-12-01

    . This impact was stronger for younger trees (<200 yr) and for those growing closer to the hydroelectric dam (<100 km distance). Considering the planning of construction of several dozen dams in the Amazon there is an urgent need to consider these downstream impacts in all discussions of hydroelectric power plants implementation and operation.

  7. Holocene provenance shift of suspended particulate matter in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Höppner, Natalie; Lucassen, Friedrich; Chiessi, Cristiano M.; Sawakuchi, André O.; Kasemann, Simone A.

    2018-06-01

    The strontium (Sr), neodymium (Nd) and lead (Pb) isotope signatures of suspended particulate matter (SPM) in rivers reflect the radiogenic isotope signatures of the rivers' drainage basin. These signatures are not significantly affected by weathering, transport or depositional cycles, but document the sedimentary contributions of the respective sources. We report new Sr, Nd and Pb isotope ratios and element concentrations of modern SPM from the Brazilian Amazon River basin and document the past evolution of the basin by analyzing radiogenic isotopes of a marine sediment core from the slope off French Guiana archiving the last 40 kyr of Amazon River SPM, and the Holocene section of sediment cores raised between the Amazon River mouth and the slope off French Guiana. The composition of modern SPM confirms two main source areas, the Andes and the cratonic Shield. In the marine sediment core notable changes occurred during the second phase of Heinrich Stadial 1 (i.e. increased proportion of Shield rivers SPM) and during the last deglaciation (i.e. increased proportion of Madeira River SPM) together with elsewhere constant source contributions. Furthermore, we report a prominent offset in Sr and Nd isotopic composition between the average core value (εNd: -11.7 ± 0.9 (2SD), 87Sr/86Sr: 0.7229 ± 0.0016 (2SD)) and the average modern Amazon River SPM signal (εNd: -10.5 ± 0.5 (2SD), 87Sr/86Sr: 0.7213 ± 0.0036 (2SD)). We suggest that a permanent change in the Amazon River basin sediment supply during the late Holocene to a more Andean dominated SPM was responsible for the offset.

  8. Gender-specific out-migration, deforestation and urbanization in the Ecuadorian Amazon

    NASA Astrophysics Data System (ADS)

    Barbieri, Alisson F.; Carr, David L.

    2005-07-01

    The Ecuadorian Amazon, one of the richest reserves of biodiversity in the world, has faced one of the highest rates of deforestation of any Amazonian nation. Most of this forest elimination has been caused by agricultural colonization that followed the discovery of oil fields in 1967. Since the 1990s, an increasing process of urbanization has also engendered new patterns of population mobility within the Amazon, along with traditional ways by which rural settlers make their living. However, while very significant in its effects on deforestation, urbanization and regional development, population mobility within the Amazon has hardly been studied at all, as well as the distinct migration patterns between men and women. This paper uses a longitudinal dataset of 250 farm households in the Northern Ecuadorian Amazon to understand differentials between men and women migrants to urban and rural destinations and between men and women non-migrants. First, we use hazard analysis based on the Kaplan-Meier (KM) estimator to obtain the cumulative probability that an individual living in the study area in 1990 or at time t, will out-migrated at some time, t+ n, before 1999. Results indicate that out-migration to other rural areas in the Amazon, especially pristine areas is considerably greater than out-migration to the growing, but still incipient, Amazonian urban areas. Furthermore, men are more likely to out-migrate to rural areas than women, while the reverse occurs for urban areas. Difference-of-means tests were employed to examine potential factors accounting for differentials between male and female out-migration to urban and rural areas. Among the key results, relative to men younger women are more likely to out-migrate to urban areas; more difficult access from farms to towns and roads constrains women's migration; and access to new lands in the Amazon-an important cause of further deforestation-is more associated with male out-migration. Economic factors such as

  9. Suspended sediments of the modern Amazon and Orinoco rivers

    USGS Publications Warehouse

    Meade, R.H.

    1994-01-01

    The Amazon and Orinoco Rivers are massive transcontinental conveyance systems for suspended sediment. They derive about 90% of their sediment from the Andes that support their western headwaters, transport it for thousands of kilometers across the breadth of the continent and deposit it in the coastal zones of the Atlantic. At their points of maximum suspended-sediment discharge, the Amazon transports an average of 1100-1300 ?? 106 tons per year and the Orinoco transports about 150 ?? 106 tons per year. Relations of sediment discharge to water discharge are complicated by unusual patterns of seasonal storage and remobilization, increased storage and reduced transport of sediment in the middle Orinoco during periods of peak water discharge, and storage of suspended sediment in the lower Amazon during rising discharge and resuspension during falling discharge. Spatial distributions of suspended sediment in cross-sections of both rivers are typically heterogeneous, not only in the vertical sense but also in the lateral. The cross-channel mixing of tributary inputs into the mainstem waters is a slow process that requires several hundred kilometers of downriver transport to complete. Considerable fine-grained sediment is exchanged between rivers and floodplains by the combination of overbank deposition and bank erosion. ?? 1994.

  10. Investigating smoke's influence on primary production throughout the Amazon

    NASA Astrophysics Data System (ADS)

    Flanner, M. G.; Mahowald, N. M.; Zender, C. S.; Randerson, J. T.; Tosca, M. G.

    2007-12-01

    Smoke from annual burning in the Amazon causes large reduction in surface insolation and increases the diffuse fraction of photosynthetically-active radiation (PAR). These effects have competing influence on gross primary production (GPP). Recent studies indicate that the sign of net influence depends on aerosol optical depth, but the magnitude of smoke's effect on continental-scale carbon cycling is very poorly constrained and may constitute an important term of fire's net impact on carbon storage. To investigate widespread effects of Amazon smoke on surface radiation properties, we apply a version of the NCAR Community Atmosphere Model with prognostic aerosol transport, driven with re-analysis winds. Carbon aerosol emissions are derived from the Global Fire Emissions Database (GFED). We use AERONET observations to identify model biases in aerosol optical depth, single-scatter albedo, and surface radiative forcing, and prescribe new aerosol optical properties based on field observations to improve model agreement with AERONET data. Finally, we quantify a potential range of smoke-induced change in large-scale GPP based on: 1) ground measurements of GPP in the Amazon as a function of aerosol optical depth and diffuse fraction of PAR, and 2) empirical functions of ecosystem-scale photosynthesis rates currently employed in models such as the Community Land Model (CLM).

  11. Size distribution of Amazon River bed sediment

    USGS Publications Warehouse

    Nordin, C.F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Landim, P.M.B.

    1980-01-01

    The first recorded observations of bed material of the Amazon River were made in 1843 by Lt William Lewis Herndon of the US Navy, when he travelled the river from its headwaters to its mouth, sounding its depths, and noting the nature of particles caught in a heavy grease smeared to the bottom of his sounding weight1. He reported the bed material of the river to be mostly sand and fine gravel. Oltman and Ames took samples at a few locations in 1963 and 1964, and reported the bed material at O??bidos, Brazil, to be fine sands, with median diameters ranging from 0.15 to 0.25 mm (ref. 2). We present here a summary of particle-size analyses of samples of streambed material collected from the Amazon River and its major tributaries along a reach of the river from Iquitos in Peru, ???3,500 km above Macapa?? Brazil, to a point 220 km above Macapa??3. ?? 1980 Nature Publishing Group.

  12. Revisiting drought impact on tree mortality and carbon fluxes in ORCHIDEE-CAN DGVM

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Bartlett, M. K.; Sack, L.; Poulter, B.; Ciais, P.

    2016-12-01

    In the past decade, two extreme droughts in the Amazon rainforest led to a perturbation of carbon cycle dynamics and forest structure, partly through an increase in tree mortality. While there is a relatively strong consensus in CMIP5 projections for an increase in both frequency and intensity of droughts across the Amazon, the potential for forest die-off constitutes a large uncertainty in projections of climate impacts on terrestrial ecosystems and carbon cycle feedbacks. Two long-term through fall exclusion experiments (TFE) provided novel observations of Amazonian ecosystem responses under drought. These experiments also provided a great opportunity to evaluate and improve models' behavior under drought. While current DGVMs use a wide array of algorithms to represent drought effect on ecosystem, most are associated with large uncertainty for representing drought-induced mortality, and require updating to include current information of physiological processes. During very strong droughts, the leaves desiccate and stems may undergo catastrophic embolism. However, even before that point, stomata close, to minimize excessive water loss and risk of hydraulic failure, which reduces carbon assimilation. Here, we describe a new parameterization of the stomatal conductance and mortality processes induced by drought using the ORCHIDEE-CAN dynamic vegetation model and test it using the two TFE results. We implemented a direct climate effect on mortality through catastrophic stem embolism using a new hydraulic architecture to represent the hydraulic potential gradient from the soil to the leaves based on vulnerability curves, and tree capacitance. In addition, growth primary productivity and transpiration are down-regulated by the hydraulic architecture in case of drought through stomatal conductance, which depends on the hydraulic potential of the leaf. We also explored the role of non structural carbohydrates (NSC) on hydraulic failure and mortality following the idea

  13. Retinal photoreceptors and visual pigments in Boa constrictor imperator.

    PubMed

    Sillman, A J; Johnson, J L; Loew, E R

    2001-09-01

    The photoreceptors of Boa constrictor, a boid snake of the subfamily Boinae, were examined with scanning electron microscopy and microspectrophotometry. The retina of B. constrictor is duplex but highly dominated by rods, cones comprising 11% of the photoreceptor population. The rather tightly packed rods have relatively long outer segments with proximal ends that are somewhat tapered. There are two morphologically distinct, single cones. The most common cone by far has a large inner segment and a relatively stout outer segment. The second cone, seen only infrequently, has a substantially smaller inner segment and a finer outer segment. The visual pigments of B. constrictor are virtually identical to those of the pythonine boid, Python regius. Three different visual pigments are present, all based on vitamin A(1.) The visual pigment of the rods has a wavelength of peak absorbance (lambda(max)) at 495 +/- 2 nm. The visual pigment of the more common, large cone has a lambda(max) at 549 +/- 1 nm. The small, rare cone contains a visual pigment with lambda(max) at 357 +/- 2 nm, providing the snake with sensitivity in the ultraviolet. We suggest that B. constrictor might employ UV sensitivity to locate conspecifics and/or to improve hunting efficiency. The data indicate that wavelength discrimination above 430 nm would not be possible without some input from the rods. Copyright 2001 Wiley-Liss, Inc.

  14. Methylmercury Modulation in Amazon Rivers Linked to Basin Characteristics and Seasonal Flood-Pulse.

    PubMed

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2017-12-19

    We investigated the impact of the seasonal inundation of wetlands on methylmercury (MeHg) concentration dynamics in the Amazon river system. We sampled 38 sites along the Solimões/Amazon and Negro rivers and their tributaries during distinct phases of the annual flood-pulse. MeHg dynamics in both basins was contrasted to provide insight into the factors controlling export of MeHg to the Amazon system. The export of MeHg by rivers was substantially higher during high-water in both basins since elevated MeHg concentrations and discharge occurred during this time. MeHg concentration was positively correlated to %flooded area upstream of the sampling site in the Solimões/Amazon Basin with the best correlation obtained using 100 km buffers instead of whole basin areas. The lower correlations obtained with the whole basin apparently reflected variable losses of MeHg exported from upstream wetlands due to demethylation, absorption, deposition, and degradation before reaching the sampling site. A similar correlation between %flooded area and MeHg concentrations was not observed in the Negro Basin probably due to the variable export of MeHg from poorly drained soils that are abundant in this basin but not consistently flooded.

  15. African Dust Fertilizing the Amazon Rainforest: An Assessment with Seven-year Record of CALIOP Measurements

    NASA Astrophysics Data System (ADS)

    Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Prospero, J. M.; Omar, A. H.; Remer, L. A.; Winker, D. M.; Yang, Y.; Zhang, Y.; Zhang, Z.

    2014-12-01

    The productivity of Amazon rainforest is constrained by the availability of nutrients, in particular phosphorus (P). Deposition of transported African dust in boreal winter and spring is considered an important nutrient input for the Amazon Basin, though its magnitude is not well qunatified. This study provides a remote sensing observation-based estimate of dust deposition in the Amazon Basin using a 7-year (2007-2013) record of three dimensional (3D) distributions of aerosol in both cloud-free and above-cloud conditions from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). It is estimated that the 7-year average of dust deposition into the Amazon Basin amounts to 15.1 ~ 32.1 Tg a-1 (Tg = 1012 g). This imported dust could provide 0.012 ~ 0.025 Tg P a-1 or equivalent to 12 ~ 26 g P ha-1 a-1 to fertilize the Amazon rainforest, which largely compensates the hydrological loss of P. The CLAIOP-based estimate agrees better with estimates from in-situ measurements and model simulations than what has been reported in literature. The closer agreement benefits from a more realistic geographic definition of the Amazon Basin and inclusion of meridional dust transport calculation in addition to the 3D nature of CALIOP aerosol measurements. The trans-Atlantic transport and deposition of dust shows strong interannual variations that are found to correlate with the North Atlantic Oscillation index in the winter season and anticorrelate with the prior-year Sahel Precipitation Index on an annual basis. Uncertainties associated with the estimate will also be discussed.

  16. Oil pollution in soils and sediments from the Northern Peruvian Amazon.

    PubMed

    Rosell-Melé, Antoni; Moraleda-Cibrián, Núria; Cartró-Sabaté, Mar; Colomer-Ventura, Ferran; Mayor, Pedro; Orta-Martínez, Martí

    2018-01-01

    Oil has been extracted from the Northern Peruvian Amazon for over four decades. However, few scientific studies have assessed the impacts of such activities in the environment and health of indigenous communities in the region. We have investigated the occurrence of petrogenic hydrocarbon pollution in soils and sediments from areas favoured as hunting or fishing grounds by local indigenous inhabitants. The study was conducted in one of the most productive oil blocks in Peru, located in the headwaters of the Amazon river. Soils and river sediments, in the vicinity of oil extraction and processing infrastructure, contained an oil pollution signature as attested by the occurrence of hopanes and steranes. Given the lack of any other significant source of oil pollution in the region, the sources of hydrocarbons are likely to be the activities of the oil industry in the oil block, from voluntary discharges or accidental spills. Spillage of produced water was commonplace until 2009. Moreover, petrogenic compounds were absent in control samples in sites far removed from any oil infrastructure in the oil block. Our findings suggest that wildlife and indigenous populations in this region of the Amazon are exposed to the ingestion of oil polluted soils and sediments. The data obtained supports previous claims that the local spillage of oil and produced waters in the water courses in the Corrientes and Pastaza basins could have eventually reached the main water course of the Amazon. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Projected increases in the annual flood pulse of the Western Amazon

    NASA Astrophysics Data System (ADS)

    Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Véliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William

    2016-01-01

    The impact of a changing climate on the Amazon basin is a subject of intensive research because of its rich biodiversity and the significant role of rainforests in carbon cycling. Climate change has also a direct hydrological impact, and increasing efforts have focused on understanding the hydrological dynamics at continental and subregional scales, such as the Western Amazon. New projections from the Coupled Model Inter-comparison Project Phase 5 ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the upper Amazon river. Using extreme value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 yr. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100 yr return floods). These findings agree with previously projected increases in high extremes under the Special Report on Emissions Scenarios climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amidst a growing literature that more strongly emphasises future droughts and their impact on the viability of the rainforest system over greater Amazonia.

  18. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Resende de Sousa, Celio Helder; Hilker, Thomas; Waring, Richard; Mendes De Moura, Yhasmin; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.

  19. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    PubMed Central

    de Sousa, Celio Helder Resende; Hilker, Thomas; Waring, Richard; de Moura, Yhasmin Mendes; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (ε) at four sites in the Amazon Basin: r2 values ranged from 0.37 to 0.51 for northern flux sites and to 0.78 for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics. PMID:29375895

  20. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin.

    PubMed

    de Sousa, Celio Helder Resende; Hilker, Thomas; Waring, Richard; de Moura, Yhasmin Mendes; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (ε) at four sites in the Amazon Basin: r 2 values ranged from 0.37 to 0.51 for northern flux sites and to 0.78 for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.

  1. Amazon rainforest responses to elevated CO2: Deriving model-based hypotheses for the AmazonFACE experiment

    NASA Astrophysics Data System (ADS)

    Rammig, A.; Fleischer, K.; Lapola, D.; Holm, J.; Hoosbeek, M.

    2017-12-01

    Increasing atmospheric CO2 concentration is assumed to have a stimulating effect ("CO2 fertilization effect") on forest growth and resilience. Empirical evidence, however, for the existence and strength of such a tropical CO2 fertilization effect is scarce and thus a major impediment for constraining the uncertainties in Earth System Model projections. The implications of the tropical CO2 effect are far-reaching, as it strongly influences the global carbon and water cycle, and hence future global climate. In the scope of the Amazon Free Air CO2 Enrichment (FACE) experiment, we addressed these uncertainties by assessing the CO2 fertilization effect at ecosystem scale. AmazonFACE is the first FACE experiment in an old-growth, highly diverse tropical rainforest. Here, we present a priori model-based hypotheses for the experiment derived from a set of 12 ecosystem models. Model simulations identified key uncertainties in our understanding of limiting processes and derived model-based hypotheses of expected ecosystem responses to elevated CO2 that can directly be tested during the experiment. Ambient model simulations compared satisfactorily with in-situ measurements of ecosystem carbon fluxes, as well as carbon, nitrogen, and phosphorus stocks. Models consistently predicted an increase in photosynthesis with elevated CO2, which declined over time due to developing limitations. The conversion of enhanced photosynthesis into biomass, and hence ecosystem carbon sequestration, varied strongly among the models due to different assumptions on nutrient limitation. Models with flexible allocation schemes consistently predicted an increased investment in belowground structures to alleviate nutrient limitation, in turn accelerating turnover rates of soil organic matter. The models diverged on the prediction for carbon accumulation after 10 years of elevated CO2, mainly due to contrasting assumptions in their phosphorus cycle representation. These differences define the expected

  2. Categorizing Ideas about Trees: A Tree of Trees

    PubMed Central

    Fisler, Marie; Lecointre, Guillaume

    2013-01-01

    The aim of this study is to explore whether matrices and MP trees used to produce systematic categories of organisms could be useful to produce categories of ideas in history of science. We study the history of the use of trees in systematics to represent the diversity of life from 1766 to 1991. We apply to those ideas a method inspired from coding homologous parts of organisms. We discretize conceptual parts of ideas, writings and drawings about trees contained in 41 main writings; we detect shared parts among authors and code them into a 91-characters matrix and use a tree representation to show who shares what with whom. In other words, we propose a hierarchical representation of the shared ideas about trees among authors: this produces a “tree of trees.” Then, we categorize schools of tree-representations. Classical schools like “cladists” and “pheneticists” are recovered but others are not: “gradists” are separated into two blocks, one of them being called here “grade theoreticians.” We propose new interesting categories like the “buffonian school,” the “metaphoricians,” and those using “strictly genealogical classifications.” We consider that networks are not useful to represent shared ideas at the present step of the study. A cladogram is made for showing who is sharing what with whom, but also heterobathmy and homoplasy of characters. The present cladogram is not modelling processes of transmission of ideas about trees, and here it is mostly used to test for proximity of ideas of the same age and for categorization. PMID:23950877

  3. The ambiguity of drought events, a bottleneck for Amazon forest drought response modelling

    NASA Astrophysics Data System (ADS)

    De Deurwaerder, Hannes; Verbeeck, Hans; Baker, Timothy; Christoffersen, Bradley; Ciais, Philippe; Galbraith, David; Guimberteau, Matthieu; Kruijt, Bart; Langerwisch, Fanny; Meir, Patrick; Rammig, Anja; Thonicke, Kirsten; Von Randow, Celso; Zhang, Ke

    2016-04-01

    Considering the important role of the Amazon forest in the global water and carbon cycle, the prognosis of altered hydrological patterns resulting from climate change provides strong incentive for apprehending the direct implications of drought on the vegetation of this ecosystem. Dynamic global vegetation models have the potential of providing a useful tool to study drought impacts on various spatial and temporal scales. This however assumes the models being able to properly represent drought impact mechanisms. But how well do the models succeed in meeting this assumption? Within this study meteorological driver data and model output data of 4 different DGVMs, i.e. ORCHIDEE, JULES, INLAND and LPGmL, are studied. Using the palmer drought severity index (PDSI) and the mean cumulative water deficit (MWD), temporal and spatial representation of drought events are studied in the driver data and are referenced to historical extreme drought events in the Amazon. Subsequently, within the resulting temporal and spatial frame, we studied the drought impact on the above ground biomass (AGB) and gross primary production (GPP) fluxes. Flux tower data, field inventory data and the JUNG data-driven GPP product for the Amazon region are used for validation. Our findings not only suggest that the current state of the studied DGVMs is inadequate in representing Amazon droughts in general, but also highlights strong inter-model differences in drought responses. Using scatterplot-studies and input-output correlations, we provide insight in the origin of these encountered inter-model differences. In addition, we present directives of model development and improvement in scope of Amazon forest drought response modelling.

  4. Amazon Basin climate under global warming: the role of the sea surface temperature.

    PubMed

    Harris, Phil P; Huntingford, Chris; Cox, Peter M

    2008-05-27

    The Hadley Centre coupled climate-carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in mid-twenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both the tropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.5 degrees C warmer air temperature associated with a global mean SST warming.

  5. Phylogeography of the dark fruit-eating bat Artibeus obscurus in the Brazilian Amazon.

    PubMed

    Ferreira, Wallax Augusto Silva; Borges, Bárbara do Nascimento; Rodrigues-Antunes, Symara; de Andrade, Fernanda Atanaena Gonçalves; Aguiar, Gilberto Ferreira de Souza; de Sousa e Silva-Junior, José; Marques-Aguiar, Suely Aparecida; Harada, Maria Lúcia

    2014-01-01

    Artibeus obscurus (Mammalia: Chiroptera) is endemic to South America, being found in at least 18 Brazilian states. Recent studies revealed that different populations of this genus present distinct phylogeographic patterns; however, very little is known on the population genetics structure of A. obscurus in the Amazon rainforest. Here, using a fragment (1010bp) of the mitochondrial gene cytochrome b from 87 samples, we investigated patterns of genetic divergence among populations of A. obscurus from different locations in the Brazilian Amazon rainforest and compared them with other Brazilian and South American regions. Analysis of molecular variance (AMOVA), fixation index (Fst) analysis, and phylogeographic patterns showed divergence between two major monophyletic groups, each one corresponding to a geographic region associated with the Atlantic and Amazon forest biomes. The Atlantic forest clusters formed a monophyletic group with a high bootstrap support and a fragmented distribution that follows the pattern predicted by the Refuge Theory. On the other hand, a different scenario was observed for the Amazon forest, where no fragmentation was identified. The AMOVA results revealed a significant geographic heterogeneity in the distribution of genetic variation, with 70% found within populations across the studied populations (Fst values ranging from 0.05864 to 0.09673; φST = 0.55). The intrapopulational analysis revealed that one population (Bragança) showed significant evidence of population expansion, with the formation of 2 distinct phylogroups, suggesting the occurrence of a subspecies or at least a different population in this region. These results also suggest considerable heterogeneity for A. obscurus in the Amazon region.

  6. Leaf temperature and stomatal influences on sap velocity diurnal hysteresis in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Gimenez, B.; Negron Juarez, R. I.; Koven, C.; Powell, T.; Higuchi, N.; Chambers, J.; Varadharajan, C.

    2016-12-01

    In order to improve our ability to predict terrestrial evapotranspiration fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, but remains poorly characterized, especially in tropical ecosystems. In this study we show a tight positive correlation between sap velocity (at 1 m of height) and leaf surface temperature (LST, 20-30 m of height) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As leaf temperatures varied throughout the day, sap velocity responded with little delay (<15 min). Positive sap velocity was often observed at night, but also closely followed night time LSTs. When plotted versus LST, sap velocity showed an exponential increase before reaching a reflection point and a plateau and is characterized as a sigmoidal curve, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity was evident with morning periods showing higher temperature sensitivities than afternoon and night periods. Diurnal leaf observations showed a morning peak in stomatal conductance ( 10:00-10:30), but a mid-day to afternoon peak in transpiration and leaf temperature (12:00-14:00). Our observations suggest the sap velocity-LST hysteresis pattern arises due to the temporal offset between stomatal conductance and vapor pressure deficits (VPD) and demonstrates the dominating effect of VPD over stomatal conductance in maintaining high transpiration/sap flow rates under elevated temperatures. Our results have important implications for modeling tropical forest transpiration and suggests the possibility of predicting evapotranspiration fluxes at the ecosystem to regional scales based on remote sensed vegetation temperature.

  7. Recovery of Methane Consumption by Secondary Forests in the Amazon River Basin

    NASA Astrophysics Data System (ADS)

    Webster, K. D.; Meredith, L. K.; Piccini, W.; Pedrinho, A.; Nüsslein, K.; Van Haren, J. L. M.; Camargo, P. B. D.; Mui, T. S.; Saleska, S. R.

    2017-12-01

    Methane (CH4) is a major greenhouse gas in Earth's atmosphere and its atmospheric global mole fraction has roughly doubled since the start of the industrial revolution. The tropics are thought to be a major CH4 emitter, with the Amazon River Basin estimated to contribute 7 % of the annual flux to the atmosphere. The Amazon has experienced extensive land use change during the past 30 years, but we lack an understanding of the qualitative and quantitative effects of land use change on CH4 flux from the Amazon and the associated reasons. To illuminate the factors controlling CH4 flux across land use gradients in the Amazon we measured the CH4 fluxes and will measure the associated stable isotopic composition from pastures, primary forests, and secondary forests, at Ariquemes (Western Amazon, more deforested), and Santarem (Eastern Amazon, less deforested), Brazil. The sites near Santarem were sampled in June of 2016 and the sites near Ariquemes were sampled in March and April of 2017, both at the end of the wet season. Little difference was observed between land use types in Santarem with each land use type slightly consuming atmospheric CH4. However, pasture fluxes at Ariquemes were higher (+520 μg-C m-2 hr-1) than in primary (0 μg-C m-2 hr-1) and secondary forests (-20 μg-C m-2 hr-1; p = 6*10-4). CH4 flux from individual Santarem sites was not correlated with environmental variables. CH4 flux from Airquemes was correlated with several parameters across all samples including soil temperature (p = 7*10-4), and soil humidity (p = 0.02). Despite the fact that pastures experienced higher soil temperatures than forest soils this appears to be a low predictor of CH4 flux from these environments as it was seen at both Santarem and Ariquemes. The analysis of the stable isotopic composition of CH4 from these chambers will aid in understanding the competing processes of microbial CH4 consumption and production in these soils and why pastures may become CH4 sources and

  8. A geomorphological assessments of the distribution of sediment sinks along the lower Amazon River

    NASA Astrophysics Data System (ADS)

    Park, E.; Latrubesse, E. M.

    2017-12-01

    Floodplain sediment storage budget is examined along the 1,000 km reach of the lower Amazon River based on extensive sets of remote sensing data and field measurements. Incorporating the washload discharges at gauge stations at the main channel and major tributaries, we analyzed the roles of vast floodplain on the Amazon River seasonal variability in sediment discharges. Annual washload accumulation rate on floodplain along the reach in between Manacapuru and Obidos of is estimated to be 79 Mt over inter-annual average. Period that the net loss over to the floodplain of washload coincide with discharge rising phase of the Amazon River at Obidos, when the river water level rises to make hydrologic connections to floodplain. Only during the early falling phase (July-August), 3.6 Mt of washload net gain occurred in a year, which was less than 5% of the annual net loss to the floodplain. To assess the spatial distribution of sediment sinks along the lower Amazon, we incorporated various hydro-geomorphic factors regarding floodplain geomorphic styles and morphometric parameters, such floodplain width, levee heights, water-saturated area, suspended sediment distribution over floodplain and distribution of impeded floodplain. Impeded floodplain that contains numerous large rounded lakes is the definition of active sediment sinks along the lower Amazon, which seasonally stores most of the water and traps sediment from the river. The results of these hydro-geomorphic factors collectively indicate that the extent and magnitudes of sediment sinks becomes larger downstream (from Manacapuru to Monte Alegre), which is proportionally related to the development of the water-saturated floodplain. This indicates the nonlinear geomorphic evolution of the Amazon floodplain through its longitudinal profile since the late Holocene that downstream reaches are still to be infilled with sediments (incomplete floodplain) thus acting as sediment sinks.

  9. The spatial extent of change in tropical forest ecosystem services in the Amazon delta

    NASA Astrophysics Data System (ADS)

    de Araujo Barbosa, C. C.; Atkinson, P.; Dearing, J.

    2014-12-01

    Deltas hold major economic potential due their strategic location, close to seas and inland waterways, thereby supporting intense economic activity. The increasing pace of human development activities in coastal deltas over the past five decades has also strained environmental resources and produced extensive economic and sociocultural impacts. The Amazon delta is located in the Amazon Basin, North Brazil, the largest river basin on Earth and also one of the least understood. A considerable segment of the population living in the Amazon delta is directly dependent on the local extraction of natural resources for their livelihood. Areas sparsely inhabited may be exploited with few negative consequences for the environment. However, increasing pressure on ecosystem services is amplified by large fluxes of immigrants from other parts of the country, especially from the semi-arid zone in Northeast Brazil to the lowland forests of the Amazon delta. Here we present partial results from a bigger research project. Therefore, the focus will be on presenting an overview of the current state, and the extent of changes on forest related ecosystem services in the Amazon delta over the last three decades. We aggregated a multitude of datasets, from a variety of sources, for example, from satellite imagery such as the Advanced Very High Resolution Radiometer (AVHRR), the Global Inventory Modelling and Mapping Studies (GIMMS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and climate datasets at meteorological station level from the Brazilian National Institute of Meteorology (INMET) and social and economic statistics data from the Brazilian Institute of Geography and Statistics (IBGE) and from the Brazilian Institute of Applied Economic Research (IPEA). Through analysis of socioeconomic and satellite earth observation data we were able to produce and present spatially-explicit information with the current state and transition in forest cover and its impacts to forest

  10. Role of Brazilian Amazon protected areas in climate change mitigation

    PubMed Central

    Soares-Filho, Britaldo; Moutinho, Paulo; Nepstad, Daniel; Anderson, Anthony; Rodrigues, Hermann; Garcia, Ricardo; Dietzsch, Laura; Merry, Frank; Bowman, Maria; Hissa, Letícia; Silvestrini, Rafaella; Maretti, Cláudio

    2010-01-01

    Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 ± 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 ± 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation. PMID:20505122

  11. Response of the Amazon rainforest to late Pleistocene climate variability

    NASA Astrophysics Data System (ADS)

    Häggi, Christoph; Chiessi, Cristiano M.; Merkel, Ute; Mulitza, Stefan; Prange, Matthias; Schulz, Michael; Schefuß, Enno

    2017-12-01

    Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and δ13C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on δ13C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial-interglacial climate variability.

  12. Role of Brazilian Amazon protected areas in climate change mitigation.

    PubMed

    Soares-Filho, Britaldo; Moutinho, Paulo; Nepstad, Daniel; Anderson, Anthony; Rodrigues, Hermann; Garcia, Ricardo; Dietzsch, Laura; Merry, Frank; Bowman, Maria; Hissa, Letícia; Silvestrini, Rafaella; Maretti, Cláudio

    2010-06-15

    Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 +/- 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 +/- 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation.

  13. Changes in the Carbon Cycle of Amazon Ecosystems During the 2010 Drought

    NASA Technical Reports Server (NTRS)

    Potter, Christophera; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubino, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production (NPP) in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon River basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to forests outside the main river floodplains.

  14. Remote sensing in forestry: Application to the Amazon region

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Tardin, A. T.; Dossantos, A.; Filho, P. H.; Shimabukuro, Y. E.

    1981-01-01

    The utilization of satellite remote sensing in forestry is reviewed with emphasis on studies performed for the Brazilian Amazon Region. Timber identification, deforestation, and pasture degradation after deforestation are discussed.

  15. Measurement of deforestation in the Brazilian Amazon using satellite remote sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skole, D.L.

    1992-01-01

    Understanding of the role of the biota in the global carbon cycle is limited by an absence of accurate measurements of deforestation rates in the tropics. This study measures the rate and extent of deforestation in the Brazilian Amazon, the largest extant tropical forest biome in the world. The study uses remote sensing measurements of deforestation rates, the area of secondary vegetation, and tabular data to document deforestation. The analysis concludes: (1) AVHRR will greatly overestimate deforestation and be highly variable; the use of a brightness temperature threshold is highly sensitive and unreliable. The upward bias of AVHRR is amore » function of the density of deforestation. (2) Accurate measurement of deforestation requires Landsat TM data, and can be accomplished using low cost visual interpretation of photographic products at 1:250,000 scales. (3) Secondary growth in the Brazilian Amazon represents a large fraction of the total deforested area, and the abandonment of agricultural land is an important land cover transition. Abandonment rates were 70--83% of clearing rates from primary forests. At any one point in time, approximately 30% of the deforested area is in some stage of abandonment, and quite likely nearly all deforested land becomes abandoned after approximately 5 years. (4) Previous estimates of the total area deforested in the Amazon, as well as deforestation rates, have been too high by as much as 4-fold. A complete assessment of the entire Legal Amazon using over 200 Landsat images measures 251 [times] 10[sup 3] km[sup 2] deforestation as of 1988, or approximately 6% of the closed forests of the region. The average annual rate of deforestation between 1978 and 1988 was 18 [times] 10[sup 3] km[sup 2] yr[sup [minus]1]. These findings suggest the estimates of carbon emissions from the Amazon for the late 1980s have been too high, since the area of regrowth is large and rates of deforestation are lower than previously believed.« less

  16. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, S. T.; Artaxo, P.; Machado, L.

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across two years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied USA, employed an unparalleled suite of measurements at nine ground sites and onboard two aircraft to investigate the flow of background air into Manaus, the emissions into the air over themore » city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less

  17. Mechanisms for the formation and growth of nanometer-sized particles in the Amazon: New insights from GoAmazon2014 and the Tapajos Upwind Forest Flux Study (TUFFS).

    NASA Astrophysics Data System (ADS)

    Smith, J. N.; Park, J. H.; Kuang, C.; Bustillos, J. O. V.; Souza, R. A. F. D.; Wiedemann, K. T.; Munger, J. W.; Wofsy, S. C.; Rizzo, L. V.; Artaxo, P.; Martin, S. T.; Seco, R.; Kim, S.; Guenther, A. B.; Batalha, S. S. A.; Alves, E. G.; Tota, J.

    2014-12-01

    The Amazon rainforest is a unique and important place for studying aerosol formation and its impacts on atmospheric chemistry and climate. In remote areas, the atmosphere is characterized by low particle number concentrations and high humidity; perturbations in the particle number concentrations and climate-relevant physical and chemical properties could therefore have a great impact on cloud formation and thus on regional climate and precipitation. While it was previously believed that new particle formation occurs rarely in the Amazon, observations in the Amazon of a sustained steady-state particle number concentration, along with an abundance of dry and wet surfaces upon which particles may deposit, imply that sources of new particles must exist in this region. We present observations from two studies, GOAmazon2014 and Tapajos Upwind Forest Flux Study (TUFFS), which seek to identify and quantify the sources of aerosol particles in the Amazon. Measurements of the chemical composition of 20 - 100 nm diameter aerosol particles at the T3 measurement site during the wet and dry season campaigns of GOAmazon2014 show the presence of inorganic ions such as potassium ion and sulfate, as well as organic ion such as oxalate, in ambient nanoparticles. These observations, combined with 1.5 - 300 nm diameter particle number size distributions and trace gas measurements of organic compounds and sulfuric acid, are used to determine the relative importance of sulfuric acid, organic compounds, and primary biological particle emissions to nanoparticle formation and growth. Observations of 3 - 100 nm diameter particle number size distributions at the KM67 tower site during TUFFS show frequent new particle formation events during the wet season in April, transitioning to a scenario of less frequent events in July at the onset of the dry season. These observations highlight the regional nature of new particle formation in the Amazon, and suggest that additional observations at a

  18. Biomass Change of the Landless Peasants' Settlements in Lower Amazon

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Ishimaru, K.

    2014-12-01

    Land use/land cover (LU/LC) changes have been reported to occur over large areas in Legal Amazon due to the introduction of large-scale mechanized agriculture, extensive cattle ranching and uncontrolled slash-and-burn cultivation since the 1980s. Around the same time, movements which poor peoples or landless peasants settle into abandoned land have been very active in Brazil. In many cases, these people lack agricultural experiences to yield sufficient production for livelihoods. Thus, it leads to abandon the land and repeat forest clearance. In recent year, education by NGOs to these people encourage spreading of agroforestry which is a land use management system in which trees are grown around or among crops or pasture land. In this study, we specifically aimed at clarifying changes in LULC and these biomass using ground observation data, remotely-sensed LANDSAT data and GIS techniques. We focus on four different settlements: old-established settlement (around 30 years), established settlement (around 20 years), productive settlement (7 year) and unproductive settlement (7 years). These four settelements were located at Santa Barbará province, about 40 km northeast from the center of Belém, the Pará state capital, in the northern part of Brazil. We clarify that the biomass change varied according to whether the settlement are productive or not.

  19. Evidence for ecological divergence across a mosaic of soil types in an Amazonian tropical tree: Protium subserratum (Burseraceae).

    PubMed

    Misiewicz, Tracy M; Fine, Paul V A

    2014-05-01

    Soil heterogeneity is an important driver of divergent natural selection in plants. Neotropical forests have the highest tree diversity on earth, and frequently, soil specialist congeners are distributed parapatrically. While the role of edaphic heterogeneity in the origin and maintenance of tropical tree diversity is unknown, it has been posited that natural selection across the patchwork of soils in the Amazon rainforest is important in driving and maintaining tree diversity. We examined genetic and morphological differentiation among populations of the tropical tree Protium subserratum growing parapatrically on the mosaic of white-sand, brown-sand and clay soils found throughout western Amazonia. Nuclear microsatellites and leaf morphology were used to (i) quantify the extent of phenotypic and genetic divergence across habitat types, (ii) assess the importance of natural selection vs. drift in population divergence, (iii) determine the extent of hybridization and introgression across habitat types, (iv) estimate migration rates among populations. We found significant morphological variation correlated with soil type. Higher levels of genetic differentiation and lower migration rates were observed between adjacent populations found on different soil types than between geographically distant populations on the same soil type. PST -FST comparisons indicate a role for natural selection in population divergence among soil types. A small number of hybrids were detected suggesting that gene flow among soil specialist populations may occur at low frequencies. Our results suggest that edaphic specialization has occurred multiple times in P. subserratum and that divergent natural selection across edaphic boundaries may be a general mechanism promoting and maintaining Amazonian tree diversity. © 2014 John Wiley & Sons Ltd.

  20. Occupation and urbanization of Roraima State, Brazil.

    PubMed

    Diniz, A

    1997-01-01

    The author examines settlement patterns and urbanization of the remote area of Roraima State, Brazil. "A survey conducted in the capital city, Boa Vista, provides information on migration histories and migrants' characteristics.... Current views of urbanization of the Amazon [region] are focused on the displacement factor that development and state geopolitics have upon rural settlements...." The author also suggests that more attention needs to be paid to the characteristics of migrants in the urban areas. (EXCERPT)

  1. Act No. 24994 of 19 January 1989. Basic Law on the Rural Development of the Peruvian Amazon Region.

    PubMed

    1989-01-01

    This Act sets forth the government's policy on rural development of the Peruvian Amazon region. Major objectives of the Act include the promotion of new rural settlements in the Amazon region, the promotion of migration from the Andes to the Amazon region, and the stimulation of agriculture, livestock, and forestry activities in the Amazon region. The following are the means that the government will use, among others, to attain these goals: 1) the development of Population Displacement Programmes, which will give individual persons and families economic and logistic support in moving; 2) the establishment of Civic Colonizing Services, temporary mobile units, which will offer settlers health services, education services, technical assistance with respect to agriculture and livestock, and promotional credits; 3) the creation of the Council for Amazon River Transport to coordinate and recommend activities to improve river transport; 4) the granting to settlers of land, free education for their children, medical care, technical training and assistance with respect to agriculture, and a supply of seeds; 5) the exemption of certain investors from payment of income taxes; and 6) the granting of a wide range of incentives for agricultural production. The Act also creates a Council for Planning and Development in the Amazon Region to draw up and approve a Plan for the Development of the Amazon Region. It calls for the rational use of the natural resources of the Amazon Region in the framework of preserving the ecosystem and preventing its ruin and delegates to the regional governments the authority to enter into contracts on the use of forest materials and to undertake reforestation programs. Finally, the Act provides various guarantees for the native population, including guarantees with respect to land and preservation of ethnic and social identity.

  2. Polycystic echinococcosis in Pacas, Amazon region, Peru.

    PubMed

    Mayor, Pedro; Baquedano, Laura E; Sanchez, Elisabeth; Aramburu, Javier; Gomez-Puerta, Luis A; Mamani, Victor J; Gavidia, Cesar M

    2015-03-01

    In the Peruvian Amazon, paca meat is consumed by humans. To determine human risk for polycystic echinococcosis, we examined wild pacas from 2 villages; 15 (11.7%) of 128 were infected with Echinococcus vogeli tapeworms. High E. vogeli prevalence among pacas indicates potential risk for humans living in E. vogeli-contaminated areas.

  3. Potential contribution of groundwater to dry-season ET in the Amazon

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, Gonzalo; Fan, Ying

    2010-05-01

    Climate and land ecosystem models simulate vegetation stress in the Amazon forest in the dry season, but observations show enhanced growth in response to higher radiation under less cloudy skies indicating an adequate water supply. The question is: how does the vegetation obtain sufficient water, and what is missing in the models? Shallow model soil and rooting depth is a factor; the ability of roots to move water up and down (hydraulic redistribution) may be another, but another cause may lie in the buffering effect of the groundwater found in nature but absent in models. We present observational and modeling evidence that the vast groundwater store, consequence of high annual rainfall combined with poor drainage in the Amazon, may provide a stable source for dry-season photosynthesis. The water table beneath the Amazon is sufficiently shallow (38% area <5m and 63% area <10m deep) as to contribute >2mm/day to dry-season evapotranspiration, a non-negligible portion of tower-observed flux of 3-4mm/day, the latter including canopy-interception loss and open-water evaporation. This may have important implications to our understanding of Amazonia ecosystem response and feedback to climate change. Current models, lacking groundwater, predict a significant reduction in dry-season photosynthesis under current climate and large-scale dieback under projected future climate converting the Amazon from a net carbon sink to a net source and accelerating warming. If groundwater is considered in the models, the magnitude of the responses and feedbacks may be reduced.

  4. Insight on the Peruvian Amazon River: A Planform Metric Characterization of its Morphodynamics

    NASA Astrophysics Data System (ADS)

    Garcia, A. M. P.; Ortals, C.; Frias, C. E.; Abad, J. D.; Vizcarra, J.

    2014-12-01

    Starting in Peru, the Amazon River flows through Colombia and Brazil; additionally, tributaries from Bolivia, Venezuela, and Ecuador contribute to the massive river and its unique geomorphic features. Accordingly, the Amazon Basin has become an important aspect of South America; it is an area of extraordinary biodiversity, rich resources, and unique cultures. However, due to the sheer magnitude and exceptionality of the Amazon River, research regarding the morphodynamic processes that shape and define the river has been difficult. Consequently, current research has not completely understood the planform dynamics of some portions of this river that present a main channel and secondary channels known as "anabranching structures". The purpose of this research was to gain an understanding of the geomorphology of the upper Amazon, the Peruvian section, by obtaining migration rates and planform metrics, including channel count, length, width, and sinuosity, as well as island count, area, and shape. With this data, the morphodynamics of the Peruvian Amazon, especially the relationship between the main channel and its secondary channels in each "anabranching structure" along the river, could be analyzed according to correlations found between various metrics. This analysis was carried out for 5-year time spans over a period of 25 years. Preliminary results showed that the average migration rate versus channel bend radius envelope peak is lower for the secondary channels than for the main channel. However, the maximum migration rate was not always found in the main channel; for several structures, the most dynamic channels were the secondary ones. This implies a certain periodicity to the river's migratory patterns that could be related to the valley boundaries, the local channel sinuosity or geological formations in the study area.

  5. The influence of industrial and agricultural waste on water quality in the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil).

    PubMed

    da Rocha, Monyque Palagano; Dourado, Priscila Leocadia Rosa; de Souza Rodrigues, Mayara; Raposo, Jorge Luiz; Grisolia, Alexeia Barufatti; de Oliveira, Kelly Mari Pires

    2015-07-01

    Water quality monitoring is used to determine the impact of human activities on the environment. We evaluated water quality in the Água Boa stream, located within the municipality of Dourados, State of Mato Grosso do Sul, Brazil, by analyzing physico-chemical, chemical, and microbiological parameters, as well as chlorophyll concentrations. Five sets of water samples were collected between December 2012 and November 2013 from three locations within the stream. The results showed the presence of Escherichia coli and antibiotic-resistant Pseudomonas spp. strains and high concentrations of organic matter (total dissolved solids), inorganic species (Mg, Ca, and Fe), and agrochemical residues (thiamethoxam). The main stream water contaminants are derived from urban, industrial, and agricultural activities within the watershed. Given the presence of contaminants, it is important that such findings are disseminated in order to highlight the risks that contact with this water may pose to human health. To preserve the environment and improve site conditions, people would need to participate by demanding that normative national and international standards be respected and that the situation be supervised by the competent governmental agencies; this would make it possible to reverse or minimize contamination problems within the Água Boa stream.

  6. Amazon Rain Forest Classification Using J-ERS-1 SAR Data

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Kramer, C.; Alves, M.; Chapman, B.

    1994-01-01

    The Amazon rain forest is a region of the earth that is undergoing rapid change. Man-made disturbance, such as clear cutting for agriculture or mining, is altering the rain forest ecosystem. For many parts of the rain forest, seasonal changes from the wet to the dry season are also significant. Changes in the seasonal cycle of flooding and draining can cause significant alterations in the forest ecosystem.Because much of the Amazon basin is regularly covered by thick clouds, optical and infrared coverage from the LANDSAT and SPOT satellites is sporadic. Imaging radar offers a much better potential for regular monitoring of changes in this region. In particular, the J-ERS-1 satellite carries an L-band HH SAR system, which via an on-board tape recorder, can collect data from almost anywhere on the globe at any time of year.In this paper, we show how J-ERS-1 radar images can be used to accurately classify different forest types (i.e., forest, hill forest, flooded forest), disturbed areas such as clear cuts and urban areas, and river courses in the Amazon basin. J-ERS-1 data has also shown significant differences between the dry and wet season, indicating a strong potential for monitoring seasonal change. The algorithm used to classify J-ERS-1 data is a standard maximum-likelihood classifier, using the radar image local mean and standard deviation of texture as input. Rivers and clear cuts are detected using edge detection and region-growing algorithms. Since this classifier is intended to operate successfully on data taken over the entire Amazon, several options are available to enable the user to modify the algorithm to suit a particular image.

  7. Ongoing River Capture in the Amazon via Secondary Channel Flow

    NASA Astrophysics Data System (ADS)

    Goldberg, S. L.; Stokes, M.; Perron, J. T.

    2017-12-01

    The Rio Casiquiare in South America is a secondary channel that originates as a distributary of the Rio Orinoco and flows into the Rio Negro as a tributary to form a perennial connection between the Amazon and Orinoco basins, the largest and fourth-largest rivers on Earth by discharge. This unusual configuration is the result of an incomplete and ongoing river capture in which the Rio Negro is actively capturing the upper Rio Orinoco. This rarely observed intermediate stage of capture illuminates important mechanisms that drive river capture in lowland settings, both in the Amazon basin and elsewhere. In particular, we show that the capture of the Rio Orinoco by the Rio Casiquiare is driven by a combination of headward incision of a rapidly eroding tributary of the Rio Negro, sedimentation in the Rio Orinoco downstream of the bifurcation, and seasonal inundation of a low-relief divide. The initiation of the bifurcation by headward erosion caused an increase in discharge to the Rio Casiquiare while the corresponding loss of discharge to the downstream Rio Orinoco has led to observable sedimentation within the main channel. Unlike most ephemeral secondary channels, the Rio Casiquiare appears to be growing, suggesting that the present bifurcation is an unstable feature that will eventually lead to the complete capture of the upper Rio Orinoco by the Rio Casiquiare. This capture is the latest major event in the late Cenozoic drainage evolution of South America in response to Andean tectonism, and is an example of the lateral expansion of the Amazon basin through river capture following integration and entrenchment of the transcontinental Amazon River. The Rio Casiquiare provides a snapshot of an intermediate, transient state of bifurcation and inter-basin flow via a secondary channel during lowland river capture.

  8. Principal Connection / Amazon and the Whole Teacher

    ERIC Educational Resources Information Center

    Hoerr, Thomas R.

    2015-01-01

    A recent controversy over Amazon's culture has strong implications for the whole child approach, and it offers powerful lessons for principals. A significant difference between the culture of so many businesses today and the culture at good schools is that in good schools, the welfare of the employees is very important. Student success is the…

  9. Polycystic Echinococcosis in Pacas, Amazon Region, Peru

    PubMed Central

    Mayor, Pedro; Baquedano, Laura E.; Sanchez, Elisabeth; Aramburu, Javier; Gomez-Puerta, Luis A.; Mamani, Victor J.

    2015-01-01

    In the Peruvian Amazon, paca meat is consumed by humans. To determine human risk for polycystic echinococcosis, we examined wild pacas from 2 villages; 15 (11.7%) of 128 were infected with Echinococcus vogeli tapeworms. High E. vogeli prevalence among pacas indicates potential risk for humans living in E. vogeli–contaminated areas. PMID:25695937

  10. A Slippery Slope: Children's Perceptions of Their Role in Environmental Preservation in the Peruvian Amazon

    ERIC Educational Resources Information Center

    Galeano, Rebecca

    2013-01-01

    Despite international attention and attempts to preserve the environmental diversity of the Amazon, it is an accepted fact that those who inhabit the forest must be the ones who preserve it. This article presents an analysis of how children in small rural riverine communities along the Amazon understand the importance of environmental preservation…

  11. New species of Microcentrum Scudder, 1862 (Orthoptera: Tettigonioidea: Phaneropteridae) from Amazon rainforest.

    PubMed

    Da Silva Sovano, Rafael S; Cadena-Castañeda, Oscar J

    2015-03-26

    A regional study is performed for the Amazonian species of the genus Microcentrum Scudder, 1862, its proposed Microcentrum punctifrons Brunner von Wattenwyl, 1891 as nomen dubium n. stat. and two new species are described: Microcentrum amacayacu Cadena-Casteñada, Sovano n. sp. and Microcentrum xavieri Sovano, Cadena-Casteñada n. sp. the Colombian and Brazilian Amazon, respectively. A list and a key to the Amazonian species are also provided, along with a discussion on their distribution, according to endemism areas established to Amazon rainforest.

  12. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm.

    PubMed

    Nobre, Carlos A; Sampaio, Gilvan; Borma, Laura S; Castilla-Rubio, Juan Carlos; Silva, José S; Cardoso, Manoel

    2016-09-27

    For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two "tipping points," namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale "savannization" of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation-80% reduction in the Brazilian Amazon in the last decade-opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm-away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity-in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress.

  13. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm

    PubMed Central

    Nobre, Carlos A.; Sampaio, Gilvan; Borma, Laura S.; Castilla-Rubio, Juan Carlos; Silva, José S.; Cardoso, Manoel

    2016-01-01

    For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two “tipping points,” namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale “savannization” of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation—80% reduction in the Brazilian Amazon in the last decade—opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm—away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity—in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress. PMID:27638214

  14. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm

    NASA Astrophysics Data System (ADS)

    Nobre, Carlos A.; Sampaio, Gilvan; Borma, Laura S.; Castilla-Rubio, Juan Carlos; Silva, José S.; Cardoso, Manoel

    2016-09-01

    For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two “tipping points,” namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale “savannization” of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation—80% reduction in the Brazilian Amazon in the last decade—opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm—away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity—in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress.

  15. Population genetic structure and vocal dialects in an amazon parrot.

    PubMed Central

    Wright, T F; Wilkinson, G S

    2001-01-01

    The relationship between cultural and genetic evolution was examined in the yellow-naped amazon Amazona auropalliata. This species has previously been shown to have regional dialects defined by large shifts in the acoustic structure of its learned contact call. Mitochondrial DNA sequence variation from a 680 base pair segment of the first domain of the control region was assayed in 41 samples collected from two neighbouring dialects in Costa Rica. The relationship of genetic variation to vocal variation was examined using haplotype analysis, genetic distance analysis, a maximum-likelihood estimator of migration rates and phylogenetic reconstructions. All analyses indicated a high degree of gene flow and, thus, individual dispersal across dialect boundaries. Calls sampled from sound libraries suggested that temporally stable contact call dialects occur throughout the range of the yellow-naped amazon, while the presence of similar dialects in the sister species Amazona ochrocephala suggests that the propensity to form dialects is ancestral in this clade. These results indicate that genes and culture are not closely associated in the yellow-naped amazon. Rather, they suggest that regional diversity in vocalizations is maintained by selective pressures that promote social learning and allow individual repertoires to conform to local call types. PMID:11297178

  16. Atmospheric mercury concentrations in the basin of the amazon, Brazil.

    PubMed

    Hachiya, N; Takizawa, Y; Hisamatsu, S; Abe, T; Abe, Y; Motohashi, Y

    1998-01-01

    A wide regional mercury pollution in Amazon, Brazil is closely associated with goldmining that has been carried out in the basin of tributaries of the Amazon since the eighteenth century. Possible involvement has been discussed on atmospheric circulation in distributing the volatile pollutant. We developed a portable air sampler for the collection of mercury compounds and determined atmospheric mercury concentrations at several sites in Brazil including the basin of the Amazon tributaries. The mean concentration of total mercury was between 9.1 and 14.0 ng/m(3) in the basin of the Uatumã River located in the tropical rain forest far from goldmining sites and from urbanized area. These mercury levels exceeded the background level previously reported in rural area and, furthermore, were higher than concentrations observed in Rio de Janeiro and in Manaus that were compatible with the reference values for urban area. Mercury concentrations were also determined in gold refineries in the basin of the Tapajos River, and detected at a significant but not a health deteriorating level. Although only preliminary data were available, the present observations were in favor of the hypothesis that mercury is distributed widely by long distant transport by the atmospheric circulation after released at gold mining sites.

  17. Land Use Dynamics in the Brazilian Amazon

    Treesearch

    Robert Walker

    1996-01-01

    The articles presented in this special issue of Ecological Economics address the important theme of land use dynamics as it pertains to the Brazilian Amazon. Much environmental change is an ecological artifact of human agency, and such agency is often manifested in land use impacts, particularly in tropical areas. The critical problem of tropical deforestation is but...

  18. What Makes a Tree a Tree?

    ERIC Educational Resources Information Center

    NatureScope, 1986

    1986-01-01

    Provides: (1) background information on trees, focusing on the parts of trees and how they differ from other plants; (2) eight activities; and (3) ready-to-copy pages dealing with tree identification and tree rings. Activities include objective(s), recommended age level(s), subject area(s), list of materials needed, and procedures. (JN)

  19. Effectiveness of a school-based intervention on physical activity for high school students in Brazil: the Saude na Boa project.

    PubMed

    de Barros, Mauro Virgílio Gomes; Nahas, Markus Vinicius; Hallal, Pedro Curi; de Farias Júnior, José Cazuza; Florindo, Alex Antônio; Honda de Barros, Simone Storino

    2009-03-01

    We evaluated the effectiveness of a school-based intervention on the promotion of physical activity among high school students in Brazil: the Saude na Boa project. A school-based, randomized trial was carried out in 2 Brazilian cities: Recife (northeast) and Florianopolis (south). Ten schools in each city were matched by size and location, and randomized into intervention or control groups. The intervention included environmental/organizational changes, physical activity education, and personnel training and engagement. Students age 15 to 24 years were evaluated at baseline and 9 months later (end of school year). Although similar at baseline, after the intervention, the control group reported significantly fewer d/wk accumulating 60 minutes+ moderate-to-vigorous physical activity (MVPA) in comparison with the intervention group (2.6 versus 3.3, P<.001). The prevalence of inactivity (0 days per week) rose in the control and decreased in the intervention group. The odds ratio for engaging at least once per week in physical activity associated with the intervention was 1.83 (95% CI=1.24-2.71) in the unadjusted analysis and 1.88 (95% CI=1.27-2.79) after controlling for gender. The Saude na Boa intervention was effective at reducing the prevalence of physical inactivity. The possibility of expanding the intervention to other locations should be considered.

  20. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon).

    PubMed

    Alves, Daniel Borini; Pérez-Cabello, Fernando

    2017-12-01

    Fire activity plays an important role in the past, present and future of Earth system behavior. Monitoring and assessing spatial and temporal fire dynamics have a fundamental relevance in the understanding of ecological processes and the human impacts on different landscapes and multiple spatial scales. This work analyzes the spatio-temporal distribution of burned areas in one of the biggest savanna vegetation enclaves in the southern Brazilian Amazon, from 2000 to 2016, deriving information from multiple remote sensing data sources (Landsat and MODIS surface reflectance, TRMM pluviometry and Vegetation Continuous Field tree cover layers). A fire scars database with 30 m spatial resolution was generated using a Landsat time series. MODIS daily surface reflectance was used for accurate dating of the fire scars. TRMM pluviometry data were analyzed to dynamically establish time limits of the yearly dry season and burning periods. Burned area extent, frequency and recurrence were quantified comparing the results annually/seasonally. Additionally, Vegetation Continuous Field tree cover layers were used to analyze fire incidence over different types of tree cover domains. In the last seventeen years, 1.03millionha were burned within the study area, distributed across 1432 fire occurrences, highlighting 2005, 2010 and 2014 as the most affected years. Middle dry season fires represent 86.21% of the total burned areas and 32.05% of fire occurrences, affecting larger amount of higher density tree surfaces than other burning periods. The results provide new insights into the analysis of burned areas of the neotropical savannas, spatially and statistically reinforcing important aspects linked to the seasonality patterns of fire incidence in this landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Deforestation in the Brazilian Amazon: A Classroom Project.

    ERIC Educational Resources Information Center

    Nijman, Jan; Hill, A. David

    1991-01-01

    Presents a classroom project dealing with tropical deforestation in the Brazilian Amazon. Addresses environmental consequences and economic, social, and political causes. Involves both lectures and individual research and reports by student groups on deforestation causes. Includes a note-playing activity in which students make recommendations for…

  2. Precipitation variability inferred from the annual growth and isotopic composition of tropical trees

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Baker, P. A.; Chambers, J. Q.; Villalba, R.

    2005-12-01

    Here we demonstrate that annual growth and isotopic ratios in tropical trees are responsive to seasonal and annual precipitation variability. We identify several regions of tropical South America characterized by significant relationships between oxygen isotopic ratios (δ 18O) in precipitation and precipitation amount (r = -0.82). Many of these regions are also sensitive to inter-annual variability in the South American Monsoon modulated by the El Niño Southern Oscillation (ENSO). The effectiveness of δ 18O and annual growth of tropical trees as a precipitation proxy is validated by high-resolution sampling of a Tachigali vermelho tree growing near Manaus, Brazil (3.1° S, 60.0° S). Growth in Tachigali spp. was highly correlated with both precipitation and cellulose δ 18O (r = 0.60) and precipitation amount was significantly correlated with δ 18O at a lag of approximately one month (r = 0.56). We also report a multi-proxy record spanning 180 years from Cedrela odorata growing in the Peruvian Amazon near Puerto Maldonado (12.6° S, 69.2° W) revealing a significant relationship between cellulose and monsoon precipitation over the region (r = -0.33). A 150-year record obtained from Polylepis tarapacana growing at Volcan Granada in Northern Argentina (22.0° S, 66.0° W) is also reported with a significant relationship between local monsoon precipitation and a regionally derived ring width index (r = 0.38). Although no significant relationship was revealed between cellulose δ 18O and precipitation in this taxa at this location, separate radii within the same tree revealed a significantly coherent δ 18O signal (r = 0.38). We compared our proxy chronologies with monsoon precipitation reanalysis data for tropical South America, which revealed key features of the South American Monsoon and their sensitivity to ENSO variability.

  3. TreeCmp: Comparison of Trees in Polynomial Time

    PubMed Central

    Bogdanowicz, Damian; Giaro, Krzysztof; Wróbel, Borys

    2012-01-01

    When a phylogenetic reconstruction does not result in one tree but in several, tree metrics permit finding out how far the reconstructed trees are from one another. They also permit to assess the accuracy of a reconstruction if a true tree is known. TreeCmp implements eight metrics that can be calculated in polynomial time for arbitrary (not only bifurcating) trees: four for unrooted (Matching Split metric, which we have recently proposed, Robinson-Foulds, Path Difference, Quartet) and four for rooted trees (Matching Cluster, Robinson-Foulds cluster, Nodal Splitted and Triple). TreeCmp is the first implementation of Matching Split/Cluster metrics and the first efficient and convenient implementation of Nodal Splitted. It allows to compare relatively large trees. We provide an example of the application of TreeCmp to compare the accuracy of ten approaches to phylogenetic reconstruction with trees up to 5000 external nodes, using a measure of accuracy based on normalized similarity between trees.

  4. Applying NASA Imaging Radar Datasets to Investigate the Geomorphology of the Amazon's Planalto

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Campbell, K.; Islam, R.; Alexander, P. M.; Cracraft, J.

    2016-12-01

    The Amazon basin is a biodiversity rich biome and plays a significant role into shaping Earth's climate, ocean and atmospheric gases. Understanding the history of the formation of this basin is essential to our understanding of the region's biodiversity and its response to climate change. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We utilize UAVSAR imagery acquired during that time over the Planalto, in the Madre de Dios region of southeastern Peru in an assessment of the underlying geomorphology, its relationship to the current distribution of vegetation, and its relationship to geologic processes through deep time. We employ UAVSAR data collections to assess the utility of these high quality imaging radar data for use in identifying geomorphologic features and vegetation communities within the context of improving the understanding of evolutionary processes, and their utility in aiding interpretation of datasets from Earth-orbiting satellites to support a basin-wide characterization across the Amazon. We derive maps of landcover and river branching structure from UAVSAR imagery. We compare these maps to those derived using imaging radar datasets from the Japanese Space Agency's ALOS PALSAR and Digital Elevation Models (DEMs) from NASA's Shuttle Radar Topography Mission (SRTM). Results provide an understanding of the underlying geomorphology of the Amazon planalto as well as its relationship to geologic processes and will support interpretation of the evolutionary history of the Amazon Basin. Portions of this work have been carried out within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility.This work is carried out with support from the NASA Biodiversity Program and the NSF DIMENSIONS of Biodiversity Program.

  5. Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C.; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2014-01-01

    Background and Objectives In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. Methods We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Results Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. Conclusion In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats. PMID:25101786

  6. Patterns of geographic expansion of Aedes aegypti in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2014-08-01

    In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95 km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats.

  7. Precipitation recycling in the Amazon basin

    NASA Technical Reports Server (NTRS)

    Eltahir, E. A. B.; Bras, R. L.

    1994-01-01

    Precipitation recycling is the contribution of evaporation within a region to precipitation in that same region. The recycling rate is a diagnostic measure of the potential for interactions between land surface hydrology and regional climate. In this paper we present a model for describing the seasonal and spatial variability of the recycling process. The precipitation recycling ratio, rho, is the basic variable in describing the recycling process. Rho is the fraction of precipitation at a certain location and time which is contributed by evaporation within the region under study. The recycling model is applied in studyiing the hydrologic cycle in the Amazon basin. It is estimated that about 25% of all the rain that falls in the Amazon basin is contributed by evaporation within the basin. This estimate is based on analysis of a data set supplied by the European Centre for Medium-range Weather Forecasts (ECMWF). The same analysis is repeated using a different data set from the Geophysical Fluid Dynamics Laboratory (GFDL). Based on this data set, the recycling ratio is estimated to be 35%. The seasonal variability of the recycling ratio is small compared with the yearly average. The new estimates of the recycling ratio are compared with results of previous studies, and the differences are explained.

  8. A vicious circle of fire, deforestation and climate change: an integrative study for the Amazon region

    NASA Astrophysics Data System (ADS)

    Thonicke, K.; Rammig, A.; Gumpenberger, M.; Vohland, K.; Poulter, B.; Cramer, W.

    2009-04-01

    The Amazon rainforest is threatened by deforestation due to wood extraction and agricultural production leading to increasing forest fragmentation and forest degradation. These changes in land surface characteristics and water fluxes are expected to further reduce convective precipitation. Under future climate change the stability of the Amazon rainforest is likely to decrease thus leading to forest dieback (savannization) or forest degradation (secondarization). This puts the Amazon rainforest at risk to reduce the generation of precipitation, to act as a carbon sink and biodiversity hotspot. Fires increased in the past during drought years and in open vegetation thereby further accelerating forest degradation. Deforestation as a result of socioeconomic development in the Amazon basin is projected to further increase in the 21st century and brings climate-induced changes forward. Combined effects of deforestation vs. climate change on the stability of the Amazon rainforest and the role of fire in this system need to be quantified in an integrated study. We present simulation results from future climate (AR4) and deforestation (SimAmazon) experiments using the LPJmL-SPITFIRE vegetation model. Land use change is the main driving factor of forest degradation before 2050, whereas extreme climate change scenarios lead to forest degradation by the end of 2100. Forest fires increase with increasing drought conditions during the 21st century. The resulting effects on vegetation secondarization and savannization and their feedbacks on fire spread and emissions will be presented. The effect of wildfires and intentional burning on forest degradation under future climate and socioeconomic change will be discussed, and recommendations for an integrated land use and fire management are given.

  9. Deforestation fires versus understory fires in the Amazon Basin: What can we learn from satellite-based CO measurements?

    NASA Astrophysics Data System (ADS)

    Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Gille, J. C.; Clerbaux, C.; George, M.

    2014-12-01

    Deforestation fires in the Amazon Basin abound during the dry season (July to October) and are mostly associated with "slash and burn" agricultural practices. Understory fires occur when fires escape from deforested areas into neighboring standing forests; they spread slowly below the canopy, affecting areas that may be comparable or even larger than clear-cut areas. The interannual variabilities of understory fires and deforestation rates appear to be uncorrelated. Areas burned in understory fires are particularly extensive during droughts. Because they progress below a canopy of living trees, understory fires and their effects are not as easily identifiable from space as deforestation fires. Here we analyze satellite remote sensing products for CO and fire to investigate differences between deforestation fires and understory fires in the Amazon Basin under varying climatic conditions. The MOPITT (Measurements Of Pollution In The Troposphere) instrument on board NASA's Terra satellite has been measuring tropospheric CO since 2000, providing the longest global CO record to date. IASI (the Infrared Atmospheric Sounding Interferometer) A and B are two instruments on board METOP-A and -B, respectively, measuring, among others, CO since 2006 and 2012. MODIS (the Moderate Resolution Imaging Spectroradiometer) instruments on board NASA's Terra and Aqua satellites provide, among other products, a daily record of fires and their effects since 2000 and 2002, respectively. The temporal extent of all these datasets allows for the detailed analysis of drought versus non-drought years. Initial results indicate that MOPITT CO emissions during the dry season peaked in 2005, 2007, and 2010. Those were draught years and coincide with peaks in area affected by understory fires.

  10. An extensive reef system at the Amazon River mouth

    PubMed Central

    Moura, Rodrigo L.; Amado-Filho, Gilberto M.; Moraes, Fernando C.; Brasileiro, Poliana S.; Salomon, Paulo S.; Mahiques, Michel M.; Bastos, Alex C.; Almeida, Marcelo G.; Silva, Jomar M.; Araujo, Beatriz F.; Brito, Frederico P.; Rangel, Thiago P.; Oliveira, Braulio C. V.; Bahia, Ricardo G.; Paranhos, Rodolfo P.; Dias, Rodolfo J. S.; Siegle, Eduardo; Figueiredo, Alberto G.; Pereira, Renato C.; Leal, Camille V.; Hajdu, Eduardo; Asp, Nils E.; Gregoracci, Gustavo B.; Neumann-Leitão, Sigrid; Yager, Patricia L.; Francini-Filho, Ronaldo B.; Fróes, Adriana; Campeão, Mariana; Silva, Bruno S.; Moreira, Ana P. B.; Oliveira, Louisi; Soares, Ana C.; Araujo, Lais; Oliveira, Nara L.; Teixeira, João B.; Valle, Rogerio A. B.; Thompson, Cristiane C.; Rezende, Carlos E.; Thompson, Fabiano L.

    2016-01-01

    Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 106–km2 plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume’s eastward retroflection, conditions the existence of this extensive (~9500 km2) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth–ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes. PMID:27152336

  11. An extensive reef system at the Amazon River mouth.

    PubMed

    Moura, Rodrigo L; Amado-Filho, Gilberto M; Moraes, Fernando C; Brasileiro, Poliana S; Salomon, Paulo S; Mahiques, Michel M; Bastos, Alex C; Almeida, Marcelo G; Silva, Jomar M; Araujo, Beatriz F; Brito, Frederico P; Rangel, Thiago P; Oliveira, Braulio C V; Bahia, Ricardo G; Paranhos, Rodolfo P; Dias, Rodolfo J S; Siegle, Eduardo; Figueiredo, Alberto G; Pereira, Renato C; Leal, Camille V; Hajdu, Eduardo; Asp, Nils E; Gregoracci, Gustavo B; Neumann-Leitão, Sigrid; Yager, Patricia L; Francini-Filho, Ronaldo B; Fróes, Adriana; Campeão, Mariana; Silva, Bruno S; Moreira, Ana P B; Oliveira, Louisi; Soares, Ana C; Araujo, Lais; Oliveira, Nara L; Teixeira, João B; Valle, Rogerio A B; Thompson, Cristiane C; Rezende, Carlos E; Thompson, Fabiano L

    2016-04-01

    Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 10(6)-km(2) plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume's eastward retroflection, conditions the existence of this extensive (~9500 km(2)) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth-ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes.

  12. The Pulse of the Amazon

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Moura, J. M. S.; Mitsuya, M.; Peucker-Ehrenbrink, B.; Holmes, R. M.; Galy, V.; Drake, T.

    2017-12-01

    Rivers integrate over a fixed and definable area (the watershed), with their discharge and chemistry at any given point a function of upstream processes. As a consequence, examination of riverine discharge and chemistry can provide powerful indictors of change within a watershed. To assess the validity of this approach long-term datasets are required from fluvial environments around the globe. The Amazon River delivers one-fifth of the total freshwater discharged to the ocean and so represents a fundamentally important site for examination of long-term major ion, trace element, nutrient, and organic matter (OM) export. Here we describe data from a multi-year, monthly sampling campaign of the Amazon River at Obidos (Para, Brazil). Clear seasonality in all analyte fluxes is apparent and is linked to hydrology, however dissolved OM composition appears dominated by allochthonous sources throughout the year as evidenced by optical parameters indicative of high molecular weight and high relative aromatic content. Annual loads of some analytes for 2011-2013 inclusive varied by up to 50%, highlighting significant variability in flux from year to year that was linked to inter-annual hydrologic shifts (i.e. higher fluxes in wetter years). Finally, encompassing both intra- and inter-annual variability, a robust correlation was observed between chromophoric dissolved OM (CDOM) absorbance and dissolved organic carbon (DOC) concentration highlighting the potential to improve DOC flux estimates at this globally significant site via CDOM measurements from in situ technologies or remote sensing techniques.

  13. A user experience evaluation of Amazon Kindle mobile application

    NASA Astrophysics Data System (ADS)

    Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Musa, Ja'afaru; Mortada, Salah

    2017-10-01

    There is a dramatic increase in the development of mobile applications in recent years. This makes the usability evaluation of these mobile applications an important aspect in the advancement and application of technology. In this paper, a laboratory-based usability evaluation was carried out on the Amazon Kindle app using 15 users who performed 5 tasks on the Kindle e-book mobile app. A post-test questionnaire was administered to elicit users' perception on the usability of the application. The results demonstrate that almost all the participants were satisfied with services provided by the Amazon Kindle e-book mobile app. On all the four user experience factors examined, namely, perceived ease-of-use, perceived visibility, perceived enjoyabilty, and perceived efficiency, the evaluation outcome shows that the participants had a good and rich mobile experience with the application.

  14. Origin, transport and deposition of leaf-wax biomarkers in the Amazon Basin and the adjacent Atlantic

    NASA Astrophysics Data System (ADS)

    Häggi, Christoph; Sawakuchi, André O.; Chiessi, Cristiano M.; Mulitza, Stefan; Mollenhauer, Gesine; Sawakuchi, Henrique O.; Baker, Paul A.; Zabel, Matthias; Schefuß, Enno

    2016-11-01

    Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers. Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the δD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The δ13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our δ13C results show depleted δ13C values (-33 to -36‰) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33‰) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane δD analyses show more depleted values for the western tributaries, the Madeira and Solimões Rivers (-152 to -168‰), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154‰), yield more enriched values. The n-alkane δD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane δD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield δD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long

  15. Management implications of long-term tree growth and mortality rates: A modeling study of big-leaf mahogany (Swietenia macrophylla) in the Brazilian Amazon

    Treesearch

    C.M. Free; R.M. Landis; J. Grogan; M.D. Schulze; M. Lentini; O. Dunisch; NO-VALUE

    2014-01-01

    Knowledge of tree age-size relationships is essential towards evaluating the sustainability of harvest regulations that include minimum diameter cutting limits and fixed-length cutting cycles. Although many tropical trees form annual growth rings and can be aged from discs or cores, destructive sampling is not always an option for valuable or threatened species. We...

  16. Rare models: Roger Casement, the Amazon, and the ethnographic picturesque.

    PubMed

    Wylie, Lesley

    2010-01-01

    In 1910 Roger Casement was sent by the British government to investigate the alleged humanitarian abuses of the Peruvian Amazon Company in the Putumayo, a disputed border zone in North West Amazonia. Casement brought more than verbal and written testimony back to London. On 26 June, some six months after he returned from the Amazon, Casement collected two Amerindian boys - Omarino and Ricudo - from Southampton docks. This paper will reconstruct the brief period that these young men spent in Britain in the summer of 1911 and assess, in particular, to what extent they were treated as 'exhibits' by Casement, who not only introduced them to leading members of the British establishment but also arranged for them to be painted and photographed following contemporary ethnographic conventions.

  17. A Simulation Model of Carbon Cycling and Methane Emissions in Amazon Wetlands

    NASA Technical Reports Server (NTRS)

    Potter, Christopher; Melack, John; Hess, Laura; Forsberg, Bruce; Novo, Evlyn Moraes; Klooster, Steven

    2004-01-01

    An integrative carbon study is investigating the hypothesis that measured fluxes of methane from wetlands in the Amazon region can be predicted accurately using a combination of process modeling of ecosystem carbon cycles and remote sensing of regional floodplain dynamics. A new simulation model has been build using the NASA- CASA concept for predicting methane production and emission fluxes in Amazon river and floodplain ecosystems. Numerous innovations area being made to model Amazon wetland ecosystems, including: (1) prediction of wetland net primary production (NPP) as the source for plant litter decomposition and accumulation of sediment organic matter in two major vegetation classes - flooded forests (varzea or igapo) and floating macrophytes, (2) representation of controls on carbon processing and methane evasion at the diffusive boundary layer, through the lake water column, and in wetland sediments as a function of changes in floodplain water level, (3) inclusion of surface emissions controls on wetland methane fluxes, including variations in daily surface temperature and of hydrostatic pressure linked to water level fluctuations. A model design overview and early simulation results are presented.

  18. Diel variation of larval fish abundance in the Amazon and Rio Negro.

    PubMed

    Araujo-Lima, C A; da Silva, V V; Petry, P; Oliveira, E C; Moura, S M

    2001-08-01

    Many streams and large rivers present higher ichthyoplankton densities at night. However, in some rivers this does not occur and larvae are equally abundant during the day. Larval drift diel variation is an important information for planning sampling programs for evaluating larval distribution and production. The aim of this study was to test whether the abundance of larval fish was different at either period. We tested it by comparing day and night densities of characiform, clupeiform and siluriform larvae during five years in the Amazon and one year in Rio Negro. We found that larvae of three species of characiform and larvae of siluriform were equally abundant during day and night in the Amazon. Conversely, the catch of Pellona spp. larvae was significantly higher during the day. In Rio Negro, however, larval abundance was higher during the night. These results imply that day samplings estimate adequately the abundance of these characiform and siluriform larvae in the Amazon, but not Pellona larvae. Evaluations of larved densities of Rio Negro will have to consider night sampling.

  19. Chemosensory age discrimination in the snake Boa constrictor (Serpentes: Boidae).

    PubMed

    Gabirot, Marianne; Picerno, Pablo; Valencia, Jorge; Lopez, Pilar; Martin, José

    2012-12-01

    Many snakes are able to use their chemosensory system to detect scent of conspecifics, which is important in many social contexts. Age discrimination based on chemical cues may be especially important to ensure access to sexually mature potential partners. In this study, we used 24 individual Boa constrictor snakes (12 adults mature and 12 non-mature individuals) that had been captured in different areas of Ecuador, and were maintained in captivity at the Vivarium of Quito. We used tongue-flick experiments to examine whether these snakes were able to discriminate between scents from mature and non-mature individuals. Results showed that B. constrictor snakes used chemical cues to recognize conspecifics and that the scent of individuals of different ages elicited chemosensory responses of different magnitudes. The scents from adult conspecifics elicited the quickest and highest chemosensory responses (i.e., short latency times and high tongue-flick rates), although we did not find differential responses to scent of males and females. The magnitude of the responses was lower to scent of sub adult individuals, and then even lower to scent of juvenile snakes, but in all cases the scent of snakes was discriminated from a blank control. We discuss the potential chemical mechanisms that may allow age recognition and its implications for social and sexual behavior of this snake species.

  20. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point.

    PubMed

    Nepstad, Daniel C; Stickler, Claudia M; Filho, Britaldo Soares-; Merry, Frank

    2008-05-27

    Some model experiments predict a large-scale substitution of Amazon forest by savannah-like vegetation by the end of the twenty-first century. Expanding global demands for biofuels and grains, positive feedbacks in the Amazon forest fire regime and drought may drive a faster process of forest degradation that could lead to a near-term forest dieback. Rising worldwide demands for biofuel and meat are creating powerful new incentives for agro-industrial expansion into Amazon forest regions. Forest fires, drought and logging increase susceptibility to further burning while deforestation and smoke can inhibit rainfall, exacerbating fire risk. If sea surface temperature anomalies (such as El Niño episodes) and associated Amazon droughts of the last decade continue into the future, approximately 55% of the forests of the Amazon will be cleared, logged, damaged by drought or burned over the next 20 years, emitting 15-26Pg of carbon to the atmosphere. Several important trends could prevent a near-term dieback. As fire-sensitive investments accumulate in the landscape, property holders use less fire and invest more in fire control. Commodity markets are demanding higher environmental performance from farmers and cattle ranchers. Protected areas have been established in the pathway of expanding agricultural frontiers. Finally, emerging carbon market incentives for reductions in deforestation could support these trends.

  1. Land use/cover classification in the Brazilian Amazon using satellite images.

    PubMed

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira

    2012-09-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

  2. Land use/cover classification in the Brazilian Amazon using satellite images

    PubMed Central

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant’Anna, Sidnei João Siqueira

    2013-01-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353

  3. Idealized Simulations of the Effects of Amazon Convection and Baroclinic Waves on the South Atlantic Convergence Zone

    NASA Technical Reports Server (NTRS)

    Ferreira, Rosana Nieto; Suarez, Max J.; Nigam, Sumant; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The South Atlantic Convergence Zone (SACZ) is a NW-SE oriented, stationary region of enhanced convergence and convection that extends southeastward from the ITCZ convection anchored over the Amazon region. On daily satellite images each SACZ episode is seen as a progression of one or several midlatitude cold fronts that intrude into the subtropics and tropics, becoming stationary over southeastern Brazil for a few days. Previous studies have shown that while Amazon convection plays a fundamental role in the formation of the SACZ, Atlantic sea surface temperatures and the Andes Mountains play a relatively minor role in the strength and location of the SACZ. The role of interactions between Amazon convection and midlatitude baroclinic waves in establishing the origin, position, and maintenance of the SACZ is studied here using idealized dry, multilayer global model simulations that do not include the effects of topography. The model simulations produce SACZ-like regions of low-level convergence in the presence of Amazon convection embedded in a mean-flow that contains propagating baroclinic waves. The results of these simulations indicate that Amazon convection plays two fundamental roles in the formation and location of the SACZ. First, it produces a NW-SE oriented region of low-level convergence to the SE of Amazon convection. Second, it produces a storm-track region and accompanying stronger midlatitude baroclinic waves in the region of the SACZ. It is suggested that in the presence of moist effects, the 'seedling' SACZ regions produced in these simulations can be enhanced to produce the observed SACZ.

  4. The Expansion of the Economic Frontier and the Diffusion of Violence in the Amazon

    PubMed Central

    Souza, Patrícia Feitosa; Xavier, Diego Ricardo; Rican, Stephane; de Matos, Vanderlei Pascoal; Barcellos, Christovam

    2015-01-01

    Over the last few decades, the occupation of the Amazon and the expansion of large-scale economic activities have exerted a significant negative impact on the Amazonian environment and on the health of the Amazon’s inhabitants. These processes have altered the context of the manifestation of health problems in time and space and changed the characteristics of the spatial diffusion of health problems in the region. This study analyzed the relationships between the various economic processes of territorial occupation in the Amazon and the spatial diffusion of homicidal violence through the configuration of networks of production, as well as the movements of population and merchandise. Statistical data on violence, deforestation, the production of agricultural items, and socio-economic variables, georeferenced and available for the 771 municipalities of the Legal Amazon were used in this study. The results suggest that the diffusion of violence closely follows the economic expansion front, which is related to deforestation and livestock production but has little relation to grain production, demonstrating steps and typologies of recent occupation in the Amazon that promote violence. These spatial patterns reveal environmental and socio-economic macro-determinants that materialize in geographic space through the construction of highways and the formation of city networks. PMID:26024359

  5. The Inference of Gene Trees with Species Trees

    PubMed Central

    Szöllősi, Gergely J.; Tannier, Eric; Daubin, Vincent; Boussau, Bastien

    2015-01-01

    This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree–species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree–species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution. PMID:25070970

  6. Mapping Upper Amazon Palm Swamps with Spaceborne L-band Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Pinto, N.; McDonald, K. C.; Podest, E.; Schroeder, R.; Zimmermann, R.; Horna, V.

    2010-12-01

    Palm swamp ecosystems are widespread in the Amazon basin, forming where seasonal flooding is moderate and surface inundation persists. Recent studies suggest that palm swamps have a disproportional role on tropical biogeochemistry: the combination of persistently saturated soils, warm temperatures, and low oxygen soils can support significant land-atmosphere methane flux. Potential impacts of climate change on these ecosystems include changes in temperature and precipitation regimes that influence primary productivity and flood extent significantly, potentially reversing net land-atmosphere carbon exchanges regionally. Data acquired from Earth-orbiting satellites provides the opportunity to characterize vegetation structure and monitor surface inundation independently of cloud cover. Building on efforts under our NASA MEaSUREs project for assembly of a global-scale Earth System Data Record (ESDR) of inundated wetlands, we develop and evaluate a systematic approach to map the distribution and composition of palm swamps in the upper Amazon using data sets from JAXA’s Advanced Land Observing Satellite (ALOS) Phased Array L-Band SAR (PALSAR). Our input dataset consists of HH backscatter images acquired in 2007 and 2009. Ground measurements for training were obtained from a study site near Loreto, Peru (4.43S 75.34W) containing the palm species Mauritia flexuosa. The ALOS PALSAR images are first averaged temporally and spatially. We then develop ancillary data layers of flood extent, distance from open water, and SAR image texture. The PALSAR data and derived ancillary layers are combined with MODIS Vegetation Indices and SRTM elevation and input in a classification framework. Since palm swamps are found in persistently flooded areas, we evaluate the potential of identifying and mapping these ecosystems using multi-temporal SAR-based flood extent maps. We conclude by comparing the performance between a decision-tree supervised vs. unsupervised approach and by

  7. The evolution of organic matter along the lower Amazon River continuum - Óbidos to the ocean

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Keil, R. G.; Medeiros, P. M.; Brito, D.; Cunha, A.; Sawakuchi, H. O.; Moura, J. S.; Yager, P. L.; Krusche, A. V.; Richey, J. E.

    2013-12-01

    The influence of the Amazon River on global hydrologic and biogeochemical cycling is well recognized. The Amazon River provides roughly 16% of the global freshwater supply to the ocean and is a significant source of CO2 to the atmosphere, outgassing 0.5 Pg C y-1 to the atmosphere--a flux roughly equivalent to the amount of carbon 'sequestered' by the Amazon rainforest (Field et al, 1998; Richey et al., 2002; Malhi et al., 2008). However, much of our understanding of the flux of matter from the Amazon River into the Atlantic Ocean (and atmosphere) is limited to measurements made at and upstream of Óbidos, 900 km upstream from the actual river mouth. Further, there are few to no observations documenting the transformation of organic matter in a parcel of water as it travels downstream of Óbidos into the ocean. Here we explore the hydrological and biogeochemical evolution of the lower Amazon River continuum, from Óbidos to the Atlantic Ocean. A suite of dissolved and particulate organic matter (OM) parameters were measured during a series of five river expeditions with stations at Óbidos, the Tapajós tributary, the mouth of the Lago Grande de Curuai floodplain lake, both the north and south channels of the Amazon River mouth near Macapá, and the confluence of the Amazon and Tocantins Rivers near Belém. In addition to bulk carbon isotopic signatures, a suite of biomarkers including dissolved and particulate lignin-derived phenols were measured to trace the sources and degradation history of terrestrial vascular plant derived OM throughout the continuum. Dissolved and particulate lignin phenol concentrations both correlated positively with river discharge in the Amazon River mainstem, with variable export patterns from the tributaries and floodplains. As organic matter travels along the continuum it is degraded by microbial composition, fuelling gross respiration and CO2 outgassing. The flux of organic carbon to the ocean is chemically recalcitrant as a result of

  8. Artisanal fisheries of the Xingu River basin in Brazilian Amazon.

    PubMed

    Isaac, V J; Almeida, M C; Cruz, R E A; Nunes, L G

    2015-08-01

    The present study characterises the commercial fisheries of the basin of the Xingu River, a major tributary of the Amazon River, between the towns of Gurupá (at the mouth of the Amazon) and São Félix do Xingu. Between April, 2012, and March, 2014, a total of 23,939 fishing trips were recorded, yielding a total production of 1,484 tons of fish, harvested by almost three thousand fishers. The analysis of the catches emphasizes the small-scale and artisanal nature of the region's fisheries, with emphasis on the contribution of the motorised canoes powered by "long-tail" outboard motors. Larger motorboats operate only at the mouth of the Xingu and on the Amazon. Peacock bass (Cichla spp.), croakers (Plagioscion spp.), pacu (a group containing numerous serrasalmid species), aracu (various anostomids), and curimatã (Prochilodus nigricans) together contributed more than 60% of the total catch. Mean catch per unit effort was 18 kg/fisher-1.day-1, which varied among fishing methods (type of vessel and fishing equipment used), river sections, and time of the year. In most cases, yields varied little between years (2012 and 2013). The technical database provided by this study constitutes an important resource for the regulation of the region's fisheries, as well as for the evaluation of future changes resulting from the construction of the Belo Monte dam on the Xingu River.

  9. Satellite-based Analysis of CO Variability over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Deeter, M. N.; Emmons, L. K.; Martinez-Alonso, S.; Tilmes, S.; Wiedinmyer, C.

    2017-12-01

    Pyrogenic emissions from the Amazon Basin exert significant influence on both climate and air quality but are highly variable from year to year. The ability of models to simulate the impact of biomass burning emissions on downstream atmospheric concentrations depends on (1) the quality of surface flux estimates (i.e., emissions inventories), (2) model dynamics (e.g., horizontal winds, large-scale convection and mixing) and (3) the representation of atmospheric chemical processes. With an atmospheric lifetime of a few months, carbon monoxide (CO) is a commonly used diagnostic for biomass burning. CO products are available from several satellite instruments and allow analyses of CO variability over extended regions such as the Amazon Basin with useful spatial and temporal sampling characteristics. The MOPITT ('Measurements of Pollution in the Troposphere') instrument was launched on the NASA Terra platform near the end of 1999 and is still operational. MOPITT is uniquely capable of measuring tropospheric CO concentrations using both thermal-infrared and near-infrared observations, resulting in the ability to independently retrieve lower- and upper-troposphere CO concentrations. We exploit the 18-year MOPITT record and related datasets to analyze the variability of CO over the Amazon Basin and evaluate simulations performed with the CAM-chem chemical transport model. We demonstrate that observed differences between MOPITT observations and model simulations provide important clues regarding emissions inventories, convective mixing and long-range transport.

  10. Low-level nocturnal wind maximum over the Central Amazon Basin

    NASA Technical Reports Server (NTRS)

    Greco, Steven; Ulanski, Stanley; Garstang, Michael; Houston, Samuel

    1992-01-01

    A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Meteorological data indicate the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3-7 m/s between 300 and 1000 m increase to 10-15 m/s shortly after sunset. The wind-speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. Low-level winds are thought to be pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.

  11. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  12. Impact of the biomass burning on methane variability during dry years in the Amazon measured from an aircraft and the AIRS sensor.

    PubMed

    Ribeiro, Igor Oliveira; Andreoli, Rita Valéria; Kayano, Mary Toshie; de Sousa, Thaiane Rodrigues; Medeiros, Adan Sady; Guimarães, Patrícia Costa; Barbosa, Cybelli G G; Godoi, Ricardo H M; Martin, Scot T; de Souza, Rodrigo Augusto Ferreira

    2018-05-15

    The present study examines the spatiotemporal variability and interrelations of the atmospheric methane (CH 4 ), carbon monoxide (CO) and biomass burning (BB) outbreaks retrieved from satellite data over the Amazon region during the 2003-2012 period. In the climatological context, we found consistent seasonal cycles of BB outbreaks and CO in the Amazon, both variables showing a peak during the dry season. The dominant CO variability mode features the largest positive loadings in the southern Amazon, and describes the interannual CO variations related to BB outbreaks along the deforestation arc during the dry season. In line with CO variability and BB outbreaks, the results show strong correspondence with the spatiotemporal variability of CH 4 in the southern Amazon during years of intense drought. Indeed, the areas with the largest positive CH 4 anomalies in southern Amazon overlap the areas with high BB outbreaks and positive CO anomalies. The analyses also showed that high (low) BB outbreaks in the southern Amazon occur during dry (wet) years. In consequence, the interannual climate variability modulates the BB outbreaks in the southern Amazon, which in turn have considerable impacts on CO and CH 4 interannual variability in the region. Therefore, the BB outbreaks might play a major role in modulating the CH 4 and CO variations, at least in the southern Amazon. This study also provides a comparison between the estimate of satellite and aircraft measurements for the CH 4 over the southern Amazon, which indicates relatively small differences from the aircraft measurements in the lower troposphere, with errors ranging from 0.18% to 1.76%. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Transported African Dust to the Amazon: Physiochemical Properties and Associated Nutrients

    NASA Astrophysics Data System (ADS)

    Barkley, A.; Blackwelder, P. L.; Prospero, J. M.; Gaston, C.

    2017-12-01

    African dust plays an essential role in fertilizing both oceanic and terrestrial ecosystems by supplying vital biological nutrients such as iron and phosphorus. During Boreal winter, large quantities of African dust are transported across the Atlantic Ocean to the Amazon Basin. It is thought that the Bodélé Depression, part of Paleolake Mega Chad, serves as a major source of this dust, although its importance is debated. The soil in this topographical depression contains a distinctive blend of fluvial and diatomaceous sediments that are thought to supply the Amazon with the nutrients necessary to maintain soil fertility. However, the composition and physical properties of dust transported to the Amazon remain under-explored. Here we present measurements of the size, morphology, and chemical composition of transported dust collected in Cayenne, French Guiana and soil samples collected from the Bodélé Depression using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Inductively coupled plasma mass spectrometry and soluble phosphorus measurements were also performed to investigate the nutrient profiles of filters collected during different air mass transport conditions. In addition to mineral dust, SEM revealed the presence of whole and fragmented freshwater diatoms transported from the Bodélé Depression, or other ephemeral African paleolakes, that were mixed with dust containing iron oxides and micronutrient-rich authigenic clays. Interestingly, transported diatoms were found to the be the largest transported particles with diameters well above 10 μm (up to 70 μm). The low density and high surface-to-volume ratios of diatoms could allow a longer range transport than dust of a comparable size. Therefore, the diatoms could act as a vehicle by which higher micronutrient fluxes could be transported to the Amazon.

  14. Amazon water lenses and the influence of the North Brazil Current on the continental shelf

    NASA Astrophysics Data System (ADS)

    Prestes, Yuri O.; Silva, Alex Costa da; Jeandel, Catherine

    2018-05-01

    The exchange processes on the Amazon continental shelf in northern Brazil are subject to complex interactions that involve forcings derived from distinct sources. The Amazon shelf is a unique and highly dynamic environment in which considerable discharge of freshwater enters the Atlantic Ocean, producing extensive Amazon Water Lenses (AWL). In addition to the presence of the AWL, the shelf is influenced by the semidiurnal oscillations of the tides and the strong North Brazil Current (NBC), a boundary current of the western Atlantic. The present study was based primarily on the influence of the freshwater input and the NBC on the shelf and the Amazon Shelf Break (ASB) off the mouth of the Pará River. For this purpose, hydrographic and hydrodynamic data were obtained by moorings of the AMANDES Project (April-July 2008), located on the Amazon shelf and the ASB. Spectral analysis and the continuous wavelet transform were applied to define tidal (high frequency/short period) and subtidal (low frequency/long period) signals. The results indicated that on both the shelf and the break, the semidiurnal tides are responsible for the residual landward transport and are predominantly across-shelf. Low-frequency motions in the synoptic bands and the AWL are related to spatial changes in the velocity field, mainly on the ASB in the along-shelf direction. The flow of the NBC can be interpreted as an along-shelf low-frequency oscillation capable of altering the spatial configuration of the velocity field, although its influence is perceived only in the absence of the AWL.

  15. Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Fernandes, Katia; Giannini, Alessandra; Verchot, Louis; Baethgen, Walter; Pinedo-Vasquez, Miguel

    2015-08-01

    The unusual severity and return time of the 2005 and 2010 dry-season droughts in western Amazon is attributed partly to decadal climate fluctuations and a modest drying trend. Decadal variability of western Amazon hydroclimate is highly correlated to the Atlantic sea surface temperature (SST) north-south gradient (NSG). Shifts of dry and wet events frequencies are also related to the NSG phase, with a 66% chance of 3+ years of dry events per decade when NSG > 0 and 19% when NSG < 0. The western Amazon and NSG decadal covariability is well reproduced in general circulation models (GCMs) historical (HIST) and preindustrial control (PIC) experiments of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The HIST and PIC also reproduce the shifts in dry and wet events probabilities, indicating potential for decadal predictability based on GCMs. Persistence of the current NSG positive phase favors above normal frequency of western Amazon dry events in coming decades.

  16. Estimating babassu palm density using automatic palm tree detection with very high spatial resolution satellite images.

    PubMed

    Dos Santos, Alessio Moreira; Mitja, Danielle; Delaître, Eric; Demagistri, Laurent; de Souza Miranda, Izildinha; Libourel, Thérèse; Petit, Michel

    2017-05-15

    High spatial resolution images as well as image processing and object detection algorithms are recent technologies that aid the study of biodiversity and commercial plantations of forest species. This paper seeks to contribute knowledge regarding the use of these technologies by studying randomly dispersed native palm tree. Here, we analyze the automatic detection of large circular crown (LCC) palm tree using a high spatial resolution panchromatic GeoEye image (0.50 m) taken on the area of a community of small agricultural farms in the Brazilian Amazon. We also propose auxiliary methods to estimate the density of the LCC palm tree Attalea speciosa (babassu) based on the detection results. We used the "Compt-palm" algorithm based on the detection of palm tree shadows in open areas via mathematical morphology techniques and the spatial information was validated using field methods (i.e. structural census and georeferencing). The algorithm recognized individuals in life stages 5 and 6, and the extraction percentage, branching factor and quality percentage factors were used to evaluate its performance. A principal components analysis showed that the structure of the studied species differs from other species. Approximately 96% of the babassu individuals in stage 6 were detected. These individuals had significantly smaller stipes than the undetected ones. In turn, 60% of the stage 5 babassu individuals were detected, showing significantly a different total height and a different number of leaves from the undetected ones. Our calculations regarding resource availability indicate that 6870 ha contained 25,015 adult babassu palm tree, with an annual potential productivity of 27.4 t of almond oil. The detection of LCC palm tree and the implementation of auxiliary field methods to estimate babassu density is an important first step to monitor this industry resource that is extremely important to the Brazilian economy and thousands of families over a large scale. Copyright

  17. Remote tropical and sub-tropical responses to Amazon deforestation

    NASA Astrophysics Data System (ADS)

    Badger, Andrew M.; Dirmeyer, Paul A.

    2016-05-01

    Replacing natural vegetation with realistic tropical crops over the Amazon region in a global Earth system model impacts vertical transport of heat and moisture, modifying the interaction between the atmospheric boundary layer and the free atmosphere. Vertical velocity is decreased over a majority of the Amazon region, shifting the ascending branch and modifying the seasonality of the Hadley circulation over the Atlantic and eastern Pacific oceans. Using a simple model that relates circulation changes to heating anomalies and generalizing the upper-atmosphere temperature response to deforestation, agreement is found between the response in the fully-coupled model and the simple solution. These changes to the large-scale dynamics significantly impact precipitation in several remote regions, namely sub-Saharan Africa, Mexico, the southwestern United States and extratropical South America, suggesting non-local climate repercussions for large-scale land use changes in the tropics are possible.

  18. Evaluation of last extreme drought events in Amazon basin using remotely sensing data

    NASA Astrophysics Data System (ADS)

    Panisset, Jéssica S.; Gouveia, Célia M.; Libonati, Renata; Peres, Leonardo; Machado-Silva, Fausto; França, Daniela A.; França, José R. A.

    2017-04-01

    Amazon basin has experienced several intense droughts among which were highlighted last recent ones in 2005 and 2010. Climate models suggest these events will be even more frequent due to higher concentration of greenhouse gases that are also driven forward by alteration in forest dynamics. Environmental and social impacts demand to identify these intense droughts and the behavior of climate parameters that affect vegetation. This present study also identifies a recent intense drought in Amazon basin during 2015. Meteorological parameters and vegetation indices suggest this event was the most severe already registered in the region. We have used land surface temperature (LST), vegetation indices, rainfall and shortwave radiation from 2000 to 2015 to analyze and compare droughts of 2005, 2010 and 2015. Our results show singularities among the three climate extreme events. The austral winter was the most affected season in 2005 and 2010, but not in 2015 when austral summer presented extreme conditions. Precipitation indicates epicenter of 2005 in west Amazon corroborating with previous studies. In 2010, the west region was strongly affected again together with the northwest and the southeast areas. However, 2015 epicenters were concentrated in the east of the basin. In 2015, shortwave radiation has exceeded the maximum values of 2005 and temperature the maximum value of 2010. Vegetation indices have shown positive and negative anomalies. Despite of heterogenous response of Amazon forest to drought, hybrid vegetation indices using NDVI (Normalized Difference Vegetation Index) and LST highlights the exceptionality of 2015 drought episode that exhibits higher vegetation water stress than the cases of 2010 and 2005. Finally, this work has shown how meteorological parameters influence droughts and the effects on vegetation in Amazon basin. Complexity of climate, ecosystem heterogeneity and high diversity of Amazon forest are response by idiosyncrasies of each drought. All

  19. Dynamics of Dissolved Organic Matter in Amazon Basin: Insights into Negro River Contribution

    NASA Astrophysics Data System (ADS)

    Moreira-Turcq, P.; Perez, M. P.; Benedetti, M.; Oliveira, M. A.; Lagane, C.; Seyler, P.; Oliveira, E.

    2006-12-01

    The study of global carbon cycle requires a precise knowledge of spatial and temporal distributions and exportation from continents to oceans. Organic carbon fluxes represent approximately half of the total carbon budget carried by rivers. Tropical rivers transport two third of the total organic carbon discharged into the world oceans but important gaps still exist in the knowledge of the tropical river carbon biochemistry. The Amazon River is responsible for 10% of the annual amount of organic carbon transported from rivers to oceans. The most important portion of total organic matter transported in the Amazon Basin is the dissolved fraction (between 80% and 95%). Amazonian annual flux of dissolved organic matter is directly related to hydrological variations. All rivers in the Amazon basin are characterized by monomodal hydrograms, with a low water period in october/november and a high water period in may/june. Temporal variations in Amazon dissolved organic carbon (3.0 to 9.1 mg l^{- 1}) are mainly controled by Negro River inputs. DOC and DON contributions from the Negro River can vary between 120 kgC s-1 and 520 kg C s-1, and between 5 kgN s--1 and 15 kgN s-1, during low and high water period, respectivelly. In the Negro River, during high water stages, while DOC concentrations are stable from the upstream stations to the downstream ones (about 11 mg l-1), discharge increases from 16000 to 46000 m3 s-1 and NOD can quintuple from upstream (0.071 mg l-1) to downstream (0.341 mg l-1). Then the nature of dissolved organic matter is variable (C/N ratio varied from 33 to 120 from upstream to downstream). During low water stages DOC concentrations are lower (mean DOC of 8.1 mg l-1) while DON is in the same range, discharge is about 10000 m3 s-1 at downstream stations of Negro River and the C/N ratio is lower and steadier along the River. Finaly, despite a low basin surface (12%) compared with the two other main Amazon tributaries, Solimões and Madeira Rivers, and a

  20. Drought responses of flood-tolerant trees in Amazonian floodplains

    PubMed Central

    Parolin, Pia; Lucas, Christine; Piedade, Maria Teresa F.; Wittmann, Florian

    2010-01-01

    Background Flood-tolerant tree species of the Amazonian floodplain forests are subjected to an annual dry period of variable severity imposed when low river-water levels coincide with minimal precipitation. Although the responses of these species to flooding have been examined extensively, their responses to drought, in terms of phenology, growth and physiology, have been neglected hitherto, although some information is found in publications that focus on flooding. Scope The present review examines the dry phase of the annual flooding cycle. It consolidates existing knowledge regarding responses to drought among adult trees and seedlings of many Amazonian floodplain species. Main Findings Flood-tolerant species display variable physiological responses to dry periods and drought that indicate desiccation avoidance, such as reduced photosynthetic activity and reduced root respiration. However, tolerance and avoidance strategies for drought vary markedly among species. Drought can substantially decrease growth, biomass and photosynthetic activity among seedlings in field and laboratory studies. When compared with the responses to flooding, drought can impose higher seedling mortality and slower growth rates, especially among evergreen species. Results indicate that tolerance and avoidance strategies for drought vary markedly between species. Both seedling recruitment and photosynthetic activity are affected by drought, Conclusions For many species, the effects of drought can be as important as flooding for survival and growth, particularly at the seedling phase of establishment, ultimately influencing species composition. In the context of climate change and predicted decreases in precipitation in the Amazon Basin, the effects of drought on plant physiology and species distribution in tropical floodplain forest ecosystems should not be overlooked. PMID:19880423

  1. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon.

    PubMed

    Heckenberger, Michael J; Russell, J Christian; Fausto, Carlos; Toney, Joshua R; Schmidt, Morgan J; Pereira, Edithe; Franchetto, Bruna; Kuikuro, Afukaka

    2008-08-29

    The archaeology of pre-Columbian polities in the Amazon River basin forces a reconsideration of early urbanism and long-term change in tropical forest landscapes. We describe settlement and land-use patterns of complex societies on the eve of European contact (after 1492) in the Upper Xingu region of the Brazilian Amazon. These societies were organized in articulated clusters, representing small independent polities, within a regional peer polity. These patterns constitute a "galactic" form of prehistoric urbanism, sharing features with small-scale urban polities in other areas. Understanding long-term change in coupled human-environment systems relating to these societies has implications for conservation and sustainable development, notably to control ecological degradation and maintain regional biodiversity.

  2. Conjoint Analysis of the Surface and Atmospheric Water Balances of the Andes-Amazon System

    NASA Astrophysics Data System (ADS)

    Builes-Jaramillo, Alejandro; Poveda, Germán

    2017-04-01

    Acknowledging the interrelation between the two branches of the hydrological cycle, we perform a comprehensive analysis of the long-term mean surface and atmospheric water balances in the Amazon-Andes River basins system. We estimate the closure of the water budgets based on the long-term approximation of the water balance equations, and estimate the imbalance between both atmospheric and surface budgets. The analysis was performed with observational and reanalysis datasets for the entire basin, for several sub-catchments inside the entire Amazon River basin and for two physical and geographical distinctive subsystems of the basin, namely upper Andean the low-lying Amazon River basin. Our results evidence that for the entire Amazon River basin the surface water balance can be considered to be in balance (P = 2225 mm.yr-1, ET= 1062 mm.yr-1, R= 965 mm.yr-1), whereas for the separated subsystems it not so clear, showing high discrepancies between observations and reanalysis datasets. In turn, the atmospheric budget does not close regardless of datasets or geographical disaggregation. Our results indicate that the amount of imbalance of the atmospheric branch of the water balance depends on the evaporation data source used. The imbalance calculated as I=(C/R)-1, where C is net moisture convergence (C= -∇Q where ∇Q is the net vertically integrated moisture divergence) and R the runoff,represents the difference between the two branches of the hydrological cycle. For the entire Amazon River basin we found a consistent negative imbalance driven by higher values of runoff, and when calculated for monthly time scales the imbalance is characterized by a high dependence on the Amazon dry season. The separated analysis performed to the Andes and Low-lying Amazonia subsystems unveils two shortcomings of the available data, namely a poor quality of the representation of surface processes in the reanalysis models (including precipitation and evapotranspiration), and the

  3. Suspected Lead Poisoning in an Amazon Parrot

    PubMed Central

    McDonald, Lawrence J.

    1986-01-01

    A double yellow headed Amazon parrot (Amazona ochrocephala tresmariae) of unknown age and sex was examined for an acute onset of anorexia, listlessness, central nervous system signs and diarrhea. A tentative diagnosis of lead toxicosis was achieved based on radiographs, clinical pathology and response to therapy. Chelation therapy (Calcium EDTA) and supportive measures resulted in an uneventful recovery. ImagesFigure 1.Figure 2.Figure 3. PMID:17422638

  4. A social-ecological database to advance research on infrastructure development impacts in the Brazilian Amazon.

    PubMed

    Tucker Lima, Joanna M; Valle, Denis; Moretto, Evandro Mateus; Pulice, Sergio Mantovani Paiva; Zuca, Nadia Lucia; Roquetti, Daniel Rondinelli; Beduschi, Liviam Elizabeth Cordeiro; Praia, Amanda Salles; Okamoto, Claudia Parucce Franco; da Silva Carvalhaes, Vinicius Leite; Branco, Evandro Albiach; Barbezani, Bruna; Labandera, Emily; Timpe, Kelsie; Kaplan, David

    2016-08-30

    Recognized as one of the world's most vital natural and cultural resources, the Amazon faces a wide variety of threats from natural resource and infrastructure development. Within this context, rigorous scientific study of the region's complex social-ecological system is critical to inform and direct decision-making toward more sustainable environmental and social outcomes. Given the Amazon's tightly linked social and ecological components and the scope of potential development impacts, effective study of this system requires an easily accessible resource that provides a broad and reliable data baseline. This paper brings together multiple datasets from diverse disciplines (including human health, socio-economics, environment, hydrology, and energy) to provide investigators with a variety of baseline data to explore the multiple long-term effects of infrastructure development in the Brazilian Amazon.

  5. The Amazon rainforest, climate change, and drought: How will what is below the surface affect the climate of tropical South America?

    NASA Astrophysics Data System (ADS)

    Harper, A.; Denning, A. S.; Baker, I.; Randall, D.; Dazlich, D.

    2008-12-01

    Several climate models have predicted an increase in long-term droughts in tropical South America due to increased greenhouse gases in the atmosphere. Although the Amazon rainforest is resilient to seasonal drought, multi-year droughts pose a definite problem for the ecosystem's health. Furthermore, drought- stressed vegetation participates in feedbacks with the atmosphere that can exacerbate drought. Namely, reduced evapotranspiration further dries out the atmosphere and affects the regional climate. Trees in the rainforest survive seasonal drought by using deep roots to access adequate stores of soil moisture. We investigate the climatic impacts of deep roots and soil moisture by coupling the Simple Biosphere (SiB3) model to Colorado State University's general circulation model (BUGS5). We compare two versions of SiB3 in the GCM during years with anomalously low rainfall. The first has strong vegetative stress due to soil moisture limitations. The second experiences less stress and has more realistic representations of surface biophysics. In the model, basin-wide reductions in soil moisture stress result in increased evapotranspiration, precipitation, and moisture recycling in the Amazon basin. In the savannah region of southeastern Brazil, the unstressed version of SiB3 produces decreased precipitation and weaker moisture flux, which is more in-line with observations. The improved simulation of precipitation and evaporation also produces a more realistic Bolivian high and Nordeste low. These changes highlight the importance of subsurface biophysics for the Amazonian climate. The presence of deep roots and soil moisture will become even more important if climate change brings more frequent droughts to this region in the future.

  6. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm

    PubMed Central

    Tupinambá, Daiva Domenech; Cantão, Maurício Egídio; Costa, Ohana Yonara Assis; Bergmann, Jessica Carvalho; Kruger, Ricardo Henrique; Kyaw, Cynthia Maria; Barreto, Cristine Chaves; Quirino, Betania Ferraz

    2016-01-01

    This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied. PMID:27006640

  7. CCN numerical simulations for the GoAmazon with the OLAM model

    NASA Astrophysics Data System (ADS)

    Ramos-da-Silva, R.; Haas, R.; Barbosa, H. M.; Machado, L.

    2015-12-01

    Manaus is a large city in the center of the Amazon rainforest. The GoAmazon field project is exploring the region through various data collection and modeling to investigate in impacts of the urban polluted plume on the surrounding pristine areas. In this study a numerical model was applied to simulate the atmospheric dynamics and the Cloud Condensation Nucleai (CCN) concentrations evolution. Simulations with and without the urban plume was performed to identify its dynamics and local impacts. The results show that the land surface characteristics has important hole on the CCN distribution and rainfall over the region. At the south of Manaus the atmospheric dynamics is dominated by the cloud streets that are aligned with the trade winds and the Amazon River. At the north of Manaus, the Negro River produces the advection of a more stable atmosphere causing a higher CCN concentration on the boundary layer. Assuming a local high CCN concentration at the Manaus boundary layer region, the simulations show that the land-atmosphere interaction sets important dynamics on the plume. The model shows that the CCN plume moves along with the flow towards southwest of Manaus following the cloud streets and the river direction having the highest concentrations over the most stable water surface regions.

  8. ColorTree: a batch customization tool for phylogenic trees

    PubMed Central

    Chen, Wei-Hua; Lercher, Martin J

    2009-01-01

    Background Genome sequencing projects and comparative genomics studies typically aim to trace the evolutionary history of large gene sets, often requiring human inspection of hundreds of phylogenetic trees. If trees are checked for compatibility with an explicit null hypothesis (e.g., the monophyly of certain groups), this daunting task is greatly facilitated by an appropriate coloring scheme. Findings In this note, we introduce ColorTree, a simple yet powerful batch customization tool for phylogenic trees. Based on pattern matching rules, ColorTree applies a set of customizations to an input tree file, e.g., coloring labels or branches. The customized trees are saved to an output file, which can then be viewed and further edited by Dendroscope (a freely available tree viewer). ColorTree runs on any Perl installation as a stand-alone command line tool, and its application can thus be easily automated. This way, hundreds of phylogenic trees can be customized for easy visual inspection in a matter of minutes. Conclusion ColorTree allows efficient and flexible visual customization of large tree sets through the application of a user-supplied configuration file to multiple tree files. PMID:19646243

  9. ColorTree: a batch customization tool for phylogenic trees.

    PubMed

    Chen, Wei-Hua; Lercher, Martin J

    2009-07-31

    Genome sequencing projects and comparative genomics studies typically aim to trace the evolutionary history of large gene sets, often requiring human inspection of hundreds of phylogenetic trees. If trees are checked for compatibility with an explicit null hypothesis (e.g., the monophyly of certain groups), this daunting task is greatly facilitated by an appropriate coloring scheme. In this note, we introduce ColorTree, a simple yet powerful batch customization tool for phylogenic trees. Based on pattern matching rules, ColorTree applies a set of customizations to an input tree file, e.g., coloring labels or branches. The customized trees are saved to an output file, which can then be viewed and further edited by Dendroscope (a freely available tree viewer). ColorTree runs on any Perl installation as a stand-alone command line tool, and its application can thus be easily automated. This way, hundreds of phylogenic trees can be customized for easy visual inspection in a matter of minutes. ColorTree allows efficient and flexible visual customization of large tree sets through the application of a user-supplied configuration file to multiple tree files.

  10. Forecasting Total Water Storage Changes in the Amazon basin using Atlantic and Pacific Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    De Linage, C.; Famiglietti, J. S.; Randerson, J. T.

    2013-12-01

    Floods and droughts frequently affect the Amazon River basin, impacting the transportation, river navigation, agriculture, economy and the carbon balance and biodiversity of several South American countries. The present study aims to find the main variables controlling the natural interannual variability of terrestrial water storage in the Amazon region and to propose a modeling framework for flood and drought forecasting. We propose three simple empirical models using a linear combination of lagged spatial averages of central Pacific (Niño 4 index) and tropical North Atlantic (TNAI index) sea surface temperatures (SST) to predict a decade-long record of 3°, monthly terrestrial water storage anomalies (TWSA) observed by the Gravity Recovery And Climate Experiment (GRACE) mission. In addition to a SST forcing term, the models included a relaxation term to simulate the memory of water storage anomalies in response to external variability in forcing. Model parameters were spatially-variable and individually optimized for each 3° grid cell. We also investigated the evolution of the predictive capability of our models with increasing minimum lead times for TWSA forecasts. TNAI was the primary external forcing for the central and western regions of the southern Amazon (35% of variance explained with a 3-month forecast), whereas Niño 4 was dominant in the northeastern part of the basin (61% of variance explained with a 3-month forecast). Forcing the model with a combination of the two indices improved the fit significantly (p<0.05) for at least 64% of the grid cells, compared to models forced solely with Niño 4 or TNAI. The combined model was able to explain 43% of the variance in the Amazon basin as a whole with a 3-month lead time. While 66% of the observed variance was explained in the northeastern Amazon, only 39% of the variance was captured by the combined model in the central and western regions, suggesting that other, more local, forcing sources were

  11. Impact of Amazon deforestation on climate simulations using the NCAR CCM2/BATS model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahmann, A.N.; Dickinson, R.E.

    Model validation and results are briefly presented for a simulation of deforestation of the Amazon rainforest. This initial study is made using assumptions regarding deforestation similar to those in earlier studies with several versions of the NCAR Community Climate Model (CCM) couples to the Biosphere-Atmosphere Transfer Scheme (BATS). The model used is a revised version of the NCAR CCM Version 2 coupled to BATS Version 1e. This paper discusses the portion of validation dealing with the distribution of precipitation; the simulation displays very good agreement with observed rainfall rates for the austral summer. Preliminary results from an 8-year simulation ofmore » deforestation are similar to that of previous studies. Annual precipitation and evaporation are reduced, while surface air temperatures show a slight increase. A substantial bimodal pattern appears in the results, with the Amazon decrease of precipitation and temperature increase accompanied by changes in the opposite sign to the southeast of the Amazon. Similar patterns have occurred in other studies, but not always in exactly the same locations. Evidently, how much of the region of rainfall increase occurs in the deforested area over the Amazon strongly affects the inferred statistics. It is likely that this pattern depends on the model control climatology and possibly other features. 16 refs., 2 figs., 2 tabs.« less

  12. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Martin, S. T.; Kleinman, L.

    2016-03-01

    Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013). Reducing this large uncertainty requires both improved understanding and representation of aerosol properties and processes in climate models, including the cloud activation properties of aerosols. The Atmospheric System Research (ASR) science program plan of January 2010 states that: “A key requirement for simulating aerosol-cloud interactions is the ability to calculate cloud condensation nuclei and ice nuclei (CCN and IN, respectively) concentrations as a function of supersaturation from the chemical andmore » microphysical properties of the aerosol.” The Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/15) study seeks to understand how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity (Manaus)—in particular, the differences in cloud-aerosol-precipitation interactions between polluted and pristine conditions. One key question of GoAmazon2014/5 is: “What is the influence of the Manaus pollution plume on the cloud condensation nuclei (CCN) activities of the aerosol particles and the secondary organic material in the particles?” To address this question, we measured size-resolved CCN spectra, a critical measurement for GoAmazon2014/5.« less

  13. Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts

    PubMed Central

    Zhao, Wenqian; Zhao, Xiang; Zhou, Tao; Wu, Donghai; Tang, Bijian; Wei, Hong

    2017-01-01

    Along with global climate change, the occurrence of extreme droughts in recent years has had a serious impact on the Amazon region. Current studies on the driving factors of the 2005 and 2010 Amazon droughts has focused on the influence of precipitation, whereas the impacts of temperature and radiation have received less attention. This study aims to explore the climate-driven factors of Amazonian vegetation decline during the extreme droughts using vegetation index, precipitation, temperature and radiation datasets. First, time-lag effects of Amazonian vegetation responses to precipitation, radiation and temperature were analyzed. Then, a multiple linear regression model was established to estimate the contributions of climatic factors to vegetation greenness, from which the dominant climate-driving factors were determined. Finally, the climate-driven factors of Amazonian vegetation greenness decline during the 2005 and 2010 extreme droughts were explored. The results showed that (i) in the Amazon vegetation greenness responded to precipitation, radiation and temperature, with apparent time lags for most averaging interval periods associated with vegetation index responses of 0–4, 0–9 and 0–6 months, respectively; (ii) on average, the three climatic factors without time lags explained 27.28±21.73% (mean±1 SD) of vegetation index variation in the Amazon basin, and this value increased by 12.22% and reached 39.50±27.85% when time lags were considered; (iii) vegetation greenness in this region in non-drought years was primarily affected by precipitation and shortwave radiation, and these two factors altogether accounted for 93.47% of the total explanation; and (iv) in the common epicenter of the two droughts, pixels with a significant variation in precipitation, radiation and temperature accounted for 36.68%, 40.07% and 10.40%, respectively, of all pixels showing a significant decrease in vegetation index in 2005, and 15.69%, 2.01% and 45.25% in 2010

  14. Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts.

    PubMed

    Zhao, Wenqian; Zhao, Xiang; Zhou, Tao; Wu, Donghai; Tang, Bijian; Wei, Hong

    2017-01-01

    Along with global climate change, the occurrence of extreme droughts in recent years has had a serious impact on the Amazon region. Current studies on the driving factors of the 2005 and 2010 Amazon droughts has focused on the influence of precipitation, whereas the impacts of temperature and radiation have received less attention. This study aims to explore the climate-driven factors of Amazonian vegetation decline during the extreme droughts using vegetation index, precipitation, temperature and radiation datasets. First, time-lag effects of Amazonian vegetation responses to precipitation, radiation and temperature were analyzed. Then, a multiple linear regression model was established to estimate the contributions of climatic factors to vegetation greenness, from which the dominant climate-driving factors were determined. Finally, the climate-driven factors of Amazonian vegetation greenness decline during the 2005 and 2010 extreme droughts were explored. The results showed that (i) in the Amazon vegetation greenness responded to precipitation, radiation and temperature, with apparent time lags for most averaging interval periods associated with vegetation index responses of 0-4, 0-9 and 0-6 months, respectively; (ii) on average, the three climatic factors without time lags explained 27.28±21.73% (mean±1 SD) of vegetation index variation in the Amazon basin, and this value increased by 12.22% and reached 39.50±27.85% when time lags were considered; (iii) vegetation greenness in this region in non-drought years was primarily affected by precipitation and shortwave radiation, and these two factors altogether accounted for 93.47% of the total explanation; and (iv) in the common epicenter of the two droughts, pixels with a significant variation in precipitation, radiation and temperature accounted for 36.68%, 40.07% and 10.40%, respectively, of all pixels showing a significant decrease in vegetation index in 2005, and 15.69%, 2.01% and 45.25% in 2010, respectively

  15. Giant Constrictors: Biological and Management Profiles and an Establishment Risk Assessment for Nine Large Species of Pythons, Anacondas, and the Boa Constrictor

    USGS Publications Warehouse

    Reed, Robert N.; Rodda, Gordon H.

    2009-01-01

    Giant Constrictors: Biological and Management Profiles and an Establishment Risk Assessment for Nine Large Species of Pythons, Anacondas, and the Boa Constrictor, estimates the ecological risks associated with colonization of the United States by nine large constrictors. The nine include the world's four largest snake species (Green Anaconda, Eunectes murinus; Indian or Burmese Python, Python molurus; Northern African Python, Python sebae; and Reticulated Python, Broghammerus reticulatus), the Boa Constrictor (Boa constrictor), and four species that are ecologically or visually similar to one of the above (Southern African Python, Python natalensis; Yellow Anaconda, Eunectes notaeus; DeSchauensee's Anaconda, Eunectes deschauenseei; and Beni Anaconda, Eunectes beniensis). At present, the only probable pathway by which these species would become established in the United States is the pet trade. Although importation for the pet trade involves some risk that these animals could become established as exotic or invasive species, it does not guarantee such establishment. Federal regulators have the task of appraising the importation risks and balancing those risks against economic, social, and ecological benefits associated with the importation. The risk assessment quantifies only the ecological risks, recognizing that ecosystem processes are complex and only poorly understood. The risk assessment enumerates the types of economic impacts that may be experienced, but leaves quantification of economic costs to subsequent studies. Primary factors considered in judging the risk of establishment were: (1) history of establishment in other countries, (2) number of each species in commerce, (3) suitability of U.S. climates for each species, and (4) natural history traits, such as reproductive rate and dispersal ability, that influence the probability of establishment, spread, and impact. In addition, the risk assessment reviews all management tools for control of invasive giant

  16. Diversity of anti-haemostatic proteins in the salivary glands of Rhodnius species transmitters of Chagas disease in the greater Amazon.

    PubMed

    Bussacos, Ana C M; Nakayasu, Ernesto S; Hecht, Mariana M; Parente, Juliana A; Soares, Célia M A; Teixeira, Antônio R L; Almeida, Igor C

    2011-08-24

    The triatomines in the tribe Rhodniini are the main vectors of the Trypanosoma cruzi to humans in recent outbreaks of acute Chagas disease in the Amazon. These insects dwelling in palm trees do not colonize the human domicile. Their success to transmit the infection relies partially on the efficacy of their salivary gland apparatuses. Here we show the transcriptome of the Rhodnius brethesi and Rhodnius robustus salivary glands, comprising 56 and 122 clusters, respectively. Approximately one third of these clusters are described for the first time. The LC-MS/MS analysis identified 123 and 111 proteins in R. brethesi and R. robustus sialome, respectively. Noteworthy, lipocalin platelet aggregation inhibitors, inositol polyphosphate 5-phosphatases, and Kazal domain proteins, which are essential for the insect's successful acquisition of blood meals, were found in our analysis. Moreover, glutathione S transferase and antigen-5, which play roles in the insect's defense and resistance against insecticide, were also observed. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Methane emissions to the troposphere from the Amazon floodplain

    NASA Technical Reports Server (NTRS)

    Devol, Allen H.; Richey, Jeffrey E.; Clark, Wayne A.; King, Stagg L.; Martinelli, Luiz A.

    1988-01-01

    The magnitudes of CH4 emissions to the troposphere from the Amazon River floodplain and the mechanism of these emissions were investigated using the data of 94 individual flux measurements made along a 1700-km stretch of the river during July/August 1985. The overall average rate of CH4 emission from wetlands was found to be 390 mg CH4/sq m per day, with the highest emissions (590 mg CH4/sq m per day) attributed to the water surfaces covered by aquatic macrophytes. Ebullition was the dominant mechanism of emission, accounting for 85 percent of the total. Surface-water CH4 concentrations were highly supersaturated, averaging 6.4 micromolar. The annual emission of CH4 from the Amazon Basin to the troposphere, estimated from the area and the known emission rate, is about 10 CH4 Tg/yr, indicating the importance of the area in the global atmospheric CH4 cycle.

  18. Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability

    NASA Astrophysics Data System (ADS)

    Jones, Matthew O.; Kimball, John S.; Nemani, Ramakrishna R.

    2014-12-01

    Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO2) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically available radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003-2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjusting net leaf flush to maximize use of these generally abundant resources, while reducing drought susceptibility. An accurate characterization of this asynchronous behavior allows for improved understanding of canopy phenology across contiguous tropical forests and their sensitivity to climate variability and drought.

  19. Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere

    NASA Technical Reports Server (NTRS)

    Devol, Allan H.; Richey, Jeffrey E.; Forsberg, Bruce R.; Martinelli, Luiz A.

    1990-01-01

    Methane fluxes to the troposphere from the three principal habitats of the floodplain of the Amazon River main stem (open waters, emergent macrophyte beds, and flooded forests) were determined along a 1700-km reach of the river during the low-water period of the annual flood cycle (November-December 1988). Overall, emissions averaged 68 mg CH4/sq m per day and were significantly lower than similar emissions determined previously for the high-water period, 184 mg CH4/sq m per day (July-August 1986). This difference was due to significantly lower emissions from floating macrophyte environments. Low-water emissions from open waters and flooded forest areas were not significantly different than at high water. A monthly time series of methane emission from eight lakes located in the central Amazon basis showed similar results. The data were used to calculate a seasonally weighted annual emission to the troposphere from the Amazon River main stem floodplain of 5.1 Tg/yr, which indicates the importance of the area in global atmospheric chemistry.

  20. Mycotoxins and cyanogenic glycosides in staple foods of three indigenous people of the Colombian Amazon.

    PubMed

    Diaz, Gonzalo J; Krska, Rudolf; Sulyok, Michael

    2015-01-01

    A study was conducted to determine the incidence and levels of mycotoxins in the main staple foods of three indigenous people of the Colombian Amazon. A total of 20 corn, 24 rice and 59 cassava samples were analysed by a multi-analyte liquid chromatography-tandem mass spectrometry method covering the major classes of mycotoxins. In addition, cassava samples were also analysed for cyanogenic glycosides. The indigenous Amazon communities tested are exposed to potentially carcinogenic mycotoxins (particularly aflatoxins), as well as other mycotoxins, mainly through the intake of locally grown corn. Citrinin content in this corn was unusually high and has not been reported elsewhere. Two cassava samples contained high levels of cyanogenic glycosides. It is strongly recommended not to grow corn in the Amazon but instead purchase it from vendors capable of guaranteeing mycotoxin levels below the maximum allowable concentration in Colombia.

  1. Public policies and communication affecting forest cover in the Amazon

    NASA Astrophysics Data System (ADS)

    Kawakami Savaget, E.; Batistella, M.; Aguiar, A. P. D.

    2014-12-01

    The research program Amazalert was based on information delivered by the IPCC through its 2007 report, which indicates forest degradation processes in the Amazonian region as a consequence of anthropogenic actions. Such processes affecting the structural and functional characteristics of ecosystems would harm environmental services that guarantee, for example, the regulation of climate and the provision of fresh water. A survey was organized, through a multidisciplinary perspective, on the main policies and programs that can affect forest cover in the Amazon. These rules and norms seek to regulate societal actions by defining a developmental model for the region. Although deforestation rates in the Brazilian Amazon have decreased significantly since 2004, some locations maintain high levels of deforestation. In 2013, for example, the municipalities of Monte Alegre, Óbidos, Alenquer, Oriximiná, Curuá and Almeirin, in the northern region of the state of Para, showed the highest rates of deforestation in the Amazon. Managers and stakeholders within these areas are being interviewed to provide insights on how policies are interpreted and applied locally. There is an understanding delay between discourses normalized by federal governmental institutions and claims of local societies. The possible lack of clarity in official discourses added to the absence of a local communicative dynamics cause the phenomenon of incomplete information. Conflicts often occur in local institutional arenas resulting in violence and complex social and historical dissonances, enhanced by other public policies idealized in different temporal and spatial conditions.

  2. Tree Colors: Color Schemes for Tree-Structured Data.

    PubMed

    Tennekes, Martijn; de Jonge, Edwin

    2014-12-01

    We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.

  3. Chronic chagasic cardiopathy in Amazon region: an etiology to remember.

    PubMed

    Ferreira, João Marcos Bemfica Barbosa; Guerra, Jorge Augusto de Oliveira; Magalhães, Belisa Maria Lopes; Coelho, Leíla I A R C; Maciel, Marcel Gonçalves; Barbosa, Maria das Graças Vale

    2009-12-01

    This study assessed the frequency of chronic chagasic cardiopathy (CCC) in 37 autochthonus patients from Amazon region with left ventricular systolic dysfunction of undefined etiology. Three cases were diagnosed in the studied sample, with an 8.1% frequency.

  4. Reduced precipitation over large water bodies in the Brazilian Amazon shown from TRMM data

    NASA Astrophysics Data System (ADS)

    Paiva, Rodrigo Cauduro Dias; Buarque, Diogo Costa; Clarke, Robin T.; Collischonn, Walter; Allasia, Daniel Gustavo

    2011-02-01

    Tropical Rainfall Measurement Mission (TRMM) data show lower rainfall over large water bodies in the Brazilian Amazon. Mean annual rainfall (P), number of wet days (rainfall > 2 mm) (W) and annual rainfall accumulated over 3-hour time intervals (P3hr) were computed from TRMM 3B42 data for 1998-2009. Reduced rainfall was marked over the Rio Solimões/Amazon, along most Amazon tributaries and over the Balbina reservoir. In a smaller test area, a heuristic argument showed that P and W were reduced by 5% and 6.5% respectively. Allowing for TRMM 3B42 spatial resolution, the reduction may be locally greater. Analyses of diurnal rainfall patterns showed that rainfall is lowest over large rivers during the afternoon, when most rainfall is convective, but at night and early morning the opposite occurs, with increased rainfall over rivers, although this pattern is less marked. Rainfall patterns reported from studies of smaller Amazonian regions therefore exist more widely.

  5. [Globalization, inequality, and transmission of tropical diseases in the Venezuelan Amazon].

    PubMed

    Botto-Abella, Carlos; Graterol-Mendoza, Beatriz

    2007-01-01

    Economic globalization appears to be causing greater inequalities and increased vulnerability to tropical diseases around the world. The Venezuelan Amazon population, especially the rural indigenous population, displays among the worst health indicators in the Americas. High infant mortality rates in remote indigenous populations indicate that such communities have been affected by the globalization of disease, rather than favored by globalization of health. Globalization has also influenced public policies in the country, affecting the efficiency of control programs targeting tropical diseases. A new global pact for the sustainable development of the planet is needed, supported by the globalization of human values and rights. In Venezuela, new policies for the indigenous health sector, more resources, and greater autonomy could help reduce the inequities described here in the Venezuelan Amazon.

  6. TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.

    PubMed

    Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald

    2018-01-01

    Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.

  7. Dynamics of floodplain lakes in the Upper Amazon Basin during the late Holocene

    NASA Astrophysics Data System (ADS)

    Quintana-Cobo, Isabel; Moreira-Turcq, Patricia; Cordeiro, Renato C.; Aniceto, Keila; Crave, Alain; Fraizy, Pascal; Moreira, Luciane S.; Duarte Contrera, Julia Maria de Aguiar; Turcq, Bruno

    2018-01-01

    To better understand the impact of channel migration processes and climate change on the depositional dynamics of floodplain lakes of the upper Amazon Basin during the late Holocene, we collected three sediment cores from floodplain lakes of the Ucayali River and one from the Marañón River. The cores were dated with 14C, radiographed and described. Bulk density, grain size analysis and total organic carbon (TOC) were determined. The results show that sedimentation in Ucayali floodplain lakes was marked by variations during the late Holocene, with periods of intense hydrodynamic energy and abrupt accumulations, a gap in the record between about 2870 and 690 cal yr BP, and periods of more lacustrine conditions. These changes in sedimentation were associated with variations in the river's influence related to changes in its meandering course (2870 cal yr BP) and a period of severe flooding between 3550 and 3000 cal yr BP. Lake Lagarto on the Marañón River floodplain exhibits a different sedimentary environment of low hydrodynamics with palm trees and macrophytes. Apparently, the lake has not experienced intense migration processes during the last 600 cal yr BP (base of the core). Nevertheless, the river sediment flux to the lake was important from 600 to 500 cal yr BP, although it decreased thereafter until the present. This decrease in the mineral accumulation rate indicates a decrease in river discharge since 500 cal yr BP, which coincides with precipitation records from the central Andes. In the upper part of the three Ucayali floodplain cores, a 30- to 250-cm-thick layer of reworked sediments has been deposited since 1950 AD (post-bomb). In Lake Carmen, this layer is associated with invasion of the lake by the levee of a migrating meander of the Ucayali. In Lakes Hubos and La Moringa, however, the river is still far away and the deposition must be interpreted as the result of extreme flooding. The beginning of the Ucayali meander migration is dated back to

  8. Perceptions of environmental change and use of traditional knowledge to plan riparian forest restoration with relocated communities in Alcântara, Eastern Amazon.

    PubMed

    Celentano, Danielle; Rousseau, Guillaume Xavier; Engel, Vera Lex; Façanha, Cristiane Lima; Oliveira, Elivaldo Moreira de; Moura, Emanoel Gomes de

    2014-01-27

    but also the main driver of forest degradation. Effective restoration approaches must transform problems into solutions by empowering local people. Successional agroforestry combining annual crops and trees may be a suitable transitional phase for restoration. The model must be designed collectively and include species of ecological, cultural, and socioeconomic value. In deprived communities of the Amazon, forest restoration must be a process that combines environmental and social gains.

  9. Perceptions of environmental change and use of traditional knowledge to plan riparian forest restoration with relocated communities in Alcântara, Eastern Amazon

    PubMed Central

    2014-01-01

    . Conclusions Slash-and-burn agriculture is the main source of livelihood but also the main driver of forest degradation. Effective restoration approaches must transform problems into solutions by empowering local people. Successional agroforestry combining annual crops and trees may be a suitable transitional phase for restoration. The model must be designed collectively and include species of ecological, cultural, and socioeconomic value. In deprived communities of the Amazon, forest restoration must be a process that combines environmental and social gains. PMID:24468421

  10. Two Trees: Migrating Fault Trees to Decision Trees for Real Time Fault Detection on International Space Station

    NASA Technical Reports Server (NTRS)

    Lee, Charles; Alena, Richard L.; Robinson, Peter

    2004-01-01

    We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.

  11. Plasma Drug Concentrations of Orally Administered Rosuvastatin in Hispaniolan Amazon Parrots (Amazona ventralis).

    PubMed

    Beaufrère, Hugues; Papich, Mark G; Brandão, João; Nevarez, Javier; Tully, Thomas N

    2015-03-01

    Atherosclerotic diseases are common in pet psittacine birds, in particular Amazon parrots. While hypercholesterolemia and dyslipidemia have not definitely been associated with increased susceptibility to atherosclerosis in parrots, these are important and well-known risk factors in humans. Therefore statin drugs such as rosuvastatin constitute the mainstay of human treatment of dyslipidemia and the prevention of atherosclerosis. No pharmacologic studies have been performed in psittacine birds despite the high prevalence of atherosclerosis in captivity. Thirteen Hispaniolan Amazon parrots were used to test a single oral dose of 10 mg/kg of rosuvastatin with blood sampling performed according to a balanced incomplete block design over 36 hours. Because low plasma concentrations were produced in the first study, a subsequent pilot study using a dose of 25 mg/kg in 2 Amazon parrots was performed. Most plasma samples for the 10 mg/kg dose and all samples for the 25 mg/kg dose had rosuvastatin concentration below the limits of quantitation. For the 10 mg/kg study, the median peak plasma concentration and time to peak plasma concentration were 0.032 μg/mL and 2 hours, respectively. Our results indicate that rosuvastatin does not appear suitable in Amazon parrots as compounded and used at the dose in this study. Pharmacodynamic studies investigating lipid-lowering effects of statins rather than pharmacokinetic studies may be more practical and cost effective in future studies to screen for a statin with more ideal properties for potential use in psittacine dyslipidemia and atherosclerotic diseases.

  12. Processing Shotgun Proteomics Data on the Amazon Cloud with the Trans-Proteomic Pipeline*

    PubMed Central

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W.; Moritz, Robert L.

    2015-01-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. PMID:25418363

  13. Detection of Green up Phenomenon in Amazon Forests Using Spaceborne Solar-induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Chen, S.; Chen, X.; Chen, J.; Cao, X.

    2016-12-01

    The role of Amazon forests in the global carbon budget still remains uncertain. The critical issue is whether tropical forest productivity is more limited by sunlight or rainfall. Recent studies using satellite data have challenged the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions because of the adding effects of variations in sun-sensor geometry. To reducing uncertainties in knowing the sensitivity of Amazon rainforests to dry season droughts, we evaluated a newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll for the seasonal green-up phenomenon, providing for the first time a direct measurement related to vegetation photosynthetic activity as well as unaffected by sun-sensor geometry. Moreover, NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) products (the enhanced vegetation index (EVI) and leaf area index (LAI)) and Landsat Operational Land Imager (OLI) data are also compared to evaluate this phenomenon. Here we show that the green up of Amazon forests in the study area around manas site did show in SIF of chlorophyll data in 2015 drought resulted from seasonal changes. The EVI has more apparent green up phenomenon than the NDVI data both in MODIS and OLI data, suggesting that the EVI can better reflect near-infrared (NIR) and LAI information of vegetation. The OLI data is less influenced by variations caused by bidirectional reflectance effect. In addition, SIF of chlorophyll data shows well correlation relationship with the EVI, LAI and NDVI, suggesting that the SIF of chlorophyll data present well quality to capture the characteristics of the phenology of vegetation.

  14. Late Quaternary paleohydrology deduced from new marine sediment cores taken on the proximal Amazon continental margin

    NASA Astrophysics Data System (ADS)

    Nace, T.; Baker, P. A.; Dwyer, G. S.; Hollander, D. J.; Silva, C. G.

    2010-12-01

    Throughout the late Quaternary the Amazon Basin has been influenced by abrupt North-South climate forcing and has undergone several large climate variations as recorded in previously reported speleothem records. Despite its importance in the global carbon cycle there are few continuous, high-resolution records of the Amazon Basin that date back to and beyond the last glacial period. In this study, we report the first results of a marine geological expedition to the Amazon continental shelf and fan region. During this expedition we collected eight ~30 meter piston cores along with gravity, box and multicores. At both sites we undertook complementary multibeam and high resolution seismic reflection profiling. Analyses will be presented from two sets of box/gravity/piston cores. One core (32m) is from a high sedimentation site on the northern flank of the main submarine canyon within the Amazon Fan complex at 1700m water depth. The other core (30m) is located on a seamount to the south of the Amazon Fan complex at 3100m water depth. A mixed assemblage of foraminifera is used for 14C dating to obtain an age model and bulk organic geochemistry is analyzed to determine percent organic carbon, C/N ratios, δ13C and δ15N. The cores were continuously measured shipboard for magnetic susceptibility and gamma density using a GEOTEK logger. These findings uncover the contribution of pelagic and terrestrial organic matter, whether the terrigenous carbon is derived from C3 versus C4 vegetation, and whether the marine organic matter is composed of phytoplankton or marine algae.

  15. Anthropogenic Effects on the Mixing State of Aerosols over Manaus during the Green Ocean Amazon (GoAmazon) Campaign

    NASA Astrophysics Data System (ADS)

    Fraund, M. W.; Pham, D.; Harder, T.; O'Brien, R.; Wang, B.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2015-12-01

    The role that anthropogenic aerosols play in cloud formation is uncertain and contributes largely to the uncertainty in predicting future climate. One region of particular importance is the Amazon rainforest, which accounts for over half of the world's rainforest. During GoAmazon2014/15 IOP2, aerosol samples were collected at multiple sites in and around the rapidly growing industrial city of Manaus in the Amazon basin. Manaus is of scientific interest due to the pristine nature of the surrounding rainforest and the high levels of pollution coming from the city in the form of SO2, NOx, and soot. Some sites, such as the Terrestrial Ecosystem Science center (TES, also designated ZF2) located to the north of Manaus, represent air masses which have not interacted with emissions from the city. The comparison of pristine atmosphere with heavy pollution allows both for the determination of a natural baseline level of pollutants, as well as the study of pollutant's impact on the conversion of biogenic volatile organic compounds to secondary organic aerosols. Towards this goal, samples from ZF2 and other unpolluted sites will be compared to samples from the Atmospheric Radiation Measurement (ARM) climate research facility in Manacapuru (T3), which is southwest (downwind) of Manaus. Spatially resolved spectra were recorded at the sub-particle level using scanning transmission X-ray microscopy (STXM) at the carbon, nitrogen, and oxygen K-absorption edges. Scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (SEM/EDX) was also performed on to characterize higher Z elements. These two techniques together will allow for the mass fraction of atmospherically relevant elements to be determined on a per-particle basis. We will apply established procedures to determine the mixing state index for samples collected at ZF2 and T3 using elemental mass fractions. Preliminary results will be presented which focus on investigating the difference between mixing

  16. Neisseria meningitidis: a neglected cause of infectious haemorrhagic fever in the amazon rainforest.

    PubMed

    Barroso, David E; Silva, Luciete A

    2007-12-01

    Neisseria meningitidis has not been seen as a significant cause of infectious haemorrhagic fever in the Amazon inlands; most reported cases are from the city of Manaus, the capital of the State of Amazonas. This picture is sustained by the lack of reliable microbiology laboratories, the perception of the health care workers, and the difficult to reach medical assistance; thus the number of confirmed cases is even lower with no reference of the strains phenotype. We report here the investigation of a case of suspected meningococcemia and his close contacts in a rural community in the Coari Lake, up the Amazon River.

  17. Modeling seasonal and interannual variability in ecosystem carbon cycling for the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Potter, Christopher; Klooster, Steven; de Carvalho, Claudio Reis; Genovese, Vanessa Brooks; Torregrosa, Alicia; Dungan, Jennifer; Bobo, Matthew; Coughlan, Joseph

    2001-05-01

    Previous field measurements have implied that undisturbed Amazon forests may represent a substantial terrestrial sink for atmospheric carbon dioxide. We investigated this hypothesis using a regional ecosystem model for net primary production (NPP) and soil biogeochemical cycling. Seasonal and interannual controls on net ecosystem production (NEP) were studied with integration of high-resolution (8-km) multiyear satellite data to characterize Amazon land surface properties over time. Background analysis of temporal and spatial relationships between regional rainfall patterns and satellite observations (for vegetation land cover, fire counts, and smoke aerosol effects) reveals several notable patterns in the model driver data. Autocorrelation analysis for monthly vegetation "greenness" index (normalized difference vegetation index, NDVI) from the advanced very high resolution radiometer (AVHRR) and monthly rainfall indicates a significant lag time correlation of up to 12 months. At lag times approaching 36 months, autocorrelation function (ACF) values did not exceed the 95% confidence interval at locations west of about 47°W, which is near the transition zone of seasonal tropical forest and other (nonforest) vegetation types. Even at lag times of 12 months or less, the location near Manaus (approximately 60°W) represents the farthest western point in the Amazon region where seasonality of rainfall accounts significantly for monthly variations in forest phenology, as observed using NDVI. Comparisons of NDVI seasonal profiles in areas of the eastern Amazon widely affected by fires (as observed from satellite) suggest that our adjusted AVHRR-NDVI captures year-to-year variation in land cover greenness with minimal interference from small fires and smoke aerosols. Ecosystem model results using this newly generated combination of regional forcing data from satellite suggest that undisturbed Amazon forests can be strong net sinks for atmospheric carbon dioxide

  18. Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes.

    PubMed

    Nóbrega, Rodolfo L B; Guzha, Alphonce C; Lamparter, Gabriele; Amorim, Ricardo S S; Couto, Eduardo G; Hughes, Harold J; Jungkunst, Hermann F; Gerold, Gerhard

    2018-09-01

    Studies on the impacts of land-use and land-cover change on stream hydrochemistry in active deforestation zones of the Amazon agricultural frontier are limited and have often used low-temporal-resolution datasets. Moreover, these impacts are not concurrently assessed in well-established agricultural areas and new deforestations hotspots. We aimed to identify these impacts using an experimental setup to collect high-temporal-resolution hydrological and hydrochemical data in two pairs of low-order streams in catchments under contrasting land use and land cover (native vegetation vs. pasture) in the Amazon and Cerrado biomes. Our results indicate that the conversion of natural landscapes to pastures increases carbon and nutrient fluxes via streamflow in both biomes. These changes were the greatest in total inorganic carbon in the Amazon and in potassium in the Cerrado, representing a 5.0- and 5.5-fold increase in the fluxes of each biome, respectively. We found that stormflow, which is often neglected in studies on stream hydrochemistry in the tropics, plays a substantial role in the carbon and nutrient fluxes, especially in the Amazon biome, as its contributions to hydrochemical fluxes are mostly greater than the volumetric contribution to the total streamflow. These findings demonstrate that assessments of the impacts of deforestation in the Amazon and Cerrado biomes should also take into account rapid hydrological pathways; however, this can only be achieved through collection of high-temporal-resolution data. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Evapotranspiration estimation using a parameter-parsimonious energy partition model over Amazon basin

    NASA Astrophysics Data System (ADS)

    Xu, D.; Agee, E.; Wang, J.; Ivanov, V. Y.

    2017-12-01

    The increased frequency and severity of droughts in the Amazon region have emphasized the potential vulnerability of the rainforests to heat and drought-induced stresses, highlighting the need to reduce the uncertainty in estimates of regional evapotranspiration (ET) and quantify resilience of the forest. Ground-based observations for estimating ET are resource intensive, making methods based on remotely sensed observations an attractive alternative. Several methodologies have been developed to estimate ET from satellite data, but challenges remained in model parameterization and satellite limited coverage reducing their utility for monitoring biodiverse regions. In this work, we apply a novel surface energy partition method (Maximum Entropy Production; MEP) based on Bayesian probability theory and nonequilibrium thermodynamics to derive ET time series using satellite data for Amazon basin. For a large, sparsely monitored region such as the Amazon, this approach has the advantage methods of only using single level measurements of net radiation, temperature, and specific humidity data. Furthermore, it is not sensitive to the uncertainty of the input data and model parameters. In this first application of MEP theory for a tropical forest biome, we assess its performance at various spatiotemporal scales against a diverse field data sets. Specifically, the objective of this work is to test this method using eddy flux data for several locations across the Amazonia at sub-daily, monthly, and annual scales and compare the new estimates with those using traditional methods. Analyses of the derived ET time series will contribute to reducing the current knowledge gap surrounding the much debated response of the Amazon Basin region to droughts and offer a template for monitoring the long-term changes in global hydrologic cycle due to anthropogenic and natural causes.

  20. Synergy between land use and climate change increases future fire risk in Amazon forests

    NASA Astrophysics Data System (ADS)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.