Science.gov

Sample records for amazonian river water

  1. Empirical models for estimating the suspended sediment concentration in Amazonian white water rivers using Landsat 5/TM

    NASA Astrophysics Data System (ADS)

    Montanher, Otávio C.; Novo, Evlyn M. L. M.; Barbosa, Cláudio C. F.; Rennó, Camilo D.; Silva, Thiago S. F.

    2014-06-01

    Suspended sediment yield is a very important environmental indicator within Amazonian fluvial systems, especially for rivers dominated by inorganic particles, referred to as white water rivers. For vast portions of Amazonian rivers, suspended sediment concentration (SSC) is measured infrequently or not at all. However, remote sensing techniques have been used to estimate water quality parameters worldwide, from which data for suspended matter is the most successfully retrieved. This paper presents empirical models for SSC retrieval in Amazonian white water rivers using reflectance data derived from Landsat 5/TM. The models use multiple regression for both the entire dataset (global model, N = 504) and for five segmented datasets (regional models) defined by general geological features of drainage basins. The models use VNIR bands, band ratios, and the SWIR band 5 as input. For the global model, the adjusted R2 is 0.76, while the adjusted R2 values for regional models vary from 0.77 to 0.89, all significant (p-value < 0.0001). The regional models are subject to the leave-one-out cross validation technique, which presents robust results. The findings show that both the average error of estimation and the standard deviation increase as the SSC range increases. Regional models were more accurate when compared with the global model, suggesting changes in optical proprieties of water sampled at different sampling stations. Results confirm the potential for the estimation of SSC from Landsat/TM historical series data for the 1980s and 1990s, for which the in situ database is scarce. Such estimates supplement the SSC temporal series, providing a more comprehensive SSC temporal series which may show environmental dynamics yet unknown.

  2. Methane Dynamics in Large Amazonian Rivers

    NASA Astrophysics Data System (ADS)

    Sawakuchi, H. O.; Bastviken, D.; Sawakuchi, A. O.; Borges, C. D.; Tsai, S. M.; Ward, N. D.; Richey, J. E.; Ballester, M. V.; Krusche, A. V.

    2014-12-01

    The emission of methane (CH4) from rivers is not always included in the greehouse gas budget for inland waters, mainly due to a lack of information available for these systems. Unraveling the dynamics that control fluvial CH4 sources and sinks is critical for understanding the contribution of CH4 to riverine and global carbon budgets. Here, we present estimates of CH4 sources and sinks in numerous large Amazonian rivers during periods of high and low discharge. Calculations based on CH4 flux measurements and isotopic data (δ13CH4) of dissolved CH4 and bubbles in riverbed sediments were performed to assess the sources and sinks of river water CH4. Molecular analysis (qPCR) in river water samples was used to determine methanotrophic bacterial density. Methane-oxidizing bacterial counts were compared to oxidation estimates in order to assess the relationship between methane sinks and in situ bacterial communities. In general, rivers that had an enriched δ13CH4 in the water also had a higher density of methanotrophic bacteria in the water column, illustrating an important control on CH4 availability and flux related to physicochemical factors that control the abundance and activity of methanotrophic bacteria. Further, we observed a distinct relationship between the type of river (e.g. clear, white, or black water) and the flux of methane from the water column.

  3. Multiple fluxes influencing Amazonian River chemistry

    SciTech Connect

    Konhauser, K.O.; Fyfe, W.S. . Dept. of Geology)

    1992-01-01

    The chemistry of rivers in the Amazon Basin have traditionally been attributed to the atmospheric precipitation of cyclic salts and weathering of the bedrock. While both sources have proven to be of fundamental importance in the supply of solutes to the river system, research suggests that the chemistry of these rivers also locally reflect the input of land-derived aerosols from forest burning and the influence of microorganisms, such as bacteria and algae. Biomass burning has been recognized as a significant source of elements to the natural aerosol content. The authors results indicate that several metals (e.g. Ti, Fe, V, Co, and Zr) are released through the combustion of vegetation. In addition, an entire suite of metals are concentrated in the accompanying fly ash. Taking into account the vast amount of tropical forests being burned annually, this process should provide an additional flux of metals to regional fluvial systems. The ability of microorganisms to undergo chemical exchanges with their aqueous environment, involving both the uptake and excretion of various elements, has also been overlooked as an important factor in determining the chemistry of Amazonian rivers. Both filamentous algae and bacteria interact with metallic ions in solution and bind relatively large amounts in their anionic cell walls. Therefore, if one envisions a constant rain of microorganisms throughout a natural body of water, it is not difficult to imagine that they can effectively cleanse the water of dilute metals.

  4. Evidence for the control of river-water chemical stratification on the geochemistry of Amazonian floodplain sediments

    NASA Astrophysics Data System (ADS)

    Roddaz, Martin; Viers, Jérôme; Moreira-Turcq, Patricia; Blondel, Camille; Sontag, Francis; Guyot, Jean-Loup; Moreira, Luciane

    2014-05-01

    Holocene and historical Amazonian floodplain deposits collected from two cores of the Varzea Curuai flooded area (Brazil) were analysed for major and trace element geochemistry as well as Nd-Sr isotopic compositions (21 samples). The TA11 and TA14 cores (110 cm and 270 cm in depth, respectively) were collected at different locations in the varzea, near a channel inlet connecting the Amazon River to the varzea and at the centre of the varzea, respectively. The two cores represent records of sedimentation on different time-scales, with TA11 covering the last 100 years and TA14 extending back to 5600 years cal BP. Although the sediments are generally coarser in TA11 than in TA14, the major and trace element concentrations, Cr/Th and Th/Sc and Eu anomalies and Nd-Sr isotopic compositions in both cores fail to show any clear variations with depth. However, there are some chemical differences between the two analysed cores. The TA14 sediments have higher Al/Si and CIA values than those of TA11. The TA14 sediments are enriched in Th, U, Y, Nb, REE, Cs, Rb, V and Ni but show slightly depleted MgO, CaO and Sr and more strongly depleted Na2O, Zr and Hf compared with TA11. In addition, the Nd-Sr isotopic compositions of the TA11 sediment core are on the whole similar to the Solimões suspended particulate matter (SPM), whereas TA14 has a similar Nd-Sr isotopic composition compared with the SPM of the Amazon River at Obidos. These differences are best explained by chemical stratification of the Amazon River. During flooding of the Amazon River, coarser grained particulates supplied by the Solimões River are deposited in the deepest environments near the channel inlet, as recorded in the TA11 sediment core. By contrast, finer grained suspended sediments derived from the Madeira River are transported into the shallower environments of the varzea system and deposited as a result of flow expansion and loss of carrying power, as recorded in the TA14 sediment core. We calculate

  5. Oxidative mitigation of aquatic methane emissions in large Amazonian rivers.

    PubMed

    Sawakuchi, Henrique O; Bastviken, David; Sawakuchi, André O; Ward, Nicholas D; Borges, Clovis D; Tsai, Siu M; Richey, Jeffrey E; Ballester, Maria Victoria R; Krusche, Alex V

    2016-03-01

    The flux of methane (CH4 ) from inland waters to the atmosphere has a profound impact on global atmospheric greenhouse gas (GHG) levels, and yet, strikingly little is known about the dynamics controlling sources and sinks of CH4 in the aquatic setting. Here, we examine the cycling and flux of CH4 in six large rivers in the Amazon basin, including the Amazon River. Based on stable isotopic mass balances of CH4 , inputs and outputs to the water column were estimated. We determined that ecosystem methane oxidation (MOX) reduced the diffusive flux of CH4 by approximately 28-96% and varied depending on hydrologic regime and general geochemical characteristics of tributaries of the Amazon River. For example, the relative amount of MOX was maximal during high water in black and white water rivers and minimal in clear water rivers during low water. The abundance of genetic markers for methane-oxidizing bacteria (pmoA) was positively correlated with enhanced signals of oxidation, providing independent support for the detected MOX patterns. The results indicate that MOX in large Amazonian rivers can consume from 0.45 to 2.07 Tg CH4 yr(-1) , representing up to 7% of the estimated global soil sink. Nevertheless, climate change and changes in hydrology, for example, due to construction of dams, can alter this balance, influencing CH4 emissions to atmosphere. PMID:26872424

  6. Carbon Dioxide and Methane Evasion from Amazonian Rivers and Lakes

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; Barbosa, P.; Schofield, V.; Amaral, J.; Forsberg, B.; Farjalla, V.

    2013-12-01

    Floodplains, with their mosaic of aquatic habitats, constitute the majority of the wetlands of South America. We report 1) estimates of CH4 and CO2 flux from Amazonian floodplain lakes and rivers during low, rising and high water periods, and 2) identify environmental factors regulating these fluxes. We sampled 10 floodplain lakes, 4 tributaries of Solimões River, 6 stations on the Solimões main stem and 1 station on the Madeira, Negro and Amazonas rivers. Diffusive fluxes were measured with static floating chambers. CH4 fluxes were highly variable, with the majority of the values lower than 5 mmol m-2 d-1. For the lakes, no significant differences among the periods were found. CH4 concentration in the water and water temperature were the two main environmental factors regulating the diffusive flux. Our results highlight the importance of considering both the spatial and temporal scales when estimating CH4 fluxes for a region. CO2 fluxes from water to atmosphere ranged between 327 and -21 mmol m-2 d-1, averaging 58 mmol m-2 d-1. We found higher evasion rates in lakes than in rivers. For both systems the lowest rates were found in low water. pH and dissolved oxygen, phosphorous and organic carbon were the main factors correlated to CO2 evasion from the water bodies.

  7. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    SciTech Connect

    Mayorga, E; Aufdenkampe, A K; Masiello, C A; Krusche, A V; Hedges, J I; Quay, P D; Richey, J E; Brown, T A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C and {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.

  8. The influence of the Amazonian floodplain ecosystems on the trace element dynamics of the Amazon River mainstem (Brazil).

    PubMed

    Viers, Jérôme; Barroux, Guénaël; Pinelli, Marcello; Seyler, Patrick; Oliva, Priscia; Dupré, Bernard; Boaventura, Geraldo Resende

    2005-03-01

    The purpose of this paper is to forecast the role of riverine wetlands in the transfer of trace elements. One of the largest riverine wetlands in the world is the floodplain (várzea) of the Amazon River and its tributaries (Junk and Piedade, 1997). The central Amazon wetlands are constituted by a complex network of lakes and floodplains, named várzeas, that extend over more than 300,000 km2 (Junk, W.J., The Amazon floodplain--a sink or source for organic carbon? In Transport of Carbon and Minerals in Major World Rivers, edited by E.T. Degens, S. Kempe, R. Herrera, SCOPE/UNEP; 267-283, 1985.) and are among the most productive ecosystems in the world due to the regular enrichment in nutrients by river waters In order to understand if the adjacent floodplain of Amazon River have a significant influence on the trace element concentrations and fluxes of the mainstem, the concentrations of selected elements (i.e., Al, Mn, Fe, Co, Cu, Mo, Rb, Sr, Ba, and U) have been measured in the Amazon River water (Manacapuru Station, Amazonas State, Brazil) and in lake waters and plants (leaves) from a várzea(Ilha de Marchantaria, Amazonas State, Brazil) during different periods of the hydrological cycle. Four plant species (two perennial species: Pseudobombax munguba and Salix humboldtiana, and two annual herbaceous plants: Echinochloa polystachya and Eichhornia crassipes) were selected to represent the ecological functioning of the site. Time series obtained for dissolved Mn and Cu (<0.20 microm) in Amazon River water could not be explained by tributary mixing or instream processes only. Therefore, the contribution of the waters transiting the floodplains should be considered. These results suggest that the chemical composition of the waters draining these floodplains is controlled by reactions occurring at sediment-water and plant-water interfaces. Trace elements concentrations in the plants (leaves) vary strongly with hydrological seasonality. Based on the concentration data

  9. Phenology, fruit production and seed dispersal of Astrocaryum jauari (Arecaceae) in Amazonian black water floodplains.

    PubMed

    Piedade, Maria Teresa F; Parolin, Pia; Junk, Wolfgang J

    2006-12-01

    Astrocaryum jauari Mart. (Arecaceae) is one of the commonest palm species occurring in nutritionally poor Amazonian black water floodplains. It is an emergent or subcanopy tree that grows on river banks and islands, with a wide distribution along the entire flooding gradient, tolerating flood durations between 30 and 340 days. The species is important for fish nutrition in the floodplains, and is also used for hearts of palm. In the present study, the auto-ecology of A. jauari was analysed over a period of two years in the Anavilhanas Archipelago, Rio Negro, Brazil, with a focus on phenology, fruit production, and seed dispersal. Fruit fall is annual and synchronized with high water levels, with a production of 1.6 ton of fruit ha(-1). The fruits are eaten by at least 16 species of fish which either gnaw the pulp, fragment the seed, or ingest the entire fruit, thus acting as dispersal agents. Besides ichthyocory, barochory (with subsequent vegetative propagation) is an important dispersal mode, enhancing the occurrence of large masses of individuals in the Anavilhanas islands and in the region of maximum palm heart extraction near Barcelos. PMID:18457155

  10. Parasitism of the isopod Artystone trysibia in the fish Chaetostoma dermorhynchum from the Tena River (Amazonian region, Ecuador).

    PubMed

    Junoy, Juan

    2016-01-01

    The isopod Artystone trysibia Schioedte, 1866 is described by using a collection of specimens that were found parasitizing loricariid fish Chaetostoma dermorhynchum Boulenger, 1887 in the Tena River (Napo province, Ecuador, Amazonian region). Additionally to freshly collected specimens, complementary data of the parasite was obtained from preserved fishes at Ecuadorian museums. This is the first record of A. trysibia in Ecuador, and the most upstream location for the species. The new host fish, Chaetostoma dermorhynchum, is used locally as food. PMID:26466983

  11. Methane emissions from Amazonian Rivers and their contribution to the global methane budget.

    PubMed

    Sawakuchi, Henrique O; Bastviken, David; Sawakuchi, André O; Krusche, Alex V; Ballester, Maria V R; Richey, Jeffrey E

    2014-09-01

    Methane (CH4 ) fluxes from world rivers are still poorly constrained, with measurements restricted mainly to temperate climates. Additional river flux measurements, including spatio-temporal studies, are important to refine extrapolations. Here we assess the spatio-temporal variability of CH4 fluxes from the Amazon and its main tributaries, the Negro, Solimões, Madeira, Tapajós, Xingu, and Pará Rivers, based on direct measurements using floating chambers. Sixteen of 34 sites were measured during low and high water seasons. Significant differences were observed within sites in the same river and among different rivers, types of rivers, and seasons. Ebullition contributed to more than 50% of total emissions for some rivers. Considering only river channels, our data indicate that large rivers in the Amazon Basin release between 0.40 and 0.58 Tg CH4  yr(-1) . Thus, our estimates of CH4 flux from all tropical rivers and rivers globally were, respectively, 19-51% to 31-84% higher than previous estimates, with large rivers of the Amazon accounting for 22-28% of global river CH4 emissions. PMID:24890429

  12. Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests.

    PubMed

    Schöngart, Jochen; Piedade, Maria Teresa F; Wittmann, Florian; Junk, Wolfgang J; Worbes, Martin

    2005-09-01

    Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) is a dominant legume tree species occurring at low elevations of nutrient-poor black-water (igapó) and nutrient-rich white-water floodplain forests (várzea) of Amazonia. As a consequence of the annual long-term flooding this species forms distinct annual tree rings allowing dendrochronological analyses. From both floodplain types in Central Amazonia we sampled cores from 20 large canopy trees growing at identical elevations with a flood-height up to 7 m. We determined tree age, wood density (WD) and mean radial increment (MRI) and synchronized ring-width patterns of single trees to construct tree-ring chronologies for every study site. Maximum tree age found in the igapó was more than 500 years, contrary to the várzea with ages not older than 200 years. MRI and WD were significantly lower in the igapó (MRI=1.52+/-0.38 mm year(-1), WD=0.39+/-0.05 g cm(-3)) than in the várzea (MRI=2.66+/-0.67 mm year(-1), WD=0.45+/-0.03 g cm(-3)). In both floodplain forests we developed tree-ring chronologies comprising the period 1857-2003 (n=7 trees) in the várzea and 1606-2003 (n=13 trees) in the igapó. The ring-width in both floodplain forests was significantly correlated with the length of the terrestrial phase (vegetation period) derived from the daily recorded water level in the port of Manaus since 1903. In both chronologies we found increased wood growth during El Niño events causing negative precipitation anomalies and a lower water discharge in Amazonian rivers, which leads to an extension of the terrestrial phase. The climate signal of La Niña was not evident in the dendroclimatic proxies. PMID:16025354

  13. Evaluation of diffusive gradients in thin films technique (DGT) for measuring Al, Cd, Co, Cu, Mn, Ni, and Zn in Amazonian rivers.

    PubMed

    Yabuki, Lauren Nozomi Marques; Colaço, Camila Destro; Menegário, Amauri Antonio; Domingos, Roberto Naves; Kiang, Chang Hung; Pascoaloto, Domitila

    2014-02-01

    Studies concerning the lability and bioavailability of trace metals have played a prominent role in the search for contamination of water resources. This work describes the first application yet of the diffusive gradients in thin films technique (DGT) to the determination of the fraction of free plus labile metals in waters from the Amazon Basin. Due to the complexity of the use of DGT for samples with low ionic strength and high organic matter content (characteristic of Amazonian rivers), a new analytical procedure was developed. The method is based on the determinations of apparent diffusion coefficients (Dap) in the laboratory, by performing deployments in samples collected in the corresponding sites of study. The Dap thereby determined is then used for in situ measurements. The suitability of the proposed approach for determination of labile Al, Cd, Co, Cu, Mn, Ni, and Zn in the Amazon River and Rio Negro (English: Black River) was evaluated. Except for Co, Mn (in a deployment at Rio Negro), Ni and Zn (in a deployment at Amazon River), labile in situ measurements were lower or similar to dissolved concentrations, indicating suitability of the proposed approach. PMID:24052239

  14. Uranium and thorium isotopes in the rivers of the Amazonian basin: hydrology and weathering processes

    NASA Astrophysics Data System (ADS)

    Marques, Aguinaldo N., Jr.; Al-Gharib, Iyad; Bernat, Michel; Fernex, François

    2003-01-01

    Two expeditions (October 1989 and May 1992) were carried out to two points of the main Amazon River channel and four tributaries. The Solimões and Madeira rivers, taking their origin in the Andes, are whitewater rivers. The Negro River is a typical acid, blackwater river. The Trombetas River flows through bauxite-rich areas, and is characterized by low concentrations of dissolved humic substances. The 238U, 234U, 232Th and 230Th activities were recorded from dissolved, suspended particulate phases and river bank sediments. The latter were analysed for their 226Ra, 228Ra and 210Pb contents, and also subjected to leaching with 0·2 M hydroxylamine-hydrochloride solution to determine the concentrations of radionuclides bound to amorphous Fe hydroxides and Mn oxides and hydroxides.The dissolved U average concentration in the Amazon system is ten times lower than the mean world river concentration. The uranium concentration observed at Óbidos in the lower Amazon (0·095 µg L-1), where the U content in the river bank sediments and suspended matter is lowest, suggests U release from the solid phase during river transport. About 485 t of U are transported annually to the Amazon delta area in dissolved form, and 1943 t bound to suspended particulate matter.Total U and Th concentrations in the river bank sediments ranged from 1·59 to 7·14 µg g-1 and from 6·74 to 32 µg g-1, respectively. The highest concentrations were observed in the Trombetas River. The proportion extracted by means of the hydroxylamine solution (HL) was relatively high for U in the Trombetas river bank sediment (31%) and for Th in the Solimões sediment (30%).river waters and downstream Amazon water (Óbidos) were >1, but were <1 in the Negro River (at Manaus). The activity ratios of dissolved U correlate with pH and also with the U activity ratios in the river bank sediment

  15. Rainfall exclusion in an eastern Amazonian forest alters soil water movement and depth of water uptake.

    PubMed

    Romero-Saltos, Hugo; Sternberg, Leonel da S L; Moreira, Marcelo Z; Nepstad, Daniel C

    2005-03-01

    Deuterium-labeled water was used to study the effect of the Tapajós Throughfall Exclusion Experiment (TTEE) on soil moisture movement and on depth of water uptake by trees of Coussarea racemosa, Sclerolobium chrysophyllum, and Eschweilera pedicellata. The TTEE simulates an extended dry season in an eastern Amazonian rainforest, a plausible scenario if the El Niño phenomenon changes with climate change. The TTEE excludes 60% of the wet season throughfall from a 1-ha plot (treatment), while the control 1-ha plot receives precipitation year-round. Mean percolation rate of the label peak in the control plot was greater than in the treatment plot during the wet season (0.75 vs. 0.07 m/mo). The rate was similar for both plots during the dry season (ca. 0.15 m/mo), indicative that both plots have similar topsoil structure. Interestingly, the label peak in the control plot during the dry season migrated upward an average distance of 64 cm. We show that water probably moved upward through soil pores-i.e., it did not involve roots (hydraulic lift)-most likely because of a favorable gradient of total (matric + gravitational) potential coupled with sufficient unsaturated hydraulic conductivity. Water probably also moved upward in the treatment plot, but was not detectable; the label in this plot did not percolate below 1 m or beyond the depth of plant water uptake. During the dry season, trees in the rainfall exclusion plot, regardless of species, consistently absorbed water significantly deeper, but never below 1.5-2 m, than trees in the control plot, and therefore may represent expected root function of this understory/subcanopy tree community during extended dry periods. PMID:21652421

  16. Palaeontological evidence for the last temporal occurrence of the ancient western Amazonian river outflow into the Caribbean.

    PubMed

    Aguilera, Orangel; Lundberg, John; Birindelli, Jose; Sabaj Pérez, Mark; Jaramillo, Carlos; Sánchez-Villagra, Marcelo R

    2013-01-01

    Fossil catfishes from fluvio-lacustrine facies of late Miocene Urumaco, early Pliocene Castilletes and late Pliocene San Gregorio formations provide evidence of a hydrographic connection in what is today desert regions of northern Colombia and Venezuela. New discoveries and reevaluation of existing materials leads to the recognition of two new records of the pimelodid Brachyplatystoma cf. vaillantii, and of three distinct doradid taxa: Doraops sp., Rhinodoras sp., and an unidentified third form. The presence of fossil goliath long-whiskered catfishes and thorny catfishes are indicative of the persistence of a fluvial drainage system inflow into the South Caribbean during the Pliocene/Pleistocene boundary, complementary to the previous western Amazonian hydrographic system described from the Middle Miocene Villavieja Formation in central Colombia and Late Miocene Urumaco Formation in northwestern Venezuela. The Pliocene Castilletes and San Gregorio formations potentially represent the last lithostratigraphic units related with an ancient western Amazonian fish fauna and that drainage system in the Caribbean. Alternatively, it may preserve faunas from a smaller, peripheral river basin that was cut off earlier from the Amazon-Orinoco, today found in the Maracaibo basin and the Magdalena Rivers. PMID:24098778

  17. Palaeontological Evidence for the Last Temporal Occurrence of the Ancient Western Amazonian River Outflow into the Caribbean

    PubMed Central

    Aguilera, Orangel; Lundberg, John; Birindelli, Jose; Sabaj Pérez, Mark; Jaramillo, Carlos; Sánchez-Villagra, Marcelo R.

    2013-01-01

    Fossil catfishes from fluvio-lacustrine facies of late Miocene Urumaco, early Pliocene Castilletes and late Pliocene San Gregorio formations provide evidence of a hydrographic connection in what is today desert regions of northern Colombia and Venezuela. New discoveries and reevaluation of existing materials leads to the recognition of two new records of the pimelodid Brachyplatystoma cf. vaillantii, and of three distinct doradid taxa: Doraops sp., Rhinodoras sp., and an unidentified third form. The presence of fossil goliath long-whiskered catfishes and thorny catfishes are indicative of the persistence of a fluvial drainage system inflow into the South Caribbean during the Pliocene/Pleistocene boundary, complementary to the previous western Amazonian hydrographic system described from the Middle Miocene Villavieja Formation in central Colombia and Late Miocene Urumaco Formation in northwestern Venezuela. The Pliocene Castilletes and San Gregorio formations potentially represent the last lithostratigraphic units related with an ancient western Amazonian fish fauna and that drainage system in the Caribbean. Alternatively, it may preserve faunas from a smaller, peripheral river basin that was cut off earlier from the Amazon-Orinoco, today found in the Maracaibo basin and the Magdalena Rivers. PMID:24098778

  18. Uranium in river water

    SciTech Connect

    Palmer, M.R. ); Edmond, J.M. )

    1993-10-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 [times] 10[sup 7] mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load.

  19. Simulating drought impacts on energy and water balance in an Amazonian rainforest

    NASA Astrophysics Data System (ADS)

    Imbuzeiro, H. A.; Costa, M. H.; Galbraith, D.; Christoffersen, B. J.; Powell, T.; Harper, A. B.; Levine, N. M.; Rowland, L.; Moorcroft, P. R.; Meir, P.; da Costa, A. L.; Brando, P. M.; Wang, J.; Bras, R. L.; Malhi, Y.; Saleska, S. R.; Williams, M. D.

    2013-05-01

    The studies of the interaction between vegetation and climate change in the Amazon Basin indicate that up to half of the region's forests may be displaced by savanna vegetation by the end of the century. Additional analyses suggest that complex interactions among land use, fire-frequency, and episodic drought are driving an even more rapid process of the forest impoverishment and displacement referred here as "savannization". But it is not clear whether surface/ecosystem models are suitable to analyze extreme events like a drought. A long-term observation of energy and water in throughfall exclusion experiments has provided unique insights into the energy and water dynamics of Amazonian rainforests during drought conditions. In this study, we will evaluate how well the six surface/ecosystem models (CLM-DGVM, ED 2.0, IBIS, JULES, SiB and SPA) quantify the energy and water dynamics from two Amazonian throughfall exclusion experiments. All models were run for the Tapajós and Caixuana sites with one baseline year using normal precipitation (i.e. do not impose a drought) and then the drought manipulation was imposed for several drought levels (10 to 90% rainfall exclusion). The sap flow, soil moisture, sensible and latent heat flux will be used to analyze if the models are able to capture dynamics of stress and what the implications for the energy and water dynamics are. We find that models are sensible to drought effects when they simulate the energy fluxes (sensible and latent heat), but the water dynamic is not well capture by the models.

  20. Floodplain Modulation of Solute Fluxes from Mountainous Regions: the Amazonian Madre de Dios River Case Study

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; West, A. J.; Baronas, J. J.; Ponton, C.; Clark, K. E.; Feakins, S. J.; Galy, V.

    2015-12-01

    In many large river systems, solutes released by chemical weathering in mountainous regions are transported through floodplains before being discharged into the ocean. Chemical reactions within floodplains can both add and remove solutes, significantly modulating fluxes. Despite their importance in the relationship between tectonic uplift and solute fluxes to the ocean, many aspects of floodplain processes are poorly constrained since the chemistry of large rivers is also significantly affected by the mixing between multiple tributaries, which makes the separation and quantification of floodplain processes challenging. Here we explore how floodplain processes affect a suite of major and trace elements in the Madre de Dios River system in Peru. To separate floodplain processes from conservative mixing, we developed a tributary mixing model that uses water isotopic ratios and chloride concentrations measured in each tributary and upstream and downstream of each tributary confluence for all major tributaries along a floodplain reach. The results of the tributary mixing model allow for the chemical composition of the mainstem of the Madre de Dios River to be modeled assuming completely conservative mixing. Differences between the modeled and measured chemical composition of the mainstem are then used to identify and quantify the effects of floodplain processes on different solutes. Our results show that during both the wet and dry seasons, Li is removed and Ca, Mg, and Sr are added to the dissolved load during floodplain transit. Other solutes, like Na and SO4, appear to behave conservatively during floodplain transit. Likely, the removal of Li from the dissolved load reflects the precipitation of secondary silicate minerals in the floodplain. The release of Ca, Mg, and Sr likely reflects the dissolution of detrital carbonate minerals. Our analyses also show that tributaries with Andean headwaters contribute disproportionately to solute budgets while the water budget

  1. Understanding the relationship between rainfall and river discharge: trends in an Amazonian watershed

    NASA Astrophysics Data System (ADS)

    Nóbrega, Rodolfo; Guzha, Alphonce; Freire, Paula; Santos, Celso; Gerold, Gerhard

    2013-04-01

    A research challenge in the Amazon rainforest is to understand different environmental patterns in a five million km2 region which with poor and/or unavailable environmental data. Deforestation and degradation in this forest have motivated intense monitoring activities in order to understand its impact and support the formulation of sustainable environmental policies. Time series analysis of hydrologic data is often use as a tool to evaluate watershed responses to climatic and anthropogenic influences. In this study, trend analysis of stream discharge from a 35600 km² watershed (Curuá River), located in southern Amazon was performed using 31 years discharge and rainfall data (1976-2006). The Curuá River is a tributary of Xingu River, site of the controversial Belo Monte dam. The aim of this work was to investigate the temporal variability of discharge, in relation to associated rainfall variability in order to contribute to a better understanding of the hydrological status of the watershed. The Mann Kendall non parametric tests were performed on daily, seasonal and annual discharge data. Frequency analysis using wavelet transform was also done, and annual and seasonal rainfall data was analyzed and correlated to discharge. Results from this study indicate decreasing trends in discharge (intra- and inter-annual) but while there is no evidence of a decreasing trend in in rainfall. Further interpretation of the data for possible causes of discharge changes is needed at the local study level, and implications of these results discussed in the context of climate change, deforestation and water resource management (including dam's constructions last decades). Results from this study do not confirm findings from other regional scale trend analyses, and therefore is it important to quantify the spatial extension of these decreasing stream flow trends in the Amazonia.

  2. Unique meteorite from early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034.

    PubMed

    Agee, Carl B; Wilson, Nicole V; McCubbin, Francis M; Ziegler, Karen; Polyak, Victor J; Sharp, Zachary D; Asmerom, Yemane; Nunn, Morgan H; Shaheen, Robina; Thiemens, Mark H; Steele, Andrew; Fogel, Marilyn L; Bowden, Roxane; Glamoclija, Mihaela; Zhang, Zhisheng; Elardo, Stephen M

    2013-02-15

    We report data on the martian meteorite Northwest Africa (NWA) 7034, which shares some petrologic and geochemical characteristics with known martian meteorites of the SNC (i.e., shergottite, nakhlite, and chassignite) group, but also has some unique characteristics that would exclude it from that group. NWA 7034 is a geochemically enriched crustal rock compositionally similar to basalts and average martian crust measured by recent Rover and Orbiter missions. It formed 2.089 ± 0.081 billion years ago, during the early Amazonian epoch in Mars' geologic history. NWA 7034 has an order of magnitude more indigenous water than most SNC meteorites, with up to 6000 parts per million extraterrestrial H(2)O released during stepped heating. It also has bulk oxygen isotope values of Δ(17)O = 0.58 ± 0.05 per mil and a heat-released water oxygen isotope average value of Δ(17)O = 0.330 ± 0.011 per mil, suggesting the existence of multiple oxygen reservoirs on Mars. PMID:23287721

  3. Nutrient fluctuations in the Quatipuru river: A macrotidal estuarine mangrove system in the Brazilian Amazonian basin

    NASA Astrophysics Data System (ADS)

    Pamplona, Fábio Campos; Paes, Eduardo Tavares; Nepomuceno, Aguinaldo

    2013-11-01

    The temporal and spatial variability of dissolved inorganic nutrients (NO3-, NO2-, NH4+, PO43- and DSi), total nitrogen (TN), total phosphorus (TP), nutrient ratios, suspended particulate matter (SPM) and Chlorophyll-a (Chl-a) were evaluated for the macrotidal estuarine mangrove system of the Quatipuru river (QUATIES), east Amazon coast, North Brazil. Temporal variability was assessed by fortnightly sampling at a fixed station within the middle portion of the estuary, from November 2009 to November 2010. Spatial variability was investigated from two field surveys conducted in November 2009 (dry season) and May 2010 (rainy season), along the salinity gradient of the system. The average DIN (NO3- + NO2- + NH4+) concentration of 9 μM in the dry season was approximately threefold greater in comparison to the rainy season. NH4+ was the main form of DIN in the dry season, while NO3- predominated in the rainy season. The NH4+ concentrations in the water column during the dry season are largely attributed to release by tidal wash-out of the anoxic interstitial waters of the surficial mangrove sediments. On the other hand, the higher NO3- levels during the wet season, suggested that both freshwater inputs and nitrification processes in the water column acted in concert. The river PO43- concentrations (DIP < 1 μM) were low and similar throughout the year. DIN was thus responsible for the major temporal and spatial variability of the dissolved DIN:DIP (N:P) molar ratios and nitrogen corresponded, in general, to the prime limiting nutrient for the sustenance of phytoplankton biomass in the estuary. During the dry season, P-limitation was detected in the upper estuary. PO43- adsorption to SPM was detected during the rainy season and desorption during the dry season along the salinity gradient. In general, the average Chl-a level (14.8 μg L-1) was 2.5 times higher in the rainy season than in the dry season (5.9 μg L-1). On average levels reached maxima at about 14 km from

  4. Extension of the geographic range of Ateles chamek (Primates, Atelidae): evidence of river-barrier crossing by an amazonian primate.

    PubMed

    Rabelo, Rafael Magalhães; Silva, Felipe Ennes; Vieira, Tatiana; Ferreira-Ferreira, Jefferson; Paim, Fernanda Pozzan; Dutra, Wallace; de Souza E Silva Júnior, José; Valsecchi, João

    2014-04-01

    The black-faced black spider monkey (Ateles chamek) is endangered because of hunting and habitat loss. There are many gaps in our understanding of its geographic distribution. The Ucayali-Solimões-Amazon fluvial complex is currently recognized as the northern boundary of the species' range, although published reports have indicated that it occurs north of the Rio Solimões. In this study we investigate published records, generate new field records, and assess the current information concerning the northern boundary of this species' range. We conducted the study at the Mamirauá Sustainable Development Reserve in the central Brazilian Amazon, an area of 1,124,000 ha that consists entirely of Amazonian flooded forest (várzea). We collected data on the occurrence of the species from museum specimens and through field surveys, including interviews with local residents, direct observations, and the collection of new museum specimens. We confirmed the presence of A. chamek at 17 locations in the reserve, one of which was an island formed by a river bend cut-off that would have effectively taken any resident spider to the (new) north bank of the Solimões. We therefore conclude that fluvial dynamics were involved in creating the conditions for the dispersal and colonization of the species on the northern bank of the Rio Solimões. The data we present extends the known distribution of the species and increases its representation in protected areas. PMID:24510072

  5. Mercury Contamination in an Indicator Fish Species from Andean Amazonian Rivers Affected by Petroleum Extraction.

    PubMed

    Webb, Jena; Coomes, Oliver T; Mainville, Nicolas; Mergler, Donna

    2015-09-01

    Elevated mercury (Hg) concentrations in fish from Amazonia have been associated with gold-mining, hydroelectric dams and deforestation but few studies consider the role of petroleum extraction. Hg levels were determined in fish samples collected in three river basins in Ecuador and Peru with contrasting petroleum exploitation and land-use characteristics. The non-migratory, piscivorous species, Hoplias malabaricus, was used as a bioindicator. The rate of Hg increase with body weight for this species was significantly higher on the Corrientes River, near the site of a recent oil spill, than on the other two rivers. In the absence of substantial deforestation and other anthropogenic sources in the Corrientes River basin, this finding suggests that oil contamination in Andean Amazonia may have a significant impact on Hg levels in fish. PMID:26205230

  6. Pecos River Water Management Project

    NASA Astrophysics Data System (ADS)

    Roberts, J. D.; James, S. C.

    2003-12-01

    Sandia National Laboratories is providing technical assistance to farmer members of the Carlsbad Irrigation District (CID) to better plan the storage, delivery, and application of water to the Carlsbad Project. The surface waters along the Pecos River are allocated by the State of New Mexico to three major entities: 1) The State of Texas - each year a percentage of water from the natural river flow must be delivered to Texas as governed by the Interstate Streams Commission; 2) CID farmer members - a fixed portion of water must be delivered to the farming members of the CID; and 3) wildlife - an amount of water must be allocated to support the wildlife habitat in the Pecos River, most notably, the endangered Pecos Bluntnose Shiner Minnow. The Pecos Bluntnose Shiner Minnow habitat preference is under investigation by other state and national agencies and preliminary work has established that water depth, water velocity, and sediment activity (dunes, ripples, etc.) are the key parameters influencing minnow habitat preference. The amount of water (river flow rate) necessary to maintain a preferable habitat to support this species has yet to be determined. With a limited amount of water in the Pecos River and its reservoirs, it is critical to allocate water efficiently such that habitat is maintained, the farmers of the CID are supported, and New Mexico meets its commitments to the State of Texas. This study investigates the relationship between flow rate in the river and water depth, water velocity, and sediment activity. The goal is to establish a predictive tool that supports informed decisions about water management practices along the Pecos River that will maximize water available for agriculture and the State of Texas while maintaining the aquatic habitat.

  7. NEUSE RIVER WATER QUALITY DATABASE

    EPA Science Inventory

    The Neuse River water quality database is a Microsoft Access application that includes multiple data tables and some associated queries. The database was developed by Prof. Jim Bowen's research group.

  8. Northwest Africa 7034: New Unique Water-rich Martian Meteorite from the Early Amazonian Epoch

    NASA Astrophysics Data System (ADS)

    Agee, C. B.; Wilson, N.; Ziegler, K. G.; McCubbin, F. M.; Polyak, V.; Nunn, M.; Sharp, Z. D.; Asmerom, Y.; Thiemens, M. H.

    2012-12-01

    Northwest Africa (NWA) 7034 is a porphyritic basaltic breccia that shares some geochemical characterstics with known martian meteorites (SNC), but also possesses some unique characteristics that would exclude it from the current SNC grouping. Instead, it has a major and minor element composition that is a remarkably good match with the geochemistry of the rocks and soil at Gusev Crater measured by the Spirit rover and the average martian crust composition from the Odyssey Orbiter gamma ray spectrometer. The mismatch of orbiter and rover data with SNC meteorites has been a perplexing enigma, however with the discovery of NWA 7034 we may now have found a "missing link" between martian meteorites and space craft data. A five-point isochon gives an Rb-Sr age for NWA 7034 of 2.089±0.081 Ga (2σ) (MSWD=6.6) and an initial 87Sr/86Sr ratio of 0.71359±54. The Sm-Nd data for the same samples show more scatter, with an isochron of 2.19±1.4 Ga (2σ). NWA 7034 is REE enriched crustal rock (La x58 CI) and strongly light REE over heavy REE enriched (La/Yb)N=2.3, with negative-Eu anomaly (Eu/Eu*=0.67). The whole rock has 143Nd/144Nd=0.511756 and 147Sm/144Nd=0.1664, giving a calculated initial (source value) 143Nd/144Nd=0.509467 (initial ɛNd=-9.1) which requires that it be derived from an enriched martian reservoir, with an inferred time-integrated 147Sm/144Nd=0.1689, assuming separation from a chondrite-like martian mantle 4.5 Ga. An age of ~2.1 Ga for NWA 7034 would make it the first meteorite sample from the early Amazonian or late Hesperian epoch in Mars geologic history. Oxygen isotope analyses of NWA 7034 were performed by laser fluorination at UNM on acid-washed bulk sample and at UCSD on vacuum pre-heated (1000°C) bulk sample and give mean values Δ17O=0.57±0.05‰ n=10 and Δ17O=0.50±0.03‰ n=2, respectively. These interlab values are in good agreement, but are significantly higher than literature values for SNC meteorites (Δ17O range 0.15-0.45‰). There may be

  9. Abundance, diversity, and patterns of distribution of primates on the Tapiche River in Amazonian Peru.

    PubMed

    Bennett, C L; Leonard, S; Carter, S

    2001-06-01

    This work presents data on the relative diversity, abundance, and distribution patterns of primates in a 20 km2 area of the Tapiche River in the Peruvian Amazon. Population data were collected while the study area was both inundated and dry (March to September 1997) using conventional line-transect census techniques. Survey results reflected the presence of 11 primate species, but population parameters on only eight of the species will be presented, including saddleback tamarins (Saguinus fuscicollis), Bolivian squirrel monkeys (Saimiri boliviensis), brown capuchins (Cebus apella), white-fronted capuchins (Cebus albifrons), monk sakis (Pithecia monachus), red titi monkeys (Callicebus cupreus), red uakaris (Cacajao calvus), and red howler monkeys (Alouatta seniculus). Woolly monkeys (Lagothrix lagotricha), night monkeys (Aotus nancymaae), and pygmy marmosets (Callithrix pygmaea) were also seen in the area. The data for the smaller-bodied primates is similar to that reported almost 18 years earlier, but the data for the larger-bodied primates reflect a loss in the number of animals present in the area. Pressure from hunters and the timber industry may account for declining numbers of large-bodied primates, while it appears that natural features peculiar to the conservation area contribute to the patchy pattern of distribution. PMID:11376449

  10. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2.

    PubMed

    Richey, Jeffrey E; Melack, John M; Aufdenkampe, Anthony K; Ballester, Victoria M; Hess, Laura L

    2002-04-11

    Terrestrial ecosystems in the humid tropics play a potentially important but presently ambiguous role in the global carbon cycle. Whereas global estimates of atmospheric CO2 exchange indicate that the tropics are near equilibrium or are a source with respect to carbon, ground-based estimates indicate that the amount of carbon that is being absorbed by mature rainforests is similar to or greater than that being released by tropical deforestation (about 1.6 Gt C yr-1). Estimates of the magnitude of carbon sequestration are uncertain, however, depending on whether they are derived from measurements of gas fluxes above forests or of biomass accumulation in vegetation and soils. It is also possible that methodological errors may overestimate rates of carbon uptake or that other loss processes have yet to be identified. Here we demonstrate that outgassing (evasion) of CO2 from rivers and wetlands of the central Amazon basin constitutes an important carbon loss process, equal to 1.2 +/- 0.3 Mg C ha-1 yr-1. This carbon probably originates from organic matter transported from upland and flooded forests, which is then respired and outgassed downstream. Extrapolated across the entire basin, this flux-at 0.5 Gt C yr-1-is an order of magnitude greater than fluvial export of organic carbon to the ocean. From these findings, we suggest that the overall carbon budget of rainforests, summed across terrestrial and aquatic environments, appears closer to being in balance than would be inferred from studies of uplands alone. PMID:11948346

  11. Spatial Patterns of In-Situ Production and Respiration within a Turbid Tropical River: Implications for Amazonian Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Gagne-Maynard, W.; Ward, N. D.; Sawakuchi, H. O.; Neu, V.; Cunha, A. C.; da Silva, R.; Brito, D. C.; de Matos, A.; Keil, R. G.; Krusche, A. V.; Richey, J. E.

    2014-12-01

    Rivers worldwide are net processors of organic matter(OM), driving the evasive flux of CO2 from inland waters. The Amazon River outgases nearly 0.5PgC/yr, much of which is thought to be driven by the in-situ respiration of terrestrially-derived OM. However, the substrates fueling this respiration and the processes governing it remain fairly unconstrained. Here, we chose to examine the roles of in-situ algal and floodplain macrophyte production in fueling respiration in the lower Amazon River. Contrary to the previous assumptions of turbid, tropical rivers, δ18O-O2 data revealed the presence of photosynthetic O2 throughout the main stem of the lower Amazon. This data was used in a steady-state model to estimate the Respiration to Production(R:P) ratio at these sites. This model reveals a low R:P, even at the mouth of the Amazon. Diel O2measurements were made to test this steady-state assumption, revealing little variation over a 24 hour cycle. δ18O-O2 and δ13C-DIC data was combined with in-situ, continuous measurements of CO2 and O2 to show spatial trends in respiration and production. The floodplains and adjacent river margins had elevated δ18O(indicating higher photosynthetic input) and δ13C(indicating respiration of C4 macrophytes). Continuous CO2 and O2 measurements revealed that these sites were "hot spots" for respiration, with low O2 saturation and elevated pCO2 fueled by the input of macrophytic OM . Results reveal the importance of spatial dynamics in understanding respiration within large, tidal rivers.

  12. Trace Elements in River Waters

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Viers, J.; Dupré, B.

    2003-12-01

    Trace elements are characterized by concentrations lower than 1 mg L-1 in natural waters. This means that trace elements are not considered when "total dissolved solids" are calculated in rivers, lakes, or groundwaters, because their combined mass is not significant compared to the sum of Na+, K+, Ca2+, Mg2+, H4SiO4, HCO3-, CO32-, SO42-, Cl-, and NO3-. Therefore, most of the elements, except about ten of them, occur at trace levels in natural waters. Being trace elements in natural waters does not necessarily qualify them as trace elements in rocks. For example, aluminum, iron, and titanium are major elements in rocks, but they occur as trace elements in waters, due to their low mobility at the Earth's surface. Conversely, trace elements in rocks such as chlorine and carbon are major elements in waters.The geochemistry of trace elements in river waters, like that of groundwater and seawater, is receiving increasing attention. This growing interest is clearly triggered by the technical advances made in the determination of concentrations at lower levels in water. In particular, the development of inductively coupled plasma mass spectrometry (ICP-MS) has considerably improved our knowledge of trace-element levels in waters since the early 1990s. ICP-MS provides the capability of determining trace elements having isotopes of interest for geochemical dating or tracing, even where their dissolved concentrations are extremely low.The determination of trace elements in natural waters is motivated by a number of issues. Although rare, trace elements in natural systems can play a major role in hydrosystems. This is particularly evident for toxic elements such as aluminum, whose concentrations are related to the abundance of fish in rivers. Many trace elements have been exploited from natural accumulation sites and used over thousands of years by human activities. Trace elements are therefore highly sensitive indexes of human impact from local to global scale. Pollution

  13. Harlem River water quality improvement

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2011-12-01

    Harlem River is a navigable tidal strait, which flows 8 miles connecting the Hudson River and the East River. In wet weather condition, there is untreated sewage mixed rainfall discharged to the river directly at CSO's discharge point. These raw sewer contain bacteria such as Fecal Coliform, E. Coli, Entercocci those can cause illness. There are total 37 CSOs dicharge point along the Harlem River. Water samples were collected from five sites and analyzed on a weekly basis in spring from March to May 2011, and on a monthly basis in July and August. Results showed that ammonia concentrations were ranged from 0.25 to 2.2 mg/L, and there was an increased pattern in summer when temperature increases; soluble reactive phosphorus (SRP) ranged from 0.04 to 0.2 mg/L; total P (TP) ranged from 0.03 to 0.7 mg/L; organic P (OP) ranged from 0.006 to 0.5 mg/L. In rain storm (wet weather condition), untreated sewer discharged into the river with distinguished higher nutrient concentrations (ammonia=2.9 mg/L, TP=3.1 mg/L, OP=2.9 mg/L) and extremely high bacteria levels (fecal coliform-millions, countless colonies; E. Coli-thousands). Results showed spatial variations among the five sites, seasonal variations from spring to summer, and variations under different weather conditions (temperature, storms). The raw sewer discharge during heavy rainstorms resulted in higher nutrients and bacteria levels, and the water quality was degraded.

  14. The economic value of Trinity River water

    USGS Publications Warehouse

    Douglas, A.J.; Taylor, J.G.

    1999-01-01

    The Trinity River, largest tributary of the Klamath River, has its head-waters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.The Trinity River, largest tributary of the Klamath River, has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the

  15. Differential Expression of Myogenic Regulatory Factor Genes in the Skeletal Muscles of Tambaqui Colossoma macropomum (Cuvier 1818) from Amazonian Black and Clear Water

    PubMed Central

    Alves-Costa, F. A.; Barbosa, C. M.; Aguiar, R. C. M.; Mareco, E. A.; Dal-Pai-Silva, M.

    2013-01-01

    Hypothesizing that the Amazonian water system differences would affect the expression of muscle growth-related genes in juvenile tambaqui Colossoma macropomum (Cuvier 1818), this study aimed to analyze the morphometric data and expression of myogenic regulatory factors (MRFs) in the white and red muscle from tambaqui obtained from clear and black Amazonian water systems. All of the MRF transcript levels (myod, myf5, myogenin, and mrf4) were significantly lower in the red muscle from black water fish in comparison to clear water fish. However, in white muscle, only the myod transcript level was significantly decreased in the black water tambaqui. The changes in MRFs gene expression in muscle fibers of tambaqui from black water system provide relevant information about the environmental influence as that of water systems on gene expression of muscle growth related genes in the C. macropomum. Our results showed that the physical and chemical water characteristics change the expression of genes that promote muscle growth, and these results may be also widely applicable to future projects that aim to enhance muscle growth in fish that are of substantial interest to the aquaculture. PMID:24350238

  16. Differential Expression of Myogenic Regulatory Factor Genes in the Skeletal Muscles of Tambaqui Colossoma macropomum (Cuvier 1818) from Amazonian Black and Clear Water.

    PubMed

    Alves-Costa, F A; Barbosa, C M; Aguiar, R C M; Mareco, E A; Dal-Pai-Silva, M

    2013-01-01

    Hypothesizing that the Amazonian water system differences would affect the expression of muscle growth-related genes in juvenile tambaqui Colossoma macropomum (Cuvier 1818), this study aimed to analyze the morphometric data and expression of myogenic regulatory factors (MRFs) in the white and red muscle from tambaqui obtained from clear and black Amazonian water systems. All of the MRF transcript levels (myod, myf5, myogenin, and mrf4) were significantly lower in the red muscle from black water fish in comparison to clear water fish. However, in white muscle, only the myod transcript level was significantly decreased in the black water tambaqui. The changes in MRFs gene expression in muscle fibers of tambaqui from black water system provide relevant information about the environmental influence as that of water systems on gene expression of muscle growth related genes in the C. macropomum. Our results showed that the physical and chemical water characteristics change the expression of genes that promote muscle growth, and these results may be also widely applicable to future projects that aim to enhance muscle growth in fish that are of substantial interest to the aquaculture. PMID:24350238

  17. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Bureau of Reclamation Yakima River Basin Conservation Advisory Group; Yakima River Basin Water... on the structure, implementation, and oversight of the Yakima River Basin Water Conservation Program... of the Water Conservation Program, including the applicable water conservation guidelines of...

  18. Quaternary geology of the Amazonian Lowland

    NASA Astrophysics Data System (ADS)

    Irion, Georg; Müller, Jens; Nunes de Mello, Jose; Junk, Wolfgang J.

    1995-09-01

    The Quaternary history of the Amazon lowlands is characterized by deposition of sediments of Andean provenance and by the influences of changing sea levels. Areas well above the present water tables were not reached by Pleistocene high-water stages. These areas have been intensively weathered since the Tertiary, forming hard lateritic weathering horizons. These weathering horizons are best explained by the relatively constant, humid tropical climate throughout the Quaternary. In the western Amazonian Lowland, flood plains corresponding to the different Pleistocene sea-level heights were formed. During low sea level, erosion in the drainage areas increased and the water levels of the central Amazon River system were lowered. Valleys drowned and lakes formed in the lower reaches of rivers and creeks during high sea-level stages. These lakes (ria lakes) remained in the valleys with rivers having a low sediment load. Seismic profiling (3.5 kHz) in some of these lakes clearly showed deposits of the three last periods of Quaternary high sea-level stages.

  19. IDENTIFICATION OF 'CRYPTOSPORIDIUM' OOCYSTS IN RIVER WATER

    EPA Science Inventory

    Water samples were collected from four rivers in Washington State and two rivers in California and examined for the presence of Cryptosporidium oocysts. Oocyst-sized particles were concentrated from 20-liter samples of water by membrane filtration, centrifugation, and differentia...

  20. Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  1. Water quality in Lis river, Portugal.

    PubMed

    Vieira, Judite; Fonseca, André; Vilar, Vítor J P; Boaventura, Rui A R; Botelho, Cidália M S

    2012-12-01

    In the past 30 years, the Lis river basin has been subjected to constant ecological disasters mainly due to piggery untreated wastewater discharges. The aim of this study was to evaluate the effect of existing domestic, agricultural, and industrial activities on the water quality, and to propose a watershed plan to protect and manage surface water resources within the Lis river basin. For this purpose, 16 monitoring stations have been strategically selected along the Lis river stretch and its main tributaries to evaluate the water quality in six different sampling periods (2003–2006). All samples were characterized in terms of organic material, nutrients, chlorophyll, and pathogenic bacteria. Generally, the Lis river presents poor water quality, according to environmental quality standards for surface water, principally in terms of dissolved oxygen, biochemical oxygen demand, total nitrogen, and fecal coliform, which can be associated mainly with the contamination source from pig-breeding farms. PMID:22286837

  2. SURVIVAL OF SALMONELLA SPECIES IN RIVER WATER.

    EPA Science Inventory

    The survival of four Salmonella strains in river water microcosms was monitored using culturing techniques, direct counts, whole cell hybridization, scanning electron microscopy, and resuscitation techniques via the direct viable count method and flow cytrometry. Plate counts of...

  3. SURVIVAL OF SALMONELLA SPECIES IN RIVER WATER

    EPA Science Inventory

    The survival of four Salmonella strains in river water microcosms was monitored by culturing techniques, direct counts, whole-cell hybridization, scanning electron microscopy, and resuscitation techniques via the direct viable count method and flow cytometry. Plate counts of bact...

  4. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed.

    PubMed

    Markewitz, D; Davidson, E A; Figueiredo Rd; Victoria, R L; Krusche, A V

    2001-04-12

    The chemical composition of ground waters and stream waters is thought to be determined primarily by weathering of parent rock. In relatively young soils such as those occurring in most temperate ecosystems, dissolution of primary minerals by carbonic acid is the predominant weathering pathway that liberates Ca2+, Mg2+ and K+ and generates alkalinity in the hydrosphere. But control of water chemistry in old and highly weathered soils that have lost reservoirs of primary minerals (a common feature of many tropical soils) is less well understood. Here we present soil and water chemistry data from a 10,000-hectare watershed on highly weathered soil in the Brazilian Amazon. Streamwater cation concentrations and alkalinity are positively correlated to each other and to streamwater discharge, suggesting that cations and bicarbonate are mainly flushed from surface soil layers by rainfall rather than being the products of deep soil weathering carried by groundwater flow. These patterns contrast with the seasonal patterns widely recognized in temperate ecosystems with less strongly weathered soils. In this particular watershed, partial forest clearing and burning 30 years previously enriched the soils in cations and so may have increased the observed wet season leaching of cations. Nevertheless, annual inputs and outputs of cations from the watershed are low and nearly balanced, and thus soil cations from forest burning will remain available for forest regrowth over the next few decades. Our observations suggest that increased root and microbial respiration during the wet season generates CO2 that drives cation-bicarbonate leaching, resulting in a biologically mediated process of surface soil exchange controlling the streamwater inputs of cations and alkalinity from these highly weathered soils. PMID:11298445

  5. An integrated closed system for fish-plankton aquaculture in Amazonian fresh water.

    PubMed

    Gilles, S; Ismiño, R; Sánchez, H; David, F; Núñez, J; Dugué, R; Darias, M J; Römer, U

    2014-08-01

    A prototype of an integrated closed system for fish-plankton aquaculture was developed in Iquitos (Peruvian Amazonia) in order to cultivate the Tiger Catfish, Pseudoplatystoma punctifer (Castelnau, 1855). This freshwater recirculating system consisted of two linked sewage tanks with an intensive rearing unit (a cage) for P. punctifer placed in the first, and with a fish-plankton trophic chain replacing the filters commonly used in clear water closed systems. Detritivorous and zooplanktivorous fishes (Loricariidae and Cichlidae), maintained without external feeding in the sewage volume, mineralized organic matter and permitted the stabilization of the phytoplankton biomass. Water exchange and organic waste discharge were not necessary. In this paper we describe the processes undertaken to equilibrate this ecosystem: first the elimination of an un-adapted spiny alga, Golenkinia sp., whose proliferation was favored by the presence of a small rotifer, Trichocerca sp., and second the control of this rotifer proliferation via the introduction of two cichlid species, Acaronia nassa Heckel, 1840 and Satanoperca jurupari Heckel, 1840, in the sewage part. This favored some development of the green algae Nannochloris sp. and Chlorella sp. At that time we took the opportunity to begin a 3-month rearing test of P. punctifer. The mean specific growth rate and feed conversion ratio (FCR) of P. punctifer were 1.43 and 1.27, respectively, and the global FCR, including fish in the sewage part, was 1.08. This system has proven to be suitable for growing P. punctifer juveniles out to adult, and provides several practical advantages compared with traditional recirculating clear water systems, which use a combination of mechanical and biological filters and require periodic waste removal, leading to water and organic matter losses. PMID:24849417

  6. Rare earth elements in river waters

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  7. Little Big Horn River Water Quality Project

    SciTech Connect

    Bad Bear, D.J.; Hooker, D.

    1995-10-01

    This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

  8. In Brief: Improving Mississippi River water quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  9. 14C and 13C Constraints on CO2 Cycling in Pristine and Deforested Lowland Amazonian Rivers

    NASA Astrophysics Data System (ADS)

    Mayorga, E.; Aufdenkampe, A. K.; Krusche, A. V.; Masiello, C. A.; Quay, P. D.; Richey, J. E.

    2004-12-01

    "Lowland" rivers in the Amazon are those that, unlike the Amazon mainstem, do not drain the Andean cordillera and are not directly influenced by sediments recently eroded from the Andes. The Brazilian Amazon is predominantly drained by lowland watersheds. We examined the sources and fate of CO2 and Dissolved Inorganic Carbon (DIC) in a range of small to large lowland rivers across the region. In particular, we focused on the Ji-Parana basin, which spans the deforestation arc in the state of Rondonia. Carbonate weathering appears to be a strong source of DIC in the western lowland basins (Jurua and Purus); however, carbonate-derived DIC in these systems is completely flushed out downstream through outgassing and mixing with contemporary respiratory CO2 inputs and carbonate-free tributaries. DIC exported from carbonate-free lowland soils appers to be predominantly contemporary, but some regions in the Ji-Parana headwaters export CO2 with a mean age of several decades. In that system, replacement of C3 forests with C4 pastures appears to exert a strong influence on riverine carbon cycling from small to large rivers. Inputs from riparian grasses may play a disproportionately important role. Finally, we found tentative evidence that anoxic conditions in wetlands may result in mineralization of previously protected, aged organic matter, leading to significant aging in riverine DIC.

  10. Surface water types and sediment distribution patterns at the confluence of mega rivers: The Solimões-Amazon and Negro Rivers junction

    NASA Astrophysics Data System (ADS)

    Park, Edward; Latrubesse, Edgardo M.

    2015-08-01

    Large river channel confluences are recognized as critical fluvial features because both intensive and extensive hydrophysical and geoecological processes take place at this interface. However, identifications of suspended sediment routing patterns through channel junctions and the roles of tributaries on downstream sediment transport in large rivers are still poorly explored. In this paper, we propose a remote sensing-based approach to characterize the spatiotemporal patterns of the postconfluence suspended sediment transport by mapping the surface water distribution in the ultimate example of large river confluence on Earth where distinct water types meet: The Solimões-Amazon (white water) and Negro (black water) rivers. The surface water types distribution was modeled for three different years: average hydrological condition (2007) and 2 years when extreme events occurred (drought-2005 and flood-2009). Amazonian surface water domination along the main channel is highest during the water discharge rising season. Surface water mixing along the main channel depends on the hydrological seasons with the highest mixed-homogenized area observed during water discharge peak season and the lowest during discharge rising season. Water mixture also depends on the yearly hydrological regime with the highest rates of water mixing in 2009, followed by 2005 and 2007. We conclude that the dominant mixing patterns observed in this study have been persistent over a decadal scale and the anabranching patterns contribute to avoid a faster mixing in a shorter distance. Our proposed approach can be applied to a variety of morphodynamic and environmental analyses in confluences of large rivers around the world.

  11. Water utilization in the White River Basin

    USGS Publications Warehouse

    Helland, R.O.

    1946-01-01

    This report presents briefly the results of an investigation of the water and power resources of the White river made in 1943 primarily for the purpose of classification of lands adjacent to the stream that have been withdrawn for power purposes. About three days were spent by the writer in field examination of the river basin during August and September. A survey of the river from its confluence with the Deschutes River to the Mt. Hood Loop Highway is published by the Survey. Nearly all of this map was surveyed in 1932. The entire basin is shown on quadrangle sheets. A record of discharge is available for the period 1917-43 at a station near the mouth of the river, and several short records are available at points upstream and on tributary streams.

  12. Groundwater and river water interaction on Cikapundung River: Revisited

    NASA Astrophysics Data System (ADS)

    Darul, A.; Irawan, D. E.; Trilaksono, N. J.

    2015-09-01

    The interaction between groundwater and Cikapundung river water has not changed significantly in 16 years of period. This paper revisit the similar research based on 43 measurement points: 13 dug wells, 2 springs, and 24 river, distributed along the riverbank at Curug Dago to Batununggal segment. The field measurements were taken in rainy season of April to May 2014 using portable instruments. Six parameters were measured: water level, temperature, total dissolved solids (TDS), dissolved-oxygen (DO), and pH. The new model is unable to detect significant change in water flow, however it finds two local anomalies in Dago Pojok and Cikapayang area. Both locations show local drawdown circle which can induce influent stream in overal effluent environment. Moreover, water quality parameters indicate mixing processes between groundwater and river water, with erratic pattern both in effluent and influent stream. Also some DO and TDS readings exceed the permissible limit. These values suggest a lifted groundwater mineralization from organic and non-organic sources and change of chemical stability. The source of contamination is still under further examination.

  13. WATER QUALITY OF THE MIDDLE SNAKE RIVER

    EPA Science Inventory

    Clear Spring Foods, Inc., conducted a year-long study in the Middle Snake River to provide a perspective on water quality issues and the impact of aquaculture activities on water quality. The study area extended from Shoshone Falls Park to below Box Canyon. Physical and chemical ...

  14. Mercury concentration in different tissues of Podocnemis unifilis (Troschel, 1848) (Podocnemididae: Testudines) from the lower Xingu River - Amazonian, Brazil.

    PubMed

    Souza-Araujo, J; Giarrizzo, T; Lima, M O

    2015-08-01

    Studies using chelonians as biosentinels of environment quality or health risks associated with turtle consumption are very rare, especially in the Amazon basin. This study aims to measure Mercury levels (Hg) in muscle, liver, fat and blood of Podocnemis unifilis from the lower Xingu River, assessing the possible difference in concentration between sexes and also evaluating the potential bioaccumulation along different body sizes. Samples were collected during the dry season (October 2012) and Mercury (Hg) concentrations were analysed by Cold Vapor Atomic Absorption Spectrometry (CVAAS). A total of 29 specimens of P. unifilis of different sizes showed low levels lower than 0.2 mg/Kg). Higher Hg concentrations were found in the liver, and significant correlations between Hg concentrations in the different tissues were also detected. There was no difference between males and females and a negative correlation was found between Hg concentration and body size. PMID:26691083

  15. WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER

    EPA Science Inventory

    Water quality changes along hyporheic flow paths may have
    important effects on river water quality and aquatic habitat. Previous
    studies on the Willamette River, Oregon, showed that river water follows
    hyporheic flow paths through highly porous deposits created by river...

  16. Holocene paleoenvironmental reconstruction in the Eastern Amazonian Basin: Comprido Lake

    NASA Astrophysics Data System (ADS)

    Moreira, L. S.; Moreira-Turcq, P.; Cordeiro, R. C.; Turcq, B.; Caquineau, S.; Viana, J. C. C.; Brandini, N.

    2013-07-01

    Two sediment cores were studied from Comprido Lake, a black water floodplain lake located near Monte Alegre City, Eastern Amazonian Basin. The total organic carbon (TOC), nitrogen content (TN), δ13CTOC, sedimentary chlorophyll, diatom record and mineralogical composition revealed different hydrological and climatic regimes during the Holocene. Between 10,300 and 7800 cal yr BP, a dry climate was suggested by low values of TOC and chlorophyll derivatives concentrations that are related to the development of a C4 grasses on unflooded mud banks. A gap in sedimentation due to a complete dryness of the lake occurred between 7800 and 3000 cal years BP corresponding to the Middle Holocene dry phase. From 3000 cal years BP onwards a gradual increase of the TOC, chlorophyll derivatives and Aulacoseira sp. suggest an increase in the productivity and in water lake level due to the high water flow of the Amazon River and the catchment area as well. The Comprido Lake record indicates that the Late Holocene in this region was characterized by a wetter climate, as also observed in other records of the Amazonian Basin.

  17. Carbon storage in Amazonian podzols

    NASA Astrophysics Data System (ADS)

    Montes, Celia; Lucas, Yves; Pereira, Osvaldo; Merdy, Patricia; Santin, Roberta; Ishida, Débora; du Gardin, Beryl; Melfi, Adolpho

    2014-05-01

    It has recently been discovered that Amazonian podzols may store much larger quantities of carbon than previously thought, particularly in their deep Bh horizons (over 13.6 Pg for Brazilian Amazonia alone [1]). Similarly high carbon stocks are likely to exist in similar climate/soil areas, mainly in Africa and in Borneo. Such carbon stocks raise the problem of their stability in response to changes in land use or climate. Any significant changes in vegetation cover would significantly alter the soil water dynamics, which is likely to affect organic matter turnover in soils. The direction of the change, however, is not clear and is likely to depend on the specific conditions of carbon storage and properties of the soils. It is reasonable to assume that the drying of the Bh horizons of equatorial podzols, which are generally saturated, will lead to an increase in C mineralization, although the extent of this increase has not yet been determined. These unknowns resulted in research programs, granted by the Brazilian FAPESP and the French Région PACA-ARCUS and ANR, dedicated improving estimates of the Amazonian podzol carbon stocks and to an estimate of its mineralisability. Eight test areas were determined from the analysis of remote sensing data in the larger Amazonian podzol region located in the High Rio Negro catchment and studied in detail. Despite the extreme difficulties in carrying out the field work (difficulties in reaching the study sites and extracting the soils), more than a hundred points were sampled. In all podzols the presence of a thick deep Bh was confirmed, sometimes to depths greater than 12 m. The Bh carbon was quantified, indicating that carbon stocks in these podzols are even higher than estimated recently [1]. References 1- Montes, C.R.; Lucas, Y.; Pereira, O.J.R.; Achard, R.; Grimaldi, M.; Mefli, A.J. Deep plant?derived carbon storage in Amazonian podzols. Biogeosciences, 8, 113?120, 2011.

  18. Deterioration of water quality of Surma river.

    PubMed

    Alam, J B; Hossain, A; Khan, S K; Banik, B K; Islam, Molla R; Muyen, Z; Rahman, M Habibur

    2007-11-01

    Surma River is polluted day by day by human activities, poor structured sewerage and drainage system, discharging industrial and household wastes. The charas (natural channels) are responsible for surface runoff conveyance from its urban catchments to the receiving Surma River. Water samples have been collected from a part of Surma River along different points and analyzed for various water quality parameters during dry and monsoon periods. Effects of industrial wastes, municipal sewage, and agricultural runoff on river water quality have been investigated. The study was conducted within the Chattak to Sunamganj portion of Surma River, which is significant due to the presence of two major industries--a paper mill and a cement factory. The other significant feature is the conveyors that travel from India to Chattak. The river was found to be highly turbid in the monsoon season. But BOD and fecal coliform concentration was found higher in the dry season. The water was found slightly acidic. The mean values of parameters were Conductivity 84-805 micros; DO: dry-5.52 mg/l, monsoon-5.72 mg/l; BOD: dry-1mg/l, monsoon-0.878 mg/l; Total Solid: dry-149.4 mg/l, monsoon-145.7 mg/l. In this study, an effort has been taken to investigate the status of concentration of phosphate (PO(-4)) and ammonia-nitrogen (NH4-N) at four entrance points of Malnichara to the city, Guali chara, Gaviar khal and Bolramer khal. Data has been collected from March-April and September-October of 2004. Concentrations have been measured using UV Spectrophotometer. Although the phosphate concentration has been found within the limit set by DOE for fishing, irrigation and recreational purposes, however ammonia-nitrogen has been found to exceed the limit. PMID:17294273

  19. Quality of water, Quillayute River basin, Washington

    SciTech Connect

    Fretwell, M.O.

    1984-01-01

    Ground water in the Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses, with the exception of water in two wells which had iron concentrations that potentially could be tasted in beverages and could cause staining of laundry and porcelain fixtures. A comparison of the chemical compositions of ground and surface waters showed a strong similarity over a wide geographic area. Proportions of the major chemical constituents in the rivers of the basin were nearly constant despite concentration fluctuations in response to dilution from precipitation and snowmelt. River-water quality was generally excellent, as evaluated against Washington State water use and water-quality criteria. Fecal-coliform bacteria counts generally were much lower than the total-coliform bacteria counts, indicating that most of the coliform bacteria were of nonfecal origin and probably originated in soils. Fecal coliform concentrations in all the major tributaries met State water-quality criteria. Water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow; dissolved-oxygen concentrations were occasionally less than criteria minimum because of increased water temperature. Both conditions occurred naturally. Nutrient concentrations were generally low to very low and about the same as in streams from virgin forestland in the Olympic National Park. However, some slight increases in nutrient concentrations were observed, particularly in the vicinity of Mill Creek and the town of Forks; due to dilution and biological assimilation, these slightly elevated concentrations decreased as the water moved downstream. 35 refs., 24 figs., 16 tabs.

  20. Isotopic and chemical systematics of river waters

    SciTech Connect

    Goldstein, S.J.

    1987-01-01

    The isotopic composition of Nd and Sr and the concentration of the rare earth elements (REE), Rb, and Sr are reported for the dissolved and suspended load of rivers from North America, Australia, Japan, the Philippines, South America, and Pakistan. Nd and light REE are mobilized in solution in rivers of low pH, whereas Sr concentrations are generally determined by the degree of chemical weathering of source rocks. The REE pattern of the dissolved load of rivers is sensitive to pH, with heavy REE enrichments and negative Ce anomalies for alkaline rivers. The isotopic composition of Nd and Sr in the dissolved load of rivers is mainly controlled by the age of materials in a drainage basin and preferential weathering of marine precipitates. Rivers appear to be the dominant source of these elements in the oceans. Estuarine removal processes lower the actual river flux of dissolved REE to the oceans by 70% for the light REE and 40% for the heavy REE. A Sr isotopic mass balance for modern seawater yields a hydrothermal water of 2.9 x 10/sup 16/ g/yr. Suspended load data directly reflect the Sm-Nd isotopic systematics and REE systematics of upper continental crust exposed to weathering. Average Sm-Nd parameters estimated for the upper crust are: Sm = 5.7 ppm. Nd = 30.0 ppm, epsilon/sub Nd/ = -15.4, and T/sub DM//sup Nd/ = 2.0 Ga. An overall relationship between epsilon/sub Nd/ and /sup 87/Sr//sup 86/Sr in river suspended loads directly reflects the relationship of these parameters in upper crust and suggests that crustal additions have become progressively depleted in incompatible elements through time. The implications of these data for interpretation of the record of Nd and Sr isotopes and REE abundances in ancient erosion products are briefly discussed.

  1. Application of chemometrics in river water classification.

    PubMed

    Kowalkowski, Tomasz; Zbytniewski, Radosław; Szpejna, Jacek; Buszewski, Bogusław

    2006-02-01

    The main aim of this work is focused on water quality classification of the Brda river (Poland) and evaluation of pollution data obtained by the monitoring measurement during the period 1994-2002. The study presents the application of selected chemometric techniques to the pollution monitoring dataset, namely, cluster analysis, principal component analysis, discriminant analysis and factor analysis. The obtained results allowed to determine natural clusters and groups of monitoring locations with similar pollution character and identify important discriminant variables. Chemometric analysis confirmed the classification of water purity of the Brda river made by the Inspection of Environmental Protection but the results showed more differentiation between monitored locations. This enables better evaluation of the water quality in a monitored region. On the basis of the chemometric approach, it was also found that some locations were under the high influence of municipal contamination, and some others under the influence of agriculture (discharges from fields) within the observed time period. PMID:16442142

  2. Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone.

    PubMed

    Cooke, Georgina M; Landguth, Erin L; Beheregaray, Luciano B

    2014-07-01

    Ecological speciation involves the evolution of reproductive isolation and niche divergence in the absence of a physical barrier to gene flow. The process is one of the most controversial topics of the speciation debate, particularly in tropical regions. Here, we investigate ecologically based divergence across an Amazonian ecotone in the electric fish, Steatogenys elegans. We combine phylogenetics, genome scans, and population genetics with a recently developed individual-based evolutionary landscape genetics approach that incorporates selection. This framework is used to assess the relative contributions of geography and divergent natural selection between environments as biodiversity drivers. We report on two closely related and sympatric lineages that exemplify how divergent selection across a major Amazonian aquatic ecotone (i.e., between rivers with markedly different hydrochemical properties) may result in replicated ecologically mediated speciation. The results link selection across an ecological gradient with reproductive isolation and we propose that assortative mating based on water color may be driving the divergence. Divergence resulting from ecologically driven selection highlights the importance of considering environmental heterogeneity in studies of speciation in tropical regions. Furthermore, we show that framing ecological speciation in a spatially explicit evolutionary landscape genetics framework provides an important first step in exploring a wide range of the potential effects of spatial dependence in natural selection. PMID:24641091

  3. WATER QUALITY CONTROL STUDY, MIDDLE SNAKE RIVER WATER RESOURCES DEVELOPMENT

    EPA Science Inventory

    On February 5, 1964, the Federal Power Commission issued a license to Pacific Northwest Power Company for construction and operation of its proposed High Mountain Sheep Project on the Snake River (170602, 170501). This investigation by the Federal Water Pollution Control Adminis...

  4. A wood preservative metabolite in river water.

    PubMed

    Khoroshko, Larisa O; Petrova, Varvara N; Viktorovskii, Igor V; Lahtiperä, Mirja; Sinkkonen, Seija; Paasivirta, Jaakko

    2005-01-01

    A previously unknown pollutant in river water was identified to be 2-mercaptobenzothiazole (2-MBT) by interpretation and simulation of its GC/LRMS spectrum. Further GC/HRMS measurement of the isotope composition of the molecular ion verified this structure. 2-MBT is a well-known agent for corrosion inhibition and a stable metabolite of several other benzothiazoles. The present 2-MBT trace was most probably a metabolite of the wood preservative TCMTB which leaked from an upstream sawmill. The metabolite had been detected earlier in urine of the sawmill workers, but now was identified in the recipient water environment for the first time. PMID:15768735

  5. Methane flux from the Amazon River floodplain: Emissions during rising water

    SciTech Connect

    Bartlett, K.B.; Crill, P.M. ); Bonassi, J.A. ); Richey, J.E. ); Harriss, R.C. NASA Langley Research Center, Hampton, VA )

    1990-09-20

    During April and May of 1987, an extensive methane flux data set from Amazonian wetland habitats was collected during the wet season as river water levels were high and rising. This work extends measurements made in the dry season of 1985, when water levels were falling. A total of 284 flux measurements were made in the three primary floodplain environments of open-water lakes and channels, floating grass mats, and flooded forests, along approximately 1,500 km of the central floodplain. Emissions (means and standard errors) were 74 {plus minus} 14 mg CH{sub 4}/m{sup 2}/d (open water), 201 {plus minus} 35 mg CH{sub 4}/m{sup 2}/d (grass mats), and 126 {plus minus} 20 mg CH{sub 4}/m{sup 2}/d (flooded forests). These values were not significantly different from the majority of those from 1985, in part due to the high variability in flux seen at both times. Although ebullition was a significant component of methane emissions at both periods, the frequency of bubbling and its contribution to total flux was lower during the period of rising water than during falling water. A prominent diurnal pattern in atmospheric methane concentrations was observed, with minimum levels of about 1.75 ppm at midday and a maximum of 2.12 ppm at about midnight. Given the relatively small season changes observed in flux at the two stages of the rivers hydrographic curve, earlier estimates of regional methane flux remain largely unchanged. Revision of global estimates of wetland methane sources based on these tropical data and recently published figures for northern peatlands indicated that tropical wetlands may be more important than previously suggested, but that wetland sources overall remain at approximately 110 Tg/yr.

  6. Water quality and water contamination in the Harlem River

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2015-12-01

    Combined sewer overflows (CSOs) discharge untreated sewage into the Harlem River during rainstorms; which elevated nutrient and bacteria/pathogen levels, degraded water quality, reduced dissolved oxygen levels, impact on fish consumption safety and threatening public health. Swimming, boating, fishing was not safe especially during rainstorms. Harlem River, a 9 miles natural straight connects the Hudson River and the East River, was used for water recreation in the past. Phosphate, ammonia, turbidity, dissolved oxygen (DO), and pathogens levels in CSOs collected during storms were significantly higher than EPA/DEP's standards (phosphate <0.033mg/L; ammonia<0.23mg/L; turbidity<5.25FAU; DO>=4mg/L; fecal coliform<200MPN/100ml; E.Coli.<126MPN/100ml; enterococcus < 104MPN /100ml). The maximum values are: phosphate: 0.181mg/L; ammonia: 2.864mg/L; turbidity: 245 FAU& 882 FAU; fecal coliform>millions MPN/100ml; E.coli > 5000MPN /100ml; enterococcus>10,000MPN/100ml; DO<2.9 mg/L. Data showed that pathogen levels are higher than published data from riverkeepers (enterococcus) and USGS (fecal coliform). PCB 11 (3,3'-dichlorobiphenyl, C12H8Cl2), an indicator of raw sewage and stormwater runoff, is analyzed. Fish caught from the Harlem River is banned from commercial. New York State Department of Health (NYS DOH) suggests that not to eat the fish because concerns of PCBs, dioxin and cadmium. How to reduce CSOs is critical on water quality improvement. Green wall/roof and wetland has been planned to use along the river to reduce stormwater runoff consequently to reduce CSOs volume.

  7. Ground water exfiltration in a river oxbow

    NASA Astrophysics Data System (ADS)

    Suck, M.; Nützmann, G.; Lewandowski, J.

    2009-04-01

    This paper deals with the quantification of the exchange between ground water and surface water in a river oxbow. Implementation and evaluation of the study site are based upon a conceptual model, in which exfiltration into the oxbow and mainly into the adjacent river Spree are supposed as major transport processes. A clogging mud layer in the oxbow with its low hydraulic conductivity controls exfiltration and is the highest hydraulic resistance in the considered aquatic system. The measurement of temperature depth profiles within that layer was one of the methods applied to measure groundwater exfiltration. Because of the different groundwater and surface water temperatures there are temperature differences between the upper and lower boundary of the mud layer. Depending on the extent of ground water exfiltration that depth profile is more or less curved. By adaptation of an analytical solution to the plotted temperature depth profiles the flux rates were calculated. A supplementary method to measure exfiltration, the seepage meter, is used for direct measurements of the flux rates. With that method the ground water flux which passes a defined cross section of the sediment-water boundary is collected. The evaluation of the results yields higher exfiltration rates for the temperature depth profiles than for the seepage meters. For the seepage meters the results show only a part of the actual flux rates because of several error sources. Despite those errors the comparison of the results from both methods shows a similar flux pattern with strong small-scale heterogeneities. At scales of few meters the measured flux rates fluctuate more than an order of magnitude. The flux rates near the bank are frequently higher than in the middle of the oxbow. However, the flux rates are controlled by the thickness of the clogging mud layer, its hydraulic conductivity, its heterogeneity and the water table differences between surface water and adjacent aquifer.

  8. Hydrological parameter estimation for ungauged basin based on satellite altimeter data and discharge modeling. A simulation for the Caqueta River (Amazonian Basin, Colombia)

    NASA Astrophysics Data System (ADS)

    Leon, J. G.; Seyler, F.; Calmant, S.; Bonnet, M.-P.; Cauhopé, M.

    2006-09-01

    The main objective of this paper is to review the usefulness of altimetric data in ungauged or very poorly monitored basin. It is shown that altimetric measurements can be combined with a single in-situ gauge to derive a reliable stage-discharge relationship upstream from the gauge. The Caqueta River in the Colombian Amazon Basin was selected to simulate a poorly monitored basin. Thus it was possible to derive the stage-discharge relationship for 13 "virtual gauge stations'' defined at river crossing with radar altimetric ground tracks. Stage measurements are derived from altimetric data following the methodology developed by Leon et al. (2006). Discharge is modeled using PROGUM - a flow routing model based on the Muskingum Cunge (M-C) approach considering a diffusion-cum-dynamic wave propagation (Leon et al., 2006) using a single gauge located downstream from the basin under study. Rating curve parameters at virtual stations are estimated by fitting with a power law the temporal series of water surface altitude derived from satellite measurements and the modelled discharges. The methodology allows the ellipsoidal height of effective zero flow to be estimated. This parameter is a good proxy of the mean water depth from which the bottom slope of the reaches can be computed. Validation has been conducted by comparing the results with stages and discharges measured at five other gauges available on the Caqueta basin. Outflow errors range from 10% to 20% between the upper basin and the lower basin, respectively. Mean absolute differences less than 1.10 m between estimated equivalent water depth and measured water depth indicates the reliability of the proposed method. Finally, a 1.2×10-4 mm-1 mean bottom slope has been obtained for the 730 km long reach of the Caqueta main stream considered.

  9. Hydrological Parameter Estimation for Ungauged Basin Based on Satellite Altimeter Data and Discharge Modeling. A Simulation for the Caqueta River (Amazonian Basin, Colombia)

    NASA Astrophysics Data System (ADS)

    Leon, J. G.; Seyler, F.; Calmant, S.; Bonnet, M.; Cauhope, M.

    2007-05-01

    The main objective of this paper is to review the usefulness of altimetric data in ungauged or very poorly monitored basin. It is shown that altimetric measurements can be combined with a single in-situ gauge to derive a reliable stage-discharge relationship upstream from the gauge. The Caqueta River in the Colombian Amazon Basin was selected to simulate a poorly monitored basin. Thus it was possible to derive the stage-discharge relationship for 13 "virtual gauge stations" defined at river crossing with radar altimetric ground tracks. Stage measurements are derived from altimetric data following the methodology developed by Leon et al. (2006) . Discharge is modeled using PROGUM - a flow routing model based on the Muskingum Cunge (M-C) approach considering a diffusion-cum-dynamic wave propagation (Leon et al., submitted) using a single gauge located downstream from the basin under study. Rating curve parameters at virtual stations are estimated by fitting with a power law the temporal series of water surface altitude derived from satellite measurements and the modelled discharges. The methodology allows the ellipsoidal height of effective zero flow to be estimated. This parameter is a good proxy of the mean water depth from which the bottom slope of the reaches can be computed. Validation has been conducted by comparing the results with stages and discharges measured at five other gauges available on the Caqueta basin. Outflow errors range from 10% to 20% between the upper basin and the lower basin, respectively. Mean absolute differences less than 1.10 m between estimated equivalent water depth and measured water depth indicates the reliability of the proposed method. Finally, a 1,2 x 10-4 m.m-1 mean bottom slope has been obtained for the 730 km long reach of the Caqueta main stream considered.

  10. [Analysis of pollution levels of 16 antibiotics in the river water of Daliao River water system].

    PubMed

    Yang, Changqing; Wang, Longxing; Hou, Xiaohong; Chen, Jiping

    2012-08-01

    The detection of the pollution level of antibiotics in Daliao River system is a meaningful work. Sixteen antibiotics (6 sulfonamides, 5 fluoroquinolones, 3 tetracyclines and 2 chloramphenicols) were simultaneously quantified with solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In the SPE procedure, methanol and 2% (v/v) ammonia/methanol were used as the elution solvents in sequence to reduce the elution volume and improve the recovery. The results showed that this method have good sensitivity and enrichment effect for the target antibiotics in aqueous water, the recoveries ranged from 69.5% to 122.6%, the detection limits ranged from 0.05 ng/L to 0.32 ng/L. Thirteen antibiotics were found in the river water of Daliao River water system. Sulfa antibiotics were widely distributed, in which sulfamethoxazole was detected in all the sampling sites. The concentration of fluoroquinolones was relatively high in some sampling sites. The highest detection concentration of enoxacin was 41.3 ng/L. The frequencies and concentrations of tetracyclines and chloramphenicols were lower. In the upper reaches of the river, the concentrations of the 4 types of antibiotics appeared lower, but around the large cities such as Shenyang City, Benxi City, Liaoyang City, the concentrations showed higher levels. The study indicated that the Daliao River water system suffered from the pollution of antibiotics to a certain extent. PMID:23256376

  11. 61. VIEW OF SALT RIVER PROJECT WELL DISCHARGING WATER INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. VIEW OF SALT RIVER PROJECT WELL DISCHARGING WATER INTO THE ARIZONA CANAL NEAR 47TH AVENUE, LOOKING SOUTH Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  12. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  13. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  14. Water resources of the Yellow Medicine River Watershed, Southwestern Minnesota

    USGS Publications Warehouse

    Novitzki, R.P.; Van Voast, Wayne A.; Jerabek, L.A.

    1969-01-01

    The Yellow Medicine and Minnesota Rivers are the major sources of surface water. For physiographic regions – Upland Plain, Slope, Lowland Plain, and Minnesota River Flood Plain – influence surface drainage, and the flow of ground water through the aquifers. The watershed comprises 1070 square miles, including the drainage basin of the Yellow Medicine River (665 square miles) and 405 square miles drained by small streams tributary to the Minnesota River.

  15. WATER QUALITY REPORT, PALOUSE RIVER, WASHINGTON, 1970-1971

    EPA Science Inventory

    Accumulated water quality monitoring data indicates that Palouse River mainstem and south fork waters (17060108) suffer severe pollution problems throughout the year. South fork stations were more seriously affected. Coliform levels were generally far in excess of water quality...

  16. PALOUSE RIVER STUDY, LETAH COUNTY, IDAHO, WATER YEAR 1979

    EPA Science Inventory

    During water year 1979, a water quality study was conducted on the Palouse River in Latah County (17060108) to determine the present water quality status of the river at Princeton and to obtain background information for the development of effluent limitations for the Hampton-Pr...

  17. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.205 Suisun Bay,...

  18. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.205 Suisun Bay,...

  19. Water - Essential Resource of the Southern Flint River Basin, Georgia

    USGS Publications Warehouse

    Warner, Debbie; Norton, Virgil

    2004-01-01

    Introduction Abundant water resources of the Flint River Basin have played a major role in the history and development of southwestern Georgia. The Flint River-along with its tributaries, wetlands, and swamps-and the productive aquifers of the river basin are essential components of the area's diverse ecosystems. These resources also are necessary for sustained agricultural, industrial, and municipal activities. Increasing, and in some cases conflicting, demand for water makes careful monitoring and wise planning and management of southwestern Georgia's water resources critical to the ecological and economic future of the area. This poster presents the major issues associated with increasing competition for water resources in the southern Flint River Basin.

  20. 43. River Crossing Flume carrying canal water west across the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. River Crossing Flume carrying canal water west across the Agua Fria River approximately four miles downstream from Pleasant Dam. Photographer unknown, c. late 1920s. Source: Nancy Bunch - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  1. Plant reproduction in the Central Amazonian floodplains: challenges and adaptations

    PubMed Central

    Ferreira, Cristiane Silva; Piedade, Maria Teresa Fernandez; de Oliveira Wittmann, Astrid; Franco, Augusto César

    2010-01-01

    Background The Central Amazonian floodplain forests are subjected to extended periods of flooding and to flooding amplitudes of 10 m or more. The predictability, the length of the flood pulse, the abrupt transition in the environmental conditions along topographic gradients on the banks of major rivers in Central Amazonia, and the powerful water and sediment dynamics impose a strong selective pressure on plant reproduction systems. Scope In this review, we examine how the hydrological cycle influences the strategies of sexual and asexual reproduction in herbaceous and woody plants. These are of fundamental importance for the completion of the life cycle. Possible constraints to seed germination, seedling establishment and formation of seed banks are also covered. Likewise, we also discuss the importance of river connectivity for species propagation and persistence in floodplains. Conclusions The propagation and establishment strategies employed by the highly diversified assortment of different plant life forms result in contrasting successional stages and a zonation of plant assemblages along the flood-level gradient, whose species composition and successional status are continuously changing not only temporally but also spatially along the river channel. PMID:22476067

  2. Interactions between groundwater and surface water at river banks and the confluence of rivers

    NASA Astrophysics Data System (ADS)

    Lambs, Luc

    2004-03-01

    Riparian vegetation depends on hydrological resources and has to adapt to changes in water levels and soil moisture conditions. The origin and mixing of water in the streamside corridor were studied in detail. The development of riparian woodland often reflects the evolution of hydrological events. River water levels and topography are certainly the main causes of the exchange between groundwater and river water through the riverbank. Stable isotopes, such as 18O, are useful tools that allow water movement to be traced. Two main water sources are typically present: (i) river water, depleted of heavy isotopes, originating upstream, and (ii) groundwater, which comes mainly from the local rainfall. On the Garonne River bank field site downstream of Toulouse, the mixing of these two waters is variable, and depends mainly on the river level and the geographical position. The output of the groundwater into the river water is not diffuse on a large scale, but localised at few places. At the confluence of two rivers, the water-mixing area is more complex because of the presence of a third source of water. In this situation, groundwater supports the hydrologic pressure of both rivers until they merge, this pressure could influence its outflow. Two cases will be presented. The first is the confluence of the Garonne and the Ariège Rivers in the south-west of France, both rivers coming from the slopes of the Pyrénées mountains. Localised groundwater outputs have been detected about 200 m before the confluence. The second case presented is the confluence of the Ganges and the Yamuna Rivers in the north of India, downstream of the city of Allahabad. These rivers are the two main tributaries of the Ganges, and both originate in the Himalayas. A strong stream of groundwater output was measured at the point of confluence.

  3. Ecosystem carbon fluxes and Amazonian forest metabolism

    NASA Astrophysics Data System (ADS)

    Saleska, Scott; da Rocha, Humberto; Kruijt, Bart; Nobre, Antonio

    Long-term measurements of ecosystem-atmosphere exchanges of carbon, water, and energy, via eddy flux towers, give insight into three key questions about Amazonian forest function. First, what is the carbon balance of Amazon forests? Some towers give accurate site-specific carbon balances, as validated by independent methods, but decisive resolution of the large-scale question will also require integration of remote sensing techniques (to detect and encompass the distribution of naturally induced disturbance states across the landscape of old growth forests) with eddy flux process studies (to characterize the association between carbon balance and forest disturbance states). Second, what is the seasonality of ecosystem metabolism in Amazonian forests? Models have historically simulated dry season declines in photosynthetic metabolism, a consequence of modeled water limitation. Tower sites in equatorial Amazonian forests, however, show that photosynthetic metabolism increases during dry seasons ("green up"), perhaps because deep roots buffer trees from dry season water stress, while phenological rhythms trigger leaf flush, associated with increased solar irradiance. Third, how does ecosystem metabolism vary across biome types and land use patterns? As dry season length increases from equatorial forest, to drier southern forests, to savanna, fluxes show seasonal patterns consistent with increasing water stress, including a switch from dry season green up to "brown down." Land use change in forest ecosystems removes deep roots, artificially inducing the same trend toward brown down. In the final part, this review suggests that eddy tower network and satellite-based insights into seasonal responses provide a model for detecting responses to extreme interannual climate variations that can test whether forests are vulnerable to model-simulated Amazonian forest collapse under climate change.

  4. Differential expression of a retrotransposable element, Rex6, in Colossoma macropomum fish from different Amazonian environments

    PubMed Central

    Barbosa, Cassiane Martins; Mareco, Edson Assunção; Silva, Maeli Dal Pai; Martins, Cesar; Alves-Costa, Fernanda Antunes

    2014-01-01

    Transposable elements (TEs) are DNA sequences that have the ability to move and replicate within the genomes. TEs can be classified according to their intermediates of transposition, RNA (retrotransposons) or DNA. In some aquatic organisms, it has been observed that environmental factors such as pH, temperature and pollution may stimulate differential transcription and mobilization of retrotransposons. In light of this information, the present study sought to evaluate the expression of Rex6 TE transcripts in Colossoma macropomum, which is a very commercially exploited fish in Brazil. In order to establish a comparative analysis using real-time PCR, the samples were collected from Amazonian rivers with different physical and chemical characteristics (distinguished by clear water and black water). Quantitative RT-PCR analyses revealed a differential pattern of expression between tissues collected from different types of water (clear and black waters). When it came to the hepatic and muscle tissues sampled, the levels of Rex6 transcripts were significantly different between the two Amazonian water types. These results suggest that environmental conditions operate differently in the regulation of Rex6 transcription in C. macropomum, results which have implications in the reshaping of the genome against environmental variations. PMID:25089227

  5. Differential expression of a retrotransposable element, Rex6, in Colossoma macropomum fish from different Amazonian environments.

    PubMed

    Barbosa, Cassiane Martins; Mareco, Edson Assunção; Silva, Maeli Dal Pai; Martins, Cesar; Alves-Costa, Fernanda Antunes

    2014-01-01

    Transposable elements (TEs) are DNA sequences that have the ability to move and replicate within the genomes. TEs can be classified according to their intermediates of transposition, RNA (retrotransposons) or DNA. In some aquatic organisms, it has been observed that environmental factors such as pH, temperature and pollution may stimulate differential transcription and mobilization of retrotransposons. In light of this information, the present study sought to evaluate the expression of Rex6 TE transcripts in Colossoma macropomum, which is a very commercially exploited fish in Brazil. In order to establish a comparative analysis using real-time PCR, the samples were collected from Amazonian rivers with different physical and chemical characteristics (distinguished by clear water and black water). Quantitative RT-PCR analyses revealed a differential pattern of expression between tissues collected from different types of water (clear and black waters). When it came to the hepatic and muscle tissues sampled, the levels of Rex6 transcripts were significantly different between the two Amazonian water types. These results suggest that environmental conditions operate differently in the regulation of Rex6 transcription in C. macropomum, results which have implications in the reshaping of the genome against environmental variations. PMID:25089227

  6. Bacteriological Assessment of Spoon River Water Quality

    PubMed Central

    Lin, Shundar; Evans, Ralph L.; Beuscher, Davis B.

    1974-01-01

    Data from a study of five stations on the Spoon River, Ill., during June 1971 through May 1973 were analyzed for compliance with Illinois Pollution Control Board's water quality standards of a geometric mean limitation of 200 fecal coliforms per 100 ml. This bacterial limit was achieved about 20% of the time during June 1971 through May 1972, and was never achieved during June 1972 through May 1973. Ratios of fecal coliform to total coliform are presented. By using fecal coliform-to-fecal streptococcus ratios to sort out fecal pollution origins, it was evident that a concern must be expressed not only for municipal wastewater effluents to the receiving stream, but also for nonpoint sources of pollution in assessing the bacterial quality of a stream. PMID:4604145

  7. CHARACTERIZATION OF THE WATER QUALITY OF THE LOWER MISSISSIPPI RIVER

    EPA Science Inventory

    This study was performed to characterize the water quality of the Lower Mississippi River and to survey the available data and methods that may be used for future water quality management studies of this stretch of river. Primary emphasis was placed on the 150 mile highly industr...

  8. River Pollution: Part II. Biological Methods for Assessing Water Quality.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1984-01-01

    Discusses methods used in the biological assessment of river quality and such indicators of clean and polluted waters as the Trent Biotic Index, Chandler Score System, and species diversity indexes. Includes a summary of a river classification scheme based on quality criteria related to water use. (JN)

  9. Long-term Trends in St. Louis River Water Quality

    EPA Science Inventory

    Water quality impairments caused by sewage and industrial waste discharge into the St. Louis River have been a primary concern for clean-up efforts throughout the last century. Surveys dating back to 1928 reveal severely degraded water quality in much of the river below Fond du L...

  10. Primary Datasets for Case Studies of River-Water Quality

    ERIC Educational Resources Information Center

    Goulder, Raymond

    2008-01-01

    Level 6 (final-year BSc) students undertook case studies on between-site and temporal variation in river-water quality. They used professionally-collected datasets supplied by the Environment Agency. The exercise gave students the experience of working with large, real-world datasets and led to their understanding how the quality of river water is…

  11. TOXICITY EVALUATION OF LOWER FOX RIVER WATER AND SEDIMENTS

    EPA Science Inventory

    Many persistent, xenobiotic compounds have been identified from Lower Fox River water, biota, sediment, and effluent discharges; some of which are suspected of causing adverse effects to aquatic organisms. Water and sediment were collected as grab samples from the Lower Fox River...

  12. Elutriation study of Willamette River bottom material and Willamette-Columbia River water

    USGS Publications Warehouse

    Rinella, Joseph F.; McKenzie, Stuart W.

    1977-01-01

    Bottom material from the Willamette River was collected and mixed with Willamette and Columbia River waters on May 17, 1977. The elutriate, as well as each sample, was analyzed for selected nutrients, metals, and pesticides. Results show that the average dissolved ammonia, manganese, and zinc concentrations would require dilution by receiving water to achieve aquatic-life criteria levels. 

  13. Columbia River monitoring: Distribution of tritium in Columbia River water at the Richland Pumphouse

    SciTech Connect

    Dirkes, R.L.

    1993-02-01

    The Surface Environmental Surveillance Project (SESP) is conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). This report presents the results of a special study conducted as part of the SESP to supplement the routine Columbia River monitoring program and provide information relative to the dispersion and distribution of Hanford origin contaminants entering the river through the seepage of ground water along the Hanford Site. Sampling was conducted along cross sections to determine the distribution of tritium within the Columbia River at Richland, Washington. The investigation was also designed to evaluate the relationship between the average tritium concentrations in the river water at this location and in water collected from the routine SESP river monitoring system located at the city of Richland drinking water intake (Richland Pumphouse). This study was conducted during the summers of 1987 and 1988. Water samples were collected along cross sections located at or near the Richland Pumphouse monitoring station.

  14. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    SciTech Connect

    Paller, M. )

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  15. At Water's Edge: Students Study Their Rivers.

    ERIC Educational Resources Information Center

    Williams, Robert; And Others

    1993-01-01

    Although the Great Flood of 1993 has dramatically reminded us never to take rivers for granted, it has also underlined the need to learn more about rivers and the environment in general. Rivers Project, an interdisciplinary high school curriculum, allows science, social studies, and English teachers to integrate curriculum in a way that encourages…

  16. Drought responses of flood-tolerant trees in Amazonian floodplains

    PubMed Central

    Parolin, Pia; Lucas, Christine; Piedade, Maria Teresa F.; Wittmann, Florian

    2010-01-01

    Background Flood-tolerant tree species of the Amazonian floodplain forests are subjected to an annual dry period of variable severity imposed when low river-water levels coincide with minimal precipitation. Although the responses of these species to flooding have been examined extensively, their responses to drought, in terms of phenology, growth and physiology, have been neglected hitherto, although some information is found in publications that focus on flooding. Scope The present review examines the dry phase of the annual flooding cycle. It consolidates existing knowledge regarding responses to drought among adult trees and seedlings of many Amazonian floodplain species. Main Findings Flood-tolerant species display variable physiological responses to dry periods and drought that indicate desiccation avoidance, such as reduced photosynthetic activity and reduced root respiration. However, tolerance and avoidance strategies for drought vary markedly among species. Drought can substantially decrease growth, biomass and photosynthetic activity among seedlings in field and laboratory studies. When compared with the responses to flooding, drought can impose higher seedling mortality and slower growth rates, especially among evergreen species. Results indicate that tolerance and avoidance strategies for drought vary markedly between species. Both seedling recruitment and photosynthetic activity are affected by drought, Conclusions For many species, the effects of drought can be as important as flooding for survival and growth, particularly at the seedling phase of establishment, ultimately influencing species composition. In the context of climate change and predicted decreases in precipitation in the Amazon Basin, the effects of drought on plant physiology and species distribution in tropical floodplain forest ecosystems should not be overlooked. PMID:19880423

  17. Alluvial plain dynamics in the southern Amazonian foreland basin

    NASA Astrophysics Data System (ADS)

    Lombardo, Umberto

    2016-05-01

    Alluvial plains are formed with sediments that rivers deposit on the adjacent flood-basin, mainly through crevasse splays and avulsions. These result from a combination of processes, some of which push the river towards the crevasse threshold, while others act as triggers. Based on the floodplain sedimentation patterns of large rivers in the southern Amazonian foreland basin, it has been suggested that alluvial plain sediment accumulation is primarily the result of river crevasse splays and sheet sands triggered by above-normal precipitation events due to La Niña. However, more than 90 % of the Amazonian river network is made of small rivers and it is unknown whether small river floodplain sedimentation is influenced by the ENSO cycle as well. Using Landsat images from 1984 to 2014, here I analyse the behaviour of all 12 tributaries of the Río Mamoré with a catchment in the Andes. I show that these are very active rivers and that the frequency of crevasses is not linked to ENSO activity. The data suggest that most of the sediments eroded from the Andes by the tributaries of the Mamoré are deposited in the alluvial plains, before reaching the parent river. The mid-to-late Holocene paleo-channels of these rivers are located tens of kilometres further away from the Andes than the modern crevasses. I conclude that the frequency of crevasses is controlled by intrabasinal processes that act on a yearly to decadal timescale, while the average location of the crevasses is controlled by climatic or neo-tectonic events that act on a millennial scale. Finally, I discuss the implications of river dynamics on rural livelihoods and biodiversity in the Llanos de Moxos, a seasonally flooded savannah covering most of the southern Amazonian foreland basin and the world's largest RAMSAR site.

  18. Alluvial plain dynamics in the southern Amazonian foreland basin

    NASA Astrophysics Data System (ADS)

    Lombardo, U.

    2015-10-01

    Alluvial plains are formed with sediments that rivers deposit on the adjacent flood-basin, mainly through crevasse splays and avulsions. These result from a combination of processes, some of which push the river towards the crevasse threshold, while others act as triggers. Based on the floodplain sedimentation patterns of large rivers in the southern Amazonian foreland basin, it has been suggested that alluvial plain sediment accumulation is primarily the result of river crevasse splays triggered by above normal precipitation events due to La Niña. However, more than 90 % of the Amazonian river network is made of small rivers and it is unknown whether small river floodplain sedimentation is influenced by the ENSO cycle as well. Using Landsat images from 1984 to 2014, here I analyse the behaviour of all the twelve tributaries of the Río Mamoré with a catchment in the Andes. I show that these are very active rivers and that the frequency of crevasses is not linked to ENSO activity. I found that most of the sediments eroded from the Andes by the tributaries of the Mamoré are deposited in the alluvial plains, before reaching the parent river. The mid- to late Holocene paleo-channels of these rivers are located tens of kilometres further away from the Andes than the modern crevasses. I conclude that the frequency of crevasses is controlled by intrabasinal processes that act on a year to decade time scale, while the average location of the crevasses is controlled by climatic or neo-tectonic events that act on a millennial scale. Finally, I discuss the implications of river dynamics on rural livelihoods and biodiversity in the Llanos de Moxos, a seasonally flooded savannah covering most of the southern Amazonian foreland basin and the world's largest RAMSAR site.

  19. Water loss in the Potomac River basin during droughts

    USGS Publications Warehouse

    Hagen, E.R.; Kiang, J.E.; Dillow, J.J.A.

    2004-01-01

    The water loss phenomena in the Washington DC metropoliton area's (WMA) Potomac River water supply basin during droughts was analyzed. Gage errors, permitted withdrawals, evaporation, and transpiration by trees along the river were investigated to account for loss. The Interstate Commission on the Potomac River Basin (ICPRB) calculated potential gage error and examined permits to determine permitted levels of consumption withdrawals from the Potomac. The result of a single slug test indicated that the soil transmissivity may not be adequate to allow passage of enough water to account for all of the calculated water loss.

  20. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    NASA Astrophysics Data System (ADS)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  1. The optical properties of river and floodplain waters in the Amazon River Basin: Implications for satellite-based measurements of suspended particulate matter

    NASA Astrophysics Data System (ADS)

    Martinez, Jean-Michel; Espinoza-Villar, Raul; Armijos, Elisa; Silva Moreira, Luciane

    2015-07-01

    Satellite images can now be used to assess river sediment discharge, and systematic studies over rivers and lakes are required to support such applications and document the variability of inland water optical properties at the watershed scale. The optical properties of the Amazon Basin waters were analyzed from in situ measurements of the remote sensing reflectance (Rrs) at 279 stations and downwelling diffuse attenuation coefficients (Kd) at 133 stations. Measurements of the apparent optical properties, suspended particulate matter (SPM) contents, and characteristics and colored dissolved organic matter (CDOM) absorption spectra were performed during 16 cruises along the main Amazonian Rivers draining the Andes and for some tributaries. Surface-suspended sediment granulometry and mineralogy showed a stable distribution at the catchment scale, even over large distances and between tributaries. The particle number-size distribution was best described using a segmented distribution with a slope of 2.2 for the fine range (1-15 µm), and the CDOM absorption coefficient at 440 nm varied from 1.8 to 7.9 m-1. Overall, both Rrs and Kd were strongly correlated with SPM, although strong CDOM absorption limited the use of the blue spectrum. Reflectance saturation from blue to red was observed at approximately 100 g m-3, whereas the near-infrared (NIR) wavelength enabled the monitoring of the full SPM range (5-620 g m-3). In contrast, Kd showed no saturation for SPM from green to NIR, and a linear model was calculated. The use of the reflectance ratio was investigated and shown to improve the suspended sediment concentration retrieval performance.

  2. Phthalate occurrence in rivers and tap water from central Spain.

    PubMed

    Domínguez-Morueco, N; González-Alonso, S; Valcárcel, Y

    2014-12-01

    The aim of this study is to evaluate the presence and concentrations of the main phthalates in water from the Jarama and Manzanares rivers in the region of Madrid (RM, Central Spain), the most densely populated region of Spain, and to determine the possible oestrogenic activity based on found phthalate concentration. The presence of phthalates in major supply drinking water areas of the RM was also analysed, thus allowing a preliminary assessment of the health risks resulting from the concentrations obtained. The results of this study show the presence of the three (dimethyl phthalate (DMP), diethyl phthalate (DEP) di-n-butyl phthalate (DBP)) of five phthalates studied (dimethyl phthalate (DMP), diethyl phthalate (DEP), di-(2-ethylhexyl) phthalate (DEHP), benzyl-butyl phthalate (BBP) and di-n-butyl phthalate (DBP)). The DBP was found in both river and tap water samplers, whereas DMP and DEP were found in only drinking water samples. The DBP was found to make the highest average contribution to pollution in both river and tap water. The DEHP was not found in both the river and tap water because it is one of the most regulated phthalates. The highest phthalate contamination was found in the Manzanares river and in those areas that receive treated water from the Tagus river. The phthalates found in river and tap water in the RM do not represent a potential oestrogenic risk for the aquatic environment or humans. A preliminary risk assessment suggested that the risk of exposure to phthalates from tap water in this study is acceptable, although continuous monitoring of the presence of these substances in both drinking and river water should be undertaken to detect possible increases in their concentrations. This is the first study to analyse the presence of phthalates in both rivers and drinking water of the centre of Spain. PMID:25217752

  3. Characterization of Surface-Water/Ground-Water Interaction Along the Spokane River, Idaho and Washington

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Bowers, C. L.; Hein, K. L.

    2002-12-01

    Historical mining in the Coeur d'Alene River basin of northern Idaho has resulted in elevated concentrations of some trace metals (particularly Cd, Pb, and Zn) in water and sediments of Coeur d'Alene Lake and downstream in the Spokane River. On average during 1999 and 2000, about 20,000 kg/yr of whole-water lead (particulate plus dissolved), 2,100 kg/yr of whole-water cadmium, and 450,000 kg/yr of whole-water zinc flowed out of Coeur d'Alene Lake into the Spokane River. These elevated trace-metal concentrations in the Spokane River have raised concerns about potential contamination of ground water in the underlying Spokane Valley/Rathdrum Prairie aquifer, the primary source of drinking water for the city of Spokane and surrounding areas. A study conducted as part of the U.S. Geological Survey's National Water-Quality Assessment Program examined the interaction of the river and aquifer using hydrologic and chemical data along a losing reach of the Spokane River. The river and ground water were extensively monitored over a range of hydrologic conditions at 3 stream gages and 25 monitoring wells (including 18 wells installed for this study) ranging from 8 to 1,000 m from the river. River stage, ground-water level, water temperature, and specific conductance were measured hourly to biweekly, and water samples were collected 8 times. Additional regional ground-water data were collected from more than 190 wells within 5 km of the study reach. Hydrologic and chemical data indicate that the Spokane River recharges the Spokane Valley/Rathdrum Prairie aquifer along a 35-km reach between Coeur d'Alene Lake and Spokane. Ground-water levels in near-river (<125 m from the river) wells responded rapidly to variations in river stage and indicated the presence of an unsaturated zone beneath the river and a ground-water flow gradient away from the river. Chemical data indicated that river recharge may influence ground-water chemistry as far as 900 m from the river. The chemistry and

  4. Water resources of Wisconsin, Pecatonica-Sugar River basin

    USGS Publications Warehouse

    Hindall, S.M.; Skinner, Earl L.

    1973-01-01

    The purpose of this report is to describe the physical environment, availability, characteristics, distribution, movement, and quailty of water in the Pecatonica-Sugar River basin.  In addition, water use and water problems are summarized to give an understanding of man's management of water within the basin.

  5. Water contamination and environmental ecosystem in the Harlem River

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2013-12-01

    Nutrients, bacteria, polychlorinated biphenyls (PCBs) and other contaminates have degraded water quality of the Harlem River. The Harlem River is a natural straight connected to the Hudson River and the East River, and it has been used for navigation and boating. Water samples have been collected and analyzed from 2011 to 2013. Phosphorus, ammonia, turbidity, fecal coliform, E.Coli., and enterococcus all exceed regulated levels for New York City waters. There is only one wastewater treatment plant (Wards Island WWTP) that serves this river. Combined sewer overflows (CSOs) discharge raw sewage into the river during storms in spring and summer. Commercial fishing is banned, .however, individuals still fish. While some fishermen catch and release, it is likely some fish are consumed, creating concern for the environmental health of the community along the river. Storm water runoff, CSOs, and wastewater effluents are major pollutant sources of PCB 11 (3,3' dichlorobiphenyl), nutrient and bacteria. Nutrients, bacteria levels and their spatial/temporal variations were analyzed, and PCB analysis is underway. This data is a critical first step towards improving the water quality and environmental ecosystem in the Harlem River.

  6. Water resources: the prerequisite for ecological restoration of rivers in the Hai River Basin, northern China.

    PubMed

    Tang, Wenzhong; Mao, Zhanpo; Zhang, Hong; Shan, Baoqing; Zhao, Yu; Ding, Yuekui

    2015-01-01

    The competition for water resources between humans and river ecosystems is becoming ever more intense worldwide, especially in developing countries. In China, with rapid socioeconomic development, water resources to maintain river ecosystems are progressively decreasing, especially in the Hai River Basin (HRB), which has attracted much attention from the Chinese government. In the past 56 years, water resources have continuously decreased in the basin, such that there is 54.2 % less surface water now compared with then. Water shortages, mainly due to local anthropogenic activities, have emerged as the main limiting factor to river ecological restoration in the HRB. However, the South-to-North Water Diversion Project, the largest such project in the world, presents a good opportunity for ecological restoration of rivers in this basin. Water diverted from the Danjiangkou Reservoir will restore surface water resources in the HRB to levels of 30 years ago and will amount to more than 20 billion m(3). Our findings highlight the fact that water resources are crucial for river ecological restoration. PMID:25142344

  7. Detection of Water Quality Changes along a River System.

    ERIC Educational Resources Information Center

    Esterby, S. R.; And Others

    1992-01-01

    Physical and chemical indicators of water quality monitored by Environmental Canada between 1977 and 1987 in the Niagara River at Niagara-on-the-Lake and in the Saint Lawrence River at Wolfe Island are analyzed for seasonal and annual variations. Results indicate that specific conductivity, sodium, and chloride have decreased significantly over…

  8. Water resources of the Cannon River watershed, southeastern Minnesota

    USGS Publications Warehouse

    Anderson, H.W., Jr.; Farrell, D.F.; Broussard, W.L.; Felsheim, P.E.

    1974-01-01

    Lard glacial melt-water valleys, around Cannon Falls and extending several miles to the west and south west, are characterized by broad valley floors underlain by outwash sand and gravel. The Cannon River flows out of the watershed and enters the Mississippi River at about 660 feet altitude.

  9. 78 FR 27033 - Safety Zone; High Water Conditions; Illinois River

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Security FR Federal Register NPRM Notice of Proposed Rulemaking TFR Temporary Final Rule A. Regulatory... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; High Water Conditions; Illinois River... temporary safety zone on the Illinois River from Mile Marker 187.2 to Mile Marker 285.9. This zone...

  10. LOWER PORTNEUF RIVER, IDAHO - WATER QUALITY STATUS REPORT, 1977

    EPA Science Inventory

    This paper describes the results of a 12 month, bi-weekly water quality sampling program on the Lower Portneuf River, Idaho (17040208). Samples were collected at 7 river stations, 5 effluents, and a major stream. The results indicate that Marsh Creek, a major tributary draining...

  11. Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)

    SciTech Connect

    Paller, M.

    1990-11-01

    Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985. The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.

  12. Dynamic water accounting in heavily committed river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  13. Water resource management in river oases along the Tarim River in North-West of China

    NASA Astrophysics Data System (ADS)

    Kliucininkaite, Lina; Disse, Markus

    2013-04-01

    Tarim River is one of the longest inland rivers in the world. It flows its water in the northern part of the Taklamakan desert in Xinjiang, North-west of China, which is a very hostile region due its climatic conditions and particularly due to low precipitation and very high evaporation rates. During the past five decades intensive exploitation of water resources, mainly by agricultural activities, has changed the temporal and spatial distribution of them and caused serious environmental problems in the Tarim River Basin. The support measures for oasis management along the Tarim River under climatic and societal changes became the overarching goal of this research. The temperature has risen by nearly 1° C over the past 50 years in the Tarim River Basin so more water was available in the mountainous areas of Xinjiang, leading to an increasing trend of the headstream discharges of the Tarim Basin. Aksu, Hotan and Yarkant Rivers are three tributaries of the Tarim River, as well as its main water suppliers. However, under the condition of water increase with the volume of 25×108 m3 in headstreams in recent 10 years, the water to the mainstream has increased less than 108 m3 (in Alar hydrological station), which is less than 3% of the increased water volume of runoff. Moreover, the region is one of the biggest cotton and other cash crops producers in China. In addition, expansion of urban and, in particular, of irrigation areas have caused higher water consumption at different parts of the river, leading to severe ecological effects on rural areas, especially in the lower reaches. Moreover, it also highly affects groundwater level and quality. The aim of this research is to support decision makers, planners and engineers to find right measures in the area for the further development of the region, as well as adaptation to changing climate. Different scenarios for water resource management, as well as water distribution and allocation in a more efficient and water

  14. Managing water quality of River Yamuna in NCR Delhi

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rahul; Dasgupta, Niladri; Hasan, Aziz; Upadhyay, S. K.

    River Yamuna is a typical example of degraded lotic ecosystem which has been turns into a sewage drain in Delhi National capital region due to anthropogenic pressure and aggravating pollution load. Delhi is alone responsible for 79% of the entire pollution load in the said river. The drain discharges exerting a massive BOD load of hundreds of tons per day into the river. The pollutants could not get diluted as the river has very little or no flow in non-monsoon months due to lack of indigenous water. Water quality index reveal that before entering Delhi, river water has the medium water quality, gets severely polluted in Delhi, shows very bad water quality which continues till Agra Canal. Improper location of STPs and mismatch between the available treatment capacities of STPs with the actual sewage generation results muddle up of “approx” 60% untreated wastewater into the River Yamuna. Implementation of sustainable management plan with already available facilities, proper sewerage planning and maintaining the minimum ecological flow will control the pollution in River Yamuna.

  15. People and water in the Assabet River basin, eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.

    2005-01-01

    An accounting of the inflows, outflows, and uses of water in the rapidly developing Assabet River Basin, along Interstate 495 in eastern Massachusetts, was done to quantify how people's activities alter the hydrologic system. The study identified subbasins and seasons in which outflows resulting from people's activities were relatively large percentages of total flows, and quantified the fraction of streamflow in the Assabet River that is treated wastewater. Computer models of ground-water flow were also used to test how the components of the hydrologic system, particularly streamflow, would change with future development and increased water use. Computer simulations showed that, when water use was increased to currently permitted levels, streamflows in tributaries would decrease, particularly during the low-flow period. In the Assabet River, increased wastewater discharges resulted in a slight increase in total streamflow and an increase in the fraction of streamflow in the river that is wastewater, relative to existing conditions.

  16. UPPER SNAKE RIVER BASIN WATER QUALITY ASSESSMENT, 1976

    EPA Science Inventory

    This package contains information for the Upper Snake River Basin, Idaho (170402, 17040104). The report contains a water quality assessment approach which will assist EPA planners, land agencies, and state and local agencies in identifying probably nonpoint sources and determini...

  17. Water Quality of the upper Litani River Basin, Lebanon

    NASA Astrophysics Data System (ADS)

    Haydar, Chaden Moussa; Nehme, Nada; Awad, Sadek; Koubaissy, Bachar; Fakih, Mohamad; Yaacoub, Ali; Toufaily, Joumana; Villeras, Frederic; Hamieh, Tayssir

    Water pollution is a major problem in Lebanon, which is has been exacerbated lately. However, surface water sources are most exploited, and more certainly the water from rivers. The Litani River has been lately subjected to several aspects of deterioration in its quality. This includes the major physiochemical characteristics. The aims of this study are to assess the seasonal variations in water quality in the Upper Litani River Basin, including the Qaraaoun Lake. The collected samples were from representative sites along the river, and this was carried out at several dates during 2010 and 2011. The carried analysis implies the physical (pH, T°, TDS, EC), chemicals (Na+, Ca2+, Mg2+, Cl-, SO2-4, NH3+, NO-3, PO2-4, K+, Heavy metals. This resulted numeric data are being compared with WHO guidelines. In addition, PCA was applied to evaluate the data accuracy. It can be conclude that the measured variables used are creditable for the assessment.

  18. Genetic relationships among freshwater mussel species from fifteen Amazonian rivers and inferences on the evolution of the Hyriidae (Mollusca: Bivalvia: Unionida).

    PubMed

    Santos-Neto, Guilherme da Cruz; Beasley, Colin Robert; Schneider, Horacio; Pimpão, Daniel Mansur; Hoeh, Walter Randolph; Simone, Luiz Ricardo Lopes de; Tagliaro, Claudia Helena

    2016-07-01

    The current phylogenetic framework for the South American Hyriidae is solely based on morphological data. However, freshwater bivalve morphology is highly variable due to both genetic and environmental factors. The present study used both mitochondrial (COI and 16S) and nuclear (18S-ITS1) sequences in molecular phylogenetic analyses of nine Neotropical species of Hyriidae, collected from 15 South American rivers, and sequences of hyriids from Australia and New Zealand obtained from GenBank. The present molecular findings support traditional taxonomic proposals, based on morphology, for the South American subfamily Hyriinae, currently divided in three tribes: Hyriini, Castaliini and Rhipidodontini. Phylogenetic trees based on COI nucleotide sequences revealed at least four geographical groups of Castalia ambigua: northeast Amazon (Piriá, Tocantins and Caeté rivers), central Amazon, including C. quadrata (Amazon and Aripuanã rivers), north (Trombetas river), and C. ambigua from Peru. Genetic distances suggest that some specimens may be cryptic species. Among the Hyriini, a total evidence data set generated phylogenetic trees indicating that Paxyodon syrmatophorus and Prisodon obliquus are more closely related, followed by Triplodon corrugatus. The molecular clock, based on COI, agreed with the fossil record of Neotropical hyriids. The ancestor of both Australasian and Neotropical Hyriidae is estimated to have lived around 225million years ago. PMID:27071805

  19. Water resource management planning guide for Savannah River Plant

    SciTech Connect

    Hubbard, J.E.; Stephenson, D.E.; Steele, J.L. and Co., Aiken, SC . Savannah River Lab.); Gordon, D.E. and Co., Aiken, SC . Savannah River Plant)

    1988-10-01

    The Water Resource Management Planning Guide provides an outline for the development of a Savannah River Plant Water Resource Management Plan (WRMP) to protect, manage, and monitor the site's water resources. The management plan is based on three principle elements: (1) protection of the water quality, (2) management of the water quantity, and (3) monitoring of the water quality and quantity. The plan will assure that changes in water quality and quantity are identified and that corrective action is implemented as needed. In addition, water management activities within and between Savannah River Plant (SRP) organizations and departments will be coordinated to ensure the proper management of water resources. This document is intended as a guide to suggest goals and objectives that will provide a basis for the development of a water resource plan for SRP. Planning should be flexible rather than rigid, and the plan outlines in this document was prepared to be modified or updated as conditions necessitate. 16 refs., 12 figs.

  20. Impact of riverbank filtration on treatment of polluted river water.

    PubMed

    Singh, P; Kumar, P; Mehrotra, I; Grischek, T

    2010-05-01

    The impact of riverbank filtration (RBF) on the treatment of water from the River Yamuna at Mathura, which has disagreeable visual properties, has been investigated. The dissolved organic carbon (DOC) and colour of the river water were 4.0-6.8mg/L and 40-65 colour units (CU), respectively. Pre-chlorination is in practice to improve raw water quality. Chlorine doses as high as 60mg/L ahead of the water treatment units reduced colour by about 78%. Removal of DOC and UV-absorbance was less than 18%. In comparison to direct pumping of the river water, collection of water through RBF resulted in the reduction of DOC, colour, UV-absorbance and fecal coliforms by around 50%. However, riverbank filtrate did not conform to the drinking water quality standards. Therefore, riverbank-filtered water along with the Yamuna water were ozonated for different durations. To reduce DOC to the desired level, the dose of ozone required for the riverbank filtrate was found to be considerably less than the ozone required for the river water. RBF as compared to direct pumping of Yamuna water appears to be effective in improving the quality of the raw water. PMID:20089349

  1. High-pressure injection injury with river water.

    PubMed

    Greenberg, M I

    1978-06-01

    A case of high pressure injection and laceration of the calf with river water is reported, the first such case appearing in the literature. As with high pressure injection of grease, paint, paint thinner, mineral spirits, diesel oil, gasoline, and turpentine, this injury is a surgical emergency. All patients must be admitted for surgical debridement, irrigation, parenteral antibiotics, and observation. River water, contaminated by sewage and industrial wastes, has great irritative and infective potential. PMID:661048

  2. Controls over the strontium isotope composition of river water

    SciTech Connect

    Palmer, M.R. ); Edmond, J.M. )

    1992-05-01

    Strontium concentrations and isotope ratios have been measured in river and ground waters from the Granges, Orinoco, and Amazon river basins. When compared with major element concentrations, the data set has allowed a detailed examination of the controls over the strontium isotope systematics of riverine input to the oceans in the following environments: (1) typical drainage basins containing limestones, evaporites, shales, and alumino-silicate metamorphic and igneous rocks; (2) shield terrains containing no chemical or biogenic sediments; and (3) the flood plains that constitute the largest areas of many large rivers. The strontium concentration and isotope compositions of river waters are largely defined by mixing of strontium derived from limestones and evaporites with strontium derived from silicate rocks. The strontium isotope composition of the limestone end member generally lies within the Phanerozoic seawater range, which buffers the [sup 87]Sr/[sup 86]Sr ratios of major rivers. A major exception is provided by the rivers draining the Himalayas, where widescale regional metamorphism appears to have led to an enrichment in limestones of radiogenic strontium derived from coexisting silicate rocks. The strontium isotope systematics of rivers draining shield areas are controlled by the intense, transport-limited, nature of the weathering reactions, and thereby limits variations in the strontium flux from these terrains. Flood plains are only a minor source of dissolved strontium to river waters, and precipitation of soil salts in some flood plains can reduce the riverine flux of dissolved strontium to the oceans.

  3. Spatial distribution of dissolved constituents in Icelandic river waters

    NASA Astrophysics Data System (ADS)

    Oskarsdottir, Sigrídur Magnea; Gislason, Sigurdur Reynir; Snorrason, Arni; Halldorsdottir, Stefanía Gudrún; Gisladottir, Gudrún

    2011-02-01

    SummaryIn this study we map the spatial distribution of selected dissolved constituents in Icelandic river waters using GIS methods to study and interpret the connection between river chemistry, bedrock, hydrology, vegetation and aquatic ecology. Five parameters were selected: alkalinity, SiO 2, Mo, F and the dissolved inorganic nitrogen and dissolved inorganic phosphorus mole ratio (DIN/DIP). The highest concentrations were found in rivers draining young rocks within the volcanic rift zone and especially those draining active central volcanoes. However, several catchments on the margins of the rift zone also had high values for these parameters, due to geothermal influence or wetlands within their catchment area. The DIN/DIP mole ratio was higher than 16 in rivers draining old rocks, but lowest in rivers within the volcanic rift zone. Thus primary production in the rivers is limited by fixed dissolved nitrogen within the rift zone, but dissolved phosphorus in the old Tertiary catchments. Nitrogen fixation within the rift zone can be enhanced by high dissolved molybdenum concentrations in the vicinity of volcanoes. The river catchments in this study were subdivided into several hydrological categories. Importantly, the variation in the hydrology of the catchments cannot alone explain the variation in dissolved constituents. The presence or absence of central volcanoes, young reactive rocks, geothermal systems and wetlands is important for the chemistry of the river waters. We used too many categories within several of the river catchments to be able to determine a statistically significant connection between the chemistry of the river waters and the hydrological categories. More data are needed from rivers draining one single hydrological category. The spatial dissolved constituent distribution clearly revealed the difference between the two extremes, the young rocks of the volcanic rift zone and the old Tertiary terrain.

  4. Geographical origin of Amazonian freshwater fishes fingerprinted by ⁸⁷Sr/⁸⁶Sr ratios on fish otoliths and scales.

    PubMed

    Pouilly, Marc; Point, David; Sondag, Francis; Henry, Manuel; Santos, Roberto V

    2014-08-19

    Calcified structures such as otoliths and scales grow continuously throughout the lifetime of fishes. The geochemical variations present in these biogenic structures are particularly relevant for studying fish migration and origin. In order to investigate the potential of the (87)Sr/(86)Sr ratio as a precise biogeochemical tag in Amazonian fishes, we compared this ratio between the water and fish otoliths and scales of two commercial fish species, Hoplias malabaricus and Schizodon fasciatus, from three major drainage basins of the Amazon: the Madeira, Solimões, and Tapajós rivers, displaying contrasted (87)Sr/(86)Sr ratios. A comparison of the (87)Sr/(86)Sr ratios between the otoliths and scales of the same individuals revealed similar values and were very close to the Sr isotopic composition of the local river where they were captured. This indicates, first, the absence of Sr isotopic fractionation during biological uptake and incorporation into calcified structures and, second, that scales may represent an interesting nonlethal alternative for (87)Sr/(86)Sr ratio measurements in comparison to otoliths. Considering the wide range of (87)Sr/(86)Sr variations that exist across Amazonian rivers, we used variations of (87)Sr/(86)Sr to discriminate fish origin at the basin level, as well as at the sub-basin level between the river and savannah lakes of the Beni River (Madeira basin). PMID:24971992

  5. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  6. Groundwater and river water interaction at Ciromban and Cibeureum riverbank, Tasikmalaya: Can we solve water shortage?

    NASA Astrophysics Data System (ADS)

    Pratama, A.; Abdulbari, N.; Nugraha, M. I.; Prasetio, Y.; Tulak, G. P.; Darul, A.; Irawan, D. E.

    2015-09-01

    Water shortage is a common problem in the high density settlement along the riverbank of Ciromban and Cibeureum River, Tasikmalaya, as the quality of the water also decreases. One of the solution is to maximize the use of river water. This study aims to investigate the interaction between river and groundwater along the riverbank as a function of land use impact. A river water and unconfined groundwater level mapping has been conducted to make water flow map, assuming both waters are in the same flow system. Physical parameters, temperature, TDS, and pH were measured at each stations to understand water characteristics. Based on observations at 50 dug wells and 12 river stations on July-August 2014, a close interaction between both water bodies has been identified with two flow systems: effluent flow (or gaining stream) at Cibereum river segment and influent flow (losing stream) at Ciromban river segment. Physical parameters show a high correlation in temperature, pH, and TDS. Hence, further evaluation should be taken before using river water as raw water supply in Tasikmalaya area.

  7. Bacteriological water quality status of River Yamuna in Delhi.

    PubMed

    Anand, Chetna; Akolkar, Pratima; Chakrabarti, Rina

    2006-01-01

    Bacteriological water quality status in terms of total coliform and faecal coliform count was studied on both--east and west banks of river Yamuna in Delhi. Membrane filtration technique was adopted for enumeration of total coliform and faecal coliform count in the river water sample collected on monthly basis for 2 years--2002 and 2003. The study reveals the impact of diverse anthropogenic activities as well as the monsoon effect on the bacterial population of river Yamuna in Delhi stretch. Microbial population contributed mainly through human activities prevailed in the entire stretch of Yamuna river with reduction in bacterial counts during monsoon period due to flushing effect. Bacteriological assessment does not provide an integrated effect of pollution but only indicate the water quality at the time of sampling. Hence, this parameter is time and space specific. PMID:16850884

  8. Using GRACE Total Water Storage Changes to constrain River Routing Models in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    de Linage, C.; Lo, M.; Famiglietti, J. S.; Ray, R. L.; Beighley, R. E.

    2010-12-01

    The GRACE mission provides monthly to 10-day maps of Total Water Storage Anomalies corresponding to the vertically integrated land water storage (soil moisture and groundwater) as well as storage in river channels and floodplains (surface waters). The surface water component is an important contributor to total water storage in the Amazon River basin as shown by improved agreement between GRACE observations and model simulations when runoff is routed through the river network as compared to no river routing. We use the Community Land Model version 3.5 to model land water storage along with runoff by accounting for a simple ground water model. Surface and subsurface runoff predictions are then routed using two different routing models: a simple cell-to-cell routing scheme (e.g. Branstetter and Famiglietti, 1999) and the Hillslope River Routing (Beighley et al. 2010). We evaluate model performances against the spatio-temporal variations of GRACE data by carrying out a Singular Value Decomposition of the cross-covariance matrix. We also compare the two models in the light of their respective intrinsic capabilities. We finally investigate the impact of the precipitation data on model outputs by using TRMM products instead of GLDAS (CMAP) products.

  9. River Restoration Within Water Supply Areas - Problems and Solution Approaches

    NASA Astrophysics Data System (ADS)

    Regli, C.; Huggenberger, P.; Guldenfels, L.

    2004-05-01

    The demand of river restoration in many areas of Europe and North America clarifies the existing problems of a sustainable use of water resources. River restoration generally intensifies the exchange between surface- and groundwater and related dissolved compounds or particles. Recommendations concerning ecological measures of river restoration within water supply areas should allow differentiated solutions, which take into account groundwater and flood protection. Model scenarios play an important role in decision-making processes. An application of this approach is given for the groundwater production system of the city of Basel, Switzerland: The former channelized river Wiese should be restored to more natural conditions to re-establish the biological connectivity and to increase the recreational value of this area. These initiatives might conflict with the requirements of groundwater protection, especially during flood events. Therefore, processes of river-groundwater interaction have been characterized by analyses of physical, chemical, and microbiological data sampled in several well clusters between the river and production wells. The well clusters allow sampling of groundwater in different depths of the aquifer. These data together with data from tracer experiments are used for modeling the river-groundwater interaction. The large- and medium-scaled, transient groundwater models are used to evaluate the well capture zones in the different river restoration scenarios. Well capture zones have to satisfy the safety requirements of groundwater protection. A further step includes optimizations of water supply operation such as artificial recharge and pumping. At the small scale, uncertainty estimations concerning delineation of well capture zones are made by stochastic approaches including geological and geophysical data of the aquifer. The methods presented can be used to define and evaluate groundwater protection zones in heterogeneous aquifers associated with

  10. Hydrochemical evaluation of river water quality—a case study

    NASA Astrophysics Data System (ADS)

    Qishlaqi, Afishin; Kordian, Sediqeh; Parsaie, Abbas

    2016-04-01

    Rivers are one of the most environmentally vulnerable sources for contamination. Since the rivers pass through the cities, industrial and agricultural centers, these have been considered as place to dispose the sewages. This issue is more important when the river is one of the main sources of water supplying for drinking, agricultural and industrial utilizations. The goal of the present study was assessing the physicochemical characteristics of the Tireh River water. The Tireh River is the main river in the Karkheh catchment in the Iran. To this end, 14 sampling stations for measuring the physicochemical properties of Tireh River along the two main cities (Borujerd and Dorud) were measured. The results showed that (except SO4) Mg, Ca and other anions and cations have concentrations under WHO standard limitation. Almost all samples have suitable conditions for drinking with regard to the WHO standard and in comparison with agricultural standard (FAO Standard), and the potential of water is suitable for irrigation purposes. According to Wilcox diagram, 78 % of samples were at the C3-S1 and 21.5 % were at C2-S1 classes. The piper diagram shows that most of samples are bicarbonate and calcic facies.

  11. Investigation of trihalomethanes formation potential in Karoon River water, Iran.

    PubMed

    Fooladvand, Moradali; Ramavandi, Bahman; Zandi, Keyvan; Ardestani, Mojtaba

    2011-07-01

    Organic matters in raw water have a potential to generate harmful disinfection by-products such as trihalomethanes (THMs) during the chlorination process. The objectives of this study were to investigate the trihalomethane formation potential (THMFP) in Karoon River water and to determine the effect of several factors including total organic carbon (TOC), pH, chlorine dosage, water temperature, and seasonal variation. The results showed that, among all factors, TOC and water temperature have a remarkable effect on THMFP. The experimental results from batch studies indicated that increasing of pH value yielded a greater THMFP concentration for Karoon River water. THMFP levels of Karoon River water in summer times, when water temperature exceeded 26°C, were 1.2-1.6 times higher than in the spring and fall seasons, when water temperature was below 15°C. It was found that the measured THMFP at Karoon River water in the spring and fall seasons were very rarely higher than 100 μg/L. PMID:20824334

  12. Mapping phytophysiognomies to undisclosed past landscape in an Amazonian wetland

    NASA Astrophysics Data System (ADS)

    Cremon, E.; Rossetti, D.; Zani, H.

    2012-12-01

    Wetlands cover 800,000 km2 in the Amazon basin, and these not distributed randomly in the landscape. These areas record a complex geomorphological history during the late Quaternary, mainly due to interplay of tectonics and climatic changes, which resulted in high volumes of sediment deposited in renewed accommodation spaces. It is interesting that these wetlands are highlighted by open vegetation of non-random distribution in contrast with the surrounding rainforest. In general, natural patches of open vegetation within the Amazonian forest have been most often assigned to past arid climatic episodes, or contrasting soil properties. In this work, we analyzed the relationship between geomorphology and the distribution of vegetation patterns over an Amazonian wetland located in the interfluve of the Negro and Branco Rivers. This area is interesting because it contains one of the largest (i.e., more than 100 km in length and 50 km in width) patches of open vegetation (mostly grassland campinarana) in sharp contrast with the rainforest. The main goal was to perform a phytophysiognomic map based on decision tree classifier and data mining of reflectance factor and backscattering using TM/Landsat (dry season) and PALSAR (wet season) images. Five phytophysiognomies were categorized: rainforest; flooded forest; wooded open vegetation; grassy-shrubby open vegetation; and water body. The output map showed an overall accuracy of 94% and Kappa index of 0.93 (p <.001) where the HV polarization was useful for separating classes of open vegetation from forested areas, the main node of the decision tree. The band 5 TM sensor separated water bodies and the HH polarization was useful for distinguishing classes of open vegetation (grassy, shrubby and woody) from forested areas (rainforest and flooded forest). Together with the visual interpretation of remote sensing products, the achieved phytophysiognomic map served as the basis for a geomorphological interpretation of the study

  13. Analysis of water quality of the Mahoning River in Ohio

    USGS Publications Warehouse

    Bednar, Gene A.; Collier, Charles R.; Cross, William Perry

    1968-01-01

    The Mahoning River drains the densely populated and industrialized Warren-Youngstown area in northeastern Ohio. Significant chemical constituents and physical properties generally regarded as important in establishing water-quality standards for the Mahoning River are evaluated on the basis of hydrologic conditions and water use. Most of the interpretations and the appraisal of water-quality conditions are based on data collected from January 1963 to December 1965. Generally, streamflow during this period was lower than during a selected long-term reference period ; however, extremely low flows that occurred in the reference period did not occur in the 3-year study period. Water temperatures of the Mahoning River at Pricetown and Leavittsburg were not affected by thermal loading. Water temperatures at those stations ranged from the freezing point to 78?F during the 1963-65 period. Downstream from Leavittsburg, the use of large quantities of water for industrial cooling caused critical thermal loading during periods of low streamflow. Maximum water temperatures were 108?F and 104?F at Struthers and Lowellville, respectively. Water temperatures of the Mahoning River were lower during high water discharges and increased with higher steel-production indices. Flow augmentation and modifications in industrial processes have improved the water-temperature conditions in recent years. A combination of oxygen-consuming materials and warmed water from industrial and municipal wastes discharged into the lower reaches of the Mahoning River frequently depleted the dissolved-oxygen content. At Lowellville, the river water had a dissolved-oxygen content of 5 ppm (parts per million) or less for 67 percent of the time and 3 ppm or less for 16 percent of the time during the study period. The percentage of saturation of dissolved oxygen followed a similar trend. Both the dissolved-oxygen concentration and the percentage of saturation were noticeably lower downstream from Leavittsburg

  14. Colorado River Basin Water Supply and Demand Study

    NASA Astrophysics Data System (ADS)

    Prairie, J. R.; Jerla, C.

    2012-12-01

    The Colorado River Basin Water Supply & Demand Study (Study), part of the Basin Study Program under the Department of the Interior's WaterSMART Program, is being conducted by the Bureau of Reclamation and agencies representing the seven Colorado River Basin States. The purpose of the Study is to assess future water supply and demand imbalances in the Colorado River Basin over the next 50 years and develop and evaluate options and strategies to resolve those imbalances. The Study is being conducted over the period from January 2010 to September 2012 and contains four major phases: Water Supply Assessment, Water Demand Assessment, System Reliability Analysis, and Development and Evaluation of Opportunities for balancing supply and demand. To address the considerable amount of uncertainty in projecting the future state of the Colorado River system, the Study has adopted a scenario planning approach that has resulted in four water supply scenarios and up to six water demand scenarios. The water supply scenarios consider hydrologic futures derived from the observed historical and paleo-reconstructed records as well as downscaled global climate model (GCM) projections. The water demand scenarios contain differing projections of parameters such as population growth, water use efficiency, irrigated acreage, and water use for energy that result in varying projections of future demand. Demand for outdoor municipal uses as well as agricultural uses were adjusted based on changing rates of evapotranspiration derived from downscaled GCM projections. Water supply and demand scenarios are combined through Reclamation's long-term planning model to project the effects of future supply and demand imbalances on Colorado River Basin resources. These projections lend to an assessment of the effectiveness of a broad range of options and strategies to address future imbalances.

  15. Polychlorinated Biphenyls Water Pollution along the River Nile, Egypt

    PubMed Central

    Megahed, Ayman Mohamed; Dahshan, Hesham; Abd-El-Kader, Mahdy A.; Abd-Elall, Amr Mohamed Mohamed; Elbana, Mariam Hassan; Nabawy, Ehab; Mahmoud, Hend A.

    2015-01-01

    Ten polychlorinated biphenyl (PCB) congeners were determined in water samples collected along the River Nile using gas chromatography-electron capture detector (GC-ECD). PCB concentrations ranged from 14 to 20 μg/L, which were higher than those reported in previous studies, indicating serious PCB pollution in the River Nile. PCB congener profiles varied depending on the sampling sties. PCB-138 was the predominant congener accounting for more than 18% of total PCBs. The composition of PCB congeners in the water revealed that highly chlorinated PCB technical mixtures such as Aroclor 1254 was the main PCB production historically used in Egypt. An increasing trend in PCB levels from the upper stream to the Nile estuaries was observed. The calculated flux of PCBs indicated that 6.8 tons of PCBs is dumped into the Mediterranean Sea each year from the River Nile. The hazard quotients and carcinogenic risk caused by PCB pollution in the River Nile were above the acceptable level indicating that PCBs in the River Nile water pose adverse health effects for all age groups. Our findings revealed that PCBs possess a serious risk to the Egyptian population that depends mainly on the River Nile as a source of water. Thus, stricter legislation and regulatory controls should be applied to reduce the risk of PCBs in Egypt. PMID:26798844

  16. Polychlorinated Biphenyls Water Pollution along the River Nile, Egypt.

    PubMed

    Megahed, Ayman Mohamed; Dahshan, Hesham; Abd-El-Kader, Mahdy A; Abd-Elall, Amr Mohamed Mohamed; Elbana, Mariam Hassan; Nabawy, Ehab; Mahmoud, Hend A

    2015-01-01

    Ten polychlorinated biphenyl (PCB) congeners were determined in water samples collected along the River Nile using gas chromatography-electron capture detector (GC-ECD). PCB concentrations ranged from 14 to 20 μg/L, which were higher than those reported in previous studies, indicating serious PCB pollution in the River Nile. PCB congener profiles varied depending on the sampling sties. PCB-138 was the predominant congener accounting for more than 18% of total PCBs. The composition of PCB congeners in the water revealed that highly chlorinated PCB technical mixtures such as Aroclor 1254 was the main PCB production historically used in Egypt. An increasing trend in PCB levels from the upper stream to the Nile estuaries was observed. The calculated flux of PCBs indicated that 6.8 tons of PCBs is dumped into the Mediterranean Sea each year from the River Nile. The hazard quotients and carcinogenic risk caused by PCB pollution in the River Nile were above the acceptable level indicating that PCBs in the River Nile water pose adverse health effects for all age groups. Our findings revealed that PCBs possess a serious risk to the Egyptian population that depends mainly on the River Nile as a source of water. Thus, stricter legislation and regulatory controls should be applied to reduce the risk of PCBs in Egypt. PMID:26798844

  17. Water and Benefit Sharing in Transboundary River Basins

    NASA Astrophysics Data System (ADS)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  18. Hair mercury levels in Amazonian populations: spatial distribution and trends

    PubMed Central

    2009-01-01

    Background Mercury is present in the Amazonian aquatic environments from both natural and anthropogenic sources. As a consequence, many riverside populations are exposed to methylmercury, a highly toxic organic form of mercury, because of their intense fish consumption. Many studies have analysed this exposure from different approaches since the early nineties. This review aims to systematize the information in spatial distribution, comparing hair mercury levels by studied population and Amazonian river basin, looking for exposure trends. Methods The reviewed papers were selected from scientific databases and online libraries. We included studies with a direct measure of hair mercury concentrations in a sample size larger than 10 people, without considering the objectives, approach of the study or mercury speciation. The results are presented in tables and maps by river basin, displaying hair mercury levels and specifying the studied population and health impact, if any. Results The majority of the studies have been carried out in communities from the central Amazonian regions, particularly on the Tapajós River basin. The results seem quite variable; hair mercury means range from 1.1 to 34.2 μg/g. Most studies did not show any significant difference in hair mercury levels by gender or age. Overall, authors emphasized fish consumption frequency as the main risk factor of exposure. The most studied adverse health effect is by far the neurological performance, especially motricity. However, it is not possible to conclude on the relation between hair mercury levels and health impact in the Amazonian situation because of the relatively small number of studies. Conclusions Hair mercury levels in the Amazonian regions seem to be very heterogenic, depending on several factors. There is no obvious spatial trend and there are many areas that have never been studied. Taking into account the low mercury levels currently handled as acceptable, the majority of the Amazonian

  19. REMOVAL BY COAGULATION OF TRACE ORGANICS FROM MISSISSIPPI RIVER WATER

    EPA Science Inventory

    In the study alum and ferric sulfate were evaluated for their effectiveness in removing four low-molecular-weight organic compounds - C14-labeled octanoic acid, salicylic acid, phenol, and benzoic acid - from Mississippi River water and from water samples free of natural organic ...

  20. UMTRA water sampling and analysis plan, Green River, Utah

    SciTech Connect

    Papusch, R.

    1993-12-01

    The purpose of this water sampling and analysis plan (WSAP) is to provide a basis for groundwater and surface water sampling at the Green River Uranium Mill Tailing Remedial Action (UMTRA) Project site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring locations.

  1. BEAR RIVER BASIN, IDAHO - WATER QUALITY INVESTIGATION, 1974

    EPA Science Inventory

    The quality of the waters in the Bear River Basin, Idaho (160102) was surveyed from August 27 to August 29, 1974. The purposes of the survey were to determine point and non-point source loading, to determine whether water quality has improved since the adoption of the 1958 Enfor...

  2. CUB RIVER, FRANKLIN COUNTY, IDAHO - WATER QUALITY SUMMARY, 1979

    EPA Science Inventory

    In Water Year 1979, a water quality study was conducted on the Cub River in Franklin County, Idaho (16010202) to determine the present condition of the stream and to assess the impact of the Del Monte Corporation vegetable processing discharge. The study involved approximately m...

  3. Variations in the mercury content of the Katun` River water

    SciTech Connect

    Vizhin, V.V.; Gogolev, A.Z.; Sagdeev, R.Z.; Saprykin, A.V.; Friezen, L.F.

    1995-01-01

    The scale of temporal variations in the mercury content of the Katun` River water is discussed. The correlation between the content of mercury in suspended form and the mineral and granulometric composition of suspended matter is analyzed. The process of transforming the spatial nonhomogeneity of the mercury distribution over the catchment area into the temporal nonhomogeneity of the mercury content in water is discussed.

  4. Upper Washita River Experimental Watersheds: Nutrient Water Quality Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality datasets were acquired by the USDA-ARS in three large research watersheds in Oklahoma: the Southern Great Plains Research Watershed (SGPRW), and the Little Washita River and Fort Cobb Reservoir Experimental Watersheds (LWREW and FCREW, respectively). Water quality data in the SGPRW we...

  5. Sustainable land and water management of River Oases along the Tarim River

    NASA Astrophysics Data System (ADS)

    Disse, Markus

    2016-05-01

    The Tarim Basin in Xinjiang province in northwest China is characterized by a hyper arid climate. Climate change and a strong increase in agricultural land use are major challenges for sustainable water management. The largest competition for water resources exists between irrigated fields and natural riparian vegetation, which is dependent on seasonal flooding of the Tarim River. In addition to numerous water management measures implemented by the Chinese government, the Sino-German project SuMaRiO (Sustainable Management of River Oases along the Tarim River) provided a decision support system based on ecosystem services for the Chinese stakeholders. This tool will help to implement sustainable land and water management measures in the next 5-year plan.

  6. Water temperature controls in low arctic rivers

    NASA Astrophysics Data System (ADS)

    King, Tyler V.; Neilson, Bethany T.; Overbeck, Levi D.; Kane, Douglas L.

    2016-06-01

    Understanding the dynamics of heat transfer mechanisms is critical for forecasting the effects of climate change on arctic river temperatures. Climate influences on arctic river temperatures can be particularly important due to corresponding effects on nutrient dynamics and ecological responses. It was hypothesized that the same heat and mass fluxes affect arctic and temperate rivers, but that relative importance and variability over time and space differ. Through data collection and application of a river temperature model that accounts for the primary heat fluxes relevant in temperate climates, heat fluxes were estimated for a large arctic basin over wide ranges of hydrologic conditions. Heat flux influences similar to temperate systems included dominant shortwave radiation, shifts from positive to negative sensible heat flux with distance downstream, and greater influences of lateral inflows in the headwater region. Heat fluxes that differed from many temperate systems included consistently negative net longwave radiation and small average latent heat fluxes. Radiative heat fluxes comprised 88% of total absolute heat flux while all other heat fluxes contributed less than 5% on average. Periodic significance was seen for lateral inflows (up to 26%) and latent heat flux (up to 18%) in the lower and higher stream order portions of the watershed, respectively. Evenly distributed lateral inflows from large scale flow differencing and temperatures from representative tributaries provided a data efficient method for estimating the associated heat loads. Poor model performance under low flows demonstrated need for further testing and data collection to support the inclusion of additional heat fluxes.

  7. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    NASA Astrophysics Data System (ADS)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  8. Methane flux from the Central Amazonian Floodplain

    NASA Technical Reports Server (NTRS)

    Bartlett, Karen B.; Crill, Patrick M.; Sebacher, Daniel I.; Harriss, Robert C.; Wilson, John O.; Melack, John M.

    1987-01-01

    A total of 186 methane measurements from the three primary Amazon floodplain environments of open water lakes, flood forests, and floating grass mats were made over the period 18 July through 2 September 1985. These data indicate that emissions were lowest over open water lakes. Flux from flooded forests and grass mats was significantly higher. At least three transport processes contribute to tropospheric emissions: ebullition from sediments, diffusion along the concentration gradient from sediment to overlaying water to air, and transport through the roots and stems of aquatic plants. Measurements indicate that the first two of these processes are most significant. It was estimated that on the average bubbling makes up 49% of the flux from open water, 54% of that from flooded forests, and 64% of that from floating mats. If the measurements were applied to the entire Amazonian floodplain, it is calculated that the region could supply up to 12% of the estimated global natural sources of methane.

  9. Phenolic water pollutants in a Malaysian River basin.

    PubMed

    Abdullah, P; Nainggolan, H

    1991-10-01

    Phenolic chemicals with their very low taste and odour thresholds, high persistence and toxicity, are of growing concern as water pollutants. The compounds are known to exist in raw water as well as in treated water. The level of phenolic priority pollutants in water within the catchment area of the Linggi River Treatment Plant in Negeri Sembilan, Malaysia, which includes the Linggi river basin, was monitored. The 4-aminoantipyrin colourimetric method was used to determine total phenols whereas capillary column gas chromatography was used to determine the individual compounds. The results show that at most sampling stations, particularly those within the Seremban municipality, the level of phenols was found to exceed the recommended Malaysian standard of 2.0 μg/L(-1) for raw water. This is seen as the direct impact of industrial and urbanization of the area and clearly indicates the unhealthy state of the Linggi river. The results also indicate the need to improve the water quality if the river is going to be used as a source of raw water. PMID:24233958

  10. Optional water development strategies for the Yellow River Basin: Balancing agricultural and ecological water demands

    NASA Astrophysics Data System (ADS)

    Cai, Ximing; Rosegrant, Mark W.

    2004-08-01

    The Yellow River Basin is of the utmost importance for China in terms of food production, natural resources management, and socioeconomic development. Water withdrawals for agriculture, industry, and households in the past decade have seriously depleted environmental and ecological water requirements in the basin. This study presents a modeling scenario analysis of some water development strategies to harmonize water withdrawal demand and ecological water demand in the Yellow River Basin through water savings and interbasin water transfers. A global water and food analysis model including the Yellow River Basin as one of the modeling units is applied for the analysis. The model demonstrates that there is little hope of resolving the conflict between agriculture water demand and ecological water demand in the basin if the current water use practices continue. Trade-offs exist between irrigation water use and ecological water use, and these trade-offs will become more intense in future years with population growth, urbanization, and industrial development as well as growing food demand. Scenario analysis in this study concludes that increasing basin water use efficiency to 0.67 first and then supplementary water availability by interbasin water transfer through the South-North Water Transfer Project may provide a solution to water management of the Yellow River Basin in the next 25 years.

  11. Water Quality Assessment of Ayeyarwady River in Myanmar

    NASA Astrophysics Data System (ADS)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which

  12. A Water Budget for Riparian Vegetation on the Lower Colorado River: the Myth of Water Salvage

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Glenn, E. P.; Webb, R. H.; Howard, K. A.

    2007-05-01

    For many years, river managers have envisaged large saving of water by clearing the exotic plant, saltcedar (Tamarix ramosissima) from western U.S. rivers. Early estimates of evapotranspiration (ET) by saltcedar ranged as high as 3-4 m/yr, and it was estimated that saltcedar on the Lower Colorado River used more water than Los Angeles. Furthermore, saltcedar was considered to have low habitat value, so clearing projects might enhance habitat value by allowing the return of more valuable native species. We have examined these assumptions based on recent evidence. Moisture flux towers set in dense saltcedar stands show that ET is moderate, ranging from 0.8-1.4 m/yr with a mean value of 1 m/yr over five studies on three rivers, similar to wide-area estimates from remote sensing studies. Projected over the 18,200 ha of dense saltcedar monocultures estimated for the Lower Colorado River riparian corridor in the U.S., the potential water saving would only be about 1 percent of the annual flow (assuming no replacement vegetation). A similar acreage of saltcedar monoculture exists in the Colorado River delta in Mexico, but these stands are supported by outflow of brackish water from the irrigation district rather than river water. The assumption of low habitat value is not supported by recent studies. For example, Hinojosa- Huerta (2006) found that saltcedar monocultures away from the river channel supported 65 percent as many bird numbers and 74 percent as many bird species as the best habitat type, mixed saltcedar and native trees in proximity to water, in the delta of the Colorado River in Mexico, and saltcedar provided equal habitat value as native trees for endangered willow flycatchers on Arizona and New Mexico rivers (Owen et al., 2005). Hence, the prospects for saving water without destroying habitat by clearing saltcedar are doubtful for this river system.

  13. Controls over the strontium isotope composition of river water

    NASA Astrophysics Data System (ADS)

    Palmer, M. R.; Edmond, J. M.

    1992-05-01

    Strontium concentrations and isotope ratios have been measured in river and ground waters from the Ganges, Orinoco, and Amazon river basins. When compared with major element concentrations, the data set has allowed a detailed examination of the controls over the strontium isotope systematics of riverine input to the oceans in the following environments: (1) "typical" drainage basins containing limestones, evaporites, shales, and alumino-silicate metamorphic and igneous rocks; (2) shield terrains containing no chemical or biogenic sediments; and (3) the floodplains that constitute the largest areas of many large rivers. The strontium concentration and isotope composition of river waters are largely defined by mixing of strontium derived from limestones and evaporites with strontium derived from silicate rocks. The strontium isotope composition of the limestone endmember generally lies within the Phanerozoic seawater range, which buffers the 87Sr /86Sr ratios of major rivers. A major exception is provided by the rivers draining the Himalayas, where widescale regional metamorphism appears to have led to an enrichment in limestones of radiogenic strontium derived from coexisting silicate rocks. The strontium isotope systematics of rivers draining shield areas are controlled by the intense, transportlimited, nature of the weathering reactions, and thereby limits variations in the strontium flux from these terrains. Floodplains are only a minor source of dissolved strontium to river waters, and precipitation of soil salts in some floodplains can reduce the riverine flux of dissolved strontium to the oceans. The most effective mechanisms for altering the isotope ratio and flux of riverine strontium to the oceans are increased glaciation and large-scale regional metamorphism of the type produced during continental collision. Both mechanisms provide a means for increasing the 87Sr /86Sr ratio of the global riverine flux.

  14. Importance of Boreal Rivers in Providing Iron to Marine Waters

    PubMed Central

    Kritzberg, Emma S.; Bedmar Villanueva, Ana; Jung, Marco; Reader, Heather E.

    2014-01-01

    This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters – the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system. PMID:25233197

  15. Evaluation of water quality index for River Sabarmati, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Shah, Kosha A.; Joshi, Geeta S.

    2015-07-01

    An attempt has been made to develop water quality index (WQI), using six water quality parameters pH, dissolved oxygen, biochemical oxygen demand, electrical conductivity, nitrate nitrogen and total coliform measured at three different stations along the Sabarmati river basin from the year 2005 to 2008. Rating scale is developed based on the tolerance limits of inland waters and health point of view. Weighted arithmetic water quality index method was used to find WQI along the stretch of the river basin. It was observed from this study that the impact of human activity and sewage disposal in the river was severe on most of the parameters. The station located in highly urban area showed the worst water quality followed by the station located in moderately urban area and lastly station located in a moderately rural area. It was observed that the main cause of deterioration in water quality was due to the high anthropogenic activities, illegal discharge of sewage and industrial effluent, lack of proper sanitation, unprotected river sites and urban runoff.

  16. Water-quality assessment of the American River, California

    USGS Publications Warehouse

    Shulters, M.V.

    1982-01-01

    Based on an analysis of water-quality data from more than 168 sites, the American River was found to be of overall good quality and suitable for all beneficial uses specified by the State of California, even though its natural condition has been altered by man 's activities in the basin. Time trend analyses indicate an increase in specific conductance (dissolved solids), hardness, and alkalinity over the past 20 years in the lower American River near Sacramento downstream from treated effluent and urban runoff sources. Most violations of specific water quality objectives for the basin have occurred in this segment. Water-quality conditions in the segment are expected to improve in 1982 when sewage treatment facility discharges will be discontinued. Potential water-quality problems in the upper American River basin could result from recreational overuse, improper land-use or poorly managed mining operations. Recreational overuse and increased urban runoff are the principal threats to water quality in the lower American River. Proposed monitoring activities include low-flow investigations on the lower American to measure diurnal variations in water-quality characteristics and studies in the uppper basin to determine the impact of increasing recreation and development as well as the effects of mine discharge. (USGS)

  17. Interactions between ground water and surface water in the Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; DeHan, R.S.; Hirten, J.J.; Catches, J.S.

    1997-01-01

    Ground water and surface water constitute a single dynamic system in roost parts of the Suwannee River basin due to the presence of karat features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.

  18. Causes of variations in water quality and aquatic ecology in rivers of the Upper Mississippi River Basin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Stark, James R.

    1996-01-01

    Physical and aquatic biological conditions differ among the Mississippi River and its major tributaries (the St. Croix and Minnesota Rivers) in Minnesota and Wisconsin. The quality of surface water and the ecological condition of rivers affect the ways in which we use them. The St. Croix River is used for recreation; the Mississippi River is used for recreation and is a corridor for commerce; and the Minnesota River primarily drains agricultural lands. Analysis of the environmental framework of the basins and water-quality and ecological information by the National Water-Quality Assessment (NAWQA) Program shows that the conditions of the rivers are a product of a combination of factors including climate, hydrology, geology, soils, land use, land cover, water management, and water use.

  19. Water resources planning for a river basin with recurrent wildfires.

    PubMed

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-09-01

    Situated in the north of Portugal, the Beça River basin is subject to recurrent wildfires, which produce serious consequences on soil erosion and nutrient exports, namely by deteriorating the water quality in the basin. In the present study, the ECO Lab tool embedded in the Mike Hydro Basin software was used for the evaluation of river water quality, in particular the dissolved concentration of phosphorus in the period 1990-2013. The phosphorus concentrations are influenced by the burned area and the river flow discharge, but the hydrologic conditions prevail: in a wet year (2000, 16.3 km(2) of burned area) with an average flow of 16.4 m(3)·s(-1) the maximum phosphorus concentration was as low as 0.02 mg·L(-1), while in a dry year (2005, 24.4 km(2) of burned area) with an average flow of 2 m(3)·s(-1) the maximum concentration was as high as 0.57 mg·L(-1). Phosphorus concentrations in the water bodies exceeded the bounds of good ecological status in 2005 and between 2009 and 2012, water for human consumption in 2009 and water for multiple uses in 2010. The River Covas, a right margin tributary of Beça River, is the most appropriate stream as regards the use of water for human consumption, because it presents the biggest water potential with the best water quality. Since wildfires in the basin result essentially from natural causes and climate change forecasts indicate an increase in their frequency and intensity in the near future, forestry measures are proposed to include as a priority the conversion of stands of maritime pine in mixed stands of conifer and hardwood species. PMID:25918888

  20. Water resources planning for rivers draining into Mobile Bay

    NASA Technical Reports Server (NTRS)

    April, G. C.

    1976-01-01

    The application of remote sensing, automatic data processing, modeling and other aerospace related technologies to hydrological engineering and water resource management are discussed for the entire river drainage system which feeds the Mobile Bay estuary. The adaptation and implementation of existing mathematical modeling methods are investigated for the purpose of describing the behavior of Mobile Bay. Of particular importance are the interactions that system variables such as river flow rate, wind direction and speed, and tidal state have on the water movement and quality within the bay system.

  1. Movement of agricultural chemicals between surface water and ground water, lower Cedar River basin, Iowa

    USGS Publications Warehouse

    Squillace, Paul J.; Caldwell, J.P.; Schulmeyer, P.M.; Harvey, C.A.

    1996-01-01

    Bank storage is probably an important source of agricultural chemicals discharged from the alluvial aquifer but becomes depleted with time after surface runoff. Herbicides discharged from the alluvial aquifer during periods of extended base flow entered the alluvial aquifer with ground-water recharge at some distance from the river. The movement of nitrate between surface water and ground water is minor, when compared to the herbicides, even though nitrite was detected in the Cedar River during runoff.

  2. Impact of heatwaves on river water temperature in Switzerland

    NASA Astrophysics Data System (ADS)

    Siviglia, Annunziato; Piccolroaz, Sebastiano; Toffolon, Marco

    2015-04-01

    Air temperature records show that multi-day heatwaves are becoming more frequent in Europe during summer months. Future projections depict scenarios in which this trend could be even more probable, likely bringing to severe impacts on human, economic, and natural environment. In this work, we analyse the correlation between daily averaged anomalies of air temperature and river water temperature considering a database of 15 Swiss rivers covering a period of 30 years (1984-2013). We find that the response of the natural rivers is strongly correlated with air temperature, while anthropogenic impacted rivers affected by hydro- and thermo-peaking (due to hypolimnetic release of water from reservoirs) tend to show a null or very mild dependence, especially during summer months. In all cases, the response is approximately linear, thus allowing for a clear distinction between the two types of rivers on the basis of the proportionality coefficient. We specifically focus on the two most intense heatwaves (June-August 2003 and July 2006) that produced severe effects in the European Alpine region, and show that the alteration of the river thermal behaviour due to hydropower production may mitigate the effects of these extreme events.

  3. DOM in recharge waters of the Santa Ana River Basin

    USGS Publications Warehouse

    Leenheer, J.A.; Aiken, G.R.; Woodside, G.; O'Connor-Patel, K.

    2007-01-01

    The urban Santa Ana River in California is the primary source of recharge water for Orange County's groundwater basin, which provides water to more than two million residents. This study was undertaken to determine the unidentified portion of dissolved organic matter (DOM) in various natural surface and reclaimed waters of the Santa Ana River Basin and to assess the potential health risk of this material. The most abundant organic contaminants were anionic detergent degradation products (constituting about 12% of the DOM), which have no known adverse health effects. In addition, high percentages of dissolved colloids from bacterial cell walls were found during storm flows; these colloids foul membranes used in water treatment. Although no significant health risks were ascribed to the newly characterized DOM, the authors note that even the small amounts of humic substances deposited during storm flow periods were responsible for significant increases in disinfection by_product formation potential in these waters.

  4. [Tritium in the Water System of the Techa River].

    PubMed

    Chebotina, M Ja; Nikolin, O A

    2016-01-01

    The aim of the paper is to study modern tritium levels in various sources of the drinking water supply in the settlements situated in the riverside zone of the Techa. Almost everywhere the water entering water-conduit wells from deep slits (100-180 m) contains averagely 2-3 times higher tritium concentrations than the water from less deep personal wells, slits and springs. Tritium levels in the drinking water supply decrease with the distance from the dam; while in wells, springs and personal wells they are constant all along the river. The observed phenomenon can be explained by the fact that the river bed of the Techa is situated at a break zone of the earth crust, where the contaminated deep water penetrates from the reservoirs of the "Mayak" enterprise situated in the upper part of the regulated river bed. Less deep water sources (personal wells, slits and springs) receive predominantly flood, atmospheric and subsoil waters and are not connected with the reservoirs. PMID:27245010

  5. Genotoxic assessment on river water using different biological systems.

    PubMed

    Nunes, Emilene Arusievicz; de Lemos, Clarice Torres; Gavronski, Léia; Moreira, Tiago Nunes; Oliveira, Nânci C D; da Silva, Juliana

    2011-06-01

    This paper reports genotoxicity and toxicity data in water samples collected in Sinos River, an important water course in the hydrographic region of Guaíba Lake, Rio Grande do Sul State, south of Brazil. This river is exposed to intense anthropic influence by numerous shoes, leather, petrochemical, and metallurgy industries. Water samples were collected at two moments (winter 2006 and spring 2006) at five sites of Sinos River and evaluated using in vitro V79 Chinese hamster lung fibroblasts (cytotoxicity, comet assay and micronucleus test) and Allium cepa test (toxicity and micronucleus test). Comet and micronucleus tests revealed that water samples collected exerted cytotoxic, toxic, genotoxic and mutagenic effects. The results showed the toxic action of organic and inorganic agents found in the water samples in all sites of Sinos River, for both data collections. The main causes behind pollution were the domestic and industrial toxic discharges. The V79 and A. cepa tests were proved efficient to detect toxicity and genotoxicity caused by complex mixtures. This study also showed the need for constant monitoring in sites with strong environmental degradation caused by industrial discharges and urban sewages. PMID:21435689

  6. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  7. Integrated hydrological and water quality model for river management: a case study on Lena River.

    PubMed

    Fonseca, André; Botelho, Cidália; Boaventura, Rui A R; Vilar, Vítor J P

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km(2) watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between -26% and 23% for calibration and -30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. PMID:24742558

  8. Spatial and seasonal characteristics of river water chemistry in the Taizi River in Northeast China.

    PubMed

    Bu, Hongmei; Meng, Wei; Zhang, Yuan

    2014-06-01

    Anthropogenic activities have led to water quality deterioration in many parts of the world, especially in Northeast China. The current work investigated the spatiotemporal variations of water quality in the Taizi River by multivariate statistical analysis of data from the 67 sampling sites in the mainstream and major tributaries of the river during dry and rainy seasons. One-way analysis of variance indicated that the 20 measured variables (except pH, 5-day biological oxygen demand, permanganate index, and chloride, orthophosphate, and total phosphorus concentrations) showed significant seasonal (p ≤ 0.05) and spatial (p < 0.05) variations among the mainstream and major tributaries of the river. Hierarchical cluster analysis of data from the different seasons classified the mainstream and tributaries of the river into three clusters, namely, less, moderately, and highly polluted clusters. Factor analysis extracted five factors from data in the different seasons, which accounted for the high percentage of the total variance and reflected the integrated characteristics of water chemistry, organic pollution, phosphorous pollution, denitrification effect, and nitrogen pollution. The results indicate that river pollution in Northeast China was mainly from natural and/or anthropogenic sources, e.g., rainfall, domestic wastewater, agricultural runoff, and industrial discharge. PMID:24477615

  9. Fair Water Allocation in Complex International River Systems

    NASA Astrophysics Data System (ADS)

    Beck, L.; Bernauer, T.

    2011-12-01

    Conflicts over water allocation in international freshwater systems are recurring phenomena, and climatic changes are likely to make existing problems worse in many parts of the world. Science-based proposals for water allocation frequently focus on allocating water to the economically most efficient purposes. In reality, allocation outcomes are often shaped by political and economic power, rather than considerations of economic efficiency. This paper develops a new approach to fair international water allocation in complex international freshwater systems. This approach covers both needs-based criteria - if acute water scarcity is present - and criteria for fair water allocation pertaining to relative gains in water-abundant situations. The usefulness of the approach is illustrated with a case study on the Zambezi River Basin (ZRB). Based on a hydrological model, and scenarios for water availability and demand in the ZRB until 2050, the paper shows how the waters of the ZRB could be allocated in a way that fairly distributes costs and benefits.

  10. Polychlorinated biphenyl concentrations in Hudson River water and treated drinking water at Waterford, New York

    USGS Publications Warehouse

    Schroeder, R.A.; Barnes, C.R.

    1983-01-01

    Past discharge of PCBs into the Hudson River has resulted in contaminant concentrations of a few tenths of a microgram per liter in the water. Waterford is one of two large municipal users of the Hudson River for drinking-water supply. The treatment scheme at the Waterford plant, which processes approximately 1 million gallons per day, is similar to that of most conventional treatment plants except for the addition of powdered activated carbon during flocculation. Comparison of PCB concentrations in river water and intake water at the plant to concentrations in treated drinking-water samples indicates that purification processes remove 80 to 90 percent of the PCBs and that final concentrations seldom exceed 0.1 microgram per liter. No significant difference was noted between the removal efficiencies during periods of high river discharge, when PCBs are associated with suspended sediment, and low discharge, when PCBs are generally dissolved. (USGS)

  11. Holocene Enviromental Changes in AN Amazonian Floodplain Lake

    NASA Astrophysics Data System (ADS)

    Moreira, L.; Moreira-Turcq, P. F.; Turcq, B.; Cordeiro, R. C.

    2011-12-01

    The floodplains lakes are built due to the fluctuations in the level of the rivers, which causes the formation of bars and accumulation of sediment carried by the rivers and its tributaries. Thus, significant quantities of organic matter can accumulate within these lakes that might represent important carbon sinks. The organic sedimentation process in the floodplains remains unknown as well as very little is known about past conditions in the Amazonian floodplains. Because these gaps, the aim of this work is to provide, through sedimentological, mineralogical and organic geochemical analysis of a 124-cm long core collected in Lago Comprido (eastern Amazonia), evidences of paleoenviromental changes during the Holocene. The core COM1 was analysed using radiocarbon dates, organic carbon concentration, C/N ratio, delta 13C and diatoms. The core points out different sedimentary environments that occurs in the last 9900 years cal BP. The record is divided into three phases: - phase III (124-94 cm, 9900 to 3200 cal years BP): this interval is characterized by delta 13C values typical of graminea, suggesting dry conditions with longer low water levels of the Amazon River. Supporting evidence for driest conditions during this period comes from low organic carbon values due to oxidation and absence of diatoms in the sediment. The carbon flux was very low, reaching an average of 0.9 g C/m2/year. - phase II (93-46 cm, 3200 to 940 years cal BP): increasing lake level beginning in this phase. The delta 13C values ranged between -25% and -29%, which are thought to represent terrestrial plants. This may indicate the presence of a flooded vegetation in this site. The freshwater planktonic diatoms Aulacoseira sp start to increase in this phase, additional evidence that the period of the annual high water stands was probably longer than before. Carbon flux increases, reaching an average of 5 g C/m2/year. - phase I (45-0cm, < 940 years cal BP): the delta 13C values and CN ratios did

  12. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Mississippi River Water Control... ARMY, DEPARTMENT OF DEFENSE BOARDS, COMMISSIONS, AND COMMITTEES § 223.1 Mississippi River Water Control..., responsibilities and authority of the Mississippi River Water Control Management Board. (b) Applicability....

  13. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Mississippi River Water Control... ARMY, DEPARTMENT OF DEFENSE BOARDS, COMMISSIONS, AND COMMITTEES § 223.1 Mississippi River Water Control..., responsibilities and authority of the Mississippi River Water Control Management Board. (b) Applicability....

  14. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Mississippi River Water Control... ARMY, DEPARTMENT OF DEFENSE BOARDS, COMMISSIONS, AND COMMITTEES § 223.1 Mississippi River Water Control..., responsibilities and authority of the Mississippi River Water Control Management Board. (b) Applicability....

  15. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Mississippi River Water Control... ARMY, DEPARTMENT OF DEFENSE BOARDS, COMMISSIONS, AND COMMITTEES § 223.1 Mississippi River Water Control..., responsibilities and authority of the Mississippi River Water Control Management Board. (b) Applicability....

  16. Water supply risk on the Colorado River: Can management mitigate?

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Balaji; Nowak, Kenneth; Prairie, James; Hoerling, Martin; Harding, Benjamin; Barsugli, Joseph; Ray, Andrea; Udall, Bradley

    2009-08-01

    Population growth and a changing climate will tax the future reliability of the Colorado River water supply. Using a heuristic model, we assess the annual risk to the Colorado River water supply for 2008-2057. Projected demand growth superimposed upon historical climate variability results in only a small probability of annual reservoir depletion through 2057. In contrast, a scenario of 20% reduction in the annual Colorado River flow due to climate change by 2057 results in a near tenfold increase in the probability of annual reservoir depletion by 2057. However, our analysis suggests that flexibility in current management practices could mitigate some of the increased risk due to climate change-induced reductions in flows.

  17. Incorporating groundwater-surface water interaction into river management models.

    PubMed

    Valerio, Allison; Rajaram, Harihar; Zagona, Edith

    2010-01-01

    Accurate representation of groundwater-surface water interactions is critical to modeling low river flows in the semi-arid southwestern United States. Although a number of groundwater-surface water models exist, they are seldom integrated with river operation/management models. A link between the object-oriented river and reservoir operations model, RiverWare, and the groundwater model, MODFLOW, was developed to incorporate groundwater-surface water interaction processes, such as river seepage/gains, riparian evapotranspiration, and irrigation return flows, into a rule-based water allocations model. An explicit approach is used in which the two models run in tandem, exchanging data once in each computational time step. Because the MODFLOW grid is typically at a finer resolution than RiverWare objects, the linked model employs spatial interpolation and summation for compatible communication of exchanged variables. The performance of the linked model is illustrated through two applications in the Middle Rio Grande Basin in New Mexico where overappropriation impacts endangered species habitats. In one application, the linked model results are compared with historical data; the other illustrates use of the linked model for determining management strategies needed to attain an in-stream flow target. The flows predicted by the linked model at gauge locations are reasonably accurate except during a few very low flow periods when discrepancies may be attributable to stream gaging uncertainties or inaccurate documentation of diversions. The linked model accounted for complex diversions, releases, groundwater pumpage, irrigation return flows, and seepage between the groundwater system and canals/drains to achieve a schedule of releases that satisfied the in-stream target flow. PMID:20412319

  18. Precipitation and river water chemistry of the Piracicaba River basin, southeast Brazil.

    PubMed

    Williams, M R; Filoso, S; Martinelli, L A; Lara, L B; Camargo, P B

    2001-01-01

    Annual precipitation and river water volumes and chemistry were measured from 1995 to 1998 in a mesoscale agricultural area of southeast Brazil. Precipitation was mildly acidic and solute concentrations were higher in the west than in the east of the basin. Combustion products from biomass burning, automobile exhaust, and industry typically accumulate in the atmosphere from March until October and are responsible for seasonal differences observed in precipitation chemistry. In river waters, the volume-weighted mean (VWM) concentrations of major solutes at 10 sites across the basin were generally lower at upriver than at downriver sampling sites for most solutes. Mass balances for major solutes indicate that, as a regional entity, the Piracicaba River basin was a net sink of H+, PO4(3-), and NH4+, and a net source of other solutes. The main stem of the Piracicaba River had a general increase in solute concentrations from upriver to downriver sampling sites. In contrast, NO3- and NH4+ concentrations increased in the mid-reach sampling sites and decreased due to immobilization or utilization in the mid-reach reservoir, and there was denitrification immediately downriver of this reservoir. Compared with tributaries of the Chesapeake Bay estuary, the Piracicaba River is affected more by point-source inputs of raw sewage and industrial wastes than nonpoint agricultural runoff high in N and P. Inputs of N and C are responsible for a degradation of water quality at downriver sampling sites of the Piracicaba River drainage, and water quality could be considerably improved by augmenting sewage treatment. PMID:11401288

  19. METHOD FOR RECOVERING VIRUSES FROM RIVER WATER SOLIDS

    EPA Science Inventory

    Small numbers of virions (poliovirus 1) that had been adsorbed to river water solids were eluted by mixing the solids for 30 minutes with a 10% solution of beef extract that contained sufficient Na2HPO4 to bring the molarity of the salt to 0.05 and sufficient citric acid to bring...

  20. Computing the Water Quality Index: The Hudson River Project.

    ERIC Educational Resources Information Center

    Mihich, Orlando

    1996-01-01

    Describes a science project at Booker T. Washington Middle School #54 (New York City) where seventh and eighth graders computed the Hudson River's water quality using ClarisWorks spreadsheets and MicroWorlds software. Students gained technology skills and public recognition, as well as scientific and environmental information. Includes sample…

  1. MIDDLE REACH OF THE SNAKE RIVER: WATER QUALITY MONITORING

    EPA Science Inventory

    The purpose of the project was to collect, analyze, assemble, and assess water quality data and resulting chemical/nutrient loads entering and transported in the Middle Snake River Reach of Idaho, between Milner Dam and King Hill. Studies were conducted during the period of 1990 ...

  2. Water Temperature changes in the Mississippi River Basin

    EPA Science Inventory

    In this study, we demonstrate the transfer of a physically based semi-Lagrangian water temperature model (RBM) to EPA, its linkage with the Variable Infiltration Capacity (VIC) hydrology model, and its calibration to and demonstration for the Mississippi River Basin (MRB). The r...

  3. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    NASA Technical Reports Server (NTRS)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  4. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  5. Water stress in global transboundary river basins: significance of upstream water use on downstream stress

    NASA Astrophysics Data System (ADS)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world’s transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. We found that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  6. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    PubMed

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate. PMID:21922685

  7. Processes controlling the chromium isotopic composition of river water: Constraints from basaltic river catchments

    NASA Astrophysics Data System (ADS)

    D'Arcy, Joan; Babechuk, Michael G.; Døssing, Lasse Nørbye; Gaucher, Claudio; Frei, Robert

    2016-08-01

    We report chromium (Cr) isotope compositions and concentrations (and additional geochemical and physicochemical data) of bedrock, soils and river waters from two geographically distinct basaltic river catchments, the Uruguay River catchment (Uruguay) and the Glenariff River catchment (Northern Ireland, United Kingdom), to investigate the processes that control Cr mobilisation and fractionation during weathering and riverine transport to the sea. Our results show that the Cr isotope compositions of soils are a function of the modal abundance and weathering rates of Cr-bearing minerals. The accumulation of weathering resistant Cr-spinels in the soils of Northern Ireland results in soils which are enriched in Cr and have δ53Cr values within the range of local bedrock (δ53Cr value of -0.21 ± 0.12‰, 2σ, n = 4). By contrast, the more easily weathered Cr-silicates in the bedrock of Uruguay results in greater Cr loss from the soil and a depletion in the heavy isotopes of Cr (with average δ53Cr value of -0.32 ± 0.04‰, 2σ, n = 4) relative to the local bedrock (δ53Cr value of -0.22 ± 0.08‰, 2σ, n = 4). The river waters in both catchments are predominantly enriched in the heavy 53Cr isotope relative to bedrock, although the range and average river water δ53Cr values differ significantly between each. The Uruguay rivers exhibit a restricted range in δ53Cr values, with a mean of +0.08 ± 0.06‰ (2σ, n = 5) that represents a positive fractionation of +0.2‰ relative to bedrock, and is best explained by the unidirectional formation of Cr(VI) during weathering that has not been significantly modified by back-reduction to Cr(III). By contrast, the Glenariff stream and river waters (Northern Ireland) exhibit a wide range in δ53Cr values from -0.17 ± 0.3‰ (2σ, n = 4) to +1.68 ± 0.3‰ (n = 1) that appears to reflect the variable redox conditions of the catchment. In general, the values with the lowest 53Cr enrichment have higher Cr concentrations, the lowest

  8. Quantifying Changes in Accessible Water in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  9. Trend analysis of river water temperatures in the Ebro River Basin (Spain)

    NASA Astrophysics Data System (ADS)

    Lorenzo-Gonzalez, Ma Angeles; Quilez, Dolores; Isidoro, Daniel

    2014-05-01

    Water temperature is an important factor conditioning physical, biological and chemical processes in water courses. The huge changes along the last 50 years in land and water use (dam construction, urban development, nuclear power plants (NPP), riparian alteration, irrigation development, and return of agricultural lands to forests), along with climate change, call for the study of their influence on river water temperatures. This work analyzed the trends (1973-2010) in water temperature (Tw) along the Ebro River (14 water quality stations) in North-East Spain and its main tributaries (6 water quality stations), as a first step to assess its possible relationships with land use changes, climate change, and other factors. Water temperature trends (ΔTw) were estimated by two different methods: (1) multiple regression incorporating year seasonality and linear trend; and (2) non-parametric Mann-Kendall seasonal trend estimator. A cluster analysis based on principal components (performed upon the variables Tw, ΔTw, annual Tw range, lag of the Tw annual cycle, coefficient of correlation between water and air temperature (Ta), and station altitude) allowed for grouping stations with similar behaviour in Tw (along the year, seasonality, and throughout the study period, trend). Trend analysis by the regression and Mann-Kendall methods produced similar results. They showed significant (P

  10. River of Life. Water: The Environmental Challenge.

    ERIC Educational Resources Information Center

    Preudhomme, Leroy L.

    This is the sixth in a series of Conservation Yearbooks prepared by the U.S. Department of the Interior as environmental reports to the public concerning problems of water resources in the United States. Information presented includes descriptive information, statistical data, and extensive color photographs. The methods of presenting information…

  11. Crooked River Collaborative Water Security Act

    THOMAS, 112th Congress

    Sen. Merkley, Jeff [D-OR

    2012-08-02

    09/19/2012 Committee on Energy and Natural Resources Subcommittee on Water and Power. Hearings held. With printed Hearing: S.Hrg. 112-624. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. Spatial assessment of Langat River water quality using chemometrics.

    PubMed

    Juahir, Hafizan; Zain, Sharifuddin Md; Aris, Ahmad Zaharin; Yusoff, Mohd Kamil; Mokhtar, Mazlin Bin

    2010-01-01

    The present study deals with the assessment of Langat River water quality with some chemometrics approaches such as cluster and discriminant analysis coupled with an artificial neural network (ANN). The data used in this study were collected from seven monitoring stations under the river water quality monitoring program by the Department of Environment (DOE) from 1995 to 2002. Twenty three physico-chemical parameters were involved in this analysis. Cluster analysis successfully clustered the Langat River into three major clusters, namely high, moderate and less pollution regions. Discriminant analysis identified seven of the most significant parameters which contribute to the high variation of Langat River water quality, namely dissolved oxygen, biological oxygen demand, pH, ammoniacal nitrogen, chlorine, E. coli, and coliform. Discriminant analysis also plays an important role as an input selection parameter for an ANN of spatial prediction (pollution regions). The ANN showed better prediction performance in discriminating the regional area with an excellent percentage of correct classification compared to discriminant analysis. Multivariate analysis, coupled with ANN, is proposed, which could help in decision making and problem solving in the local environment. PMID:20082024

  13. Impact of variable river water stage on the simulation of groundwater-river interactions over the Upper Rhine Graben hydrosystem

    NASA Astrophysics Data System (ADS)

    Habets, F.; Vergnes, J.

    2013-12-01

    The Upper Rhine alluvial aquifer is an important transboundary water resource which is particularly vulnerable to pollution from the rivers due to anthropogenic activities. A realistic simulation of the groundwater-river exchanges is therefore of crucial importance for effective management of water resources, and hence is the main topic of the NAPROM project financed by the French Ministry of Ecology. Characterization of these fluxes in term of quantity and spatio-temporal variability depends on the choice made to represent the river water stage in the model. Recently, a couple surface-subsurface model has been applied to the whole aquifer basin. The river stage was first chosen to be constant over the major part of the basin for the computation of the groundwater-river interactions. The present study aims to introduce a variable river water stage to better simulate these interactions and to quantify the impact of this process over the simulated hydrological variables. The general modeling strategy is based on the Eau-Dyssée modeling platform which couples existing specialized models to address water resources and quality in regional scale river basins. In this study, Eau-Dyssée includes the RAPID river routing model and the SAM hydrogeological model. The input data consist in runoff and infiltration coming from a simulation of the ISBA land surface scheme covering the 1986-2003 period. The QtoZ module allows to calculate river stage from simulated river discharges, which is then used to calculate the exchanges between aquifer units and river. Two approaches are compared. The first one uses rating curves derived from observed river discharges and river stages. The second one is based on the Manning's formula. Manning's parameters are defined with geomorphological parametrizations and topographic data based on Digital Elevation Model (DEM). First results show a relatively good agreement between observed and simulated river water height. Taking into account a

  14. Removal of silica from Raft River geothermal water

    SciTech Connect

    Suciu, D.F.; Miller, R.L.

    1980-06-01

    Lack of sufficient quantities of clean surface or near-surface water at Raft River for cooling purposes dictates that cooled geothermal fluid, effluent from the Raft River 5 MW(e) Pilot Power Plant, must also be used as condenser coolant. Prior testing revealed that a water-treatment system would be required to reduce silica and calcium concentrations of the cooling fluid. The water-treatment system specified was to use dolomitic lime for both pH adjustment and source of magnesium. The dolomitic lime treatment was investigated and found to be inadequate. Subsequent testing was done to find chemical systems that would adequately reduce silica concentrations. Three magnesium and two iron compounds were found which reduced silica to acceptable concentration levels. They are magnesium bicarbonate, magnesium chloride, magnesium sulfate, iron sulfate, and iron chloride. Magnesium oxide, using a two-stage countercurrent process, will also reduce silica to adequate levels.

  15. Effect of Water Conveyance to Impove Water Quality in the Barato River

    NASA Astrophysics Data System (ADS)

    Sugihara, K.; Nakatsugawa, M.

    2014-12-01

    The Barato River, in the northern part of Sapporo, Hokkaido, was deteriorated because of stagnated water bodies and Sapporo's wastewater inflow. To improve the water quality of the Barato River, water has been diverted from the Ishikari River and the Toyohira River into the uppermost reach and the middle stream of the Barato River since 2007. This study clarifies the water quality change by water conveyance, based on our surveys and simulations. The water quality surveys found that inorganic nitrogen (IN) and biological oxygen demand (BOD) were decreased after water conveyance. And inorganic phosphorus (IP) was increased. To estimate these water quality findings, we constructed a water quality simulation model that incorporates the freezing-over of water bodies. The constructed model shows good temporal and spatial reproducibility and enables water quality to be forecast throughout the year, including the ice-cover period. The forecasts using the model agree well with the survey results of the 2007-2010. From calculation results, it was assumed that IN and BOD decreasing was caused by dilution and phytoplankton decreasing. IP increasing assumed due to accumulation of unused phosphorus by phytoplankton. And remarkable changes seem in survey result. Blue-green algae decreased selectively with water conveyance year by year from 2007.However, blue-green algae increased from 2011, in additionally dominant species of blue-green algae change to Merismopedia punctate from Phormidium spp. These change suggest that regime sift occurred in blue-green algae selectively and BOD value of the Barato River showed to improved. But, ecosystem model parameter of phytoplankton needs to calibrate again.

  16. Ground water in the Verdigris River basin, Kansas and Oklahoma

    USGS Publications Warehouse

    Fader, Stuart Wesley; Morton, Robert B.

    1975-01-01

    Ground water in the Verdigris River basin occurs in consolidated rocks and unconsolidated deposits ranging in age from Mississippian to Quaternary. Water for municipal, industrial, and irrigation supplies generally can be obtained in limited quantities from the alluvial deposits in the stream valleys. Except for water in the alluvial deposits in the stream valleys and in the outcrop areas of the bedrock aquifers, the groundwater is generally of poor chemical quality. Owing to the generally poor chemical quality of water and low yields to wells, an increase in the use of ground water from the consolidated rocks is improbable. The unconsolidated rocks in the Verdigris River basin receive about 166,000 acre-feet of recharge annually, and about 1 million acre-fee of water is in temporary storage in the deposits. In 1968 about 4,200 acre-feet of ground was withdrawn for all uses. About 800 acre-feet of ground and 5,000 acre-feet of surface water were pumped for irrigation of 5,300 acres of cropland. The total annual withdrawal of ground water for irrigation may be 2,000 acre-feet by the year 2000.

  17. Remote Sensing of Water Quality in the Niger River Basin

    NASA Astrophysics Data System (ADS)

    Mueller, C.; Palacios, S. L.; Milesi, C.; Schmidt, C.; Baney, O. N.; Mitchell, Å. R.; Kislik, E.; Palmer-Moloney, L. J.

    2015-12-01

    An overarching goal of the National Geospatial Intelligence Agency (NGA) Anticipatory Analytics- -GEOnarrative program is to establish water linkages with energy, food, and climate and to understand how these linkages relate to national security and stability. Recognizing that geopolitical stability is tied to human health, agricultural productivity, and natural ecosystems' vitality, NGA partnered with NASA Ames Research Center to use satellite remote sensing to assess water quality in West Africa, specifically the Niger River Basin. Researchers from NASA Ames used MODIS and Landsat imagery to apply two water quality indices-- the Floating Algal Index (FAI) and the Turbidity Index (TI)--to large rivers, lakes and reservoirs within the Niger Basin. These indices were selected to evaluate which observations were most suitable for monitoring water quality in a region where coincident in situ measurements are not available. In addition, the FAI and TI indices were derived using data from the Hyperspectral Imagery for the Coastal Ocean (HICO) sensor for Lake Erie in the United States to determine how increased spectral resolution and in-situ measurements would improve the ability to measure the spatio-temporal variations in water quality. Results included the comparison of outputs from sensors with different spectral and spatial resolution characteristics for water quality monitoring. Approaches, such as the GEOnarrative, that incorporate water quality will enable analysts and decision-makers to recognize the current and potentially future impacts of changing water quality on regional security and stability.

  18. Water resources of the Big Black River basin, Mississippi

    USGS Publications Warehouse

    Wasson, B.E.

    1971-01-01

    Abundant supplies of water of good quality are available in the Big Black River basin from either ground-water or surface-water sources. For 90 percent of the time flow in the lower part of the Big Black River below Pickens is not less than 85 cfs (cubic feet per second), and low flows of more than 5 cfs are available in five of the eastern tributary streams in the upper half of the basin. Chemical quality of water in the streams is excellent, except for impairment caused by pollution at several places. The Big Black River basin is underlain by several thousand feet of clay, silt, sand, gravel, and limestone. This sedimentary material is mostly loose to semiconsolidated and is stratified. The beds dip to the southwest at the rate of 20 to 50 feet per mile. The Big Black River flows southwestward but at a lower gradient; therefore, any specific formation is at a greater depth below the river the farther one goes down stream. The formations crop out in northwest-southeast trending belts. Most of the available ground water is contained in six geologic units; thickness of these individual units ranges from 100 to 1,000 feet. The aquifers overlap to the extent that a well drilled to the base of fresh water will, in most places, penetrate two or more aquifers. Well depths range from less than 10 to 2,400 feet. Water suitable for most needs can be obtained from the aquifers available at most localities. Dissolved-solids content of water within an aquifer increases down the dip. Also, generally the deeper a well is the higher will be the dissolved-solids content of the water. Shallow ground water (less than 200 ft deep) in the basin usually contains about 100 mg/l (milligrams per liter) of dissolved solids. Most water in the basin from more than 2,500 feet below land surface contains m ore than 1,000 mg/l of dissolved solids. In several areas fresh water is deeper than 2,500 feet, but near the mouth of the Big Black River brackish water is only about 300 feet below land

  19. Revising river water quality monitoring networks using discrete entropy theory: the Jajrood River experience.

    PubMed

    Mahjouri, Najmeh; Kerachian, Reza

    2011-04-01

    This paper aims at evaluating and revising the spatial and temporal sampling frequencies of the water quality monitoring system of the Jajrood River in the Northern part of Tehran, Iran. This important river system supplies 23% of domestic water demand of the Tehran metropolitan area with population of more than 10 million people. In the proposed methodology, by developing a model for calculating a discrete version of pair-wise spatial information transfer indices (SITIs) for each pair of potential monitoring stations, the pair-wise SITI matrices for all water quality variables are formed. Also, using a similar model, the discrete temporal information transfer indices (TITIs) using the data of the existing monitoring stations are calculated. Then, the curves of the pair-wise SITI versus distance between monitoring stations and TITI versus time lags for all water quality variables are derived. Then, using a group pair-wise comparison matrix, the relative weights of the water quality variables are calculated. In this paper, a micro-genetic-algorithm-based optimization model with the objective of minimizing a weighted average spatial and temporal ITI is developed and for a pre-defined total number of stations, the best combination of monitoring stations is selected. The results show that the existing monitoring system of the Jajrood River should be partially strengthened and in some cases the sampling frequencies should be increased. Based on the results, the proposed approach can be used as an effective tool for evaluating, revising, or redesigning the existing river water quality monitoring systems. PMID:20499162

  20. River water temperature and fish growth forecasting models

    NASA Astrophysics Data System (ADS)

    Danner, E.; Pike, A.; Lindley, S.; Mendelssohn, R.; Dewitt, L.; Melton, F. S.; Nemani, R. R.; Hashimoto, H.

    2010-12-01

    Water is a valuable, limited, and highly regulated resource throughout the United States. When making decisions about water allocations, state and federal water project managers must consider the short-term and long-term needs of agriculture, urban users, hydroelectric production, flood control, and the ecosystems downstream. In the Central Valley of California, river water temperature is a critical indicator of habitat quality for endangered salmonid species and affects re-licensing of major water projects and dam operations worth billions of dollars. There is consequently strong interest in modeling water temperature dynamics and the subsequent impacts on fish growth in such regulated rivers. However, the accuracy of current stream temperature models is limited by the lack of spatially detailed meteorological forecasts. To address these issues, we developed a high-resolution deterministic 1-dimensional stream temperature model (sub-hourly time step, sub-kilometer spatial resolution) in a state-space framework, and applied this model to Upper Sacramento River. We then adapted salmon bioenergetics models to incorporate the temperature data at sub-hourly time steps to provide more realistic estimates of salmon growth. The temperature model uses physically-based heat budgets to calculate the rate of heat transfer to/from the river. We use variables provided by the TOPS-WRF (Terrestrial Observation and Prediction System - Weather Research and Forecasting) model—a high-resolution assimilation of satellite-derived meteorological observations and numerical weather simulations—as inputs. The TOPS-WRF framework allows us to improve the spatial and temporal resolution of stream temperature predictions. The salmon growth models are adapted from the Wisconsin bioenergetics model. We have made the output from both models available on an interactive website so that water and fisheries managers can determine the past, current and three day forecasted water temperatures at

  1. Sharing water and benefits in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  2. Young and old water in global rivers and aquifers

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Kirchner, J. W.; McDonnell, J.; Gleeson, T. P.; Befus, K. M.; Luijendijk, E.; Cardenas, M. B.; Wada, Y.; Welker, J. M.

    2015-12-01

    The fate of solutes, nutrients and contaminants are regulated by the time that precipitation takes to travel through landscapes to reach surface waters and aquifers. Water samples collected from a stream or a groundwater well are a mixture of younger and older precipitation inputs. However, the global 3D distribution of younger versus older water flowing in rivers or stored in groundwater aquifers is not known, in part due to a longstanding focus on average age rather than age distributions. Here we analyze global rain, snow, groundwater and streamflow isotope contents, compiled from primary literature sources or specialist databases. Instead of calculating average water ages, we use the isotope data to partition fractions of younger versus older water in 260 rivers and 202 aquifers. For global rivers, we show that precipitation reaching the stream in less than 1.5-3 months generates a substantial fraction (~35%) of global runoff and constitutes an important component (>5%) of streamflow draining the great majority (90%) of watersheds. We also show that ~35% of global runoff is generated by a microscopic fraction (<0.01%) of global groundwater storage, meaning that biogeochemical processes taking place in these aquifer-stream connectivity hotspots will have disproportionately large impacts on stream water quality. By contrast, radiocarbon dating shows that most (>50%) groundwaters are relicts of ancient climates, having recharged their aquifers prior to the current Holocene epoch. Our study, that partitions both surface- and ground-water ages, shows that much of global streamflow is at least four orders of magnitude younger than most of global groundwater storage, highlighting that most stream water is far younger than most groundwater stored in their catchments.

  3. Development of river water quality indices-a review.

    PubMed

    Sutadian, Arief Dhany; Muttil, Nitin; Yilmaz, Abdullah Gokhan; Perera, B J C

    2016-01-01

    The use of water quality indices (WQIs) as a tool to evaluate the status of water quality in rivers has been introduced since the 1960s. The WQI transforms selected water quality parameters into a dimensionless number so that changes in river water quality at any particular location and time could be presented in a simple and easily understandable manner. Although many WQIs have been developed, there is no worldwide accepted method for implementing the steps used for developing a WQI. Thus, there is a continuing interest to develop accurate WQIs that suit a local or regional area. This paper aimed to provide significant contribution to the development of future river WQIs through a review of 30 existing WQIs based on the four steps needed to develop a WQI. These steps are the selection of parameters, the generation of sub-indices, the generation of parameter weights and the aggregation process to compute the final index value. From the 30 reviewed WQIs, 7 were identified as most important based on their wider use and they were discussed in detail. It was observed that a major factor that influences wider use of a WQI is the support provided by the government and authorities to implement a WQI as the main tool to evaluate the status of rivers. Since there is a lot of subjectivity and uncertainty involved in the steps for developing and applying a WQI, it is recommended that the opinion of local water quality experts is taken, especially in the first three steps (through techniques like Delphi method). It was also observed that uncertainty and sensitivity analysis was rarely undertaken to reduce uncertainty, and hence such an analysis is recommended for future studies. PMID:26707404

  4. Optical water quality of a blackwater river estuary: the Lower St. Johns River, Florida, USA

    NASA Astrophysics Data System (ADS)

    Gallegos, Charles L.

    2005-04-01

    This paper reports measurements of absorption and scattering coefficients in relation to standard water quality measurements in the St. Johns River (Florida, USA), a blackwater river in which phytoplankton chlorophyll and non-algal particulates as well as colored dissolved organic matter (CDOM) contribute substantially to the inherent optical properties of the water. Extremely high concentrations of CDOM in this river present special problems for the measurement of inherent optical properties, such as the presence of very fine particulate matter that passes through most glass fiber filters. Empirical relationships are presented for estimating true dissolved absorption at very high CDOM concentrations. Specific-absorption and -scattering coefficients of suspended particulate matter varied widely, but appeared to decline steadily with salinity at salinities above 5, consistent with increasing influence of large-sized, unconsolidated mineral particulates with increasing tidal energy near the estuary mouth. Relationships are given for prediction of inherent optical properties from water quality concentrations for use in radiative transfer modeling, and changes in water quality measurements are recommended that can avoid the need for empirical corrections.

  5. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    NASA Astrophysics Data System (ADS)

    Normatov, P.

    2014-09-01

    The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC) in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  6. Agricultural water and energy use in the Senegal River Valley

    NASA Astrophysics Data System (ADS)

    Masiyandima, M. C.; Sow, A.

    2015-12-01

    Assessment of the productivity of irrigation water is important measuring the performance of irrigation schemes especially in water scarce areas. Equally important for performance is the energy cost of providing water for irrigation. Sahel irrigation schemes are dependent on pumping water from rivers into a network of gravity operated channels. In the Senegal River valley in Senegal the cost of pumping water and for irrigation has been estimated to be 20-25% of total rice production costs. Irrigation schemes in the valley are characterized by low water productivity. We analysed rice production, irrigation water use and energy use for supplying irrigation water at Pont Gendarme, Ndiawar and Ngallenka MCA irrigation schemes in the Senegal River valley. For the 2013 rainfall season the mean yield ranged between 6 and 8t ha-1. Dry season yield ranged between 1.7 and 6.8t ha-1. Energy use for irrigation in the Ndiawar irrigation scheme was 8kg MJ-1 and 6.4kg MJ-1 in the 2013 and 2014 rainfall seasons respectively. In 2014 (rainfall season) energy productivity of irrigation water was 8.5, 8.0 and 16.4 kg MJ-1 at Ngallenka MCA, Ndiawar and Pont Gendarme respectively. Dry season (2014) energy productivity at Ndiawar and Pont Gendarme was 3.4 and 11.2kg MJ-1 respectively. Productivity of irrigation water was similar for all schemes (0.37kg m-3 at Pont Gendarme, 0.42kg m-3 at Ngallenka MCA, and 0.41kg m-3 Ndiawar). Energy use for the supply of irrigation water in the rainfall season ranged from 403 to 1,002MJ ha-1. Dry season irrigation energy use was 589MJ ha-1 Pont Gendarme and 331MJ ha-1 at Ndiawar. Reducing water use in these schemes through better water management will result in lower production costs and increased margins for the farmers. The observations from 2013 - 2014 highlight the importance of using both water and energy productivity to assess performance of irrigation schemes.

  7. Water risk assessment for river basins in China based on WWF water risk assessment tools

    NASA Astrophysics Data System (ADS)

    Wei, N.; Qiu, Y.; Gan, H.; Niu, C.; Liu, J.; Gan, Y.; Zhou, N.

    2014-09-01

    Water resource problems, one of the most important environmental and socio-economic issues, have been a common concern worldwide in recent years. Water resource risks are attracting more and more attention from the international community and national governments. Given the current situations of water resources and the water environment, and the characteristics of water resources management and information statistics of China, this paper establishes an index system for water risk assessment in river basins of China based on the index system of water risk assessment proposed by the World Wide Fund For Nature (WWF) and German Investment and Development Co., Ltd (DEG). The new system is more suitable for Chinese national conditions and endorses the international assessment index. A variety of factors are considered to determine the critical values of classification for each index, and the indexes are graded by means of 5-grade and 5-score scales; the weights and calculation methods of some indexes are adjusted, with the remaining indexes adopting the method of WWF. The Weighted Comprehensive Index Summation Process is adopted to calculate the integrated assessment score of the river basin. The method is applied to the Haihe River basin in China. The assessment shows that the method can accurately reflect the water risk level of different river basins. Finally, the paper discusses the continuing problems in water risk assessment and points out the research required to provide a reference for further study in this field.

  8. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company. Final report

    SciTech Connect

    Paller, M.

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  9. Groundwater, Soil Moisture, Snow Water Equivalent, and River Water in the Seasonal Variation of Total Terrestrial Water Storage in Major River Basins

    NASA Astrophysics Data System (ADS)

    Oki, T.; Yoshimura, K.; Kim, H.; Shen, Y.; Thanh, N. D.; Seto, S.; Kanae, S.

    2006-12-01

    Both the combined atmospheric-river basin water balance and the remote sensing by GRACE can estimate the variation of the total terrestrial water storage which consist the changes in ground water, soil moisture, snow water equivalent, and water in rivers, lakes, ponds, etc. What are the major components in the change of the total terrestrial water storage? One hand, the seasonal variation of the total water storage in major continental-scale river basins are estimated by the atmospheric-river basin water balance (AWB) method The global distribution of water vapor flux convergence was estimated using the ECMWF global analysis data for the period from 1986 through 1995. The 10 year mean value of the atmospheric water vapor convergence was adjusted to match with the climatological mean value of river runoff for 1961-1990. Then the seasonal changes of the total terrestrial water storage were estimated by AWB method combining the atmospheric water vapor convergence for major river basins and the runoff from the area. On the other hand, the components in the change of the total terrestrial water storage were investigated using the multi-model products forced by observed surface meteorology. Under the Global Land/Atmosphere Study (GLASS), the Phase 2 of the Global Soil Wetness Project (GSWP-2) produced the first global (excluding Antarctica) 1x1 degree Multi-Model Analysis (MMA) of land-surface variables and fluxes for the 10-year period of 1986 1995 at the daily time scale. Thirteen land-surface models (LSMs) were driven by the best possible forcing data of the atmospheric conditions, such as precipitation, downward radiation, wind speed, air humidity and air temperature with temporal resolution of 3-hourly or higher. Water balance in major continental scale river basins were post-processed and the seasonal changes in ground water, soil moisture, snow water equivalent, and the water in river channel were analyzed using the Total Runoff Integrating Pathways (TRIP) and a

  10. Analysis of River Water Quality and its influencing factors for the Effective Management of Water Environment

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Sadohara, S.; Yoshida, S.; Yuichi, S.

    2011-12-01

    In Japan, remarkable improvements in water quality have been observed over recent years because of regulations imposed on industrial wastewater and development of sewerage system. However, pollution loads from agricultural lands are still high and coverage ratio of sewerage system is still low in small and medium cities. In present context, nonpoint source pollution such as runoff from unsewered developments, urban and agricultural runoffs could be main water quality impacting factors. Further, atmospheric nitrogen (N) is the complex nonpoint source than can seriously affect river water environment. This study was undertaken to spatially investigate the present status of river water quality of Hadano Basin located in Kanagawa Prefecture, Japan. Water quality of six rivers was investigated and its relationship with nonpoint pollution sources was analyzed. This study, with inclusion of ground water circulation and atmospheric N, can be effectively employed for water quality management of other watersheds also, both with and without influence of ground water circulation. Hence, as a research area of this study, it is significant in terms of water quality management. Total nitrogen (TN) was found consistently higher in urbanized basins indicating that atmospheric N might be influencing TN of river water. Ground water circulation influenced both water quality and quantity. In downstream basins of Muro and Kuzuha rivers, Chemical oxygen demand (COD) and total phosphorus (TP) were diluted by ground water inflow. In Mizunashi River and the upstream of Kuzuha River, surface water infiltrated to the subsurface due to higher river bed permeability. Influencing factors considered in the analysis were unsewered population, agricultural land, urban area, forest and atmospheric N. COD and TP showed good correlation with unsewered population and agricultural land. While TN had good correlation with atmospheric N deposition. Multiple regression analysis between water quality

  11. Framework for Assessing Water Resource Sustainability in River Basins

    NASA Astrophysics Data System (ADS)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  12. Progress report, chemical quality of the surface waters in the Loup River basin, Nebraska

    USGS Publications Warehouse

    Connor, John G.

    1951-01-01

    The Loup River and its tributaries transport moderate amounts of siliceous minerals from the sand hills region of north-central Nebraska to the Platte River near Columbus, Nebr. Predominant chemical characteristics of these waters are a high percentage of silica, moderate hardness, and a low percentage of sodium. The composition of the Loup River water is influenced by the geologic formations through which ground water, a major contributor to the flows of the Loup River branches, has percolated. Investigation of water quality at or near proposed dam sites in the Loup River basin indicates that if soil and drainage conditions are favorable, the impounded water would be satisfactory for irrigation use.

  13. Assessment and management of water quality of Kshipra River in Ujjain City (Madhya Pradesh), India.

    PubMed

    Gupta, R C; Gupta, Ajay K; Shrivastava, R K

    2013-04-01

    This paper shows the water quality status and its assessment through Water Quality Index (WQI), various sources of pollution in the river and the possible strategies to restore the water quality of River Kshipra to its pristine status. The data procured from M.P. Pollution Control Board and WQI reveals that its water quality ranges from medium to bad. The study reveals that Khan River water is a major source of pollution to the River Kshipra. Implementation of sustainable management plan along with proper sewerage planning, watershed management and maintaining sufficient dilution flow will control the pollution in the River Kshipra. PMID:25464695

  14. Assessment and management of water quality of Kshipra River in Ujjain City (Madhya Pradesh), India.

    PubMed

    Gupta, R C; Gupta, Ajay K; Shrivastava, R K

    2013-04-01

    This paper shows the water quality status and its assessment through Water Quality Index (WQI), various sources of pollution in the river and the possible strategies to restore the water quality of River Kshipra to its pristine status. The data procured from M.P. Pollution Control Board and WQI reveals that its water quality ranges from medium to bad. The study reveals that Khan River water is a major source of pollution to the River Kshipra. Implementation of sustainable management plan along with proper sewerage planning, watershed management and maintaining sufficient dilution flow will control the pollution in the River Kshipra. PMID:25508326

  15. Evaluating Water Quality in the Lovros River (Greece), Using Biotic Indices based on Invertebrate Communities.

    ERIC Educational Resources Information Center

    Koussouris, Theodore; And Others

    1990-01-01

    Presented is a survey of a river including physiochemical measurements and river fauna observations. It is shown that the self-purification gradient of river water quality and the possible ecological disturbances due to pollutants entering the river create an unpredictable pattern of recovery. (CW)

  16. Impact of river restoration on groundwater - surface water - interactions

    NASA Astrophysics Data System (ADS)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  17. Near real time water resources data for river basin management

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  18. Water Resources Data, Texas Water Year 1998, Volume 1. Arkansas River Basin, Red River Basin, Sabine River Basin, Neches River Basin, Trinity River Basin, and Intervening Coastal Basins

    USGS Publications Warehouse

    Gandara, S.C.; Gibbons, W.J.; Andrews, F.L.; Barbie, D.L.

    1999-01-01

    Water-resources data for the 1998 water year for Texas are presented in four volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 1 contains records for water discharge at 112 gaging stations; stage only at 5 gaging stations; stage and contents at 33 lakes and reservoirs; water quality at 65 gaging stations; and data for 12 partial-record stations comprised of 7 flood-hydrograph, 2 low-flow, and 3 creststage stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  19. LOWER PAYETTE RIVER, IDAHO AGRICULTURE IRRIGATION WATER RETURN STUDY AND GROUND WATER EVALUATION, 1992-1993

    EPA Science Inventory

    This report covers the final 17 miles of the Payette River (17050112) and 32,000 acres of irrigated cropland referred to as the Lower Payette State Agricultural Water Quality Project. An in-depth surface and ground water monitoring effort was initiated in June 1992 and completed...

  20. Air-water oxygen exchange in a large whitewater river

    USGS Publications Warehouse

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  1. Water Allocation Modeling of Awash River Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Asfaw, D. H.; Berhe, F.; Melesse, A. M.

    2012-12-01

    Awash River basin is one of the twelve basins of Ethiopia which is highly utilized and the first basin to be introduced to modern agriculture. A study was conducted on water allocation modeling of Awash River basin, Ethiopia using MODSIM, a river basin management decision support system (DSS) designed as a computer-aided tool for developing improved basin wide planning. This study was conducted to analyze the water balance of the Awash basin under different levels of irrigation development and also determine the water allocation in the Upper, Middle and Lower Valleys in the basin. Awash basin includes Koka Dam and two dams under completion: Kessem and Tendaho Reservoirs. Four scenarios were set: Scenario I-present withdrawal rate in the basin; Scenario II-Scenario I plus Downstream Tendaho Dam Operational; Scenario III-Scenario II plus expansion of middle valley farms and Kessem Dam Operational; and Scenario IV-Scenario III plus additional expansion in the middle valley. Analysis of flow records within the basin was done for a period of 1963-2003. Estimation of system losses, runoff from ungauged tributaries, and Gedebessa Swamp model parameters were considered in the flow process study. Simulation was conducted based on four scenarios. Consumptive and non-consumptive uses were considered in allocation modeling. The results of MODSIM model depict that there will be incremental release from Koka Dam from 2.8% to 5.7% in years 2018 and 2038, respectively. Due to increased diversions in Scenario III when compared to scenario I, losses in to Gedebessa Swamp will significantly decrease by an average of 27.6%. In the year 2038, owing to less capacity of upstream reservoirs due to sedimentation, water will be lost in the swamp complex causing slight decrease of inflow to Tendaho Dam. Additional storage at or upstream of Koka Dam will be mandatory in the future. Unaccounted water diversions upstream of Koka and water losses in Gedebessa Swamp should be considered in the

  2. A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands

    PubMed Central

    Salas-Gismondi, Rodolfo; Flynn, John J.; Baby, Patrice; Tejada-Lara, Julia V.; Wesselingh, Frank P.; Antoine, Pierre-Olivier

    2015-01-01

    Amazonia contains one of the world's richest biotas, but origins of this diversity remain obscure. Onset of the Amazon River drainage at approximately 10.5 Ma represented a major shift in Neotropical ecosystems, and proto-Amazonian biotas just prior to this pivotal episode are integral to understanding origins of Amazonian biodiversity, yet vertebrate fossil evidence is extraordinarily rare. Two new species-rich bonebeds from late Middle Miocene proto-Amazonian deposits of northeastern Peru document the same hyperdiverse assemblage of seven co-occurring crocodylian species. Besides the large-bodied Purussaurus and Mourasuchus, all other crocodylians are new taxa, including a stem caiman—Gnatusuchus pebasensis—bearing a massive shovel-shaped mandible, procumbent anterior and globular posterior teeth, and a mammal-like diastema. This unusual species is an extreme exemplar of a radiation of small caimans with crushing dentitions recording peculiar feeding strategies correlated with a peak in proto-Amazonian molluscan diversity and abundance. These faunas evolved within dysoxic marshes and swamps of the long-lived Pebas Mega-Wetland System and declined with inception of the transcontinental Amazon drainage, favouring diversification of longirostrine crocodylians and more modern generalist-feeding caimans. The rise and demise of distinctive, highly productive aquatic ecosystems substantially influenced evolution of Amazonian biodiversity hotspots of crocodylians and other organisms throughout the Neogene. PMID:25716785

  3. A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands.

    PubMed

    Salas-Gismondi, Rodolfo; Flynn, John J; Baby, Patrice; Tejada-Lara, Julia V; Wesselingh, Frank P; Antoine, Pierre-Olivier

    2015-04-01

    Amazonia contains one of the world's richest biotas, but origins of this diversity remain obscure. Onset of the Amazon River drainage at approximately 10.5 Ma represented a major shift in Neotropical ecosystems, and proto-Amazonian biotas just prior to this pivotal episode are integral to understanding origins of Amazonian biodiversity, yet vertebrate fossil evidence is extraordinarily rare. Two new species-rich bonebeds from late Middle Miocene proto-Amazonian deposits of northeastern Peru document the same hyperdiverse assemblage of seven co-occurring crocodylian species. Besides the large-bodied Purussaurus and Mourasuchus, all other crocodylians are new taxa, including a stem caiman-Gnatusuchus pebasensis-bearing a massive shovel-shaped mandible, procumbent anterior and globular posterior teeth, and a mammal-like diastema. This unusual species is an extreme exemplar of a radiation of small caimans with crushing dentitions recording peculiar feeding strategies correlated with a peak in proto-Amazonian molluscan diversity and abundance. These faunas evolved within dysoxic marshes and swamps of the long-lived Pebas Mega-Wetland System and declined with inception of the transcontinental Amazon drainage, favouring diversification of longirostrine crocodylians and more modern generalist-feeding caimans. The rise and demise of distinctive, highly productive aquatic ecosystems substantially influenced evolution of Amazonian biodiversity hotspots of crocodylians and other organisms throughout the Neogene. PMID:25716785

  4. Water quality trends in the Blackwater River watershed, West Virginia

    USGS Publications Warehouse

    Smith, Jessica; Welsh, Stuart; Anderson, James T.; Fortney, Ronald H.

    2015-01-01

    An understanding of historic and current water quality is needed to manage and improve aquatic communities within the Blackwater River watershed, WV. The Blackwater River, which historically offered an excellent Salvelinus fontinalis (Brook Trout) fishery, has been affected by logging, coal mining, use of off-road vehicles, and land development. Using information-theoretic methods, we examined trends in water quality at 12 sites in the watershed for the 14 years of 1980–1993. Except for Beaver Creek, downward trends in acidity and upward trends in alkalinity, conductivity, and hardness were consistent with decreases in hydrogen ion concentration. Water-quality trends for Beaver Creek were inconsistent with the other sites and reflect ongoing coal-mining influences. Dissolved oxygen trended downward, possibly due to natural conditions, but remained above thresholds that would be detrimental to aquatic life. Water quality changed only slightly within the watershed from 1980–1993, possibly reflecting few changes in development and land uses during this time. These data serve as a baseline for future water-quality studies and may help to inform management planning.

  5. Local late Amazonian boulder breakdown and denudation rate on Mars

    NASA Astrophysics Data System (ADS)

    Haas, Tjalling; Hauber, Ernst; Kleinhans, Maarten G.

    2013-07-01

    Inactive fan surfaces become smoother and develop desert pavement over time by weathering and erosion. We use this mechanism to estimate late Amazonian boulder breakdown and surface denudation rates on a young (˜1.25 Ma) (Schon et al., 2009) fan on Mars. This is done by comparing boulder size and surface relief between lobes of different ages. The boulder breakdown rate is 3.5 m/Myr, surface smoothing (denudation) rate is approximated as 0.89 m/Myr. These rates exceed previous estimates for the Amazonian by orders of magnitude. We attribute this to locality, high initial smoothing rates after morphological activity and obliquity and eccentricity-driven variation in the availability of (metastable) liquid water, which acts as a catalyst for weathering during these periods. The results have major implications for process interpretation of Martian landforms, as they imply that typical small-scale morphology may be subdued within <1 Myr.

  6. Water Balance Change in Xia Ying River Basin, Qinghai Province, China

    NASA Astrophysics Data System (ADS)

    Cuo, L.; Zhou, B.; Li, J.

    2010-12-01

    Yellow River, Yangtze River and Lan Cang River are major river systems supporting billions of people in South East Asia and China. Source region of Yellow River, Yangtze River and Lan Cang River (Three Rivers) is located in Qinghai Province, China. Recently, Chinese government started a conservation project in the source region of the Three Rivers called “Convert Agricultural Field to Forest and Grassland”. Xia Ying River Basin is a sub-basin located in the source region of the Three River Basin. The upper Xia Ying River Basin has experienced dramatic land cover change since 2006. Before 2006, upper Xia Ying River Basin hill slope was agricultural field. Coniferous trees and bush vegetation were planted on the slope greater than 70 degree in the upper Xia Ying River Basin in 2006. The objective of the study is to investigate the water balance term change in the Xia Ying River Basin because of the conservation project. This study will use Landsat and MODIS imagery to classify and quantify land cover classes before and after land cover conversion. Water balance terms including runoff and evaportranspiration will be simulated using a land surface model to investigate water balance term change due to land cover change. The study serves as a pilot study for the investigation of hydrological change in the entire source region of the Three River Basin during the past 50 years.

  7. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    USGS Publications Warehouse

    Crandall, C.A.; Katz, B.G.; Hirten, J.J.

    1999-01-01

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). ?? Springer-Verlag.

  8. Classification of river water pollution using Hyperion data

    NASA Astrophysics Data System (ADS)

    Kar, Soumyashree; Rathore, V. S.; Champati ray, P. K.; Sharma, Richa; Swain, S. K.

    2016-06-01

    A novel attempt is made to use hyperspectral remote sensing to identify the spatial variability of metal pollutants present in river water. It was also attempted to classify the hyperspectral image - Earth Observation-1 (EO-1) Hyperion data of an 8 km stretch of the river Yamuna, near Allahabad city in India depending on its chemical composition. For validating image analysis results, a total of 10 water samples were collected and chemically analyzed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). Two different spectral libraries from field and image data were generated for the 10 sample locations. Advanced per-pixel supervised classifications such as Spectral Angle Mapper (SAM), SAM target finder using BandMax and Support Vector Machine (SVM) were carried out along with the unsupervised clustering procedure - Iterative Self-Organizing Data Analysis Technique (ISODATA). The results were compared and assessed with respect to ground data. Analytical Spectral Devices (ASD), Inc. spectroradiometer, FieldSpec 4 was used to generate the spectra of the water samples which were compiled into a spectral library and used for Spectral Absorption Depth (SAD) analysis. The spectral depth pattern of image and field spectral libraries was found to be highly correlated (correlation coefficient, R2 = 0.99) which validated the image analysis results with respect to the ground data. Further, we carried out a multivariate regression analysis to assess the varying concentrations of metal ions present in water based on the spectral depth of the corresponding absorption feature. Spectral Absorption Depth (SAD) analysis along with metal analysis of field data revealed the order in which the metals affected the river pollution, which was in conformity with the findings of Central Pollution Control Board (CPCB). Therefore, it is concluded that hyperspectral imaging provides opportunity that can be used for satellite based remote monitoring of water quality from

  9. Energy development and water options in the Yellowstone River Basin

    SciTech Connect

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  10. Water resources planning for rivers draining into mobile bay

    NASA Technical Reports Server (NTRS)

    Ng, S.; April, G. C.

    1976-01-01

    A hydrodynamic model describing water movement and tidal elevation is formulated, computed, and used to provide basic data about water quality in natural systems. The hydrodynamic model is based on two-dimensional, unsteady flow equations. The water mass is considered to be reasonably mixed such that integration (averaging) in the depth direction is a valid restriction. Convective acceleration, the Coriolis force, wind and bottom interactions are included as contributing terms in the momentum equations. The solution of the equations is applied to Mobile Bay, and used to investigate the influence that river discharge rate, wind direction and speed, and tidal condition have on water circulation and holdup within the bay. Storm surge conditions, oil spill transport, artificial island construction, dredging, and areas subject to flooding are other topics which could be investigated using the mathematical modeling approach.

  11. Water quality evaluation of Himalayan Rivers of Kumaun region, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Seth, Richa; Mohan, Manindra; Singh, Prashant; Singh, Rakesh; Dobhal, Rajendra; Singh, Krishna Pal; Gupta, Sanjay

    2014-06-01

    Water quality of Himalayan rivers has been steadily deteriorating over several decades due to anthropogenic activities, dumping of treated or untreated effluents, poor structured sewerage and drainage system, etc. In the present study, the water quality of five important rivers namely, Gola, Kosi, Ramganga, Saryu and Lohawati rivers were investigated which flow through the different districts of Kumaun region of Uttarakhand Himalaya. The water of all these rivers serves as the major source for drinking and irrigation purposes in these districts of the Kumaun region of Uttarakhand. River water samples collected in pre-monsoon and post-monsoon seasons of the years 2011 and 2012 were analyzed for various water quality characteristics. Statistical analyses indicate positive correlation among most of the chemical parameters. Piper diagram illustrates that all the water samples fall in Ca-Mg-HCO3 hydrochemical facies, Moreover, the suitability of water for drinking purposes determined by water quality index indicated that river water in both the seasons is unsuitable. Irrigation water quality of all the river water was found suitable during both the seasons according to the result of sodium adsorption ratio, sodium percentage and residual sodium carbonate. The present study revealed that major factors contributing to deterioration of water quality of all the rivers might be eutrophication, tourism, anthropogenic and geogenic processes. Therefore, to restore the vitality and water quality of all these rivers, proper water resource planning programme should be developed.

  12. Water quality evaluation of Himalayan Rivers of Kumaun region, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Seth, Richa; Mohan, Manindra; Singh, Prashant; Singh, Rakesh; Dobhal, Rajendra; Singh, Krishna Pal; Gupta, Sanjay

    2016-06-01

    Water quality of Himalayan rivers has been steadily deteriorating over several decades due to anthropogenic activities, dumping of treated or untreated effluents, poor structured sewerage and drainage system, etc. In the present study, the water quality of five important rivers namely, Gola, Kosi, Ramganga, Saryu and Lohawati rivers were investigated which flow through the different districts of Kumaun region of Uttarakhand Himalaya. The water of all these rivers serves as the major source for drinking and irrigation purposes in these districts of the Kumaun region of Uttarakhand. River water samples collected in pre-monsoon and post-monsoon seasons of the years 2011 and 2012 were analyzed for various water quality characteristics. Statistical analyses indicate positive correlation among most of the chemical parameters. Piper diagram illustrates that all the water samples fall in Ca-Mg-HCO3 hydrochemical facies, Moreover, the suitability of water for drinking purposes determined by water quality index indicated that river water in both the seasons is unsuitable. Irrigation water quality of all the river water was found suitable during both the seasons according to the result of sodium adsorption ratio, sodium percentage and residual sodium carbonate. The present study revealed that major factors contributing to deterioration of water quality of all the rivers might be eutrophication, tourism, anthropogenic and geogenic processes. Therefore, to restore the vitality and water quality of all these rivers, proper water resource planning programme should be developed.

  13. Water resources of the Little Fork River watershed, northeastern Minnesota

    USGS Publications Warehouse

    Helgesen, John O.; Lindholm, Gerald F.; Ericson, Donald W.

    1976-01-01

    The Little Fork River watershed is one of 39 watershed units designated by the Minnesota Department of Natural Resources for evaluation of the State 's water resources. Included is an appraisal of the occurrence, quantity, quality, and availability of ground and surface waters. Water resources are not intensively developed anywhere in the watershed. Essentially all water used is withdrawn from ground-water sources, mainly glacial drift, which ranges from 0 to over 200 feet (61 meters) in thickness. Buried sand and gravel in the drift is the most favorable source for development. Most ground water is of the calcium or calcium magnesium bicarbonate type. The degree of mineralization generally increases downgradient in the flow system. Ground water is commonly very hard and high in iron and manganese. Lakes and wetlands have a natural regulating effect on streamflow. Water in streams is of the calcium bicarbonate type. The amount of mineralization reflects surficial geology, being greatest in streams draining glacial-lake sediments and least in streams draining areas of sand lakes. Color and iron concentration in stream waters generally exceed recommended domestic consumption limits.

  14. Carbon-Water-Energy Relations for Selected River Basins

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  15. Quantifying Irrigation Return Flows Using Stable Isotopes of Water along the South Platte River, Colorado USA

    NASA Astrophysics Data System (ADS)

    Sanford, W. E.; Davila Olmo, K.; Stednick, J. D.

    2011-12-01

    As the South Platte River flows from Denver, CO to the Nebraska border it crosses urban and agricultural settings which affect water quality and quantity. This reach of the river is highly regulated, with numerous diversions, off-channel reservoirs, and flow-augmentation projects. Water in the river is used 7 different times between Denver and the state line. Much of the water diverted from the river is used for irrigation. A significant portion of this water returns to the river as groundwater flow, often during times of low stream flow. Groundwater return flows, coupled with wastewater treatment plant and reservoir storage, have turned the once ephemeral river into a perennial one. The goal of this research was to determine if the stable isotopes of water (δ 2H and δ18O) in the river can be used to identify and to help quantify groundwater return flows to the river. Water samples were collected and analyzed for their isotopic signature at 17 sites from Denver to Julesburg. Nine rounds of samples were collected from June 2009 to June 2010. Well defined linear patterns of isotope ratios are observed on individual sampling events indicating that the water in the river is becoming enriched as it moves downstream. The enrichment is caused by evaporation from irrigation waters and their discharge to the river as groundwater return flows. These promising results indicate that it may be possible to quantify irrigation return flow to the South Platte River using the stable isotopes of water.

  16. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Mississippi River Water Control Management Board. 223.1 Section 223.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE BOARDS, COMMISSIONS, AND COMMITTEES § 223.1 Mississippi River Water Control Management Board. (a) Purpose....

  17. Impact of agricultural practices and river catchment characteristics on river and bathing water quality.

    PubMed

    Aitken, M N

    2003-01-01

    The objective was to investigate the potential risk of faecal indicator organism (FIO) bacteriological contamination of river catchments and coastal bathing waters from farm management practices and to develop practices to reduce the risk. A risk assessment on 117 farms was carried out in two river catchments in south-west Scotland. Manure storage facilities, farming practices, field conditions and catchment characteristics were assessed. River samples at 33 locations were regularly taken and analysed for FIOs. Available manure storage capacity and farm management practices are inadequate on a high proportion of farms and FIO contamination of watercourses was likely the result of effluent transported into watercourses due to non-collection or poor containment. In addition, surface run-off or leaching following land application of manure or intensive stocking in adverse conditions was a high risk on up to 50% of farms. The concentrations of FIOs in the streams of two sub-catchments with high livestock intensity was 4 to 8 times higher compared to the two sub-catchments which had a low livestock intensity. The majority of potential risks of agricultural pollution to watercourses may be eliminated through improved manure and dirty water management, forward planning of manure spreading activities and improved operational procedures. PMID:15137173

  18. The Missing Link: the Role of Floodplain Tie Channels in Connecting Off River Water Bodies to Lowland Rivers

    NASA Astrophysics Data System (ADS)

    Rowland, J. C.; Dietrich, W. E.; Day, G.

    2005-05-01

    Along lowland river systems across the globe the exchange of water, sediment, carbon, nutrients and biota between main stem rivers and off-river water bodies (ORWB) is facilitated by the presence of stable secondary channels referred to here as tie channels. Sixty five percent of the ORWB along the middle Fly River in Papua New Guinea connect to the river through such channels. A similar percentage of the 37 ORWB located between Baton Rouge and Memphis on the lower Mississippi River at one time were linked to the river by tie or batture (as they are locally known) channels. Levee construction and other alterations aimed at flood control or navigation on the Mississippi have left only a handful of lakes connected to the river, of these, most are heavily altered by dredging or other modifications. Tie channels were also once common along major tributaries to the Mississippi, such as the Red River. In the much less disturbed Alaskan environment, tie channels are still common, especially along Birch Creek and the Koyukuk and Black rivers. Our studies on the Mississippi River, in Alaska and in Papua New Guinea indicate that tie channels possess a common channel form that is stable and self-maintaining for hundreds to possibly a thousand years. Tie channels exhibit narrow width to depth ratios (~ 5.5) and consistently scale in cross-sectional dimensions to the size of the lake into which they flow. Variations in river and lake stage drive flow bi-directionally through tie channels. A local high or sill in the bed of tie channels controls the degree and duration of connection between the river and ORWB, with many lakes becoming isolated during periods of low stage. The life-span of a tie channel depends on the rate of sediment loading to the ORWB. Our research indicates that this rate directly corresponds to the sediment loading in the main stem river. Along the Fly River, for example, a 5 to 7 fold increase in the river sediment load has resulted increases of 6 to 17

  19. Diverse Early Life-History Strategies in Migratory Amazonian Catfish: Implications for Conservation and Management.

    PubMed

    Hegg, Jens C; Giarrizzo, Tommaso; Kennedy, Brian P

    2015-01-01

    Animal migrations provide important ecological functions and can allow for increased biodiversity through habitat and niche diversification. However, aquatic migrations in general, and those of the world's largest fish in particular, are imperiled worldwide and are often poorly understood. Several species of large Amazonian catfish carry out some of the longest freshwater fish migrations in the world, travelling from the Amazon River estuary to the Andes foothills. These species are important apex predators in the main stem rivers of the Amazon Basin and make up the region's largest fishery. They are also the only species to utilize the entire Amazon Basin to complete their life cycle. Studies indicate both that the fisheries may be declining due to overfishing, and that the proposed and completed dams in their upstream range threaten spawning migrations. Despite this, surprisingly little is known about the details of these species' migrations, or their life history. Otolith microchemistry has been an effective method for quantifying and reconstructing fish migrations worldwide across multiple spatial scales and may provide a powerful tool to understand the movements of Amazonian migratory catfish. Our objective was to describe the migratory behaviors of the three most populous and commercially important migratory catfish species, Dourada (Brachyplatystoma rousseauxii), Piramutaba (Brachyplatystoma vaillantii), and Piraíba (Brachyplatystoma filamentosum). We collected fish from the mouth of the Amazon River and the Central Amazon and used strontium isotope signatures ((87)Sr/(86)Sr) recorded in their otoliths to determine the location of early rearing and subsequent. Fish location was determined through discriminant function classification, using water chemistry data from the literature as a training set. Where water chemistry data was unavailable, we successfully in predicted (87)Sr/(86)Sr isotope values using a regression-based approach that related the geology

  20. Diverse Early Life-History Strategies in Migratory Amazonian Catfish: Implications for Conservation and Management

    PubMed Central

    Hegg, Jens C.; Giarrizzo, Tommaso; Kennedy, Brian P.

    2015-01-01

    Animal migrations provide important ecological functions and can allow for increased biodiversity through habitat and niche diversification. However, aquatic migrations in general, and those of the world’s largest fish in particular, are imperiled worldwide and are often poorly understood. Several species of large Amazonian catfish carry out some of the longest freshwater fish migrations in the world, travelling from the Amazon River estuary to the Andes foothills. These species are important apex predators in the main stem rivers of the Amazon Basin and make up the region’s largest fishery. They are also the only species to utilize the entire Amazon Basin to complete their life cycle. Studies indicate both that the fisheries may be declining due to overfishing, and that the proposed and completed dams in their upstream range threaten spawning migrations. Despite this, surprisingly little is known about the details of these species’ migrations, or their life history. Otolith microchemistry has been an effective method for quantifying and reconstructing fish migrations worldwide across multiple spatial scales and may provide a powerful tool to understand the movements of Amazonian migratory catfish. Our objective was to describe the migratory behaviors of the three most populous and commercially important migratory catfish species, Dourada (Brachyplatystoma rousseauxii), Piramutaba (Brachyplatystoma vaillantii), and Piraíba (Brachyplatystoma filamentosum). We collected fish from the mouth of the Amazon River and the Central Amazon and used strontium isotope signatures (87Sr/86Sr) recorded in their otoliths to determine the location of early rearing and subsequent. Fish location was determined through discriminant function classification, using water chemistry data from the literature as a training set. Where water chemistry data was unavailable, we successfully in predicted 87Sr/86Sr isotope values using a regression-based approach that related the geology of

  1. Detection of microsporidia in drinking water, wastewater and recreational rivers.

    PubMed

    Izquierdo, Fernando; Castro Hermida, José Antonio; Fenoy, Soledad; Mezo, Mercedes; González-Warleta, Marta; del Aguila, Carmen

    2011-10-15

    Diarrhea is the main health problem caused by human-related microsporidia, and waterborne transmission is one of the main risk factors for intestinal diseases. Recent studies suggest the involvement of water in the epidemiology of human microsporidiosis. However, studies related to the presence of microsporidia in different types of waters from countries where human microsporidiosis has been described are still scarce. Thirty-eight water samples from 8 drinking water treatment plants (DWTPs), 8 wastewater treatment plants (WWTPs) and 6 recreational river areas (RRAs) from Galicia (NW Spain) have been analyzed. One hundred liters of water from DWTPs and 50 L of water from WWTPs and RRAs were filtered to recover parasites, using the IDEXX Filta-Max® system. Microsporidian spores were identified by Weber's stain and positive samples were analyzed by PCR, using specific primers for Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon cuniculi, and Encephalitozoon hellem. Microsporidia spores were identified by staining protocols in eight samples (21.0%): 2 from DWTPs, 5 from WWTPs, and 1 from an RRA. In the RRA sample, the microsporidia were identified as E. intestinalis. To the best of our knowledge, this is the first report of human-pathogenic microsporidia in water samples from DWTPs, WWTPs and RRAs in Spain. These observations add further evidence to support that new and appropriate control and regulations for drinking, wastewater, and recreational waters should be established to avoid health risks from this pathogen. PMID:21774958

  2. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    SciTech Connect

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  3. Water management in the Senegal River Delta: a continuing uncertainty

    NASA Astrophysics Data System (ADS)

    Mietton, M.; Dumas, D.; Hamerlynck, O.; Kane, A.; Coly, A.; Duvail, S.; Pesneaud, F.; Baba, M. L. O.

    2007-11-01

    Water management is the driving force behind the productivity of the ecosystems of the Senegal River Estuary and floodplains. It is dependent on human decision-making, but has been separated from the River's flooding since the building of the Diama Dam. The current objectives of the Office de Mise en Valeur du fleuve Sénégal (OMVS: Senegal River Development Agency) are mainly turned towards the development of irrigated agriculture on the former floodplains and since 2002 the production of hydroelectric power at Manantali. In October 2003, a four-metre-wide runoff canal, which quickly widened into a breach several hundred metres across, was dug in the Barbary Spit area to protect the city of Saint-Louis from heavy flooding. The hydraulic quality of the area downstream from the dam has improved to the extent that there is no longer any flooding there, but as the management of the dams concerns only the section of the river between Manantali and Diama, a certain amount of flood risk probably still persists. The intrusion of seawater into the estuary is also threatening ecosystems and fresh water supplies, and abruptly altering agricultural practices such as fruit and vegetable growing in the Gandiolais district. When added to the tentative efforts to coordinate the management of the two dams, with no management objective downstream from Diama, such permanent modifications impose serious constraints on the managers and residents of the lower delta. This paper presents an overview of the constraints and uncertainties at different levels and scales. This wholly human-wrought environment can be considered as a learning experience, where a large number of variables need to be monitored closely and an ongoing process of participatory analysis should be backed up by multidisciplinary research.

  4. Water quality assessment of highly polluted rivers in a semi-arid Mediterranean zone Oued Fez and Sebou River (Morocco)

    NASA Astrophysics Data System (ADS)

    Perrin, J. L.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.

    2014-03-01

    Oued Fez (one of the Sebou River tributaries - Morocco) allowed us to study and quantify the effect of the lack of wastewater treatment on surface water quality in semi-arid hydrological context. The analysis is based on field data collected from June 2009 to December 2011. Concentration and load patterns of nitrogen, phosphorus and chromium (used in the processing of leather) are compared in stable hydrological conditions during low flow and high flow periods in an eight-location sampling network. The Oued Fez and the Sebou River are characterised by severe pollution downstream from the city of Fez, particularly TN (mainly NH4 and Norg), TP (mainly Ppart) and TCr. The most polluted sites are those directly under the influence of domestic and industrial waste water inputs, particularly tannery effluents. Obviously, the concentrations measured at these locations are above all environmental quality standards. Pollutant loads are very heavy in the Sebou River and can contaminate the river course for kilometres. Moreover, as the water of the Sebou River is used for the irrigation of vegetables, serious problems of public health could arise. A better understanding of contaminant dynamics and self-purifying processes in these rivers will help implement actions and steps aimed at improving water quality in the Sebou River, which is the primary water supply source in Morocco and is used for agricultural and industrials purposes as well as for drinking water.

  5. Assessment of ametryn contamination in river water, river sediment, and mollusk bivalves in São Paulo state, Brazil.

    PubMed

    Jacomini, Analu Egydio; de Camargo, Plínio Barbosa; Avelar, Wagner Eustáquio Paiva; Bonato, Pierina Sueli

    2011-04-01

    São Paulo state, Brazil, is one of the main areas of sugar cane agriculture in the world. Herbicides, in particular, ametryn, are extensively used in this extensive area, which implies that this herbicide is present in the environment and can contaminate the surface water by running off. Thereby, residues of ametryn were analyzed in samples of river water an river sediment and in freshwater bivalves obtained from the rivers Sapucaí, Pardo and Mogi-Guaçu in São Paulo State, Brazil. Samples were taken in the winter of 2003 and 2004 in two locations in each river. The specimens of freshwater bivalves collected and analyzed were Corbicula fluminea, an exotic species, and Diplodon fontaineanus, a native species. Additionally, the evaluation of the ability of bioconcentration and depuration of ametryn by the freshwater bivalve Corbicula fluminea was also performed. Ametryn concentrations in the samples were measured by liquid chromatography coupled to mass spectrometry. Residues of ametryn in water (50 ng/L) and in freshwater bivalves (2-7 ng/g) were found in the Mogi-Guaçu River in 2004, and residues in river sediments were found in all rivers in 2003 and 2004 (0.5-2 ng/g). The observation of the aquatic environment through the analysis of these matrixes, water, sediment, and bivalves, revealed the importance of the river sediment in the accumulation of the herbicide ametryn, which can contaminate the biota. PMID:20567812

  6. Methane flux from the central Amazonian floodplain

    NASA Technical Reports Server (NTRS)

    Bartlett, Karen B.; Crill, Patrick M.; Sebacher, Daniel I.; Harriss, Robert C.; Wilson, John O.

    1988-01-01

    A total of 186 methane measurements from the three primary Amazon floodplain environments of open water lakes, flood forests, and floating grass mats were made over the period 18 July through 2 September 1985. These data indicate that emissions were lowest over open water lakes. Flux from flooded forests and grass mats was significantly higher. At least three transport processes contribute to tropospheric emissions: ebullition from sediments, diffusion along the concentration gradient from sediment to overlaying water to air, and transport through the roots and stems of aquatic plants. Measurements indicate that the first two of these processes are most significant. It was estimated that on the average bubbling makes up 49 percent of the flux from open water, 54 percent of that from flooded forests, and 64 percent of that from floating mats. If the measurements were applied to the entire Amazonian floodplain, it is calculated that the region could supply up to 12 percent of the estimated global natural sources of methane.

  7. Restore Harlem River's Water Quality to Swimmable/Fishable

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2014-12-01

    Combined sewer overflows (CSOs) discharged untreated sewage into the Harlem River during rainstorms, elevated nutrient and bacteria levels. The river is not safe for swimming, fishing or boating during wet weather conditions. We had collected water samples from CSOs discharge point, analyzed ammonia (NH3-N), phosphate (PO43-), fecal coliform, E.Coli., enteroccus, and polychlorinated biphenyl's (PCBs). On tropical storm Arthur, we had collected CSOs: DO reduced during heavy thunderstorm dropped down from 4 to 2.9 mg/L (49 to 35%); fecal coliform was 5 million MPN/100ml, E.Coli. was 1000-2000 MPN/100ml, enterococcus was 2000-2500 MPN/100ml, turbidity was 882 FAU, ammonia was 2.725 mg/L. Nutrient and bacteria exceeded EPA regulated levels significantly (ammonia: 0.23mg/L; fecal coliform: 200 MPN/100ml, E.Coli.: 126 MPN/100ml, enterococcus: 104 MPN/100ml; turbidity: 0.25-5.25 FAU, DO: 4mg/L). Water sampling of CSOs during heavy rainstorm on 4/30/14 showed turbidity reached 112 FAU, ammonia was 0.839 mg/L, fecal coliform: 5 million MPN/100ml, E.Coli.: 500 MPN/100ml and enterococcus: 10,000 MPN/100ml. CSO collection on June 5, 2014 during morning rainstorm showed ammonia was 2.273 mg/L, turbidity was 37 FAU. New York State Department of Health (NYS DOH) suggested women under 50 & children under 15 do not eat fish such as blue crab meat, carb or lobster tomalley, channel catfish, gizzard shad, white catfish, Atlantic needlefish, bluefish, carp, goldfish, rainbow smelt, striped bass, white perch because chemical concerns (PCBs, cadmium, dioxin). Fish caught in the Harlem River was banned from commercial. Swimming in the river was not safe due to high pathogen levels. CSOs reduction, such as green roof, green wall, and wetland could help reduce stormwater runoff and CSOs. Water quality improvement and ecology restoration will help achieve the goal of swimmable and fishable in the Harlem River.

  8. Quantification of umu genotoxicity level of urban river water.

    PubMed

    Kameya, T; Nagato, T; Nakagawa, K; Yamashita, D; Kobayashi, T; Fujie, K

    2011-01-01

    In recent years, the request of environmental safety management for carcinogenic substances, mutagenic substances and/or reproductive toxicity substances (CMR) has increased. This study focused on clarifying the genotoxicity level of environmental water and its release source by using the umu test provided in ISO13829. Although a genotoxicity index "induction ratio (IR)" is used in ISO13829, we normalised it to make it possible to compare various environmental water quantitatively to each other as a new index "genotoxic activity (GA=(IR-1)/Dose)". Sample water was collected and concentrated to 100 times or 1,000 times by a solid phase extraction method. As the test results, it was found that GA level in actual river water varied widely from less than the determination limit of 23 [1/L] to 1,100 [1/L] by quantitative comparison, and the value was also equivalent to more than 50 times the level of tap water. The GA level of household wastewater was not so high, but the levels of treated water from wastewater treatment plant (WTP) were from 220 [1/L] to 3,200 [1/L]. Raw sewage of some WTP shows high level genotoxicity. A part of genotoxicity substances, for example 50%, could be removed by conventional wastewater treatment, but it was not enough to reduce the water environmental load of genotoxicity. PMID:21278461

  9. Platform for monitoring water and solid fluxes in mountainous rivers

    NASA Astrophysics Data System (ADS)

    Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann

    2016-04-01

    The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric

  10. Effects of alternative Missouri River management plans on ground-water levels in the lower Missouri River flood plain

    USGS Publications Warehouse

    Kelly, Brian P.

    2000-01-01

    In 1998, the U.S. Army Corps of Engineers (USACE) proposed eight Alternative River Management Plans (ARMPs) for managing reservoir levels and water-release rates for the Missouri River. The plans include the Current Water Control Plan (CWCP), Conservation 18, 31, and 44 (C18, C31, and C44) that provide different levels of water conservation in the reservoirs during droughts, Fish and Wildlife 10, 15, and 20 (FW10, FW15, and FW20) that vary water-release rates to provide additional fish and wildlife benefits, and Mississippi River 66 (M66) that maintains a 66,000 cubic feet per second discharge at St. Louis to provide navigation support for the Mississippi River. Releases from Gavin?s Point Dam affect both the lower 1,305 kilometers of the Missouri River and ground-water levels in the lower Missouri River flood plain. Changes in the magnitude and timing of ground-water-level fluctuations in response to changes in river management could impact agriculture, urban development, and wetland hydrology along the lower Missouri River flood plain. This study compared simulated ground-water altitude and depth to ground water for the CWCP in the Missouri River alluvial aquifer near the Kansas City area between 1970 and 1980 with each ARMP, determined the average change in simulated ground-water level for selected river-stage flood pulses at selected distances from the river, and compared simulated flood pulse, ground-water responses with actual flood pulse, and ground-water responses measured in wells located at three sites along the lower Missouri River flood plain.For the model area, the percent total shallow ground-water area (depth to ground water less than 0.3048 meter) is similar for each ARMP because of overall similarities in river flow between ARMPs. The percent total shallow ground-water area for C18 is the most similar to CWCP followed by C31, M66, C44, FW10, FW15, and FW20. ARMPs C18, C31, C44, and M66 do not cause large changes in the percent shallow ground-water