Science.gov

Sample records for ambient aerosols collected

  1. COMMENTS ON "SIZE DISTRIBUTION OF ORGANONITRATES IN AMBIENT AEROSOL COLLECTED IN HOUSTON, TEXAS," AEROSOL SCIENCE AND TECHNOLOGY, 36:983-992 (2002)

    EPA Science Inventory

    A previous article in this journal reported the results of an FTIR analysis of the ambient aerosol collected during a file study in Houston, Texas during August and September of 2000. The emphasis of that article was on the organonitrates collected during the study. In the disc...

  2. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  3. Analytical techniques for ambient sulfate aerosols

    SciTech Connect

    Johnson, S.A.; Graczyk, D.G.; Kumar, R.; Cunningham, P.T.

    1981-06-01

    Work done to further develop the infrared spectroscopic analytical method for the analysis of atmospheric aerosol particles, as well as some exploratory work on a new procedure for determining proton acidity in aerosol samples is described. Earlier work had led to the successful use of infrared (ir) spectrophotometry for the analysis of nitrate, ammonium, and neutral and acidic sulfates in aerosol samples collected by an impactor on a Mylar-film substrate. In this work, a filter-extraction method was developed to prepare filter-collected aerosol samples for ir analysis. A study was made comparing the ir analytical results on filter-collected samples with impactor-collected samples. Also, the infrared analytical technique was compared in field studies with light-scattering techniques for aerosol analysis. A highly sensitive instrument for aerosol analysis using attenuated total internal reflection (ATR) infrared spectroscopy was designed, built, and tested. This instrument provides a measurement sensitivity much greater (by a factor of 6 for SO/sub 4//sup 2 -/) than that obtainable using the KBr-pellet method. This instrument collect size- and time-resolved samples and is potentially capable of providing automated, near real-time aerosol analysis. Exploratory work on a novel approach to the determination of proton acidity in filter- or impactor-collected aerosol samples is also described. In this technique, the acidic sample is reacted with an access of a tagged, vapor-phase base. The unreacted base is flushed off and the amount of the tag retained by the sample is a direct measure of the proton acidity of the sample. The base was tagged with Ge, which can be conveniently determined by the x-ray fluorescence technique.

  4. Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization

    SciTech Connect

    Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

    2009-07-10

    Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

  5. eDPS Aerosol Collection

    SciTech Connect

    Venzie, J.

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  6. AEROSOL CHARACTERIZATION OF AMBIENT AIR NEAR A COMMERCIAL LURGI COAL GASIFICATION PLANT, KOSOVO REGION, YUGOSLAVIA

    EPA Science Inventory

    Ambient air samples were collected continuously from May 14-29, 1980 to determine if the emissions from a commercial Lurgi coal gasification plant could be identified downwind of the facility. Physical, inorganic, and organic analyses were carried out on the collected aerosol sam...

  7. RADIOCARBON ANALYSIS OF PM 2.5 AMBIENT AEROSOL

    EPA Science Inventory

    The radiocarbon (14C) content of an ambient aerosol sample can be directly related to the fraction of the sample's total carbon mass contributed by natural (biogenic) sources. Such knowledge is difficult to determine by other means, and important for devising ambient PM contro...

  8. Ambient Observations of Aerosols, Novel Aerosol Structures, And Their Engineering Applications

    NASA Astrophysics Data System (ADS)

    Beres, Nicholas D.

    The role of atmospheric aerosols remains a crucial issue in understanding and mitigating climate change in our world today. These particles influence the Earth by altering the Earth's delicate radiation balance, human health, and visibility. In particular, black carbon particulate matter remains the key driver in positive radiative forcing (i.e., warming) due to aerosols. Produced from the incomplete combustion of hydrocarbons, these compounds can be found in many different forms around the globe. This thesis provides an overview of three research topics: (1) the ambient characterization of aerosols in the Northern Indian Ocean, measurement techniques used, and how these aerosols influence local, regional, and global climate; (2) the exploration of novel soot superaggregate particles collected in the Northern Indian Ocean and around the globe and how the properties of these particles relate to human health and climate forcing; and (3) how aerogelated soot can be produced in a novel, one-step method utilizing an inverted flame reactor and how this material could be used in industrial settings.

  9. DEVELOPMENT OF A PORTABLE DEVICE TO COLLECT SULFURIC ACID AEROSOL

    EPA Science Inventory

    A quantitative, interference-free method for collecting sulfuric acid aerosol on a filter was developed and field tested. Since previous research found that severe losses of sulfuric aicd were caused by ammonia, ambient particulate material, and other interferents, a method was n...

  10. Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids

    SciTech Connect

    Siefert, R.L.; Pehkonen, S.O.; Hoffmann, M.R. ); Erel, Y. )

    1994-08-01

    Experiments to simulate cloudwater conditions were carried out by using ambient aerosol samples suspended in an aqueous solution. Electron donors known to exist in atmospheric cloudwater (oxalate, formate, or acetate) were then added to the simulated cloudwater, and the solution irradiated with ultraviolet light while important species were measured (i.e., H[sub 2]O[sub 2], Fe[sub total], Fe(II)[sub aq], and pH). A total of four different ambient aerosol samples were used in the simulated cloudwater experiments; they were collected from (1) Whiteface Mountain, NY, (2) Pasadena, CA, and (3) Sequoia National Park, CA. Hydrogen peroxide (H[sub 2]O[sub 2]) photoproduction was observed in the simulated cloudwater experiments with added oxalate. Fe(II)[sub aq] photoproduction was observed in the simulated cloudwater experiments with and without added acetate or added formate using ambient aerosol collected simultaneously with the ambient aerosol used in the added oxalate experiments. The production of Fe(II)[sub aq] showed that Fe from the ambient aerosol was available for photochemical redox reactions. In all cases, the production rates for Fe(II)[sub aq] and H[sub 2]O[sub 2] in the light were greater than production rates in nonirradiated control experiments. The simulated cloudwater experiments (with four different aerosol samples) showed similar behavior to previous experiments carried out with synthetic Fe-oxyhydroxy polymorphs in the presence of oxalate, formate, or acetate. The Fe present in the ambient aerosol appears to be a critical component for the production of H[sub 2]O[sub 2] in the simulated cloudwater experiments.

  11. SAMPLING AND ANALYSIS METHODS FOR AMBIENT PM-10 AEROSOL

    EPA Science Inventory

    Methods are described for obtaining ambient PM-10 aerosol data for use in receptor models. haracteristics of PM-10 sampling devices, filter media and laboratory analysis procedures are described. he latter include x-ray fluorescence, neutron activation, optical spectroscopy, pyro...

  12. Transport and characterization of ambient biological aerosol near Laurel, MD

    NASA Astrophysics Data System (ADS)

    Santarpia, J. L.; Cunningham, D.; Gilberry, J.; Kim, S.; Smith, E. E.; Ratnesar-Shumate, S.; Quizon, J.

    2010-09-01

    Bacterial aerosol have been observed and studied in the ambient environment since the mid nineteenth century. These studies have sought to provide a better understanding of the diversity, variability and factors that control the biological aerosol population. In this study, we show comparisons between diversity of culturable bacteria and fungi, using culture and clinical biochemical tests, and 16S rRNA diversity using Affymetrix PhyloChips. Comparing the culturable fraction and surveying the total 16S rRNA of each sample provides a comprehensive look at the bacterial population studied and allows comparison with previous studies. Thirty-six hour back-trajectories of the air parcels sampled, over the two day period beginning 4 November 2008, provide information on the sources of aerosol sampled on the campus of Johns Hopkins University Applied Physics Laboratory in Laurel, MD. This study indicates that back-trajectory modeling of air parcels may provide insights into the observed diversity of biological aerosol.

  13. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    NASA Technical Reports Server (NTRS)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  14. Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol

    SciTech Connect

    O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

    2014-06-17

    The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory generated secondary organic aerosols (SOA). Scanning transmission x-ray microscopy (STXM) was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Because they flatten less upon impaction, particles with higher viscosity and surface tension can be identified by a steeper slope on a plot of TCA vs. size. The slopes of the ambient data are statistically similar indicating a small range of average viscosities and surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory generated SOA. This comparison indicates that ambient organic particles have higher viscosities and surface tensions than those typically generated in laboratory SOA studies.

  15. Ambient aerosol analysis using aerosol-time-of-flight mass spectrometry

    SciTech Connect

    Prather, K.A.; Noble, C.A.; Liu, D.Y.; Silva, P.J.; Fergenson, D.F.

    1996-10-01

    We have recently developed a technique, Aerosol-Time-of-Flight Mass Spectrometry (ATOFMS), which is capable of real-time determination of the aerodynamic size and chemical composition of individual aerosol particles. In order to obtain such information, the techniques of aerodynamic particle sizing and time-of-flight mass spectrometry are combined in a single instrument. ATOFMS is being used for the direct analysis of ambient aerosols with the goal of establishing correlations between particle size and chemical composition. Currently, measurements are being made to establish potential links between the presence of particular types of particles with such factors as the time of day, weather conditions, and concentration levels of gaseous smog components such as NO{sub x} and ozone. This data will be used to help establish a better understanding of tropospheric gas-aerosol processes. This talk will discuss the operating principles of ATOFMS as well as present the results of ambient analysis studies performed in our laboratory.

  16. Separating Hazardous Aerosols from Ambient Aerosols: Role of Fluorescence-Spectral Determination, Aerodynamic Deflector and Pulse Aerodynamic Localizer (PAL)

    SciTech Connect

    Pan, Yong-Le; Cobler, Patrick J.; Rhodes, Scott A.; Halverson, Justin; Chang, Richard K.

    2005-08-22

    An aerosol deflection technique based on the single-shot UV-laser-induced fluorescence spectrum from a flowing particle is presented as a possible front-end bio-aerosol/hazardous-aerosol sensor/identifier. Cued by the fluorescence spectra, individual flowing bio-aerosol particles (1-10 {micro}m in diameter) have been successfully deflected from a stream of ambient aerosols. The electronics needed to compare the fluorescence spectrum of a particular particle with that of a pre-determined fluorescence spectrum are presented in some detail. The deflected particles, with and without going through a funnel for pulse aerodynamic localization (PAL), were collected onto a substrate for further analyses. To demonstrate how hazardous materials can be deflected, TbCl{sub 3} {center_dot} 6H{sub 2}O (a simulant material for some chemical forms of Uranium Oxide) aerosol particles (2 {micro}m in diameter) mixed with Arizona road dust was separated and deflected with our system.

  17. Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Russell, P. B.; Hamill, P.

    2000-01-01

    Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This assumption then enters the estimate of the single scattering albedo at ambient relative humidity. To investigate the validity of this assumption we have carried out modeling studies of the absorption humidification factor, assuming that the aerosols contain an insoluble soot core and a coating which determines its hygroscopic growth behavior. The aerosol optical properties are then computed on the basis of the shell/core particle morphology using a Mie-code for concentric shells. From basic physical principles, it is conceivable that aerosol absorption increases when an atmospheric aerosol particle collects a non-absorbing shell, since the soot core is then exposed to an increased (focused) electric field strength. Indeed, our preliminary modeling studies show that the absorption of an atmospheric aerosol particle composed of a soot core and an aqueous sulfuric acid shell may increase by a factor of 50% due to a change in ambient relative humidity from 30 to 95%. We will show how this increased absorption is a function of the initial particle size and soot mass fraction.

  18. Mechanisms by Which Ambient Humidity May Affect Viruses in Aerosols

    PubMed Central

    Yang, Wan

    2012-01-01

    Many airborne viruses have been shown to be sensitive to ambient humidity, yet the mechanisms responsible for this phenomenon remain elusive. We review multiple hypotheses, including water activity, surface inactivation, and salt toxicity, that may account for the association between humidity and viability of viruses in aerosols. We assess the evidence and limitations for each hypothesis based on findings from virology, aerosol science, chemistry, and physics. In addition, we hypothesize that changes in pH within the aerosol that are induced by evaporation may trigger conformational changes of the surface glycoproteins of enveloped viruses and subsequently compromise their infectivity. This hypothesis may explain the differing responses of enveloped viruses to humidity. The precise mechanisms underlying the relationship remain largely unverified, and attaining a complete understanding of them will require an interdisciplinary approach. PMID:22820337

  19. Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry Part I: quantification, shape-related collection efficiency, and comparison with collocated instruments

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Dzepina, K.; Onasch, T. B.; Canagaratna, M. R.; Zhang, Q.; Huffman, A.. R.; Decarlo, P. F.; Jayne, J. T.; Mortimer, P.; Worsnop, D. R.; Kolb, C. E.; Johnson, K. S.; Zuberi, B.; Marr, L. C.; Molina, L. T.; Molina, M. J.; Bernabé, R. M.; Cardenas, B.; Márquez, C.; Gaffney, J. S.; Marley, N. A.; Laskin, A.; Shutthanandan, V.; Jimenez, J. L.

    2005-06-01

    An Aerodyne Aerosol Mass Spectrometer (AMS) was deployed at the CENICA Supersite, while another was deployed in the Aerodyne Mobile Laboratory (AML) during the Mexico City Metropolitan Area field study (MCMA-2003) from 31 March-4 May 2003 to investigate particle concentrations, sources, and processes. This is the first of a series of papers reporting the AMS results from this campaign. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 µm (NR-PM1) with high time and size-resolution. For the first time, we report field results from a beam width probe, which was used to study the shape and mixing state of the particles and to quantify potential losses of irregular particles due to beam broadening inside the AMS. Data from this probe show that no significant amount of irregular particles was lost due to excessive beam broadening. A comparison of the CENICA and AML AMSs measurements is presented, being the first published intercomparison between two quadrupole AMSs. The speciation, and mass concentrations reported by the two AMSs compared relatively well. The differences found are likely due to the different inlets used in both instruments. In order to account for the refractory material in the aerosol, we also present measurements of Black Carbon (BC) using an aethalometer and an estimate of the aerosol soil component obtained from Proton-Induced X-ray Emission Spectrometry (PIXE) analysis of impactor substrates. Comparisons of AMS + BC + soil mass concentration with other collocated particle instruments (a LASAIR Optical Particle Counter, a Tapered Element Oscillating Microbalance (TEOM) and a DustTrak Aerosol Monitor) are also presented. The comparisons show that the AMS + BC + soil mass concentration during MCMA-2003 is a good approximation to the total PM2.5 mass concentration.

  20. Processing of Ambient Aerosols During Fog Events: Role of Acidity

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Gupta, T.; Tripathi, S. N.; Bhattu, D.

    2013-12-01

    Fog is a major processing and removal agent of ambient aerosols. Enhanced secondary organic aerosol (SOA) production has been reported during fog events indicating major role of aqueous processing. Present study was carried out in a heavily polluted city of Kanpur situated in Indo-Gangetic plain of India,from 02- 18 Nov, 2012 and then from 22 Dec, 2012 to 10 January, 2013. 12 fog events were identified from 22 Dec to 10 January based on low visibility (< 300 m) with high liquid water content (~ 0.04 g/m3) and termed as foggy period while remaining as non-foggy period. Foggy period typically showed very high RH (~95%), low temperatures (~2-6°C) compared to non-foggy period. An array of instruments were deployed during this campaign for real time measurement of aerosol physico-chemical properties - High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), Scanning Mobility Particle Sizer (SMPS), Cloud Combination Probe (CCP), Cloud Condensation Nuclei counter (CCN), fog water collector and Vaisala RH & T sensor. Average aerosol loading during foggy period was 104×44 ?g/m3, much higher than 73×49 ?g/m3of non-foggy period, but during actual fog events the loading reduced to 85×23 ?g/m3 indicating overall aerosol removal by fog. Overall aerosol composition during both the period was dominated by organics which constitutes about 60-70% of the total AMS mass followed by nitrate, but during foggy period sulfate was found to be increased many fold.HR analysis of AMS data revealed noticeable differences in the diurnal average values of O:C ratio between foggy and non -foggy period. Although diurnal O:C ratio was highest around noontime for both period but during fog events, night to early morning O:C ratio was 0.51×0.04, higher than that of non-foggy period 0.44×0.07, clearly indicating enhanced oxidation. AMS data also showed that mode size of all the species specially of organics and sulphate had shifted to a higher diameter during foggy period, an indication of secondary processing. Aerosol acidity which is calculated from ratio of stoichiometric neutralization of ammonium to sulphate, nitrate and chloride, is playing a major role in aerosol processing. Highly oxidized aerosols (O:C> 0.6) in both periods were always either less acidic or completely neutralized, whereas less oxidized aerosols (O:C < 0.35) were either highly or mildly acidic in nature.Van Krevelen diagram of H/C vs O/C also showed different slopes for acidic and neutralized aerosols.Both these findings indicate that different processing mechanisms are operating under acidic and neutralized conditions.Organic hygroscopicity showed a linear relationship with oxidation level of organics or O:C ratio, which in turn depends on acidity,indicate neutralized aerosol to be most likely more CCN active than acidic aerosol.

  1. Single-particle speciation of alkylamines in ambient aerosol at five European sites.

    PubMed

    Healy, Robert M; Evans, Greg J; Murphy, Michael; Sierau, Berko; Arndt, Jovanna; McGillicuddy, Eoin; O'Connor, Ian P; Sodeau, John R; Wenger, John C

    2015-08-01

    Alkylamines are associated with both natural and anthropogenic sources and have been detected in ambient aerosol in a variety of environments. However, little is known about the ubiquity or relative abundance of these species in Europe. In this work, ambient single-particle mass spectra collected at five sampling sites across Europe have been analysed for their alkylamine content. The aerosol time-of-flight mass spectrometer (ATOFMS) data used were collected in Ireland (Cork), France (Paris, Dunkirk and Corsica) and Switzerland (Zurich) between 2008 and 2013. Each dataset was queried for mass spectral marker ions associated with the following ambient alkylamines: dimethylamine (DMA), trimethylamine (TMA), diethylamine (DEA), triethylamine (TEA), dipropylamine (DPA) and tripropylamine (TPA). The fraction of ambient particles that contained detectable alkylamines ranged from 1 to 17 % depending on location, with the highest fractions observed in Paris and Zurich in the winter months. The lowest fractions were observed at coastal sites, where the influence of animal husbandry-related alkylamine emissions is also expected to be lowest. TMA was the most ubiquitous particle phase alkylamine detected and was observed at all locations. Alkylamines were found to be internally mixed with both sulphate and nitrate for each dataset, suggesting that aminium salt formation may be important at all sites investigated. Interestingly, in Corsica, all alkylamine particles detected were also found to be internally mixed with methanesulphonic acid (MSA), indicating that aminium methanesulphonate salts may represent a component of marine ambient aerosol in the summer months. Internal mixing of alkylamines with sea salt was not observed, however. Alkylamine-containing particle composition was found to be reasonably homogeneous at each location, with the exception of the Corsica and Dunkirk sites, where two and four distinct mixing states were observed, respectively. PMID:25146355

  2. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute volume fraction, showing that measurable aging of the aerosol population occurs during the day, on the timescale of a few hours. The mixing state of the aerosol, also showing a consistent diurnal pattern, clearly correlates with a chemical tracer for local combustion sources. Chapter 4 describes results from the GoMACCS field study, in which the CCNc was subsequently deployed on an airborne field campaign in Houston, Texas during August-September, 2006. GoMACCS tested our ability to predict CCN for highly polluted conditions with limited chemical information. Assuming the particles were composed purely of ammonium sulfate, CCN closure was obtained with a 10% overprediction bias on average for CCN concentrations ranging from less than 100 cm-3 to over 10,000 cm-3, but with on average 50% variability. Assuming measured concentrations of organics to be internally mixed and insoluble tended to reduce the overprediction bias for less polluted conditions, but led to underprediction bias in the most polluted conditions. A likely explanation is that the high organic concentrations in the polluted environments depress the surface tension of the droplets, thereby enabling activation at lower soluble fractions.

  3. Speciation of Fe in ambient aerosol and cloudwater

    SciTech Connect

    Siefert, L.

    1996-08-15

    Atmospheric iron (Fe) is thought to play an important role in cloudwater chemistry (e.g., S(IV) oxidation, oxidant production, etc.), and is also an important source of Fe to certain regions of the worlds oceans where Fe is believed to be a rate-limiting nutrient for primary productivity. This thesis focuses on understanding the chemistry, speciation and abundance of Fe in cloudwater and aerosol in the troposphere, through observations of Fe speciation in the cloudwater and aerosol samples collected over the continental United States and the Arabian Sea. Different chemical species of atmospheric Fe were measured in aerosol and cloudwater samples to help assess the role of Fe in cloudwater chemistry.

  4. Variability of Ambient Aerosol in the Mexico City Metropolian Area

    NASA Astrophysics Data System (ADS)

    Onasch, T. B.; Worsnop, D. R.; Canagaratna, M.; Jayne, J. T.; Herndon, S.; Mortimer, P.; Kolb, C. E.; Rogers, T.; Knighton, B.; Dunlea, E.; Marr, L.; de Foy, B.; Molina, M.; Molina, L.; Salcedo, D.; Dzepina, K.; Jimenez, J. L.

    2004-12-01

    The spatial and temporal variations of the ambient aerosol in the Mexico City Metropolitan area was characterized during the springs of 2002 and 2003 using a mobile laboratory equipped with gas and particulate measurement instrumentation. The laboratory was operated at various fixed sites locations in and at the edge of the metropolitan area (Xalostoc, Merced, Cenica, Pedregal, and Santa Ana). Size-resolved aerosol mass and chemical composition was measured with an aerosol mass spectrometer and selected trace gas species (low mass organic compounds, NO, NO2, NOy, O3, SO2, CH2O, NH3, CO2) were measured using a proton transfer reaction mass spectrometer and various optical systems. The aerosol was predominantly organic in composition with lesser amounts of ammonium nitrate, sulfate, and chloride. The organic component was composed of mixed primary and secondary organic compounds. The mass loading and chemical composition of the aerosol was influenced by local and regional air pollution sources and the meteorology in Mexico City. Most urban sites were influenced by a strong diurnal particulate mass trend indicative of primary organic emissions from traffic during early morning and subsequently oxidized/processed organics and ammonium nitrate particles starting in the mid-morning (~9 AM) and continuing throughout the day. Morning traffic-related primary organic emissions were strongest at La Merced (center of Mexico City, located near a busy food market), more subdued at other fixed sites further from the city center, and varied depending upon the day of week and holiday schedules. Particle-bound polycyclic aromatic hydrocarbons were observed within Mexico City fixed sites and were correlated with traffic organic PM emissions. Oxidized organic and ammonium nitrate events occurred during mid-morning at all city sites and were well correlated with gas phase photochemical activity. The daily ammonium nitrate aerosol event occurred later at sites near the city limits, likely due to transported emissions from the city center. The sulfate particulate mass measured throughout most of the Mexico City area did not show a consistent diurnal pattern, characteristic of aged regional aerosol. Local refuse burns were observed to be a source of inorganic particulate chloride.

  5. Investigation of thermodynamic properties of ambient and laboratory-generated multi- component organic aerosols

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Lin, M.; Saleh, R.

    2008-12-01

    Ambient aerosol, a significant portion of which is composed of a complex mixture of semi-volatile organic compounds, has substantial impact on human welfare via adverse health effects and global climate change. Prediction of ambient semi-volatile organic aerosol remains highly problematic and air quality models often do not agree with observations. One of the pieces of knowledge needed for better predictions of ambient semi- volatile organic aerosol is understanding of the partitioning of semi-volatile compounds between the gas and the aerosol phases. In this study the equilibrium thermodynamic properties of a number of multi-component aerosols were investigated under controlled laboratory conditions, as well as in the field. In the laboratory experiments, model mixtures of organic compounds as well as modified ambient aerosols were tested. The ambient aerosols were modified in a controlled way by adding known amounts of different organic substances of known thermodynamic properties. The equilibrium gas / aerosol partitioning in a temperature range relevant to ambient conditions was investigated using the Integrated Volume Method (IVM). The field measurements of ambient aerosol equilibrium properties were carried out during June 2007 - January 2008 at the FACTS research facility in Duke Forest (Chapel Hill, NC). The results can be used to derive equilibrium vapor pressures and activity coefficients of test compounds and to verify and improve the parameterizations used in group contribution models, such as UNFAC.

  6. 13C measurements on organic aerosol - a comparison of sources with ambient samples

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Meusinger, Carl; Oyama, Beatriz; Holzinger, Rupert; Röckmann, Thomas

    2014-05-01

    The stable carbon isotopes 12C and 13C can be used to get information about sources and processing of organic aerosol (OA). We developed and tested a method to measure ?13C values of OA collected on filter samples in different volatility classes. These filter samples are introduced into an oven, where organic compounds are thermally desorbed in He at different temperatures. The compounds released at each temperature step are oxidized to CO2 using a platinum catalyst at 550 °C. The CO2 is then passed on to an isotope ratio mass spectrometer (IRMS) to measure d13C ratios. With a similar setup the chemical composition at each temperature step can be determined using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). System evaluation with controlled test compounds showed that organic compounds usually start evaporating from the filter when their melting point is reached. Isotopic fractionation occurs only if one temperature step is within a few degrees of the melting point of the substance, so that the substance only partially evaporates. However, this effect should be limited in an ambient sample containing thousands of individual chemical compounds. ?13C values of aerosol filter samples do not depend on the sample amount used, i.e. the system shows good linearity. The reproducibility depends somewhat on the sample amount and is usually < ± 0.3 ‰ for oven temperatures up to 200 °C and < ± 0.5 ‰ for oven temperatures greater than 200 °C. We analysed aerosol samples collected in a tunnel in Brazil (vehicular emissions), laboratory generated secondary organic aerosol (SOA) from alpha-pinene ozonolysis, and ambient filter samples from a regional site in the Netherlands, an urban site in Belgium, and Sao Paulo Brazil. First results show that ?13C ratios of SOA and vehicular emissions do not change strongly with oven temperature, i.e. the more refractory organic compounds have similar isotopic composition as the more volatile compounds. This is in contrast to the Dutch and Belgium ambient organic samples, where the more volatile compounds evaporating below 200°C are often depleted with respect to the refractory compounds by more than 2 permil. Ambient samples in Sao Paulo, Brazil however, are enriched in 13C compared to vehicular emissions that are the main source of urban pollutants. This indicates either an enriched background source for the aerosols or that the ambient aerosol has been strongly aged. Measurements at the Cabauw site show interesting differences between ?13C measured in polluted air masses and relatively clean air with marine air mass origin. In polluted, continental air masses ?13C is only weakly dependent on oven temperature, similar to the tunnel samples. In air masses with marine origin, organic compounds evaporating at low temperatures are strongly depleted in 13C. Possible reasons for the difference between source profiles and ambient samples (mixture of sources vs. the role of heterogeneous oxidation in the ambient filter samples vs. sampling artefacts) will be discussed and related to the chemical composition of the aerosol.

  7. Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Dye, C.; Kiss, G.

    2007-04-01

    Sugars and sugar-alcohols are demonstrated to be important constituents of the ambient aerosol water-soluble organic carbon fraction (WSOC), and to be tracers for primary biological aerosol particles (PBAP). In the present study, levels of four sugars (fructose, glucose, sucrose, trehalose) and three sugar-alcohols (arabitol, inositol, mannitol) in ambient aerosols have been quantified using a novel HPLC/HRMS-TOF (High Performance Liquid Chromatography in combination with High Resolution Mass Spectrometry - Time of Flight) method to assess the contribution of PBAP to PM10 and PM2.5. Samples were collected at four sites in Norway at different times of the year in order to reflect the various contributing sources and the spatial and seasonal variation of the selected compounds. Sugars and sugar-alcohols were present at all sites investigated, underlining the ubiquity of these highly polar organic compounds. The highest concentrations were reported for sucrose, reaching a maximum concentration of 320 ng m-3 in PM10 and 55 ng m-3 in PM2.5. The mean concentration of sucrose was up to 10 times higher than fructose, glucose and trehalose. The mean concentrations of the sugar-alcohols were typically lower, or equal, to that of the monomeric sugars and trehalose. Peak concentrations of arabitol and mannitol did not exceed 30 ng m-3 in PM10, and for PM2.5 all concentrations were below 6 ng m-3. Sugars and sugar-alcohols were associated primarily with coarse aerosols except during wintertime at the suburban site in Elverum, where a shift towards sub micron aerosols was observed. It is proposed that this shift was due to the intensive use of wood burning for residential heating at this site during winter, confirmed by high concurrent concentrations of levoglucosan. Elevated concentrations of sugars in PM2.5 were observed during spring and early summer at the rural background site Birkenes. It is hypothesized that this was due to ruptured pollen.

  8. Semi-quantitative characterisation of ambient ultrafine aerosols resulting from emissions of coal fired power stations.

    PubMed

    Hinkley, J T; Bridgman, H A; Buhre, B J P; Gupta, R P; Nelson, P F; Wall, T F

    2008-02-25

    Emissions from coal fired power stations are known to be a significant anthropogenic source of fine atmospheric particles, both through direct primary emissions and secondary formation of sulfate and nitrate from emissions of gaseous precursors. However, there is relatively little information available in the literature regarding the contribution emissions make to the ambient aerosol, particularly in the ultrafine size range. In this study, the contribution of emissions to particles smaller than 0.3 mum in the ambient aerosol was examined at a sampling site 7 km from two large Australian coal fired power stations equipped with fabric filters. A novel approach was employed using conditional sampling based on sulfur dioxide (SO(2)) as an indicator species, and a relatively new sampler, the TSI Nanometer Aerosol Sampler. Samples were collected on transmission electron microscope (TEM) grids and examined using a combination of TEM imaging and energy dispersive X-ray (EDX) analysis for qualitative chemical analysis. The ultrafine aerosol in low SO(2) conditions was dominated by diesel soot from vehicle emissions, while significant quantities of particles, which were unstable under the electron beam, were observed in the high SO(2) samples. The behaviour of these particles was consistent with literature accounts of sulfate and nitrate species, believed to have been derived from precursor emissions from the power stations. A significant carbon peak was noted in the residues from the evaporated particles, suggesting that some secondary organic aerosol formation may also have been catalysed by these acid seed particles. No primary particulate material was observed in the minus 0.3 mum fraction. The results of this study indicate the contribution of species more commonly associated with gas to particle conversion may be more significant than expected, even close to source. PMID:18054995

  9. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreiss, J.; Maenhaut, W.; Alves, C.; Bossi, R.; Bjerke, A.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Gülcin, A.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2014-07-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan, and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood vs. hardwood burning, the variability only ranged from 3.5 to 24%. To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- on filter samples, a constituent that has been analyzed by numerous laboratories for several decades, typically by ion chromatography, and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wild fires and/or agricultural fires.

  10. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2015-01-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood versus hardwood burning, the variability only ranged from 3.5 to 24 . To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- (sulfate) on filter samples, a constituent that has been analysed by numerous laboratories for several decades, typically by ion chromatography and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wildfires and/or agricultural fires.

  11. Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Docherty, K. S.; Jaoui, M.; Beaver, M. R.; Offenberg, J. H.; Lewandowski, M.; Kleindienst, T. E.

    2011-12-01

    The collection efficiency (CE) of the Aerodyne Aerosol Mass Spectrometer (AMS) is defined as the fraction of particle mass detected relative to the actual mass or the mass that would be detected in the absence of particle losses. CE is influenced by potential particle losses in the aerodynamic lens (EL), in the vacuum chamber due to particle shape effects (Es), and at the vaporizer surface (Eb) due to particles bouncing prior to desporption and detection (CE=EL*Es*Eb). Previous comparisons of AMS ambient mass concentrations with those measured by collocated instruments indicate that a CE of ~0.5 is appropriate when sampling aerosols in urban areas while other studies have indicated that the CE of accumulation mode particles is driven primarily by losses due to particle bounce at the vaporizer surface. The CE of chamber-generated organic aerosols is less well characterized but is important to the quantitative capacity of the AMS when sampling these aerosols. CE values for chamber-generated organic aerosols were evaluated by comparing AMS measurements against those obtained from a collocated scanning mobility particle sizer and a Sunset semi-continuous organic carbon monitor as well as gravimetric filter measurements. More than thirty reactions were conducted over the course of a year to build a large dataset to identify trends in CE values. Throughout this set of experiments, the parent hydrocarbon and oxidant pair were also highly varied to ensure diversity in SOA composition in order to investigate the impact of chemical composition on CE. Dioctyl sebacate (DOS) particles were intermittently analyzed throughout the set of experiments to ensure stability of the AMS operating conditions and to rule out changes in AMS conditions as the cause of observed CE values. DOS was chosen due to its ability to form spherical, liquid particles which results in maximal CE. Finally, for both chamber-generated and standard aerosols, measurements were made at steady-state when concentrations were stable and varied less than 5% on average. CE values calculated from this set of experiments varied widely with the CE of DOS being one on average. The CE of chamber-generated aerosols and other aerosol standards were lower with an overall average CE of 0.39+0.26 from all experiments. The entire set of CE values was compared with available and known SOA parameters including aerosol concentration, calculated aerosol density and OM/OC ratio, AMS mass spectral characteristics including the relative contributions of m/z 44 (i.e., f44) and m/z 57 (f57) to organic aerosol, as well as the relative contribution of sulfate and nitrate to aerosol mass in each case. CE has very low correlation with each of these parameters except f44 and f57 with which CE is only weakly correlated. However, the correlation of CE is much stronger (r 2=0.77) when compared against the f57/f44 ratio. These results appear to indicate that composition plays a critical role in determining the CE of organic aerosols in the AMS.

  12. ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...

  13. Inhalation Exposure and Lung Dose Analysis of Multi-mode Complex Ambient Aerosols

    EPA Science Inventory

    Rationale: Ambient aerosols are complex mixture of particles with different size, shape and chemical composition. Although they are known to cause health hazard, it is not fully understood about causal mechanisms and specific attributes of particles causing the effects. Internal ...

  14. BIOGENIC CONTRIBUTION TO PM-2.5 AMBIENT AEROSOL FROM RADIOCARBON MEASUREMENTS

    EPA Science Inventory

    Knowledge of the relative contributions of biogenic versus anthropogenic sources to ambient aerosol is of great interest in the formulation of strategies to achieve nationally mandated air quality standards. Radiocarbon (Carbon-14) measurements provide a means to quantify the ...

  15. Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Dye, C.; Kiss, G.

    2007-08-01

    Sugars and sugar-alcohols are demonstrated to be important constituents of the ambient aerosol water-soluble organic carbon fraction, and to be tracers for primary biological aerosol particles (PBAP). In the present study, levels of four sugars (fructose, glucose, sucrose, trehalose) and three sugar-alcohols (arabitol, inositol, mannitol) in ambient aerosols have been quantified using a novel HPLC/HRMS-TOF (High Performance Liquid Chromatography in combination with High Resolution Mass Spectrometry - Time of Flight) method to assess the contribution of PBAP to PM>sub>10 and PM2.5. Samples were collected at four sites in Norway at different times of the year in order to reflect the various contributing sources and the spatial and seasonal variation of the selected compounds. Sugars and sugar-alcohols were present at all sites investigated, underlining the ubiquity of these highly polar organic compounds. The highest concentrations were reported for sucrose, reaching a maximum concentration of 320 ng m-3 in PM10 and 55 ng m-3 in PM2.5. The mean concentration of sucrose was up to 10 times higher than fructose, glucose and the dimeric sugar trehalose. The mean concentrations of the sugar-alcohols were typically lower, or equal, to that of the monomeric sugars and trehalose. Peak concentrations of arabitol and mannitol did not exceed 30 ng m-3 in PM10, and for PM2.5 all concentrations were below 6 ng m-3. Sugars and sugar-alcohols were associated primarily with coarse aerosols except during wintertime at the suburban site in Elverum, where a shift towards sub micron aerosols was observed. It is proposed that this shift was due to the intensive use of wood burning for residential heating at this site during winter, confirmed by high concurrent concentrations of levoglucosan. Elevated concentrations of sugars in PM2.5 were observed during spring and early summer at the rural background site Birkenes. It is hypothesized that this was due to ruptured pollen.

  16. Source apportionment methods applied to the determination of the origin of ambient aerosols that affect visibility in forested areas

    SciTech Connect

    Stevens, R.K.; Dzubay, T.G.; Lewis, C.W.; Shaw, R.W. Jr.

    1983-08-01

    An aerosol characterization, visibility, and receptor modeling study was conducted in the Shenandoah Valley, VA between July 14 and August 15, 1980. The objectives of this study were to: (1) determine the origin of the ambient particles, (2) determine the major chemical species contributing to the light extinction coefficient, (3) evaluate analytical methods to characterize aerosols, and (4) provide data for comparison with chemical composition of aerosols collected in the Great Smoky Mountains and in the Abastumani Mountains of Georgian Soviet Socialist Republic. The factor analysis grouping along with additional supporting analytical data suggests the identity of emission sources contributing the fine and coarse particles measured in the Shenandoah Valley. From the elemental composition of the fine particles and trajectory analysis, it is inferred that the sulfate's origin is mainly coal-fired power plants.

  17. A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID

    E-print Network

    Hohaus, T.

    In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to ...

  18. Efficiency of aerosol collection on wires exposed in the stratosphere

    NASA Technical Reports Server (NTRS)

    Lem, H. Y.; Farlow, N. H.

    1979-01-01

    The theory of inertial impaction is briefly presented. Stratospheric aerosol research experiments were performed duplicating Wong et al. experiments. The use of the curve of inertial parameters vs particle collection efficiency, derived from Wong et al., was found to be justified. The results show that stratospheric aerosol particles of all sizes are collectible by wire impaction technique. Curves and tables are presented and used to correct particle counts for collection efficiencies less than 100%.

  19. Chemical characteristics of ambient aerosols contributed by cooking process at Noorpur village near Delhi (India)

    NASA Astrophysics Data System (ADS)

    Singh, Sudha; Kumar, Bablu; Gupta, Gyan Prakash; Kulshrestha, U. C.

    2013-05-01

    Combustion of fuels such as wood, crop residue and dung cakes etc. is one of the major sources of air pollution in developing countries. These fuels are still used commonly for cooking purpose in rural India. This study investigates the chemical composition of the ambient aerosols during cooking hours at a village called Noorpur (28.470 N, 77.030 E) which lies near Delhi city. Aerosol sampling was carried out during August 2011-May 2012 by using handy sampler (Envirotech model APM 821) installed at the terrace of a building (˜6m). The samples were collected on 8 hourly basis using Teflon filters. The water extract of these filters was analyzed for major anions (F-, Cl-, NO3-, SO42-) and major cations (Na+, NH4+, K+, Ca2+ Mg2+) by ion chromatography (Metrohm 883 Basic IC Plus). Results highlighted that cooking process contributed significant amount of SO42- and K+?. Biomass burning is considered as a potential source of K+ in air. The high concentration of SO42- might be due to oxidation of SO2 contributed by the combustion of dung cakes. Further, the detailed results will be discussed during the conference.

  20. Aqueous photooxidation of ambient Po Valley Italy air samples: Insights into secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Kirkland, J. R.; Lim, Y. B.; Sullivan, A. P.; Decesari, S.; Facchini, C.; Collett, J. L.; Keutsch, F. N.; Turpin, B. J.

    2012-12-01

    In this work, we conducted aqueous photooxidation experiments with ambient samples in order to develop insights concerning the formation of secondary organic aerosol through gas followed by aqueous chemistry (SOAaq). Water-soluble organics (e.g., glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone) are formed through gas phase oxidation of alkene and aromatic emissions of anthropogenic and biogenic origin. Their further oxidation in clouds, fogs and wet aerosols can form lower volatility products (e.g., oligomers, organic acids) that remain in the particle phase after water evaporation, thus producing SOA. The aqueous OH radical oxidation of several individual potentially important precursors has been studied in the laboratory. In this work, we used a mist-chamber apparatus to collect atmospheric mixtures of water-soluble gases from the ambient air at San Pietro Capofiume, Italy during the PEGASOS field campaign. We measured the concentration dynamics after addition of OH radicals, in order to develop new insights regarding formation of SOA through aqueous chemistry. Specifically, batch aqueous reactions were conducted with 33 ml mist-chamber samples (TOC ~ 50-100?M) and OH radicals (~10-12M) in a new low-volume aqueous reaction vessel. OH radicals were formed in-situ, continuously by H2O2 photolysis. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS +/-), and ESI-MS with IC pre-separation (IC/ESI-MS-). Reproducible formation of pyruvate and oxalate were observed both by IC and ESI-MS. These compounds are known to form from aldehyde oxidation in the aqueous phase. New insights regarding the aqueous chemistry of these "more atmospherically-realistic" experiments will be discussed.

  1. Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization

    NASA Astrophysics Data System (ADS)

    O'Brien, Rachel E.; Wang, Bingbing; Laskin, Alexander; Riemer, Nicole; West, Matthew; Zhang, Qi; Sun, Yele; Yu, Xiao-Ying; Alpert, Peter; Knopf, Daniel A.; Gilles, Mary K.; Moffet, Ryan C.

    2015-09-01

    A new parameterization for quantifying the mixing state of aerosol populations has been applied for the first time to samples of ambient particles analyzed using spectro-microscopy techniques. Scanning transmission X-ray microscopy/near edge X-ray absorption fine structure (STXM/NEXAFS) and computer-controlled scanning electron microscopy/energy dispersive X-ray spectroscopy (CCSEM/EDX) were used to probe the composition of the organic and inorganic fraction of individual particles collected on 27 and 28 June during the 2010 Carbonaceous Aerosols and Radiative Effects study in the Central Valley, California. The first field site, T0, was located in downtown Sacramento, while T1 was located near the Sierra Nevada Mountains. Mass estimates of the aerosol particle components were used to calculate mixing state metrics, such as the particle-specific diversity, bulk population diversity, and mixing state index, for each sample. The STXM data showed evidence of changes in the mixing state associated with a buildup of organic matter confirmed by collocated measurements, and the largest impact on the mixing state was due to an increase in soot dominant particles during this buildup. The mixing state from STXM was similar between T0 and T1, indicating that the increased organic fraction at T1 had a small effect on the mixing state of the population. The CCSEM/EDX analysis showed the presence of two types of particle populations: the first was dominated by aged sea-salt particles and had a higher mixing state index (indicating a more homogeneous population); the second was dominated by carbonaceous particles and had a lower mixing state index.

  2. Chemical Imaging of Ambient Aerosol Particles: Observational Constraints on Mixing State Parameterization

    SciTech Connect

    O'Brien, Rachel; Wang, Bingbing; Laskin, Alexander; Riemer, Nicole; West, Matthew; Zhang, Qi; Sun, Yele; Yu, Xiao-Ying; Alpert, Peter A.; Knopf, Daniel A.; Gilles, Mary K.; Moffet, Ryan

    2015-09-28

    A new parameterization for quantifying the mixing state of aerosol populations has been applied for the first time to samples of ambient particles analyzed using spectro-microscopy techniques. Scanning transmission x-ray microscopy/near edge x-ray absorption fine structure (STXM/NEXAFS) and computer controlled scanning electron microscopy/energy dispersive x-ray spectroscopy (CCSEM/EDX) were used to probe the composition of the organic and inorganic fraction of individual particles collected on June 27th and 28th during the 2010 Carbonaceous Aerosols and Radiative Effects (CARES) study in the Central Valley, California. The first field site, T0, was located in downtown Sacramento, while T1 was located near the Sierra Nevada Mountains. Mass estimates of the aerosol particle components were used to calculate mixing state metrics, such as the particle-specific diversity, bulk population diversity, and mixing state index, for each sample. Both microscopy imaging techniques showed more changes over these two days in the mixing state at the T0 site than at the T1 site. The STXM data showed evidence of changes in the mixing state associated with a build-up of organic matter confirmed by collocated measurements and the largest impact on the mixing state was due to an increase in soot dominant particles during this build-up. The CCSEM/EDX analysis showed the presence of two types of particle populations; the first was dominated by aged sea salt particles and had a higher mixing state index (indicating a more homogeneous population), the second was dominated by carbonaceous particles and had a lower mixing state index.

  3. Molecular Characterization of Free Tropospheric Aerosol Collected at the Pico Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Mazzoleni, C.; Fialho, P. J.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Jacques, H.; Kumar, S.; Perlinger, J. A.; Kramer, L. J.; Dziobak, M.; Ampadu, M.; Olsen, S. C.; Wuebbles, D. J.; Mazzoleni, L. R.

    2014-12-01

    Long-range transported free tropospheric aerosol was sampled at the Pico Mountain Observatory (38°28'15''N, 28°24'14''W; 2225 m amsl) on Pico Island of the Azores archipelago in the North Atlantic ~3900 km east and downwind of North America. Filter-collected aerosol during summer 2012 was analyzed for organic and elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 ?g m-3. Organic aerosol contributed the majority of mass (57%), followed by sulfate (21%) and nitrate (17%). Filter-collected aerosol was positively correlated with continuous aerosol measurements of black carbon, light scattering and number concentration. Water-soluble organic compounds (WSOC) from 9/24 and 9/25 aerosol samples collected during a pollution event were analyzed using ultrahigh-resolution FT-ICR MS. FLEXPART retroplume analysis shows the air masses were very aged (> 12 days). About 4000 molecular formulas were assigned to each of the mass spectra between m/z 100-1000. The majority of the assigned molecular formulas have unsaturated structures with CHO and CHNO elemental compositions. WSOC have an average O/C ratio of ~0.45, relatively low compared to O/C ratios of other aged aerosol which might be the result of evaporation and fragmentation during long-range transport. The increase in aerosol loading during 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplumes and MODIS fire counts. This was confirmed with WSOC biomass burning markers and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of biomass burning phenolic species suggests that the aerosol collected at Pico had undergone cloud processing. The air masses on 9/25 were more aged (~15 days) and influenced by marine emissions, as indicated by organosulfates and species characteristic for marine aerosol (e.g. fatty acids). The change in air masses for the two samples was corroborated by the changes in ozone, ethane, propane, morphology of particles, as well as by the FLEXPART retroplumes. In this presentation we will report the first detailed molecular characterization of free tropospheric aged aerosol intercepted at the Pico Mountain Observatory.

  4. DESIGN, FABRICATION AND TESTING OF AMBIENT AEROSOL SAMPLER INLETS

    EPA Science Inventory

    Data are presented on the wind tunnel performances of two prototype Inhalable Particulate Matter (IPM) inlets designed for use with a dichotomous sampler. One was developed at the Aerosol Science Laboratory (ASL) Colorado State University, while the other was developed in an inde...

  5. ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED AMBIENT AEROSOLS FOR DIFFERENT DOSE METRICS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED AMBIENT AEROSOLS FOR DIFFERENT DOSE METRICS.
    Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *South...

  6. Physical properties of ambient and laboratory-generated secondary organic aerosol

    E-print Network

    Nizkorodov, Sergey

    Physical properties of ambient and laboratory- generated secondary organic aerosol Rachel E. O constitute a significant fraction of atmospheric fine mode particulate matter [Zhang et al., 2007]. Models al., 2010], response to physical manipulation [Renbaum-Wolff et al., 2013], evaporation [Vaden et al

  7. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C. (N. Augusta, SC); DeGange, John J. (Aiken, SC); Cable-Dunlap, Paula (Waynesville, NC)

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  8. Source apportionment methods applied to the determination of the origin of ambient aerosols that affect visibility in forested areas

    NASA Astrophysics Data System (ADS)

    Stevens, Robert K.; Dzubay, Thomas G.; Lewis, Charles W.; Shaw, Robert W.

    An aerosol characterization, visibility, and receptor modeling study was conducted in the Shenandoah Valley, VA between 14 July and 15 August 1980. The objectives of this study were to: (1) determine the origin of the ambient particles, (2) determine the major chemical species contributing to the light extinction coefficient, (3) evaluate analytical methods to characterize aerosols and (4) provide data for comparison with chemical composition of aerosols collected in the Great Smoky Mountains and in the Abastumani Mountains of Georgian Soviet Socialist Republic. The average sulfate concentrations measured in fine particles (<2.5?m) at these three locations were: 12.0?gm -3 at Great Smoky Mountains; 13.6 ?g m -3 at Shenandoah Valley, and 4.6 ?g m -3 at Abastumani Mountains; the fractions of sulfate in the fine particle mass concentrations at each site were 0.50,0.50 and 0.38, respectively. For the two studies in the United States, the fine particle sulfate during sulfate maxima was mostly in the form of ammonium acid sulfate. Factor analysis of the fine aerosol composition measured in the Shenandoah Valley yielded a persistent factor containing large loadings on mass, SO 2-4, S, NH +4, H +, Se and total nitrate (sum of particulate nitrate and nitric acid), which is characteristic of coal-fired sources. This factor analysis grouping along with additional emissions information suggests that coal-fired power plants are the principal source of sulfate and nitrate.

  9. Determination of ambient sulfuric acid aerosol by gas chromatography/photo-ionization detection after pre-concentration in a denuder

    NASA Astrophysics Data System (ADS)

    Lindqvist, F.

    A technique, adaptable to automation, has been applied to monitoring ambient sulfuric acid (H 2SO 4) aerosol concentrations. H 2SO 4 is preconcentrated and separated from sulfate species by sampling air through a coated diffusion tube (denuder) at an elevated temperature. The H 2SO 4 collected is released as SO x by thermal desorption while the coating is regenerated simultaneously. Then SO x, is reduced to H 2S and analysed selectively by gas chromatography/photoionization detection. The stoichiometry factor for the conversion H 2SO 4-H 2S being 0.96 (relative standard deviation 17%, n = 56), the analytical system can be calibrated with gaseous H 2S standards. The minimum detectable concentration (defined as 3 times the standard deviation of the denuder blank) varied with the denuder storage time. For a storage time of a few hours, 0.06 ?g m -3 (60-? sample) was a representative value and 0.45 ?g m -3 that for a storage time exceeding 24 h. Results for ambient air sampling with a minimum time resolution of 60 min are presented. The precision of the determinations of H 2SO 4 concentrations in ambient air, expressed as the relative standard deviation, is 15%. No decrease in collecting efficiency was observed for denuders that had passed 40 sampling runs in ambient air with a minimum sampling duration of 60 min.

  10. Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Taylor, N. F.; Collins, D. R.; Spencer, C. W.; Lowenthal, D. H.; Zielinska, B.; Samburova, V.; Kumar, N.

    2011-08-01

    We present results from two field deployments of a unique tandem differential mobility analyzer (TDMA) configuration with two primary capabilities: identifying alternative stable or meta-stable ambient aerosol hydration states associated with hysteresis in aerosol hydration behavior and determining the actual Ambient hydration State (AS-TDMA). This data set is the first to fully classify the ambient hydration state of aerosols despite recognition that hydration state significantly impacts the roles of aerosols in climate, visibility and heterogeneous chemistry. The AS-TDMA was installed at a site in eastern Tennessee on the border of Great Smoky Mountains National Park for projects during the summer of 2006 and winter of 2007-2008. During the summer, 12 % of the aerosols sampled in continuous AS-TDMA measurements were found to posses two possible hydration states under ambient conditions. In every case, the more hydrated of the possible states was occupied. The remaining 88 % did not posses multiple possible states. In continuous measurements during the winter, 49 % of the aerosols sampled possessed two possible ambient hydration states; the remainder possessed only one. Of those aerosols with multiple possible ambient hydration states, 65 % occupied the more hydrated state; 35 % occupied the less hydrated state. This seasonal contrast is supported by differences in the fine particulate (PM2.5) composition and ambient RH as measured during the two study periods. In addition to seasonal summaries, this work includes case studies depicting the variation of hydration state with changing atmospheric conditions.

  11. Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Taylor, N. F.; Collins, D. R.; Spencer, C. W.; Lowenthal, D. H.; Zielinska, B.; Samburova, V.; Kumar, N.

    2011-12-01

    We present results from two field deployments of a unique tandem differential mobility analyzer (TDMA) configuration with two primary capabilities: identifying alternative stable or meta-stable ambient aerosol hydration states associated with hysteresis in aerosol hydration behavior and determining the actual Ambient hydration State (AS-TDMA). This data set is the first to fully classify the ambient hydration state of aerosols despite recognition that hydration state significantly impacts the roles of aerosols in climate, visibility and heterogeneous chemistry. The AS-TDMA was installed at a site in eastern Tennessee on the border of Great Smoky Mountains National Park for projects during the summer of 2006 and winter of 2007-2008. During the summer, 12% of the aerosols sampled in continuous AS-TDMA measurements were found to posses two possible hydration states under ambient conditions. In every case, the more hydrated of the possible states was occupied. The remaining 88% did not posses multiple possible states. In continuous measurements during the winter, 49% of the aerosols sampled possessed two possible ambient hydration states; the remainder possessed only one. Of those aerosols with multiple possible ambient hydration states, 65% occupied the more hydrated state; 35% occupied the less hydrated state. This seasonal contrast is supported by differences in the fine particulate (PM2.5) composition and ambient RH as measured during the two study periods. In addition to seasonal summaries, this work includes case studies depicting the variation of hydration state with changing atmospheric conditions.

  12. Technical Note: The application of an improved gas and aerosol collector for ambient air pollutants in China

    NASA Astrophysics Data System (ADS)

    Dong, H.-B.; Zeng, L.-M.; Hu, M.; Wu, Y.-S.; Zhang, Y.-H.; Slanina, J.; Zheng, M.; Wang, Z.-F.; Jansen, R.

    2012-03-01

    An improved Gas and Aerosol Collector (GAC) equipped with a newly designed aerosol collector and a set of dull-polished wet annular denuder (WAD) was developed based on a Steam Jet Aerosol Collector (SJAC) sampler. Combined with Ion Chromatography (IC) the new sampler performed well in laboratory tests with high collection efficiencies for SO2 (above 98%) and particulate sulfate (as high as 99.5%). When applied in two major field campaigns (rural and coastal sites) in China, the GAC-IC system provided high-quality data in ambient conditions even under high loadings of pollutants. Its measurements were highly correlated with data by other commercial instruments such as the SO2 analyzer (43c, Thermo-Fisher, USA; R2 as 0.96), the HONO analyzer (LOPAP, Germany; R2 as 0.91 for nighttime samples), a filter sampler (Tianhong, China; R2 as 0.86 for SO42-), and Aerosol Mass Spectrometer (AMS, Aerodyne, USA; R2 above 0.77 for major species) over a wide range of concentrations. Through the application of the GAC-IC system, it was identified that 70% of chloride and nitrate by the filter method could be lost during daytime sampling due to high temperature in the rural site of Kaiping. In Changdao field campaign (coastal site) the comparison with the measurements by the GAC-IC suggested that the collection efficiency of AMS might be greatly influenced by high relative humidity (RH) especially in coastal or marine environment. Through laboratory and field studies, this instrument is proved highly reliable, which is particularly useful in future intensive campaigns or long-term monitoring stations to study various environmental issues such as secondary aerosol and haze formation, as well as climate change.

  13. Characterization of ambient aerosols at the San Francisco International Airport using BioAerosol Mass Spectrometry

    SciTech Connect

    Steele, P T; McJimpsey, E L; Coffee, K R; Fergenson, D P; Riot, V J; Tobias, H J; Woods, B W; Gard, E E; Frank, M

    2006-03-16

    The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fully analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.

  14. 3. Guidelines for efficacy testing of household insecticide products - Mosquito coils, vaporizer mats, liquid vaporizers, ambient emanators and aerosols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This document provides specific and standardized procedures and criteria for efficacy testing and evaluation of specific household insecticide products intended for indoor use against mosquitoes, namely, mosquito coils, vaporizer mats, liquid vaporizers, ambient emanators and aerosols....

  15. 78 FR 12052 - Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ...ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OAR-2002-0091, FRL-9784-2] Agency Information Collection Activities: Proposed...Request; Ambient Air Quality Surveillance AGENCY: Environmental Protection Agency...

  16. 76 FR 60020 - Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ...ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OAR-2002-0091, FRL-9472-8] Agency Information Collection Activities: Proposed...Request; Ambient Air Quality Surveillance AGENCY: Environmental Protection Agency...

  17. Technical Note: The application of an improved gas and aerosol collector for ambient air pollutants in China

    NASA Astrophysics Data System (ADS)

    Dong, H.-B.; Zeng, L.-M.; Hu, M.; Wu, Y.-S.; Zhang, Y.-H.; Slanina, J.; Zheng, M.; Wang, Z.-F.; Jansen, R.

    2012-11-01

    An improved Gas and Aerosol Collector (GAC) equipped with a newly designed aerosol collector and a set of dull-polished wet annular denuder (WAD) was developed based on a Steam Jet Aerosol Collector (SJAC) sampler. Combined with Ion Chromatography (IC) the new sampler performed well in laboratory tests with high collection efficiencies for SO2 (above 98%) and particulate sulfate (as high as 99.5%). An inter-comparison between the GAC-IC system and the filter-pack method was performed and the results indicated that the GAC-IC system could supply reliable particulate sulfate, nitrate, chloride, and ammonium data in field measurement with a much wider range of ambient concentrations. When applied in two major field campaigns (rural and coastal sites) in China, the GAC-IC system provided high-quality data in ambient conditions even under high loadings of pollutants. Its measurements were highly correlated with data by other commercial instruments such as the SO2 analyzer (43c, Thermo-Fisher, USA; R2 as 0.96), the HONO analyzer (LOPAP, Germany; R2 as 0.91 for samples from 15:00 to 07:00), a filter sampler (Tianhong, China; R2 as 0.86 for SO42-), and Aerosol Mass Spectrometer (AMS, Aerodyne, USA; R2 above 0.77 for major species) over a wide range of concentrations. Through the application of the GAC-IC system, it was identified that 70% of chloride and nitrate by the filter method could be lost during daytime sampling due to high temperature in the rural site of Kaiping. In Changdao field campaign (coastal site), though a particle dryer was applied, its drying efficiency was not well considered for the collection efficiency of AMS seemed still interfered a bit by local high relative humidity. If the inter-comparison was done with relative humidity below 50%, the correlations ranged from 0.81 to 0.94 for major species. Through laboratory and field studies, this instrument is proved particularly useful in future intensive campaigns or long-term monitoring stations to study various environmental issues such as secondary aerosol and haze formation, as well as climate change.

  18. Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions with a

    E-print Network

    Weber, Rodney

    Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation separation of the aqueous extract of fine particles bearing water-soluble organic carbon (WSOC) provides approach is to focus on the fraction of organic aerosol that is soluble in water. The water-soluble organic

  19. Aerosol Optical Properties and Black Carbon Measurements (Ambient and Thermally-Denuded) from Detling, UK During the ClearfLo IOP in Winter 2012

    NASA Astrophysics Data System (ADS)

    Gorkowski, K.; Aiken, A. C.; Dubey, M. K.; Herndon, S. C.; Williams, L. R.; Worsnop, D. R.; Massoli, P.; Fortner, E.; Freedman, A.; Ng, N. L.; Allan, J. D.

    2012-12-01

    Continuous direct online aerosol and trace gas measurements were made in Delting, UK over the course of four weeks during the winter of 2012 as a part of the ClearfLo (Clean Air for London) campaign. Aerosols were sampled from the London plume (~33 miles WNW), fresh highway (~0.15 mi and 1.5 mi S, A249 and M20), urban (Maidstone; ~3 mi SW), power station (~8 mi N), and Continental European outflow (~50+ mi E/SE). LANL measurements include aerosol absorption and scattering at four wavelengths (375, 405, 532, 781 nm; PASS), aerosol extinction at 450 nm (CAPS), single particle black carbon (BC) number and mass concentrations (SP2), aerosol size distributions (LAS and SMPS), ambient and thermally-denuded aerosol filter samples for SEM and EDS analysis, PM10 C-13 aerosol filter samples, gas-phase CO2, H2O, and CH4 (Picarro). The SP2, PASS, and CAPS were located behind a valve-switching set-up to enable ambient and thermally-denuded (TD) samples to be collected at 10 minute intervals during the campaign, cycling between four temperature settings of 50, 120, 180, and 250C. Absorption from organics and coatings on BC are characterized by comparing the ambient data with the TD samples for the different aerosol sources that were sampled. Measurements from the SP2 are combined with absorption measurements from the three-wavelength photoacoustic soot spectrometer (PASS-3) at 405, 532, and 781 nm to determine wavelength-dependent mass absorption coefficients (MACs) and absorption angstrom exponents (AAEs). Extinction measurements from the CAPS compare well with the PASS using extinction angstrom exponents calculated from the PASS. BC increases with CO/CO2, a marker for inefficient combustion. We examine the mixing state of BC in the aged aerosol plumes by using the time lag between the scattering and incandescence signals measured by the SP2 and SEM analysis as a function of denuding temperature. The Detling/ClearfLo dataset is one of the most comprehensive in situ sets of aerosol optical properties to date in terms of the aerosol sources sampled and the number of measurements.

  20. Structural characterization of 2-hydroxyterpenylic acid, an abundant oxygenated marker compound for ?-pinene secondary organic aerosol in ambient fine aerosol

    NASA Astrophysics Data System (ADS)

    Kahnt, Ariane; Iinuma, Yoshiteru; Blockhuys, Frank; van Alsenoy, Christian; Mutzel, Anke; Vermeylen, Reinhilde; Offenberg, John; Lewandowski, Michael; Jaoui, Mohammed; Kleindienst, Tadeusz; Böge, Olaf; Herrmann, Hartmut; Maenhaut, Willy; Claeys, Magda

    2014-05-01

    A highly hydrophilic and oxygenated MW 188 compound is commonly observed in substantial abundance in atmospheric aerosol samples and was proposed in previous studies as an ?-pinene-related marker compound that is associated with ageing processes (1). Paradoxically, the MW 188 compound is usually observed at low abundance in chamber-generated ?-pinene-secondary organic aerosol (SOA) (2), pointing to a non-achievement in crucial reaction conditions. Furthermore, the occurrence of several isobaric isomers did not lead to a complete assignment for individual MW 188 compounds from laboratory generated SOA samples in former studies. For the most abundant MW 188 compound two structures have been proposed, i.e., a C8-monohydroxycarboxylic acid structure (2-hydroxyterpenylic acid) (3), and a C8-hydroxydicarboxylic acid structure (hydroxynorpinic acid) (4). Results will be presented here from a comprehensive mass spectrometric analysis of the most abundant MW 188 compound as 2-hydroxyterpenylic acid. The application of liquid chromatographic/electrospray ionization - ion trap mass spectrometry in both negative and positive ion modes in combination with collision-induced dissociation, as well as the utilisation of a soft derivatisation technique followed by analysis of the formed methyl ester derivatives using the latter technique and gas chromatography/electron ionization mass spectrometry enabled a comprehensive characterization of MW 188 isomers. Theoretical calculations were performed to support the assignment of 2-hydroxyterpenylic acid diastereoisomers. In addition, a positional isomer of 2-hydroxyterpenylic acid, the 4-hydroxyterpenylic acid, was tentatively identified, which is also of atmospheric relevance as it could be detected in ambient fine aerosol. Results from a time-resolved ?-pinene photooxidation experiment do not support that the 2 hydroxyterpenylic acid is a marker compound for aged SOA. Compared to terpenylic acid it should rather be regarded as a higher-generation product of the ?-pinene oxidation cascade. This study presents a comprehensive chemical data set for a more complete structural characterization of hydroxyterpenylic acids in ambient fine aerosol, which sets the foundation to better understand the atmospheric fate of ?-pinene in future studies. This work was supported by the Belgian Federal Science Policy Office through the network project "Biogenic Influence on Oxidants and Secondary Organic Aerosol: theoretical, laboratory and modeling investigations (BIOSOA)", the Research Foundation - Flanders (FWO), and the European Commission through the EUROCHAMP-2 project (228335). References: (1) Gómez-González et al., Atmos. Chem. Phys, 2012, 12, (1), 125-138. (2) Vogel et al., Atmos. Chem. Phys. Discuss., 2013, 13, (7), 17901-17952. (3) Claeys et al., Environ. Sci. & Technol., 2009, 43, (18), 6976-6982. (4) Yasmeen et al., J. Mass Spectrom., 2011, 46, (4), 425-442.

  1. Instrument Would Detect and Collect Biological Aerosols

    NASA Technical Reports Server (NTRS)

    Savoy, Steve; Mayo, Mike

    2006-01-01

    A proposed compact, portable instrument would sample micron-sized airborne particles, would discriminate between biological ones (e.g., bacteria) and nonbiological ones (e.g., dust particles), and would collect the detected biological particles for further analysis. The instrument is intended to satisfy a growing need for means of rapid, inexpensive collection of bioaerosols in a variety of indoor and outdoor settings. Purposes that could be served by such collection include detecting airborne pathogens inside buildings and their ventilation systems, measuring concentrations of airborne biological contaminants around municipal waste-processing facilities, monitoring airborne effluents from suspected biowarfare facilities, and warning of the presence of airborne biowarfare agents

  2. Hourly Measurement of the Concentration and Gas-Particle Partitioning of Oxygenated Organic Tracers in Ambient Aerosol: First Results from Berkeley, CA and Rural Alabama

    NASA Astrophysics Data System (ADS)

    Isaacman, G. A.; Kreisberg, N. M.; Yee, L.; Chan, A.; Worton, D. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Hourly and bi-hourly time-resolved measurements of organic tracer compounds in ambient aerosols have been successfully used to elucidate sources and formation pathways of atmospheric particulate matter. Here we extend the Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SVTAG), a custom in-situ instrument that collects, desorbs, and analyzes ambient aerosol and semi-volatile compounds with hourly time resolution, to include on-line derivatization and a second, parallel collection cell that provides simultaneous collection of both particle-phase and particle-plus-gas-phase organic compounds. By introducing a silylating agent upon desorption, SVTAG can measure highly oxygenated compounds that are not easily detected using traditional gas chromatography including most of the previously reported oxygenated tracers for biogenic and anthropogenic secondary organic aerosol. The use of a pair of matched collection cells with parallel sampling and serial analysis provides direct gas-particle partitioning information. One cell collects the total organic fraction of compounds with volatilities lower than a C13 hydrocarbon, while the other cell samples through an activated carbon denuder to selectively remove the gas-phase components. Taken together these provide a direct measurement of gas-particle partitioning to yield a check on classical absorption based partitioning theory while deviations from this theory provide constraints on other driving factors in aerosol formation chemistry, such as oligomerization, salt formation, and acidity. We present here the capabilities and utility of the dual cell SVTAG with derivatization, with chemical insights gained from initial tests on ambient Berkeley air and the first results from a rural site in Alabama obtained during the Southern Oxidant and Aerosol Study (SOAS). Tracers for varying isoprene oxidation pathways are used to explore the influence of anthropogenic emissions; concentrations of 2-methyltetrols and 2-methyl glyceric acid provide constraints on the relative importance of NOx and HO2 as the fate of the alkylperoxy (RO2) radical. Measuring these and other known biogenic tracers with hourly time resolution yields detailed diurnal variability patterns of these compounds, elucidating formation timescales and pathways. Gas-particle partitioning of these biogenic oxygenated compounds, as well as oxygenated tracers common in urban environments, are found in many cases to be well-modeled by absorptive partitioning theory. However, for many compounds, the particle-phase fraction is greatly under-predicted by simple absorption. Several commonly used biogenic secondary organic aerosol tracers that are typically considered to exist primarily in the particle phase, such as 2-methyltetrols, are shown to be 20-80% in the gas phase.

  3. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    SciTech Connect

    Gyawali, Madhu S.; Arnott, W. Patrick; Zaveri, Rahul A.; Song, Chen; Moosmuller, H.; Liu, Li; Mishchenko, M.; Chen, L-W A.; Green, M.; Watson, J. G.; Chow, J. C.

    2012-03-08

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters less than 2.5 {mu}m and 10 {mu}m, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO{sub 2}). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.

  4. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    NASA Technical Reports Server (NTRS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.

  5. Individual aerosol particles in ambient and updraft conditions below convective cloud bases in the Oman mountain region

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2014-03-01

    An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.

  6. Simultaneous measurement of the effective density and chemical composition of ambient aerosol particles.

    PubMed

    Spencer, Matthew T; Shields, Laura G; Prather, Kimberly A

    2007-02-15

    Simultaneous measurements of the effective density and chemical composition of individual ambient particles were made in Riverside, California by coupling a differential mobility analyzer (DMA) with an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS). In the summer, chemically diverse particle types (i.e., aged-OC, vanadium-OC-sulfate-nitrate, biomass) all had similar effective densities when measured during the same time period. This result suggests that during the summer study the majority of particle mass for the different particle types was dominated by secondary species (OC, sulfates, nitrates) of the same density, while only a small fraction of the total particle mass is accounted for by the primary particle cores. Also shown herein, the effective density is a dynamic characteristic of the Riverside, CA ambient aerosol, changing by as much as 40% within 16 h. During the summer measurement period, changes in the ambient atmospheric water content correlated with changes in the measured effective densities which ranged from approximately 1.0 to 1.5 g x cm(-3). This correlation is potentially due to evaporation of water from particles in the aerodynamic lens. In contrast, in the fall during a Santa Ana meteorological event, ambient particles with a mobility diameter of 450 nm showed three distinct effective densities, each related to a chemically unique particle class. Particles with effective densities of approximately 0.27 g x cm(-3), 0.87 g x cm(-3), and 0.93 g x cm(-3) were composed mostly of elemental carbon, lubricating oil, and aged organic carbon, respectively. It is interesting to contrast the seasonal differences where in the summer, particle density and mass were determined by high amounts of secondary species, whereas in the fall, relatively clean and dry Santa Ana conditions resulted in freshly emitted particles which retained their distinct source chemistries and densities. PMID:17593734

  7. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-03-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, organic carbon is measured from a quartz fiber filter that has been exposed to a volume of ambient air and analyzed using thermal methods such as thermal-optical reflectance (TOR). Here, methods are presented that show the feasibility of using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters to accurately predict TOR OC. This work marks an initial step in proposing a method that can reduce the operating costs of large air quality monitoring networks with an inexpensive, non-destructive analysis technique using routinely collected PTFE filter samples which, in addition to OC concentrations, can concurrently provide information regarding the composition of organic aerosol. This feasibility study suggests that the minimum detection limit and errors (or uncertainty) of FT-IR predictions are on par with TOR OC such that evaluation of long-term trends and epidemiological studies would not be significantly impacted. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least-squares regression is used to calibrate sample FT-IR absorbance spectra to TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date. The calibration produces precise and accurate TOR OC predictions of the test set samples by FT-IR as indicated by high coefficient of variation (R2; 0.96), low bias (0.02 ?g m-3, the nominal IMPROVE sample volume is 32.8 m3), low error (0.08 ?g m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC ratio, which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; these divisions also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact-correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass, indicating that the calibration is linear. Using samples in the calibration set that have different OM / OC or ammonium / OC distributions than the test set leads to only a modest increase in bias and normalized error in the predicted samples. We conclude that FT-IR analysis with partial least-squares regression is a robust method for accurately predicting TOR OC in IMPROVE network samples - providing complementary information to the organic functional group composition and organic aerosol mass estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  8. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    SciTech Connect

    Sedlacek, W.A.; Mroz, E.J.; Heiken, G.

    1981-07-01

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background.

  9. The Collection 6 MODIS aerosol products over land and ocean

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Mattoo, S.; Munchak, L. A.; Remer, L. A.; Sayer, A. M.; Patadia, F.; Hsu, N. C.

    2013-11-01

    The twin Moderate resolution Imaging Spectroradiometer (MODIS) sensors have been flying on Terra since 2000 and Aqua since 2002, creating an extensive data set of global Earth observations. Here, we introduce the Collection 6 (C6) algorithm to retrieve aerosol optical depth (AOD) and aerosol size parameters from MODIS-observed spectral reflectance. While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. The C6 aerosol data set will be created from three separate retrieval algorithms that operate over different surface types. These are the two "Dark Target" (DT) algorithms for retrieving (1) over ocean (dark in visible and longer wavelengths) and (2) over vegetated/dark-soiled land (dark in the visible), plus the "Deep Blue" (DB) algorithm developed originally for retrieving (3) over desert/arid land (bright in the visible). Here, we focus on DT-ocean and DT-land (#1 and #2). We have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to ? 84°) to increase poleward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season/location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence on the surface reflectance, updates to logic of QA Confidence flag (QAC) assignment, and additions of important diagnostic information. At the same time, we quantified how "upstream" changes to instrument calibration, land/sea masking and cloud masking will also impact the statistics of global AOD, and affect Terra and Aqua differently. For Aqua, all changes will result in reduced global AOD (by 0.02) over ocean and increased AOD (by 0.02) over land, along with changes in spatial coverage. We compared preliminary data to surface-based sun photometer data, and show that C6 should improve upon C5. C6 will include a merged DT/DB product over semi-arid land surfaces for reduced-gap coverage and better visualization, and new information about clouds in the aerosol field. Responding to the needs of the air quality community, in addition to the standard 10 km product, C6 will include a global (DT-land and DT-ocean) aerosol product at 3 km resolution.

  10. The Collection 6 MODIS aerosol products over land and ocean

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Mattoo, S.; Munchak, L. A.; Remer, L. A.; Sayer, A. M.; Hsu, N. C.

    2013-01-01

    The twin Moderate Imaging resolution Spectroradiometer (MODIS) sensors have been flying on Terra since 2000 and Aqua since 2002, creating an incredible dataset of global Earth observations. Here, we introduce the Collection 6 (C6) algorithm to retrieve aerosol optical depth (AOD) and aerosol size parameters from MODIS-observed spectral reflectance. While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there is significant impact on the products and their interpretation. The C6 algorithm is comprised of three sub-algorithms for retrieving aerosol properties (1) over ocean (dark in visible and near-IR wavelengths), (2) over vegetated/dark-soiled land (dark in the visible) and (3) over desert/arid land (bright in the visible). Here, we focus on the changes to both "dark target" algorithms (#1 and #2; DT-ocean and DT-land). Affecting both DT algorithms, we have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, and relaxed the solar zenith angle limit (up to ? 84°) to increase pole-ward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season/location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence in the retrieval, updates to logic of QA Confidence flag (QAC) assignment, and additions of important diagnostic information. All together, the changes to the DT algorithms result in reduced global AOD (by 0.02) over ocean and increased AOD (by 0.01) over land, along with some changes in spatial coverage. Preliminary validation shows that compared to surface-based sunphotometer data, the C6 DT-products should compare at least as well as those from C5. However, at the same time as we have introduced algorithm changes, we have also been accounting for such "upstream" changes including new instrument calibration, revised land/sea masking and changed cloud masking that has resulted in changes to the coverage and global statistics of the retrieved AOD. To satisfy users' desires for more complete global aerosol coverage, C6 will include a merged DT/DB product over semi-arid land surfaces. In addition to changes to aerosol retrieval, C6 will include diagnostic information about clouds in the aerosol field, such as an aerosol "cloud mask" at 500 m resolution, and products that describe the "distance to the nearest cloud" from clear pixels. Finally, responding to the needs of the air quality community, in addition to the standard 10 km product, C6 will include a global (DT-land and DT-ocean) aerosol product at 3 km resolution.

  11. Phenols and hydroxy-PAHs (arylphenols) as tracers for coal smoke particulate matter: source tests and ambient aerosol assessments

    SciTech Connect

    Bernd R.T. Simoneit; Xinhui Bi; Daniel R. Oros; Patricia M. Medeiros; Guoying Sheng; Jiamo Fu

    2007-11-01

    Source tests were conducted to analyze and characterize diagnostic key tracers for emissions from burning of coals with various ranks. Coal samples included lignite from Germany, semibituminous coal from Arizona, USA, bituminous coal from Wales, UK and sample from briquettes of semibituminous coal, bituminous coal and anthracite from China. Ambient aerosol particulate matter was also collected in three areas of China and a background area in Corvallis, OR (U.S.) to confirm the presence of tracers specific for coal smoke. The results showed a series of aliphatic and aromatic hydrocarbons and phenolic compounds, including PAHs and hydroxy-PAHs as the major tracers, as well as a significant unresolved complex mixture (UCM) of compounds. The tracers that were found characteristic of coal combustion processes included hydroxy-PAHs and PAHs. Atmospheric ambient samples from Beijing and Taiyuan, cities where coal is burned in northern China, revealed that the hydroxy-PAH tracers were present during the wintertime, but not in cities where coal is not commonly used (e.g., Guangzhou, South China). Thus, the mass of hydroxy-PAHs can be apportioned to coal smoke and the source strength modeled by summing the proportional contents of EC (elemental carbon), PAHs, UCM and alkanes with the hydroxy-PAHs. 36 refs., 2 figs., 3 tabs.

  12. Chemical characteristics of ambient aerosols contributed by cooking process at Noorpur village near New Delhi

    NASA Astrophysics Data System (ADS)

    Singh, Sudha

    Generally, industrial and transport sectors are considered as major contributors of air pollution but recently, biomass burning is also reported as a major source of atmospheric aerosols (1, 2) especially in the developing world where solid fuels such as dung cake, wood and crop residues are used in traditional cooking which are responsible for poor air quality, respiratory problems and radiative forcing etc .In India, most of the research has been focused on emission estimates from biomass burning and cooking. No effort has been made to understand the chemistry and sources of fine aerosols in rural areas during cooking hours. This study fills this knowledge gap and strengthens our understanding about abundance of various chemical constituents of atmospheric aerosols emitted during cooking hours.Aerosol samples were collected from village called Noorpur (28.470 N, 77.030 E) which lies near Delhi city. Sampling was carried out during August 2011-May 2012 by using handy sampler (Envirotech model APM 821) installed at the terrace of a building (~6m). The aerosol samples were collected on 8 hourly basis at a flow rate of 1 LPM. Water extracts of these filters were analyzed for major anions (F-, Cl-, NO3-, SO42-) and major cations (Na+, NH4+, K+, Ca2+ Mg2+) by ion chromatography (Metrohm 883 Basic IC Plus). During cooking period, the concentration of the major ions followed the order of Ca2+> SO42-> NO3-> Cl-> K+> NH4+> Mg2+> Na2+> F-. Among anion SO42 (5 µg/m3) showed highest value and in case of cations Ca2+ (7.32µg/m3) has highest value.

  13. The Collection 6 'dark-target' MODIS Aerosol Products

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Mattoo, Shana; Munchak, Leigh A.; Kleidman, Richard G.; Patadia, Falguni; Gupta, Pawan; Remer, Lorraine

    2013-01-01

    Aerosol retrieval algorithms are applied to Moderate resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua, creating two streams of decade-plus aerosol information. Products of aerosol optical depth (AOD) and aerosol size are used for many applications, but the primary concern is that these global products are comprehensive and consistent enough for use in climate studies. One of our major customers is the international modeling comparison study known as AEROCOM, which relies on the MODIS data as a benchmark. In order to keep up with the needs of AEROCOM and other MODIS data users, while utilizing new science and tools, we have improved the algorithms and products. The code, and the associated products, will be known as Collection 6 (C6). While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. In its entirety, the C6 algorithm is comprised of three sub-algorithms for retrieving aerosol properties over different surfaces: These include the dark-target DT algorithms to retrieve over (1) ocean and (2) vegetated-dark-soiled land, plus the (3) Deep Blue (DB) algorithm, originally developed to retrieve over desert-arid land. Focusing on the two DT algorithms, we have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to 84) to increase pole-ward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such as topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence in the retrieval, updates to logic of QA Confidence flag (QAC) assignment, and additions of important diagnostic information. At the same time as we have introduced algorithm changes, we have also accounted for upstream changes including: new instrument calibration, revised land-sea masking, and changed cloud masking. Upstream changes also impact the coverage and global statistics of the retrieved AOD. Although our responsibility is to the DT code and products, we have also added a product that merges DT and DB product over semi-arid land surfaces to provide a more gap-free dataset, primarily for visualization purposes. Preliminary validation shows that compared to surface-based sunphotometer data, the C6, Level 2 (along swath) DT-products compare at least as well as those from C5. C6 will include new diagnostic information about clouds in the aerosol field, including an aerosol cloud mask at 500 m resolution, and calculations of the distance to the nearest cloud from clear pixels. Finally, we have revised the strategy for aggregating and averaging the Level 2 (swath) data to become Level 3 (gridded) data. All together, the changes to the DT algorithms will result in reduced global AOD (by 0.02) over ocean and increased AOD (by 0.02) over land, along with changes in spatial coverage. Changes in calibration will have more impact to Terras time series, especially over land. This will result in a significant reduction in artificial differences in the Terra and Aqua datasets, and will stabilize the MODIS data as a target for AEROCOM studie

  14. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could reflect differences in their viscosity.

  15. Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-11-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  16. WIDE RANGE AEROSOL CLASSIFIER

    EPA Science Inventory

    The purpose of this project was to design, construct, calibrate, and field test a mobile ambient particulate matter sampler (Wide Range Aerosol Classifier) to collect size-classified samples of large aerosol particles. The sampler design was based on a similar stationary sampling...

  17. SOURCE APPORTIONMENT METHODS APPLIED TO THE DETERMINATION OF THE ORIGIN OF AMBIENT AEROSOLS THAT AFFECT VISIBILITY IN FORESTED AREAS

    EPA Science Inventory

    An aerosol characterization, visibility, and receptor modeling study was conducted in the Shenandoah Valley, VA between July 14 and August 15, 1980. The objectives of this study were to: (1) determine the origin of the ambient particles, (2) determine the major chemical species c...

  18. Long-Term Trends in California Mobile Source Emissions and Ambient Concentrations of Black Carbon and Organic Aerosol

    E-print Network

    Goldstein, Allen

    Long-Term Trends in California Mobile Source Emissions and Ambient Concentrations of Black Carbon-based approach is used to assess long-term trends (1970-2010) in mobile source emissions of black carbon (BC of airborne fine particulate matter are black carbon (BC) and organic aerosol (OA). Bond et al.1 report BC

  19. Tests of sampling systems for test aerosols in a dust channel and in ambient air. II

    NASA Astrophysics Data System (ADS)

    Laskus, L.; Bake, D.; Armbruster, L.

    1980-03-01

    The paper reports on tests of filter devices, carried out in sampling systems by using flow of smoke, test aerosols, and ambient air, which showed that the horizontal elutriator in an optimal design was best suited for the measurement of the total respirate particulate matter. It is reported that systems that are equipped with a flow plate in front of the intake opening showed more favorable flow conditions in the aspiration area and showed a higher separation efficiency than sampling systems without such a plate. Finally, attention is given to tests run with a modified Andersen nonviable impactor which suggested that particulate losses on the upper nozzle plate and in the casing are largely avoided by a modification of the intake cone and the three upper impaction stages.

  20. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  1. Measurement of Fluorescence Spectra from Ambient Aerosol Particles Using Laser-induced Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Taketani, F.; Kanaya, Y.; Nakamura, T.; Moteki, N.; Takegawa, N.

    2011-12-01

    To obtain the information of composition of organic aerosol particles in atmosphere, we developed an instrument using laser-induced fluorescence (LIF) technique. To measure the fluorescence from a particle, we employed two lasers. Scattering light signal derived from a single particle upon crossing the 635nm-CW laser triggers the 266nm-pulsed laser to excite the particle. Fluorescence from the particle in the wavelength range 300-600nm is spectrally dispersed by a grating spectrometer and then detected by a 32-Ch photo-multiplier tube(PMT). The aerosol stream is surrounded by a coaxial sheath air flow and delivered to the optical chamber at atmospheric pressure. Using PSL particles with known sizes, we made a calibration curve to estimate particle size from scattering light intensity. With the current setup of the instrument we are able to detect both scattering and fluorescence from particles whose diameters are larger than 0.5um. Our system was able to differentiate particles composed of mono-aromatic species (e.g. Tryptophan) from those of Riboflavin, by their different fluorescence wavelengths. Also, measurements of fluorescence spectra of ambient particles were demonstrated in our campus in Yokosuka city, facing Tokyo bay in Japan. We obtained several types of florescence spectra in the 8 hours. Classification of the measured fluorescence spectra will be discussed in the presentation.

  2. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    NASA Astrophysics Data System (ADS)

    Polidori, A.; Hu, S.; Biswas, S.; Delfino, R. J.; Sioutas, C.

    2007-12-01

    A photo-electric aerosol sensor, a diffusion charger, an Aethalometer, and a continuous particle counter were used along with other real-time instruments to characterize the particle-bound polycyclic aromatic hydrocarbon (p-PAH) content, and the physical/chemical characteristics of aerosols collected a) in Wilmington (CA) near the Los Angeles port and close to 2 major freeways, and b) at a dynamometer testing facility in downtown Los Angeles (CA), where 3 diesel trucks were tested. In Wilmington, the p-PAH, surface area, particle number, and "black" carbon concentrations were 4-8 times higher at 09:00-11:00 a.m. than between 17:00 and 18:00 p.m., suggesting that during rush hour traffic people living in that area are exposed to a higher number of diesel combustion particles enriched in p-PAH coatings. Dynamometer tests revealed that the p-PAH emissions from the "baseline" truck (no catalytic converted) were up to 200 times higher than those from the 2 vehicles equipped with advanced emission control technologies, and increased when the truck was accelerating. In Wilmington, integrated filter samples were collected and analyzed to determine the concentrations of the most abundant p-PAHs. A correlation between the total p-PAH concentration (?g/m3) and the measured photo-electric aerosol sensor signal (fA) was also established. Estimated ambient p-PAH concentrations (Average = 0.64 ng/m3; Standard deviation = 0.46 ng/m3) were in good agreement with those reported in previous studies conducted in Los Angeles during a similar time period. Finally, we calculated the approximate theoretical lifetime (70 years per 24-h/day) lung-cancer risk in the Wilmington area due to inhalation of multi-component p-PAHs and "black" carbon. Our results indicate that the lung-cancer risk is highest during rush hour traffic and lowest in the afternoon, and that the genotoxic risk of the considered p-PAHs does not seem to contribute to a significant part of the total lung-cancer risk attributable to "black" carbon.

  3. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    NASA Astrophysics Data System (ADS)

    Polidori, A.; Hu, S.; Biswas, S.; Delfino, R. J.; Sioutas, C.

    2008-03-01

    A photo-electric aerosol sensor, a diffusion charger, an Aethalometer, and a continuous particle counter were used along with other real-time instruments to characterize the particle-bound polycyclic aromatic hydrocarbon (p-PAH) content, and the physical/chemical characteristics of aerosols collected a) in Wilmington (CA) near the Los Angeles port and close to 2 major freeways, and b) at a dynamometer testing facility in downtown Los Angeles (CA), where 3 diesel trucks were tested. In Wilmington, the p-PAH, surface area, particle number, and "black" carbon concentrations were 4-8 times higher at 09:00-11:00 a.m. than between 17:00 and 18:00 p.m., suggesting that during rush hour traffic people living in that area are exposed to a higher number of diesel combustion particles enriched in p-PAH coatings. Dynamometer tests revealed that the p-PAH emissions from the "baseline" truck (no catalytic converter) were up to 200 times higher than those from the 2 vehicles equipped with advanced emission control technologies, and increased when the truck was accelerating. In Wilmington, integrated filter samples were collected and analyzed to determine the concentrations of the most abundant p-PAHs. A correlation between the total p-PAH concentration (?g/m3) and the measured photo-electric aerosol sensor signal (fA) was also established. Estimated ambient p-PAH concentrations (Average=0.64 ng/m3; Standard deviation=0.46 ng/m3 were in good agreement with those reported in previous studies conducted in Los Angeles during a similar time period. Finally, we calculated the approximate theoretical lifetime (70 years per 24-h/day) lung-cancer risk in the Wilmington area due to inhalation of multi-component p-PAHs and "black" carbon. Our results indicate that the lung-cancer risk is highest during rush hour traffic and lowest in the afternoon, and that the genotoxic risk of the considered p-PAHs does not seem to contribute to a significant part of the total lung-cancer risk attributable to "black" carbon.

  4. Molecular markers in ambient aerosol in the Mahanadi Riverside Basin of eastern central India during winter.

    PubMed

    Nirmalkar, Jayant; Deb, Manas K; Deshmukh, Dhananjay K; Tsai, Ying I; Verma, Santosh K

    2015-01-01

    Organic molecular markers are important atmospheric constituents. Their formation and sources are important aspects of the study of urban and rural air quality. We collected PM10 aerosol samples from the Mahanadi Riverside Basin (MRB), a rural part of eastern central India, during the winter of 2011. PM10 aerosols were characterized for molecular markers using ion chromatography. The concentration of PM10 ranged from 208.8 to 588.3 ?g m(-3) with a mean concentration of 388.9 ?g m(-3). Total concentration of anhydrosugars, sugar alcohols, primary sugars, and oxalate were found to be 3.25, 5.60, 10.52, and 0.37 ?g m(-3), respectively, during the study period. Glucose was the most abundant species followed by levoglucosan and mannitol. Significant positive correlation between the molecular markers, anhydrosugars, sugar alcohols, primary sugars, and oxalic acid confirmed that biomass burning, biogenic activity, and re-suspension of soil particles were the main sources of aerosol in the eastern central India study area. PMID:25131681

  5. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Campuzano-Jost, P.; Ortega, A. M.; Day, D. A.; Kaser, L.; Jud, W.; Karl, T.; Hansel, A.; Hunter, J. F.; Cross, E. S.; Kroll, J. H.; Peng, Z.; Brune, W. H.; Jimenez, J. L.

    2015-11-01

    Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 4 ?g m-3 when LVOC fate corrected) compared to daytime (average 1 ?g m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. Several recently-developed instruments quantified ambient semi- and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a PTR-TOF-MS. An SOA yield of 24-80 % from those compounds can explain the observed SOA, suggesting that these typically unmeasured S/IVOCs play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. Our measurements help clarify the magnitude of SOA formation in forested environments, and demonstrate methods for interpretation of ambient OFR measurements.

  6. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE PAGESBeta

    Palm, B. B.; Campuzano-Jost, P.; Ortega, A. M.; Day, D. A.; Kaser, L.; Jud, W.; Karl, T.; Hansel, A.; Hunter, J. F.; Cross, E. S.; et al

    2015-11-04

    Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. Moremore »SOA production was observed in the OFR at nighttime (average 4 ?g m-3 when LVOC fate corrected) compared to daytime (average 1 ?g m-3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. Several recently-developed instruments quantified ambient semi- and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a PTR-TOF-MS. An SOA yield of 24–80 % from those compounds can explain the observed SOA, suggesting that these typically unmeasured S/IVOCs play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. Our measurements help clarify the magnitude of SOA formation in forested environments, and demonstrate methods for interpretation of ambient OFR measurements.« less

  7. On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Cerully, K. M.; Bougiatioti, A.; Hite, J. R., Jr.; Guo, H.; Xu, L.; Ng, N. L.; Weber, R.; Nenes, A.

    2015-08-01

    The formation of secondary organic aerosols (SOAs) combined with the partitioning of semivolatile organic components can impact numerous aerosol properties including cloud condensation nuclei (CCN) activity, hygroscopicity, and volatility. During the summer 2013 Southern Oxidant and Aerosol Study (SOAS) field campaign in a rural site in the southeastern United States, a suite of instruments including a CCN counter, a thermodenuder (TD), and a high-resolution time-of-flight aerosol mass spectrometer (AMS) were used to measure CCN activity, aerosol volatility, composition, and oxidation state. Particles were either sampled directly from ambient or through a particle-into-liquid sampler (PILS), allowing the investigation of the water-soluble aerosol component. Ambient aerosols exhibited size-dependent composition with larger particles being more hygroscopic. The hygroscopicity of thermally denuded aerosols was similar between ambient and PILS-generated aerosols and showed limited dependence on volatilization. Results of AMS three-factor positive matrix factorization (PMF) analysis for the PILS-generated aerosols showed that the most hygroscopic components are most likely the most and the least volatile features of the aerosols. No clear relationship was found between organic hygroscopicity and the oxygen-to-carbon ratio; in fact, isoprene-derived organic aerosols (isoprene-OAs) were found to be the most hygroscopic factor, while at the same time being the least oxidized and likely most volatile of all PMF factors. Considering the diurnal variation of each PMF factor and its associated hygroscopicity, isoprene-OA and more-oxidized oxygenated organic aerosols are the prime contributors to hygroscopicity and co-vary with less-oxidized oxygenated organic aerosols in a way that induces the observed diurnal invariance in total organic hygroscopicity. Biomass burning organic aerosols contributed little to aerosol hygroscopicity, which is expected since there was little biomass burning activity during the sampling period examined.

  8. Real-time Characterization of Particle-bound Polycyclic Aromatic Hydrocarbons in Ambient Aerosols and From Motor-Vehicles Exhausts

    NASA Astrophysics Data System (ADS)

    Polidori, A.; Hu, S.; Biswas, S.; Sioutas, C.

    2007-12-01

    During the spring of 2007 a diffusion charger (DC), a photoelectric aerosol sensor (PAS), and a condensation particle counter (CPC) were operated a) in Wilmington (CA), an urban area near the Los Angeles port heavily influenced by a mix of industrial and gasoline- / diesel-fuelled vehicle emissions, and b) at the California Air Resource Board (CARB) Heavy-Duty Diesel Emissions Test Laboratory (HDETL), a dynamometer testing facility in downtown Los Angeles (CA). During the dynamometer tests, we characterized the exhausts of several individual types of vehicles, equipped with different emission control technologies, and operated under different driving conditions. Information about the chemical composition, active surface area, and particle number concentration from the PAS, DC, and CPC were combined to identify the main chemical and physical characteristics of the studied aerosols. In particular, the ratio between the PAS and the DC signals (PAS/DC) provided a reliable measurement of the amount of particle-bound Polycyclic Aromatic Hydrocarbon (pPAH) per unit area of the active surface of the particles. This quantity may be directly related to the amount of pPAHs transported into the human respiratory tract. Plots of the PAS/DC ratio versus the average surface particle diameter (Dp; estimated by combining DC and CPC measurements) were then used to distinguish between the presence/absence of nuclei mode particles and the presence/absence of an adsorbed layer on accumulation mode particles, for both ambient and dynamometer-tests data. All results were then complemented with measurements of the particle size distribution (SMPS) and of the black carbon (BC) aerosol content to obtain further insights on the pPAHs emitted by motor-vehicles and other sources. Integrated 24-h filter samples were also collected in Wilmington, solvent extracted and analyzed by GC/MS to determine the relative concentrations of the 11 most abundant pPAHs found at the urban site. Finally, these results were used to establish correlations between the concentrations of each individual PAH species and the measured PAS signal (from fA to ? g/m3).

  9. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can introduce absolute errors in estimates of the midvisible single-scattering albedo of up to 0.05 for realistic dry particle size distributions. Our study also indicates that this error increases with increasing wavelength. The potential errors in aerosol single-scattering albedo derived here are comparable in magnitude and in addition to uncertainties in single-scattering albedo estimates that are based on measurements of aerosol light absorption and scattering.

  10. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Chatani, Satoru; Matsunaga, Sou N.; Nakatsuka, Seiji

    2015-11-01

    A new gridded database has been developed to estimate the amount of isoprene, monoterpene, and sesquiterpene emitted from all the broadleaf and coniferous trees in Japan with the Model of Emissions of Gases and Aerosols from Nature (MEGAN). This database reflects the vegetation specific to Japan more accurately than existing ones. It estimates much lower isoprene emitted from other vegetation than trees, and higher sesquiterpene emissions mainly emitted from Cryptomeria japonica, which is the most abundant plant type in Japan. Changes in biogenic emissions result in the decrease in ambient ozone and increase in organic aerosol simulated by the air quality simulation over the Tokyo Metropolitan Area in Japan. Although newly estimated biogenic emissions contribute to a better model performance on overestimated ozone and underestimated organic aerosol, they are not a single solution to solve problems associated with the air quality simulation.

  11. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press. 2) Shelley, J. T.; Wiley, J. S.; Hieftje, G. M. Ultrasensitive Ambient Mass Spectrometric Analysis with a Pin-to-Capillary Flowing Atmospheric-Pressure Afterglow Source. Anal. Chem. 2011, 83(14), 5741-5748; DOI 10.1021/Ac201053q. 3) Albert, A.; Shelley, J.; Engelhard, C. Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis. Anal Bioanal Chem 2014, 406(25), 6111-6127; DOI 10.1007/s00216-014-7989-z.

  12. Atmospheric 210Pb and 7Be in ambient aerosols over low- and high-altitude sites in semiarid region: Temporal variability and transport processes

    NASA Astrophysics Data System (ADS)

    Rastogi, N.; Sarin, M. M.

    2008-06-01

    Time series measurements of 210Pb and 7Be made on ambient aerosols, collected from a low-altitude urban site (Ahmedabad, 23.0°N, 72.6°E, 49 m asl) and a high-altitude station (Mt. Abu, 24.6°N, 72.7°E, 1680 m asl) located in a high-dust semiarid region of western India, reveal characteristic pattern of temporal variability consistent over three years (2000-2002). The relatively high concentrations of 210Pb (>1 mBq m-3) during wintertime (November-February) are dominated by continental air masses from the northeast; whereas lower values during the summer months (April-May) and southwest monsoon season (June-August) are associated with (southwesterly) maritime air. The concentration of 210Pb in individual rain events at Ahmedabad, collected during the southwest monsoon for the same three-year period, also exhibits large variability (range of 3-367 mBq L-1; volume-weighted mean of 74 mBq L-1). This first set of data on the simultaneous measurements in rain and aerosols from a semiarid region is useful in deriving scavenging ratio (SR = 290) of 210Pb. On the basis of data for the three consecutive years (2000-2002), we find that both dry and wet deposition fluxes of 210Pb center around 2-4 mBq cm-2 a-1, suggesting relative dominance of dry deposition in a semiarid region. When used in conjunction with 210Pb, 7Be provides information on the vertical mixing of air masses. During the dry season (January-May and September-December), abundances of 7Be and 210Pb (mBq m-3) in ambient aerosols over Ahmedabad (7Be, 1.9 ± 0.1 to 6.0 ± 0.3; 210Pb, 0.32 ± 0.03 to 1.9 ± 0.2) and Mt. Abu (7Be, 3.8 ± 0.2 to 7.6 ± 0.3; 210Pb, 0.39 ± 0.05 to 1.8 ± 0.2) do not show any covariance, suggesting their usefulness as independent tracers of air masses and pollutants transport. Assuming literature-based constant 222Rn flux and measured abundance of 210Pb in aerosols, a model-based approach has provided a simple way to ascertain residence time of tropospheric aerosols, varying from ˜5 days during the dry season and ˜2 days in the wet season. These results attempt to fill a major existing gap for the south Asian region under Global Atmospheric Watch program.

  13. Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Kang, Shichang; Shen, Chengde; Cong, Zhiyuan; Liu, Kexin; Wang, Wei; Liu, Lichao

    2010-06-01

    A total of 30 samples of total suspended particles were collected at an urban site in Lhasa, Tibet from August 2006 to July 2007 for investigating carbonaceous aerosol features. The fractions of contemporary carbon ( fc) in total carbon (TC) of ambient aerosols are presented using radiocarbon ( 14C) measurements. The value of fc represents the biogenic contribution to TC, as the biosphere releases organic compounds with the present 14C/ 12C level ( fc = 1), whereas 14C has become extinct in anthropogenic emissions of fossil carbon ( fc = 0). The fc values in Lhasa ranging from 0.357 to 0.702, are higher than Beijing and Tokyo, but clearly lower than the rural region of Launceston, which indicates a major biogenic influence in Lhasa. Seasonal variations of fc values corresponded well with variations of pollutants concentrations (e.g. NO 2). Higher fc values appeared in winter indicating carbonaceous aerosol is more dominated by wood burning and incineration of agricultural wastes within this season. The lower fc values in summer and autumn may be caused by increased diesel and petroleum emissions related to tourism in Lhasa. ?13C values ranged from - 26.40‰ to - 25.10‰, with relative higher values in spring and summer, reflecting the increment of fossil carbon emissions.

  14. X-RAY FLUORESCENCE ANALYSIS OF FILTER-COLLECTED AEROSOL PARTICLES

    EPA Science Inventory

    X-ray fluorescence (XRF) has become an effective technique for determining the elemental content of aerosol samples. For quantitative analysis, the aerosol particles must be collected as uniform deposits on the surface of Teflon membrane filters. An energy dispersive XRF spectrom...

  15. High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water- Soluble Organic Aerosols Collected with a Particle into Liquid Sampler

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-10-01

    This work demonstrates the utility of a particle-into-liquid sampler (PILS) a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols for the analysis of water soluble organic aerosol (OA) using high resolution electrospray ionization mass spectrometry (HR ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m3 Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak intensities, types of detectable compounds, average O:C ratios, and organic mass to organic carbon ratios, the resulting high resolution mass spectra were essentially identical for the PILS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in ESI mass spectra. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA.

  16. Treatment of losses of ultrafine aerosol particles in long sampling tubes during ambient measurements

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Fennell, Paul; Symonds, Jonathan; Britter, Rex

    Long sampling tubes are often required for particle measurements in street canyons. This may lead to significant losses of the number of ultrafine (those below 100 nm) particles within the sampling tubes. Inappropriate treatment of these losses may significantly change the measured particle number distributions (PND), because most of the ambient particles, by number, exist in the ultrafine size range. Based on the Reynolds number (Re) in the sampling tubes, most studies treat the particle losses using the Gormley and Kennedy laminar flow model (Gormley, P.G., Kennedy, M., 1949. Diffusion from a stream following through a cylinderical tube. Proceedings of Royal Irish Academy 52, 163-169.) or the Wells and Chamberlain turbulent flow model (Wells, A.C., Chamberlain, A.C., 1967. Transport of small particles to vertical surfaces. British Journal of Applied Physics 18, 1793-1799.). Our experiments used a particle spectrometer with various lengths (1.00, 5.47, 5.55, 8.90 and 13.40 m) of sampling tube to measure the PNDs in the 5-2738 nm range. Experiments were performed under different operating conditions to measure the particle losses through silicone rubber tubes of circular cross-section (7.85 mm internal diameter). Sources of particles included emissions from an idling diesel engine car in a street canyon, emissions from a burning candle and those from the generation of salt aerosols using a nebuliser in the laboratory. Results showed that losses for particles below ?20 nm were important and were largest for the smallest size range (5-10 nm), but were modest for particles above ?20 nm. In our experiments the laminar flow model did not reflect the observations for small Re. This may be due to the sampling tubes not being kept straight or other complications. In situ calibration or comparison appears to be required.

  17. Human health benefits of ambient sulfate aerosol reductions under Title IV of the 1990 Clean Air Act amendments

    SciTech Connect

    Chestnut, L.G.; Watkins, A.M.

    1997-12-31

    The Acid Rain Provisions (Title IV) of the Clean Air Act Amendments of 1990 call for about a 10 million ton reduction in annual SO{sub 2} emissions in the United States by the year 2010. Although the provisions apply nationwide, most of the reduction will take place in the eastern half of the United States, where use of high sulfur coal for electricity generation is most common. One potentially large benefit of Title IV is the expected reduction in adverse human health effects associated with exposure to ambient sulfate aerosols, a secondary pollutant formed in the atmosphere when SO{sub 2} is present. Sulfate aerosols are a significant constituent of fine particulate (PM{sub 2.5}). This paper combines available epidemiologic evidence of health effects associated with sulfate aerosols and economic estimates of willingness to pay for reductions in risks or incidence of health effects with available estimates of the difference between expected ambient sulfate concentrations in the eastern United States and southeastern Canada with and without Title IV to estimate the expected health benefits of Title IV. The results suggest a mean annual benefit in the eastern United States of $10.6 billion (in 1994 dollars) in 1997 and $40.0 billion in 2010, with an additional $1 billion benefit each year in Ontario and Quebec provinces.

  18. 2-Hydroxyterpenylic acid: An oxygenated marker compound for a-pinene secondary organic aerosol in ambient fine aerosol

    EPA Science Inventory

    An oxygenated MW 188 compound is commonly observed in substantial abundance in atmospheric aerosol samples and was proposed in previous studies as an ?-pinene-related marker compound that is associated with aging processes. Owing to difficulties in producing this compound in suff...

  19. Water-Aerosol Interactions Downwind of Mexico City: Inferences about Mixing State, Droplet Growth Kinetics and Aging of Ambient Aerosol

    NASA Astrophysics Data System (ADS)

    Lance, S.; Padro, L.; Sullivan, A.; Weber, R.; Nenes, A.; Cross, E.; Onasch, T.; Worsnop, D.; Yu, X.; Alexander, L.; Smith, J. N.

    2007-12-01

    We describe observations of size-resolved cloud droplet activation of partially aged Mexico City aerosol obtained during the MIRAGE campaign. These measurements provide unique insight into the integrated chemical properties and mixing state of the aerosol population, in addition to the water uptake kinetics of the particles as they grow into droplets, all of which are crucial constraints for understanding aerosol-cloud-climate interactions and chemical aging of polluted aerosol. A DMT Cloud Condensation Nucleus counter (CCNc) was operated in parallel to a particle counter with an upstream Differential Mobility Analyzer (DMA) to obtain the size-resolved activation fraction for a given water vapor supersaturation (SS). Activation spectra as a function of SS were obtained for the period of March 16-31, 2006. From the activation spectra, we determine the fraction of particles that act as CCN and the mean soluble mole fraction for these particles. We also estimate the variability in soluble mole fraction for these particles by analyzing the slope of the activation spectra, eliminating the effect of particle size variability inherent with the use of a DMA. We then perform "chemical closure" using the Aerosol Mass Spectrometer (AMS) dataset. The AMS data shows a large fraction of organic constituents, which may alter the cloud droplet growth kinetics. We monitor the droplet size distribution at the exit of the CCNc column, and, given the controlled conditions within the CCNc instrument, we can compare the observed droplet growth with the expected growth for classified, pure ammonium sulfate particles of the same critical supersaturation. A numerical model is used to parameterize the droplet growth kinetics in terms of a water vapor uptake coefficient.

  20. CHARACTERIZATION OF AMBIENT PM2.5 AEROSOL AT A SOUTHEASTERN US SITE: FOURIER TRANSFORM INFRARED ANALYSIS OR PARTICLE PHASE

    EPA Science Inventory

    During a field study in the summer of 2000 in the Research Triangle Park (RTP), aerosol samples were collected using a five stage cascade impactor and subsequently analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The impaction surfaces were stainless steel disks....

  1. The MODIS Aerosol Algorithm: Critical Evaluation and Plans for Collection 6

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine

    2010-01-01

    For ten years the MODIS aerosol algorithm has been applied to measured MODIS radiances to produce a continuous set of aerosol products, over land and ocean. The MODIS aerosol products are widely used by the scientific and applied science communities for variety of purposes that span operational air quality forecasting in estimates o[ clear-sky direct radiative effects over ocean and aerosol-cloud interactions. The products undergo continual evaluation, including self-consistency checks and comparisons with highly accurate ground-based instruments. The result of these evaluation exercises is a quantitative understanding of the strengths and weaknesses of the retrieval, where and when the products are accurate and the situations where and when accuracy degrades. We intend 10 present results of the most recent critical evaluations including the first comparison of the over ocean products against the shipboard aerosol optical depth measurements of the Marine Aerosol Network (MAN), the demonstration of the lack of sensitivity to size parameter in the over land products and identification of residual problems and regional issues. While the current data set is undergoing evaluation, we are preparing for the next data processing, labeled Collection 6. Collection 6 will include transparent Quality Flags, a 3 km aerosol product and the 500m resolution cloud mask used within the aerosol n:bicvu|. These new products and adjustments to algorithm assumptions should provide users with more options and greater control, as they adapt the product for their own purposes.

  2. Real-time measurements of ambient aerosols in a polluted Indian city: Sources, characteristics, and processing of organic aerosols during foggy and nonfoggy periods

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Bhattu, Deepika; Gupta, Tarun; Tripathi, Sachchida N.; Canagaratna, Manjula R.

    2015-09-01

    A detailed time-resolved chemical characterization of ambient nonrefractory submicron aerosols (NR-PM1) was conducted for the first time in India. The measurements were performed during the winter (November 2011 to January 2012) in a heavily polluted city of Kanpur, which is situated in the Indo-Gangetic Plain. Real-time measurements provided new insights into the sources and evolution of organic aerosols (OA) that could not be obtained using previously deployed filter-based measurements at this site. The average NR-PM1 loading was very high (>100 µg/m3) throughout the study, with OA contributing approximately 70% of the total aerosol mass. Source apportionment of the OA using positive matrix factorization revealed large contributions from fresh and aged biomass burning OA throughout the entire study period. A back trajectory analysis showed that the polluted air masses were affected by local sources and distant source regions where the burning of paddy residues occurs annually during winter. Several fog episodes were encountered during the study, and the OA composition varied between foggy and nonfoggy periods, with higher oxygen to carbon (O/C) ratios during the foggy periods. The evolution of OA and their elemental ratios (O:C and H:C) were investigated for the possible effects of fog processing.

  3. Analysis of secondary organic aerosol compounds from the photooxidation of d-limonene in the presence of NOx and their detection in ambient PM2.5.

    PubMed

    Jaoui, Mohammed; Corse, E; Kleindienst, Tadeusz E; Offenberg, John H; Lewandowski, Michael; Edney, Edward O

    2006-06-15

    Chemical analysis of secondary organic aerosol (SOA) from the photooxidation of a d-limonene/NOx/air mixture was carried out. SOA, generated in a smog chamber, was collected on Zefluor filters. To determine the structural characteristics of the compounds, the filter samples were solvent extracted and derivatized using analytical techniques that characterize functional groups contained in the compound: BF3-methanol derivatization was used for carboxylic groups, BSTFA for acidic and nonacidic hydroxyl groups, and PFBHA for ketone and aldehyde groups. The resulting derivative compounds were analyzed by GC-MS in the methane Cl and El modes. GC-MS analysis showed the occurrence of 103 oxygenated organic compounds in the filter extracts, 28 of which were identified. The major components include five tracer compounds previously identified from the photooxidation of alpha-pinene/NOx or beta-pinene/NOx systems, C4-C6 linear dicarboxylic acids, ketolimononaldehyde, limonic acid, and ketolimonic acid. Time profiles, yields, and proposed reaction schemes are provided for selected compounds. The laboratory SOA yield was 0.51 at a SOA concentration of 1470 microg m(-3). To determine the contributions of SOA products from d-limonene to ambient PM2.5, an analysis was performed for eight ambient PM2.5 samples collected in the southeastern United States in summer 2003. GC-MS analysis showed the occurrence of 21 d-limonene SOA compounds, indicating the impact of d-limonene on the regional aerosol burden. Based on our analysis, two compounds (nos. 55 and 69), not observed from the photooxidation of alpha-pinene or beta-pinene, are candidate tracers for d-limonene in atmospheric particulate matter. PMID:16830548

  4. Development of a double-layered ceramic filter for aerosol filtration at high-temperatures: the filter collection efficiency.

    PubMed

    de Freitas, Normanda L; Gonçalves, José A S; Innocentini, Murilo D M; Coury, José R

    2006-08-25

    The performance of double-layered ceramic filters for aerosol filtration at high temperatures was evaluated in this work. The filtering structure was composed of two layers: a thin granular membrane deposited on a reticulate ceramic support of high porosity. The goal was to minimize the high pressure drop inherent of granular structures, without decreasing their high collection efficiency for small particles. The reticulate support was developed using the technique of ceramic replication of polyurethane foam substrates of 45 and 75 pores per inch (ppi). The filtering membrane was prepared by depositing a thin layer of granular alumina-clay paste on one face of the support. Filters had their permeability and fractional collection efficiency analyzed for filtration of an airborne suspension of phosphatic rock in temperatures ranging from ambient to 700 degrees C. Results revealed that collection efficiency decreased with gas temperature and was enhanced with filtration time. Also, the support layer influenced the collection efficiency: the 75 ppi support was more effective than the 45 ppi. Particle collection efficiency dropped considerably for particles below 2 microm in diameter. The maximum collection occurred for particle diameters of approximately 3 microm, and decreased again for diameters between 4 and 8 microm. Such trend was successfully represented by the proposed correlation, which is based on the classical mechanisms acting on particle collection. Inertial impaction seems to be the predominant collection mechanism, with particle bouncing/re-entrainment acting as detachment mechanisms. PMID:16466854

  5. Source Characterization from Ambient Measurements of Aerosol Optical Christopher D. Cappa1

    E-print Network

    aerosols on climate results from their ability to absorb and scatter light [IPCC, 2007]. The primary composition of aerosols is complex and observations effectively integrate over the entire history of a given trajectory or particle dispersion models are often used #12;to determine the transport history of an air mass

  6. Relationship between indoor and outdoor bioaerosols collected with a button inhalable aerosol sampler in urban homes

    PubMed Central

    Lee, T.; Grinshpun, S. A.; Martuzevicius, D.; Adhikari, A.; Crawford, C. M.; Luo, J.; Reponen, T.

    2007-01-01

    This field study investigated the relationship between indoor and outdoor concentrations of airborne actinomycetes, fungal spores, and pollen. Air samples were collected for 24 h with a button inhalable aerosol sampler inside and outside of six single-family homes located in the Cincinnati area (overall, 15 pairs of samples were taken in each home). The measurements were conducted during three seasons – spring and fall 2004, and winter 2005. The concentration of culturable actinomycetes was mostly below the detection limit. The median indoor/outdoor ratio (I/O) for actinomycetes was the highest: 2.857. The indoor of fungal and pollen concentrations followed the outdoor concentrations while indoor levels were mostly lower than the outdoor ones. The I/O ratio of total fungal spores (median = 0.345) in six homes was greater than that of pollen grains (median = 0.025). The low I/O ratios obtained for pollen during the peak ambient pollination season (spring) suggest that only a small fraction penetrated from outdoor to indoor environment. This is attributed to the larger size of pollen grains. Higher indoor concentration levels and variability in the I/O ratio observed for airborne fungi may be associated with indoor sources and/or higher outdoor-to-indoor penetration of fungal spores compared to pollen grains. PMID:16420496

  7. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moffet, R. C.; de Foy, B.; Molina, L. T.; Molina, M. J.; Prather, K. A.

    2008-08-01

    Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS) were made in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area-2006 campaign (MCMA-2006). Results are presented for the period of 15 27 March 2006. The submicron size mode contained both fresh and aged biomass burning, aged organic carbon (OC) mixed with nitrate and sulfate, elemental carbon (EC), nitrogen-organic carbon, industrial metal, and inorganic NaK inorganic particles. Overall, biomass burning and aged OC particle types comprised 40% and 31%, respectively, of the submicron mode. In contrast, the supermicron mode was dominated by inorganic NaK particle types (42%) which represented a mixture of dry lake bed dust and industrial NaK emissions mixed with soot. Additionally, aluminosilicate dust, transition metals, OC, and biomass burning contributed to the supermicron particles. Early morning periods (2 6 a.m.) showed high fractions of inorganic particles from industrial sources in the northeast, composed of internal mixtures of Pb, Zn, EC and Cl, representing up to 73% of the particles in the 0.2 3?m size range. A unique nitrogen-containing organic carbon (NOC) particle type, peaking in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time series profile and back trajectory analysis. A strong dependence on wind speed and direction was observed in the single particle types that were present during different times of the day. The early morning (3:30 10 a.m.) showed the greatest contributions from industrial emissions. During mid to late mornings (7 11 a.m.), weak northerly winds were observed along with the most highly aged particles. Stronger winds from the south picked up in the late morning (after 11 a.m.), resulting in a decrease in the concentrations of the major aged particle types and an increase in the number fraction of fresh biomass particles. The highest wind speeds were correlated with the highest number fraction of fresh biomass particles (up to 76% of the submicron number fraction) when winds were coming directly from fires that were located south and southeast of the city based on MODIS fire count data. This study provides a unique clock of hourly changes in single particle mixing state and sources as a function of meteorology in Mexico City. These new findings indicate that biomass burning and industrial emissions can make significant contributions to primary particle loadings in Mexico City that are strongly coupled with local meteorology.

  8. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    NASA Astrophysics Data System (ADS)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-02-01

    Primary biological aerosol particles (PBAP) can contribute significantly to the coarse particle burden in many environments, may thus influence climate and precipitation systems as cloud nuclei, and can spread disease to humans, animals, and plants. Measurements of PBAP in natural environments taken at high time- and size- resolution are, however, sparse and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in south western Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of the waveband integrated bioaerosol sensor (WIBS-4) with the ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behaviour, with increased fluorescent bioparticle concentrations at night when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 ?m mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 ?m, and each were correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multi-modal distributions turning into a broad featureless single mode after averaging and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent particles. Cladosporium spp., which are among the most abundant fungal spores in many terrestrial environments, were not correlated with any of the real-time fluorescence channels, suggesting that the real-time fluorescence instruments are insensitive to PBAP classes with dark, highly absorptive cell walls. Fluorescence microscopy images of cascade impactor plates showed large numbers of coarse mode particles consistent with the morphology and weak fluorescence expected of sea salt. Some of these particles were attached to biological cells, suggesting that a marine source influenced the PBAP observed at the site and that the ocean may be an important contributor to PBAP loadings in coastal environments.

  9. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    NASA Astrophysics Data System (ADS)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-08-01

    Primary biological aerosol particles (PBAPs) can contribute significantly to the coarse particle burden in many environments. PBAPs can thus influence climate and precipitation systems as cloud nuclei and can spread disease to humans, animals, and plants. Measurement data and techniques for PBAPs in natural environments at high time- and size resolution are, however, sparse, and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in southwestern Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of a waveband integrated bioaerosol sensor (WIBS-4) with a ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behavior, with increased fluorescent bioparticle concentrations at night, when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 ?m mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 ?m, and each was correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multimodal distributions turning into a broad featureless single mode after averaging, and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent particles. Cladosporium spp., which are among the most abundant fungal spores in many terrestrial environments, were not correlated with any of the real-time fluorescence channels, suggesting that the real-time fluorescence instruments are relatively insensitive to PBAP classes with dark, highly absorptive cell walls. Fluorescence microscopy images of cascade impactor plates showed large numbers of coarse-mode particles consistent with the morphology and weak fluorescence expected of sea salt. Some of these particles were attached to biological cells, suggesting that a marine source influenced the PBAPs observed at the site and that the ocean may be an important contributor to PBAP loadings in coastal environments.

  10. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory

    Concerns about the environmental and public health effects of particulate matter (PM) have stimulated interest in analytical techniques capable of measuring the size and chemical composition of individual aerosol particles. Computer-controlled scanning electron microscopy (CCSE...

  11. Using Thermal-Optical Analysis to Examine the OC-EC Split that Characterizes Ambient and Source Emissions Aerosols

    NASA Astrophysics Data System (ADS)

    Khan, B.; Hays, M. D.; Geron, C.; Jetter, J.

    2010-12-01

    Thermal-optical analysis (TOA) is typically used to measure OC-EC (organic carbon-elemental carbon) ratio in atmospheric aerosols. The present study utilizes a single dual-optics carbon aerosol analyzer to examine the effects of temperature-programming and optics on the OC-EC ratios. The OC-EC ratios for a variety of atmospheric and source emissions aerosols were measured using a National Institute of Occupational Safety and Health method (NIOSH 5040), the Interagency Monitoring of Protected Visual Environments method (IMPROVE), and a modified NIOSH 5040 method (referred in this paper as NIST-EPA). Use of the dual-optics instrument allowed simultaneous monitoring of the reflectance (TOR) and transmission (TOT) during each thermal protocol. Results showed no statistical difference between NIST-EPA and NIOSH OC-EC ratios for residential cookstove emissions and for an urban aerosol collected in Nairobi, Kenya. However, the OC-EC ratios for diesel exhaust (NIST [TOT and TOR]) and for a denuded rural North Carolina forest aerosol (NIST [TOT]) were significantly greater than the corresponding NIOSH values. Significantly lower IMPROVE (TOT and TOR) OC-EC ratios, compared to NIST-EPA and NIOSH, may be ascribed to the lower temperature protocol of this method. The ratio of TOT-to-TOR for the OC-EC ratio ranged between 1.37 - 1.71 (residential cookstoves), 1.05 - 1.24 (diesel exhaust), 1.63 - 2.23 (rural), and 0.80 - 1.12 (urban) for the three methods. Aerosols containing components susceptible to charring (such as water soluble organic compounds typical of rural and cookstove aerosols) tend to show the higher OC-EC variability among the methods when compared to diesel-impacted aerosols, which showed little to no detectable pyrolyzed carbon (PyC). Different sample types, due to their various chemical compositions, behave differently under dissimilar thermal and optical conditions, such that the search for a “universal” thermal-optical method for all sample types remain indeterminate until a suitable standard for OC and EC particulate in atmospheric aerosols can be developed.

  12. Single particle mass spectrometry of oxalic acid in ambient aerosols in Shanghai: Mixing state and formation mechanism

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Chen, Hong; Wang, Xinning; Yang, Xin; Du, Jianfei; Chen, Jianmin

    Oxalic acid in individual aerosol particles was measured using single particle aerosol time-of-flight mass spectrometry (ATOFMS) in the summer of 2007 in Shanghai, China. Oxalate was found in 3.4% of total particles with diameters in the range of 0.2 - 2.0 ?m. Size, chemical composition and hourly temporal counts of single particles that contained oxalic acid were measured. The predominant types of oxalate-containing particles were characterized to distinguish the primary and secondary sources of oxalic acid. Biomass burning was revealed as a major primary source of oxalic acid which contributed more than 20% of the oxalate-containing particles. Evidences for two different formation pathways of oxalic acid were observed in our experiment. The number fraction of oxalate-containing particles correlated with that of sulfate particles and the changes of air parcel backward trajectories, suggesting that in-cloud processing played important roles in oxalic acid formation. The diurnal patterns of dust and sea salt particle counts fitted well with the ambient relative humidity variation, suggesting that heterogeneous reactions occurring in hydrated/deliquesced aerosols also contributed to the production of oxalic acid.

  13. Design of an ambient aerosol sampling system for high and medium speed applications 

    E-print Network

    Irshad, Hammad

    2002-01-01

    probes for sampling at higher speeds and omni-directional inlets for low speed ambient sampling. The two systems operate at 780 L/min and 90 L/min. Another system was designed and tested for medium speed ambient sampling. This unit will be used as a...

  14. Nano-sized aerosol classification, collection and analysis--method development using dental composite materials.

    PubMed

    Bogdan, Axel; Buckett, Mary I; Japuntich, Daniel A

    2014-01-01

    This article presents a methodical approach for generating, collecting, and analyzing nano-size (1-100 nm) aerosol from abraded dental composite materials. Existing aerosol sampling instruments were combined with a custom-made sampling chamber to create and sample a fresh, steady-state aerosol size distribution before significant Brownian coagulation. Morphological, size, and compositional information was obtained by Transmission Electron Microscopy (TEM). To create samples sizes suitable for TEM analysis, aerosol concentrations in the test chamber had to be much higher than one would typically expect in a dental office, and therefore, these results do not represent patient or dental personnel exposures. Results show that nano-size aerosol was produced by the dental drill alone, with and without cooling water drip, prior to abrasion of dental composite. During abrasion, aerosol generation seemed independent of the percent filler load of the restorative material and the operator who generated the test aerosol. TEM investigation showed that "chunks" of filler and resin were generated in the nano-size range; however, free nano-size filler particles were not observed. The majority of observed particles consisted of oil droplets, ash, and graphitic structures. PMID:24433286

  15. A GC-TCD method for measuring the liquid water mass of collected aerosols

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Te; Chang, Shih-Yu

    This work presents a gas chromatographic method that uses a thermal conductivity detector (GC-TCD) to measure the liquid water mass (LWM) of collected aerosols. The method is a modification of the previously developed EA-TCD method (Journal of Aerosol Science 29, 827). A microcomputer was incorporated into the system to control the analytical procedures, improve the measurement precision, and make possible a continuous operation. To validate the method, the aerosol LWMs of NaCl, Na 2SO 4, NH 4NO 3, (NH 4) 2SO 4, NH 4Cl, and Na 2CO 3 were measured at room temperature under relative humidities (RHs) varying between 20% and 90%, in both humidifying and dehumidifying conditions. Estimates of aerosol LWMs for varying aerosol chemical compositions and RHs by various measurement methods and predictive models are comprehensively compared. The comparison shows that the GC-TCD measurements agree closely with those of the other methods. The GC-TCD measurements are closer to the ISORROPIA model predictions than those of the AIM2 model. Most notably, our method determines, for the first time, the hygroscopic behavior of Na 2CO 3 aerosol yielding the deliquescence relative humidity and crystallization relative humidity at 78% and 39% RH, respectively. The hygroscopic characteristics of various NaCl mole fractions in mixed NaCl-Na 2SO 4 aerosols, determined by GC-TCD, are used to show the discrepancy between the measurements and the model's prediction.

  16. Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Moosmüller, H.; Sheridan, P. J.; Ogren, J. A.; Raspet, R.; Slaton, W. V.; Hand, J. L.; Kreidenweis, S. M.; Collett, J. L.

    2003-01-01

    Ambient measurements are reported of aerosol light absorption from photoacoustic and filter-based instruments (aethalometer and a particle soot absorption photometer (PSAP)) to provide insight on the measurement science. Measurements were obtained during the Big Bend Regional Aerosol and Visibility Observational Study at the Big Bend National Park in South Texas. The aethalometer measurements of black carbon concentration at this site correlate reasonably well with photoacoustic measurements of aerosol light absorption, with a slope of 8.1 m2/g and a small offset. Light absorption at this site never exceeded 2.1 Mm-1 during the month of collocated measurements. Measurements were also obtained, as a function of controlled relative humidity between 40% and 90%, during the Photoacoustic IOP in 2000 at the Department of Energy Southern Great Plains Cloud and Radiation Testbed site (SGP). PSAP measurements of aerosol light absorption correlated very well with photoacoustic measurements, but the slope of the correlation indicated the PSAP values were larger by a factor of 1.61. The photoacoustic measurements of light absorption exhibited a systematic decrease when the RH increased beyond 70%. This apparent decrease in light absorption with RH may be due to the contribution of mass transfer to the photoacoustic signal. Model results for the limiting case of full water saturation are used to evaluate this hypothesis. A second PSAP measured the light absorption for the same humidified samples, and indicated very erratic response as the RH changed, suggesting caution when interpreting PSAP data under conditions of rapid relative humidity change.

  17. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  18. FORMATION OF 2-METHYL TETROLS AND 2-METHYLGLYCERIC ACID IN SECONDARY ORGANIC AEROSOL FROM LABORATORY IRRADIATED ISOPRENE/NO X/SO 2/AIR MIXTURES AND THEIR DETECTION IN AMBIENT PM 2.5 SAMPLES COLLECTED IN THE EASTERN UNITED STATES

    EPA Science Inventory

    A series of isoprene/NOx/air irradiation experiments, carried out in both the absence and presence of SO2, were conducted to assess whether isoprene contributes to secondary organic aerosol (SOA) formation. In the absence of SO2 , the SOA yield of 0.002 was low. However, in th...

  19. Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto

    NASA Astrophysics Data System (ADS)

    Saccon, M.; Kornilova, A.; Huang, L.; Moukhtar, S.; Rudolph, J.

    2015-09-01

    A method to quantify concentrations and stable carbon isotope ratios of secondary organic aerosols has been applied to study atmospheric nitrophenols in Toronto, Canada. The sampling of five nitrophenols, all with substantial secondary formation from the photooxidation of aromatic volatile organic compounds (VOCs), was conducted in the gas phase and particulate matter (PM) together and in PM alone. Their concentrations in the atmosphere are in the low ng m-3 range and, consequently, a large volume of air (> 1000 m3) is needed to analyze samples for stable carbon isotope ratios, resulting in sampling periods of typically 24 h. While this extended sampling period increases the representativeness of average values, it at the same time reduces possibilities to identify meteorological conditions or atmospheric pollution levels determining nitrophenol concentrations and isotope ratios. Average measured carbon isotope ratios of the different nitrophenols are between -34 and -33 ‰, which is well within the range predicted by mass balance. However, the observed carbon isotope ratios cover a range of nearly 9 ‰ and approximately 20 % of the isotope ratios of the products have isotope ratios lower than predicted from the kinetic isotope effect of the first step of the reaction mechanism and the isotope ratio of the precursor. This can be explained by isotope fractionation during reaction steps following the initial reaction of the precursor VOCs with the OH radical. Limited evidence for local production of nitrophenols is observed since sampling was done in the Toronto area, an urban center with significant anthropogenic emission sources. Strong evidence for significant local formation of nitrophenols is only found for samples collected in summer. On average, the difference in carbon isotope ratios between nitrophenols in the particle phase and in the gas phase is insignificant, but for a limited number of observations in summer, a substantial difference is observed. This indicates that at high OH radical concentrations, photochemical formation or removal of nitrophenols can be faster than exchange between the two phases. The dependence between the concentrations and isotope ratios of the nitrophenols and meteorological conditions as well as pollution levels (NO2, O3, SO2 and CO) demonstrate that the influence of precursor concentrations on nitrophenol concentrations is far more important than the extent of photochemical processing. While it cannot be excluded that primary emissions contribute to the observed levels of nitrophenols, overall the available evidence demonstrates that secondary formation is the dominant source for atmospheric nitrophenols in Toronto.

  20. Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto

    NASA Astrophysics Data System (ADS)

    Saccon, M.; Kornilova, A.; Huang, L.; Moukhtar, S.; Rudolph, J.

    2015-06-01

    A method to quantify concentrations and stable carbon isotope ratios of secondary organic aerosols (SOA) has been applied to study atmospheric nitrophenols in Toronto, Canada. The sampling of five nitrophenols, all primarily formed from the photo-oxidation of aromatic volatile organic compounds (VOC), in the gas phase and particulate matter (PM) together and PM alone was conducted. Since all of the target compounds are secondary products, their concentrations in the atmosphere are in the low ng m-3 range and consequently a large volume of air (> 1000 m3) is needed to analyze samples for stable carbon isotope ratios, resulting in sampling periods of typically 24 h. While this extended sampling period increases the representativeness of average values, it at the same time reduces possibilities to identify meteorological conditions or atmospheric pollution levels determining nitrophenol concentrations and isotope ratios. Average measured carbon isotope ratios of the different nitrophenols are between -34 and -33‰, which is well within the range predicted by mass balance calculations. However, the observed carbon isotope ratios cover a range of nearly 9‰, and approximately 20% of the isotope ratios of the products have isotope ratios lower than predicted from the kinetic isotope effect of the first step of the reaction mechanism and the isotope ratio of the precursor. This can be explained by isotope fractionation during reaction steps following the initial reaction of the precursor VOCs with the OH radical. Limited evidence for local production of nitrophenols is observed since sampling was done in the Toronto area, an urban centre with significant anthropogenic emission sources. Strong evidence for significant local formation of nitrophenols is only found for samples collected in summer. On average, the difference in carbon isotope ratios between nitrophenols in the particle phase and in the gas phase is insignificant, but for a limited number of observations in summer, a substantial difference is observed. This indicates that at high OH radical concentrations, photochemical formation or removal of nitrophenols can be faster than exchange between the two phases. The dependence between the concentrations and isotope ratios of the nitrophenols and meteorological conditions as well as pollution levels (NO2, O3, SO2 and CO) demonstrate that the influence of precursor concentrations on nitrophenol concentrations is far more important than the extent of photochemical processing.

  1. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-06-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations have suggested that the budget of peroxyacetic acid (PAA, CH3C(O)OOH) is potentially related to the aerosol phase processes, especially to secondary aerosol formation. Here, we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (?) of 10-4, and both ?PAA and ?H2O2 increase with increasing RH. The value of ?PAA at 90 % RH is 5.4 ± 1.9 times that at 3 % RH, whereas ?H2O2 at 90 % RH is 2.4 ± 0.5 times that at 3 % RH, which suggests that PAA is more sensitive to the RH variation than H2O2 is. Considering the larger Henry's law constant of H2O2 than that of PAA, the smaller RH sensitivity of the H2O2 uptake coefficient suggests that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5 in Beijing, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar ? value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that, in addition to the mineral dust in PM2.5, other components (e.g., soluble inorganic salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.0 h on haze days and 7.1 h on non-haze days, values that are in good agreement with the field observations.

  2. SMOG CHAMBER STUDIES OF SECONDARY ORGANIC AEROSOLS FROM IRRADIATED HYDROCARBONS UNDER AMBIENT CONDITIONS

    EPA Science Inventory

    Understanding the physics and chemistry of aerosols is fundamental to evaluating health risks and developing and evaluating atmospheric models. However, as noted in a recent NRC report only about 10% of the organics in PM2.5 have been identified. A significant portion of the un...

  3. GROWTH LAWS FOR THE FORMATION OF SECONDARY AMBIENT AEROSOLS: IMPLICATIONS FOR CHEMICAL CONVERSION MECHANISMS

    EPA Science Inventory

    The evolution of aerosol size distributions growing by gas-to-particle conversion has been observed recently in field and laboratory studies. A technique for extracting particle diameter growth rates from such data is presented. The functional dependence of these growth rates on ...

  4. Library Optimization in EDXRF Spectral Deconvolution for Multi-element Analysis of Ambient Aerosols

    EPA Science Inventory

    In multi-element analysis of atmospheric aerosols, attempts are made to fit overlapping elemental spectral lines for many elements that may be undetectable in samples due to low concentrations. Fitting with many library reference spectra has the unwanted effect of raising the an...

  5. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Mei; Huang, Zhengxu; Gao, Wei; Nian, Huiqing; Fu, Zhong; Gao, Jian; Chai, Fahe; Zhou, Zhen

    2014-09-01

    To investigate the composition and possible sources of aerosol particles in Beijing urban area, a single particle aerosol mass spectrometer (SPAMS) was deployed from April 22 to May 4, 2011. 510,341 particles out of 2,953,200 sized particles were characterized by SPAMS in combination with the ART-2a neural network algorithm. The particles were classified as rich-K (39.79%), carbonaceous species (32.7%), industry metal (19.2%), dust (5.7%), and rich-Na (1.76%). Industrial emissions related particles, rich-Fe, rich-Pb, and K-nitrate, were the major components of aerosol particles during haze periods, which were mainly from the steel plants and metal smelting processes around Beijing. Under stagnant meterological conditions, these regional emissions have a vital effect on haze formation. Organic carbon (OC) particles were attributed to biomass burning. NaK-EC was likely to come from local traffic emissions. Internally mixed organic and elemental carbon (OCEC) was found to be from possible sources of local traffic emission and biomass burning. It was found that coarse dust particles were mainly composed of four different types of dust particles, dust-Si, dust-Ca, dust-Al, and dust-Ti. It is the first time that SPAMS was used to study a dust storm in Beijing. Our results showed that SPAMS could be a powerful tool in the identification and apportionment of aerosol sources in Beijing, providing useful reference information for environmental control and management.

  6. PASSIVE AEROSOL SAMPLER FOR CHARACTERIZATION, AMBIENT CONCENTRATION, AND PARTICLE SIZE MEASUREMENT

    EPA Science Inventory

    This is an extended abstract of a presentation made at the Air and Waste Management Association's Symposium on Air Quality Measurement Methods and Technology, Durham, NC, May 9-11, 2006. The abstract describes the theory, design, and initial testing of a passive aerosol sampler f...

  7. ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS.
    Chong S. Kim, SC. Hu*, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, ...

  8. Contribution of wood combustion in winter submicron ambient aerosols over Athens

    NASA Astrophysics Data System (ADS)

    Stavroulas, Iasonas; Fourtziou, Luciana; Zarmpas, Pavlos; Bougiatioti, Aikaterini; Liakakou, Eleni; Sciare, Jean; Mihalopoulos, Nikos

    2014-05-01

    Given that a smog pollution problem, mostly attributed to wood burning in fireplaces and stoves, is currently emerging in the Athens metropolitan area, several monitoring instruments were deployed at the National Observatory of Athens facilities in the region of Thissio, downtown Athens . These included an Aerodyne Aerosol Chemical Speciation Monitor with 30 minute time resolution and a Particle Into Liquid Sampler coupled with Ion Chromatography with 15 minute time resolution. The campaign duration was from December 2013 to February 2014 and the aim was to investigate the chemical composition of ultrafine aerosols connected to biomass burning.. Many events of high particulate matter concentrations (exceeding the 50 ?g/m3 daily limit) were observed during night-time, with maximum concentrations occurring when stagnant atmospheric conditions prevailed. Potassium measured by the PILS - IC, and the m/z = 60 fragment measured by the ACSM, was initially used as a tracer of biomass burning events. A good correlation was determined for those two factors, allowing for safe conclusions concerning the identification of these aforementioned biomass burning events. For utmost certainty, Black Carbon measurements coming from three different instruments, was also used. As a second step, Positive Matrix Factorization analysis was performed, using the SoFi interface, which utilizes the generalized multilinear engine (ME-2) (Canonaco et Al., Atmos. Meas. Tech., 6, 3649-3661, 2013), for the source apportionment of the organic particulate matter, determined by the ACSM. This analysis revealed a very important Biomass Burning Organic Aerosol (BBOA) factor with a clear diurnal cycle, showing maxima in the time interval from 21:00 in the evening to 02:00 in the morning. A Hydrocarbon-like Organic Aerosol (HOA) factor is also present with a maximum during the same time interval, attributed to fossil fuel used in central heating systems, and a secondary maximum during the day, attributed to city traffic. Two more factors were determined, an Oxygenated Organic Aerosol (OOA) factor implying processing in the atmosphere and a minor Cooking Organic Aerosol (COA) factor.¬

  9. Hygroscopic properties of the ambient aerosol in southern Sweden - a two year study

    NASA Astrophysics Data System (ADS)

    Fors, E. O.; Swietlicki, E.; Svenningsson, B.; Kristensson, A.; Frank, G. P.; Sporre, M.

    2011-02-01

    The hygroscopic growth of the atmospheric aerosol is a critical parameter for quantifying the anthropogenic radiative forcing. Until now, there has been a lack of long term measurements due to limitations in instrumental techniques. In this work, for the first time the seasonal variation of the hygroscopic properties of a continental background aerosol has been described, based on more than two years of continuous measurements. In addition to this, the diurnal variation of the hygroscopic growth has been investigated, as well as the seasonal variation in CCN concentration. These physical properties of the aerosol have been measured with a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA), a Differential Mobility Particle Sizer (DMPS), and a Cloud Condensation Nuclei Counter (CCNC). The results show that smaller particles are generally less hygroscopic than larger ones, and that there is a clear difference in the hygroscopic properties between the Aitken and the accumulation mode. A seasonal cycle was found for all particle sizes. In general, the average hygroscopic growth is lower during wintertime, due to an increase in the relative abundance of less hygroscopic or hydrophobic particles. Monthly averages showed that the hygroscopic growth factors of the two dominating hygroscopic modes (one barely hygroscopic and one more hygroscopic) were relatively stable. The hygroscopic growth additionally showed a diurnal cycle, with higher growth factors during day time. CCN predictions based on H-TDMA data underpredicted the activated CCN concentration with 7% for 1% water supersaturation (s). The underprediction increases with decreasing s, most likely due to a combination of measurement and modeling uncertainties. It was found that although the aerosol is often externally mixed, recalculating to an internal mixture with respect to hygroscopicity did not change CCN parameterizations significantly.

  10. Hygroscopic properties of the ambient aerosol in southern Sweden - a two year study

    NASA Astrophysics Data System (ADS)

    Fors, E. O.; Swietlicki, E.; Svenningsson, B.; Kristensson, A.; Frank, G. P.; Sporre, M.

    2011-08-01

    The hygroscopic growth of the atmospheric aerosol is a critical parameter for quantifying the anthropogenic radiative forcing. Until now, there has been a lack of long term measurements due to limitations in instrumental techniques. In this work, for the first time the seasonal variation of the hygroscopic properties of a continental background aerosol has been described, based on more than two years of continuous measurements. In addition to this, the diurnal variation of the hygroscopic growth has been investigated, as well as the seasonal variation in CCN concentration. These physical properties of the aerosol have been measured with a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA), a Differential Mobility Particle Sizer (DMPS), and a Cloud Condensation Nuclei Counter (CCNC). The results show that smaller particles are generally less hygroscopic than larger ones, and that there is a clear difference in the hygroscopic properties between the Aitken and the accumulation mode. A seasonal cycle was found for all particle sizes. In general, the average hygroscopic growth is lower during wintertime, due to an increase in the relative abundance of less hygroscopic or barely hygroscopic particles. Monthly averages showed that the hygroscopic growth factors of the two dominating hygroscopic modes (one barely hygroscopic and one more hygroscopic) were relatively stable. The hygroscopic growth additionally showed a diurnal cycle, with higher growth factors during day time. CCN predictions based on H-TDMA data underpredicted the activated CCN number concentration with 7 % for a 1 % water supersaturation ratio. The underprediction increases with decreasing s, most likely due to a combination of measurement and modeling uncertainties. It was found that although the aerosol is often externally mixed, recalculating to an internal mixture with respect to hygroscopicity did not change the CCN concentration as a function of supersaturation significantly.

  11. Advanced Analytical Microscopy Techniques for the Characterization of Ambient Particulate Matter Collected From Military Bases in the Middle East

    NASA Astrophysics Data System (ADS)

    Casuccio, G. S.; Lersch, T. L.; Bunker, K. L.; Strohmeier, B. S.

    2008-12-01

    The Enhanced Particulate Matter Surveillance Program was initiated to help environmental health professionals evaluate sources of particulate matter and to assess potential health effects of troop exposure to air pollutants within the US Central Command Area of Responsibility (AOR). The study examined the concentrations and physical properties of ambient particulate matter collected at 15 deployment locations within the AOR. Ambient aerosols, including PM2.5, PM10, and total suspended particulate were collected for microscopy analysis on polycarbonate filters by Army personnel. As part of the overall effort, the PM2.5 and PM10 particle fractions were analyzed with field emission scanning electron microscopy (FESEM) and computer-controlled SEM (CCSEM). The FESEM was used to examine particle size, morphology, and chemical composition. High-resolution images, elemental spectra and x-ray maps were collected for various particles. The automated CCSEM analyses provided statistical information on particle size and mass distributions for particles greater than 0.5 microns. Data was collected for approximately 1000-2000 particles per sample. The ultrafine particle analysis was performed using a combination of CCSEM, FESEM, low-kV scanning transmission electron microscopy (STEM), and x-ray photoelectron spectroscopy (XPS). CCSEM was used to characterize particles ranging from 0.2 to 0.5 microns. FESEM was used to manually measure the diameter of particles less than 0.2 microns and collect elemental spectra. Particles less than 0.2 microns were also examined with a Hitachi S-5500 high-resolution FESEM and a K-Alpha XPS system. The Hitachi S-5500 provides simultaneous high resolution SEM and STEM imaging capabilities as well as a state-of-the-art silicon drift detector for elemental analysis. The K-Alpha XPS provides information on the elemental and chemical state surface composition of the topmost 2-10 nm of solid materials as well as chemical state surface mapping and sputter depth profiles. This presentation will discuss results from all particle size fractions, with a focus on the high-resolution SEM and XPS analyses of the ultrafine particles.

  12. AMBIENT AMMONIA AND AMMONIUM AEROSOL ACROSS A REGION OF VARIABLE AMMONIA EMISSION DENSITY

    EPA Science Inventory

    The paper presents one year of ambient ammonia (NH3), ammonium (NH4+), hydrochloric acid (HCI), chloride (CI¯), nitric acid (HNO3), nitrate (NO3¯), nitrous acid (HONO), sulfur dioxide (SO2), and sulfate (SO4

  13. COMPARISON OF TWO PARTICLE-SIZE SPECTROMETERS FOR AMBIENT AEROSOL MEASUREMENTS. (R827354C002)

    EPA Science Inventory

    There is an ongoing debate on the question which size fraction of particles in ambient air may be responsible for human health effects observed in epidemiological studies. Since there is no single instrument available for the measurement of the particle-size distribution over ...

  14. Water-soluble material on aerosols collected within volcanic eruption clouds ( Fuego, Pacaya, Santiaguito, Guatamala).

    USGS Publications Warehouse

    Smith, D.B.; Zielinski, R.A.; Rose, W.I., Jr.; Huebert, B.J.

    1982-01-01

    In Feb. and March of 1978, filter samplers mounted on an aircraft were used to collect the aerosol fraction of the eruption clouds from three active Guatemalan volcanoes (Fuego, Pacaya, and Santiaguito). The elements dissolved in the aqueous extracts represent components of water-soluble material either formed directly in the eruption cloud or derived from interaction of ash particles and aerosol components of the plume. Calculations of enrichment factors, based upon concentration ratios, showed the elements most enriched in the extracts relative to bulk ash composition were Cd, Cu, V, F, Cl, Zn, and Pb.-from Authors

  15. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with long range transported biomass burning plumes

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Mazzoleni, C.; Fialho, P.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Hueber, J.; Kumar, S.; Perlinger, J. A.; Kramer, L.; Dziobak, M. P.; Ampadu, M. T.; Olsen, S.; Wuebbles, D. J.; Mazzoleni, L. R.

    2014-09-01

    Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m a.m.s.l. on Pico Island of the Azores archipelago in the North Atlantic. The observatory (38°28'15'' N; 28°24'14'' W) is located ∼3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances, mainly from North America. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon and inorganic ion species. The average ambient concentration of aerosol was 0.9 ?g m-3; on average organic aerosol contributes the majority of mass (57%), followed by sulfate (21%) and nitrate (17%). Filter-collected aerosol measurements were positively correlated (with an r2 ? 0.80) with continuous aerosol measurements of black carbon, aerosol light scattering and number concentration. Water-soluble organic carbon (WSOC) species extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. FLEXPART retroplume analysis shows the sampled air masses were very aged (average plume age > 12 days). Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100-1000. The majority of the assigned molecular formulas have unsaturated structures with CHO and CHNO elemental compositions. These aged WSOC compounds have an average O / C ratio of ∼0.45, which is relatively low compared to O / C ratios of other aged aerosol and might be the result of evaporation and increased fragmentation during long-range transport. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in WSOC species and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of biomass burning phenolic species suggests that the aerosol collected at the Pico Mountain Observatory had undergone cloud processing before reaching the site. Finally, the air masses on 9/25 were more aged (∼15 days) and influenced by marine emissions, as indicated by organosulfates and other species characteristic for marine aerosol such as fatty acids. The change in air masses for the two samples was corroborated by the changes in ozone and the non-methane hydrocarbons ethane and propane, morphology of particles, as well as by the FLEXPART retroplume simulations. This manuscript presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at a lower free troposphere remote location in the North Atlantic.

  16. The average carbon oxidation state of organic aerosol: Synthesis of laboratory and ambient measurements

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Kroll, J. H.

    2010-12-01

    Organic aerosol (OA) is typically made up of a highly complex mixture of compounds that evolve chemically over the atmospheric lifetime of a given aerosol particle. This poses substantial challenges to modeling and measuring the formation and evolution of atmospheric OA. However, describing OA in terms of its bulk (or average) chemical properties provides insight into the overall chemical evolution of the component species, without requiring that every compound in OA be individually tracked. Here, we demonstrate the utility of the average oxidation state of carbon (OSc) and average carbon number (Nc) as metrics for the atmospheric evolution (oxidation) of OA. The reactions governing the transformation of atmospheric organics can be broken down into three key reaction types: functionalization (the oxidative addition of polar functional groups to the carbon skeleton), fragmentation (the oxidative cleavage of C-C bonds), and oligomerization (the association of two organic molecules), each of which has a unique effect on OSc and Nc. OSc can be estimated from average elemental ratios (most importantly O:C and H:C) which are readily measurable through techniques such as combustion analysis (CHNS), electrospray ionization Fourier transform infrared spectroscopy (ESI-FTICR), and high-resolution electron impact aerosol mass spectrometry (HR-AMS). Here, we synthesize measurements of OSc (and Nc) from a number of sources, including field and laboratory studies, to further elucidate the reactions that govern the chemical evolution of OA. We also examine the uncertainties and challenges in measuring OSc with modern analytical techniques, giving detailed attention to the role of the abundances of key elements in OA - not only carbon, hydrogen, and oxygen, but also nitrogen and sulfur.

  17. Thermophoresis and Its Thermal Parameters for Aerosol Collection

    SciTech Connect

    Huang, Z.; Apte, Michael; Gundel, Lara

    2007-08-01

    The particle collection efficiency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler's heating element was made of three sets of thermophoretic (TP) wires 25mu m in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised to 3.0V, and the collection effi ciency was increased by a factor of fi ve for both theory and experiment.

  18. THERMOPHORESIS AND ITS THERMAL PARAMETERS FOR AEROSOL COLLECTION

    SciTech Connect

    Huang, Z.; Apte, M.; Gundel, L.

    2007-01-01

    The particle collection effi ciency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler’s heating element was made of three sets of thermophoretic (TP) wires 25?m in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised to 3.0V, and the collection effi ciency was increased by a factor of fi ve for both theory and experiment.

  19. Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Mazzoleni, C.; Fialho, P.; China, S.; Zhang, B.; Owen, R. C.; Helmig, D.; Hueber, J.; Kumar, S.; Perlinger, J. A.; Kramer, L. J.; Dziobak, M. P.; Ampadu, M. T.; Olsen, S.; Wuebbles, D. J.; Mazzoleni, L. R.

    2015-05-01

    Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m above mean sea level on Pico Island of the Azores archipelago in the North Atlantic. The observatory is located ~ 3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 ± 0.7 ?g m-3. On average, organic aerosol components represent the largest mass fraction of the total measured aerosol (60 ± 51%), followed by sulfate (23 ± 28%), nitrate (13 ± 10%), chloride (2 ± 3%), and elemental carbon (2 ± 2%). Water-soluble organic matter (WSOM) extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100-1000. The majority of the assigned molecular formulas had unsaturated structures with CHO and CHNO elemental compositions. FLEXPART retroplume analyses showed the sampled air masses were very aged (average plume age > 12 days). These aged aerosol WSOM compounds had an average O/C ratio of ~ 0.45, which is relatively low compared to O/C ratios of other aged aerosol. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in the WSOM and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of phenolic species suggests that the aerosol collected at the Pico Mountain Observatory had undergone cloud processing before reaching the site. Finally, the air masses of 9/25 were more aged and influenced by marine emissions, as indicated by the presence of organosulfates and other species characteristic of marine aerosol. The change in the air masses for the two samples was corroborated by the changes in ethane, propane, and ozone, morphology of particles, as well as by the FLEXPART retroplume simulations. This paper presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at a lower free troposphere remote location and provides evidence of low oxygenation after long-range transport. We hypothesize this is a result of the selective removal of highly aged and polar species during long-range transport, because the aerosol underwent a combination of atmospheric processes during transport facilitating aqueous-phase removal (e.g., clouds processing) and fragmentation (e.g., photolysis) of components.

  20. Mass loading of size-segregated atmospheric aerosols in the ambient air during fireworks episodes in eastern Central India.

    PubMed

    Nirmalkar, Jayant; Deb, Manas K; Deshmukh, Dhananjay K; Verma, Santosh K

    2013-04-01

    The effects of combustion of the fire crackers on the air quality in eastern Central India were studied for the first time during Diwali festival. This case study analyzes the size distribution and temporal variation of aerosols collected in the rural area of eastern Central India during pre-diwali, Diwali and post-diwali period for the year of 2011. Fifteen aerosol samples were collected during the special case study of Diwali period using Andersen sampler. The mean concentrations of PM10 (respirable particulate matter) were found to be 212.8 ± 4.2, 555.5 ± 20.2 and 284.4 ± 5.8 during pre-diwali, Diwali and post-diwali period, respectively. During Diwali festival PM10 concentration was about 2.6 and 1.9 times higher than pre-diwali and post-diwali period, respectively. PM2.5 (fine) and PM1 (submicron) concentrations during Diwali festival were more than 2 times higher than pre-diwali and post-diwali. PMID:23287842

  1. Investigation of anthropogenic-origin-metals in the atmospheric aerosols collected at Cape Hedo, Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Murayama, H.; Azechi, S.; Tsuhako, A.; Miyagi, Y.; Kasaba, T.; Arakaki, T.

    2014-12-01

    Atmospheric aerosols are important to atmospheric chemistry, and affect our lives. Aerosols include fine particles, which consist of inorganic compounds, organic substances, heavy metals, etc. Aerosols can be roughly separated into natural and anthropogenic origins. For example, natural origins include wind-blown sea-salt, Asian dust (called Kosa in Japan), etc. Anthropogenic origins include burning of fossil fuel and agricultural biomass, automobiles, industrial activities, etc. In Japan, Kosa is the most well-known aerosol. This study investigated anthropogenic-origin-metals present in the aerosols. Aerosol samples were collected at Cape Hedo Atmospheric Aerosol Monitoring Station (CHAAMS) in Okinawa Island, Japan with a high volume air sampler. Samples analyzed for this study were collected between January 2008 and August 2014. A 1/8 of aerosol filter was digested by the mixture of acids and oxidant (nitric acid/hydrogen fluoride/hydrogen peroxide). The sample was filtered by 0.45 ?m membrane filter before analyses. Metal ion concentrations were measured by atomic absorption spectrophotometry (Na, Mg, K) and inductively-coupled plasma mass spectrometer (Al, Fe, Ca, Ti, Mn, V, Cu, Cd, Zn, Pb). Air mass movement was analyzed by NOAA's HYSPRIT model. Results showed that concentrations of heavy metals were high during winter and spring, and the lowest in summer. V/Mn ratios were used as an indicator for heavy oil burning. High V/Mn ratios were observed during maritime air mass periods. On the other hand, Pb/Zn ratio was used as an indicator for leaded gasoline usage, which was high when air mass was coming from Asian continent during winter and spring. Average Pb/Zn ratio was 0.65. Non-sea-salt K (nss-K) was used as an indicator for biomass burning, and showed good correlation with total organic carbon (TOC) concentrations. However, nss-K and crustal-origin-metals also showed good correlation. Thus, we have to be careful when considering whether nss-K is from burning-origin or crust-origin metal.

  2. Evaporation Kinetics and Phase of Laboratory and Ambient Secondary Organic Aerosol

    SciTech Connect

    Vaden, Timothy D.; Imre, Dan G.; Beranek, Josef; Shrivastava, ManishKumar B.; Zelenyuk, Alla

    2011-02-08

    Field measurements of secondary organic aerosol (SOA) find higher mass loads than predicted by models, sparking intense efforts to find additional SOA sources but leaving the assumption of rapid SOA evaporation unchallenged. We characterized room-temperature evaporation of pure SOA and SOA formed in the presence of spectator organic vapors with and without aging. We find that it takes ~24 hrs for pure SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ~10 minutes timescales predicted by models. The presence of spectator organic vapors and aging dramatically reduces the evaporation, and in some cases nearly stops it. For all cases, SOA evaporation behavior is size independent and does not follow the liquid droplet evaporation kinetics assumed by models.

  3. Ambient aerosol chlorine concentrations and artefacts during the MEGAPOLI Paris campaigns

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Visser, Suzanne; Slowik, Jay; Crippa, Monica; Poulain, Laurent; Sciare, Jean; Flechsig, Uwe; Prévôt, André; Baltensperger, Urs

    2015-04-01

    Trace elements, especially those that are toxic, can affect the environment in significant ways. Studying them is advantageous with respect to a refinement of source apportionment when measured with high time resolution and appropriate size segregation. This approach is especially useful in urban environments with numerous time-variant emission sources distributed across a relatively narrow space. Two field campaigns took place in the framework of the MEGAPOLI project in Paris, France: one in the summer of 2009 (1-31 July), the other in the winter of 2010 (11 Jan - 10 Feb). Rotating drum impactors (RDI) were operated at an urban and a suburban site in each campaign. The RDI segregated the aerosols into three size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) and sampled with 2-hour time resolution. The samples were analyzed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF) at the synchrotron facility of the Paul Scherrer Institute (SLS), where a broad range of elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn) was analyzed for each size range. Time series of the analyzed elements for the different sites and campaigns were prepared to characterize the aerosol trace element composition and temporal behavior for different weather situations and urban environments. Quality assurance was performed partly by intercomparison with independent measurements. An exceptional behavior was observed for chlorine (Cl), where periods with zero RDI concentration alternated with periods of normal load. Zero concentrations were not observed in particle-into-liquid (PILS) measurements. This identifies the observed behavior as a RDI sampling artefact. Nevertheless, the non-zero periods of Cl concentrations are still a gain in information compared to conventional sampling techniques, mainly due to the high time resolution.

  4. The application of size- resolved hygroscopicity measurements to understand the physical and chemical properties of ambient aerosol 

    E-print Network

    Santarpia, Joshua Lee

    2005-08-29

    the RH-dependence of aerosol hygroscopic growth collapses. It is proposed that this collapse is due to a decrease in the ammonium to sulfate ratio in the aerosol particles, which coincides with increasing temperature and decreasing RH. This cyclical... change in aerosol acidity may influence secondary organic aerosol (SOA) production and may exaggerate the impact of the aerosol on human health. The compositional changes iv also result in a daily cycle in crystallization RH that is in phase...

  5. A novel rocket-based in-situ collection technique for mesospheric and stratospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Reid, W.; Achtert, P.; Ivchenko, N.; Magnusson, P.; Kuremyr, T.; Shepenkov, V.; Tibert, G.

    2012-11-01

    A technique for collecting aerosol particles between altitudes of 85 and 17 km is described. Collection probes are ejected from a sounding rocket allowing for multi-point measurements. Each probe is equipped with 110 collection samples that are 3 mm in diameter. The collection samples are one of three types: standard transmission electron microscopy carbon grids, glass fibre filter paper or silicone gel. Each collection sample is exposed over a 50 m to 5 km height range with a total of 45 separate ranges. Post-flight electron microscopy gives size-resolved information on particle number, shape and elemental composition. Each collection probe is equipped with a suite of sensors to capture the probe's status during the fall. Parachute recovery systems along with GPS-based localization ensure that each probe can be located and recovered for post-flight analysis.

  6. Evidence of high PM 2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at [NH 4+]/[SO 42-] = 1.5

    NASA Astrophysics Data System (ADS)

    Huang, X.; Qiu, R.; Chan, Chak K.; Ravi Kant, Pathak

    2011-03-01

    In this study, 24-h PM2.5 samples were collected using Harvard Honeycomb denuder/filter-pack system during different seasons in 2006 and 2007 at an urban site in Guangzhou, China. The particles collected in this study were generally acidic (average strong acidity ([H+]) ~ 70 nmol m- 3). Interestingly, aerosol sulfate was not fully neutralized in the ammonia-rich atmosphere (NH3 ~ 30 ppb) and even when NH4+]/[SO42-] was larger than 2. Consequently, strong acidity ([H+]) as high as 170 nmol m- 3 was observed in these samples. The kinetic rate of neutralization of acidity (acidic sulfate) by ambient ammonia was significantly higher than the rate of formation of ammonium nitrate involving HNO3 and NH3 for [NH4+]/[SO42-] ? 1.5 and much lower for NH4+]/[SO42-] > 1.5. Therefore, higher nitrate principally formed via homogeneous gas phase reactions involving ammonia and nitric acid were observed for [NH4+]/[SO42-] > 1.5. However, little nitrate, probably formed via heterogeneous processes e.g. reaction of HNO3 with sea salt or crustal species, was observed for [NH4+]/[SO42-] ? 1.5. These demonstrate a clear transition in the pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42-] = 1.5 and evidently explain the observed high acidity due to the unneutralized sulfate in the ammonium-rich aerosol (NH4+]/[SO42-] > 1.5). In fact, the measured acidity was almost similar to the excess acid defined as the acid that remains at [NH4+]/[SO42-] = 1.5 due to the un-neutralized fraction of sulfate ([H+] = 0.5[SO42-]). The presence of high excess acid and ammonium nitrate significantly lowered the deliquescence relative humidity of ammonium sulfate (from 80% to 40%) in the ammonium-rich samples.

  7. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 ?m), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 ?m) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  8. Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis

    E-print Network

    Ardon Dryer, Karin

    An experimental setup has been constructed to measure the collection efficiency (CE) of sub-micrometer aerosol particles by cloud droplets. Droplets of a dilute aqueous ammonium sulfate solution with an average radius of ...

  9. High-resolution electrospray ionization mass spectrometry analysis of water-soluble organic aerosols collected with a particle into liquid sampler.

    PubMed

    Bateman, Adam P; Nizkorodov, Sergey A; Laskin, Julia; Laskin, Alexander

    2010-10-01

    This work demonstrates the utility of a particle-into-liquid sampler (PILS), a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols, for the analysis of water-soluble organic aerosol (OA) using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m(3) Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak abundances, types of detectable compounds, average O/C ratios, and organic mass to organic carbon ratios, the resulting high-resolution mass spectra were essentially identical for the PILS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in the ESI mass spectra. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water-soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA. PMID:20809606

  10. Chemical Analysis of Fractionated Halogens in Atmospheric Aerosols Collected in Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Tsuhako, A.; Miyagi, Y.; Somada, Y.; Azechi, S.; Handa, D.; Oshiro, Y.; Murayama, H.; Arakaki, T.

    2013-12-01

    Halogens (Cl, Br and I) play important roles in the atmosphere, e.g. ozone depletion by Br during spring in Polar Regions. Sources of halogens in atmospheric aerosols are mainly from ocean. But, for example, when we analyzed Br- with ion chromatography, its concentrations were almost always below the detection limit, which is also much lower than the estimated concentrations from sodium ion concentrations. We hypothesized that portions of halogens are escaped to the atmosphere, similar to chlorine loss, changed their chemical forms to such as BrO3- and IO3-, and/or even formed precipitates. There was few reported data so far about fractionated halogen concentrations in atmospheric aerosols. Thus, purpose of this study was to determine halogen concentrations in different fractions; free ion, water-soluble chemically transformed ions and precipitates using the authentic aerosols. Moreover, we analyzed seasonal variation for each fraction. Atmospheric aerosol samples were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) of Okinawa, Japan during January 2010 and August 2013. A high volume air sampler was used for collecting total particulate matters on quartz filters on a weekly basis. Ultrapure water was used to extract water-soluble factions of halogens. The extracted solutions were filtered with the membrane filter and used for chemical analysis with ion chromatography and ICP-MS. Moreover, the total halogens in aerosols were obtained after digesting aerosols with tetramethylammonium hydroxide (TMAH) using the microwave and analysis with ICP-MS. For Cl, water-soluble Cl- accounted for about 70% of the estimates with Na content. No other forms of water-soluble Cl were found. About 30% of Cl was assumed volatilized to the gas-phase. For Br, water-soluble Br accounted for about 43% of the estimates with Na content, and within the 43%, about 10% of Br was not in the form of Br-. About 46% of Br was assumed volatilized to the gas-phase. For I, fractioned concentrations are still under investigation, and will be reported and discussed during the meeting. For seasonal variation, in general, concentrations of halogens were the lowest in summer and higher in fall and winter, reflecting air mass movement and wind speed around Okinawa, Japan.

  11. Long-Range Transport of Perchlorate Observed in the Atmospheric Aerosols Collected at Okinawa Island, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Arakaki, T.; Tanahara, A.; Oomori, T.; Miyagi, T.; Kadena, H.; Ishizaki, T.; Nakama, F.

    2007-12-01

    The study of perchlorate has become quite active in the U.S. in the last several years. Perchlorate has been recognized as a new environmental pollutant and it attracted much attention quickly in the world. The health concern about perchlorate stems from the fact that it displaces iodide in the thyroid gland, while iodine-containing thyroid hormones are essential for proper neural development from the fetal stage through the first years of life. In this study, we determined the concentrations of perchlorate ion present in the atmospheric aerosols collected in Okinawa Island, Japan. We then examined the relationships between the perchlorate concentrations and the environmental parameters and the climatic conditions peculiar to Okinawa. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS). Each sampling duration was one week. The quartz filters with aerosols were stirred with Milli-Q pure water for three hours before perchlorate ion was extracted. The extracted perchlorate ion concentrations were determined by ion chromatography (ICS-2000, DIONEX). The mean perchlorate concentration for the samples collected at CHAAMS was 1.83 ng/m3, and the minimum was 0.18 ng/m3. The samples collected during November 21-27, 2005, January 23-30, 2006 and April 24-01, 2006 had highest perchlorate concentrations. For these three samples, we performed back trajectory analysis, and found that the air mass for the three samples arrived from the Asian continent. A relatively strong correlation (r2 = 0.55) was found between perchlorate and nss-sulfate concentrations for the CHAAMS samples. Furthermore, we analyzed perchlorate in the soils and the fertilizers used for sugar cane farming around the CHAAMS area. The Milli-Q extract of the soil and the fertilizers did not contain any detectable levels of perchlorate ions. Therefore, it was suggested that perchlorate found in the atmospheric aerosols collected at CHAAMS was probably transported from the Asian continent.

  12. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 ?g m-3, all ?g m-3 values based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.08 ?g m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the calibration is linear. Using samples in the calibration set that have a different OM / OC or ammonium / OC distributions than the test set leads to only a modest increase in bias and normalized error in the predicted samples. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR OC in IMPROVE network samples; providing complementary information to the organic functional group composition and organic aerosol mass estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  13. Particle morphologies and formation mechanisms of fine volcanic ash aerosol collected from the 2006 eruption of Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Rinkleff, P. G.; Cahill, C. F.

    2010-12-01

    Fine volcanic ash aerosol (35-0.09um) erupted in 2006 by Augustine Volcano, southwest of Anchorage, Alaska was collected by a DRUM cascade impactor and analyzed by scanning electron microscopy for individual particle chemistry and morphology. Results of these analyses show ash particles occur as either individual glass shard and mineral phase (plagioclase, magnetite, ilmenite, hornblende, etc.) particles or aggregates thereof. Individual glass shard ash particles are angular, uniformly-sized, consist of calc-alkaline whole-rock elements (Si, Al, Fe, Na, and Ca) and are not collocated on the sample media with non-silicate, Cl and S bearing sea salt particles. Aggregate particles occur as two types: pure ash aggregates and sea salt-cored aggregates. Pure ash aggregates are made up of only ash particles and contain no other constituents. Sea salt-cored aggregates are ash particles commingled with sea salts. Determining the formation processes of the different ash particle types need further investigation but some possibilities are proposed here. Individual ash particles may exist when the ambient air is generally dry, little electrical charge exists on ash particles, the eruptive cloud is generally dry, or the number of individual particles exceeds the scavenging capacity of the water droplets present. Another possibility is that ash aggregates may break apart as relative humidity drops over time and causes ash-laden water droplets to evaporate and subsequently break apart. Pure ash aggregates may form when the ambient air and plume is relatively dry but the ash has a significant charge to cause ash to aggregate. Or they could form during long-range transport when turbulent or Brownian motion can cause ash particles to collide and coagulate. Pure ash aggregates could also form as a result of water droplet scavenging and subsequent evaporation of water droplets, leaving behind only ash. In this case, droplets would not have interacted with a sea salt-containing boundary layer. Sea salt-cored aggregates could form when ash particles travel over a maritime environment and sea salt aerosol could easily be incorporated in the plume from the surrounding atmosphere. When the particles are sampled, pressure drops within the DRUM impactor cause the water in the droplet to evaporate, leaving behind ash aggregated with salt

  14. A new direct thermal desorption-GC/MS method: Organic speciation of ambient particulate matter collected in Golden, BC

    NASA Astrophysics Data System (ADS)

    Ding, Luyi C.; Ke, Fu; Wang, Daniel K. W.; Dann, Tom; Austin, Claire C.

    Particulate matter having an aerodynamic diameter less than 2.5 ?m (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33-98% by mass of the organic compounds identified. PAHs accounted for 1-65% and biomarkers (hopanes and steranes) 1-8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07-1.55 ng m -3), 16 PAHs (0.02-1.83 ng m -3), and biomarkers (0.02-0.18 ng m -3). Daily levels of these organics were 4.89-74.38 ng m -3, 0.27-100.24 ng m -3, 0.14-4.39 ng m -3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source - most likely motor vehicles and space heating.

  15. Validation and Uncertainty Estimates for MODIS Collection 6 "Deep Blue" Aerosol Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.

    2013-01-01

    The "Deep Blue" aerosol optical depth (AOD) retrieval algorithm was introduced in Collection 5 of the Moderate Resolution Imaging Spectroradiometer (MODIS) product suite, and complemented the existing "Dark Target" land and ocean algorithms by retrieving AOD over bright arid land surfaces, such as deserts. The forthcoming Collection 6 of MODIS products will include a "second generation" Deep Blue algorithm, expanding coverage to all cloud-free and snow-free land surfaces. The Deep Blue dataset will also provide an estimate of the absolute uncertainty on AOD at 550 nm for each retrieval. This study describes the validation of Deep Blue Collection 6 AOD at 550 nm (Tau(sub M)) from MODIS Aqua against Aerosol Robotic Network (AERONET) data from 60 sites to quantify these uncertainties. The highest quality (denoted quality assurance flag value 3) data are shown to have an absolute uncertainty of approximately (0.086+0.56Tau(sub M))/AMF, where AMF is the geometric air mass factor. For a typical AMF of 2.8, this is approximately 0.03+0.20Tau(sub M), comparable in quality to other satellite AOD datasets. Regional variability of retrieval performance and comparisons against Collection 5 results are also discussed.

  16. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 ?g, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 ?g m-3, a concentration value based on the nominal IMPROVE sample volume of 32.8 m3), low error (0.03 ?g m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. Only the normalized error is higher for the FT-IR EC measurements than for collocated TOR. FT-IR spectra are also divided into calibration and test sets by the ratios OC/EC and ammonium/EC to determine the impact of OC and ammonium on EC prediction. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR EC in IMPROVE network samples, providing complementary information to TOR OC predictions (Dillner and Takahama, 2015) and the organic functional group composition and organic matter estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  17. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 ?g, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no bias (0.00 ?g m-3, concentration value based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.03 ?g m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. Only the normalized error is higher for the FT-IR EC measurements than for collocated TOR. FT-IR spectra are also divided into calibration and test sets by the ratios OC/EC and ammonium/EC to determine the impact of OC and ammonium on EC prediction. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR EC in IMPROVE network samples; providing complementary information to TOR OC predictions (Dillner and Takahama, 2015) and the organic functional group composition and organic matter (OM) estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  18. Molecular Characterization of Marine Organic Aerosols Collected during a Round-the-World Cruise

    NASA Astrophysics Data System (ADS)

    Fu, P.; Kawamura, K.; Miura, K.

    2010-12-01

    Total suspended particles (TSP) were collected on board the R/V Hakuho Maru during a round-the-world cruise (KH89-2) and were characterized for organic molecular compositions using solvent extraction/derivatization and gas chromatography/mass spectrometry technique. More than 140 organic species were detected in the marine aerosols and were grouped into 11 organic compound classes, including aliphatic lipids, anhydrosugars and sugar alcohols, lignin/resin acids, sterols, hopanes, polycyclic aromatic hydrocarbons, hydroxy-/polyacids, aromatic acids, as well as secondary organic aerosol (SOA) tracers from the photooxidation of biogenic volatile organic compounds. Concentrations of total quantified organics ranged from 0.94 to 98 ng m-3 (average 31 ng m-3) with higher concentrations in coastal regions (California Coast, South China Sea, and Western North Pacific) than in open marine areas (North Pacific and North Atlantic), suggesting that long-range atmospheric transport from the continents is the main source of marine organic aerosols. Isoprene SOA tracers, i.e., 2-methylglyceric acid, C5-alkene triols and 2-methyltetrols, were detected in all the samples (0.11-22 ng m-3, average 3.6 ng m-3) with higher concentrations in the tropical regions. They accounted for 0.48-29% of the total identified organics. Organic compounds were further categorized into several groups to clarify their sources. In the North Pacific and North Atlantic, secondary oxidation products (30-31%), fossil fuel combustion products (27-28%), as well as marine natural emissions (22-34%) were found as major contributors to the marine aerosols. In California Coast, North Indian Ocean and South China Sea, secondary oxidation products can contribute 44-55% of the total identified organics, followed by terrestrial natural emissions (12-27%), while biomass burning emissions were found to contribute only 1-2%. However, in the western North Pacific near the Asian continent, fossil fuel combustion (27%) and biomass burning (25%) were recognized as the main sources for the total identified compounds, followed by terrestrial natural emission (23%), indicating a significant influence of the Asian outflow in winter/spring. This study demonstrates that long-range atmospheric transport from the continent is one of the major factors controlling the chemical composition of organic aerosols in the marine boundary layer. However, in the tropical oceanic regions, secondary photooxidation could be the dominant source for marine organic aerosols.

  19. Collection and characterization of aerosols from metal cutting techniques typically used in decommissioning nuclear facilities

    SciTech Connect

    Newton, G.J.; Hoover, M.D.; Barr, E.B.; Wong, B.A.; Ritter, P.D.

    1987-11-01

    This study was designed to collect and characterize aerosols released during metal cutting activities typically used in decommissioning radioactively contaminated facilities. Such information can guide in the selection of appropriate control technologies for these airborne materials. Mechanical cutting tools evaluated included a multi-wheel pipe cutter, reciprocating saw, band saw, chop saw, and large and small grinding wheels. Melting-vaporization cutting techniques included an oxy-acetylene torch, electric arc cut rod and plasma torch. With the exception of the multi-wheel pipe cutter, all devices created aerosols in the respirable size range (less than 10 micron aerodynamic diameter). Time required to cut 2-in. (5-cm) Schedule 40, Type 304L, stainless steel ranged from about 0.6 min for the plasma torch to about 3.0 min for the reciprocating saw. Aerosol production rate ranged from less than 10 mg/min for the reciprocating saw to more than 3000 mg/min for the electric arc cut rod. Particles from mechanical tools were irregular in shape, whereas particles from vaporization tools were spheres and ultrafine branched-chain aggregates.

  20. Molecular Characterization of S- and N-containing Organic Constituents in Ambient Aerosols by negative ion mode High-Resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Rubitschun, Caitlin L.; Surratt, Jason D.; Goldstein, Allen H.

    2014-11-27

    Samples of ambient aerosols from the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study were analyzed using Nanospray Desorption Electrospray Ionization High Resolution Mass Spectrometry (nano-DESI/MS). Four samples per day were collected in Bakersfield, CA on June 20-24 with a collection time of 6 hours per sample. Four characteristic groups of organic constituents were identified in the samples: compounds containing carbon, hydrogen, and oxygen only (CHO), sulfur- (CHOS), nitrogen-(CHON), and both nitrogen- and sulfur-containing organics (CHONS). Within the groups, organonitrates, organosulfates, and nitroxy organosulfates were assigned based on accurate mass measurements and elemental ratio comparisons. Changes in the chemical composition of the aerosol samples were observed throughout the day. The number of observed CHO compounds increased in the afternoon samples, suggesting regional photochemical processing as a source. The average number of CHOS compounds had the smallest changes throughout the day, consistent with a more broadly distributed source. Both of the nitrogen-containing groups (CHON and CHONS) had greater numbers of compounds in the night and morning samples, indicating that nitrate radical chemistry was likely a source for those compounds. Most of the compounds were found in submicron particles. The size distribution of CHON compounds was bimodal. We conclude that the majority of the compounds observed were secondary in nature with both biogenic and anthropogenic sources.

  1. Comparison and evaluation of the MODIS Collection 6 aerosol data in China

    NASA Astrophysics Data System (ADS)

    Tao, Minghui; Chen, Liangfu; Wang, Zifeng; Tao, Jinhua; Che, Huizheng; Wang, Xinhui; Wang, Yang

    2015-07-01

    Several important improvements have been made in recent Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol retrievals, but few regional validations are conducted. We compared Deep Blue (DB) and Dark Target (DT) retrievals over China and evaluated their performance with ground observations. Sampling frequency of DB was much higher than that of DT, which was mainly caused by unavailable retrieval of DT in bright surface and heavy pollution conditions. It is found that merged aerosol optical depth (AOD) will miss some cases if it was determined only by vegetation density. Collocated comparison shows that DT AOD was substantially higher than DB with seasonal difference exceeding 0.3-0.4 over eastern China. However, when all available retrievals were considered, DT AOD was obviously lower than DB in all the seasons except spring due to their large difference in spatial coverage in high-AOD conditions. DB can well reveal spatial extent of the widespread haze pollution while there were few values in DT. More than one half of the situations with AOD > 1.0 was missed by DT, which largely underestimated the common regional haze pollution in eastern China. Ground validations show that DT tended to overestimate the aerosol loading by underestimation of the surface contribution and single scattering albedo of aerosols. DB performed generally well with higher accuracy in northern China but exhibited obvious underestimation in northwestern and southern China. Despite of slight decrease in accuracy, DB retrievals with all quality enable a large increase in spatial coverage, especially when dense haze clouds existed.

  2. Model Evaluation of Aerosol Wet Scavenging in Deep Convective Clouds Based on Observations Collected during the DC3 Campaign

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Easter, R. C.; Fast, J. D.; Wang, H.; Ghan, S. J.; Campuzano Jost, P.; Barth, M. C.; Fan, J.; Morrison, H.; Jimenez, J. L.; Bela, M. M.; Markovic, M. Z.

    2014-12-01

    Deep convective storms greatly influence the vertical distribution of aerosols by transporting aerosols from the boundary layer to the upper troposphere and by removing aerosols through wet scavenging processes. Model representation of wet scavenging is a major uncertainty in simulating the vertical distribution of aerosols due partly to limited constraints by observations. The effect of wet scavenging on ambient aerosols in deep mid-latitude continental convective clouds is studied for a severe storm case in the vicinity of the ARM Southern Great Plains site on May 29, 2012 during the Deep Convective Clouds and Chemistry Project (DC3) field campaign. A new budget analysis approach is developed to characterize the convective transport to the upper troposphere based on the vertical distribution of several slowly reacting and nearly insoluble trace gases (i.e., CO, acetone, and benzene). A similar budget framework is applied to aerosols combined with the known transport efficiency to estimate wet-scavenging efficiency. The chemistry version of the Weather Research and Forecasting model (WRF-Chem) simulates the storm initiation timing and structure reasonably well when compared against radar observations from the NSSL national 3-D reflectivity Mosaic data. Simulated vertical profiles of humidity and temperature also closely agree with radiosonde measurements before and during the storm. High scavenging efficiencies (~80%) for aerosol number (Dp < 2.5?m) and mass (Dp < 1?m) are obtained from the observations. Both observation analyses and the simulation show that, between the two dominant aerosol species, organic aerosol shows a slightly higher scavenging efficiency than sulfate aerosol, and higher scavenging efficiency is found for larger particle sizes (0.15 - 2.5?m versus 0.03 - 0.15?m). However, the model underestimates the wet scavenging efficiency (by up to 50%), in general, for both mass and number concentrations. The effect of neglecting secondary activation above cloud base on this underestimation is quantified by comparing the standard simulation with a simulation that includes a newly implemented secondary activation scheme. A new treatment of ice-borne aerosol is also coupled to the Morrison microphysical scheme in WRF-Chem to improve the representation of aerosol wet scavenging.

  3. COMPOSITION AND ORIGINS OF AEROSOL AT A FORESTED MOUNTAIN IN SOVIET GEORGIA

    EPA Science Inventory

    Ambient aerosol particles were collected by means of dichotomous samplers during July, 1979, at Abastumani Astrophysical Observatory, which is in a remote forested area of Georgia, USSR. Samples were analyzed for mass, elemental, crystalline, and ionic species concentrations and ...

  4. ANALYSIS OF SECONDARY ORGANIC AEROSOL COMPOUNDS FROM THE PHOTOOXIDATION OF D-LIMONENE IN THE PRESENCE OF NO X AND THEIR DETECTION IN AMBIENT PM 2.5

    EPA Science Inventory

    Chemical analysis of secondary organic aerosol (SOA) from the photooxidation of a d-limonene/NOx/air mixture was carried out. SOA, generated in a smog chamber, was collected on Zefluor filters. To determine the structural characteristics of the compounds, the filter sample...

  5. Integrated chemical species analysis with source-receptor modeling results to characterize the effects of terrain and monsoon on ambient aerosols in a basin.

    PubMed

    Chen, Chi-Fan; Liang, Jeng-Jong

    2013-05-01

    This study integrated estimated oxidation ratio of sulfur (SOR) and oxidation ratio of nitrogen (NOR) with source-receptor modeling results to identify the effects of terrain and monsoons on ambient aerosols in an urban area (north basin) and a rural area (south basin) of the Taichung Basin. The estimated results indicate that the conversion of sulfur mainly occurs in fine particles (PM?.?), whereas the conversion of nitrogen occurs in approximately equal quantities of PM?.? and coarse particles (PM?.?-??). The results show a direct relationship for PM?.? between the modeling results with SOR and NOR. The high PM?.? SOR, NOR, and secondary aerosol values all occurred in the upwind area during both monsoons; this shows that the photochemical reaction and the terrain effect on the pollutant transmission were significant in the basin. Additionally, the urban heat island effect on the urban area and the valley effect on the rural area were significant. The results show that secondary aerosol in PM?.?-?? contributed approximately 10 % during both monsoons, and the difference in the contribution from secondary aerosol between both areas was small. Vehicle exhaust emissions and wind-borne dust were two crucial PM2.5-10 contributors during both monsoons; their average contributions in both areas were higher than 34 and 32 %, respectively. PMID:22996820

  6. Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(-) electrospray ionization mass spectrometry.

    PubMed

    Gómez-González, Yadian; Surratt, Jason D; Cuyckens, Filip; Szmigielski, Rafal; Vermeylen, Reinhilde; Jaoui, Mohammed; Lewandowski, Michael; Offenberg, John H; Kleindienst, Tadeusz E; Edney, Edward O; Blockhuys, Frank; Van Alsenoy, Christian; Maenhaut, Willy; Claeys, Magda

    2008-03-01

    In the present study, we have characterized in detail the MS(2) and MS(3) fragmentation behaviors, using electrospray ionization (ESI) in the negative ion mode, of previously identified sulfated isoprene secondary organic aerosol compounds, including 2-methyltetrols, 2-methylglyceric acid, 2-methyltetrol mononitrate derivatives, glyoxal and methylglyoxal. A major fragmentation pathway for the deprotonated molecules of the sulfate esters of 2-methyltetrols and 2-methylglyceric acid and of the sulfate derivatives of glyoxal and methylglyoxal is the formation of the bisulfate [HSO(4)](-) anion, while the deprotonated sulfate esters of 2-methyltetrol mononitrate derivatives preferentially fragment through loss of nitric acid. Rational interpretation of MS(2), MS(3) and accurate mass data led to the structural characterization of unknown polar compounds in K-puszta fine aerosol as organosulfate derivatives of photooxidation products of unsaturated fatty acids, i.e. 2-hydroxy-1,4-butanedialdehyde, 4,5- and 2,3-dihydroxypentanoic acids, and 2-hydroxyglutaric acid, and of alpha-pinene, i.e. 3-hydroxyglutaric acid. The deprotonated molecules of the sulfated hydroxyacids, 2-methylglyceric acid, 4,5- and 2,3-dihydroxypentanoic acid, and 2- and 3-hydroxyglutaric acids, showed in addition to the [HSO(4)](-) ion (m/z 97) neutral losses of water, CO(2) and/or SO(3), features that are characteristic of humic-like substances. The polar organosulfates characterized in the present work are of climatic relevance because they may contribute to the hydrophilic properties of fine ambient aerosol. In addition, these compounds probably serve as ambient tracer compounds for the occurrence of secondary organic aerosol formation under acidic conditions. PMID:17968849

  7. Four-year long-path monitoring of ambient aerosol extinction at a central European urban site: dependence on relative humidity

    NASA Astrophysics Data System (ADS)

    Skupin, A.; Ansmann, A.; Engelmann, R.; Seifert, P.; Müller, T.

    2015-04-01

    The ambient aerosol particle extinction coefficient is measured with the Spectral Aerosol Extinction Monitoring System (SÆMS) along a 2.84 km horizontal path at 30-50 m height above ground in the urban environment of Leipzig (51.3° N, 12.4° E), Germany, since 2009. The dependence of the particle extinction coefficient (wavelength range from 300-1000 nm) on relative humidity up to almost 100% was investigated. The main results are presented. For the wavelength of 550 nm, the mean extinction enhancement factor was found to be 1.75 ± 0.4 for an increase of relative humidity from 40 to 80%. The respective four-year mean extinction enhancement factor is 2.8 ± 0.6 for a relative-humidty increase from 40 to 95%. A parameterization of the dependency of the urban particle extinction coefficient on relative humidity is presented. A mean hygroscopic exponent of 0.463 for the 2009-2012 period was determined. Based on a backward trajectory cluster analysis, the dependence of several aerosol optical properties for eight air flow regimes was investigated. Large differences were not found indicating that local pollution sources widely control the aerosol conditions over the urban site. The comparison of the SÆMS extinction coefficient statistics with respective statistics from ambient AERONET sun photometer observations yield good agreement. Also, time series of the particle extinction coefficient computed from in-situ-measured dry particle size distributions and humidity-corrected SÆMS extinction values (for 40% relative humidity) were found in good overall consistency, which corroborates the applicability of the developed humidity parameterization scheme. The analysis of the spectral dependence of particle extinction (Ångström exponent) revealed an increase of the 390-881 nm Ångström exponent from, on average, 0.3 (at 30% relative humidity) to 1.3 (at 95% relative humidity) for the four-year period.

  8. Differences in the OC/EC Ratios that Characterize Ambient and Source Aerosols due to Thermal-Optical Analysis

    EPA Science Inventory

    Thermal-optical analysis (TOA) is typically used to measure the OC/EC (organic carbon/elemental carbon) and EC/TC (elemental carbon/total carbon) ratios in source and atmospheric aerosols. The present study utilizes a dual-optical carbon aerosol analyzer to examine the effects of...

  9. Source estimation of anthropogenic aerosols collected by a DRUM sampler during spring of 2002 at Gosan, Korea

    NASA Astrophysics Data System (ADS)

    Han, J. S.; Moon, K. J.; Ryu, S. Y.; Kim, Y. J.; Perry, Kevin D.

    Continuous measurements of trace elements in size-segregated aerosols were performed by X-ray fluorescence analysis in order to assess the transport of natural and anthropogenic aerosol sources to Gosan site in springtime 2002. Various aerosol elemental components (such as Al, Ca, Si, K, Ti, and Mn) had low enrichment factors close to one and exhibited a similar temporal variation in coarse particle range (2.5-12 ?m) indicating the dominant influence of soil dust. On the other hand, in the fine particle size range (0.09-2.5 ?m), several anthropogenic elements in ambient particles (such as As, Se, Zn, Pb, and Cu) revealed high enrichment (100aerosol composition data in order to identify anthropogenic sources of aerosols during non-Asian dust (NAD) period. As a result, it was found that the coarse particles were mainly influenced by soil, seasalt, coal combustion, and metallurgical emission and fine particles were significantly attributed to several anthropogenic sources, such as oil combustion, nonferrous metal source, and municipal incineration. Especially, submicron particles (0.09-0.56 ?m) were further impacted by motor vehicles and field burning emissions in addition to those sources.

  10. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Hayes, P. L.; Peng, Z.; Palm, B. B.; Hu, W.; Day, D. A.; Li, R.; Cubison, M. J.; Brune, W. H.; Graus, M.; Warneke, C.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Jimenez, J. L.

    2015-08-01

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An Oxidation Flow Reactor (OFR) was deployed to study SOA formation in real-time during the CalNex campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent atmospheric aging from hours up to several weeks in 3 min of processing. OH radical concentration was continuously stepped, obtaining measurements of real-time SOA formation and oxidation at multiple equivalent ages from 0.8 days-6.4 weeks. Enhancement of OA from aging showed a maximum net SOA production between 0.8-6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry, and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived VOC correlation, indicates the importance of relatively reactive (?OH ∼ 0.3 day) SOA precursors in the LA-Basin. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ∼ -0.65). Oxidation state of carbon (OSC) in reactor SOA increased steeply with age and remained elevated (OSC ∼ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (?CO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to higher ages where OA loss dominates. The mass added at low-to-intermediate ages is due primarily to condensation of oxidized species, not heterogeneous oxidation. The OA decrease at high photochemical ages is dominated by heterogeneous oxidation followed by fragmentation/evaporation. A comparison of urban SOA formation in this study with a similar study of vehicle SOA in a tunnel supports the dominance of vehicle emissions in urban SOA. Pre-2007 SOA models underpredict SOA formation by an order of magnitude, while a more recent model performs better but overpredicts at higher ages. These results demonstrate the value of the reactor as a tool for in situ evaluation of the SOA formation potential and OA evolution from ambient air.

  11. Chemical and statistical interpretation of sized aerosol particles collected at an urban site in Thessaloniki, Greece.

    PubMed

    Tsitouridou, Roxani; Papazova, Petia; Simeonova, Pavlina; Simeonov, Vasil

    2013-01-01

    The size distribution of aerosol particles (PM0.015-PM18) in relation to their soluble inorganic species and total water soluble organic compounds (WSOC) was investigated at an urban site of Thessaloniki, Northern Greece. The sampling period was from February to July 2007. The determined compounds were compared with mass concentrations of the PM fractions for nano (N: 0.015 < Dp < 0.06), ultrafine (UFP: 0.015 < Dp < 0.125), fine (FP: 0.015 < Dp < 2.0) and coarse particles (CP: 2.0 < Dp < 8.0) in order to perform mass closure of the water soluble content for the respective fractions. Electrolytes were the dominant species in all fractions (24-27%), followed by WSOC (16-23%). The water soluble inorganic and organic content was found to account for 53% of the nanoparticle, 48% of the ultrafine particle, 45% of the fine particle and 44% of the coarse particle mass. Correlations between the analyzed species were performed and the effect of local and long-range transported emissions was examined by wind direction and backward air mass trajectories. Multivariate statistical analysis (cluster analysis and principal components analysis) of the collected data was performed in order to reveal the specific data structure. Possible sources of air pollution were identified and an attempt is made to find patterns of similarity between the different sized aerosols and the seasons of monitoring. It was proven that several major latent factors are responsible for the data structure despite the size of the aerosols - mineral (soil) dust, sea sprays, secondary emissions, combustion sources and industrial impact. The seasonal separation proved to be not very specific. PMID:24007436

  12. Effect of Vaporizer Temperature on Ambient Non-Refractory Submicron Aerosol Composition and Mass Spectra Measured by the Aerosol Mass Spectrometer

    EPA Science Inventory

    Aerodyne Aerosol Mass Spectrometers (AMS) are routinely operated with a constant vaporizer temperature (Tvap) of 600oC in order to facilitate quantitative detection of non-refractory submicron (NR-PM1) species. By analogy with other thermal desorption instrument...

  13. DETERMINATION OF SECONDARY ORGANIC AEROSOL PRODUCTS FROM THE PHOTOOXIDATION OF TOLUENE AND THEIR IMPLICATIONS IN AMBIENT PM2.5

    EPA Science Inventory

    Laboratory study was carried out to investigate the secondary organic aerosol products from photooxidation of the aromatic hydrocarbon toluene. The laboratory experiments consisted of irradiating toluene/propylene/NOX/air mixtures in a smog chamber operated in the dynamic mode...

  14. Electron Microanalysis of Aerosols Collected at Mauna Loa Observatory During an Asian Dust Storm Event

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Willis, R. D.; Ortiz-Montalvo, D. L.; Colton, A.

    2014-12-01

    Located in the remote marine free troposphere, the Mauna Loa Observatory (MLO) represents a clean airshed that can be used to study anthropogenic pollution influences and long-range transport of aerosol particles from the Asian mainland. Because of the global nature of Asian dust storms, the radiative properties of these particles transported long-range can significantly impact global climate. It has been proposed that aerosols transported to MLO during upslope wind conditions (typically daytime) are local in origin while aerosols transported during downslope conditions (typically nighttime) represent long-range transport in the free troposphere. Twelve PM10 samples (six daytime/nightime pairs) were collected on polycarbonate filters for 72 hours each between March 15 and April 26, 2011. Bulk samples of dust from local sources (road dust, parking lot, lava fields) were collected as well in order to assess the PM10 contribution from local dusts. On March 19-20 the Korea Meteorological Administration documented a significant dust event over the Korean peninsula. Back-trajectory analyses from MLO coupled with local wind speed and wind direction data suggest that this dust event may have been captured during the MLO sampling campaign. MLO samples were analyzed by computer-controlled scanning electron microscopy (CCSEM) coupled with energy-dispersive X-ray spectrometry (EDX) and particles were sorted into compositionally-distinct particle types which were then compared across the sample set. Concentrations of particle types expected to be associated with Asian dust were observed to peak in one pair of daytime/nighttime samples collected between March 22 and March 28. Manual microscopic characterization of suspected Asian dust particles and local dust particles was carried out using electron backscatter diffraction (EBSD) in conjunction with EDX and focussed ion beam SEM (FIB-SEM) in an effort to characterize differences in physicochemical or radiative properties of local versus long-range transported particles. FIB-SEM analysis allows for the 3-dimensional reconstruction of the composition of selected particles. Particle optical properties are then calculated from the 3-D reconstructions.

  15. NEUTRON ACTIVATION ANALYSIS FOR SIMULTANEOUS DETERMINATION OF TRACE ELEMENTS IN AMBIENT AIR COLLECTED ON GLASS-FIBER FILTERS

    EPA Science Inventory

    Arsenic with 25 other elements are simultaneously determined in ambient air samples collected on glass-fiber filter composites at 250 United States sites. The instrumental neutron activation analysis (NAA) technique combined with the power of a dedicated mini-computer resulted in...

  16. Contrasting online MSn spectra of organic acids in ambient aerosol from the boreal forest at Hyytiälä, Finland and from the mixed forest at the Taunus observatory, Germany

    NASA Astrophysics Data System (ADS)

    Vogel, Alexander L.; Äijälä, Mikko; Ehn, Mikael; Junninen, Heikki; Petäjä, Tuukka; Worsnop, Douglas R.; Kulmala, Markku; Williams, Jonathan; Schneider, Johannes; Hoffmann, Thorsten

    2013-04-01

    Emission of biogenic volatile organic compounds (BVOCs) by the vegetation and subsequent atmospheric oxidation leads to the formation of secondary organic aerosol (SOA). Therefore, forests are a main source of aerosols which have significant impact on the earth's climate.[1] The oxidation of BVOCs results in a variety of mostly unidentified organic species in trace level concentrations, which partition between gas- and particle-phase. Organic acids are of particular importance for the particle-phase fraction, since the higher oxidation state and molecular mass, compared to the corresponding precursors, is accompanied by a much lower volatility. Until now, only limited instrumentation exists for the simultaneous online analysis of organic acids in gas- and particle-phase. Here we show the first field application of an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI-IT-MS) in combination with a miniature Versatile Aerosol Concentration Enrichment System (mVACES) for measuring organic acids in gas- and particle-phase[2]. The benefits of the online APCI-IT-MS are soft ionization with low fragmentation, high time resolution and less sampling artifacts than in the common procedure of taking filter samples, extraction and subsequent detection with LC-MS. Furthermore, the capability to perform online MSn of isolated m/z ratios from ambient and laboratory generated aerosol leads to an improved understanding of the composition of secondary organic aerosol. The here described measurements were conducted during the HUMPPA-COPEC 2010 campaign at Hyytiälä, Finland and during the INUIT campaign 2012 on Mt. Kleiner Feldberg, Germany. By merging APCI-IT-MS data with data from the Aerodyné C-ToF-AMS, it can be observed that the gas- to particle-partitioning of organic acids strongly depends on the fraction of aerosol which is organic matter, as it is predicted by a partitioning model[3]. High observed gas-phase concentrations of organic acids at Hyytiälä are a strong hint for unidentified species. This can be supported by MSn observations, where the fragmentation pattern from Hyytiälä show different signals compared to the fragmentation pattern from the same m/z ratio at the Taunus Observatory and from chamber terpene ozonolysis. Literature: [1] Tunved, P. et al. (2006) Science 312, 261-263. [2] Vogel, A. L. et al. (2012) Atmos. Meas. Tech. Discuss. 5, 6147-6182. [3] Pankow, J. F. (1994) Atmos. Env. 28, 189-193.

  17. DEVELOPMENTS IN DIRECT THERMAL EXTRACTION GAS CHROMATOGRAPHY-MASS SPECTROMETRY OF FINE AEROSOLS

    EPA Science Inventory

    This examines thermal extraction gas chromatography-mass spectrometry (TE/GC/MS) applied to aerosols collected on filters. Several different TE/GC/MS systems as a group have speciated hundreds of individual organic constituents in ambient fine aerosols. Molecular marker source ap...

  18. Aerosol and Plasma Measurements in Noctilucent Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Scott

    2000-01-01

    The purpose of this project was to develop rocket-borne probes to detect charged aerosol layers in the mesosphere. These include sporadic E layers, which have their origin in meteoric dust, and noctilucent clouds, which form in the arctic summer and are composed of ice crystals. The probe being developed consists of a charge collecting patch connected to a sensitive electrometer which measures the charge deposited on the patch by impacting aerosols. The ambient electrons and light ions in the mesosphere are prevented from being collected by a magnetic field. The magnetic force causes these lighter particles to turn so that they miss the collecting patch.

  19. 78 FR 25078 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; Ambient...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ...), ``Nitrogen Oxides Ambient Air Monitoring (Renewal)'' (EPA ICR No. 2358.04, OMB Control No. 2060-0638) to the... approved under the Nitrogen Oxides Ambient Monitoring ICR (OMB 2060-0638, EPA ICR Number 2358.03) and the... previously requested via the Federal Register (78 FR 12052) on February 21, 2013 during a 60-day...

  20. The Detroit Exposure and Aerosol Research Study (DEARS) - Article in National Ambient Air Quality Status and Trends through 2007

    EPA Science Inventory

    A research study that the U.S. Environmental Protection Agency conducted in Detroit, Michigan, named the Detroit Exposure and Aerosol Research Study (DEARS), will help develop data that improves our understanding of human exposure to various air pollutants in our environment.

  1. EFFECT OF AN ACTIVATED SLUDGE WASTEWATER TREATMENT PLANT ON AMBIENT AIR DENSITIES OF AEROSOLS CONTAINING BACTERIA AND VIRUSES

    EPA Science Inventory

    Bacteria and virus-containing aerosols were studied during late summer and fall in a U.S. midwestern suburb before and during the start up and operation of an unenclosed activated sludge wastewater treatment plant. The air in this suburban area contained low-level densities of in...

  2. Correlations between absorption Angström exponent (AAE) of wintertime ambient urban aerosol and its physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Filep, Á.; Pintér, M.; Török, Zs.; Bozóki, Z.; Szabó, G.

    2014-07-01

    Based on a two-week measurement campaign in an environment heavily polluted both by transit traffic and household heating in the inner city of Szeged (Hungary), correlations between the absorption Angström exponent (AAE) fitted to the optical absorption coefficients measured with a four wavelength (1064, 532, 355 and 266 nm) photoacoustic aerosol measuring system (4?-PAS) and various aerosol parameters were identified. AAE was found to depend linearly on OCwb/EC and on NGM100/NGMD20, i.e. on the ratio of mass concentrations of elemental carbon (EC) to the fraction of organic carbon associated with wood burning (OCwb), and on the ratio of aerosol number concentrations in the 20 nm (NGMD20) to 100 nm (NGMD100) modes, with a regression coefficient of R = 0.95 and R = 0.86, respectively. In the daily fluctuation of AAE two minima were identified, which coincide with the morning and afternoon rush hours, during which NGMD20 exhibits maximum values. During the campaign the shape of the aerosol volume size distribution (dV/dlogD) was found to be largely invariant, supporting the assumption that the primary driver for the AAE variation was aerosol chemical composition rather than particle size. Furthermore, when wavelength segregated AAE values were calculated, AAE for the shorter wavelengths (AAE355-266) was also found to depend linearly on the above mentioned ratios with similar regression coefficients but with a much steeper correlation line, while the AAE for the longer wavelengths (AAE1064-532) exhibits only a considerably weaker correlation. These results prove the unique advantages of real time multi-wavelength photoacoustic measurement of optical absorption in case the wavelength range includes the ultra-violet too.

  3. Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine

    NASA Astrophysics Data System (ADS)

    Medeiros, Patricia M.; Conte, Maureen H.; Weber, John C.; Simoneit, Bernd R. T.

    Bulk aerosols (>1 ?m) were collected continuously above the canopy at the Howland Experimental Forest, Maine, USA from May to October 2002. Each sample integrated over an approximately 2-week period. Mono- and disaccharide sugars were extracted using a microscale technique and were analyzed as their TMS derivatives by gas chromatography-mass spectrometry (GC-MS). Concentrations of total aerosol sugars ranged from 10 to 180 ng m -3. Glucose was the most abundant sugar (40-75% of the total sugars). The monosaccharides arabinose, fructose, galactose, mannose, arabitol and mannitol, and the disaccharides sucrose, maltose and mycose (aka trehalose) were also present in lower concentrations. The sugar composition in the aerosols varied seasonally. Fructose and sucrose were prevalent in early spring and decreased in relative abundance as the growing season progressed. Sugar polyols (arabitol and mannitol) and the disaccharide mycose (a fungal metabolite) were more prevalent in autumn during the period of leaf senescence. The changes in the sugar composition in the aerosol samples appear to reflect the seasonality of sugar production and utilization by the ecosystem. Plant waxes were present as significant components also indicating an input from biogenic background. Smoke plumes from Quebec forest fires passed over the Howland site in early July 2002. Levoglucosan, a biomarker of biomass burning, increased by an order of magnitude in the aerosol samples collected during this time. Glucose, mannose, arabinose, galactose, and also, plant waxes increased in concentration by factors of 2-5 in the smoke-impacted samples, indicating that wildfires enhance atmospheric emissions of uncombusted organic compounds. In contrast, concentrations of fructose, sugar polyols and disaccharides were not significantly higher in the smoke-impacted samples and indicated that biomass burning was not a significant source of these compounds in the aerosols.

  4. VERSATILE AEROSOL CONCENTRATION ENRICHMENT SYSTEM (VACES) FOR SIMULTANEOUS IN-VIVO AND IN-VITRO EVALUATION OF TOXIC EFFECTS OF ULTRAFINE, FINE, AND COARSE AMBIENT PARTICLES. PART II. FIELD EVALUATION. (R826232)

    EPA Science Inventory

    Abstract

    This study presents results from a field evaluation of a mobile versatile aerosol concentration enrichment system (VACES), designed to enhance the ambient concentrations of ultrafine (less than 0.18 VERSATILE AEROSOL CONCENTRATION ENRICHMENT SYSTEM (VACES) FOR SIMULTANEOUS IN VIVO AND IN VITRO EVALUATION OF TOXIC EFFECTS OF ULTRAFINE, FINE AND COARSE AMBIENT PARTICLES. PART II: FIELD EVALUATION. (R827352C001)

    EPA Science Inventory

    This study presents results from a field evaluation of a mobile versatile aerosol concentration enrichment system (VACES), designed to enhance the ambient concentrations of ultrafine (less than 0.18 small m...</p>
              </li>

   <li>
		<p><a target=VERSATILE AEROSOL CONCENTRATION ENRICHMENT SYSTEM (VACES) FOR SIMULTANEOUS IN VIVO AND IN VITRO EVALUATION OF TOXIC EFFECTS OF ULTRAFINE, FINE AND COARSE AMBIENT PARTICLES. PART I: DEVELOPMENT AND LABORATORY CHARACTERIZATION. (R827352C001)

    EPA Science Inventory

    This study presents the development and bench-testing of a versatile aerosol concentration enrichment system (VACES) capable of simultaneously concentrating ambient particles of the coarse, fine and ultrafine size fractions for conducting in vivo and in vitro studies. The VACE...

  5. Aerosol-Assisted Solid Debris Collection for the National Ignition Facility

    SciTech Connect

    Nelson, S L; Shaughnessy, D A; Moody, K J; Ivanov, V V; Astanovitskiy, A L; Lewis, L A; Rundberg, R S

    2010-05-21

    The National Ignition Facility (NIF) has been completed and has made its first shots on-target. While upcoming experiments will be focused on achieving ignition, a variety of subsequent experiments are planned for the facility, including measurement of cross sections, astrophysical measurements, and investigation of hydrodynamic instability in the target capsule. In order to successfully execute several of these planned experiments, the ability to collect solid debris following a NIF capsule shot will be required. The ability to collect and analyze solid debris generated in a shot at the National Ignition Facility (NIF) will greatly expand the number of nuclear reactions studied for diagnostic purposes. Currently, reactions are limited to only those producing noble gases for cryogenic collection and counting with the Radchem Apparatus for Gas Sampling (RAGS). The radchem solid collection diagnostic has already been identified by NIF to be valuable for the determination and understanding of mix generated in the target capsule's ablation. LLNL is currently developing this solid debris collection capability at NIF, and is in the stage of testing credible designs. Some of these designs explore the use of x-ray generated aerosols to assist in collection of solid debris. However, the variety of harsh experimental conditions this solid collection device will encounter in NIF are challenging to replicate. Experiments performed by Gary Grim et al. at Sandia National Laboratory's RHEPP1 facility have shown that ablation causes a cloud of material removed from an exposed surface to move normal to and away from the surface. This ablation is certain to be a concern in the NIF target chamber from the prompt x-rays, gamma rays, etc. generated in the shot. The cloud of ablated material could interfere with the collection of the desired reaction debris by slowing down the debris so that the kinetic energy is too low to allow implantation, or by stopping the debris from reaching the collection device entirely. Our goal is to use this primary ablation wave to our advantage, by the creation of ionized alkali metal halide salt aerosols. This technique is similar to that used by many particle accelerator groups for gas-jet transport. Ideally the salt would be ablated from a substrate, encounter the reaction debris, agglomerate, and be collected for further study. We have done studies at laser and pulsed-power facilities (Titan laser at LLNL, Trident laser at LANL, Zebra z-pinch at Nevada Terawatt Facility) evaluating the hardiness of materials for placement in the NIF target chamber, as well as testing aerosol generation by the incident x-rays generated in device shots. To test this method's potential success in the NIF environment, we have tested KCl, KI, RbI, and CsI films of 1 and 2 um linear thickness on aluminum and silicon wafer substrates in these aforementioned facilities, at varied distances. These salts do ablate in the presence of sufficient x-ray fluence. Further analysis to quantify the final ablation depth as a function of x-ray fluence is ongoing. Half of each sample was masked with a thick tungsten foil for photon opacity. KCl was the most difficult salt to ablate, from comparing the tungsten-masked side of the samples to the unmasked side of the samples. This is likely due to KCl's absorbance peak being at lower wavelengths than that of KI, {approx}160 nm vs. {approx}220 nm, respectively. Samples with and without collimation were tested to identify if any condensation of these ablated salts occurred after ablation. Visual inspection of the silicon wafer witness plates placed parallel to the direction of the incident photons showed that a vapor was deposited on the wafers next to the collimators. Further analysis with EDS in the case of the collimated samples conclusively identified the vapor as CsI. We also intend to examine samples of bare substrate exposed to the same experimental conditions for post-shot change via SEM images, optical microscopy, and atomic force microscopy (AFM). Furthermore, tests with separated isotopes

  6. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  7. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days

    NASA Astrophysics Data System (ADS)

    See, S. W.; Balasubramanian, R.; Wang, W.

    2006-05-01

    Many Southeast Asian countries have been constantly plagued by recurring smoke haze episodes as a result of traditional slash-and-burn practices in agricultural areas to clear crop lands or uncontrolled forest fires. However, our current knowledge on the physiochemical and optical properties of ambient aerosols associated with regional haze phenomenon is still fairly limited. Therefore a comprehensive field study was carried out in Singapore from March 2001 to March 2002 under varying weather conditions to gain a better understanding of the characteristics. The physical (size distribution of mass and number concentrations), chemical (mass concentrations of chemical components: 14 ions, 24 metals, elemental carbon (EC) and organic carbon (OC)), and optical (light absorption (bap) and scattering (bsp) by particles) characteristics of ambient aerosol particles were investigated. The results are reported separately for clear and hazy days by categorizing the days as clear or hazy on the basis of visibility data. It was observed that the average concentrations of PM2.5 and most chemical components increased approximately by a factor of 2 on hazy days. Backward air trajectories together with the hot spot distributions in the region indicated that the degradation in Singapore's air quality on hazy days was attributable to large-scale forest fires in Sumatra. This visibility degradation was quantitatively measured on the basis of the light absorption and scattering by particles. As expected, scattering rather than absorption controlled atmospheric visibility, and PM2.5 particles present on hazy days were more efficient at scattering light than those found on clear days.

  8. Miniature Flow-Through Low-Temperature Plasma Ionization Source for Ambient Ionization of Gases and Aerosols.

    PubMed

    Spencer, Sandra E; Santiago, Brandon G; Glish, Gary L

    2015-12-01

    The design and operation of an inexpensive, miniature low-temperature plasma ion source is detailed. The miniature low-temperature plasma ion source is operated in a "flow-through" configuration, wherein the gaseous or aerosolized analyte, caffeine or pyrolyzed ethyl cellulose, in a carrier gas is used as the plasma gas. In this flow-through configuration, the sensitivity for the caffeine standard and the pyrolysis products of ethyl cellulose is maintained or increased and the reproducibility of the ion source is increased. Changes in the relative intensity of ions from the aerosol produced by pyrolysis of ethyl cellulose are observed in the mass spectrum when the low-temperature plasma ion source is used in the flow-through configuration. Experiments suggest this change in relative intensity is likely due to differences in ionization efficiency rather than increased fragmentation of ethyl cellulose pyrolysis products during ionization. Flow-through low-temperature plasma ionization with the miniature ion source is shown to be a promising technique for the ionization of compounds in gases or aerosol particles. PMID:26531160

  9. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    NASA Astrophysics Data System (ADS)

    Rumsey, I. C.; Cowen, K. A.; Walker, J. T.; Kelly, T. J.; Hanft, E. A.; Mishoe, K.; Rogers, C.; Proost, R.; Beachley, G. M.; Lear, G.; Frelink, T.; Otjes, R. P.

    2014-06-01

    Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA) measures water-soluble gases and aerosols at an hourly temporal resolution. The performance of the MARGA was assessed under the US EPA Environmental Technology Verification (ETV) program. The assessment was conducted in Research Triangle Park, North Carolina, from 8 September to 8 October 2010 and focused on gaseous SO2, HNO3, and NH3 and aerosol SO42-, NO3-, and NH4+. Precision of the MARGA was evaluated by calculating the median absolute relative percent difference (MARPD) between paired hourly results from duplicate MARGA units (MUs), with a performance goal of ? 25%. The accuracy of the MARGA was evaluated by calculating the MARPD for each MU relative to the average of the duplicate denuder/filter pack concentrations, with a performance goal of ? 40%. Accuracy was also evaluated by using linear regression, where MU concentrations were plotted against the average of the duplicate denuder/filter pack concentrations. From this, a linear least squares line of best fit was applied. The goal was for the slope of the line of best fit to be between 0.8 and 1.2. The MARGA performed well in comparison to the denuder/filter pack for SO2, SO42-, and NH4+, with all three compounds passing the accuracy and precision goals by a significant margin. The performance of the MARGA in measuring NO3- could not be evaluated due to the different sampling efficiency of coarse NO3- by the MUs and the filter pack. Estimates of "fine" NO3- were calculated for the MUs and the filter pack. Using this and results from a previous study, it is concluded that if the MUs and the filter pack were sampling the same particle size, the MUs would have good agreement in terms of precision and accuracy. The MARGA performed moderately well in measuring HNO3 and NH3, though neither met the linear regression slope goals. However, recommendations for improving the measurement of HNO3 and NH3 are discussed. It is concluded that SO42-, SO2, NO3-, HNO3, NH4+, and NH3 concentrations can be measured with acceptable accuracy and precision when the MARGA is operated in conjunction with the recommendations outlined in the manuscript.

  10. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    NASA Astrophysics Data System (ADS)

    Rumsey, I. C.; Cowen, K. A.; Walker, J. T.; Kelly, T. J.; Hanft, E. A.; Mishoe, K.; Rogers, C.; Proost, R.; Beachley, G. M.; Lear, G.; Frelink, T.; Otjes, R. P.

    2013-09-01

    Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA) measures water-soluble gases and aerosols at hourly temporal resolution. The performance of the MARGA was assessed under the US EPA Environmental Technology Verification (ETV) program. The assessment was conducted in Research Triangle Park, North Carolina from 8 September-8 October 2010 and focused on gaseous SO2, HNO3 and NH3 and aerosol SO4-, NO3- and NH4+. Precision of the MARGA was evaluated by calculating the median absolute relative percent difference (MARPD) between paired hourly results from duplicate MARGA units (MUs), with a performance goal of <25%. The accuracy of the MARGA was evaluated by calculating the median absolute relative percent difference (MARPD) for each MU relative to the average of the duplicate denuder/filter pack concentrations, with a performance goal of ?40%. Accuracy was also evaluated by using linear regression, where MU concentrations were plotted against the average of the duplicate denuder/filter pack concentrations. From this, a linear least squares line of best fit was applied. The goal was for the slope of the line of best fit to be between 0.8 and 1.2. The MARGA performed well in comparison to the denuder/filter pack for SO2, SO42- and NH4+, with all three compounds passing the accuracy and precision goals by a significant margin. The performance of the MARGA in measuring NO3- could not be evaluated due to the different sampling efficiency of coarse NO3- by the MUs and the filter pack. Estimates of "fine" NO3- were calculated for the MUs and the filter pack. Using this and results from a previous study, it is concluded that if the MUs and the filter pack were sampling the same particle size, the MUs would have good agreement in terms of precision and accuracy. The MARGA performed moderately well in measuring HNO3 and NH3, though neither met the linear regression slope goals. However, recommendations for improving the measurement of HNO3 and NH3 are discussed. It is concluded that SO42-, SO2, NO3-, HNO3, NH4+ and NH3 concentrations can be measured with acceptable accuracy and precision when the MARGA is operated in conjunction with the recommendations outlined in the manuscript.

  11. Technical Note: A novel rocket-based in situ collection technique for mesospheric and stratospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Reid, W.; Achtert, P.; Ivchenko, N.; Magnusson, P.; Kuremyr, T.; Shepenkov, V.; Tibert, G.

    2013-03-01

    A technique for collecting aerosol particles between altitudes of 17 and 85 km is described. Spin-stabilized collection probes are ejected from a sounding rocket allowing for multi-point measurements. Each probe is equipped with 110 collection samples that are 3 mm in diameter. The collection samples are one of three types: standard transmission electron microscopy carbon grids, glass fibre filter paper or silicone gel. Collection samples are exposed over a 50 m to 5 km height range with a total of 45 separate ranges. Post-flight electron microscopy will give size-resolved information on particle number, shape and elemental composition. Each collection probe is equipped with a suite of sensors to capture the probe's status during the fall. Parachute recovery systems along with GPS-based localization will ensure that each probe can be located and recovered for post-flight analysis.

  12. A wintertime study of atmospheric aerosols collected in São Paulo, Brazil.

    NASA Astrophysics Data System (ADS)

    Vasconcellos, P. C.; Ogura, L.; Lopes, W.; Pereira, P. A.; Andrade, J. B.; Sanchez-Ccoyllo, O.

    2007-05-01

    Atmospheric pollution has become a significant problem for urban areas worldwide. In megacities aerosols are released by different emissions sources. These sources can emit particles in a large variety of sizes. Size distributions provide information on the sources and the sources processes of particles or species (Maenhaut et al. 2002). In the wintertime (2005) twenty PM10 samples were collected in São Paulo city using hi-vol sampler and fine particles (from 6 to 18,000 nm) were collected using NanoMoudi impactor. Polycyclic aromatic hydrocarbons (PAH) recognised as mutagen and carcinogen compounds were identified in PM10 samples and gravimetric concentrations were calculated for fine particles. The results showed PAH total concentrations ranged from 0.27 to 43.8 ng m-3. Phenanthrene (7.3 ng m-3) and anthracene (2.2 ng m-3), lighter compounds were the most abundant PAH; benz(a)pyrene (1.4 ng m-3) mutagenic compound was found in higher concentration than previous work. For PM10 concentrations, 60% of the samples (n=12) are higher than WHO standards (50 ?g m-3). Three modes can be found in the particles with mean diameter: 44 nm, 440 nm and 14000 nm. It is in agreement with the fact this site is located inside a large green area (campus of the University of São Paulo), which can be source of particles between 25 and 440 nm. We conclude that at this urban site vehicular emissions are indicated as being the most important PAH emitters. For fine particles, soil resuspension and biogenic emissions seem to be the most important sources.

  13. Compositional variability of the aerosols collected on Kerkennah Islands (central Tunisia)

    NASA Astrophysics Data System (ADS)

    Trabelsi, A.; Masmoudi, M.; Quisefit, J. P.; Alfaro, S. C.

    2016-03-01

    The aim of the present study is to investigate the seasonal variability of the aerosol concentrations and origins in central Tunisia. Four field campaigns were carried out in 2010/2011 to collect air-suspended particles on the Kerkennah Islands. The elemental composition (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Pb, Ni, V, and As) of the particles collected in summer (June and July), autumn (September and November), winter (February and March), and spring (April and May) is determined by X-ray fluorescence analysis. Examination of the enrichment factors (EF) of all elements indicate that Al, Fe, Si, Ca, Ti, Mn, and Cr are mainly derived from soil sources, whereas Na and Cl are mostly of marine origin. Other elements such as K and Mg or S and P have multiple origins (Marine/crustal and crustal/anthropogenic, respectively). Finally, V, Cu, Ni, As, and Pb appear to be produced by anthropogenic activities. Based on the inter-elemental correlations, the mass concentrations of mineral dust (MD), sea-salt (SS) and anthropogenic (non-crustal and non-marine) sulfates (NSS) are quantified. MD, SS and NSS display significant inter-seasonal differences: on the one hand, MD and SS are the highest in spring and the lowest in winter, probably because of the seasonal change in meteorological conditions. On the other hand, NSS and Cu concentrations are above their autumn and winter values in spring and summer, which suggests the existence of a common source of the combustion type for these two pollutants.

  14. Molecular characterization of S- and N-containing organic constituents in ambient aerosols by negative ion mode high-resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    NASA Astrophysics Data System (ADS)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Rubitschun, Caitlin L.; Surratt, Jason D.; Goldstein, Allen H.

    2014-11-01

    Samples of ambient aerosols from the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study were analyzed using negative ion mode Nanospray Desorption Electrospray Ionization High-Resolution Mass Spectrometry (nano-DESI/MS). Four samples per day (6 h each) were collected in Bakersfield, CA on 20-24 June. Four characteristic groups were identified: molecules composed of carbon, hydrogen, and oxygen only (CHO), sulfur- (CHOS), nitrogen- (CHON), and both nitrogen- and sulfur-containing organics (CHONS). The chemical formula and elemental ratios were consistent with the presence of organonitrates, organosulfate, and nitroxy organosulfates in the negative ion mode mass spectra. The number of observed CHO compounds increased in the afternoon samples, suggesting photochemical processing as a source. The average number of CHOS compounds had the smallest changes during the day, consistent with a more broadly distributed source. Both of the nitrogen-containing groups (CHONS and CHON) had greater numbers of compounds in the early morning (midnight to 6 A.M.) and night (6 P.M. to midnight) samples, respectively, consistent with nitrate radical chemistry as a likely source for those compounds. Most of the compounds were found in submicron particles. The size distribution of the number of CHON compounds was bimodal, potentially indicating two types of sources. We conclude that the majority of the compounds observed were secondary in nature with both biogenic and anthropogenic sources. These data are complementary to previous results from positive ion mode nano-DESI/MS analysis of a subset of the same samples providing a more complete view of aerosol chemical composition at Bakersfield.

  15. Biomass burning as an important source of reactive oxygen species associated with the atmospheric aerosols in Southeastern United States - Implications for health effects of ambient particulate matter

    NASA Astrophysics Data System (ADS)

    Verma, V.; Weber, R. J. J.; Fang, T.; Xu, L.; Ng, N. L.; Russell, A. G.

    2014-12-01

    We assessed the potential of water-soluble fraction of atmospheric fine aerosols in the southeastern US to generate reactive oxygen species (ROS). ROS-generation potential of particles was quantified by the dithiothreitol (DTT) assay and involved analysis of fine particulate matter (PM) extracted from high-volume quartz filters (23 h integrated daily samples) collected for one year at various sites in different environmental settings in the southeast, including three urban Atlanta sites, and one rural site in Yorkville. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for the DTT activity. Organic aerosol (OA) composition was measured at selected sites using a High-Resolution Time-of-Flight Aerosol Mass Spectrophotometer (HR-ToF-AMS). The various factors of the organic aerosols, i.e. Isoprene OA (Isop-OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA) were also resolved, and their ability to generate ROS investigated by linear regression techniques. Among all OA factors, BBOA was most consistently associated with ROS, with the highest intrinsic DTT activity of 151±20 pmol/min/?g. The water-soluble bioavailable fraction of BBOA-DTT activity is 2-3 times higher than the reported total-DTT activity of diesel exhaust particles. The total contribution of various aerosol sources to the ROS generating potential was also determined by the positive matrix factorization approach. Interestingly, biomass burning appears as the strongest source of ROS generation, with its annual contribution of 35 % to DTT activity; the contribution was higher in winter (47 %), than summer (24 %) and fall (17 %) seasons. The good agreement between the hydrophobic DTT activity with that estimated from the summed OA components, indicates that humic-like substances (HULIS), which are abundantly emitted in biomass burning is the most important class of organic compounds associated with ROS-generation. Collectively, these results imply that biomass burning emissions is a potentially serious health hazard, as they tend to be widespread, unregulated and likely to rise in future.

  16. Hygroscopic and Chemical Properties of Aerosols collected near a Copper Smelter: Implications for Public and Environmental Health

    PubMed Central

    Sorooshian, Armin; Csavina, Janae; Shingler, Taylor; Dey, Stephen; Brechtel, Fred J.; Sáez, A. Eduardo; Betterton, Eric A.

    2012-01-01

    Particulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active copper smelter and mine tailings by the towns of Hayden and Winkelman in southern Arizona. Size-resolved particulate matter samples collected near an active copper smelter were examined with inductively coupled plasma mass spectrometry, ion chromatography, and a humidified tandem differential mobility analyzer. Aerosol particles collected at the measurement site are enriched in metals and metalloids (e.g. arsenic, lead, and cadmium) and water-uptake measurements of aqueous extracts of collected samples indicate that the particle diameter range of particles most enriched with these species (0.18–0.55 µm) overlaps with the most hygroscopic mode at a relative humidity of 90% (0.10–0.32 µm). These measurements have implications for public health, microphysical effects of aerosols, and regional impacts owing to the transport and deposition of contaminated aerosol particles. PMID:22852879

  17. Characterization of ambient and extracted PM2.5 collected on filters for toxicology applications.

    PubMed

    Roper, Courtney; Chubb, Lauren G; Cambal, Leah; Tunno, Brett; Clougherty, Jane E; Mischler, Steven E

    2015-11-01

    Research on the health effects of fine particulate matter (PM2.5) frequently disregards the differences in particle composition between that measured on an ambient filter versus that measured in the corresponding extraction solution used for toxicological testing. This study presents a novel method for characterizing the differences, in metallic and organic species, between the ambient samples and the corresponding extracted solutions through characterization of extracted PM2.5 suspended on filters. Removal efficiency was found to be 98.0?±?1.4% when measured using pre- and post-removal filter weights, however, this efficiency was significantly reduced to 80.2?±?0.8% when measured based on particle mass in the extraction solution. Furthermore, only 47.2?±?22.3% of metals and 24.8?±?14.5% of organics measured on the ambient filter were found in the extraction solution. Individual metallic and organic components were extracted with varying efficiency, with many organics being lost entirely during extraction. Finally, extraction efficiencies of specific PM2.5 components were inversely correlated with total mass. This study details a method to assess compositional alterations resulting from extraction of PM2.5 from filters, emphasizing the need for standardized procedures that maintain compositional integrity of ambient samples for use in toxicology studies of PM2.5. PMID:26446919

  18. Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies

    NASA Astrophysics Data System (ADS)

    Murphy, B. N.; Donahue, N. M.; Fountoukis, C.; Dall'Osto, M.; O'Dowd, C.; Kiendler-Scharr, A.; Pandis, S. N.

    2012-11-01

    Multigenerational oxidation chemistry of atmospheric organic compounds and its effects on aerosol loadings and chemical composition is investigated by implementing the Two-Dimensional Volatility Basis Set (2-D-VBS) in a Lagrangian host chemical transport model. Three model formulations were chosen to explore the complex interactions between functionalization and fragmentation processes during gas-phase oxidation of organic compounds by the hydroxyl radical. The base case model employs a conservative transformation by assuming a reduction of one order of magnitude in effective saturation concentration and an increase of oxygen content by one or two oxygen atoms per oxidation generation. A second scheme simulates functionalization in more detail using group contribution theory to estimate the effects of oxygen addition to the carbon backbone on the compound volatility. Finally, a fragmentation scheme is added to the detailed functionalization scheme to create a functionalization-fragmentation parameterization. Two condensed-phase chemistry pathways are also implemented as additional sensitivity tests to simulate (1) heterogeneous oxidation via OH uptake to the particle-phase and (2) aqueous-phase chemistry of glyoxal and methylglyoxal. The model is applied to summer and winter periods at three sites where observations of organic aerosol (OA) mass and O:C were obtained during the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) campaigns. The base case model reproduces observed mass concentrations and O:C well, with fractional errors (FE) lower than 55% and 25%, respectively. The detailed functionalization scheme tends to overpredict OA concentrations, especially in the summertime, and also underpredicts O:C by approximately a factor of 2. The detailed functionalization model with fragmentation agrees well with the observations for OA concentration, but still underpredicts O:C. Both heterogeneous oxidation and aqueous-phase processing have small effects on OA levels but heterogeneous oxidation, as implemented here, does enhance O:C by about 0.1. The different schemes result in very different fractional attribution for OA between anthropogenic and biogenic sources.

  1. Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies

    NASA Astrophysics Data System (ADS)

    Murphy, B. N.; Donahue, N. M.; Fountoukis, C.; Dall'Osto, M.; O'Dowd, C.; Kiendler-Scharr, A.; Pandis, S. N.

    2012-04-01

    Multigenerational oxidation chemistry of atmospheric organic compounds and its effects on aerosol loadings and chemical composition is investigated by implementing the Two-Dimensional Volatility Basis Set (2-D-VBS) in a Lagrangian host chemical transport model. Three model formulations were chosen to explore the complex interactions between functionalization and fragmentation processes during gas-phase oxidation of organic compounds by the hydroxyl radical. The base case model employs a conservative transformation by assuming a reduction of one order of magnitude in effective saturation concentration and an increase of oxygen content by one or two oxygen atoms per oxidation generation. A second scheme simulates functionalization in more detail using group contribution theory to estimate the effects of oxygen addition to the carbon backbone on the compound volatility. Finally, a fragmentation scheme is added to the detailed functionalization scheme to create a functionalization-fragmentation parameterization. Two condensed-phase chemistry pathways are also implemented as additional sensitivity tests to simulate (1) heterogeneous oxidation via OH uptake to the particle-phase and (2) aqueous-phase chemistry of glyoxal and methylglyoxal. The model is applied to summer and winter periods at three sites where observations of organic aerosol (OA) mass and O:C were obtained during the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) campaigns. The base case model reproduces observed mass concentrations and O:C well, with fractional errors (FE) lower than 55% and 25%, respectively. The detailed functionalization scheme tends to overpredict OA concentrations, especially in the summertime, and also underpredicts O:C by approximately a factor of 2. The detailed functionalization model with fragmentation agrees well with the observations for OA concentration, but still underpredicts O:C. Both heterogeneous oxidation and aqueous-phase processing have small effects on OA levels but heterogeneous oxidation, as implemented here, does enhance O:C by about 0.1. The different schemes result in very different fractional attribution for OA between anthropogenic and biogenic sources.

  2. Individual particle analysis of aerosols collected at Lhasa City in the Tibetan Plateau.

    PubMed

    Duo, Bu; Zhang, Yunchen; Kong, Lingdong; Fu, Hongbo; Hu, Yunjie; Chen, Jianmin; Li, Lin; Qiong, A

    2015-03-01

    To understand the composition and major sources of aerosol particles in Lhasa City on the Tibetan Plateau (TP), individual particles were collected from 2 February to 8 March, 2013 in Tibet University. The mean concentrations of both PM2.5 and PM10 during the sampling were 25.7±21.7 and 57.2±46.7 ?g/m3, respectively, much lower than those of other cities in East and South Asia, but higher than those in the remote region in TP like Nam Co, indicating minor urban pollution. Combining the observations with the meteorological parameters and back trajectory analysis, it was concluded that local sources controlled the pollution during the sampling. Transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectra (EDS) was used to study 408 particles sampled on four days. Based on the EDS analysis, a total of 8 different particle categories were classified for all 408 particles, including Si-rich, Ca-rich, soot, K-rich, Fe-rich, Pb-rich, Al-rich and other particles. The dominant elements were Si, Al and Ca, which were mainly attributed to mineral dust in the earth's crust such as feldspar and clay. Fe-, Pb-, K-, Al-rich particles and soot mainly originated from anthropogenic sources like firework combustion and biomass burning during the sampling. During the sampling, the pollution mainly came from mineral dust, while the celebration ceremony and religious ritual produced a large quantity of anthropogenic metal-bearing particles on 9 and 25 February 2013. Cement particles also had a minor influence. The data obtained in this study can be useful for developing pollution control strategies. PMID:25766026

  3. Comparison Between NPP-VIIRS Aerosol Data Products and the MODIS AQUA Deep Blue Collection 6 Dataset Over Land

    NASA Technical Reports Server (NTRS)

    Sayer, Andrew M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Kondragunta, S.

    2013-01-01

    Aerosols are small particles suspended in the atmosphere and have a variety of natural and man-made sources. Knowledge of aerosol optical depth (AOD), which is a measure of the amount of aerosol in the atmosphere, and its change over time, is important for multiple reasons. These include climate change, air quality (pollution) monitoring, monitoring hazards such as dust storms and volcanic ash, monitoring smoke from biomass burning, determining potential energy yields from solar plants, determining visibility at sea, estimating fertilization of oceans and rainforests by transported mineral dust, understanding changes in weather brought upon by the interaction of aerosols and clouds, and more. The Suomi-NPP satellite was launched late in 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine AOD. This study compares the VIIRS dataset to ground-based measurements of AOD, along with a state-of-the-art satellite AOD dataset (the new version of the Moderate Resolution Imaging Spectrometer Deep Blue algorithm) to assess its reliability. The Suomi-NPP satellite was launched late in 2011, carrying several instruments designed to continue the biogeophysical data records of current and previous satellite sensors. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP is being used, among other things, to determine aerosol optical depth (AOD), and related activities since launch have been focused towards validating and understanding this new dataset through comparisons with other satellite and ground-based products. The operational VIIRS AOD product is compared over land with AOD derived from Moderate Resolution Imaging Spectrometer (MODIS) observations using the Deep Blue (DB) algorithm from the forthcoming Collection 6 of MODIS data

  4. Impacts of Long-Range Transport of Metals from East Asia in Bulk Aerosols Collected at the Okinawa Archipelago, Japan

    NASA Astrophysics Data System (ADS)

    A, Sotaro; S, Yuka; I, Moriaki; N, Fumiya; H, Daishi; A, Takemitsu; T, Akira

    2010-05-01

    Economy of East Asia has been growing rapidly, and atmospheric aerosols discharged from this region have been transported to Japan. Okinawa island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km of south Korea. Its location in Asian is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air mass which has been affected by anthropogenic activities. Therefore, Okinawa region is suitable area for studying impacts of air pollutants from East Asia. We simultaneously collected bulk aerosol samples by using the same type of high volume air samplers at Cape Hedo Atmospheric Aerosol Monitoring Station (CHAAMS, Okinawa island), Kume island (ca. 160 km south-west of CHAAMS), and Minami-Daitou island (ca. 320 km south-east of CHAAMS). We determined the concentrations of acid-digested metals using atomic absorption spectrometer and inductively-coupled plasma mass spectrometry (ICP-MS). We report and discuss spatial and temporal distribution of metals in the bulk atmospheric aerosols collected at CHAAMS, Kume island and Minami-Daitou island during June, 2008 to June 2009. We also determined 'background' concentration of metals in Okinawa archipelago. We then compare each chemical component among CHAAMS, Kume island and Minami-Daitou island to elucidate the influence of the transport processes and distances from Asian continent on metal concentrations.

  5. Assessment of primary and secondary ambient particle trends using satellite aerosol optical depth and ground speciation data in the New England region, United States

    PubMed Central

    Lee, Hyung Joo; Kang, Choong-Min; Coull, Brent A.; Bell, Michelle L.; Koutrakis, Petros

    2014-01-01

    The effectiveness of air pollution emission control policies can be evaluated by examining ambient pollutant concentration trends that are observed at a large number of ground monitoring sites over time. In this paper, we used ground monitoring measurements in conjunction with satellite aerosol optical depth (AOD) data to investigate fine particulate matter (PM2.5; particulate matter with aerodynamic diameter ?2.5 ?m) trends and their spatial patterns over a large U.S. region, New England, during 2000–2008. We examined the trends in rural and urban areas to get a better insight about the trends of regional and local source emissions. Decreases in PM2.5 concentrations (?g/m3) were more pronounced in urban areas than in rural ones. In addition, the highest and lowest PM2.5 decreases (?g/m3) were observed for winter and summer, respectively. Together, these findings suggest that primary particle concentrations decreased more relative to secondary ones. This is also supported by the analysis of the speciation data which showed that downward trends of primary pollutants including black carbon were stronger than those of secondary pollutants including sulfate. Furthermore, this study found that ambient primary pollutants decreased at the same rate as their respective source emissions. This was not the case for secondary pollutants which decreased at a slower rate than that of their precursor emissions. This indicates that concentrations of secondary pollutants depend not only on the primary emissions but also on the availability of atmospheric oxidants which might not change during the study period. This novel approach of investigating spatially varying concentration trends, in combination with ground PM2.5 species trends, can be of substantial regulatory importance. PMID:24906074

  6. Ambient Tropospheric Particles

    EPA Science Inventory

    Atmospheric particulate matter (PM) is a complex mixture of solid and liquid particles suspended in ambient air (also known as the atmospheric aerosol). Ambient PM arises from a wide-range of sources and/or processes, and consists of particles of different shapes, sizes, and com...

  7. DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES

    SciTech Connect

    Sexton, L.

    2012-06-06

    Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA).

  8. Analyses of Heavy Metal Contents in the Bulk Atmospheric Aerosols Simultaneously Collected at Okinawa Archipelago, Japan by Using X-ray fluorescence spectrometric method (XRF)

    NASA Astrophysics Data System (ADS)

    Oshiro, Y.; ITOH, A.; Azechi, S.; Somada, Y.; Handa, D.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2012-12-01

    We studied heavy metal contents of bulk atmospheric aerosols using an X-ray fluorescence spectrometric method (XRF). The XRF method enables us to analyze heavy metal contents in the bulk aerosols rapidly without any chemical pretreatments. We used an energy dispersive X-ray fluorescence spectrometer that is compact and portable. We prepared several different amounts of standard reference materials (referred to "SRM", NIES No.28 of Japanese National Institute of Environmental Studies) on quartz filters for calibration curves in two different methods; 1) water-insoluble materials were collected after dispersing SRM in pure water and filtered with the quartz filters ("wet method"), and 2) SRM was dispersed in air in the plastic container and the aerosols were collected by using the low-volume air sampler ("dry method"). Good linear relationships between X-ray intensity and amount of aerosols on the filter were seen in the following 9 metals; Al, K, Ti, V, Fe, Ni, Rb, Ba, and Pb (with wet method) and 12 metals; K, Ti, Fe, Ni, Rb, Ba, Pb, Sr, Ca, Mn, Zn, and Cu (with dry method). Furthermore, we evaluated quantitative responses of XRF method by comparing with the metal contents determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after acid-digestion. We then used XRF method to determine heavy metal contents in authentic atmospheric aerosols collected in Okinawa islands, Japan. We simultaneously collected bulk aerosol samples by using identical high-volume air samplers at 3 islands; Cape Hedo Atmospheric Aerosol Monitoring Station (CHAAMS, Okinawa island), Kume island (ca. 160 km south-west of CHAAMS), and Minami-Daitou island (ca. 320 km south-east of CHAAMS). We report and discuss spatial and temporal distribution of heavy metals determined by the XRF method in the bulk atmospheric aerosols collected at the three islands during June 2008 to June 2010, and for CHAAMS during June 2008 to October 2012.

  9. Particle Characterization and Ice Nucleation Efficiency of Field-Collected Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Wang, B.; Gilles, M. K.; Laskin, A.; Moffet, R.; Nizkorodov, S.; Roedel, T.; Sterckx, L.; Tivanski, A.; Knopf, D. A.

    2011-12-01

    Atmospheric ice formation by heterogeneous nucleation is one of the least understood processes resulting in cirrus and mixed-phase clouds which affect the global radiation budget, the hydrological cycle, and water vapor distribution. In particular, how organic aerosol affect ice nucleation is not well understood. Here we report on heterogeneous ice nucleation from particles collected during the CalNex campaign at the Caltech campus site, Pasadena, on May 19, 2010 at 6am-12pm (A2) and 12pm-6pm (A3) and May 23 at 6am-12pm (B2) and 6pm-12am (B4). The ice nucleation onsets and water uptake were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). The ice nucleation efficiency was related to the particle chemical composition. Single particle characterization was provided by using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The STXM/NEXAFS analysis indicates that the morning sample (A2) constitutes organic particles and organic particles with soot and inorganic inclusions. The afternoon sample (A3) is dominated by organic particles with a potentially higher degree of oxidation associated with soot. The B2 sample shows a higher number fraction of magnesium-containing particle indicative of a marine source and ~93% of the particles contained sulfur besides oxygen and carbon as derived from CCSEM/EDX analysis. The B4 sample lacks the strong marine influence and shows higher organic content. Above 230 K, we observed water uptake followed by condensation freezing at mean RH of 93-100% and 89-95% for A2 and A3, respectively. This indicates that the aged A3 particles are efficient ice nuclei (IN) for condensation freezing. Below 230 K A2 and A3 induced deposition ice nucleation between 125-155% RHice (at mean values of 134-150% RHice). The B2 and B4 samples induced deposition ice nucleation below 230 K as low as 120% RHice, took up water at about 80% RH, and nucleated subsequently via condensation freezing above 230 K at mean RH of 88-94% and 89-100%, respectively. Experimentally derived ice nucleation rate coefficients and activated IN fractions for estimation of ice crystal production rates are presented. Particles sampled in the L.A. area can induce ice formation at conditions typical for cirrus and mixed-phase clouds and exhibit significantly different ice nucleation efficiencies than particles sampled in and around Mexico City.

  10. Electron Microscopy Characterization of Aerosols Collected at Mauna Loa Observatory During Asian Dust Storm Event

    EPA Science Inventory

    Atmospheric aerosol particles have a significant influence on global climate due to their ability to absorb and scatter incoming solar radiation. Size, composition, and morphology affect a particle’s radiative properties and these can be characterized by electron microscopy. Lo...

  11. RADIOCARBON MEASUREMENT OF THE BIOGENIC CONTRIBUTION TO SUMMERTIME PM 2.5 AMBIENT AEROSOL IN NASHVILLE, TN

    EPA Science Inventory

    Radiocarbon (14C) measurements performed on PM-2.5 samples collected near Nashville, TN from June 21 to July 13, 1999, showed high levels of modern carbon, ranging from 56 to 80% of the total carbon in the samples. Radiocarbon measurements performed on dichloromethane extracts of...

  12. Regional signatures in the organic composition of marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Keene, William C.; Kieber, David J.; Quinn, Patricia K.; Bates, Timothy S.

    2013-05-01

    Marine aerosol particles play an important role in the earth's radiative balance, yet the sources and composition of the organic fraction remain largely unconstrained. Recent measurements have been made in order to characterize the sources, composition, and concentration of aerosol particles in the marine boundary layer. The organic composition of submicron particles derived from multiple seawater regions have been measured using Fourier Transform Infrared (FTIR) spectroscopy. Cluster analysis of FTIR organic spectra suggest different spectral signatures based on collection location, seawater composition, and ambient conditions. Measurements including non-refractory aerosol composition from a high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS), seawater composition, and wind speed were used to interpret the cluster results, depending on the availability from each campaign. FTIR spectra of ambient particles are compared to FTIR spectra of primary marine particles generated from model ocean systems to infer the ambient particle production mechanisms and aging processes. Recent measurements used in the comparison include ambient and generated marine aerosol particles measured off the coast of California during CalNex in May and June 2010. Remote ambient marine aerosol particles were collected 100 miles off the coast of Monterey in the eastern Pacific during the EPEACE experiment in July 2011. Ambient and generated marine particles were measured in two different seawater types during WACS 2012 including colder, more productive water off the coast of the northeastern United States and warmer, oligotrophic water in the Sargasso Sea. These particles are also compared with those measured in the southeastern Pacific during VOCALS and the north Atlantic during ICEALOT.

  13. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  14. Aerosolization of fungi, (1?3)-?-D glucan, and endotoxin from flood-affected materials collected in New Orleans homes

    PubMed Central

    Adhikari, Atin; Jung, Jaehee; Reponen, Tiina; Lewis, Jocelyn Suzanne; DeGrasse, Enjoli C.; Grimsley, L. Faye; Chew, Ginger L.; Grinshpun, Sergey A.

    2015-01-01

    Standing water and sediments remaining on flood-affected materials were the breeding ground for many microorganisms in flooded homes following Hurricane Katrina. The purpose of this laboratory study was to examine the aerosolization of culturable and total fungi, (1?3)-?-D glucan, and endotoxin from eight flood-affected floor and bedding materials collected in New Orleans homes, following Hurricane Katrina. Aerosolization was examined using the Fungal Spore Source Strength Tester (FSSST) connected to a BioSampler. Dust samples were collected by vacuuming. A two-stage cyclone sampler was used for size-selective analysis of aerosolized glucan and endotoxin. On average, levels of culturable fungi ranged from undetectable (lower limit = 8.3×104) to 2.6×105 CFU/m2; total fungi ranged from 2.07×105 to 1.6×106 spores/m2; (1?3)-?-D glucan and endotoxin were 2.0×103 – 2.9×104 ng/m2 and 7.0×102 – 9.3×104 EU/m2, respectively. The results showed that 5–15 min sampling is sufficient for detecting aerosolizable biocontaminants with the FSSST. Smaller particle size fractions (<1.0 ?m and <1.8 ?m) have levels of glucan and endotoxin comparable to larger (>1.8 ?m) fractions, which raises additional exposure concerns. Vacuuming was found to overestimate inhalation exposure risks by a factor of approximately 102 for (1?3)-?-D glucan and by 103 to 104 for endotoxin as detected by the FSSST. The information generated from this study is important with respect to restoration and rejuvenation of the flood-affected areas in New Orleans. We believe the findings will be significant during similar disasters in other regions of the world including major coastal floods from tsunamis. PMID:19201399

  15. Spatial and temporal variations of chemicals in the TSP aerosols simultaneously collected at three islands in Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Arakaki, Takemitsu; Azechi, Sotaro; Somada, Yuka; Ijyu, Moriaki; Nakaema, Fumiya; Hitomi, Yuya; Handa, Daishi; Oshiro, Yoshito; Miyagi, Youichi; Tsuhako, Ai; Murayama, Hitomi; Higaonna, Yumi; Tanahara, Akira; Itoh, Akihide; Fukushima, Soko; Higashi, Kazuaki; Henza, Yui; Nishikawa, Rin; Shinjo, Hibiki; Wang, Hongyan

    2014-11-01

    East Asia's rapid economic growth has led to concerns about the emission of air pollutants. We collected total suspended particle (TSP) aerosol samples simultaneously at three islands in Okinawa, Japan, which are downwind of East Asia, during the Asian dust season, to examine the spatial and temporal variations and chemical transformations of major chemicals in the aerosols. Weekly samples were collected from July 2008 to June 2010, and the concentrations of water-soluble cations, anions, and organic carbon (WSOC) were determined (n = 303). Spatial distribution analysis showed that monthly mean concentrations of non-sea-salt (nss)-SO42- in the spring (Asian dust season) decreased with increasing distance from Asia, while the trend for NO3- was less evident, suggesting that chemical transformation affected the long-range transport of certain chemicals. Temporal variation analysis showed that concentrations of nss-SO42-, NO3-, and WSOC during the spring were about 2.0, 2.4, and 1.8 times those in the summer (cleaner air mass from the Pacific Ocean), respectively. This study demonstrated that air pollutants were transported from the Asian continent to the Okinawa islands and affected the air quality in the region. There may also be impacts on ecosystems, because increased concentrations of particulate NO3- could increase nutrient levels around the Okinawa islands.

  16. DEVELOPMENT OF COLLECTION METHODS FOR SEMIVOLATILE ORGANIC COMPOUNDS IN AMBIENT AIR

    EPA Science Inventory

    Cartridges containing solid adsorbents between layers of polyurethane foam (PUF) were evaluated for collecting chlorobenzenes, chlorophenols, hexachlorocyclohexanes (HCHs), and two-ring aromatic hydrocarbons. The 26-sq.cm cross-section glass cartridges, packed with Tenax (5-10 g)...

  17. Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Sopajaree, Khajornsak; Chotruksa, Auranee; Wu, Hsin-Ching; Kuo, Su-Ching

    2013-10-01

    PM10 aerosol was collected between February and April 2010 at an urban site (CMU) and an industrial site (TOT) in Chiang Mai, Thailand, and characteristics and provenance of water-soluble inorganic species, carboxylates, anhydrosugars and sugar alcohols were investigated with particular reference to air quality, framed as episodic or non-episodic pollution. Sulfate, a product of secondary photochemical reactions, was the major inorganic salt in PM10, comprising 25.9% and 22.3% of inorganic species at CMU and TOT, respectively. Acetate was the most abundant monocarboxylate, followed by formate. Oxalate was the dominant dicarboxylate. A high acetate/formate mass ratio indicated that primary traffic-related and biomass-burning emissions contributed to Chiang Mai aerosols during episodic and non-episodic pollution. During episodic pollution carboxylate peaks indicated sourcing from photochemical reactions and/or directly from traffic-related and biomass burning processes and concentrations of specific biomarkers of biomass burning including water-soluble potassium, glutarate, oxalate and levoglucosan dramatically increased. Levoglucosan, the dominant anhydrosugar, was highly associated with water-soluble potassium (r = 0.75-0.79) and accounted for 93.4% and 93.7% of anhydrosugars at CMU and TOT, respectively, during episodic pollution. Moreover, levoglucosan during episodic pollution was 14.2-21.8 times non-episodic lows, showing clearly that emissions from biomass burning are the major cause of PM10 episodic pollution in Chiang Mai. Additionally, the average levoglucosan/mannosan mass ratio during episodic pollution was 14.1-14.9, higher than the 5.73-7.69 during non-episodic pollution, indicating that there was more hardwood burning during episodic pollution. Higher concentrations of glycerol and erythritol during episodic pollution further indicate that biomass burning activities released soil biota from forest and farmland soils.

  18. Determinants of the Associations between Ambient Concentrations and Personal Exposures to Ambient PM2.5, NO2, and O3 during DEARS

    EPA Science Inventory

    In this analysis, ambient concentrations and personal exposures to PM2.5, O3, and NO2, air exchange rates, meteorological parameters, and questionnaire survey responses collected during the Detroit Exposure and Aerosol Research Study (DEARS) are used: 1) to evaluate different met...

  19. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: extending the predictions to different years and different sites

    NASA Astrophysics Data System (ADS)

    Reggente, M.; Dillner, A. M.; Takahama, S.

    2015-11-01

    Organic carbon (OC) and elemental carbon (EC) are major components of atmospheric particulate matter (PM), which has been associated with increased morbidity and mortality, climate change and reduced visibility. Typically OC and EC concentrations are measured using thermal optical methods such as thermal optical reflectance (TOR) from samples collected on quartz filters. In this work, we estimate TOR OC and EC using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters using partial least square regression (PLSR) calibrated to TOR OC and EC measurements for a wide range of samples. The proposed method can be integrated with analysis of routinely collected PTFE filter samples that, in addition to OC and EC concentrations, can concurrently provide information regarding the composition of the organic aerosol. We have used the FT-IR absorbance spectra and TOR OC and EC concentrations collected in the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network (USA). We used 526 samples collected in 2011 at seven sites to calibrate the models, and more than 2000 samples collected in 2013 at 17 sites to test the models. Samples from six sites are present both in the calibration and test sets. The calibrations produce accurate predictions both for samples collected at the same six sites present in the calibration set (R2=0.97 and R2=0.95 for OC and EC respectively), and for samples from nine of the 11 sites not included in the calibration set (R2=0.96 and R2=0.91 for OC and EC respectively). Samples collected at the other two sites require a different calibration model to achieve accurate predictions. We also propose a method to anticipate the prediction error: we calculate the squared Mahalanobis distance in the feature space (scores determined by PLSR) between new spectra and spectra in the calibration set. The squared Mahalanobis distance provides a crude method for assessing the magnitude of mean error when applying a calibration model to a new set of samples.

  20. Recent Rainfall and Aerosol Chemistry From Bermuda

    NASA Astrophysics Data System (ADS)

    Landing, W. M.; Shelley, R.; Kadko, D. C.

    2014-12-01

    This project was devoted to testing the use of Be-7 as a tracer for quantifying trace element fluxes from the atmosphere to the oceans. Rainfall and aerosol samples were collected between June 15, 2011 and July 27, 2013 at the Bermuda Institute of Ocean Sciences (BIOS) located near the eastern end of the island of Bermuda. Collectors were situated near ground level, clear of surrounding vegetation, at a meteorological monitoring station in front of the BIOS laboratory, about 10 m above sea level. This is a Bermuda Air Quality Program site used for ambient air quality monitoring. To quantify the atmospheric deposition of Be-7, plastic buckets were deployed for collection of fallout over ~3 week periods. Wet deposition was collected for trace element analysis using a specially modified "GEOTRACES" N-CON automated wet deposition collector. Aerosol samples were collected with a Tisch TE-5170V-BL high volume aerosol sampler, modified to collect 12 replicate samples on acid-washed 47mm diameter Whatman-41 filters, using procedures identical to those used for the US GEOTRACES aerosol program (Morton et al., 2013). Aerosol and rainfall samples were analyzed for total Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Zr, Cd, Sb, Ba, La, Ce, Nd, Pb, Th, and U using ICPMS. Confirming earlier data from Bermuda, strong seasonality in rainfall and aerosol loading and chemistry was observed, particularly for aerosol and rainfall Fe concentrations when Saharan dust arrives in July/August with SE trajectories.

  1. HOUSTON AEROSOL CHARACTERIZATION STUDY

    EPA Science Inventory

    An intensive field study of ambient aerosols was conducted in Houston between September 14 and October 14, 1978. Measurements at 12 sites were made using (1) two relocatable monitoring systems instrumented for aerosol and gaseous pollutants, (2) a network of high volume samplers ...

  2. A thermal desorption mass spectrometer for freshly nucleated secondary aerosol particles

    NASA Astrophysics Data System (ADS)

    Held, A.; Gonser, S. G.

    2012-04-01

    Secondary aerosol formation in the atmosphere is observed in a large variety of locations worldwide, introducing new particles to the atmosphere which can grow to sizes relevant for health and climate effects of aerosols. The chemical reactions leading to atmospheric secondary aerosol formation are not yet fully understood. At the same time, analyzing the chemical composition of freshly nucleated particles is still a challenging task. We are currently finishing the development of a field portable aerosol mass spectrometer for nucleation particles with diameters smaller than 30 nm. This instrument consists of a custom-built aerosol sizing and collection unit coupled to a time-of-flight mass spectrometer (TOF-MS). The aerosol sizing and collection unit is composed of three major parts: (1) a unipolar corona aerosol charger, (2) a radial differential mobility analyzer (rDMA) for aerosol size separation, and (3) an electrostatic precipitator for aerosol collection. After collection, the aerosol sample is thermally desorbed, and the resulting gas sample is transferred to the TOF-MS for chemical analysis. The unipolar charger is based on corona discharge from carbon fibres (e.g. Han et al., 2008). This design allows efficient charging at voltages below 2 kV, thus eliminating the potential for ozone production which would interfere with the collected aerosol. With the current configuration the extrinsic charging efficiency for 20 nm particles is 32 %. The compact radial DMA similar to the design of Zhang et al. (1995) is optimized for a diameter range from 1 nm to 100 nm. Preliminary tests show that monodisperse aerosol samples (geometric standard deviation of 1.09) at 10 nm, 20 nm, and 30 nm can easily be separated from the ambient polydisperse aerosol population. Finally, the size-segregated aerosol sample is collected on a high-voltage biased metal filament. The collected sample is protected from contamination using a He sheath counterflow. Resistive heating of the filament allows temperature-controlled desorption of compounds of different volatility. We will present preliminary characterization experiments of the aerosol sizing and collection unit coupled to the mass spectrometer. Funding by the German Research Foundation (DFG) under grant DFG HE5214/3-1 is gratefully acknowledged. Han, B., Kim, H.J., Kim, Y.J., and Sioutas, C. (2008) Unipolar charging of ultrafine particles using carbon fiber ionizers. Aerosol Sci. Technol, 42, 793-800. Zhang, S.-H., Akutsu, Y., Russell, L.M., Flagan, R.C., and Seinfeld, J.H. (1995) Radial Differential Mobility Analyzer. Aerosol Sci. Technol, 23, 357-372.

  3. Summertime carbonaceous aerosols collected in the marine boundary layer of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Xie, Zhouqing; Blum, Joel D.; Utsunomiya, Satoshi; Ewing, R. C.; Wang, Xinming; Sun, Liguang

    2007-01-01

    The chemistry, morphology, and microscale to nanoscale structures of carbonaceous aerosols from the marine boundary layer of the Arctic Ocean were investigated by a variety of electron microscopy techniques, including scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDS). The relative levels of particles of black carbon (BC) were determined by electron paramagnetic resonance (EPR). Polycyclic aromatic hydrocarbons (PAHs) absorbed onto BC particles were extracted by the soxhlet extraction method and analyzed by gas chromatography mass spectrometry (GC-MS). The results show that the dominant particles of BC are char particles with spherical shape, porous structure, and high sulfur content, which are typically derived from residual oil combustion on ships. The spatial distribution of BC from ship emissions was found to be concentrated around the periphery of the Arctic Ocean, suggesting relatively intensive contamination by ships in the Russian and Canadian Arctic. The abundance of PAHs on BC particles ranges from 142 to 2672 pg/m3 (mean = 702 pg/m3), which is significantly higher than values previously measured by land-based observation. Thus we find that ship emissions are a potentially important contributor to the PAH levels at some locations in the Arctic Ocean during the summer.

  4. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    SciTech Connect

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-08-11

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  5. AUTORAMP - an automatic unit for unattended aerosol collection, gamma-ray analysis and data transmission from remote locations

    SciTech Connect

    Latner, N.; Sanderson, C.G.; Negro, V.C.

    1997-12-31

    The Environmental Measurements Laboratory has designed, developed and field tested a fully automated and completely unattended multisample, surface-air monitoring system. This system, AUTORAMP, collects large-volume aerosol samples on discrete pleated cartridge filters, measures these samples in a near ideal geometry with a refrigerator-cooled Germanium gamma-ray detector, and immediately transmits the resulting spectra through a telephone/modem connection or a satellite link. Using a sample tray loaded with 31 filters, the system will allow for more than six months of unattended operation with weekly sampling, or one month of daily sampling. Remote control of all operating functions is possible through the communications link. For a 24-h collection, at 12,000 m{sup 3} d{sup -1} and a 18-h gamma-ray count, this system can detect as little as 2.7 {mu}Bq m{sup -3} of the short-lived {sup 140}Ba and 5.4 {mu}Bq m{sup -3} of {sup 137}Cs.

  6. SOURCE APPORTIONMENT OF PHOENIX PM2.5 AEROSOL WITH THE UNMIX RECEPTOR MODEL

    EPA Science Inventory

    The multivariate receptor model Unmix has been used to analyze a 3-yr PM2.5 ambient aerosol data set collected in Phoenix, AZ, beginning in 1995. The analysis generated source profiles and overall percentage source contribution estimates (SCE) for five source categories: ga...

  7. ß-CARYOPHYLLINIC ACID: AN ATMOSPHERIC TRACER FOR ß-CARYOPHYLLENE SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    The chemical compositions of ambient PM2.5 samples, collected in Research Triangle Park, North Carolina, USA, and a sample of secondary organic aerosol, formed by irradiating a mixture of the sesquiterpene, ß-caryophyllene, and oxides of nitrogen in a smog chamber, wer...

  8. Characteristics of regional aerosols: Southern Arizona and eastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Prabhakar, Gouri

    Atmospheric aerosols impact the quality of our life in many direct and indirect ways. Inhalation of aerosols can have harmful effects on human health. Aerosols also have climatic impacts by absorbing or scattering solar radiation, or more indirectly through their interactions with clouds. Despite a better understanding of several relevant aerosol properties and processes in the past years, they remain the largest uncertainty in the estimate of global radiative forcing. The uncertainties arise because although aerosols are ubiquitous in the Earth's atmosphere they are highly variable in space, time and their physicochemical properties. This makes in-situ measurements of aerosols vital in our effort towards reducing uncertainties in the estimate of global radiative forcing due to aerosols. This study is an effort to characterize atmospheric aerosols at a regional scale, in southern Arizona and eastern Pacific Ocean, based on ground and airborne observations of aerosols. Metals and metalloids in particles with aerodynamic diameter (Dp) smaller than 2.5 ?m are found to be ubiquitous in southern Arizona. The major sources of the elements considered in the study are identified to be crustal dust, smelting/mining activities and fuel combustion. The spatial and temporal variability in the mass concentrations of these elements depend both on the source strength and meteorological conditions. Aircraft measurements of aerosol and cloud properties collected during various field campaigns over the eastern Pacific Ocean are used to study the sources of nitrate in stratocumulus cloud water and the relevant processes. The major sources of nitrate in cloud water in the region are emissions from ships and wildfires. Different pathways for nitrate to enter cloud water and the role of meteorology in these processes are examined. Observations of microphysical properties of ambient aerosols in ship plumes are examined. The study shows that there is an enhancement in the number concentration of giant cloud condensation nuclei (Dp > 2 microm) in ship plumes relative to the unperturbed background regions over the ocean.

  9. Comparative In Vitro Toxicity Profile of Electronic and Tobacco Cigarettes, Smokeless Tobacco and Nicotine Replacement Therapy Products: E-Liquids, Extracts and Collected Aerosols

    PubMed Central

    Misra, Manoj; Leverette, Robert D.; Cooper, Bethany T.; Bennett, Melanee B.; Brown, Steven E.

    2014-01-01

    The use of electronic cigarettes (e-cigs) continues to increase worldwide in parallel with accumulating information on their potential toxicity and safety. In this study, an in vitro battery of established assays was used to examine the cytotoxicity, mutagenicity, genotoxicity and inflammatory responses of certain commercial e-cigs and compared to tobacco burning cigarettes, smokeless tobacco (SLT) products and a nicotine replacement therapy (NRT) product. The toxicity evaluation was performed on e-liquids and pad-collected aerosols of e-cigs, pad-collected smoke condensates of tobacco cigarettes and extracts of SLT and NRT products. In all assays, exposures with e-cig liquids and collected aerosols, at the doses tested, showed no significant activity when compared to tobacco burning cigarettes. Results for the e-cigs, with and without nicotine in two evaluated flavor variants, were very similar in all assays, indicating that the presence of nicotine and flavors, at the levels tested, did not induce any cytotoxic, genotoxic or inflammatory effects. The present findings indicate that neither the e-cig liquids and collected aerosols, nor the extracts of the SLT and NRT products produce any meaningful toxic effects in four widely-applied in vitro test systems, in which the conventional cigarette smoke preparations, at comparable exposures, are markedly cytotoxic and genotoxic. PMID:25361047

  10. FEASIBILITY OF THE AEROSOL-TO-LIQUID PARTICLE EXTRACTION SYSTEM (ALPES) FOR COLLECTION OF VIABLE FRANCISELLA SP.

    SciTech Connect

    Heitkamp, M

    2006-08-07

    Several Biowatch monitoring sites in the Houston area have tested positive for Francisella tularensis and there is a need to determine whether natural occurring Francisella-related microorganism(s) may be responsible for these observed positive reactions. The collection, culturing and characterization of Francisella-related natural microorganisms will provide the knowledge base to improve the future selectivity of Biowatch monitoring for Francisella. The aerosol-to-liquid particle extraction system (ALPES) is a high-efficiency, dual mechanism collection system that utilizes a liquid collection medium for capture of airborne microorganisms. Since the viability of microorganisms is preserved better in liquid medium than on air filters, this project was undertaken to determine whether Francisella philomiragia and Francisella tularensis LVS maintain acceptable viability in the continuous liquid recirculation, high direct current voltage and residual ozone concentrations which occur during ALPES operation. Throughout a series of preliminary trial runs with representative gram-negative and gram-positive microorganisms, several design modifications and improvements to the ALPES optimized liquid handling, electrical stability, sampling and overall performance for biological sampling. Initial testing with Francisella philomiragia showed viability was preserved better in PBS buffer than HBSS buffer. Trial runs at starting cell concentrations of 1.8 x 10{sup 6} and 2.5 x 10{sup 4} CFU/L showed less than a 1-log decrease in viability for F. philomiragia after 24 h in the ALPES. Francisella tularensis LVS (live vaccine strain) was used as a surrogate for virulent F. tularensis in ALPES trial runs conducted at starting cell concentrations of 10{sup 4}, 10{sup 5} and 10{sup 6} CFU/L. F. tularensis LVS was slow-growing and required highly selective growth media to prevent overgrowth by collected airborne microorganisms. In addition, one ALPES unit intake was HEPA filtered during the final trial runs with F. tularensis LVS to further reduce the levels of microbial background. Results from trials with F. tularensis LVS showed about a 1-log loss decrease in CFUs after 24 h, but maintained final cell concentrations in the range of 10{sup 3}-10{sup 4} CFU/L. These results indicate that the ALPES maintains acceptable viability of Francisella sp. in PBS buffer for up to 24 h and is a promising technology for the collection of viable airborne Francisella or Francisella-related cultures which may be observed at Biowatch monitoring sites in the Houston area and elsewhere.

  11. A COMPARATIVE ASSESSMENT OF BOISE, IDAHO, AMBIENT AIR FINE PARTICLE SAMPLES USING THE PLATE AND MICROSUSPENSION SALMONELLA MUTAGENICITY ASSAYS

    EPA Science Inventory

    The primary objective of this study is to characterize the genotoxic potential of the ambient air aerosols collected within an air shed impacted primarily by wood smoke and automotive emissions. The study also examines the relative merits of a microsuspension assay and the standa...

  12. Characterization of Heavy Metal Contents in the Bulk Atmospheric Aerosols Simultaneously Collected at Three Islands in Okinawa, Japan by X-ray fluorescence spectrometric method (XRF)

    NASA Astrophysics Data System (ADS)

    Oshiro, Y.; ITOH, A.; Azechi, S.; Somada, Y.; Handa, D.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    We studied heavy metal contents of atmospheric aerosols using an X-ray fluorescence spectrometric method (XRF). The XRF method enables us to analyze heavy metal contents of bulk aerosols rapidly without any chemical pretreatments. We used an energy dispersive X-ray fluorescence spectrometer that is compact and portable. We prepared several different amounts of standard reference materials (NIES No.28) of Japanese National Institute of Environmental Studies on quartz filters for calibration curves. Then, we evaluated quantitative responses of XRF method by comparing with the metal contents determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after acid-digestion. Good linear relationships between X-ray intensity and amount of aerosol on filter were seen in the following 10 metals; Al, K, Ti, V, Fe, Ni, Rb, Ba, Pb and As. We then used XRF method to determine heavy metal contents in authentic atmospheric aerosols collected in Okinawa islands, Japan. Okinawa islands, consisting of many small islands, are situated east of Asian continent, and its location in Asian is well suited for studying long-range transport of air pollutants. Also, in Okinawa islands, maritime air mass prevails during summer, while Asian continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air mass which has been affected by anthropogenic activities such as industries and automobiles. Therefore, Okinawa region is suitable area for studying impacts of air pollutants from East Asia. We simultaneously collected bulk aerosol samples by using identical high-volume air samplers at 3 islands; Cape Hedo Atmospheric Aerosol Monitoring Station (CHAAMS, Okinawa island), Kume island (ca. 160 km south-west of CHAAMS), and Minami-Daitou island (ca. 320 km south-east of CHAAMS). We report and discuss spatial and temporal distribution of heavy metals determined by the XRF method in the bulk atmospheric aerosols collected at the three islands during June 2008 to June 2010, and for CHAAMS during June 2008 to September 2011.

  13. Comparison of physical and chemical properties of ambient aerosols during the 2009 haze and non-haze periods in Southeast Asia.

    PubMed

    Xu, Jingsha; Tai, Xuhong; Betha, Raghu; He, Jun; Balasubramanian, Rajasekhar

    2015-10-01

    Recurrent smoke-haze episodes that occur in Southeast Asia (SEA) are of much concern because of their environmental and health impacts. These haze episodes are mainly caused by uncontrolled biomass and peat burning in Indonesia. Airborne particulate matter (PM) samples were collected in the southwest coast of Singapore from 16 August to 9 November in 2009 to assess the impact of smoke-haze episodes on the air quality due to the long-range transport of biomass and peat burning emissions. The physical and chemical characteristics of PM were investigated during pre-haze, smoke-haze, and post-haze periods. Days with PM2.5 mass concentrations of ?35 ?g m(-3) were considered as smoke-haze events. Using this criterion, out of the total 82 sampling days, nine smoke-haze events were identified. The origin of air masses during smoke-haze episodes was studied on the basis of HYSPLIT backward air trajectory analysis for 4 days. In terms of the physical properties of PM, higher particle surface area concentrations and particle gravimetric mass concentrations were observed during the smoke-haze period, but there was no consistent pattern for particle number concentrations during the haze period as compared to the non-haze period except that there was a significant increase at about 08:00, which could be attributed to the entrainment of PM from aloft after the breakdown of the nocturnal inversion layer. As for the chemical characteristics of PM, among the six key inorganic water-soluble ions (Cl(-), NO3(-), nss-SO4(2-), Na(+), NH4(+), and nss-K(+)) measured in this study, NO3(-), nss-SO4(2-), and NH4(+) showed a significant increase in their concentrations during the smoke-haze period together with nss-K(+). These observations suggest that the increased atmospheric loading of PM with higher surface area and increased concentrations of optically active secondary inorganic aerosols [(NH4)2SO4 or NH4HSO4 and NH4NO3] resulted in the atmospheric visibility reduction in SEA due to the advection of biomass and peat burning emissions. PMID:25503685

  14. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is expected to require six months of time, after receipt of funding. Benefits: US DOE facilities that use HEPA filters will benefit from access to the new operational measurement methods. Uncertainty and guesswork will be removed from HEPA filter operations.

  15. Reactions and mass spectra of complex particles using Aerosol CIMS

    NASA Astrophysics Data System (ADS)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  16. Genotypic and phenotypic characterization of aerosolized bacteria collected from African dust events

    DOE PAGESBeta

    Wilson, Christina A.; Brigmon, Robin L.; Yeager, Chris; Smith, Garriet W.; Polson, Shawn W.

    2013-07-31

    Twenty-one bacteria were isolated and characterized from air samples collected in Africa and the Caribbean by the United States Geological Survey (USGS). Isolates were selected based on preliminary characterization as possible pathogens. Identification of the bacterial isolates was 25 achieved using 16S rRNA gene sequence analysis, fatty acid methyl esters (FAMEs) profiling, the BIOLOG Microlog® System (carbon substrate assay), and repetitive extragenic palindromic (REP)-PCR analysis. The majority of isolates (18/21) were identified as species of the genus Bacillus. Three isolates were classified within the Bacillus cereus senso lato group, which includes Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus strains. Onemore »isolate was identified as a Staphylococcus sp., 30 most closely related to species (i.e Staphylococcus kloosii, Staphylococcus warneri) that are commonly associated with human or animal skin, but can also act as opportunistic pathogen. Another isolate was tentatively identified as Tsukamurella inchonensis, a known respiratory pathogen, and was resistant to the ten antibiotics tested including vancomycin.« less

  17. Genotypic and phenotypic characterization of aerosolized bacteria collected from African dust events

    SciTech Connect

    Wilson, Christina A.; Brigmon, Robin L.; Yeager, Chris; Smith, Garriet W.; Polson, Shawn W.

    2013-07-31

    Twenty-one bacteria were isolated and characterized from air samples collected in Africa and the Caribbean by the United States Geological Survey (USGS). Isolates were selected based on preliminary characterization as possible pathogens. Identification of the bacterial isolates was 25 achieved using 16S rRNA gene sequence analysis, fatty acid methyl esters (FAMEs) profiling, the BIOLOG Microlog® System (carbon substrate assay), and repetitive extragenic palindromic (REP)-PCR analysis. The majority of isolates (18/21) were identified as species of the genus Bacillus. Three isolates were classified within the Bacillus cereus senso lato group, which includes Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus strains. One isolate was identified as a Staphylococcus sp., 30 most closely related to species (i.e Staphylococcus kloosii, Staphylococcus warneri) that are commonly associated with human or animal skin, but can also act as opportunistic pathogen. Another isolate was tentatively identified as Tsukamurella inchonensis, a known respiratory pathogen, and was resistant to the ten antibiotics tested including vancomycin.

  18. Comparison between XRF and IBA techniques in analysis of fine aerosols collected in Rijeka, Croatia

    NASA Astrophysics Data System (ADS)

    Ivoševi?, Tatjana; Mandi?, Luka; Orli?, Ivica; Stelcer, Eduard; Cohen, David D.

    2014-10-01

    The new system for energy dispersive X-ray fluorescence (EDXRF) analysis has been installed at the Laboratory for Elemental Micro-Analysis (LEMA) at the University of Rijeka. Currently the key application of this new XRF system is in the field of environmental science, i.e. in the analysis of fine airborne particles. In this work, results of initial multi-elemental analysis of PM2.5 fraction is reported for the first time in the region of Rijeka, Croatia. Sampling was performed at the Rijeka City center, during a continuous 9-day period in February/March 2012. All samples were collected on stretched Teflon filters in 12 h periods. To check the reliability of the new XRF system, results of XRF analysis are compared with the results obtained by the well-established Ion Beam Analysis (IBA) laboratory at Australian Nuclear Science and Technology Organisation (ANSTO). The concentrations of H, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br and Pb were determined. In addition, black carbon was determined by Laser Integrating Plate Method (LIPM). Very good agreement between XRF and IBA techniques is obtained for all elements detected by both techniques. Elemental concentrations were correlated with the traffic volume and wind speed and direction. The summary of our findings is presented and discussed in this paper.

  19. Collection of three bacterial aerosols by respirator and surgical mask filters under varying conditions of flow and relative humidity.

    PubMed

    McCullough, N V; Brosseau, L M; Vesley, D

    1997-12-01

    A variety of respirator filters and surgical masks were challenged with three aerosolized bacteria: Mycobacterium abscessus (M.a.) (a rod), Staphylococcus epidermidis (S.e.) (a sphere), and Bacillus subtilis (B.s.) (a rod). Tests were conducted at two flow rates (45 and 85 l./min) and two humidity levels (30 and 70%). Aerosols were measured with a total-particle, direct-reading, spectrometer and a viable particle cascade impactor. Measurements up- and downstream of the filter or mask were used in determining aerosol penetration; respirator or surgical mask fit was not evaluated. Bioaerosol penetration measured with two aerosol sampling instruments was found to correlate. Additionally, bioaerosol test parameters were evaluated with respect to their effect on penetration. Increasing flow resulted in increased penetration of all organisms while an increase in relative humidity did not exert a consistent effect on all organisms. Of the respirators approved by the National Institute for Occupational Safety and Health (NIOSH), filter efficiency was as expected with dust/mist respirators having the lowest and HEPA filters the highest efficiency. Surgical masks were the least efficient of all filters tested; these are not certified by NIOSH. Bioaerosol penetration was compared to that of a polystyrene latex sphere (PSL) aerosol. Penetration of the test aerosols was predicted on the basis of particle aerodynamic diameter and was expected to be in this order: PSL > M.a. > S.e. = B.s. The PSL aerosol was the most penetrating, as predicted. However, results showed that B.s. was more penetrating than S.e. The aerodynamic diameter may not be the best parameter for predicting aerosol penetration of non-spherical particles in these filters. PMID:9375526

  20. Collection efficiency of the Soot-Particle Aerosol Mass Spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE PAGESBeta

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-05-26

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore »used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of two. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  1. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE PAGESBeta

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-18

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore »used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  2. Mechanism for production of secondary organic aerosols and their representation in atmospheric models. Final report

    SciTech Connect

    Seinfeld, J.H.; Flagan, R.C.

    1999-06-07

    This document contains the following: organic aerosol formation from the oxidation of biogenic hydrocarbons; gas/particle partitioning of semivolatile organic compounds to model inorganic, organic, and ambient smog aerosols; and representation of secondary organic aerosol formation in atmospheric models.

  3. AMS-C14 analysis of graphite obtained with an Automated Graphitization Equipment (AGE III) from aerosol collected on quartz filters

    NASA Astrophysics Data System (ADS)

    Solís, C.; Chávez, E.; Ortiz, M. E.; Andrade, E.; Ortíz, E.; Szidat, S.; Wacker, L.

    2015-10-01

    AMS-14C applications often require the analysis of small samples. Such is the case of atmospheric aerosols where frequently only a small amount of sample is available. The ion beam physics group at the ETH, Zurich, has designed an Automated Graphitization Equipment (AGE III) for routine graphite production for AMS analysis from organic samples of approximately 1 mg. In this study, we explore the potential use of the AGE III for graphitization of particulate carbon collected in quartz filters. In order to test the methodology, samples of reference materials and blanks with different sizes were prepared in the AGE III and the graphite was analyzed in a MICADAS AMS (ETH) system. The graphite samples prepared in the AGE III showed recovery yields higher than 80% and reproducible 14C values for masses ranging from 50 to 300 ?g. Also, reproducible radiocarbon values were obtained for aerosol filters of small sizes that had been graphitized in the AGE III. As a study case, the tested methodology was applied to PM10 samples collected in two urban cities in Mexico in order to compare the source apportionment of biomass and fossil fuel combustion. The obtained 14C data showed that carbonaceous aerosols from Mexico City have much lower biogenic signature than the smaller city of Cuernavaca.

  4. An assessment of the performance of Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    EPA Science Inventory

    Ambient air monitoring as part of the U.S. Environmental Protection Agency’s (U.S. EPA’s) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The U.S. EPA is interested in supplementing CASTNet with semi-continuou...

  5. Spatial and Temporal Distribution of Water-Soluble Anions and Organic Carbons in Bulk Aerosols Collected at the Ryukyu Islands, Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Somada, Y.; Azechi, S.; Ijyu, M.; Nakaema, F.; Handa, D.; Oshiro, Y.; Miyagi, Y.; Arakaki, T.; Tanahara, A.; Furukawa, M.

    2011-12-01

    Atmospheric aerosols pose health risks to humans and change global climate. Ryukyu Islands in Japan are mainly covered with maritime air mass in summer and continental air mass for the rest of the seasons. Thus, it is possible to estimate the origins of chemical components, in particular transboundary air pollutants from East Asia. Ryukyu Islands are one of the best locations for monitoring the changes in Asia's atmosphere. This study tried to elucidate the spatial and temporal distribution of water-soluble anions and organic carbons, and chemical changes during the transportation processes. Aerosol samples were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS, Sep. 2005 - Dec. 2010), Kume Island (KM, ca. 100 km from Naha), and Minami-Daitou Island (MD, ca. 350 km from Naha) from June 2008 to June 2010 on quartz filters by using identical high-volume air samplers. The sample filters were exchanged every week. The concentrations of water-soluble anions (Cl-,Br-,NO3-,NO2-,SO42-) and water-soluble organic carbon (WSOC) were determined by using ion chromatography and total organic carbon analyzer, respectively. And, concentrations of non-sea-salt SO(nss-SO42-) were calculated based on the concentrations of Na+. For the samples collected at CHAAMS, seawater component accounted for on average 56±5% of total aerosol mass. Monthly mean concentrations of nss-SO42- showed distinctive difference among the sampling sites (KM>CHAAMS>MD) during Jan. to May, suggesting that distance from Asian continent affected on its behavior. Yearly average concentrations of NO3- and nss-SO42- showed +42% and +16% increase, respectively between 2005 and 2011. Annual rate of NO3- increase was much faster than that of nss-SO42-, probably reflecting changes in lifestyles in Asian continent.

  6. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment. The high-time resolution data shows that rapid concentration changes of a common individual species can be lost with traditional bulk sampling, and a time resolution of 30 minutes is suggested to accurately represent these changes. Using the mass spectra collected from the extended sampling campaign, source apportionment was performed with positive matrix factorization (PMF). The resulting model features six factors either correlated to specific sources (meat cooking, car emissions/road dust, diesel exhaust) or types of compounds (phthalates, alkanes/alkanoic acids, PAHs). The high-time resolution data allowed for the observation of specific trends in each factor's behavior as a function of time and wind direction relative to the receptor site. Elemental carbon/organic carbon (EC/OC) data is used to calculate the percentages of primary and secondary organic aerosol. Primary organic aerosol (POA) constituted the vast majority of the total carbon at 91% (an average of 2.8 +/- 1.1mug/m 3); 30% of which came from combustion, and 70% from non-combustion sources. These results can be explained by the PIAMS data: the diesel factor contributes to the combustion-related POA; the car/road dust, meat cooking, and alkane/alkanoic acid factors contribute the majority of non-combustion POA. The remaining factors represent <5% of the remaining OC. Considering the compatibility of data from the EC/OC and PIAMS, the ability of PIAMS to yield molecular species information to further define the primary and secondary organic aerosol factions is a distinct advantage in describing the behavior of the Wilmington organic aerosol. PIAMS was also applied to laboratory experiments. These experiments simulated complex environmental processes in order to focus on answering a central question. By mixing cholesterol aerosol with ozone in a smog chamber, and monitoring the concentration of cholesterol with PIAMS, the rate of reaction was determined. This rate indicates that cholesterol aerosol, which is a suggested source tracer, will remain in the ambient air for a few days under norma

  7. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach

    SciTech Connect

    Baustian, Kelly J.; Cziczo, Daniel J.; Wise, M. A.; Pratt, Kerri; Kulkarni, Gourihar R.; Hallar, Anna G.; Tolbert, Margaret A.

    2012-03-30

    In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse-mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine-mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic-containing particles serve as efficient ice nuclei while others do not. For coarse-mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra.

  8. Secondary Organic Aerosol Formation in the Captive Aerosol Growth and Evolution (CAGE) Chambers during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL

    NASA Astrophysics Data System (ADS)

    Leong, Y.; Karakurt Cevik, B.; Hernandez, C.; Griffin, R. J.; Taylor, N.; Matus, J.; Collins, D. R.

    2013-12-01

    Secondary organic aerosol (SOA) represents a large portion of sub-micron particulate matter on a global scale. The composition of SOA and its formation processes are heavily influenced by anthropogenic and biogenic activity. Volatile organic compounds (VOCs) that are emitted naturally from forests or from human activity serve as precursors to SOA formation. Biogenic SOA (BSOA) is formed from biogenic VOCs and is prevalent in forested regions like the Southeastern United States. The formation and enhancement of BSOA under anthropogenic influences such as nitrogen oxides (NOx), sulfur dioxide (SO2), and oxygen radicals are still not well understood. The lack of information on anthropogenic BSOA enhancement and the reversibility of SOA formation could explain the underprediction of SOA in current models. To address some of these gaps in knowledge, this study was conducted as part of the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL during the summer of 2013. SOA growth experiments were conducted in two Captive Aerosol Growth and Evolution (CAGE) outdoor chambers located at the SEARCH site. Ambient trace gas concentrations were maintained in these chambers using semi-permeable gas-exchange membranes, while studying the growth of injected monodisperse seed aerosol. The control chamber was operated under ambient conditions; the relative humidity and oxidant and NOx levels were perturbed in the second chamber. This design allows experiments to capture the natural BSOA formation processes in the southeastern atmosphere and to study the influence of anthropogenic activity on aerosol chemistry. Chamber experiments were periodically monitored with physical and chemical instrumentation including a scanning mobility particle sizer (SMPS), a cloud condensation nuclei counter (CCNC), a humidified tandem differential mobility analyzer (H-TDMA), and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The CAGE experiments focused on SOA reversibility and the sensitivity of SOA reactions to oxidant or NOx enhancement and aerosol liquid water content. Available ambient trace gas concentrations include VOCs, NOx, SO2, ozone, peroxyaxyl nitrates, and ammonia. Chamber data will also be compared to ambient aerosol measurements collected by the instruments mentioned above as well as those from other research groups.

  9. Tracing Ambient Air Geochemistry using a Modified X-Ray Fluorescence Filter Method

    NASA Astrophysics Data System (ADS)

    Steiner, J. C.; Rudolph, E.; Wrice, T.

    2002-12-01

    Modifications of x-ray fluorescence counting procedures enable tracing of aerosol dispersals related to weather fronts and local weather phenomena. Improved X-ray fluorescence methods for bulk aerosols deposited under positive air pressure conditions onto Millipore filters at 80 liters/hour enable the tracing of geological samples in periods down to one hour. Vacuum-plating aliquots of USGS standards onto 0.2 micron polycarbonate and quartz Millipore filters create standards with a shelf life of several months. The analytical system permits detection of light oxides, such as silica to 10 ppm, and heavy elements, such as iron to 0.5 ppm. These collections allow discriminations to be drawn between dominantly geological, silica-enriched air mass and dominantly iron-enriched air of possible industrial origin. These ambient air collections at 120 feet elevation at City College are used to create possible distinctions in air masses related to points of origin. Splits of aerosol examined by neutron activation and coupled plasma emission spectroscopy agree with x-ray fluorescence methods to within analytical error. Aerosol flux conditions are monitored for speciation using direct examination by scanning electron microscopy with energy dispersive analytical capability plus aerosol physical properties by sun photometry. The latter provides bulk optical transmission at six major wavelengths and estimates for bulk aerosol size properties. Preliminary data show positive photometry links with iron-aerosols with a correlation coefficient with southwesterly wind-driven conditions of seventy percent over a four hour monitoring period. Aerosol flux comparisons with heavy metal populations, Ba, Rb, Zr, La show uniform distributions with iron- and silica-enriched populations indicating a pervasive background condition in the ambient air mass over New York City.

  10. EXPOSURES TO ACIDIC AEROSOLS

    EPA Science Inventory

    Ambient monitoring of acid aerosol in four U.S. cities and in a rural region of southern Ontario clearly show distinct periods of strong acidity. easurements made in Kingston, TN, and Stuebenville, OH, resulted in 24-hr H+ ion concentrations exceeding 100 nmole/m3 more than 10 ti...

  11. FORMATION OF PHOTOCHEMICAL AEROSOLS

    EPA Science Inventory

    The objective was to develop a better understanding of smog aerosol formation with particular reference to haze in the Southern California area. This study combined laboratory work with ambient air studies. Counting of particles by light scattering was the principle physical tech...

  12. In Situ Electrostatic Separation of Ambient PM2.5 into Source-Specific Fractions During Collection in a FRM Sampler

    SciTech Connect

    Naresh Shah; Frank E. Huggins; Gerald P. Huffman

    2006-07-31

    Coal combustion is generally viewed as a major source of PM2.5 emissions into the atmosphere. For some time, toxicologists have been asking for an exposure environment enriched with the coal combustion source specific PM{sub 2.5} to conduct meaningful exposure studies to better understand the mechanisms of the adverse health effects of coal combustion specific PM2.5 in the ambient environment. There are several unique characteristics of primary PM generated from coal combustion. In this research project, an attempt has been made to exploit some of the unique properties of PM generated from coal fired power plants to preferentially separate them out from the rest of the primary and secondary PM in the ambient environment. An existing FRM sampler used for monitoring amount of PM{sub 2.5} in the ambient air is modified to incorporate an electrostatic field. A DC corona charging device is also installed at the ambient air inlet to impart positive or negative charge to the PM. Visual Basic software has been written to simulate the lateral movement of PM as it passes through the electrostatic separator under varying operating conditions. The PM samples collected on polycarbonate filters under varying operating conditions were extensively observed for clustering and/or separation of PM in the direction parallel to the electric field. No systematic PM separation was observed under any of the operating conditions. A solution to overcome this kind of turbulence caused remixing has been offered. However, due to major programmatic changes in the DOE UCR program, there are no venues available to further pursue this research.

  13. MODIS Collection 6 aerosol products: Comparison between Aqua's e-Deep Blue, Dark Target, and "merged" data sets, and usage recommendations

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Munchak, L. A.; Hsu, N. C.; Levy, R. C.; Bettenhausen, C.; Jeong, M.-J.

    2014-12-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) Atmospheres data product suite includes three algorithms applied to retrieve midvisible aerosol optical depth (AOD): the Enhanced Deep Blue (DB) and Dark Target (DT) algorithms over land, and a DT over-water algorithm. All three have been refined in the recent "Collection 6" (C6) MODIS reprocessing. In particular, DB has been expanded to cover vegetated land surfaces as well as brighter desert/urban areas. Additionally, a new "merged" data set which draws from all three algorithms is included in the C6 products. This study is intended to act as a point of reference for new and experienced MODIS data users with which to understand the global and regional characteristics of the C6 DB, DT, and merged data sets, based on MODIS Aqua data. This includes validation against Aerosol Robotic Network (AERONET) observations at 111 sites, focused toward regional and categorical (surface/aerosol type) analysis. Neither algorithm consistently outperforms the other, although in many cases the retrieved AOD and the level of its agreement with AERONET are very similar. In many regions the DB, DT, and merged data sets are all suitable for quantitative applications, bearing in mind that they cannot be considered independent, while in other cases one algorithm does consistently outperform the other. Usage recommendations and caveats are thus somewhat complicated and regionally dependent.

  14. Influence of Humidity On the Aerosol Scattering Coefficient and Its Effect on the Upwelling Radiance During ACE-2

    NASA Technical Reports Server (NTRS)

    Gasso, S.; Hegg, D. A.; Covert, D. S.; Collins, D.; Noone, K. J.; Oestroem, E.; Schmid, B.; Russell, P. B.; Livingston, J. M.; Durkee, P. A.

    2000-01-01

    Aerosol scattering coefficients (sigma(sub sp)) have been measured over the ocean at different relative humidities (RH) as a function of altitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions, absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sub sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands of the EOS (Earth Observing System) AM-1 (Terra) detectors, MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multi-angle Imaging Spectroradiometer). The UWPH measured sigma(sub sp) at two RHs, one below and the other above ambient conditions. Ambient sigma(sub sp) was obtained by interpolation of these two measurements. The data were stratified in terms of three types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., two- or one-day old polluted aerosols advected from Europe). An empirical relation for the dependence of sigma(sub sp) on RH, defined by sigma(sub sp)(RH) = k.(1 - RH/100)(sup gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 +/- 0.06. Based on the measured gammas, the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each of those aerosol models at several ambient humidities. For the prelaunch estimated precision of the sensors and the assumed viewing geometry of the instrument, the simulations suggest that the spectral and angular dependence of the reflectance measured by MISR is not sufficient to distinguish aerosol models with various different combinations of values for dry composition, gamma and ambient RH. A similar behavior is observed for MODIS at visible wavelengths. However, the 2100 nm band of MODIS appears to be able to differentiate between at least same aerosol models with different aerosol hygroscopicity given the MODIS calibration error requirements. This result suggests the possibility of retrieval of aerosol hygroscopicity by MODIS.

  15. Influence of Humidity on the Aerosol Scattering Coefficient and Its Effect on the Upwelling Radiance During ACE-2

    NASA Technical Reports Server (NTRS)

    Gasso, B. S.; Hegg, D. A.; Covert, D. S.; Collins, D.; Noone, K.; Oestroem, E.; Schmid, B.; Russell, P. B.; Livingston, J. M.; Durkee, P. A.; Jonsson, H.

    2000-01-01

    Aerosol scattering coefficients (sigma(sub sp)) have been measured over the ocean at different relative humidities (RH) as a function of attitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of sigma(sub sp) as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands or the EOS-AM ("Terra") detectors, MODIS and MISR. The UWPH measured (sigma(sub sp)) at 2 RHs, one below and the other above ambient conditions. Ambient (sigma(sub sp)) was obtained by interpolation of these 2 measurements. The data were stratified in terms of 3 types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., 2- or 1-day old polluted aerosols advected from Europe). An empirical relation for the dependence of (sigma(sub sp)) on RH, defined by (sigma(sub sp))(RH) = k. ((1 - RH/100)(exp -gamma), was used with the hygroscopic exponent gamma derived from the data. The following gamma values were obtained for the 3 aerosol types: gamma(dust) = 0.23 +/- 0.05, gamma(clean marine) = 0.69 +/- 0.06 and gamma(polluted marine) = 0.57 + 0.06. Based on the measured (gamma)(s), the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each of those aerosol models at several ambient humidities. For the pre-launch estimated precision of the sensors and the assumed viewing geometry of the instrument, the simulations suggest that the spectral and angular dependence of the reflectance measured by MISR is not sufficient to distinguish aerosol models with various different combinations of values ror dry composition. y and ambient RH. A similar behavior is observed for MODIS at visible wavelengths. However, the 2100 nm band of MODIS appears to be able to differentiate between at least some aerosol models with different aerosol hygroscopicity given the MODIS calibration error requirements. This result suggests the possibility of retrieval of aerosol hygroscopicity by MODIS.

  16. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  17. The impact of changing surface ocean conditions on the dissolution of aerosol iron

    NASA Astrophysics Data System (ADS)

    Fishwick, Matthew P.; Sedwick, Peter N.; Lohan, Maeve C.; Worsfold, Paul J.; Buck, Kristen N.; Church, Thomas M.; Ussher, Simon J.

    2014-11-01

    The proportion of aerosol iron (Fe) that dissolves in seawater varies greatly and is dependent on aerosol composition and the physicochemical conditions of seawater, which may change depending on location or be altered by global environmental change. Aerosol and surface seawater samples were collected in the Sargasso Sea and used to investigate the impact of these changing conditions on aerosol Fe dissolution in seawater. Our data show that seawater temperature, pH, and oxygen concentration, within the range of current and projected future values, had no significant effect on the dissolution of aerosol Fe. However, the source and composition of aerosols had the most significant effect on the aerosol Fe solubility, with the most anthropogenically influenced samples having the highest fractional solubility (up to 3.2%). The impact of ocean warming and acidification on aerosol Fe dissolution is therefore unlikely to be as important as changes in land usage and fossil fuel combustion. Our experimental results also reveal important changes in the size distribution of soluble aerosol Fe in solution, depending on the chemical conditions of seawater. Under typical conditions, the majority (77-100%) of Fe released from aerosols into ambient seawater existed in the colloidal (0.02-0.4 µm) size fraction. However, in the presence of a sufficient concentration of strong Fe-binding organic ligands (10 nM) most of the aerosol-derived colloidal Fe was converted to soluble Fe (<0.02 µm). This finding highlights the potential importance of organic ligands in retaining aerosol Fe in a biologically available form in the surface ocean.

  18. Bacterial communities in urban aerosols collected with wetted-wall cyclonic samplers and seasonal fluctuations of live and culturable airborne bacteria.

    PubMed

    Ravva, Subbarao V; Hernlem, Bradley J; Sarreal, Chester Z; Mandrell, Robert E

    2012-02-01

    Airborne transmission of bacterial pathogens from point sources (e.g., ranches, dairy waste treatment facilities) to areas of food production (farms) has been suspected. Determining the incidence, transport and viability of extremely low levels of pathogens require collection of high volumes of air and characterization of live bacteria from aerosols. We monitored the numbers of culturable bacteria in urban aerosols on 21 separate days during a 9 month period using high volume cyclonic samplers at an elevation of 6 m above ground level. Culturable bacteria in aerosols fluctuated from 3 CFU to 6 million CFU/L of air per hour and correlated significantly with changes in seasonal temperatures, but not with humidity or wind speed. Concentrations of viable bacteria determined by fluorescence staining and flow cytometry correlated significantly with culturable bacteria. Members of the phylum Proteobacteria constituted 98% of the bacterial community, which was characterized using 16S rRNA gene sequencing using DNA from aerosols. Aquabacterium sp., previously characterized from aquatic environments, represented 63% of all clones and the second most common were Burkholderia sp; these are ubiquitous in nature and some are potential human pathogens. Whole genome amplification prior to sequencing resulted in a substantial decrease in species diversity compared to characterizing culturable bacteria sorted by flow cytometry based on scatter signals. Although 27 isolated colonies were characterized, we were able to culture 38% of bacteria characterized by sequencing. The whole genome amplification method amplified DNA preferentially from Phyllobacterium myrsinacearum, a minor member of the bacterial communities, whereas Variovorax paradoxus dominated the cultured organisms. PMID:22193549

  19. Chemical composition of size-segregated aerosol collected all year-round at Concordia Station (Dome C, Antarctica). Transport processes and climatic implications.

    NASA Astrophysics Data System (ADS)

    Udisti, Roberto; Becagli, Silvia; Frosini, Daniele; Galli, Gaia; Ghedini, Costanza; Rugi, Francesco; Severi, Mirko; Traversi, Rita

    2010-05-01

    Ice-core stratigraphies of chemical components of atmospheric gases and aerosols trapped in the snow layers by scavenging processes are a powerful tool in understanding past climatic and environmental changes. The deep ice core drilled at Dome C in the framework of the EPICA project allowed reconstructing the last 8 glacial-interglacial cycles and highlightened the complex relationships between climatic forcings and environmental feedback processes. In interpreting ice core records as a function of past climatic variations, some difficulties arise from uncertainties in considering selected chemical species as reliable markers of climatic and environmental processes and in attributing the different load and composition of aerosols over Antarctica to changes in source intensity (such as aridity, wind strength, emersion of continental platform by sea-level lowering etc..) and/or to variations in atmospheric processes (such as meridional and zonal atmospheric circulation, polar vortex intensity, scavenging efficiency, transport pathways etc..). Besides, two new aspects are actually under discussions: the possible use of Na as sea-ice cover marker (via frost flower formation on the sea-ice surface during the pack-ice formation) and the identification of continental source areas for mineral dust reaching internal regions of Antarctica during glacial and interglacial periods. In order to better address such controversial issues, since 2005 a continuous, high temporal resolution size-segregated aerosol and surface snow sampling has been performed at Dome C (central East Antarctic Plateau, 75° 06' S, 123° 23' E), in the framework of "Station Concordia" Project (a Italian PNRA- French IPEV joint program). The chemical analysis of size-segregated aerosol and daily superficial snow samples, collected all year-round for more than 4 years, can contribute to clarify some of the above mentioned topics. In particular: the possible seasonal pattern of sea spray aerosol could be related to sea-ice formation timing and/or to changes in zonal wind intensity and atmospheric pathway; the mineralogical analysis of insoluble dust particles can allow the identification of continental sources, by comparison with soils collected in the potential source areas (PSAs); finally, the seasonal pattern of biogenic markers (such as methanesulphonic acid and non-sea-salt sulphate) can be linked to sea surface temperature, sea-ice cover and southern-hemisphere circulation modes (e.g., SOI, AAO or SAM and ACW). As regard as depositional and post-depositional processes, the analysis of chemical markers in aerosol, superficial snow and hoar crystals, sampled contemporaneously, will allow understanding the key factors (e.g., snow acidity, solar irradiation) affecting the preservation of components reversibly fixed in the snow layers (such as, for instance, methanesulphonic acid, nitrate and chloride). A summary of the major results from the chemical analysis of aerosol and snow collected at Dome C is here presented.

  20. AMS Measurements in National Parks of Aerosol Mass, Size and Composition, Comparison with Filter Samples and Correlation with Particle Hygroscopicity and Optical Extinction Properties

    NASA Astrophysics Data System (ADS)

    Alexander, M.; Taylor, N. F.; Collins, D. R.; Kumar, N.; Allen, J.; Newburn, M.; Lowenthal, D. H.; Zielinska, B.

    2011-12-01

    We report a comparison of results from aerosol studies at Great Smoky Mountain National Park (2006), Mt. Rainier National Park (2009) and Acadia National Park (2011), all class I visibility areas associated with IMPROVE (Interagency Monitoring of Protected Visual Environments) sites. This collaborative study was sponsored by the Electric Power Research Institute (EPRI) and was done with the cooperation of the National Park Service and the EPA. The atmospheric aerosol composition in these sites is influenced by a number of anthropogenic as well as biogenic sources, providing a rich environment for fundamental aerosol studies. The primary purpose of these studies was to add state-of-the-art aerosol instrumentation to the standard light extinction and aerosol measurements at the site, used to determine parameters for the IMPROVE light extinction reconstruction equation, adopted by the EPA to estimate light extinction from atmospheric aerosol concentrations and Rayleigh scattering. The combination of these diverse measurements also provides significant insight into fundamental aerosol properties such as aging and radiative forcing. New instrumentation included a quadrupole aerosol mass spectrometer (Aerodyne Q-AMS-Smoky Mountain Study), a high resolution aerosol time-of-flight mass spectrometer (Aerodyne HR-ToF-AMS - Mt. Rainier and Acadia studies) for real time measurements that directly address the relationship between sulfate, nitrate, and OC size and concentration, which is related to cloud and dry gas-to-particle conversion as air masses age during transport, the relationship between WSOC hygroscopic growth and oxygenated organic (OOA) composition, the OCM/OC ratio, and the chemical composition that determines the ambient hygroscopic state. The OCM/OC ratio and organic water uptake was addressed with high-volume and medium volume PM2.5 aerosol samples. Aerosols were collected daily on Teflon coated glass fiber filters (TGFF) in four high-volume PM2.5 samplers operated by DRI. These measurements provide the fraction of total OC that is water-soluble. The ambient hydration state was determined by the Don Collins group in the field with an ambient state TDMA (AS-TDMA). Aerosols are classified at ambient RH with an ambient diameter of Da. The sample is then dried to <20%, typically below the crystallization point of most aerosols. The sample is alternately left dry or humidified to 85-95% RH. The dried (path 1) or humidified (path 2) sample is then conditioned back to the original ambient RH, attaining a diameter Df. Continuous measurement of the hydration state over the diurnal cycle will be used to assess the validity of the assumption that hygroscopic growth follows the metastable branch of the ammonium sulfate growth curve.

  1. Characterization of nitrocatechols and related tracers in atmospheric biomass burning organic aerosol

    NASA Astrophysics Data System (ADS)

    Grgic, I.; Kitanovski, Z.; Yasmeen, F.; Claeys, M.

    2011-12-01

    One of the largest primary sources of organic aerosols in the atmosphere is biomass burning (Laskin et al., 2009). The chemistry of compounds present in biomass burning aerosol (BBA) is diverse and directly dependent on the chemical composition of the burning material and the combustion conditions (Simoneit et al., 2002). A well-established tracer for primary BBA is levoglucosan (1,6-anhydro-?-anhydroglucose), which originates from the pyrolysis of cellulose or hemicellulose (Fine et al., 2002). Secondary BBA, which is formed after physical and chemical changes (aging) of the primary BBA in the atmosphere, contains more oxidized and polar compounds. An important class of compounds of secondary organic aerosols (SOA) is nitrocatechols, which are strong absorbers of UV and Vis light, and therefore, can affect the earth's radiative balance and climate. Recently, methyl nitrocatechols were proposed as suitable tracers for highly oxidized secondary BBA (Iinuma et al., 2010). These compounds are primarily formed from the photooxidation of m-cresol, that is emitted from biomass burning, in the presence of NOx. The objective of the present study was to characterize nitrocatechols in ambient aerosols using mass spectrometric and chromatographic techniques. Ambient aerosol samples were collected during a cold winter episode from an urban site in Maribor, Slovenia, where substantial residential wood burning for domestic purposes takes place. Emphasis was put on the development of a suitable LC-ESI-MS technique. In an initial step the chromatographic conditions were optimized for methyl nitrocatechols and related nitro-aromatic compounds using diode array UV/Vis detection. The optimized LC conditions were used for the development and validation of an LC-ESI-MS/MS method for identification and quantification of nitrocatechols in aerosol samples. LC/ESI-MS/MS data will be presented and interpreted for the nitro-aromatic compounds that are present in the collected ambient aerosols.

  2. Visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park: 2. Molecular composition

    SciTech Connect

    Mazurek, M.A.; Newman, L.; Daum, P.H.

    1995-12-31

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as aerosol from two sites located in Grand Canyon National Park during summer ambient conditions. Of special interest are molecular species which serve as tracers for possible sources of the observed aerosol organic matter. Ambient samples were collected from Hopi Point (rim site) and from Indian Gardens (in-canyon site) as fine (dp< 2.1 =B5m) and total particle samples. The samples were grouped into fine particle and total particle monthly composites to provide sufficient material for molecular marker analysis then analyzed by capillary gas chromatography/mass spectrometry (GUMS), The molecular constituents of each aerosol composite were screened for key tracer compounds using a computerized data reduction method that was based on molecular ion fragment identification. Comparisons were made to a reference database that included molecular information obtained from authentic sources of primary organic aerosol emissions. Emission sources studied included vehicular exhaust, as well as local sources at the Grand Canyon which included soil dust, wood smoke, and particles from vegetation indigenous to the two Grand Canyon sampling sites. Our results show that summertime ambient aerosols contain many organic molecular compounds which can be related directly to the local vegetation. Another major component found in all samples consists of highly oxidized organic species which are not emitted directly from local primary organic aerosol source types. These oxidized species are thought to be secondary organic aerosols that originate from photochemical transformations involving either locally emitted primary organic compounds or transported aged emissions from source regions upwind of the Grand Canyon.

  3. Characterization of submicron aerosol particles collected during the MEGAPOLI experiment aboard the ATR-42 in Paris, France

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Crumeyrolle, S.; Barbet, C.; Pichon, J.; Borbon, A.; Colomb, A.; Schwarzenboeck, A.

    2011-12-01

    The chemical and physical properties of submicron aerosol particles were analyzed during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) campaign onboard the French ATR-42 aircraft. A total of 11 research flights (RF) were performed from July 9 to 29, 2009. The ATR-42 was equipped with a Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS), a Proton Transfer Mass Spectrometer (PTRMS), as well as measurements of ozone (O_3), carbon monoxide (CO), and nitrogen oxides (NO, NOy, and NOx). Meteorology measurements of temperature, wind speed, relative humidity, and liquid water content were also performed for each flight. Using the ToF-AMS, size-resolved chemical composition of non-refractory submicron particles (NR-PM1) were obtained at 1-min resolution. The average composition of NR-PM1 during this study was 53% organics, 27% sulfate, 7% nitrate, 12% ammonium, and 2% chloride. Strong contributions from SO_4 bearing particles are observed outside of the pollution plume, whereas Org-bearing particles are high within the plume. The mass concentrations of SO_4 bearing particles decrease as they encounter the pollution plume and at the same time there is an increase in organic mass concentration. These patterns suggest that there is competition between the formation of SO_4 and organic- bearing particles around the Paris pollution plume. Positive matrix factorization (PMF) was performed on the ToF-AMS organic mass spectra. Three substantial organic components were resolved. Two of the components contain substantial organic oxygen and are associated with semi-volatile oxygenated organic aerosol particles (SV-OOA) and low-volatility OOA (LV-OOA). Primary hydrocarbon-like organic aerosol particles (HOA) are also resolved. The LV-OOA component is highly aged and is normally detected outside of the main pollution plume, however SV-OOA and HOA have higher mass concentrations in the pollution plume rather than outside. We observe that mass concentrations of SV-OOA increase with both photochemical age and distance from the center of Paris within the pollution plume showing that there is significant formation of secondary organic aerosols within the plume. Similarly, combining these measurements with gas-phase measurements of NOx and volatile organic carbon (VOC) allows us to associate anthropogenic precursor VOCs to the formation of secondary organic aerosols.

  4. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  5. Classification of collective behavior: a comparison of tracking and machine learning methods to study the effect of ambient light on fish shoaling.

    PubMed

    Butail, Sachit; Salerno, Philip; Bollt, Erik M; Porfiri, Maurizio

    2015-12-01

    Traditional approaches for the analysis of collective behavior entail digitizing the position of each individual, followed by evaluation of pertinent group observables, such as cohesion and polarization. Machine learning may enable considerable advancements in this area by affording the classification of these observables directly from images. While such methods have been successfully implemented in the classification of individual behavior, their potential in the study collective behavior is largely untested. In this paper, we compare three methods for the analysis of collective behavior: simple tracking (ST) without resolving occlusions, machine learning with real data (MLR), and machine learning with synthetic data (MLS). These methods are evaluated on videos recorded from an experiment studying the effect of ambient light on the shoaling tendency of Giant danios. In particular, we compute average nearest-neighbor distance (ANND) and polarization using the three methods and compare the values with manually-verified ground-truth data. To further assess possible dependence on sampling rate for computing ANND, the comparison is also performed at a low frame rate. Results show that while ST is the most accurate at higher frame rate for both ANND and polarization, at low frame rate for ANND there is no significant difference in accuracy between the three methods. In terms of computational speed, MLR and MLS take significantly less time to process an image, with MLS better addressing constraints related to generation of training data. Finally, all methods are able to successfully detect a significant difference in ANND as the ambient light intensity is varied irrespective of the direction of intensity change. PMID:25294042

  6. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  7. Hygroscopic behavior of water-soluble matter extracted from biomass burning aerosols collected at a rural site in Tanzania, East Africa

    NASA Astrophysics Data System (ADS)

    Boreddy, S. K. R.; Kawamura, Kimitaka; Mkoma, Stelyus; Fu, Pingqing

    2014-11-01

    In this study, we present the hygroscopic behavior of water-soluble matter (WSM) extracted from biomass burning derived particulate matter 2.5 (PM2.5) aerosols collected at a rural background site in Tanzania during June-August 2011. Hygroscopic growth factors, g(RH), of WSM were measured by hygroscopic tandem differential mobility analyzer (H-TDMA) with an initial dry particle diameter of 100 nm. We observed that the g(RH) of WSM at 90% relative humidity (RH), g(90%)WSM, ranged from 1.10 to 1.47 with an average of 1.25 ± 0.12. The H-TDMA retrieved hygroscopicity parameter of WSM, ?WSM, ranged from 0.04 to 0.24 with a mean of 0.11 ± 0.07. We found that the observed g(90%)WSM is positively correlated with PM2.5 mass fractions of K+ (R2 = 0.61), Cl- (0.54), and organic carbon (0.58). Moreover, it well correlates with levoglucosan (0.67) and total diacids (0.76), implying that although the inorganic fraction may be the most important factor to control the hygroscopicity; biomass burning organics play a significant role in the hygroscopicity of Tanzanian aerosols. The lower growth factors obtained over the sampling site are probably due to the formation of less water-soluble potassium oxalate (K2C2O4) or less hygroscopic K2SO4 particles during atmospheric aging. We observed a moderate correlation (R2 = 0.33) between PM2.5 mass fraction of WSOC and g(90%)WSM. The retrieved g(90%)WSOM values ranged from 1.0 to 1.25 with a mean of 1.16 ± 0.05. This study demonstrates that the hygroscopicity of Tanzanian aerosols is largely controlled by the emission of biomass burning products and the subsequent chemical aging during atmospheric transport.

  8. Aerosol emissions near a coal gasification plant in the Kosovo region, Yugoslavia

    NASA Astrophysics Data System (ADS)

    Boueres, Luis Carlos S.; Patterson, Ronald K.

    1981-03-01

    Ambient aerosol samples from the region of Kosovo, Yugoslavia, were collected and analyzed for their elemental composition in order to determine the effect on ambient air quality of Lurgi coal gasification carried out there using low BTU lignite. Low-volume aerosol samples were used to collect air particulate matter during May of 1979. These samplers were deployed at five sites near the Kosovo industrial complex which is comprised of coal gasifier, a coal-fired power plant and a fertilizer plant which uses the waste products from the gasifier and power plant. A total of 126 impactor sets and 10 week-long "streaker" filters were analyzed by PIXE at FSU for 16-18 elements providing a data base of approximately 16 000 elemental concentrations. Preliminary results are reported here with emphasis on the following elements: Si, S, Ca, Fe, Zn and Pb.

  9. Microwave-assisted extraction of rare earth elements from petroleum refining catalysts and ambient fine aerosols prior to inductively coupled plasma-mass spectrometry.

    PubMed

    Kulkarni, Pranav; Chellam, Shankararaman; Mittlefehldt, David W

    2007-01-01

    A robust microwave-assisted acid digestion procedure followed by inductively coupled plasma-mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM(2.5)). High temperature (200 degrees C), high pressure (200 psig), acid digestion (HNO(3), HF and H(3)BO(3)) with 20 min dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst and PM(2.5). This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using (115)In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu and Dy in ambient PM(2.5) in an industrial area of Houston, TX. PMID:17386451

  10. Microwave-assisted Extraction of Rare Earth Elements from Petroleum Refining Catalysts and Ambient Fine Aerosols Prior to Inductively Coupled Plasma - Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar

    2006-01-01

    In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.

  11. Identification of source contributions to visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park. Interim final report

    SciTech Connect

    Mazurek, M.A.; Hallock, K.A.; Leach, M.; Mason-Jones, M.; Mason-Jones, H.; Salmon, L.G.; Winner, D.A.; Cass, G.R.

    1993-06-01

    Sulfates and carbonaceous aerosols are the largest contributors to the fine particle burden in the atmosphere near Grand Canyon National Park. While the effects of sulfate particles on visibility at the Grand Canyon has been extensively studied, much less is known about the nature and origin of the carbonaceous aerosols that are present. This disparity in understanding arises from at least two causes: aerosol carbon data for the region are less plentiful and many of the sources that could contribute to that organic aerosol are both diverse and not well characterized. The objective of this present study is to examine the origin of the carbonaceous aerosol at Grand Canyon National Park during the summer season based on molecular tracer techniques applied to source and ambient samples collected specifically for this purpose.

  12. Ergosterol, arabitol and manitol as tracers for biological aerosols

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Burshtein, N.; Lang-Yona, N.

    2010-12-01

    Airborne fungi can cause a wide array of adverse responses in humans depending on the type and quantity present. Since dose and human response is highly individual, the sensitivity of a person exposed is also an important consideration. The abundance of bioaerosols in the ambient air and their health impacts depend on the season and on the environmental conditions. In order to quantify and identify fungi bioaerosols’ contribution to atmospheric aerosols and the impact to public health, it has been suggested to use chemicals that are typical of bioaerosols as biomarkers in chemical analysis of collected aerosols. An often used biomarker for determining the fungal biomass is ergosterol. Recently, Bauer et al. (2008) found that mannitol and arabitol concentrations are correlated with the fungal spore counts in atmospheric PM10. In this study, ergosterol, arabitol and mannitol were quantified in ambient aerosols collected in the Eastern Mediterranean region for 12 months in order to understand their annual and seasonal behavior and to test whether arabitol and mannitol are good predictors of fungi. Finally, correlations between ergosterol abundances with inorganic ions, humidity, temperature, and synoptic data in order to identify dominant sources of fungal spores were also studied. We will report on the measurements and the observed correlations between the different tracers.

  13. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; K?epelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; Prévôt, A. S. H.; El Haddad, I.

    2015-08-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, PM10) collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g. AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 ?g of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon, oxygen containing and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g. filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially-resolved long-term datasets.

  14. Organosulfate Formation in Biogenic Secondary Organic Aerosol

    EPA Science Inventory

    Organosulfates of isoprene, ?-pinene, and ?-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive seri...

  15. Aerosolization of fungi, (1-->3)-beta-D glucan, and endotoxin from flood-affected materials collected in New Orleans homes.

    PubMed

    Adhikari, Atin; Jung, Jaehee; Reponen, Tiina; Lewis, Jocelyn Suzanne; DeGrasse, Enjoli C; Grimsley, L Faye; Chew, Ginger L; Grinshpun, Sergey A

    2009-04-01

    Standing water and sediments remaining on flood-affected materials were the breeding ground for many microorganisms in flooded homes following Hurricane Katrina. The purpose of this laboratory study was to examine the aerosolization of culturable and total fungi, (1-->3)-beta-D glucan, and endotoxin from eight flood-affected floor and bedding materials collected in New Orleans homes, following Hurricane Katrina. Aerosolization was examined using the Fungal Spore Source Strength Tester (FSSST) connected to a BioSampler. Dust samples were collected by vacuuming. A two-stage cyclone sampler was used for size-selective analysis of aerosolized glucan and endotoxin. On average, levels of culturable fungi ranged from undetectable (lower limit=8.3 x 10(4)) to 2.6 x 10(5) CFU/m(2); total fungi ranged from 2.07 x 10(5) to 1.6 x 10(6) spores/m(2); (1-->3)-beta-D glucan and endotoxin were 2.0 x 10(3) - 2.9 x 10(4) ng/m(2) and 7.0 x 10(2) - 9.3 x 10(4) EU/m(2), respectively. The results showed that 5-15 min sampling is sufficient for detecting aerosolizable biocontaminants with the FSSST. Smaller particle size fractions (<1.0 and <1.8 microm) have levels of glucan and endotoxin comparable to larger (>1.8 microm) fractions, which raises additional exposure concerns. Vacuuming was found to overestimate inhalation exposure risks by a factor of approximately 10(2) for (1-->3)-beta-D glucan and by 10(3)-10(4) for endotoxin as detected by the FSSST. The information generated from this study is important with respect to restoration and rejuvenation of the flood-affected areas in New Orleans. We believe the findings will be significant during similar disasters in other regions of the world including major coastal floods from tsunamis. PMID:19201399

  16. Chemical characterization of individual particles and residuals of cloud droplets and ice crystals collected on board research aircraft in the ISDAC 2008 study

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Moffet, R. C.; Glen, A.; Laskin, A.; Gilles, M. K.; Liu, P.; MacDonald, A. M.; Strapp, J. W.; McFarquhar, G. M.

    2013-06-01

    Ambient particles and the dry residuals of mixed-phase cloud droplets and ice crystals were collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) near Barrow, Alaska, in spring of 2008. The collected particles were analyzed using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy to identify physico-chemical properties that differentiate cloud-nucleating particles from the total aerosol population. A wide range of individually mixed components was identified in the ambient particles and residuals including organic carbon compounds, inorganics, carbonates, and black carbon. Our results show that cloud droplet residuals differ from the ambient particles in both size and composition, suggesting that both properties may impact the cloud-nucleating ability of aerosols in mixed-phase clouds. The percentage of residual particles which contained carbonates (47%) was almost four times higher than those in ambient samples. Residual populations were also enhanced in sea salt and black carbon and reduced in organic compounds relative to the ambient particles. Further, our measurements suggest that chemical processing of aerosols may improve their cloud-nucleating ability. Comparison of results for various time periods within ISDAC suggests that the number and composition of cloud-nucleating particles over Alaska can be influenced by episodic events bringing aerosols from both the local vicinity and as far away as Siberia.

  17. In Situ Aerosol Optical Thickness Collected by the SIMBIOS Program (1997-2000): Protocols, and and Data QC and Analysis

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; Barnes, Robert; McClain, Charles

    2001-01-01

    The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project Office activities on in situ aerosol optical thickness (i.e., protocols, and data QC and analysis). This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.

  18. Radioactive Aerosols as an Index of Air Pollution in the City of Thessaloniki, Greece

    SciTech Connect

    Ioannidou, A.; Papastefanou, C.

    2010-01-21

    This study summarizes results of an investigation done in order to find out how the radioactive aerosols of {sup 7}Be could serve as indicators of air pollution conditions. Beryllium-7 is a cosmic-ray produced radionuclide with an important fraction of its production to take place in the upper troposphere. Once it is formed is rapidly associated with submicron aerosol particles and participates in the formation and growth of the accumulation mode aerosols, which is a major reservoir of pollutants in the atmosphere. In order to define any influence of AMAD of {sup 7}Be aerosols by air pollution conditions, the aerodynamic size distribution of {sup 7}Be aerosols was determined by collecting samples at different locations in the suburban area of the city of Thessaloniki, including rural areas, industrial areas, high elevations, marine environment and the airport area. The aerodynamic size distribution of {sup 7}Be aerosols in different locations was obtained by using Andersen 1-ACFM cascade impactors and the Activity Median Aerodynamic Diameter (AMAD) was determined. Some dependency of the AMADs on height has been observed, while in near marine environment the {sup 7}Be activity size distribution was dominant in the upper size range of aerosol particles. Low AMADs as low as 0.62 to 0.74 {mu}m of {sup 7}Be aerosols have been observed at locations characterized with relative low pollution, while it is concluded that in the activity size distribution of ambient aerosols, {sup 7}Be changes to larger particle sizes in the presence of pollutants, since low AMADs of {sup 7}Be aerosols have been observed at low polluted locations. Preliminary data of simultaneous measurements of {sup 214}Pb and {sup 212}Pb with gaseous air pollutants CO, NO, NO{sub X}, SO{sub 2} and total suspended particulate matter (TSP) show that radon decay products near the ground could be a useful index of air pollution potential conditions and transport processes in the boundary layer.

  19. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    NASA Astrophysics Data System (ADS)

    Sheridan, P. J.; Andrews, E.; Ogren, J. A.; Tackett, J. L.; Winker, D. M.

    2012-12-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount) decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc.), however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93-0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and scattering Ångström exponent) suggest that the fraction of smaller particles in the aerosol is larger near the surface than at high altitudes. The observed dependence of scattering on size, wavelength, angular integration range, and relative humidity, together with the spectral dependence of absorption, show that the aerosol at higher altitudes is larger, less hygroscopic, and more strongly absorbing at shorter wavelengths, suggesting an increased contribution from dust or organic aerosols. The aerosol profiles show significant differences among seasons. The largest amounts of aerosol (as determined by median light extinction profile measurements) throughout most of the sampled column were observed during summer, with the lowest amounts in the winter and intermediate values in the spring and fall. The highest three profile levels (3.1, 3.7, 4.6 km), however, showed larger median extinction values in the spring, which could reflect long-range transport of dust or smoke aerosols. The aerosols in the mixed layer were darkest (i.e., lowest single-scattering albedo) in the fall, in agreement with surface measurements at Bondville and other continental sites in the US. In situ profiles of aerosol radiative forcing efficiency showed little seasonal or vertical variability. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. In this study, aerosol layers with light extinction (532 nm) values > 50 Mm-1 were detected b

  20. Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere

    PubMed Central

    2012-01-01

    2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM2.5) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM2.5 collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA. PMID:22849588

  1. Organosulfates as tracers for secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) in the atmosphere.

    PubMed

    Zhang, Haofei; Worton, David R; Lewandowski, Michael; Ortega, John; Rubitschun, Caitlin L; Park, Jeong-Hoo; Kristensen, Kasper; Campuzano-Jost, Pedro; Day, Douglas A; Jimenez, Jose L; Jaoui, Mohammed; Offenberg, John H; Kleindienst, Tadeusz E; Gilman, Jessica; Kuster, William C; de Gouw, Joost; Park, Changhyoun; Schade, Gunnar W; Frossard, Amanda A; Russell, Lynn; Kaser, Lisa; Jud, Werner; Hansel, Armin; Cappellin, Luca; Karl, Thomas; Glasius, Marianne; Guenther, Alex; Goldstein, Allen H; Seinfeld, John H; Gold, Avram; Kamens, Richard M; Surratt, Jason D

    2012-09-01

    2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C(5)H(12)O(6)S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM(2.5)) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM(2.5) collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA. PMID:22849588

  2. Apportionment of Primary and Secondary Organic Aerosols in Southern California During the 2005 Study of Organic Aerosols in Riverside (SOAR-1)

    EPA Science Inventory

    Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionment techniques.

  3. Hygroscopicity frequency distributions of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Suda, S. R.; Petters, M. D.; Matsunaga, A.; Sullivan, R. C.; Ziemann, P. J.; Kreidenweis, S. M.

    2010-12-01

    Secondary organic compounds contribute to ambient aerosol and lower the supersaturation that is required for individual particles to serve as cloud condensation nuclei (CCN). Secondary organic aerosol (SOA) formed from a single reaction can be composed of hundreds of different compounds and their overall CCN efficiency has been reported for many different SOA systems. The relative contribution of different compounds to the overall CCN efficiency can be described by a single hygroscopicity parameter kappa. However, this kappa comprises an unknown distribution of underlying kappas. Here we report on a new technique characterizing this distribution. Precursor compounds were oxidized in an environmental chamber to form SOA, collected on filters, extracted using a mixture of acetonitrile and water, passed through a high pressure liquid chromatography column, and measured as a function of retention time using scanning flow CCN analysis. Kappa generally decreased with retention time, reflecting in part the sorting of the products by polarity. Overall kappa values reconstructed by integrating over the chromatogram agreed well with online measurements from the environmental chamber, suggesting that kappa for SOA represents the volume-weighted average of the constituent compounds’ kappa values. These distributions show that many SOAs consist of a continuum of products with 0 < kappa < 0.3, rather than a pseudo-binary mixture of water soluble and water insoluble compounds. We anticipate that our measured hygroscopicity distributions will serve as validation points for mechanistic models that treat the generation and evolution of organic aerosols in the atmosphere.

  4. Direct gravimetric measurements of the mass of the antarctic aerosol collected by high volume sampler: PM10 summer seasonal variation at Terra Nova Bay.

    PubMed

    Truzzi, Cristina; Lambertucci, Luca; Illuminati, Silvia; Annibaldi, Anna; Scarponi, Giuseppe

    2005-01-01

    An on-site procedure was set up for direct gravimetric measurement of the mass of aerosol collected using high volume impactors (aerodynamic size cut point of 10 microm, PM10); this knowledge has hitherto been unavailable. Using a computerized microbalance in a clean chemistry laboratory, under controlled temperature (+/-0.5 degrees C) and relative humidity (+/-1%), continuous, long time filter mass measurements (hours) were carried out before and after exposure, after a 48 h minimun equilibration at the laboratory conditions. The effect of the electrostatic charge was exhausted in 30-60 min, after which stable measurements were obtained. Measurements of filters exposed for 7-11 days (1.13 m3 min(-1)) in a coastal site near Terra Nova Bay (December 2000 - February 2001), gave results for aerosol mass in the order of 10-20 mg (SD approximately 2 mg), corresponding to atmospheric concentrations of 0.52-1.27 microg m(-3). Data show a seasonal behaviour in the PM10 content with an increase during December - early January, followed by a net decrease. The above results compare well with estimates obtained from proxy data for the Antarctic Peninsula (0.30 microg m(-3)), the Ronne Ice Shelf (1.49 microg m(-3)), and the South Pole (0.18 microg m(-3), summer 1974-1975, and 0.37 microg m(-3), average summer seasons 1975-1976 and 1977-1978), and from direct gravimetric measurements recently obtained from medium volume samplers at McMurdo station (downwind 3.39 microg m(-3), upwind 4.15 microg m(-3)) and at King George Island (2.5 microg m(-3), summer, particle diameter <20 microm). This finding opens the way to the direct measurement of the chemical composition of the Antarctic aerosol and, in turn, to a better knowledge of the snow/air relationships as required for the reconstruction of the chemical composition of past atmospheres from deep ice core data. PMID:16398350

  5. Aerosol effect on the mobility of cloud droplets

    NASA Astrophysics Data System (ADS)

    Koren, Ilan; Altaratz, Orit; Dagan, Guy

    2015-10-01

    Cloud droplet mobility is referred to here as a measure of the droplets’ ability to move with ambient air. We claim that an important part of the aerosol effect on convective clouds is driven by changes in droplet mobility. We show that the mass-weighted average droplet terminal velocity, defined here as the ‘effective terminal velocity’ (?) and its spread ({? }? ) serve as direct measures of this effect. Moreover, we develop analytical estimations for ? and {? }? to show that changes in the relative dispersion of ? ({\\varepsilon }? ={? }? /? ) can serve as a sensitive predictor of the onset of droplet-collection processes.

  6. Thermal relaxation and collective dynamics of interacting aerosol-generated hexagonal NiFe2O4 nanoparticles.

    PubMed

    Ortega, D; Kuznetsov, M V; Morozov, Yu G; Belousova, O V; Parkin, I P

    2013-12-28

    This article reports on the magnetic properties of interacting uncoated nickel ferrite (NiFe2O4) nanoparticles synthesized through an aerosol levitation-jet technique. A comprehensive set of samples with different compositions of background gas and metal precursors, as well as applied electric field intensities, has been studied. Nanoparticles prepared under a field of 210 kV m(-1) show moderately high-field irreversibility and shifted hysteresis loops after field-cooling, also exhibiting a joint temperature decrease of the exchange field and coercivity. The appearance of memory effects has been checked using the genuine ZFC protocol and the observed behavior cannot be fully explained in terms of thermal relaxation. Although dipolar interactions prevail, exchange interactions occur to a certain extent within a narrow range of applied fields. The origin of the slow dynamics in the system is found to be given by the interplay of the distribution of energy barriers due to size dispersion and the cooperative dynamics associated with frustrated interactions. PMID:24196451

  7. Sperm viability, motility and morphology in emus (Dromaius novaehollandiae) are independent of the ambient collection temperature but are influenced by storage temperature.

    PubMed

    Sood, S; Malecki, I A; Tawang, A; Martin, G B

    2012-05-01

    A protocol for storage of emu semen >6 h has not yet been optimized. The objective was to determine: a) whether sperm quality was adversely affected by sudden exposure to low temperatures (5, 10 and 20 °C) during collection; and b) the effects of three storage temperatures (5, 10 and 20 °C) on survival of emu sperm. In two experiments, each repeated three times on alternate days, ejaculates were diluted 1:1 with precooled (5, 10, or 20°C) UWA-E3 diluent and stored for up to 48 h. Collection temperature, or interaction with either the storage time or storage temperature, had no significant effect on sperm viability, motility, or morphology. Mass Motility Score (2.91-3.27 ± 0.26, mean ± SEM), and percentages of live (72.4-76.2 ± 2.4) and morphologically normal sperm (63.3-64.5 ± 2.3) were comparable among collection temperatures. Conversely, storage temperature and storage time affected (P < 0.05) sperm viability, motility, and morphology. After storage for 48 h, percentages of viable, normal, and motile sperm were higher (P < 0.001) at 5 °C (58.7% ± 1.1, 44.7% ± 1.3, and 50.7% ± 4.9, respectively) and 10 °C (62.6% ± 1.1, 54.1% ± 1.3, and 60.4% ± 4.9) than at 20 °C (27.6% ± 1.1, 20.1% ± 1.3, and 25.9% ± 4.9). Beyond 6 h of storage, the percentage of abnormal sperm was higher (P < 0.001) for storage at 5 °C compared to 10 and 20 °C. After 48 h, bacterial counts were considerably higher at 20 °C compared to 5 and 10 °C (P < 0.001). The pH of stored sperm suspension remained unaffected at 5 and 10 °C, but at 20 °C declined to 6.5 ± 0.03 after 24 h (P < 0.05) and to 6.0 ± 0.03 after 48 h (P < 0.001). We concluded that emu semen could be collected at low ambient temperatures (5-20 °C) without compromising its in vitro storage duration and that semen quality during storage for 48 h was better if it was stored at 10 °C than at 5 or 20 °C. PMID:22341704

  8. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  9. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.

    1982-08-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  10. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.; Fong, W.; Snetsinger, K.G.; Ferry, G.V.; Hayes, D.M.

    1982-09-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples show that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  11. Mount St. Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Fong, W.; Snetsinger, K. G.; Ferry, G. V.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  12. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  13. Heterogeneous Surface-Based Freezing of Atmospheric Aerosols Containing Ash, Soot, and Soil 

    E-print Network

    Fornea, Adam P.

    2010-07-14

    Nucleation of ice crystals in the atmosphere often occurs through heterogeneous freezing processes facilitated by an atmospheric aerosol that acts as the ice nuclei (IN). Depending on ambient conditions and aerosol composition, heterogeneous...

  14. PHOTOACOUSTIC DETERMINATION OF OPTICAL PROPERTIES OF AEROSOL PARTICLES COLLECTED ON FILTERS: DEVELOPMENT OF A METHOD TAKING INTO ACCOUNT SUBSTRATE REFLECTIVITY

    EPA Science Inventory

    The absorptivity and imaginary index of refraction for carbon and methylene blue particles were inferred from the photoacoustic spectra of samples collected on Teflon filter substrates. Three models of varying complexity were developed to describe the photoacoustic signal as a fu...

  15. Determination of Water Soluble Organic Carbon Collected ~1 km above the Earth's Surface during a Mid-Atlantic Air Quality Episode and Comparison to Aerosol Optical Properties

    NASA Astrophysics Data System (ADS)

    Brent, L. C.; He, H.; Arkinson, H. L.; Stehr, J. W.; Ring, A.; Marufu, L.; Reiner, J.; Sander, L. C.; Dickerson, R. R.

    2014-12-01

    Routine, light aircraft air-monitoring conducted in MD provides insight into atmospheric photochemical processing as a function of altitude in the boundary layer and lower free troposphere. We present correlations between the optical properties and chemical composition of aerosols at ~1 km altitude over Maryland. Data were collected during the peak smog day and a dissipation day during an air quality episode studied in DISCOVER-AQ, July 2011. Post flight filter sample analysis shows a positive trend between measurable carboxylate concentrations and particle size with a recirculating, aged, urban air mass influenced with southeasterly marine winds (peak day). A westerly influx of air from the Ohio River Valley on the dissipation day was depleted in carboxylates compared with samples collected over the same location two days prior. These samples contained quantifiable concentrations of cis-pinonic acid, a reaction product of pinene after ozonation and photochemical oxidation. New techniques were developed to improve airborne data collection and analysis of water soluble organic acids (WSOA), a frequently dominant fraction of particulate matter (PM). An ion chromatographic mass spectrometric method was developed using NIST Standard Referencing Material 1649b, Urban Dust, as a surrogate material to achieve separation and resolution of at least 34 organic acids. Analysis of aircraft filter samples resulted in detection of 16 organic acids of which 12 were quantified. Eight inorganic species were also quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids than new transport air from the west and may provide a useful test of SOA formation theory.

  16. Processing of aerosol particles within the Habshan pollution plume

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R.; Salazar, V.; Breed, D.; Jensen, T.; Buseck, P. R.

    2015-03-01

    The Habshan industrial site in the United Arab Emirates produces a regional-scale pollution plume associated with oil and gas processing, discharging high loadings of sulfates and chlorides into the atmosphere, which interact with the ambient aerosol population. Aerosol particles and trace gas chemistry at this site were studied on two flights in the summer of 2002. Measurements were collected along vertical plume profiles to show changes associated with atmospheric processing of particle and gas components. Close to the outlet stack, particle concentrations were over 10,000 cm-3, dropping to <2000 cm-3 in more dilute plume around 1500 m above the stack. Particles collected close to the stack and within the dilute plume were individually measured for size, morphology, composition, and mixing state using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. Close to the stack, most coarse particles consisted of mineral dust and NaCl crystals from burning oil brines, while sulfate droplets dominated the fine mode. In more dilute plume, at least 1500 m above the stack, the particle spectrum was more diverse, with a significant increase in internally mixed particle types. Dilute plume samples consisted of coarse NaCl/silicate aggregates or NaCl-rich droplets, often with a sulfate component, while fine-fraction particles were of mixed cation sulfates, also internally mixed with nanospherical soot or silicates. Thus, both chloride and sulfate components of the pollution plume rapidly reacted with ambient mineral dust to form coated and aggregate particles, enhancing particle size, hygroscopicity, and reactivity of the coarse mode. The fine-fraction sulfate-bearing particles formed in the plume contribute to regional transport of sulfates, while coarse sulfate-bearing fractions locally reduced the SO2 loading through sedimentation. The chloride- and sulfate-bearing internally mixed particles formed in the plume markedly changed the reflectivity and scattering properties of the ambient aerosol population, as well as its hygroscopic and ice nucleation properties.

  17. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  18. Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds

    PubMed Central

    Lin, Ying-Hsuan; Zhang, Zhenfa; Docherty, Kenneth S.; Zhang, Haofei; Budisulistiorini, Sri Hapsari; Rubitschun, Caitlin L.; Shaw, Stephanie L.; Knipping, Eladio M.; Edgerton, Eric S.; Kleindienst, Tadeusz E.; Gold, Avram; Surratt, Jason D.

    2011-01-01

    Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NOx conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (> 99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7–6.4% for ?-IEPOX and 3.4–5.5% for ?-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C5-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NOx, isoprene-dominated regions influenced by the presence of acidic aerosols. PMID:22103348

  19. Airborne Aerosol In situ Measurements during TCAP: A Closure Study of Total Scattering

    SciTech Connect

    Kassianov, Evgueni I.; Berg, Larry K.; Pekour, Mikhail S.; Flynn, Connor J.; Tomlinson, Jason M.; Chand, Duli; Shilling, John E.; Ovchinnikov, Mikhail; Barnard, James C.; Sedlacek, Art; Schmid, Beat

    2015-07-31

    We present here a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. The synergistically employed aircraft data involve aerosol microphysical, chemical, and optical components and ambient relative humidity measurements. Our framework is developed emphasizing the explicit use of the complementary chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total aerosol scattering is demonstrated for different ambient conditions with a wide range of relative humidities (from 5 to 80%) using three types of data collected by the U.S. Department of Energy (DOE) G-1 aircraft during the recent Two-Column Aerosol Project (TCAP). Namely, these three types of data employed are: (1) size distributions measured by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS; 0.06-1 µm), a Passive Cavity Aerosol Spectrometer (PCASP; 0.1-3 µm) and a Cloud and Aerosol Spectrometer (CAS; 0.6- >10 µm), (2) chemical composition data measured by an Aerosol Mass Spectrometer (AMS; 0.06-0.6 µm) and a Single Particle Soot Photometer (SP2; 0.06-0.6 µm), and (3) the dry total scattering coefficient measured by a TSI integrating nephelometer at three wavelengths (0.45, 0.55, 0.7 µm) and scattering enhancement factor measured with a humidification system at three RHs (near 45%, 65% and 90%) at a single wavelength (0.525 µm). We demonstrate that good agreement (~10% on average) between the observed and calculated scattering at these three wavelengths can be obtained using the best available chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction and using non-representative RI values can cause a substantial underestimation (~40% on average) and overestimation (~35% on average) of the calculated total scattering, respectively.

  20. Quantification and radiocarbon source apportionment of black carbon in atmospheric aerosols using the CTO-375 method

    NASA Astrophysics Data System (ADS)

    Zencak, Zdenek; Elmquist, Marie; Gustafsson, Örjan

    To make progress towards linking the atmosphere and biogeosphere parts of the black carbon (BC) cycle, a chemothermal oxidation method (CTO-375), commonly applied for isolating BC from complex geomatrices such as soils, sediments and aquatic particles, was applied to investigate the BC also in atmospheric particles. Concentrations and 14C-based source apportionment of CTO-375 based BC was established for a reference aerosol (NIST RM-8785) and for wintertime aerosols collected in Stockholm and in a Swedish background area. The results were compared with thermal-optical (OC/EC) measurements. For NIST RM-8785, a good agreement was found between the BC CTO-375 concentration and the reported elemental carbon (EC) concentration measured by the "Speciation Trends Network—National Institute of Occupational Safety and Health" method (EC NIOSH) with BC CTO-375 of 0.054±0.002 g g -1 and EC NIOSH of 0.067±0.008 g g -1. In contrast, there was an average factor of ca. 20 difference between BC CTO-375 and EC NIOSH for the ambient Scandinavian wintertime aerosols, presumably reflecting a combination of BC CTO-375 isolating only the recalcitrant soot-BC portion of the BC continuum and the EC NIOSH metric inadvertently including some intrinsically non-pyrogenic organic matter. Isolation of BC CTO-375 with subsequent off-line radiocarbon analysis yielded fraction modern values (fM) for total organic carbon (TOC) of 0.93 (aerosols from a Swedish background area), and 0.58 (aerosols collected in Stockholm); whereas the fM for BC CTO-375 isolates were 1.08 (aerosols from a Swedish background area), and 0.87 (aerosols collected in Stockholm). This radiocarbon-based source apportionment suggests that contribution from biomass combustion to cold-season atmospheric BC CTO-375 in Stockholm was 70% and in the background area 88%.

  1. A method for sizing submicrometer particles in air collected on Formvar films and imaged by scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Hamacher-Barth, E.; Jansson, K.; Leck, C.

    2013-12-01

    A method was developed to systematically investigate individual aerosol particles collected onto a polyvinyl formal (Formvar)-coated copper grid with scanning electron microscopy. At very mild conditions with a low accelerating voltage of 2 kV and Gentle Beam mode aerosol particles down to 20 nm in diameter can be observed. Subsequent processing of the images with digital image analysis provides size resolved and morphological information (elongation, circularity) on the aerosol particle population. Polystyrene nanospheres in the expected size range of the ambient aerosol particles (20-900 nm in diameter) were used to confirm the accuracy of sizing and determination of morphological parameters. The relative standard deviation of the diameters of the spheres was better than ±10% for sizes larger than 40 nm and ±18% for 21 nm particles compared to the manufacturer's certificate. Atmospheric particles were collected during an icebreaker expedition to the high Arctic (north of 80°) in the summer of 2008. Two samples collected during two different meteorological regimes were analyzed. Their size distributions were compared with simultaneously collected size distributions from a Twin Differential Mobility Particle Sizer, which confirmed that a representative fraction of the aerosol particles was imaged under the electron microscope. The size distributions obtained by scanning electron microscopy showed good agreement with the Twin Differential Mobility Sizer in the Aitken mode, whereas in the accumulation mode the size determination was critically dependent on the contrast of the aerosol with the Formvar-coated copper grid. The morphological properties (elongation, circularity) changed with the number of days the air masses spent over the pack-ice area north of 80° before the aerosol particles were collected at the position of the icebreaker and are thus an appropriate measure to characterize transformation processes of ambient aerosol particles.

  2. Comparison of Oxidative Properties, Light Absorbance, and Total and Elemental Mass Concentration of Ambient PM2.5 Collected at 20 European Sites

    PubMed Central

    Künzli, Nino; Mudway, Ian S.; Götschi, Thomas; Shi, Tingming; Kelly, Frank J.; Cook, Sarah; Burney, Peter; Forsberg, Bertil; Gauderman, James W.; Hazenkamp, Marianne E.; Heinrich, Joachim; Jarvis, Deborah; Norbäck, Dan; Payo-Losa, Felix; Poli, Albino; Sunyer, Jordi; Borm, Paul J.A.

    2006-01-01

    Objective It has been proposed that the redox activity of particles may represent a major determinant of their toxicity. We measured the in vitro ability of ambient fine particles [particulate matter with aerodynamic diameters ?2.5 ?m (PM2.5)] to form hydroxyl radicals (•OH) in an oxidant environment, as well as to deplete physiologic antioxidants (ascorbic acid, glutathione) in the naturally reducing environment of the respiratory tract lining fluid (RTLF). The objective was to examine how these toxicologically relevant measures were related to other PM characteristics, such as total and elemental mass concentration and light absorbance. Design Gravimetric PM2.5 samples (n = 716) collected over 1 year from 20 centers participating in the European Community Respiratory Health Survey were available. Light absorbance of these filters was measured with reflectometry. PM suspensions were recovered from filters by vortexing and sonication before dilution to a standard concentration. The oxidative activity of these particle suspensions was then assessed by measuring their ability to generate •OH in the presence of hydrogen peroxide, using electron spin resonance and 5,5-dimethyl-1-pyrroline-N-oxide as spin trap, or by establishing their capacity to deplete antioxidants from a synthetic model of the RTLF. Results and Conclusion PM oxidative activity varied significantly among European sampling sites. Correlations between oxidative activity and all other characteristics of PM were low, both within centers (temporal correlation) and across communities (annual mean). Thus, no single surrogate measure of PM redox activity could be identified. Because these novel measures are suggested to reflect crucial biologic mechanisms of PM, their use may be pertinent in epidemiologic studies. Therefore, it is important to define the appropriate methods to determine oxidative activity of PM. PMID:16675421

  3. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    SciTech Connect

    Mazurek, M.A. ); Cofer, W.R. III; Levine, J.S. . Langley Research Center)

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).

  4. Determination of 40K, 232Th and 238U activity concentrations in ambient PM2.5 aerosols and the associated inhalation effective dose to the public in Jeddah City, Saudi Arabia.

    PubMed

    Zytoon, Mohamed A; Aburas, Hani M; Abdulsalam, Mohammed I

    2014-03-01

    Natural radioactivity of soil samples has been studied in many countries of the Arabian Peninsula, including Saudi Arabia. Radiological indices based on soil radioactivity have been widely used in these studies. However, there are no available data about natural radioactivity of fine aerosol particles in such countries. The objective of this study is to determine the activity concentrations of (40)K, (232)Th and (238)U in airborne PM2.5 and the associated internal inhalation radiation dose to the public in Jeddah City, Saudi Arabia. Twenty-four air samples in four locations throughout Jeddah were collected and analyzed for PM2.5 and the associated K, Th and U. The activity concentrations of the isotopes (40)K, (232)Th and (238)U were calculated. High atmospheric PM2.5 concentrations (mean: 50.81 ± 34.02 ?g/m(3)) were found. The natural radioactivity associated with PM2.5 due to the isotopes (40)K, (232)Th and (238)U were 301.8 ± 76.1, 11.8 ± 4.2 and 10.8 ± 3.4 Bq/kg, respectively, and the Raeq was calculated as 44.9 ± 14.0 Bq/kg. The inhalation annual effective radiation dose to the public due to natural isotopes of the airborne PM2.5 was in the range 15.03-58.87 nSv/year, depending on the age group. Although these dose values were associated with the PM2.5 fraction only, they were higher than the world references values in air reported in the UNSCEAR, 2000 report. PMID:24462924

  5. Aerosol Science and Technology, 43:486501, 2009 Copyright American Association for Aerosol Research

    E-print Network

    for glutaric acid in mixed glutaric acid/NH4HSO4 test aerosols was 0.22 ng collected mass, which corresponds reactions occur in aerosols (Kalberer et al. 2004), which could lead to the incorporation of volatile. 2008), leading to efforts to explain the missing source of aerosol organics. One potential source

  6. Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

    2006-01-01

    Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

  7. Aerosol phase transformation in the atmosphere

    SciTech Connect

    Tang, I.N.; Munkelwitz, H.R.

    1992-09-01

    Ambient aerosols are frequently composed of hygroscopic inorganic salts such as chlorides, sulfates and nitrates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when atmospheric relative humidity reaches a level specific to the chemical composition of the aerosol particle. Conversely, when relative humidity decreases and becomes low enough, a saline droplet will evaporate and suddenly crystallize, expelling all its water content. Information on the composition and temperature dependence of these properties is required in mathematical models for describing the dynamic and transport behavior of ambient aerosols. Experiments are carried out in the temperature range 5--35{degrees}C, using single particles individually suspended in an electrodynamic cell that can be evacuated and back filled with water vapor. The phase transformation of the aerosol particle is monitored by laser light scattering and the relative humidity at the transition point is determined by directly measuring the water vapor pressure in the cell. Results are obtained for particles containing either a single salt or a preselected mixture of NaCl, KCl, NaNO{sub 3}, Na{sub 2}SO{sub 4} and (NH{sub 4}){sub 2}SO{sub 4}, which are common constituents of ambient aerosols. A theoretical model on the composition and temperature dependence of the deliquescence properties is developed for single and two-salt aerosol systems.

  8. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    SciTech Connect

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; Tomlinson, Jason; Fast, Jerome

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by a suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.

  9. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    DOE PAGESBeta

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; et al

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by amore »suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH « less

  10. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  11. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E. (East Setauket, NY); Weber, Rodney J. (Atlanta, GA)

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  12. Primary and Secondary Contributions to the Organic Aerosol Over the Amazon Determined by STXM-NEXAFS

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Pöhlker, C.; Wiedemann, K. T.; Sinha, B.; Artaxo, P.; Kilcoyne, D.; Smith, M. L.; Martin, S. T.; Poeschl, U.

    2011-12-01

    We investigated the morphology and chemical composition of aerosol samples from a pristine tropical environment, the Amazon Basin, using Scanning Transmission X-ray Microscopy - Near Edge X-ray Absorption Fine Structure (STXMNEXAFS) analysis. The NEXAFS spectra were used to estimate the elemental ratios of C, N and O, as well as the chemical bonding state of these elements. The aim of this study was to investigate the microphysical and chemical properties of a tropical background aerosol and its internal mixing state. The samples were collected in the Amazonian rainforest during the rainy season and can be regarded as a nearly pristine background aerosol. Lab-generated SOA-samples (produced by the (photo)oxidation of isoprene, alpha-pinene and beta-caryophyllene), microtome slices of fungal spores, and aerosolized authentic organic compounds were measured as reference samples. The STXM-NEXAFS results of the lab-generated SOA have been analyzed and compared to SOA from the Amazonian region. In the lab samples, SOA occurred as droplets of different sizes, sometimes exhibiting internal structures ('raisin-like' structure). The spectral characteristics of the lab samples depend on the precursors applied for their generation. The Amazonian aerosol was found to be dominated by drop-like organic particles in the fine mode (often in internal mixture with solid particles), and Primary Biological Aerosol Particles (PBAP) in the coarse mode. Liquid organic aerosol coatings were also frequently observed on the PBAPs. Unexpectedly, many ambient SOA samples show a high content of N (around 20% or even more) as well as the frequent occurrence of potassium. Furthermore, the spectra exhibit characteristic signal patterns for different functional groups. In most cases, the spectrum near the C-edge is dominated by either the hydroxyl or the carboxylate signal, but prominent peaks for ketone carbonyls, alkanes and alkenes have also been observed. Based on these results, a new conceptual model for the origin of Amazonian aerosol will be proposed.

  13. Surface science with aerosols

    NASA Astrophysics Data System (ADS)

    Bluhm, H.; Siegmann, H. C.

    2009-06-01

    Experimental surface science with aerosol particles under atmospheric conditions is becoming a realistic possibility. The first part of this critical review focuses on nano-scopic aerosols generated in combustion of organic fuels at ambient pressures. The bizarre shape of soot agglomerates resists a simple definition of size and surface area. Yet a measure of the size known as the mobility diameter can be extracted from the mobility of the particles in their carrier gas. The total surface area must be divided into an active and a passive part. At the active surface, mass, energy, and momentum is exchanged with the molecules of the carrier gas. The active surface thus determines the dynamical properties of the particles. The passive surface is the surface enclosed in the interior as well as the surface in bays or cracks or, with larger particles, in the dead point of the laminar flow; it determines particle properties on a longer time scale. Simple automatic portable sensors measure the number density of airborne particles, their "size" and a characteristic fingerprint of the surface chemistry, making it possible to determine the source from which the particle was emitted. The response time of the sensors is ˜1 s, hence one can monitor dynamical changes of the particles such as adsorption of water in the atmosphere. In the second part we examine a number of surface science techniques that have been used to characterize surfaces important to atmospheric chemistry in more detail, in particular the uptake of water and the influence of surfactants. We illustrate the application of these techniques to the investigation of alkali halide surfaces as a function of relative humidity. Finally we give first examples on how infrared spectroscopy and synchrotron-based ambient pressure X-ray photoelectron spectroscopy have been used to study more realistic aerosol particles, under conditions of ambient humidity. These examples show that in situ chemical analysis of the particles is possible with third generation synchrotron X-ray sources. In the near future, X-ray lasers might reveal the fast dynamics of chemical processes as well. Thus it is within reach to study aerosols under the conditions of the stratosphere. Stratospheric aerosols can reduce the insolation of the earth and may become one of the last resorts of humanity to counteract the effects of global warming.

  14. The Juelich large Aerosol Chamber

    NASA Astrophysics Data System (ADS)

    Mentel, Th.; Wahner, A.; Folkers, M.

    2003-04-01

    The large Aerosol Chamber is designed for the investigation of nighttime atmospheric chemistry. The Aerosol Chamber is a dark chamber and is operated at ambient temperature and pressure conditions. It is constructed as a double wall system: a fully welded aluminum box (7m x 7m x 5.3m) and an equally sized fully heat sealed Teflon bag hanging from the ceiling. The space between the aluminum and Teflon walls is flushed permanently with clean air to prevent memory effects. Typical mixing times of about 5 min. are achieved by slightly heating the chamber floor. The large volume of 260 m_3 ensures lifetime of aerosols of more than 2 days. The lifetime of trace gases amounts to 2 weeks for O_3 and to more than 4 weeks for inert gases. With the low surface/volume ratio < 1 m-1 the chamber is particulary suited for the investigation heterogeneous and multi-phase processes. The Aerosol Chamber is equipped with a Bruker120HR FTIR spectrometer to measure gas phase species with the resolution of single rotational water lines at ambient pressure. A multiple pass system inside the chamber with a variable light pass from 15 to 380 m allows for the measurement of trace gases with detection limit in the ppb range. NO/NO_2 and O_3 are measured by commercial instruments. Parameters like temperature, relative humidity and pressure are routinely recorded. The aerosol is characterized by size distribution measurements with a SMPS and a APS or PCS2000. The ionic composition of particles (inorganic anions, dicarboxylic acids) is monitored by a steam jet aerosol collector with succeeding ion chromatography. The Aerosol Chamber is characterized with respect to NO_X gas-phase chemistry and wall loss processes, e.g. upper limits for the dark reaction of N_2O_5 with water vapor and the unimolecular decay of NO_3 were determined. During the last few years the heterogeneous hydrolysis of N_2O_5 was investigated for aerosols composed of sodium and ammonium salts of sulfuric and nitric acid as well as organic acids and sulfate particles with organic coatings. In close cooperation with the aerosol group of ECN (Petten) the Aerosol Chamber was utilized for closure type experiments (EU-HECONOS), e.g. the HNO_3/H_2O/Na^+/H^+/ NO_3^-/SO_42-/HSO_4^- system was investigated and compared to the thermodynamic model of Pitzer-Simonson-Clegg. Very recently we started studies of the interaction between inorganic and organic aerosol components with respect to surface reactivity and condensational growth within the EU project CASOMIO.

  15. Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.

    PubMed

    Dall'Osto, Manuel; Hellebust, Stig; Healy, Robert M; O'Connor, Ian P; Kourtchev, Ivan; Sodeau, John R; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin D; Wenger, John C

    2014-09-15

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic aerosol factor (AMS_PMF_COA) to oxidized organic aerosol, chloride and locally produced nitrate, indicating that AMS_PMF_COA cannot be attributed to primary cooking emissions only. Overall, there are clear benefits from factor analysis applied to results obtained from multiple techniques, which allows better association of aerosols with sources and atmospheric processes. PMID:24950495

  16. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Kojima, T.; Amato, F.; Lucarelli, F.; de la Rosa, J.; Calzolai, G.; Nava, S.; Chiari, M.; Alastuey, A.; Querol, X.; Gibbons, W.

    2013-02-01

    The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Mass Spectrometry (ICP-MS), and hourly Streaker with Particle Induced X-ray Emission (PIXE) samples collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa") and metalliferous sulphatic pollutants arriving in western Japan during spring 2011. The main aerosol sources recognised by Positive Matrix Factorization (PMF) analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5-10), As-bearing sulphatic aerosol (PM0.1-2.5), metalliferous sodic particulate matter (PM) interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  17. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Kojima, T.; Amato, F.; Lucarelli, F.; Nava, S.; de la Rosa, J.; Calzolai, G.; Chiari, M.; Alastuey, A.; Querol, X.; Gibbons, W.

    2012-09-01

    The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a~pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples (ICP-AES and ICP-MS) and hourly Streaker (PIXE) samples of particulate matter collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa") and metalliferous sulphatic pollutants arriving in Western Japan during spring 2011. The main aerosol sources recognised by PMF analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5-10), As-bearing sulphatic aerosol (PM0.1-2.5), metalliferous sodic PM interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the more undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  18. Near real time vapor detection and enhancement using aerosol adsorption

    SciTech Connect

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  19. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

    1999-01-01

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  20. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 ?m, PM2.5=0.3 ?g m-3; particulate matter of aerodynamic diameter less than 10 ?m, PM10=1.1 ?g m-3; estimated coefficient of light scattering by particulate matter, ?ep, at 570 nm=12 Mm-1). (b) High aerosol concentration (PM2.5=43.9 ?g m-3; PM10=83.4 ?g m-3; estimated ?ep at 570 nm=245 Mm-1) (reproduced by permission of National Park Service, 2002). Although comprising only a small fraction of the mass of Earth's atmosphere, aerosol particles are highly important constituents of the atmosphere. Special interest has focused on aerosols in the troposphere, the lowest part of the atmosphere, extending from the land or ocean surface typically to ˜8 km at high latitudes, ˜12 km in mid-latitudes, and ˜16 km at low latitudes. That interest arises in large part because of the importance of aerosol particles in geophysical processes, human health impairment through inhalation, environmental effects through deposition, visibility degradation, and influences on atmospheric radiation and climate.Anthropogenic aerosols are thought to exert a substantial influence on Earth's climate, and the need to quantify this influence has sparked much of the current interest in and research on tropospheric aerosols. The principal mechanisms by which aerosols influence the Earth radiation budget are scattering and absorbing solar radiation (the so-called "direct effects") and modifying clouds and precipitation, thereby affecting both radiation and hydrology (the so-called "indirect effects"). Light scattering by aerosols increases the brightness of the planet, producing a cooling influence. Light-absorbing aerosols such as black carbon exert a warming influence. Aerosols increase the reflectivity of clouds, another cooling influence. These radiative influences are quantified as forcings, where a forcing is a perturbation to the energy balance of the atmosphere-Earth system, expressed in units of watts per square meter, W m-2. A warming influence is denoted a positive forcing, and a cooling influence, negative. The radiative direct and indirect forcings by anthropogenic aerosols are thought to be of comparable magnitude to the posi

  1. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, P.F.; Herceg, J.E.; Klocksieben, R.H.

    1984-04-11

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage t

  2. Comparison Between Lidar and Nephelometer Measurements of Aerosol Hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement Site

    NASA Technical Reports Server (NTRS)

    Pahlow, M.; Feingold, G.; Jefferson, A.; Andrews, E.; Ogren, J. A.; Wang, J.; Lee, Y.-N.; Ferrare, R. A.

    2004-01-01

    Aerosol hygroscopicity has a significant effect on radiative properties of aerosols. Here a lidar method, applicable to cloud-capped, well-mixed atmospheric boundary layers, is employed to determine the hygroscopic growth factor f(RH) under unperturbed, ambient atmospheric conditions. The data used for the analysis were collected under a wide range of atmospheric aerosol levels during both routine measurement periods and during the intensive operations period (IOP) in May 2003 at the Southern Great Plains (SGP) Climate Research Facility in Oklahoma, USA, as part of the Atmospheric Radiation Measurement (ARM) program. There is a good correlation (approx. 0.7) between a lidar-derived growth factor (measured over the range 85% RH to 96% RH) with a nephelometer-derived growth factor measured over the RH range 40% to 85%. For these RH ranges, the slope of the lidar-derived growth factor is much steeper than that of the nephelometer-derived growth factor, reflecting the rapid increase in particle size with increasing RH. The results are corroborated by aerosol model calculations of lidar and nephelometer equivalent f(RH) based on in situ aerosol size and composition measurements during the IOP. It is suggested that the lidar method can provide useful measurements of the dependence of aerosol optical properties on relative humidity, and under conditions closer to saturation than can currently be achieved with humidified nephelometers.

  3. Water content and morphology of sodium chloride aerosol particles

    E-print Network

    Weis, David D.; Ewing, George E.

    1999-09-20

    Sodium chloride droplets with a median diameter of ?0.4 ?m were generated in the laboratory by atomizing an aqueous solution of NaCl under ambient conditions. Infrared extinction spectra of the aerosols under controlled relative humidity (RH...

  4. A method for sizing submicrometer particles in air collected on formvar films and imaged by scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Hamacher-Barth, E.; Jansson, K.; Leck, C.

    2013-06-01

    Here we present a method to systematically investigate single aerosol particles collected on formvar film supported by a copper grid, with Scanning Electron Microscopy (SEM) operating at low accelerating voltage. The method enabled us to observe the surface of the sample grid at high resolution. Subsequent processing of the images with digital image analysis provided a statistically and quantitative size resolved information on the particle population including their morphology on the film. The quality of the presented method was established using polystyrene nanospheres as standards in the size range expected for ambient aerosol particles over remote marine areas (20-900 nm in diameter). The sizing was found to be critically dependent on the contrasting properties of the particles towards the collection substrate. The relative standard deviation of the diameters of polystyrene nanospheres was better than 10% for sizes larger than 40 nm and 18% for 21 nm particles compared with the manufacturer's certificate. The size distributions derived from the microscope images of airborne aerosols collected during a research expedition to north of 80° N in the summer of 2008 were compared with simultaneously collected number particle size distributions seen by a Twin Differential Mobility Particle Sizer. We captured a representative fraction of the aerosol particles with SEM and were able to causally relate the determined morphological properties of the aerosol under investigation to aerosol transformation processes in air being advected from the marginal ice edge/open sea south of 80° N.

  5. Arctic Aerosol Sources and Continental Organic Aerosol Hygroscopicity

    NASA Astrophysics Data System (ADS)

    Chang, Rachel Ying-Wen

    Atmospheric particles can affect climate directly, by scattering solar radiation, or indirectly, by acting as the seed upon which cloud droplets form. These clouds can then cool the earth's surface by reflecting incoming sunlight. In order to constrain the large uncertainties in predicting the ultimate effect of aerosol on climate, the sources of atmospheric particles and their subsequent ability to turn into cloud droplets needs to be better understood. This thesis addresses two parts of this issue: the sources of Arctic aerosol and the hygroscopicity of continental organic aerosol. Small particles were observed in Baffin Bay during September 2008 that coincided with high atmospheric and ocean surface dimethyl sulphide (DMS) concentrations suggesting that the aerosol formed from oceanic sources. An aerosol microphysics box model confirmed that local DMS could have produced the observed particles. In addition, the particle chemical composition was measured using aerosol mass spectrometry in the central Arctic Ocean in August 2008 and particles were found to be 43% organic and 46% sulphate. Factor analysis further apportioned the aerosol mass to marine biogenic and continental sources 33% and 36% of the time, respectively, with the source of the remaining mass unidentified. The second part of the study parameterises the hygroscopicity of the ambient organic aerosol fraction (kappaorg) at Egbert, Ontario and Whistler, British Columbia. This was done using two methods: 1) by assuming that the oxygenated organic component was hygroscopic and that the unoxygenated organic component was non-hygroscopic, kappa of the oxygenated component was found to be 0.22 +/- 0.04, and 2) by assuming that kappaorg varied linearly with the atomic oxygen to atomic carbon ratio, it could be parameterised as kappaorg = (0.29 +/- 0.05) x (O/C). Calculations predict that knowing kappaorg is important in urban, semi-urban, and remote locations whenever the inorganic mass fraction is low.

  6. Ambient in-situ immersion freezing measurements - findings from the ZAMBIS 2014 field campaign for three ice nucleation techniques

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Atkinson, James D.; Lohmann, Ulrike; Kanji, Zamin A.

    2015-04-01

    To estimate the influence of clouds on the Earth's radiation budget, it is crucial to understand cloud formation processes in the atmosphere. A key process, which significantly affects cloud microphysical properties and the initiation of precipitation thus contributing to the hydrological cycle, is the prevailing type of ice nucleation mechanism. In mixed-phase clouds immersion freezing is the dominant ice crystal forming mechanism, whereby ice nucleating particles (INP) first act as cloud condensation nuclei (CCN) and are activated to cloud droplets followed by freezing upon supercooling. There are a number of experimental methods and techniques to investigate the ice nucleating ability in the immersion mode, however most techniques are offline for field sampling or only suitable for laboratory measurements. In-situ atmospheric studies are needed to understand the ice formation processes of 'real world' particles. Laboratory experiments simulate conditions of atmospheric processes like ageing or coating but are still idealized. Our method is able to measure ambient in-situ immersion freezing on single immersed aerosol particles. The instrumental setup consists of the recently developed portable immersion mode cooling chamber (PIMCA) as a vertical extension to the portable ice nucleation chamber (PINC, [1]), where the frozen fraction of activated aerosol particles are detected by the ice optical depolarization detector (IODE, [2]). Two additional immersion freezing techniques based on a droplet freezing array [3,4] are used to sample ambient aerosol particles either in a suspension (fraction larger ~0.6 ?m) or on PM10-filters to compare different ice nucleation techniques. Here, we present ambient in-situ measurements at an urban forest site in Zurich, Switzerland held during the Zurich ambient immersion freezing study (ZAMBIS) in spring 2014. We investigated the ice nucleating ability of natural atmospheric aerosol with the PIMCA/PINC immersion freezing setup as well as a droplet freezing method on aerosol particles either collected in a suspension or on PM10-filters to obtain atmospheric IN concentrations based on the measured ambient aerosol. Investigation of physical properties (number and size distribution) and chemical composition as well as the meteorological conditions provide supplementary information that help to understand the nature of particles and air masses that contribute to immersion freezing. Acknowledgements We thank Hannes Wydler and Hansjörg Frei from ETH Zurich for their technical support. Furthermore, the authors want thank Franz Conen from the University of Basel for sharing equipment and training in the drop freezing experiment. References [1] Chou et al. (2011), Atmos. Chem. Phys., 11, 4725-4738. [2] Nicolet et al. (2010), Atmos. Chem. Phys., 10, 313-325. [3] Conen et al. (2012), Atmos. Meas. Tech., 5, 321-327. [4] Stopelli et al. (2014), Atmos. Meas. Tech., 7, 129-134.

  7. Elucidating the Chemical Complexity of Organic Aerosol Constituents Measured During the Southeastern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.

  8. Behavioral-physiological effects of red phosphorous smoke inhalation on two wildlife species. Task 1. Inhalation equipment development/ambient CO evaluation/aerosol distribution and air-quality study. Final report, March 1985-December 1986

    SciTech Connect

    Sterner, R.T.; Shumake, S.A.; Johns, B.E.; Thompson, R.D.

    1987-12-01

    Tests to evaluate the spatial and temporal uniformity of red phosphorous - butyl rubber smoke produced in a commercial 1-CuM inhalation chamber are described. Several modifications to the inhalation exposure system aimed at improving air filtration, relative humidity, and temperature control for the conduct of animal studies are also presented. Smoke generation involved the use of a system for the continuous generation of phosphoric acid aerosols. Assessments of spatial and temporal uniformity of smoke were based upon measurements of aerosol mass concentration (gravimetric analysis), phosphoric acid deposition (titration analysis), aerosol opacity (infrared sensor), and particle size (cascade impactor); assessments of air quality and combustion products within the chamber involved checks for oxygen, carbon dioxide, phosphine, hexane, and carbon monoxide using either gas chromatography or industrial-hygiene-analyzer tubes. Results for aerosol mass, phosphoric acid, and particle size showed that the within-chamber smoke was highly uniform among burns. Although a number of statistically significant effects were obtained, further inspection showed these to be limited to specific sampling locations and within a priori criteria established to define acceptable uniformity.

  9. Aerosol mass spectrometry: particle-vaporizer interactions and their consequences for the measurements

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.

    2015-09-01

    The Aerodyne aerosol mass spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes, this instrument provides robust quantitative information on various non-refractory ambient aerosol components. However, when measuring close to certain anthropogenic or marine sources of semi-refractory aerosols, several of these assumptions may not be met and measurement results might easily be incorrectly interpreted if not carefully analyzed for unique ions, isotope patterns, and potential slow vaporization associated with semi-refractory species. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components - i.e., components that vaporize but do not flash-vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g., chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) - can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g., NH4NO3 or (NH4)2SO4) vaporize quickly, under certain conditions their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in thresholded measurements. Chemical reactions with oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g., organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g., WO2Cl2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer, with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are presented and are discussed together with field results, showing that measurements of typical continental or urban aerosols are not significantly affected, while measurements of semi-refractory aerosol in the laboratory, close to anthropogenic sources or in marine environments, can be biased by these effects.

  10. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... aerosol amount, along with information about particle properties, from the variation in scene brightness over nine different view ... sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is used to represent ...

  11. Aerosolized Antibiotics.

    PubMed

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP. PMID:26070573

  12. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  13. Chemical characteristics of size-resolved aerosols in winter in Beijing.

    PubMed

    Sun, Kang; Qu, Yu; Wu, Qiong; Han, Tingting; Gu, Jianwei; Zhao, Jingjing; Sun, Yele; Jiang, Qi; Gao, Ziqi; Hu, Min; Zhang, Yuanhang; Lu, Keding; Nordmann, Stephan; Cheng, Yafang; Hou, Li; Ge, Hui; Furuuchi, Masami; Hata, Mitsuhiko; Liu, Xingang

    2014-08-01

    Size-resolved aerosols were continuously collected by a Nano Sampler for 13 days at an urban site in Beijing during winter 2012 to measure the chemical composition of ambient aerosol particles. Data collected by the Nano Sampler and an ACSM (Aerodyne Aerosol Chemical Speciation Monitor) were compared. Between the data sets, similar trends and strong correlations were observed, demonstrating the validity of the Nano Sampler. PM?? and PM?.? concentrations during the measurement were 150.5 ± 96.0 ?g/m³ (mean ± standard variation) and 106.9 ± 71.6 ?g/m³, respectively. The PM?.?/PM?? ratio was 0.70 ± 0.10, indicating that PM?.? dominated PM??. The aerosol size distributions showed that three size bins of 0.5-1, 1-2.5 and 2.5-10 ?m contributed 21.8%, 23.3% and 26.0% to the total mass concentration (TMC), respectively. OM (organic matter) and SIA (secondary ionic aerosol, mainly SO?(2-), NO?(-) and NH?(+)) were major components of PM?.?. Secondary compounds (SIA and secondary organic carbon) accounted for half of TMC (about 49.8%) in PM?.?, and suggested that secondary aerosols significantly contributed to the serious particulate matter pollution observed in winter. Coal burning, biomass combustion, vehicle emissions and SIA were found to be the main sources of PM?.?. Mass concentrations of water-soluble ions and undetected materials, as well as their fractions in TMC, strikingly increased with deteriorating particle pollution conditions, while OM and EC (elemental carbon) exhibited different variations, with mass concentrations slightly increasing but fractions in TMC decreasing. PMID:25108720

  14. Overview of submicron aerosol characterization in China using an Aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, X.; He, L.; Gong, Z.; Hu, M.; Zhang, Y.

    2011-12-01

    China is one of the most rapidly developing countries in the world, but in the meantime it is suffering from severe air pollution due to heavy industrial/metropolitan emissions. Most previous aerosol studies in China were based on filter sampling followed by laboratory analysis, which provided datasets at a coarse time resolution like a day. The coarse time resolution of the aerosol datasets cannot match the actual faster variation of aerosol properties in the real atmosphere, which strongly favors highly time-resolved on-line measurement techniques. In recent years, our group deployed an Aerodyne high-resolution aerosol mass spectrometer (AMS) in different ambient atmospheres in China, including Beijing (urban), Shanghai (urban), Shenzhen (urban), Jiaxing (suburban), and Kaiping (rural). In this presentation, we will overview these on-line AMS measurement results to characterize the properties of submicron particles in China atmosphere, such as chemical composition, size distribution, diurnal variation, elemental composition, primary and secondary organic aerosol constitution, etc. The newly-developed AMS-PMF modeling techniques were utilized to quantitatively differentiate the contributions from fossil fuel combustion, cooking emissions, biomass burning, as well as secondary organic aerosol to ambient organic aerosol loadings in China. These AMS results have provided new outlook of the formation mechanisms of high aerosol pollution in China.

  15. Bacterial communities in urban aerosols collected with wetted-wall cyclonic samplers and seasonal fluctuations of live and culturable airborne bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The airborne transmission of bacterial pathogens from point sources (e.g. ranches, waste treatment facilities) to areas of food production (farms) has been suspected. However, there have been few studies monitoring the incidence, transport and viability of bacteria in aerosols. We monitored the numb...

  16. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub-micron filter assemblies. There was no aerosol generation for the case of all air, so the plateout, condensate and smoke were all zero. For the case of all steam, there was very little plateout in the superheated regions (several percent) and the rest of the aerosol was collected in the condensate from the condenser. There was no smoke discharge into the filters. For the experiments with intermediate air-steam fractions, there was some aerosol plateout, considerable aerosol in the condensate and aerosol smoke discharged from the condenser with the escaping air.

  17. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses implicating manmade fluorocarbons as cause of the --'ozone hole'; (5) The current soot loading is too small to be of environmental (radiative and chemical) consequence. However, the fractal nature of soot distinguishes it aerodynamically and radiatively from sulfuric acid droplets such that its stratospheric residence time is longer, mainly because of vertical transport against gravity due to gravito-photophoretic forces. Thus it may accumulate and become of environmental concern in the future.

  18. Aerosol Optical Depth Measurements in the Southern Ocean Within the Framework of Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Sayer, A. M.; Sakerin, S. M.; Radionov, V. F.; Courcoux, Y.; Broccardo, S. P.; Evangelista, H.; Croot, P. L.; Disterhoft, P.; Piketh, S.; Milinevsky, G. P.; O'Neill, N. T.; Slutsker, I.; Giles, D. M.

    2013-12-01

    Aerosol production sources over the World Ocean and various factors determining aerosol spatial and temporal distribution are important for understanding the Earth's radiation budget and aerosol-cloud interactions. The Maritime Aerosol Network (MAN) as a component of AERONET has been collecting aerosol optical depth data over the oceans since 2006. A significant progress has been made in data acquisition over areas that previously had very little or no coverage. Data collection included intensive study areas in the Southern Ocean and off the coast of Antarctica including a number of circumnavigation cruises in high southern latitudes. It made an important contribution to MAN and provided a valuable reference point in atmospheric aerosol optical studies. The paper presents results of this international and multi-agency effort in studying aerosol optical properties over Southern Ocean and adjacent areas. The ship-borne aerosol optical depth measurements offer an excellent opportunity for comparison with global aerosol transport models, satellite retrievals and provide useful information on aerosol distribution over the World Ocean. A public domain web-based database dedicated to the MAN activity can be found at http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html.

  19. Consistency of Global Modis Aerosol Optical Depths over Ocean on Terra and Aqua Ceres SSF Datasets

    NASA Technical Reports Server (NTRS)

    Ignatov, Alexander; Minnis, Patrick; Miller, Walter F.; Wielicki, Bruce A.; Remer, Lorraine

    2006-01-01

    Aerosol retrievals over ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side-by-side. The primary M product is generated by sub-setting and remapping the multi-spectral (0.47-2.1 micrometer) MODIS produced oceanic aerosol (MOD04/MYD04 for Terra/Aqua) onto CERES footprints. M*D04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary AVHRR-like A product is generated in only two MODIS bands 1 and 6 (on Aqua, bands 1 and 7). The A processing uses the CERES cloud screening algorithm, and NOAA/NESDIS glint identification, and single-channel aerosol retrieval algorithms. The M and A products have been documented elsewhere and preliminarily compared using 2 weeks of global Terra CERES SSF Edition 1A data in which the M product was based on MOD04 collection 3. In this study, the comparisons between the M and A aerosol optical depths (AOD) in MODIS band 1 (0.64 micrometers), tau(sub 1M) and tau(sub 1A) are re-examined using 9 days of global CERES SSF Terra Edition 2A and Aqua Edition 1B data from 13 - 21 October 2002, and extended to include cross-platform comparisons. The M and A products on the new CERES SSF release are generated using the same aerosol algorithms as before, but with different preprocessing and sampling procedures, lending themselves to a simple sensitivity check to non-aerosol factors. Both tau(sub 1M) and tau(sub 1A) generally compare well across platforms. However, the M product shows some differences, which increase with ambient cloud amount and towards the solar side of the orbit. Three types of comparisons conducted in this study - cross-platform, cross-product, and cross-release confirm the previously made observation that the major area for improvement in the current aerosol processing lies in a more formalized and standardized sampling (and most importantly, cloud screening) whereas optimization of the aerosol algorithm is deemed to be an important yet less critical element.

  20. Modeling of growth and evaporation effects on the extinction of 1.0-micron solar radiation traversing stratospheric sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Deepak, A.

    1981-01-01

    The effects of growth and evaporation of stratospheric sulfuric acid aerosols on the extinction of solar radiation traversing such an aerosol medium are reported for the case of 1.0-micron solar radiation. Modeling results show that aerosol extinction is not very sensitive to the change of ambient water vapor concentration, but is sensitive to ambient temperature changes, especially at low ambient temperatures and high ambient water vapor concentration. A clarification is given of the effects of initial aerosol size distribution and composition on the change of aerosol extinction due to growth and evaporation processes. It is shown that experiments designed to observe solar radiation extinction of aerosols may also be applied to the determination of observed changes in aerosol optical properties, environmental parameters, or the physical and optical characteristics of sulfate aerosols.

  1. METHODS OF CALCULATINAG LUNG DELIVERY AND DEPOSITION OF AEROSOL PARTICLES

    EPA Science Inventory


    Lung deposition of aerosol is measured by a variety of methods. Total lung deposition can be measured by monitoring inhaled and exhaled aerosols in situ by laser photometry or by collecting the aerosols on filters. The measurements can be performed accurately for stable monod...

  2. Attachment of radon progeny to cigarette-smoke aerosols

    SciTech Connect

    Biermann, A.H.; Sawyer, S.R.

    1995-05-01

    The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, {approximately}10{sup {minus}6} cm{sup 3}/s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols.

  3. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, Patrick F. (Downers Grove, IL); Herceg, Joseph E. (Naperville, IL); Klocksieben, Robert H. (Park Forest, IL)

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  4. AERODYNAMIC CLASSIFICATION OF FIBERS WITH AEROSOL CENTRIFUGES

    EPA Science Inventory

    The constituent particles of many ambient and workplace aerosols of health effects concerns are of fibrous and aggregate geometric shapes. he sites of deposition in the human respiratory system are primarily related to the mass median aerodynamic diameters of inhaled particle siz...

  5. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1999-11-01

    Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

  6. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ?ijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed during spring and autumn 2008. Results from the aerosol mass spectrometry indicate that the non-volatile residual consists of nitrate and organic compounds, especially during autumn. These compounds may be low-volatile organic nitrates or salts. During winter and spring the non-volatile core (black carbon removed) correlated markedly with carbon monoxide, which is a tracer of anthropogenic emissions. Due to this, the non-volatile residual may also contain other pollutants in addition to black carbon. Thus, it seems that the amount of different compounds in submicron aerosol particles varies with season and as a result the chemical composition of the non-volatile residual changes within a year. This work was supported by University of Helsinki three-year research grant No 490082 and Maj and Tor Nessling Foundation grant No 2010143. Aalto et al., (2001). Physical characterization of aerosol particles during nucleation events. Tellus B, 53, 344-358. Jayne, et al., (2000). Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33(1-2), 49-70. Kalberer et al., (2004). Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science, 303, 1659-1662. Smith et al., (2010). Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. P. Natl. Acad. Sci., 107(15). Vesala et al., (1998). Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mom. Trans., 4, 17-35. Wehner et al., (2002). Design and calibration of a thermodenuder with an improved heating unit to measure the size-dependent volatile fraction of aerosol particles. J. Aerosol Sci., 33, 1087-1093.

  7. Micro-scale (?g) radiocarbon analysis of water-soluble organic carbon in aerosol samples

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-lin; Liu, Jun-wen; Salazar, Gary A.; Li, Jun; Zotter, Peter; Zhang, Gan; Shen, Rong-rong; Schäfer, Klaus; Schnelle-Kreis, Jürgen; Prévôt, André S. H.; Szidat, Sönke

    2014-11-01

    Radiocarbon (14C) measurement of water-soluble organic carbon (WSOC) in ambient aerosols is a quantitative tool for unambiguously distinguishing fossil and non-fossil sources. In this study, a fast and reliable method for measuring 14C in micro-scale (?g) WSOC aerosol samples is successfully developed, which includes three steps: (1) extraction (2) freeze drying, and (3) online 14C analysis of CO2 from WSOC combustion. Procedure blanks are carefully assessed by measuring high-purity water and reference materials. Accurate 14C results could be obtained for WSOC with only 10 ?g C, and thus the potential applications are substantially broadened because much less filter material is needed compared to previous reported methods. This method is applied to aerosols samples collected during winter from Switzerland and China. The results demonstrate that non-fossil sources are important if not dominant contributors of WSOC. These non-fossil components are consistently enriched in WSOC compared to bulk OC and water-insoluble OC for all samples, due to high water solubility of primary and secondary biomass burning aerosols. However, the presence of fossil WSOC is still considerable indicating a substantial contribution of secondary OC (SOC) formed from precursors emitted by fossil emissions. Larger fossil contributions to WSOC is found in China than in Switzerland and previously reported values in Europe, USA and South Asia, which may be attributed to higher fossil-derived SOC formation in China.

  8. Maritime Aerosol Network as a component of Aerosol Robotic Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Slutsker, I.; Giles, D. M.; McClain, C. R.; Eck, T. F.; Sakerin, S. M.; Macke, A.; Croot, P.; Zibordi, G.; Quinn, P. K.; Sciare, J.; Kinne, S.; Harvey, M.; Smyth, T. J.; Piketh, S.; Zielinski, T.; Proshutinsky, A.; Goes, J. I.; Nelson, N. B.; Larouche, P.; Radionov, V. F.; Goloub, P.; Krishna Moorthy, K.; Matarrese, R.; Robertson, E. J.; Jourdin, F.

    2009-03-01

    The paper presents the current status of the Maritime Aerosol Network (MAN), which has been developed as a component of the Aerosol Robotic Network (AERONET). MAN deploys Microtops handheld Sun photometers and utilizes the calibration procedure and data processing (Version 2) traceable to AERONET. A web site dedicated to the MAN activity is described. A brief historical perspective is given to aerosol optical depth (AOD) measurements over the oceans. A short summary of the existing data, collected on board ships of opportunity during the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project is presented. Globally averaged oceanic aerosol optical depth (derived from island-based AERONET measurements) at 500 nm is ˜0.11 and Angstrom parameter (computed within spectral range 440-870 nm) is calculated to be ˜0.6. First results from the cruises contributing to the Maritime Aerosol Network are shown. MAN ship-based aerosol optical depth compares well to simultaneous island and near-coastal AERONET site AOD.

  9. Modeling aerosol water uptake in the arctic based on the ?-Kohler theory

    NASA Astrophysics Data System (ADS)

    Rastak, N.; Ekman, A.; Silvergren, S.; Zieger, P.; Wideqvist, U.; Ström, J.; Svenningsson, B.; Tunved, P.; Riipinen, I.

    2013-05-01

    Water uptake or hygroscopicity is one of the most fundamental properties of atmospheric aerosols. Aerosol particles containing soluble materials can grow in size by absorbing water in ambient atmosphere. This property is measured by a parameter known as growth factor (GF), which is defined as the ratio of the wet diameter to the dry diameter. Hygroscopicity controls the size of an aerosol particle and therefore its optical properties in the atmosphere. Hygroscopic growth depends on the dry size of the particle, its chemical composition and the relative humidity in the ambient air (Fitzgerald, 1975; Pilinis et al., 1995). One of the typical problems in aerosol studies is the lack of measurements of aerosol size distributions and optical properties in ambient conditions. The gap between dry measurements and the real humid atmosphere is filled in this study by utilizing a hygroscopic model which calculates the hygroscopic growth of aerosol particles at Mt Zeppelin station, Ny Ålesund, Svalbard during 2008.

  10. Visibility-reducing organic aerosols in the vicinity of Grand Canyon Nationl Park: 1. Properties observed by high resolution gas chromatography

    SciTech Connect

    Mazurek, M.A.; Mason-Jones, M.; Mason-Jones, H.

    1995-12-31

    During the summer of 1989, an air monitoring program was established within the Grand Canyon and on the South Rim to define summertime organic aerosol concentration and composition as a function of elevation in the canyon. Supporting information was collected on the composition of the inorganic portion of the atmospheric aerosol to help place the relative importance of organics in perspective. The present paper describes the ambient air monitoring experiment, quantifies the bulk chemical composition of the fine (dp< 2.1=135m) and total aerosol components, distinguishes carbonaceous aerosols according to their organic carbon, elemental carbon and carbonate content, and then examines those characteristics of the organic aerosol that can be defined via capillary gas chromatography using flame ionization detection (GC-FID). At both Indian Gardens (in-canyon, IG) and at Hopi Point (South Rim, HP), the largest contributors to the fine aerosol consist of sulfate and associated ammonium ion plus aerosol carbon species. At IG, sulfate and ammonium ion account for 25.5% and 7.5% of the fine aerosol, respectively, nearly equaled by the 29.9% of the sample composed of organic compounds and 1% contributed by elemental carbon. Somewhat more than half of the fine aerosol at HP can be explained by sulfate ion, ammonium ion, organic compounds and elemental carbon, again with roughly equal mass concentrations due to the ionic versus carbonaceous components. Monthly average mass concentrations for fine aerosol organics were 1.1 = B5gm -3(IG) and 1.3 =135gm-3 (HP), while the total organics monthly average mass concentrations were 1.9 =135gm-3 (IG) and 2.1 =135gm-3 (HP). The fraction of aerosol organics that could be evaluated by GC-FID (elutable organics) constituted 27% to 53% of the total organics mass collected as fine or total aerosol. For the fine particle monthly composites, the elutable organics were present in mass concentrations of 0.28 =B5gm-3 (IG) and 0.46 =135gm-3 (HP).

  11. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem. Revision

    SciTech Connect

    Mazurek, M.A.; Cofer, W.R. III; Levine, J.S.

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).

  12. Aerosol optical properties measurement by recently developed cavity-enhanced aerosol single scattering albedometer

    NASA Astrophysics Data System (ADS)

    Zhao, Weixiong; Xu, Xuezhe; Zhang, Qilei; Fang, Bo; Qian, Xiaodong; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    Development of appropriate and well-adapted measurement technologies for real-time in-situ measurement of aerosol optical properties is an important step towards a more accurate and quantitative understanding of aerosol impacts on climate and the environment. Aerosol single scattering albedo (SSA, ?), the ratio between the scattering (?scat) and extinction (?ext) coefficients, is an important optical parameter that governs the relative strength of the aerosol scattering and absorption capacity. Since the aerosol extinction coefficient is the sum of the absorption and scattering coefficients, a commonly used method for the determination of SSA is to separately measure two of the three optical parameters - absorption, scattering and extinction coefficients - with different instruments. However, as this method involves still different instruments for separate measurements of extinction and absorption coefficients under different sampling conditions, it might cause potential errors in the determination of SSA value, because aerosol optical properties are very sensitive to the sampling conditions such as temperature and relative humidity (RH). In this paper, we report on the development of a cavity-enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) and an integrating sphere (IS) for direct in-situ measurement of aerosol scattering and extinction coefficients on the exact same sample volume. The cavity-enhanced albedometer holds great promise for high-sensitivity and high-precision measurement of ambient aerosol scattering and extinction coefficients (hence absorption coefficient and SSA determination) and for absorbing trace gas concentration. In addition, simultaneous measurements of aerosol scattering and extinction coefficients enable a potential application for the retrieval of particle number size distribution and for faster retrieval of aerosols' complex RI. The albedometer was deployed to characterize the aerosol optical properties in the Haze Observation Project Especially for Jing-Jin-Ji Area (HOPE-J3A) during Nov. 2014 - Jan. 2015 and the primary measurement results will be presented.

  13. Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Zhang, D. Z.; Shao, L. Y.; Zhou, S. Z.; Wang, W. X.

    2011-11-01

    The North China plain is a region with megacities and huge populations. Aerosols over the highly polluted area have a significant impact on the regional and global climate. In order to investigate the physical and chemical characteristics of aerosol particles in elevated layers there, observations were carried out at the summit of Mt. Tai (1534 m a.s.l.) from 19 to 28 April, 2010, when the air masses were advected from the east (phase-I: 19-21 April), from the south (phase-II: 22-25 April), and from the northwest (phase-III: 26-28 April). Individual aerosol particles were identified with transmission electron microscopy (TEM), new particle formation (NPF) and growth events were monitored by a wide-range particle spectrometer, and ion concentrations in PM2.5 were analyzed. During phase-I and phase-II, haze layers caused by anthropogenic pollution were observed, and a high percentage of particles were sulfur-rich (47-49%). In phase-III, the haze disappeared due to the intrusion of cold air from the northwest, and mineral dust particles from deserts were dominant (43%). NPF followed by particle growth during daytime was more pronounced on hazy than on clear days. Particle growth during daytime resulted in an increase of particle geometric mean diameter from 10-22 nm in the morning to 56-96 nm in the evening. TEM analysis suggests that sulfuric acid and secondary organic compounds should be important factors for particle nucleation and growth. However, the presence of fine anthropogenic particles (e.g., soot, metal, and fly ash) embedded within S-rich particles indicates that they could weaken NPF and enhance particle growth through condensation and coagulation. Abundant mineral particles in phase-III likely suppressed the NPF processes because they supplied sufficient area on which acidic gases or acids condensed.

  14. Aerosol Impacts on Microphysical and Radiative Properties of Stratocumulus Clouds in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Toohey, D. W.; Andrejczuk, M.; Anderson, J. R.; Adams, A.; Lytle, M.; George, R.; Wood, R.; Zuidema, P.; Leon, D.

    2011-12-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, cloud droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties along an E-W track from near the Chilean coast to remote areas offshore. Mean statistics from seven flights were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. The effect extends ~800 to 1000 km from shore. The additional particles are mainly sulfates from anthropogenic sources. Liquid water content and drizzle concentration tended to increase with distance from shore, but exhibited much greater variability. Analysis of the droplet residual measurements showed that not only were there more residual nuclei near shore, but that they tended to be larger than those offshore. Single particle analysis over a broad particle size range was used to reveal types and sources of CCN, which were primarily sulfates near shore. Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed due to the preferential activation of large aerosol particles. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, which initiate drizzle, contain the largest aerosol particles. However, the scavenging efficiency is not sharp as expected from a simple parcel activation model. A wide range of particle sizes, down to at least 55 nm in size, act as droplet nuclei in these stratocumulus clouds. A detailed LES microphysical model was used to show this can occur without invoking differences in chemical composition. Aerosol number concentration in the >0.05 and >0.1 ?m size ranges was correlated with droplet number concentration, and anti-correlated with droplet effective radius, and the effect is statistically significant. The impact of aerosol pollutants was to increase droplet number and decrease droplet size within a region extending about 1000 km offshore. Cloud droplets were more numerous and smaller near shore, and there was less drizzle. However, MODIS satellite measurements were used to show that despite the smaller droplets near shore, cloud albedo is not higher near shore than offshore. This is due to the generally thinner clouds and lower liquid water path near shore.

  15. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  16. Stratospheric Sulfuric Acid and Black Carbon Aerosol Measured During POLARIS and its Role in Ozone Chemistry

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Pueschel, R. F.; Drdla, K.; Verma, S.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosol can affect the environment in three ways. Sulfuric acid aerosol have been shown to act as sites for the reduction of reactive nitrogen and chlorine and as condensation sites to form Polar Stratospheric Clouds, under very cold conditions, which facilitate ozone depletion. Recently, modeling studies have suggested a link between BCA (Black Carbon Aerosol) and ozone chemistry. These studies suggest that HNO3, NO2, and O3 may be reduced heterogeneously on BCA particles. The ozone reaction converts ozone to oxygen molecules, while HNO3 and NO2 react to form NOx. Finally, a buildup of BCA could reduce the single-scatter albedo of aerosol below a value of 0.98, a critical value that has been postulated to change the effect of stratospheric aerosol from cooling to warming. Correlations between measured BCA amounts and aircraft usage have been reported. Attempts to link BCA to ozone chemistry and other stratospheric processes have been hindered by questions concerning the amount of BCA that exists in the stratosphere, the magnitude of reaction probabilities, and the scarcity of BCA measurements. The Ames Wire Impactors (AWI) participated in POLARIS as part of the complement of experiments on the NASA ER-2. One of our main objectives was to determine the amount of aerosol surface area, particularly BCA, available for reaction with stratospheric constituents and assess if possible, the importance of these reactions. The AWI collects aerosol and BCA particles on thin Palladium wires that are exposed to the ambient air in a controlled manner. The samples are returned to the laboratory for subsequent analysis. The product of the AWI analysis is the size, surface area, and volume distributions, morphology and elemental composition of aerosol and BCA. This paper presents results from our experiments during POLARIS and puts these measurements in the context of POLARIS and other missions in which we have participated. It describes modifications to the AWI data analysis procedures in which the collection of BCA is modeled as a fractal aggregate. The new analysis results in an increase in BCA surface area of approximately 24 and an increase in mass of 7-10 from the previous method. For the current study, BCA surface area is used in computer models that attempt to predict measured NOx/NOy ratios and O3 depletion rates. Inclusion of the HNO3 reaction with BCA in one model tends to improve the agreement of calculated to measured NOx/NOy ratio. However, it was found that these trends are viable only if the reactions are catalytic.

  17. Large-scale aerosol source apportionment in Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Fernandas, Eduardo T.; Martins, José V.; Yamasoe, MáRcia A.; Hobbs, Peter V.; Maenhaut, Willy; Longo, Karla M.; Castanho, Andrea

    1998-12-01

    Aerosol particles were collected aboard two Brazilian Bandeirante EMB 110 planes, and the University of Washington Convair C-131A aircraft during the Smoke, Clouds, and Radiation-Brazil (SCAR-B) field project in the Amazon Basin in August and September 1995. Aerosols were collected on Nuclepore and Teflon filters. Aerosol size distribution was measured with a MOUDI cascade impactor. Sampling was performed mostly over areas heavily influenced by biomass burning smoke. Particle-induced X ray emission (PIXE) was used to measure concentrations of up to 20 elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb). Black carbon (BC) and gravimetric mass analysis were also performed. Instrumental neutron activation analysis (INAA) determined the concentrations of about 15 elements on the Teflon filters. Electron probe X ray microanalysis (EPMA) was used to analyze individual aerosol particles. The average aerosol mass concentration was 105 ?g m-3, with a maximum of 297 ?g m-3. Black carbon (BC) averaged 5.49 ?g m-3, or 1-7% of the aerosol mass load. Five aerosol components were revealed by absolute principal factor analysis: (1) a biomass burning component (responsible for 54% of the aerosol mass and associated with BC, K, Cl, Zn, I, S, Br, Rb, aerosol mass concentration, and other elements); (2) a soil dust aerosol component (15.6% of the aerosol mass); (3) a natural biogenic component (18.7% of the aerosol mass and associated with P, K, S, Ca, Sr, Mg, Mn, Cu and Zn); (4) a second soil dust (5.7% of the aerosol mass and enriched in Si, Ti, and Fe); and (5) a NaCl aerosol component (5.9% of the aerosol mass with Na, Cl, Br, and iodine). Electron microscopy analysis of individual aerosol particles confirmed these five aerosol types. Organic material dominated the aerosol mass and the number concentration of airborne particles. Aerosol size distributions show that the fine mode accounts for 78% of the aerosol mass, centered at 0.33 ?m aerodynamic diameter. The coarse mode accounts for 22% of the mass, centered at about 3.2 ?m. Black carbon size distributions show a consistent picture, with a mass median diameter centered at about 0.175-0.33 ?m aerodynamic diameter. This study suggests that for modeling the optical properties of aerosol in the Amazon Basin, it is essential to use a model that includes the optical and physical properties of at least two aerosol components other than the biomass burning aerosol, namely, natural biogenic aerosol and soil dust.

  18. Aerosol mass spectrometry: particle-vaporizer interactions and their consequences for the measurements

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.

    2015-04-01

    The Aerodyne Aerosol Mass Spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes this instrument provides robust quantitative information on various ambient aerosol components. However, when measuring close to certain anthropogenic sources or in marine environments, several of these assumptions may not be met and measurement results might easily be misinterpreted. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components, i.e. components that vaporize but do not flash vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g. chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g. NH4NO3 or (NH4)2SO4) vaporize quickly, their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in the measurements. Chemical reactions with water vapor and oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g. NH4NO3, (NH4)2SO4, organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g. WO2C2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are presented and are discussed together with field results showing that measurements of typical continental or urban aerosols are not significantly affected while laboratory experiments, measurements close to anthropogenic sources or in marine environments can be biased by these effects.

  19. Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Aerosols, defined as particles and droplets suspended in air, are always present in the atmosphere. They are part of the earth-atmosphere climate system, because they interact with both incoming solar and outgoing terrestrial radiation. They do this directly through scattering and absorption, and indirectly through effects on clouds. Submicrometer aerosols usually predominate in terms of number of particles per unit volume of air. They have dimensions close to the wavelengths of visible light, and thus scatter radiation from the sun very effectively. They are produced in the atmosphere by chemical reactions of sulfur-, nitrogen- and carbon-containing gases of both natural and anthropogenic origins. Light absorption is dominated by particles containing elemental carbon (soot), produced by incomplete combustion of fossil fuels and by biomass burning. Light-scattering dominates globally, although absorption can be significant at high latitudes, particularly over highly reflective snow- or ice-covered surfaces. Other aerosol substances that may be locally important are those from volcanic eruptions, wildfires and windblown dust.

  20. Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Zhang, D. Z.; Shao, L. Y.; Zhou, S. Z.; Wang, W. X.

    2011-08-01

    The North China plain is a region with megacities and huge populations. Aerosols over the highly polluted area have a significant impact on a regional and global climate. In order to investigate the physical and chemical characteristics of aerosol particles in elevated layers there, observations were carried out at the summit of Mt. Tai (1534 m a.s.l) from 19 to 28 April 2010, when the air masses were advected from the east (phase-I: 19-21 April), from the south (phase-II: 22-25 April), and from the northwest (phase-III: 26-28 April). Individual aerosol particles were identified with transmission electron microscopy (TEM), new particle formation (NPF) and growth events were monitored by a wide-range particle spectrometer, and ion concentrations in PM2.5 were analyzed. During phase-I and phase-II, haze layers caused by anthropogenic pollution were observed, and a major number of particles were sulfur-rich (47-49 %). In phase-III, haze disappeared due to the intrusion of cold air from the northwest, and mineral dust particles from deserts were predominant (43 %). NPF followed by particle growth during daytime was more pronounced at upper levels of the haze layers than clear days. Particle growth during daytime resulted in an increase of particle geometric mean diameter from 10-22 nm in the morning to 56-96 nm in the evening. TEM analysis suggests that sulfuric acid and secondary organic compounds should be important factors for particle nucleation and growth. Moreover, the presence of ultrafine and fine anthropogenic particles (e.g., soot, metal, and fly ash) embedded within S-rich particles may indicate their influences on particle nucleation through condensation and enhancement of particle growth through coagulation. Each fine refractory particle can enlarge the sulfate particles by 10-20 nm. Abundant mineral particles in phase-III likely suppressed the NPF processes because a high number of crustal mineral particles in the free troposphere supplied an important surface on which acidic gases or acids condensed.

  1. Global Aerosol Observations

    Atmospheric Science Data Center

    2013-04-19

    article title:  Five Years of MISR Global Aerosol Observations     ... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ...

  2. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in size segregated aerosol particles suggested that combustion processes could strongly affect isotopic fractionation in aerosol particles of different sizes thereby potentially affecting an interpretation of ambient atmospheric observations.

  3. Properties and sources of individual particles and some chemical species in the aerosol of a metropolitan underground railway station

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Pósfai, Mihály; Kovács, Kristóf; Kuzmann, Ern?; Homonnay, Zoltán; Posta, József

    Aerosol samples in PM 10-2.0 and PM 2.0 size fractions were collected on the platform of a metropolitan underground railway station in central Budapest. Individual aerosol particles were studied using atomic force microscopy, scanning electron microscopy and transmission electron microscopy with energy-dispersive X-ray spectrometry and electron diffraction. The bulk aerosol samples were investigated by 57Fe Mössbauer spectroscopy, and they were subjected to chemical speciation analysis for Cr. The particles were classified into groups of iron oxides and iron, carbonates, silicates, quartz and carbonaceous debris. Electron micrographs showed that the Fe-rich particles in the PM 2.0 size fraction typically consisted of aggregates of nano-sized hematite crystals that were randomly oriented, had round shapes and diameters of 5-15 nm. In addition to hematite, a minor fraction of the iron oxide particles also contained magnetite. In addition, the PM 2.0-fraction particles typically had a rugged surface with layered or granular morphologies. Mössbauer spectroscopy suggested that hematite was a major Fe-bearing species in the PM 10-2.0 size fraction; its mass contribution to the Fe was 36%. Further constituents (ferrite, carbides and FeOOH) were also identified. The water soluble amounts of Cr for the underground railway station and city center were similar. In the PM 10-2.0 size fraction, practically all dissolved Cr had an oxidation state of three, which corresponds to ambient conditions. In the PM 2.0 size fraction, however, approximately 7% of the dissolved Cr was present as Cr(VI), which was different from that for the urban aerosol. It is suggested that the increased adverse health effects of aerosol particles in metros with respect to ambient outdoor particles is linked to the differences in the oxidation states, surface properties or morphologies.

  4. Substrate-Deposited Sea Spray Aerosol Particles: Influence of Analytical Method, Substrate, and Storage Conditions on Particle Size, Phase, and Morphology.

    PubMed

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Estillore, Armando D; Stone, Elizabeth A; Grassian, Vicki H; Tivanski, Alexei V

    2015-11-17

    Atmospheric aerosols are often collected on substrates and analyzed weeks or months after the initial collection. We investigated how the selection of substrate and microscopy method influence the measured size, phase, and morphology of sea spray aerosol (SSA) particles and how sample storage conditions affect individual particles using three common microscopy techniques: optical microscopy, atomic force microscopy, and scanning electron microscopy. Micro-Raman spectroscopy was used to determine changes in the water content of stored particles. The results show that microscopy techniques operating under ambient conditions provide the most relevant and robust measurement of particle size. Samples stored in a desiccator and at ambient conditions leads to similar sizes and morphologies, while storage that involves freezing and thawing leads to irreversible changes due to phase changes and water condensation. Typically, SSA particles are deposited wet and, if possible, samples used for single-particle analysis should be stored at or near conditions at which they were collected in order to avoid dehydration. However, if samples need to be dry, as is often the case, then this study found that storing SSA particles at ambient laboratory conditions (17-23% RH and 19-21 °C) was effective at preserving them and reducing changes that would alter samples and subsequent data interpretation. PMID:26477686

  5. Generation of a monodispersed aerosol

    NASA Technical Reports Server (NTRS)

    Schenck, H.; Mikasa, M.; Devicariis, R.

    1974-01-01

    The identity and laboratory test methods for the generation of a monodispersed aerosol are reported on, and are subjected to the following constraints and parameters; (1) size distribution; (2) specific gravity; (3) scattering properties; (4) costs; (5) production. The procedure called for the collection of information from the literature, commercial available products, and experts working in the field. The following topics were investigated: (1) aerosols; (2) air pollution -- analysis; (3) atomizers; (4) dispersion; (5) particles -- optics, size analysis; (6) smoke -- generators, density measurements; (7) sprays; (8) wind tunnels -- visualization.

  6. Aerosol Chemistry of Furfural and Sugars

    NASA Astrophysics Data System (ADS)

    Srithawirat, T.; Brimblecombe, P.

    2008-12-01

    Furfural and sugars (as levoglucosan equivalent) are derived from biomass burning and contribute to aerosol composition. This study examined the potential of furfural and levoglucosan to be tracers of biomass burning. Furfural is likely to be oxidized quickly so comparison with levoglucosan may give a sense of the age of the aerosols in forest fire smoke. However, few furfural emissions are available for biomass combustion. Furfural and sugars were determined in coarse aerosols (>2.4?m aerodynamic diameter) and fine aerosols (<2.4?m aerodynamic diameter) collected in 24 hour periods during different seasons in the United Kingdom and PM10 collected from Thailand and Malaysia including haze episodes. Also total suspended particulate matter (TSP) samples were collected from Taiwan. Furfural and sugars dominated in fine fractions, especially in the UK autumn. Sugars were found at 5.96-18.37 nmol m-3 in fine mode and 1.36-5.75 nmol m-3 in coarse mode aerosols in the UK. Furfural was found at 0.18-0.91 nmol m-3 and 0.05-0.51 nmol m-3 respectively in the same aerosols. Sugars were a dominant contributor to aerosol derived from biomass burning. Sugars and furfural were about 10 and 20 times higher during haze episodes in Malaysia. Laboratory experimental simulation suggested furfural is more rapid destroyed by UV and sunlight than levoglucosan.

  7. A comparison of lidar and balloon-borne particle counter measurements of the stratospheric aerosol 1974-1980

    NASA Technical Reports Server (NTRS)

    Swissler, T. J.; Hamill, P.; Osborn, M.; Russell, P. B.; Mccormick, M. P.

    1982-01-01

    The optical radar measurements considered in the present investigation are those which have been obtained routinely at Hampton, VA (37.1 deg N, 76.3 deg W) since 1974. The dustsonde measurements are those made monthly at Laramie, WY (41.2 deg N, 105 deg W). The extensive data sets acquired with these two instruments during the time period 1974-80 permit a long-term comparison of the two different measurement techniques. The balloon-borne dustsonde pumps ambient air in a well-defined stream through an illuminated chamber where individual aerosol particles scatter light into photodetectors. The optical radar system used in the studies has a ruby laser with a 48-inch Cassegrainian configured telescope mounted on a mobile platform to collect the backscattered laser light. The investigation shows that optical radar measurements, dustsonde measurements, and realistic optical models together give a very consistent picture of stratospheric aerosol behavior.

  8. Global modeling of nitrate and ammonium aerosols using EQSAM3

    NASA Astrophysics Data System (ADS)

    Xu, L.; Penner, J. E.

    2009-12-01

    Atmospheric aerosols, particles suspending in air, are important as they affect human health, air quality, and visibility as well as climate. Sulfate, nitrate, ammonium, chloride and sodium are among the most important inorganic aerosol species in the atmosphere. These compounds are hygroscopic and absorb water under almost all ambient environmental conditions. The uptake of water alters the aerosol size, and causes water to become the constituent with the largest atmospheric aerosol mass, especially when the aerosols grow into fog, haze or clouds. Furthermore, several global model studies have demonstrated that rapid increases in nitrogen emissions could produce enough nitrate in aerosols to offset the expected decline in sulfate forcing by 2100 for the extreme IPCC A2 scenario (Bauer et al., 2007). Although nitrate and ammonium were identified as significant anthropogenic sources of aerosols by a number of modeling studies, most global aerosol models still exclude ammonium-nitrate when the direct aerosol forcing is studied. In this study, the computationally efficient equilibrium model, EQSAM3, is incorporated into the UMICH-IMPACT-nitrate model using the hybrid dynamical solution method (Feng and Penner, 2007). The partitioning of nitrate and ammonium along with the corresponding water uptake is evaluated by comparing the model to the EQUISOLVE II method used in Feng and Penner (2007). The model is also evaluated by comparison with the AERONET data base and satellite-based aerosol optical depths.

  9. Generating Aerosol Data Products from Airborne in-situ Observations made during 2011 DISCOVER-AQ Field Campaign

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L.; Anderson, B. E.; Winstead, E. L.; Chen, G.; Beyersdorf, A. J.; Ziemba, L. D.

    2011-12-01

    In July 2011, the first of four DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) planned field campaigns was completed. The investigation is a broad collaboration between federal and state agencies and academic institutions with the primary goal of improving the interpretation of satellite observations of surface-level trace gas and aerosol parameters by making detailed correlative measurements from aircraft and ground-based instruments in urban regions plagued by air-quality issues. Phase I studied the air-quality of the lower troposphere in and around the Washington, D.C. and Baltimore areas along the I-95 corridor. In-situ airborne data is essential in providing a link between the broad swath satellite measurements and the measurements made by ground based sensors. This is accomplished by examining the relationship between column-integrated values obtained through in-situ sampling and surface measured values, as aircraft can fully characterize atmospheric chemical/aerosol constituents at a given time and location. To that end, the NASA P-3B was instrumented to record fast-response measurements of various gas-phase tracers and aerosol characteristics of pollution. A flight pattern was created and executed for each of the 14 research flights that had the P-3B performing a series of spiral ascents/descents over six ground sites to perform detailed vertical characterizations of the chemical and aerosol structure. The in-situ aerosol characterization was performed by the NASA Langley Aerosol Research Group Experiment (LARGE) using 15 instruments to measure aerosol microphysical, chemical and optical properties. In this presentation we discuss the process in which aerosol science data is generated, from the collection of more than 10 GB of data per 8 hour flight, to the initial QA/QC required to produce a preliminary data product within 24 hours of landing, through final data submission to the data archive within 4 months of the end of the field campaign, including post mission calibration and QA/QC. The final data products are estimated to generate about 500 GB total for the deployment and will encompass no less than 10 different archive files per flight at 1s resolution. Examples will be shown such as the correction of nephelometer data for truncation errors and absorption data from filter based instruments due to scattering on the filter media. Interpretative data products are also generated to aid the interpretation and synthesis of the aerosol data with gas-phase in-situ and coincident satellite retrievals, including column integrated dry and ambient aerosol optical depths. Sample data products will also be presented.

  10. Hospital washbasin water: risk of Legionella-contaminated aerosol inhalation.

    PubMed

    Cassier, P; Landelle, C; Reyrolle, M; Nicolle, M C; Slimani, S; Etienne, J; Vanhems, P; Jarraud, S

    2013-12-01

    The contamination of aerosols by washbasin water colonized by Legionella in a hospital was evaluated. Aerosol samples were collected by two impingement technologies. Legionella was never detected by culture in all the (aerosol) samples. However, 45% (18/40) of aerosol samples were positive for Legionella spp. by polymerase chain reaction, with measurable concentrations in 10% of samples (4/40). Moreover, immunoassay detected Legionella pneumophila serogroup 1 and L. anisa, and potentially viable bacteria were seen on viability testing. These data suggest that colonized hospital washbasins could represent risks of exposure to Legionella aerosol inhalation, especially by immunocompromised patients. PMID:24064177

  11. Volatile Organic Compounds in Untreated Ambient Groundwater of

    E-print Network

    Volatile Organic Compounds in Untreated Ambient Groundwater of the United States, 1985-1995 P A U L, ambient groundwater of the conterminous United States was conducted based on samples collected from 2948-chloropropane, which had a reporting level of 1.0 µg/L. Because ambient groundwater was targeted, areas of known

  12. The Aerosol Modeling Testbed: A Tool to Facilitate Improved Aerosol Process Modules

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Gustafson, W. I.; Chapman, E. G.; Easter, R. C.; Rishel, J.

    2009-12-01

    Predictions of aerosol mass, composition, size distribution, hygroscopicity, and optical properties still contain large uncertainties. For example, the formation and transformation of secondary organic aerosols and the nature of many cloud-aerosol interactions are still poorly understood and consequently inadequately represented in models. When new aerosol treatments are developed, they are usually implemented into an existing aerosol model and evaluated using a limited number of measurements from a specific case study. One consequence of the current modeling paradigm is that the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among aerosol models are different as well. For example, predictions of aerosol properties from several models have been compared, but different grid configurations, meteorology, and emission rates are often employed so that variations in predicted aerosol properties among the models were not due entirely to the treatment of aerosol processes. Thus, these studies do not quantify the range of uncertainty associated only with the predicted aerosol properties, nor does this type of uncertainty analysis provide much information on which aerosol process needs improving the most. Reducing the uncertainties associated with aerosols predictions requires that we know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that will simplify and greatly increase the efficiency of evaluating new aerosol treatments for regional and global models. The AMT consists of a modular and user-friendly version of the Weather Research and Forecasting model (WRF-Chem), a series testbed cases consisting of extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties, and a suite of tools to evaluate the performance of aerosol process modules. The first testbed case completed is based on the Megacities Initiative: Local and Global Research Observations (MILAGRO) field campaign conducted in the vicinity of Mexico City during March 2006. In addition to standard in situ measurements of aerosol properties, aerosol composition from several Aerodyne Aerosol Mass Spectrometers, profiles of aerosol backscatter and extinction from the NASA High Resolution Spectral Lidar (HRSL), and aerosol optical depth from satellite instrumentation are included in the MILAGRO testbed case. Two other testbed cases are also being developed. An example of how the AMT can be used to assess the strengths and weaknesses of two aerosol models in WRF-Chem, one using a simple modal approach to represent the aerosol size distribution and the other using a more comple sectional approach, will be presented using both in situ and remote sensing data collected during MILAGRO. How the AMT can be used by the scientific community to foster collaborations and coordinate aerosol modeling research will also be discussed.

  13. Submicron aerosol organic functional groups, ions, and water content at the Centreville SEARCH site (Alabama), during SOAS campaign

    NASA Astrophysics Data System (ADS)

    Ruggeri, G.; Ergin, G.; Modini, R. L.; Takahama, S.

    2013-12-01

    The SOAS campaign was conducted from June 1 to July 15 of 2013 in order to understand the relationship between biogenic and anthropogenic emissions in the South East US1,2. In this study, the organic and inorganic composition of submicron aerosol in the Centreville SEARCH site was measured by Fourier Transform Infrared Spectroscopy (FTIR) and the Ambient Ion Monitor (AIM; URG Corporation), whereas the aerosol water content was measured with a Dry Ambient Aerosol Size Spectrometer (DAASS)3. Organic functional group analysis was performed on PM1 aerosol selected by cyclone and collected on teflon filters with a time resolution of 4-12 hours, using one inlet heated to 50 °C and the other operated either at ambient temperature or 70 °C 4. The AIM measured both condensed and gas phase composition with a time resolution of 1 hour, providing partitioning behavior of inorganic species such as NH3/NH4+, HNO3/NO3-. These measurements collectively permit calculation of pure-component vapor pressures of candidate organic compounds and activity coefficients of interacting components in the condensed phase, using models such as SIMPOL.15, E-AIM6, and AIOMFAC7. From these results, the water content of the aerosol is predicted, and a comparison between modeled and measured partitioning of inorganic compounds and water vapor are discussed, in addition to organic aerosol volatility prediction based on functional group analysis. [1]- Goldstein, A.H., et al., Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(22), 8835-8840. [2]- Carlton, A.G., Turpin, B.J., 2013. Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water. Atmospheric Chemistry and Physics Discussions 13, 12743-12770. [3]- Khlystov, A., Stanier, C.O., Takahama, S., Pandis, S.N., 2005. Water content of ambient aerosol during the Pittsburgh Air Quality Study. Journal of Geophysical Research: Atmospheres 110, n/a-n/a. [4]- Takahama, S., Johnson, A., Russell, L.M., 2013. Quantification of Carboxylic and Carbonyl Functional Groups in Organic Aerosol Infrared Absorbance Spectra. Aerosol Science and Technology 47, 310-325. [5]- Pankow, J.F., Asher, W.E., 2008. SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds. Atmos. Chem. Phys. 8, 2773-2796. [6]- Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998. Thermodynamic Model of the System H+-NH4+-SO42--NO3--H2O at Tropospheric Temperatures. J. Phys. Chem. A 102, 2137-2154. [7]- Zuend, A., Marcolli, C., Booth, A.M., Lienhard, D.M., Soonsin, V., Krieger, U.K., Topping, D.O., McFiggans, G., Peter, T., Seinfeld, J.H., 2011. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmos. Chem. Phys. 11, 9155-9206.

  14. Organic compounds in aerosols from selected European sites - Biogenic versus anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Alves, Célia; Vicente, Ana; Pio, Casimiro; Kiss, Gyula; Hoffer, Andras; Decesari, Stefano; Prevôt, André S. H.; Minguillón, María Cruz; Querol, Xavier; Hillamo, Risto; Spindler, Gerald; Swietlicki, Erik

    2012-11-01

    Atmospheric aerosol samples from a boreal forest (Hyytiälä, April 2007), a rural site in Hungary (K-puszta, summer 2008), a polluted rural area in Italy (San Pietro Capofiume, Po Valley, April 2008), a moderately polluted rural site in Germany located on a meadow (Melpitz, May 2008), a natural park in Spain (Montseny, March 2009) and two urban background locations (Zurich, December 2008, and Barcelona, February/March 2009) were collected. Aliphatics, polycyclic aromatic hydrocarbons, carbonyls, sterols, n-alkanols, acids, phenolic compounds and anhydrosugars in aerosols were chemically characterised by gas chromatography-mass spectrometry, along with source attribution based on the carbon preference index (CPI), the ratios between the unresolved and the chromatographically resolved aliphatics, the contribution of wax n-alkanes, n-alkanols and n-alkanoic acids from plants, diagnostic ratios of individual target compounds and source-specific markers to organic carbon ratios. In spite of transboundary pollution episodes, Hyytiälä registered the lowest levels among all locations. CPI values close to 1 for the aliphatic fraction of the Montseny aerosol suggest that the anthropogenic input may be associated with the transport of aged air masses from the surrounding industrial/urban areas, which superimpose the locally originated hydrocarbons with biogenic origin. Aliphatic and aromatic hydrocarbons in samples from San Pietro Capofiume reveal that fossil fuel combustion is a major source influencing the diel pattern of concentrations. This source contributed to 25-45% of the ambient organic carbon (OC) at the Po Valley site. Aerosols from the German meadow presented variable contributions from both biogenic and anthropogenic sources. The highest levels of vegetation wax components and biogenic secondary organic aerosol (SOA) products were observed at K-puszta, while anthropogenic SOA compounds predominated in Barcelona. The primary vehicular emissions in the Spanish city accounted for around 25-30% of the OC in aerosols. Besides the traffic input (10% of OC), residential wood burning was found to be another dominant emission source contributing to the atmospheric aerosol (up to 38% of OC) at the Swiss urban location. It was estimated that around 10% of the OC mass in the urban sites originates from cooking emissions. Aerosols from the urban area of Zurich presented a much higher PAH content, and benzo(a)pyrene equivalent concentrations sometimes exceeding the mandatory limit.

  15. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures

    E-print Network

    Harilal, S. S.

    :YAG laser. The emission and expansion dynamics of the plasma plumes were studied by varying air ambient the aerosols to ICP torch in LA-ICP-MS,11 and to confine the plume which enhances the optical emission in LIBS.12 The interaction of a nanosecond laser ablation plume with an ambient gas has been studied

  16. Simultaneous online monitoring of inorganic compounds in aerosols and gases in an industrialized area

    NASA Astrophysics Data System (ADS)

    Khezri, Bahareh; Mo, Huan; Yan, Zhen; Chong, Shey-Ling; Heng, Aik Kian; Webster, Richard D.

    2013-12-01

    The automatic MARGA (monitor for aerosols and gases in ambient air) sampling system was used to measure the inorganic ions Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+ and Ca2+ in the PM2.5 aerosol phase and the corresponding inorganic gases HCl, HNO2, SO2, HNO3 and NH3 present in the gas phase. Samples were collected and analyzed hourly for 3 months between April and June, 2011, from a sampling site in Singapore close to a heavy industrial area containing extensive petrochemical refineries. The data (hourly and daily average) were analyzed, compared and discussed based on the ratios of HNO2/HNO3 and NH3/NH4+, the levels of nitrate and sulfate, the total nitrogen, the distribution of particulate matter and gaseous compounds, and the acidity of the aerosols. SO2 was the most abundant gas that appeared in an order of magnitude higher concentration than the other trace gases, and correspondingly SO42- was found to be at least 3-10 times higher than other anionic aerosol species. The concentration of major ions in aerosol samples and the related gaseous compounds followed the order of: SO42- > NH4+ > NO3- > K+ > Na+ > Cl- > Ca2+ > Mg2+ and SO2 > NH3 > HNO2 > HNO3, respectively. The maximum values for many of the target analytes occurred during the hazy period in May when there was significant contamination from regional fires. The elevated levels of HNO2 compared to HNO3 and high levels of HNO3 were rationalized based on artifacts in the denuder sampling methodology.

  17. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and ?-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and ?-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and ?-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ?-oxooctanoic acid (?C8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ?C8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and ?-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  18. A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust

    NASA Astrophysics Data System (ADS)

    Boreddy, S. K. R.; Kawamura, K.

    2015-06-01

    In order to characterize the long-term trend of remote marine aerosols, a 12-year observation was conducted for water-soluble ions in TSP (total suspended particulate) aerosols collected from 2001 to 2012 in the Asian outflow region at Chichijima Island in the western North Pacific. We found a clear difference in chemical composition between the continentally affected and marine background air masses over the observation site. Asian continental air masses are delivered from late autumn to spring, whereas marine air masses were dominated in summer. Concentrations of non-sea salt (nss-) SO42-, NO3-, NH4+, nss-K+ and nss-Ca2+ are high in winter and spring and low in summer. On the other hand, MSA- (methanesulfonate) exhibits higher concentrations during spring and winter, probably due to springtime dust bloom or due to the direct continental transport of MSA- to the observation site. We could not find any clear decadal trend for Na+, Cl-, Mg2+ and nss-Ca2+ in all seasons, although there exists a clear seasonal trend. However, concentrations of nss-SO42- continuously decreased from 2007 to 2012, probably due to the decreased SO2 emissions in East Asia especially in China. In contrast, nss-K+ and MSA- concentrations continuously increased from 2001 to 2012 during winter and spring seasons, demonstrating that biomass burning and/or terrestrial biological emissions in East Asia are being increasingly transported from the Asian continent to the western North Pacific. This study also demonstrates that Asian dusts can act as an important source of nutrients for phytoplankton and thus sea-to-air emission of dimethyl sulfide over the western North Pacific.

  19. A Computational Study of Acid Catalyzed Aerosol Reactions of Atmospherically Relevant Epoxides

    EPA Science Inventory

    Epoxides are important intermediates of atmospheric isoprene oxidation. Their subsequent reactions in the particle phase lead to the production of organic compounds detected in ambient aerosols. We apply density functional theory to determine the important kinetic factors that ...

  20. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  1. Atmospheric oxalic acid and related secondary organic aerosols in Qinghai Lake, a continental background site in Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Meng, Jingjing; Wang, Gehui; Li, Jianjun; Cheng, Chunlei; Cao, Junji

    2013-11-01

    Summertime PM2.5 aerosols collected from Qinghai Lake (3200 m a.s.l.), a remote continental site in the northeastern part of Tibetan Plateau, were analyzed for dicarboxylic acids (C2-C11), ketocarboxylic acids and ?-dicarbonyals. Oxalic acid (C2) is the dominant dicarboxylic acid in the samples, followed by malonic, succinic and azelaic acids. Total dicarboxylic acids (231 ± 119 ng m-3), ketocarboxylic acids (8.4 ± 4.3 ng m-3), and ?-dicarbonyls (2.7 ± 2.1 ng m-3) at the Tibetan background site are 2-5 times less than those detected in lowland areas such as 14 Chinese megacities. Compared to those in other urban and marine areas enhancements in relative abundances of C2/total diacids and diacids-C/WSOC of the PM2.5 samples suggest that organic aerosols in the region are more oxidized due to strong solar radiation. Molecular compositions and air mass trajectories demonstrate that the above secondary organic aerosols in the Qinghai Lake atmosphere are largely derived from long-range transport. Ratios of oxalic acid, glyoxal and methylglyoxal to levoglucosan in PM2.5 aerosols emitted from household burning of yak dung, a major energy source for Tibetan in the region, are 30-400 times lower than those in the ambient air, which further indicates that primary emission from biomass burning is a negligible source of atmospheric oxalic acid and ?-dicarbonyls at this background site.

  2. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5.

    PubMed

    Verma, Vishal; Fang, Ting; Xu, Lu; Peltier, Richard E; Russell, Armistead G; Ng, Nga Lee; Weber, Rodney J

    2015-04-01

    We compare the relative toxicity of various organic aerosol (OA) components identified by an aerosol mass spectrometer (AMS) based on their ability to generate reactive oxygen species (ROS). Ambient fine aerosols were collected from urban (three in Atlanta, GA and one in Birmingham, AL) and rural (Yorkville, GA and Centerville, AL) sites in the Southeastern United States. The ROS generating capability of the water-soluble fraction of the particles was measured by the dithiothreitol (DTT) assay. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for DTT activity and water-soluble metals. Organic aerosol composition was measured at selected sites using a high-resolution time-of-flight AMS. Positive matrix factorization of the AMS spectra resolved the organic aerosol into isoprene-derived OA (Isop_OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA). The association of the DTT activity of water-soluble PM2.5 (WS_DTT) with these factors was investigated by linear regression techniques. BBOA and MO-OOA were most consistently linked with WS_DTT, with intrinsic water-soluble activities of 151 ± 20 and 36 ± 22 pmol/min/?g, respectively. Although less toxic, MO-OOA was most widespread, contributing to WS_DTT activity at all sites and during all seasons. WS_DTT activity was least associated with biogenic secondary organic aerosol. The OA components contributing to WS_DTT were humic-like substances (HULIS), which are abundantly emitted in biomass burning (BBOA) and include highly oxidized OA from multiple sources (MO-OOA). Overall, OA contributed approximately 60% to the WS_DTT activity, with the remaining probably from water-soluble metals, which were mostly associated with the hydrophilic WS_DTT fraction. PMID:25748105

  3. Lidar and in situ observations of continental and Saharan aerosol: closure analysis of particles optical and physical properties

    NASA Astrophysics Data System (ADS)

    Gobbi, G. P.; Barnaba, F.; van Dingenen, R.; Putaud, J. P.; Mircea, M.; Facchini, M. C.

    2003-12-01

    Single wavelength polarization lidar observations collected at Mt. Cimone (44.2º N, 10.7º E, 1870 m a.s.l.) during the June 2000 MINATROC campaign are analyzed to derive tropospheric profiles of aerosol extinction, depolarization, surface area and volume. Lidar retrievals for the 2170-2245 m level are compared to the same variables as computed from in situ measurements of particles size distributions, performed at the mountain top Station (2165 m a.s.l.) by a differential mobility analyzer (DMA) and an optical particle counter (OPC). A sensitivity analysis of this closure experiment shows that mean relative differences between the backscatter coefficients obtained by the two techniques undergo a sharp decrease when hygroscopic growth to ambient humidity is considered for the DMA dataset, otherwise representative of dry aerosols. Minimization of differences between lidar and size distribution-derived backscatter coefficients allowed to find values of the "best" refractive index, specific to each measurement. These results show the refractive index to increase for air masses proceeding from Africa and Western Europe. Lidar depolarization was observed to minimize mainly in airmasses proceeding from Western Europe, thus indicating a spherical, i.e. liquid nature for such aerosols. Conversely, African, Mediterranean and East Europe aerosol showed a larger depolarizing fraction, mainly due to coexisting refractory and soluble fractions. The analysis shows average relative differences between lidar and in-situ observations of 5% for backscatter, 36% for extinction 41% for surface area and 37% for volume. These values are well within the expected combined uncertainties of the lidar and in situ retrievals. Average differences further decrease during the Saharan dust transport event, when a lidar signal inversion model considering non-spherical scatterers is employed. The quality of the closure obtained between particle counter and lidar-derived aerosol surface area and volume observations constitutes a validation of the technique adopted to retrieve such aerosol properties on the basis of single-wavelength lidar observations.

  4. Volatility and composition of aerosols in tropical stratosphere and TTL over Biak, Indonesia

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Shibata, T.; Hara, K.; Hasebe, F.

    2014-12-01

    Number concentration and volatility of aerosols in the Tropical Tropopause Layer (TTL) over Biak (1.2 oS, 136.1 oE) were observed using balloon-borne dual optical particle counters (OPC) in January 2011, 2012, and 2013. One OPC observed number concentration of ambient aerosols and another OPC had an inlet with a thermo denuder, whose temperature were set at 100 to 300 oC, in order to observe volatility. The results suggest that major composition of aerosol change with altitude, from sulfate in upper troposphere to sulfuric acid in stratosphere through TTL region. The ratios of number concentrations of un-volatile aerosol, to those of ambient aerosol in sub-micrometer size range are few percent in stratosphere and several percent in TTL. In addition, un-volatile aerosol concentrations were similar to the concentration of ice particle in sub-visible cirrus.

  5. Moments of ambient Doppler spectra

    SciTech Connect

    Lehman, S.K.

    1993-03-23

    The author studied the first four moments (center of mass, standard deviation, skew, and kurtosis) of the Doppler spectra in ambient regions of LLNL-Hughes real aperture radar data collected during WCSEX91--92. The goal was to correlate trends in the moments with wind velocity and direction. Although the center of mass appears to increase when the wind is blowing into the radar antenna, no other conclusions have been drawn from the higher order moments.

  6. A Molecular-level Approach for Characterizing Water-insoluble Components of Organic Aerosols Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Priest, A. S.; Wozniak, A. S.; Hatcher, P. G.

    2011-12-01

    There is strong evidence that suggests emissions from human activities have played a substantial role in changing the chemical composition of the atmosphere, resulting in negative effects on climate and human and environmental health. Theory suggests that the molecular composition of organic aerosols plays a role in the specific impacts; however, due to the lack of suitable analytical methods for characterizing the inherently complex aerosol organic matter (OM), our molecular level understanding of the nature and reactivity of this material has been limited. Ultra-high resolution mass spectrometry has provided molecular formula information for thousands of species present in the water-soluble fraction of organic aerosols. However, fewer studies have examined the water-insoluble fraction, which typically accounts for 30-70% of aerosol OM. Here we employ pyridine, with its high solvating power for natural OM, as a suitable solvent for examining the water-insoluble fraction of field-collected organic aerosols using ultra-high resolution mass spectrometry. The molecular composition of the water-soluble organic matter (WSOM) and pyridine-soluble organic matter (PSOM) of organic aerosols was evaluated using negative ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Ambient aerosol samples were collected from rural sites in New York and Virginia in 2007. The mass spectral distribution of the ions detected using ESI FT-ICR MS allowed for the determination of molecular formulas for the thousands of peaks detected in each extract. Approximately 40% of the aerosol OM was WSOM, and the spectra were dominated by compounds with only carbon, hydrogen and oxygen (~45% of assigned formulas), with relatively smaller contributions from nitrogen- and sulfur-containing formulas. Pyridine, on the other hand, extracts a molecularly unique portion of aerosol OM. Approximately 25% of the formulas are unique to PSOM, and the remainder is common with WSOM. PSOM extracts are characterized by compounds that are relatively more aliphatic (higher H/C) and those that contain sulfur in their elemental formula. Up to 60% of the assigned molecular formulas contain one or more sulfur atom and these are likely organosulfates. The molecular information gained by the analysis of PSOM improves our understanding of the nature and reactivity of the water-insoluble compounds present in organic aerosols and may provide insight to the sources and environmentally relevant properties.

  7. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  8. Atmospheric removal times of the aerosol-bound radionuclides 137Cs and 131I measured after the Fukushima Dai-ichi nuclear accident - a constraint for air quality and climate models

    NASA Astrophysics Data System (ADS)

    Kristiansen, N. I.; Stohl, A.; Wotawa, G.

    2012-11-01

    Caesium-137 (137Cs) and iodine-131 (131I) are radionuclides of particular concern during nuclear accidents, because they are emitted in large amounts and are of significant health impact. 137Cs and 131I attach to the ambient accumulation-mode (AM) aerosols and share their fate as the aerosols are removed from the atmosphere by scavenging within clouds, precipitation and dry deposition. Here, we estimate their removal times from the atmosphere using a unique high-precision global measurement data set collected over several months after the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. The noble gas xenon-133 (133Xe), also released during the accident, served as a passive tracer of air mass transport for determining the removal times of 137Cs and 131I via the decrease in the measured ratios 137Cs/133Xe and 131I/133Xe over time. After correction for radioactive decay, the 137Cs/133Xe ratios reflect the removal of aerosols by wet and dry deposition, whereas the 131I/133Xe ratios are also influenced by aerosol production from gaseous 131I. We find removal times for 137Cs of 10.0-13.9 days and for 131I of 17.1-24.2 days during April and May 2011. The removal time of 131I is longer due to the aerosol production from gaseous 131I, thus the removal time for 137Cs serves as a better estimate for aerosol lifetime. The removal time of 131I is of interest for semi-volatile species. We discuss possible caveats (e.g. late emissions, resuspension) that can affect the results, and compare the 137Cs removal times with observation-based and modeled aerosol lifetimes. Our 137Cs removal time of 10.0-13.9 days should be representative of a "background" AM aerosol well mixed in the extratropical Northern Hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of fresh AM aerosols directly emitted from surface sources. However, the substantial difference to the mean lifetimes of AM aerosols obtained from aerosol models, typically in the range of 3-7 days, warrants further research on the cause of this discrepancy. Too short modeled AM aerosol lifetimes would have serious implications for air quality and climate model predictions.

  9. The Influence of Aerosol Chemistry on Spectral Aerosol Optical Properties During ARCTAS

    NASA Astrophysics Data System (ADS)

    Corr, C. A.; Hall, S. R.; Ullmann, K.; Shetter, R.; Anderson, B.; Cubison, M.; Jimenez, J. L.; Scheuer, E. M.; Dibb, J. E.; Wennberg, P. O.

    2009-12-01

    Aerosols are noted to both absorb and scattering radiation at UV wavelengths with the degree of absorption/scattering largely dependent on aerosol chemistry. The interactions of aerosols with the UV radiation field were examined for several flights during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign in summer 2008. Aerosol single scattering albedo (?) was retrieved at near-UV (300-400nm) wavelengths from spectral actinic flux data collected aboard the NASA DC-8 aircraft during ARCTAS using two CCD Actinic Flux Spectroradiometers. Retrievals were performed using the Tropospheric Ultraviolet Model versus 4.6 (TUV 4.6). TUV inputs of trace gas (e.g., NO2, SO2) concentrations, aerosol optical depth, location, time, pressure, etc. were determined from ancillary aircraft measurements made during ARCTAS. Values of ? were used to determine absorption optical depth (?abs) for each of the examined flights. Retrieval and calculation results were compared to aerosol optical properties in the visible and the spectral dependencies characterized. Additionally, comparisons of spectral ? and ?abs with aerosol chemical data collected by an Aerosol Mass Spectrometer and teflon filters were performed and provide insight into the role of chemistry and enhanced absorption in the UV wavelength range.

  10. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    SciTech Connect

    O'Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  11. Organic Aerosol Formation in the Humid, Photochemically-Active Southeastern US: SOAS Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Lim, Y. B.; Carlton, A. G.; Turpin, B. J.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized low volatility organic aerosol and, in some cases, light absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, health, and the environment. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols) leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify other precursors that are atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere at Brent, Alabama during the Southern Oxidant and Aerosol Study (SOAS). Four mist chambers in parallel collected ambient gases in a DI water medium at 20-25 LPM with a 4 hr collection time. Total organic carbon (TOC) values in daily composited samples were 64-180 ?M. Aqueous OH radical oxidation experiments were conducted with these mixtures in a newly designed cuvette chamber to understand the formation of SOA through gas followed by aqueous chemistry. OH radicals (3.5E-2 ?M [OH] s-1) were formed in-situ in the chamber, continuously by H2O2 photolysis. Precursors and products of these aqueous OH experiments were characterized using ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. ESI-MS results from a June 12th, 2013 sample showed precursors to be primarily odd, positive mode ions, indicative of the presence of non-nitrogen containing alcohols, aldehydes, organic peroxides, or epoxides. Products were seen in the negative mode and included organic acid ions like pyruvate and oxalate. The results from this study will be used to better understand aqueous chemistry in clouds/fogs and to identify precursors for laboratory study of wet aerosol, fog, and cloud chemistry.

  12. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 ?m diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  13. Enhanced secondary organic aerosol formation due to water uptake by fine particles

    E-print Network

    Weber, Rodney

    Enhanced secondary organic aerosol formation due to water uptake by fine particles Christopher J measurements of gas and particle water- soluble organic carbon (WSOC). During the summer in Atlanta, WSOC gas the partitioning behavior of a significant fraction of the ambient organic aerosol through simultaneous

  14. ASSESSMENT OF THE LIQUID WATER CONTENT OF SUMMERTIME AEROSOL IN THE SOUTHEAST UNITED STATES

    EPA Science Inventory

    The concentration of aerosol liquid water mass represents an important parameter for understanding the physical properties of PM2.5 in the atmosphere. Increases in ambient relative humidity can increase aerosol liquid water and thus the composite particle mass and particle volu...

  15. Perfil Ambiental de Guatemala

    E-print Network

    Lopez-Carr, David

    Perfil Ambiental de Guatemala Informe sobre el estado del ambiente y bases para su evaluación sistemática Guatemala, 2004 UNIVERSIDAD RAFAEL LANDÍVAR Facultad de Ciencias Ambientales y Agrícolas Instituto de Guatemala Informe sobre el estado del ambiente y bases para su evaluación sistemática ISBN: 99922

  16. 10.13 AEROSOL CHEMICAL CHARACTERIZATION ON BOARD THE DOE G1 AIRCRAFT USING A PARTICLE-INTO-LIQUID-SAMPLER DURING THE TEXAQS 2000 EXPERIMENT

    E-print Network

    NAAQS was observed. Because the Houston area has a highly concentrated petroleum and chemical industry10.13 AEROSOL CHEMICAL CHARACTERIZATION ON BOARD THE DOE G1 AIRCRAFT USING A PARTICLE of aerosol chemical composition is key to understanding a number of properties of ambient aerosol particles

  17. The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE

    SciTech Connect

    Jackson, Robert C.; McFarquhar, Greg; Korolev, Alexei; Earle, Michael; Liu, Peter S.; Lawson, R. P.; Brooks, Sarah D.; Wolde, Mengistu; Laskin, Alexander; Freer, Matthew

    2012-08-14

    Cloud and aerosol data acquired by the National Research Council of Canada (NRC) Convair-580 aircraft in, above, and below single-layer arctic stratocumulus cloud during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 were used to test three aerosol indirect effects hypothesized to act in mixed-phase clouds: the riming indirect effect, the glaciation indirect effect, and the cold second indirect effect. The data showed a correlation of R= 0.75 between liquid drop number concentration, Nliq, inside cloud and ambient aerosol number concentration NPCASP below cloud. This, combined with increasing liquid water content LWC with height above cloud base and the nearly constant profile of Nliq, suggested that liquid drops were nucleated from aerosol at cloud base. No strong evidence of a riming indirect effect was observed, but a strong correlation of R = 0.69 between ice crystal number concentration Ni and NPCASP above cloud was noted. Increases in ice nuclei (IN) concentration with NPCASP above cloud combined with the subadiabatic LWC profiles suggest possible mixing of IN from cloud top consistent with the glaciation indirect effect. The higher Nice and lower effective radius rel for the more polluted ISDAC cases compared to data collected in cleaner single-layer stratocumulus conditions during the Mixed-Phase Arctic Cloud Experiment is consistent with the operation of the cold second indirect effect. However, more data in a wider variety of meteorological and surface conditions, with greater variations in aerosol forcing, are required to identify the dominant aerosol forcing mechanisms in mixed-phase arctic clouds.

  18. Aerosol Transport Over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El Nino.

  19. A Microfluidic Paper-Based Analytical Device (?PAD) for Aerosol Oxidative Activity

    PubMed Central

    Sameenoi, Yupaporn; Panymeesamer, Pantila; Supalakorn, Natcha; Koehler, Kirsten; Chailapakul, Orawon; Henry, Charles S.; Volckens, John

    2013-01-01

    Human exposure to particulate matter (PM) air pollution has been linked with respiratory, cardiovascular, and neurodegenerative diseases, in addition to various cancers. Consistent among all of these associations is the hypothesis that PM induces inflammation and oxidative stress in the affected tissue. Consequently, a variety of assays have been developed to quantify the oxidative activity of PM as a means to characterize its ability to induced oxidative stress. The vast majority of these assays rely on high-volume, fixed-location sampling methods due to limitations in assay sensitivity and detection limit. As a result, our understanding of how personal exposure contributes to the intake of oxidative air pollution is limited. To further this understanding, we present a microfluidic paper-based analytical device (?PAD) for measuring PM oxidative activity on filters collected by personal sampling. The ?PAD is inexpensive to fabricate and provides fast and sensitive analysis of aerosol oxidative activity. The oxidative activity measurement is based on the dithiothreitol assay (DTT assay), uses colorimetric detection, and can be completed in the field within 30 min following sample collection. The ?PAD assay was validated against the traditional DTT assay using 13 extracted aerosol samples including urban aerosols, biomass burning PM, cigarette smoke and incense smoke. The results showed no significant differences in DTT consumption rate measured by the two methods. To demonstrate the utility of the approach, personal samples were collected to estimate human exposures to PM from indoor air, outdoor air on a clean day, and outdoor air on a wildfire-impacted day in Fort Collins, CO. Filter samples collected on the wildfire day gave the highest oxidative activity on a mass normalized basis, whereas typical ambient background air showed the lowest oxidative activity. PMID:23227907

  20. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex ‘real-world’ aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

  1. Mixing state and spectral absorption of atmospheric aerosols observed at a marine background site

    NASA Astrophysics Data System (ADS)

    Cayetano, M. G.; Lee, K. Y.; Kim, Y. J.

    2011-12-01

    Mineral dust and sea salt particles are portions of atmospheric aerosols in Korea due to the periodic transport of loess dust particles from Gobi and Taklimakan deserts in west China, as well as the sea salt enrichment of atmospheric particles from the seas surrounding the Korean peninsula [Kim et al., 2009; Sahu et al., 2009]. Carbonaceous particles and secondary inorganic aerosols (sulphates and nitrates) are ubiquitous due to the proliferating biomass burning [Ryu et al., 2004], as well as the increasing use of fossil fuels locally and by regional transport from neighbouring countries. Collectively, when these aerosols are transported, their compositions are further modified due to the aging process, impacting their physico-chemical properties including spectral absorption. In order to investigate the spectral response of the absorption under different ambient aerosol conditions, measurements have been conducted at a marine background site in Korea (Deokjeok Island. 37° 13' 33" N, 126° 8' 51" E) during the spring (13 days) and fall (8 days) seasons of 2009 using an aethalometer (Magee AE31), a nephelometer (Optec NGN2a) and other supporting instruments (PILS-IC, PM2.5 cyclone samplers for off-line OC/EC measurements). It has been found that spring aerosols were dominated by sulphate-rich and carbonaceous-rich fractions (21.4%±8.0% and 28.8%±7.9%, respectively), with an Angström exponent of absorption, ?abs = 1.3±0.1 at 370-950 nm. The fall season aerosols were grouped based on their chemical composition as acidic aerosols, dust-enriched, and seasalt-enriched aerosols. Angström exponent of absorption, ?abs for acidic aerosols was obtained to be 1.3±0.2 at 370-950 nm. However, dust enriched aerosols showed increased absorption in the short UV-Vis range (370-590 nm), which can be attributed to their mixing with light absorbing aerosols. Different types of aerosols exhibit different spectral absorption characteristics depending on their composition and mixing state. The effect of mixing state on the enhancement of light absorption in the UV-Vis has been further investigated. Kim, Y. J., Woo, J.-H., Ma, Y.-I., Kim, S., Nam, J. S., Sung, H., Choi, K.-C., Seo, J., Kim, J. S., Kang, C.-H., Lee, G., Ro, C.-U., Chang, D. and Sunwoo (2009), Atmospheric Environment, 43(34), 5556-5566. Ryu, S. Y., Kim, J. E., Zhuanshi, H., Kim, Y. J. and Kang, G. U. (2004). JA&WMA 54. 1124-1137. Sahu, L. K., Y. Kondo, Y. Miyazaki, M. Kuwata, M. Koike, N. Takegawa, H. Tanimoto, H. Matsueda, S. C. Yoon, and Y. J. Kim (2009), J. Geophys. Res., 114(D3), D03301.

  2. ORIGINAL ARTICLE Ambient Air Pollution

    E-print Network

    Mulholland, James A.

    ORIGINAL ARTICLE Ambient Air Pollution and Cardiovascular Emergency Department Visits Kristi Busico ambient air pollutants and cardiovascular disease (CVD), the roles of the physicochemical components the relation between ambient air pollution and cardiovascular conditions using ambient air quality data

  3. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian (Port Jefferson, NY); Kulkarni, Pramod (Port Jefferson Station, NY)

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  4. Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Enggrob, K. L.; King, S. M.; Worton, D. R.; Platt, S. M.; Mortensen, R.; Rosenoern, T.; Surratt, J. D.; Bilde, M.; Goldstein, A. H.; Glasius, M.

    2012-08-01

    Formation of carboxylic acids and dimer esters from ?-pinene oxidation were investigated in a smog chamber and in ambient aerosol samples collected during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX). Chamber experiments of ?-pinene ozonolysis in dry air and at low NOx concentrations demonstrated formation of two dimer esters, pinyl-diaterpenyl (MW 358) and pinonyl-pinyl dimer ester (MW 368), under both low and high temperature conditions. Concentration levels of the pinyl-diaterpenyl dimer ester were lower than the assumed first-generation oxidation products cis-pinic and terpenylic acids, but similar to the second-generation oxidation products 3-methyl-1,2,3-butane tricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). Dimer esters were observed within the first 30 min, indicating rapid production simultaneous to their structural precursors. However, the sampling time resolution precluded conclusive evidence regarding formation from gas- or particle-phase processes. CCN activities of the particles formed in the smog chamber displayed a modest variation during the course of experiments with ? values in the range 0.06-0.09 (derived at a supersaturation of 0.19%). The pinyl-diaterpenyl dimer ester was also observed in ambient aerosol samples collected above a ponderosa pine forest in the Sierra Nevada Mountains of California during two seasonally distinct field campaigns in September 2007 and July 2009. The pinonyl-pinyl ester was observed for the first time in ambient air during the 2009 campaign, and although present at much lower concentrations, it was correlated with the abundance of the pinyl-diaterpenyl ester suggesting similarities in their formation. The maximum concentration of the pinyl-diaterpenyl ester was almost 10 times higher during the warmer 2009 campaign relative to 2007, while the concentration of cis-pinic acid was approximately the same during both periods, and lack of correlation with levels of of cis-pinic and terpenylic acids for both campaigns indicate that the formation of the pinyl-diaterpenyl ester was not controlled by their ambient abundance. In 2009, the concentration of the pinyl-diaterpenyl ester was well correlated with the concentration of DTAA, a supposed precursor of diaterpenylic acid, suggesting that the formation of pinyl-diaterpenyl dimer was closely related to DTAA. Generally, the pinyl-diaterpenyl ester was found at higher concentrations under higher temperature conditions both in the smog-chamber study and in ambient air aerosol samples, and exhibited much higher concentrations at night relative to day-time in line with previous results. We conclude that analysis of pinyl dimer esters provides valuable information on pinene oxidation processes and should be included in studies of formation and photochemical aging of biogenic secondary organic aerosols, especially at high temperatures.

  5. Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Enggrob, K. L.; King, S. M.; Worton, D. R.; Platt, S. M.; Mortensen, R.; Rosenoern, T.; Surratt, J. D.; Bilde, M.; Goldstein, A. H.; Glasius, M.

    2013-04-01

    The formation of carboxylic acids and dimer esters from ?-pinene oxidation was investigated in a smog chamber and in ambient aerosol samples collected during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX). Chamber experiments of ?-pinene ozonolysis in dry air and at low NOx concentrations demonstrated formation of two dimer esters, pinyl-diaterpenyl (MW 358) and pinonyl-pinyl dimer ester (MW 368), under both low- and high-temperature conditions. Concentration levels of the pinyl-diaterpenyl dimer ester were lower than the assumed first-generation oxidation products cis-pinic and terpenylic acids, but similar to the second-generation oxidation products 3-methyl-1,2,3-butane tricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). Dimer esters were observed within the first 30 min, indicating rapid production simultaneous to their structural precursors. However, the sampling time resolution precluded conclusive evidence regarding formation from gas- or particle-phase processes. CCN activities of the particles formed in the smog chamber displayed a modest variation during the course of experiments, with ? values in the range 0.06-0.09 (derived at a supersaturation of 0.19%). The pinyl-diaterpenyl dimer ester was also observed in ambient aerosol samples collected above a ponderosa pine forest in the Sierra Nevada Mountains of California during two seasonally distinct field campaigns in September 2007 and July 2009. The pinonyl-pinyl ester was observed for the first time in ambient air during the 2009 campaign, and although present at much lower concentrations, it was correlated with the abundance of the pinyl-diaterpenyl ester, suggesting similarities in their formation. The maximum concentration of the pinyl-diaterpenyl ester was almost 10 times higher during the warmer 2009 campaign relative to 2007, while the concentration of cis-pinic acid was approximately the same during both periods, and lack of correlation with levels of cis-pinic and terpenylic acids for both campaigns indicate that the formation of the pinyl-diaterpenyl ester was not controlled by their ambient abundance. In 2009 the concentration of the pinyl-diaterpenyl ester was well correlated with the concentration of DTAA, a supposed precursor of diaterpenylic acid, suggesting that the formation of pinyl-diaterpenyl dimer was closely related to DTAA. Generally, the pinyl-diaterpenyl ester was found at higher concentrations under higher temperature conditions, both in the smog-chamber study and in ambient air aerosol samples, and exhibited much higher concentrations at night relative to daytime in line with previous results. We conclude that analysis of pinyl dimer esters provides valuable information on pinene oxidation processes and should be included in studies of formation and photochemical aging of biogenic secondary organic aerosols, especially at high temperatures.

  6. Dynamics of ultrafast laser plasma expansion in the presence of an ambient N. Farid,1,2

    E-print Network

    Harilal, S. S.

    features as well. For example, previ- ous studies employing nanosecond laser ablation at varying ambient cools the ablation plumes rapidly lead- ing to aerosol formation and flushes the aerosols to ICP torch.2 (electron-ion, electron- lattice).14 Even though the applications of ULA are ever growing, a study

  7. Apportioning black carbon to sources using highly time-resolved ambient measurements of organic molecular markers in Pittsburgh

    E-print Network

    Cohen, Ronald C.

    Apportioning black carbon to sources using highly time-resolved ambient measurements of organic Keywords: Organic aerosols Black carbon Molecular markers Thermal desorption aerosol GC/MS (TAG) Source direction. Black carbon (BC), volatile organic compounds (VOCs) and organic molecular markers were

  8. Analysis of organic aerosols using a micro-orifice volatilization impactor coupled to an atmospheric-pressure chemical ionization mass spectrometer.

    PubMed

    Brüggemann, Martin; Vogel, Alexander Lucas; Hoffmann, Thorsten

    2014-01-01

    We present the development and characterization of a combination of a micro-orifice volatilization impactor (MOVI) and an ion trap mass spectrometer (IT/MS) with an atmospheric-pressure chemical ionization (APCI) source. The MOVI is a multi-jet impactor with 100 nozzles, allowing the collection of aerosol particles by inertial impaction on a deposition plate. The pressure drop behind the nozzles is approximately 5%, resulting in a pressure of 96kPa on the collection surface for ambient pressures of 101.3 kPa. The cut-point diameter (diameter of 50% collection efficiency) is at 0.13 microm for a sampling flow rate of 10 L min(-1). After the collection step, aerosol particles are evaporated by heating the impaction surface and transferred into the APCI-IT/MS for detection of the analytes. APCI was used in the negative ion mode to detect predominantly mono- and dicarboxylic acids, which are major oxidation products of biogenic terpenes. The MOVI-APCI-IT/MS instrument was used for the analysis of laboratory-generated secondary organic aerosol (SOA), which was generated by ozonolysis of alpha-pinene in a 100 L continuous-flow reactor under dark and dry conditions. The combination of the MOVI with an APCI-IT/MS improved the detection Limits for small dicarboxylic acids, such as pinic acid, compared to online measurements by APCI-IT/MS. The Limits of detection and quantification for pinic acid were determined by external calibration to 4.4 ng and 13.2 ng, respectively. During a field campaign in the southern Rocky Mountains (USA) in summer 2011 (BEACHON-RoMBAS), the MOVI-APCI-IT/MS was applied for the analysis of ambient organic aerosols and the quantification of individual biogenic SOA marker compounds. Based on a measurement frequency of approximately 5 h, a diurnal cycle for pinic acid in the sampled aerosol particles was found with maximum concentrations at night (median: 10.1 ngm(-3)) and minimum concentrations during the day (median: 8.2 ng m(-3)), which is likely due to the partitioning behavior of pinic acid and the changing phase state of the organic aerosol particles with changing relative humidity. PMID:24881453

  9. MODAL AEROSOL DYNAMICS MODELING

    EPA Science Inventory

    The report described by this Project Summary presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also review...

  10. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  11. Trends in aerosol abundances and distributions

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Mccormick, M. P.; Clancy, R. T.; Curran, R.; Deluisi, J.; Hamill, P.; Kent, G.; Rosen, J. M.; Toon, O. B.; Yue, G.

    1989-01-01

    The properties of aerosols that reside in the upper atmosphere are described. Special emphasis is given to the influence these aerosols have on ozone observation systems, mainly through radiative effects, and on ambient ozone concentrations, mainly through chemical effects. It has long been appreciated that stratospheric particles can interfere with the remote sensing of ozone distribution. The mechanism and magnitude of this interference are evaluated. Separate sections deal with the optical properties of upper atmospheric aerosols, long-term trends in stratospheric aerosols, perturbations of the stratospheric aerosol layer by volcanic eruptions, and estimates of the impacts that such particles have on remotely measured ozone concentrations. Another section is devoted to a discussion of the polar stratospheric clouds (PSC's). These unique clouds, recently discovered by satellite observation, are now thought to be intimately connected with the Antarctic ozone hole. Accordingly, interest in PSC's has grown considerably in recent years. This chapter describes what we know about the morphology, physical chemistry, and microphysics of PSC's.

  12. Trace elemental characteristics of aerosols emitted from municipal incinerators

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    As part of a continuing investigation of high temperature combustion aerosols, elemental composition of size differentiated aerosols emitted from a local municipal incinerator was studied. Aerosols were aerodynamically separated into eight diameter groups ranging from 0.43 mm to 20 mm, collected, and analyzed by charged particle induced X-ray emission technique. On line data collection and reduction codes generated aerial densities for elements from Na to U with sensitivities in the ng/cu m range for most elements. From the total weights of aerosols collected per stage, their size distribution was determined to be bimodal, with one group centered at a diameter of 0.54 mm and the other at a diameter of 5.6 mm. Measured elemental concentrations in various size ranges indicate that K and S show a strong tendency to concentrate on aerosol surfaces. A weaker trend for surface preference was also observed for Mn and Ni, but other elements show no such trend.

  13. Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size

    SciTech Connect

    Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.; Traub, Richard J.

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.

  14. X-ray fluorescence spectrometry for high throughput analysis of atmospheric aerosol samples: The benefits of synchrotron X-rays

    NASA Astrophysics Data System (ADS)

    Bukowiecki, Nicolas; Lienemann, Peter; Zwicky, Christoph N.; Furger, Markus; Richard, Agnes; Falkenberg, Gerald; Rickers, Karen; Grolimund, Daniel; Borca, Camelia; Hill, Matthias; Gehrig, Robert; Baltensperger, Urs

    2008-09-01

    The determination of trace element mass concentrations in ambient air with a time resolution higher than one day represents an urgent need in atmospheric research. It involves the application of a specific technique both for the aerosol sampling and the subsequent analysis of the collected particles. Beside the intrinsic sensitivity of the analytical method, the sampling interval and thus the quantity of collected material that is available for subsequent analysis is a major factor driving the overall trace element detection power. This is demonstrated for synchrotron radiation X-ray fluorescence spectrometry (SR-XRF) of aerosol samples collected with a rotating drum impactor (RDI) in hourly intervals and three particle size ranges. The total aerosol mass on the 1-h samples is in the range of 10 µg. An experimental detection of the nanogram amounts of trace elements with the help of synchrotron X-rays was only achievable by the design of a fit-for-purpose sample holder system, which considered the boundary conditions both from particle sampling and analysis. A 6-µm polypropylene substrate film has evolved as substrate of choice, due to its practical applicability during sampling and its suitable spectroscopic behavior. In contrast to monochromatic excitation conditions, the application of a 'white' beam led to a better spectral signal-to-background ratio. Despite the low sample mass, a counting time of less than 30 s per 1-h aerosol sample led to sufficient counting statistics. Therefore the RDI-SR-XRF method represents a high-throughput analysis procedure without the need for any sample preparation. The analysis of a multielemental mass standard film by SR-XRF, laboratory-based wavelength-dispersive XRF spectrometry and laboratory-based micro XRF spectrometry showed that the laboratory-based methods were no alternatives to the SR-XRF method with respect to sensitivity and efficiency of analysis.

  15. Modeling of growth and evaporation effects on the extinction of 1. 0-. mu. m solar radiation traversing stratospheric sulfuric acid aerosols

    SciTech Connect

    Yue, G.K.; Deepak, A.

    1981-10-15

    In earlier papers we presented results of parametric studies of the separate and combined effects of aerosol microphysical processes on the time dependence of extinction of four visible and IR laser beams traversing an aerosol medium. Results of these studies can be applied to monitor the temporal changes of aerosol properties inside a cloud chamber or in an open environment in the troposphere. As a continuation of this series, the effects of growth and evaporation of sulfuric acid aerosols in the stratosphere on the extinction of solar radiation traversing such an aerosol medium are reported in this paper. Extinction of 1.0-..mu..m solar radiation was studied since this wavelength was used to monitor the aerosol extinction properties by two recent satellite experiments: Stratospheric Aerosol Measurement II (SAM II) and Stratospheric Aerosol and Gas Experiment (SAGE). Our modeling results show that aerosol extinction is not very sensitive to the change of ambient water vapor concentration but is sensitive to the change of ambient temperature, especially at low ambient temperature and high ambient water vapor concentration. The effects of initial aerosol size distribution and composition on the change of aerosol extinction due to growth and evaporation processes are elucidated. The application of results of this parametric study is discussed.