Science.gov

Sample records for ameliorates dextran sulfate

  1. Amelioration of dextran sodium sulfate-induced colitis in mice by Rhodobacter sphaeroides extract.

    PubMed

    Liu, Wen-Sheng; Chen, Man-Chin; Chiu, Kuo-Hsun; Wen, Zhi-Hong; Lee, Che-Hsin

    2012-01-01

    Bacteria can produce some compounds in response to their environment. These compounds are widely used in cosmetic and pharmaceutical applications. Some probiotics have immunomodulatory activities and modulate the symptoms of several diseases. Autoimmune diseases represent a complex group of conditions that are thought to be mediated through the development of autoreactive immunoresponses. Inflammatory bowel disease (IBD) is common autoimmune disease that affects many individuals worldwide. Previously, we found that the extracts of Rhodobacter sphaeroides (Lycogen) inhibited nitric oxide production and inducible nitric-oxide synthase expression in activated macrophages. In this study, the effect of Lycogen, a potent anti-inflammatory agent, was evaluated in mice with dextran sodium sulfate (DSS)-induced colitis. Oral administration of Lycogen reduced the expressions of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) in female BABL/c mice. In addition, the increased number of bacterial flora in the colon induced by DSS was amelirated by Lycogen. The histological score of intestinal inflammation in 5% DSS-treated mice after oral administration of Lycogen was lower than that of control mice. Meanwhile, Lycogen dramatically prolonged the survival of mice with severe colitis. These findings identified that Lycogen is an anti-inflammatory agent with the capacity to ameliorate DSS-induced colitis. PMID:23159923

  2. Fumigaclavine C ameliorates dextran sulfate sodium-induced murine experimental colitis via NLRP3 inflammasome inhibition.

    PubMed

    Guo, Wenjie; Hu, Shasha; Elgehama, Ahmed; Shao, Fenli; Ren, Ren; Liu, Wen; Zhang, Wenjing; Wang, Xinlei; Tan, Renxiang; Xu, Qiang; Sun, Yang; Jiao, Ruihua

    2015-10-01

    In the present study, the effect of Fumigaclavine C, a fungal metabolite, on murine experimental colitis induced by dextran sulfate sodium (DSS) and its possible mechanism were examined in vivo and vitro. Oral administration of Fumigaclavine C dose-dependently attenuated the loss of body weight and shortening of colon length induced by DSS. The disease activity index, histopathologic scores of musco was also significantly reduced by Fumigaclavine C treatment. Protein and mRNA levels of DSS-induced pro-inflammatory cytokines in colon, including TNF-α, IL-1β and IL-17A, were markedly suppressed by Fumigaclavine C. At the same time, decreased activation of caspase-1 in peritoneal macrophages was detected in Fumigaclavine C -treated mice which suggested that the NLRP3 inflammasome activation was suppressed. Furthermore, in the LPS plus ATP cell model, we found that Fumigaclavine C dose-dependent inhibited IL-1β release and caspase-1 activation. Taken together, our results demonstrate the ability of Fumigaclavine C to inhibit NLRP3 inflammasome activation and give some evidence for its potential use in the treatment of inflammatory bowel diseases. PMID:26320672

  3. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress.

    PubMed

    Tong, Ling-Chang; Wang, Yue; Wang, Zhi-Bin; Liu, Wei-Ye; Sun, Sheng; Li, Ling; Su, Ding-Feng; Zhang, Li-Chao

    2016-01-01

    Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7-14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway. PMID:27574508

  4. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress

    PubMed Central

    Tong, Ling-chang; Wang, Yue; Wang, Zhi-bin; Liu, Wei-ye; Sun, Sheng; Li, Ling; Su, Ding-feng; Zhang, Li-chao

    2016-01-01

    Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7–14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway. PMID:27574508

  5. Heme Oxygenase-1 Ameliorates Dextran Sulfate Sodium-induced Acute Murine Colitis by Regulating Th17/Treg Cell Balance*

    PubMed Central

    Zhang, Liya; Zhang, Yanjie; Zhong, Wenwei; Di, Caixia; Lin, Xiaoliang; Xia, Zhenwei

    2014-01-01

    Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD. PMID:25112868

  6. Kefir treatment ameliorates dextran sulfate sodium-induced colitis in rats

    PubMed Central

    Senol, Altug; Isler, Mehmet; Sutcu, Recep; Akin, Mete; Cakir, Ebru; Ceyhan, Betul M; Kockar, M Cem

    2015-01-01

    AIM: To investigate the preventive effect of kefir on colitis induced with dextran sulfate sodium (DSS) in rats. METHODS: Twenty-four male Wistar-albino rats were randomized into four groups: normal control, kefir-control, colitis, and kefir-colitis groups. Rats in the normal and kefir-control groups were administered tap water as drinking water for 14 d. Rats in the colitis and kefir-colitis groups were administered a 3% DSS solution as drinking water for 8-14 d to induce colitis. Rats in the kefir-control and kefir-colitis groups were administered 5 mL kefir once a day for 14 d while rats in the normal control and colitis group were administered an identical volume of the placebo (skim milk) using an orogastric feeding tube. Clinical colitis was evaluated with reference to the disease activity index (DAI), based on daily weight loss, stool consistency, and presence of bleeding in feces. Rats were sacrificed on the 15th day, blood specimens were collected, and colon tissues were rapidly removed. Levels of myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-10, malondialdehyde, and inducible nitric oxide synthase (iNOS) were measured in colon tissue. RESULTS: The DAI was lower in the kefir-colitis group than in the colitis group (on the 3rd and 5th days of colitis induction; P < 0.01). The DAI was also significantly higher in the colitis group between days 2 and 6 of colitis induction when compared to the normal control and kefir-control groups. The DAI was statistically higher only on the 6th day in the kefir-colitis group when compared to that in the normal control groups. Increased colon weight and decreased colon length were observed in colitis-induced rats. Mean colon length in the colitis group was significantly shorter than that of the kefir-control group. Kefir treatment significantly decreased histologic colitis scores (P < 0.05). MPO activity in the colitis group was significantly higher than in the kefir-control group (P < 0

  7. Faecalibacterium prausnitzii supernatant ameliorates dextran sulfate sodium induced colitis by regulating Th17 cell differentiation

    PubMed Central

    Huang, Xiao-Li; Zhang, Xin; Fei, Xian-Yan; Chen, Zhao-Gui; Hao, Yan-Ping; Zhang, Shu; Zhang, Ming-Ming; Yu, Yan-Qiu; Yu, Cheng-Gong

    2016-01-01

    AIM: To explore the preventive and therapeutic effects of Faecalibacterium prausnitzii (F. prausnitzii) supernatant on dextran sulfate sodium (DSS) induced colitis in mice. METHODS: Forty C57BL/6J male mice were randomly divided into four groups: control group, model group, treatment group, and prevention group. Mice were weighed daily. On day 10, the colon length was measured, the colorectal histopathologic damage score (HDS) was assessed, and plasma interleukin (IL)-17A, IL-6, and IL-4 levels were detected by enzyme-linked immunosorbent assay. The expression of transcription factor retinoic acid-related orphan receptor-γt (RORγt) and IL-17A in colon inflammatory mucosa tissue were determined by immunohistochemical assay, and the expression levels of RORγt mRNA, IL-17A mRNA, and IL-6 mRNA were detected by real-time quantitative polymerase chain reaction (PCR). The proportion of Th17 in mononuclear cells in spleen was assayed by fluorescence activated cell sorter. RESULTS: When compared with the model group, the colon length (P < 0.05) and body weight (P < 0.01) in the treatment and prevention groups were significantly increased, and the colon HDS was decreased (P < 0.05 and P < 0.01). There was no statistical difference between the treatment group and prevention group. After treatment with F. prausnitzii supernatant, the plasma levels of IL-17A and IL-6 (P < 0.05), the protein and mRNA expression of IL-17A and RORγt, and the Th17 cell ratio of spleen cells (P < 0.01) were significantly decreased compared to the model group. Plasma IL-4 level in the prevention group was significantly higher than that in the model group (P < 0.05), but there was no significant difference between these two groups in the expression of IL-6 in both the plasma and colon mucosa tissues. CONCLUSION: F. prausnitzii supernatant exerts protective and therapeutic effects on DSS-induced colitis in mice, probably via inhibition of Th17 differentiation and IL-17A secretion in the plasma and

  8. Inhibition of α2A-Adrenoceptors Ameliorates Dextran Sulfate Sodium-Induced Acute Intestinal Inflammation in Mice.

    PubMed

    Zádori, Zoltán S; Tóth, Viktória E; Fehér, Ágnes; Al-Khrasani, Mahmoud; Puskár, Zita; Kozsurek, Márk; Timár, Júlia; Tábi, Tamás; Helyes, Zsuzsanna; Hein, Lutz; Holzer, Peter; Gyires, Klára

    2016-09-01

    It has been hypothesized that α2-adrenoceptors (α2-ARs) may be involved in the pathomechanism of colitis; however, the results are conflicting because both aggravation and amelioration of colonic inflammation have been described in response to α2-AR agonists. Therefore, we aimed to analyze the role of α2-ARs in acute murine colitis. The experiments were carried out in wild-type, α2A-, α2B-, and α2C-AR knockout (KO) C57BL/6 mice. Colitis was induced by dextran sulfate sodium (DSS, 2%); alpha2-AR ligands were injected i.p. The severity of colitis was determined both macroscopically and histologically. Colonic myeloperoxidase (MPO) and cytokine levels were measured by enzyme-linked immunosorbent assay and proteome profiler array, respectively. The nonselective α2-AR agonist clonidine induced a modest aggravation of DSS-induced colitis. It accelerated the disease development and markedly enhanced the weight loss of animals, but did not influence the colon shortening, tissue MPO levels, or histologic score. Clonidine induced similar changes in α2B- and α2C-AR KO mice, whereas it failed to affect the disease activity index scores and caused only minor weight loss in α2A-AR KO animals. In contrast, selective inhibition of α2A-ARs by BRL 44408 significantly delayed the development of colitis; reduced the colonic levels of MPO and chemokine (C-C motif) ligand 3, chemokine (C-X-C motif) ligand 2 (CXCL2), CXCL13, and granulocyte-colony stimulating factor; and elevated that of tissue inhibitor of metalloproteinases-1. In this work, we report that activation of α2-ARs aggravates murine colitis, an effect mediated by the α2A-AR subtype, and selective inhibition of these receptors reduces the severity of gut inflammation. PMID:27418171

  9. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice

    PubMed Central

    Yan, Haiyan; Wang, Hongjuan; Zhang, Xiaoli; Li, Xiaoqin; Yu, Jing

    2015-01-01

    Ascorbic acid (AA) has been shown to exert beneficial effects, including mitigating oxidative stress and inhibiting inflammation. However, the preventative effect of vitamin C in chronic inflammatory diseases such as inflammatory bowel disease (IBD) remains unclear. In our study, we investigated the anti-inflammatory effects of AA and possible mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Male C57BL/6 mice were randomly divided to three groups: control group, DSS group, and DSS plus ascorbic acid treated group. Several clinical and inflammatory parameters as well as oxidative stress were evaluated. The results demonstrated that ascorbic acid significantly reduced clinical signs, inflammatory cytokines, myeloperoxidase (MPO) and malonaldehyde (MDA) activities, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were increased in DSS-induced mice. In addition, ascorbic acid was capable of inhibiting NF-κB, COX-2 and iNOS expression in the colonic. Taken together, these findings suggest that ascorbic acid contributes to the reduction of oxidative stress and inflammatory response in DSS-induced colitis and exerts the potential to prevent and clinical treatment of inflammatory bowel disease. PMID:26884937

  10. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice.

    PubMed

    Yan, Haiyan; Wang, Hongjuan; Zhang, Xiaoli; Li, Xiaoqin; Yu, Jing

    2015-01-01

    Ascorbic acid (AA) has been shown to exert beneficial effects, including mitigating oxidative stress and inhibiting inflammation. However, the preventative effect of vitamin C in chronic inflammatory diseases such as inflammatory bowel disease (IBD) remains unclear. In our study, we investigated the anti-inflammatory effects of AA and possible mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Male C57BL/6 mice were randomly divided to three groups: control group, DSS group, and DSS plus ascorbic acid treated group. Several clinical and inflammatory parameters as well as oxidative stress were evaluated. The results demonstrated that ascorbic acid significantly reduced clinical signs, inflammatory cytokines, myeloperoxidase (MPO) and malonaldehyde (MDA) activities, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were increased in DSS-induced mice. In addition, ascorbic acid was capable of inhibiting NF-κB, COX-2 and iNOS expression in the colonic. Taken together, these findings suggest that ascorbic acid contributes to the reduction of oxidative stress and inflammatory response in DSS-induced colitis and exerts the potential to prevent and clinical treatment of inflammatory bowel disease. PMID:26884937

  11. Iron supplementation increases disease activity and vitamin E ameliorates the effect in rats with dextran sulfate sodium-induced colitis.

    PubMed

    Carrier, Julie; Aghdassi, Elaheh; Cullen, Jim; Allard, Johane P

    2002-10-01

    Inflammatory bowel disease is often associated with iron deficiency anemia and oral iron supplementation may be required. However, iron may increase oxidative stress through the Fenton reaction and thus exacerbate the disease. This study was designed to determine in rats with dextran sulfate sodium (DSS)-induced colitis whether oral iron supplementation increases intestinal inflammation and oxidative stress and whether the addition of an antioxidant, vitamin E, would reduce this detrimental effect. Four groups of rats that consumed 50 g/L DSS in drinking water were studied for 7 d and were fed: a control, nonpurified diet (iron, 270 mg, and dl-alpha-tocopherol acetate, 49 mg/kg); diet + iron (iron, 3000 mg/kg); diet + vitamin E (dl-alpha-tocopherol acetate, 2000 mg/kg) and the diet + both iron and vitamin E, each at the same concentrations as above. Body weight change, rectal bleeding, histological scores, plasma and colonic lipid peroxides (LPO), plasma 8-isoprostane, colonic glutathione peroxidase (GPx) and plasma vitamin E were measured. Iron supplementation increased disease activity as demonstrated by higher histological scores and heavier rectal bleeding. This was associated with an increase in colonic and plasma LPO and plasma 8-isoprostane as well as a decrease in colonic GPx. Vitamin E supplementation decreased colonic inflammation and rectal bleeding but did not affect oxidative stress, suggesting another mechanism for reducing inflammation. In conclusion, oral iron supplementation resulted in an increase in disease activity in this model of colitis. This detrimental effect on disease activity was reduced by vitamin E. Therefore, the addition of vitamin E to oral iron supplementation may be beneficial. PMID:12368409

  12. Sarcodon aspratus Extract Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mouse Colon and Mesenteric Lymph Nodes.

    PubMed

    Chung, Min-Yu; Hwang, Jin-Taek; Kim, Jin Hee; Shon, Dong-Hwa; Kim, Hyun-Ku

    2016-05-01

    Mushrooms have been previously investigated for their immune-modulating and anti-inflammatory properties. We examined whether the anti-inflammatory properties of Sarcodon aspratus ethanol extract (SAE) could elicit protective effects against dextran sulfate sodium (DSS)-induced colitis in vivo. Male C57/BL6 mice were randomly assigned to 1 of 4 treatment groups: control (CON; n = 8), DSS-treated (DSS; n = 9), DSS+SAE at 50 mg/kg BW (SAE50; n = 8), and DSS+SAE at 200 mg/kg BW groups (SAE200; n = 9). DSS treatment induced significant weight loss, which was significantly recovered by SAE200. Although SAE did not affect DSS-mediated reductions in colon length, it improved diarrhea and rectal bleeding induced by DSS. SAE at 200 mg/kg BW significantly attenuated IL-6 and enhanced IL-10 expression in mesenteric lymph nodes (MLN), and significantly reduced IL-6 levels in splenocytes. SAE200 also significantly attenuated DSS-induced increase in IL-6 and IL-1β, and reductions in IL-10 in colon tissue. High levels of SAE were also observed to significantly decrease inflammatory COX-2 expression that was upregulated by DSS in mice colon. These findings may have relevance for novel therapeutic strategies to mitigate inflammatory bowel disease-relevant inflammatory responses, via the direct and indirect anti-inflammatory activity of SAE. We also found that SAE harbors significant quantities of total fiber and β-glucan, suggesting a possible role for these components in protection against DSS-mediated colitis. PMID:27074537

  13. Gingko biloba extract (Ginaton) ameliorates dextran sulfate sodium (DSS)-induced acute experimental colitis in mice via reducing IL-6/STAT3 and IL-23/IL-17

    PubMed Central

    Sun, Yan; Lin, Lian-Jie; Lin, Yan; Sang, Li-Xuan; Jiang, Min; Zheng, Chang-Qing

    2015-01-01

    This study explored the underlying mechanism of Gingko biloba extract (Ginaton) on dextran sulfate sodium (DSS)-induced acute experimental colitis in mice. 40 male C57BL/6 mice were randomly divided into four groups: normal control group, Ginaton group, Ginaton treatment group, and DSS group. After 7 days administration, mice were sacrificed and colons were collected for H-E staining, immunohistochemistry, real-time PCR and Western blot. By observing clinical disease activity and histological damage, we assessed the effect of Ginaton on DSS-induced acute experimental colitis in mice and observed the effect of Ginaton on normal mice. We also explored the specific mechanism of Ginaton on DSS-induced acute experimental colitis in mice through examining the expression of inflammatory related mediators (gp130, STAT3, p-STAT3, ROR-γt) and cytokines (IL-6, IL-17, IL-23). Ginaton-treated DSS mice showed significant improvement over untreated DSS mice. Specifically, Ginaton improved clinical disease activity (DAI score, weight closs, colon shortening, and bloody stool) and histological damage, and reduced the expression of inflammatory-related mediators (p-STAT3, gp130, ROR-γt) and cytokines (IL-6, IL-17, IL-23). In addition, clinical disease activity, histological damage, the expression of inflammatory related mediators (STAT3, p-STAT3, gp130, ROR-t) and cytokines (IL-6, IL-17, IL-23) in mice of Ginaton group were similar to normal control group. In conclusion, Ginaton ameliorates DSS-induced acute experimental colitis in mice by reducing IL-17 production, which is at least partly involved in inhibiting IL-6/STAT3 signaling pathway and IL-23/IL-17 axis. Moreover, Ginaton itself does not cause inflammatory change in normal mice. These results support that Ginaton can be as a potential clinical treatment for ulcerative colitis (UC). PMID:26770316

  14. Berberine ameliorates chronic relapsing dextran sulfate sodium-induced colitis in C57BL/6 mice by suppressing Th17 responses.

    PubMed

    Li, Yan-Hong; Xiao, Hai-Tao; Hu, Dong-Dong; Fatima, Sarwat; Lin, Cheng-Yuan; Mu, Huai-Xue; Lee, Nikki P; Bian, Zhao-Xiang

    2016-08-01

    Ulcerative colitis (UC) is an increasingly common condition particularly in developed countries. The lack of satisfactory treatment has fueled the search for alternative therapeutic strategies. In recent studies, berberine, a plant alkaloid with a long history of medicinal use in Chinese medicine, has shown beneficial effects against animal models of acute UC. However, UC usually presents as a chronic condition with frequent relapse in patients. How berberine will act on chronic UC remains unclear. In the present study, we adopted dextran sulfate sodium (DSS)-induced chronic relapsing colitis model to assess the ameliorating activity of berberine. Colitis was induced by two cycles of 2.0% DSS for five days followed by 14days of drinking water plus a third cycle consisting of DSS only for five days. The colitis mice were orally administered 20mg/kg berberine from day 13 onward for 30days and monitored daily. The body weight, stool consistency, and stool bleeding were recorded for determination of the disease activity index (DAI). At the end of treatment, animals were sacrificed and samples were collected and subjected to histological, RT-qPCR, Western blot, and LC-MS analyses. Lymphocytes were isolated from spleens and mesenteric lymph nodes (MLN) and cultured for flow cytometry analysis of IL-17 secretion from CD4(+) cells and the Th17 cell differentiation. Results showed that berberine significantly ameliorated the DAI, colon shortening, colon tissue injury, and reduction of colonic expression of tight junction (TJ) protein ZO-1 and occludin of colitis mice. Notably, berberine treatment pronouncedly reduced DSS-upregulated Th17-related cytokine (IL-17 and ROR-γt) mRNAs in the colon. Furthermore, the mRNA expression of IL-6 and IL-23, and the phosphorylation of STAT3 in colon tissues from DSS-treated mice were pronouncedly inhibited by berberine. Moreover, the up-regulation of IL-17 secretion from CD4(+) cells of spleens and MLNs caused by DSS were significantly

  15. Dimethyl fumarate ameliorates dextran sulfate sodium-induced murine experimental colitis by activating Nrf2 and suppressing NLRP3 inflammasome activation.

    PubMed

    Liu, Xiuting; Zhou, Wei; Zhang, Xin; Lu, Ping; Du, Qianming; Tao, Lei; Ding, Yang; Wang, Yajing; Hu, Rong

    2016-07-15

    In the present study, we examined the effects of dimethyl fumarate (DMF) on dextran sulfate sodium (DSS)-induced murine colitis, an animal model which mimics human IBD. Oral administration of DMF dose-dependently attenuated body weight loss, colon length shortening and colonic pathological damage including decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities in DSS-treated mice. Increased glutathione (GSH) induced by DMF demonstrated its potential antioxidant capacity. In addition, Nrf2 and its downstream genes were markedly activated by DMF. Furthermore, protein and mRNA levels of pro-inflammatory cytokines, including IL-1β, TNF-α and IL-6 were markedly suppressed by DMF. At the same time, decreased activation of caspase-1 was detected in DMF-treated mice, indicating that the NLRP3 inflammasome activation was suppressed. The in vitro study verified a negative regulation of DMF and its intestinal metabolite on NLRP3 inflammasome. Moreover, the inhibitory effect was found to be mostly dependent on Nrf2 which decreased mitochondrial ROS (mROS) generation and mitochondrial DNA (mtDNA) release. Taken together, our results demonstrated the ability of DMF to inhibit NLRP3 inflammasome activation and its potential use in the treatment of NLRP3-associated diseases. PMID:27184504

  16. The Noncommensal Bacterium Methylococcus capsulatus (Bath) Ameliorates Dextran Sulfate (Sodium Salt)-Induced Ulcerative Colitis by Influencing Mechanisms Essential for Maintenance of the Colonic Barrier Function

    PubMed Central

    Hult, Lene T. Olsen; Spetalen, Signe; Kaldhusdal, Magne; Christofferesen, Trine Eker; Bengtsson, Oskar; Romarheim, Odd Helge; Jacobsen, Morten; Lea, Tor

    2013-01-01

    Dietary inclusion of a bacterial meal has recently been shown to efficiently abolish soybean meal-induced enteritis in Atlantic salmon. The objective of this study was to investigate whether inclusion of this bacterial meal in the diet could abrogate disease development in a murine model of epithelial injury and colitis and thus possibly have therapeutic potential in human inflammatory bowel disease. C57BL/6N mice were fed ad libitum a control diet or an experimental diet containing 254 g/kg of body weight BioProtein, a bacterial meal consisting of Methylococcus capsulatus (Bath), together with the heterogenic bacteria Ralstonia sp., Brevibacillus agri, and Aneurinibacillus sp. At day 8, colitis was induced by 3.5% dextran sulfate sodium (DSS) ad libitum in the drinking water for 6 days. Symptoms of DSS treatment were less profound after prophylactic treatment with the diet containing the BioProtein. Colitis-associated parameters such as reduced body weight, colon shortening, and epithelial damage also showed significant improvement. Levels of acute-phase reactants, proteins whose plasma concentrations increase in response to inflammation, and neutrophil infiltration were reduced. On the other, increased epithelial cell proliferation and enhanced mucin 2 (Muc2) transcription indicated improved integrity of the colonic epithelial layer. BioProtein mainly consists of Methylococcus capsulatus (Bath) (88%). The results that we obtained when using a bacterial meal consisting of M. capsulatus (Bath) were similar to those obtained when using BioProtein in the DSS model. Our results show that a bacterial meal of the noncommensal bacterium M. capsulatus (Bath) has the potential to attenuate DSS-induced colitis in mice by enhancing colonic barrier function, as judged by increased epithelial proliferation and increased Muc2 transcription. PMID:23064342

  17. The noncommensal bacterium Methylococcus capsulatus (Bath) ameliorates dextran sulfate (Sodium Salt)-Induced Ulcerative Colitis by influencing mechanisms essential for maintenance of the colonic barrier function.

    PubMed

    Kleiveland, Charlotte R; Hult, Lene T Olsen; Spetalen, Signe; Kaldhusdal, Magne; Christofferesen, Trine Eker; Bengtsson, Oskar; Romarheim, Odd Helge; Jacobsen, Morten; Lea, Tor

    2013-01-01

    Dietary inclusion of a bacterial meal has recently been shown to efficiently abolish soybean meal-induced enteritis in Atlantic salmon. The objective of this study was to investigate whether inclusion of this bacterial meal in the diet could abrogate disease development in a murine model of epithelial injury and colitis and thus possibly have therapeutic potential in human inflammatory bowel disease. C57BL/6N mice were fed ad libitum a control diet or an experimental diet containing 254 g/kg of body weight BioProtein, a bacterial meal consisting of Methylococcus capsulatus (Bath), together with the heterogenic bacteria Ralstonia sp., Brevibacillus agri, and Aneurinibacillus sp. At day 8, colitis was induced by 3.5% dextran sulfate sodium (DSS) ad libitum in the drinking water for 6 days. Symptoms of DSS treatment were less profound after prophylactic treatment with the diet containing the BioProtein. Colitis-associated parameters such as reduced body weight, colon shortening, and epithelial damage also showed significant improvement. Levels of acute-phase reactants, proteins whose plasma concentrations increase in response to inflammation, and neutrophil infiltration were reduced. On the other, increased epithelial cell proliferation and enhanced mucin 2 (Muc2) transcription indicated improved integrity of the colonic epithelial layer. BioProtein mainly consists of Methylococcus capsulatus (Bath) (88%). The results that we obtained when using a bacterial meal consisting of M. capsulatus (Bath) were similar to those obtained when using BioProtein in the DSS model. Our results show that a bacterial meal of the noncommensal bacterium M. capsulatus (Bath) has the potential to attenuate DSS-induced colitis in mice by enhancing colonic barrier function, as judged by increased epithelial proliferation and increased Muc2 transcription. PMID:23064342

  18. Dextran sulfate-dependent fusion of liposomes containing cationic stearylamine.

    PubMed

    Zschörnig, O; Arnold, K; Richter, W; Ohki, S

    1992-11-01

    The incorporation of the positively charged stearylamine into phosphatidylcholine liposomes was studied by measuring electrophoretic mobilities. Up to a molar ratio SA/PC = 0.5 an increase of the positive zeta potential can be observed. Addition of the negatively charged macromolecule dextran sulfate leads to a change of the sign of the surface potential of the PC/SA liposomes indicating binding of the macromolecule to the surface. This process is accompanied by an increase in turbidity, which is dependent on the molecular weight of the dextran sulfate and the SA concentration (measured by turbidimetry). Using the NBD/Rh and Pyr-PC fluorescence assays the fusion of SA containing liposomes was investigated. A strong influence of the SA content and molecular weight of dextran sulfate on the fusion extent was observed. The fusion extent is proportional to the SA content in the PC membrane and the molecular weight of dextran sulfate. PC/SA/PE liposomes exhibit a higher fusion extent after addition of dextran sulfate compared to PC/SA liposomes indicating that PE additionally destabilizes the bilayer. Freeze-fracture electron microscopy reveals that the reaction products are large complexes composed of multilamellar stacks of tightly packed, straight membranes and aggregated vesicles. The tight packing of the membranes in the stacks (and the narrow contact of the aggregated vesicles) indicates a strong adherence of opposite membrane surfaces induced by dextran sulfate. PMID:1486657

  19. Effects of dextran sulfate on tracheal mucociliary velocity in dogs.

    PubMed

    Sudo, E; Boyd, W A; King, M

    2000-01-01

    We have shown that low molecular weight dextran, as a potential mucolytic agent, reduced the viscoelasticity and spinnability of cystic fibrosis (CF) sputum and improved its ciliary transportability in vitro; it also reduced viscoelasticity of healthy dog mucus in in vitro testing. In anesthetized dogs, dextran administered by aerosol at 65 mg/mL increased tracheal mucus velocity, but this increase was not sustained for higher concentrations. The purpose of the present study is to evaluate whether low mol. wt. dextran sulfate, a charged oligosaccharide, exhibits similar effects to previously tested neutral dextran when administered by aerosol to anesthetized dogs in terms of mucus rheology and mucociliary clearance rate. Healthy mongrel dogs were anesthetized with pentobarbital and intubated. Aerosols of Ringer's solution or dextran sulfate (m.w. 5000) dissolved in Ringer's were generated by Pari LC STAR nebulizer, and delivered during 30-min periods of spontaneous breathing. Tracheal transepithelial potential difference (PD, using agar filled electrodes) and tracheal mucociliary velocity (TMV, by charcoal marker particle transport) were measured under bronchoscopic control, and mucus for viscoelasticity analysis by magnetic rheometry was collected by the endotracheal tube method. We performed experiments in seven dogs, involving 30-min administrations of aerosol, separated by 30-min periods of no aerosol. All dogs received inhalations of 6.5 mg/mL, 20 mg/mL, and 65 mg/mL dextran sulfate. Tracheal mucus viscoelasticity (average log G* over 1-100 rad/s) decreased progressively with increasing dose of dextran sulfate; for the highest concentration (65 mg/mL), log G* decreased by a factor of 2.61 (p = 0.021). A modest increase in the TMV was observed for the first dose of dextran sulfate (128% of baseline at 6.5 mg/mL, p = 0.066); thereafter TMV was stable. PD increased significantly at each concentration of dextran sulfate compared with Ringer control; however, there

  20. Monotropein isolated from the roots of Morinda officinalis ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-κB inactivation.

    PubMed

    Shin, Ji-Sun; Yun, Kyung-Jin; Chung, Kyung-Sook; Seo, Kyeong-Hwa; Park, Hee-Juhn; Cho, Young-Wuk; Baek, Nam-In; Jang, Daesik; Lee, Kyung-Tae

    2013-03-01

    We previously demonstrated that monotropein isolated from the roots of Morinda officinalis (Rubiaceae) has anti-inflammatory effects in vivo. In the present study, we investigated the molecular mechanisms underlying the anti-inflammatory effects of monotropein in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis mouse model. Monotropein was found to inhibit the expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) mRNA in LPS-induced RAW 264.7 macrophages. Treatment with monotropein decreased the DNA binding activity of nuclear factor-κB (NF-κB). Consistent with these findings, monotropein also suppressed phosphorylation and degradation of inhibitory κB-α (IκB-α), and consequently the translocations of NF-κB. In the DSS-induced colitis model, monotropein reduced disease activity index (DAI), myeloperoxidase (MPO) activity, and inflammation-related protein expressions by suppressing NF-κB activation in colon mucosa. Taken together, these findings suggest that the anti-inflammatory effects of monotropein are mainly related to the inhibition of the expressions of inflammatory mediators via NF-κB inactivation, and support its possible therapeutic role in colitis. PMID:23261679

  1. Spectroscopic study of copper(II) complexes with carboxymethyl dextran and dextran sulfate

    NASA Astrophysics Data System (ADS)

    Glišić, S.; Nikolić, G.; Cakić, M.; Trutić, N.

    2015-07-01

    The copper(II) ion complexes with carboxymethyl dextran (CMD) and dextran sulfate (DS) were studied by different methods. Content of copper was determined by atomic absorption spectroscopy. It was found that copper : ligand mole ratio (Cu : CMD) is 1 : 2, and Cu : DS is 1 : 1 by mole ratio method. Spectrophotometric parameters of synthesized compounds are characteristic for Cu(II) ion in octahedral ( O h ) coordination. Analyzing of FTIR spectra in ν(C=O) vibration region has showed that -COOH group acts as bidentate ligand, while the compounds of Cu(II) with DS copper ions are in the region of four oxygen atoms of two adjacent sulfo groups. The presence of crystalline water was determined by isotopic substitution of H2O molecules with D2O molecules. Comparison of spectra recorded at room (RT) and liquid nitrogen temperature (LNT) has enabled detection bands of water molecules libration indicating that they are coordinated complementing coordination sphere of Cu(II) ions to six. The complexes are of Cu(II) · (CMD)2 · (H2O)2 or Cu(II) · DS · (H2O)2 type. The similarities of the γ(C-H) range in a part of FTIR spectra indicate that there is no difference in the conformation of the 4 C 1 glucopyranose (Glc) unit CMD and DS synthesized Cu(II) complexes.

  2. Radioprotection conferred by dextran sulfate given before irradiation in mice

    SciTech Connect

    Ross, W.M.; Peeke, J.

    1986-02-01

    Dextran sulfate (DS) has been observed to cause mobilization (fivefold) of hemopoietic stem cells (HSC) and leukocytes, primarily lymphocytes, into the peripheral blood of mice within 2-3 h after intraperitoneal (i.p.) injection. This effect was dose dependent and was prolonged for several hours when the high-molecular-weight version DS500 (500,000 daltons) was used. When DS500 was given 1-3 days before irradiation, hemopoietic recovery was markedly enhanced. Postirradiation injection was ineffective. By ten days after irradiation (7.0 Gy), the number of endogenous spleen colonies (CFUs) and the splenic mass were much larger if DS pretreatment had been given. This effect was dependent on the dose of DS500 and on the time administered, 60 mg/kg producing a maximal effect when given three days before irradiation. DS500 caused a transient anaphylactoid shock, however, in most mice--mild at low doses but potentially lethal at doses above 40 mg/kg (10% mortality within 1-3 days after 60 mg/kg). The following results were obtained with 50 mg/kg, a compromise dose causing minimal mortality (3%) given three days before irradiation. Reticulocyte reappearance was earlier in irradiated mice given DS500, indicating earlier erythropoietic recovery. Some of these reticulocytes were resistant to lysing agents, so their appearance could be detected using the Coulter electronic cell counter, as well as in stained blood smears. The 30-day mortality due to bone marrow failure after irradiation was significantly decreased in DS-treated mice below 9.5 Gy, and the LD50/30 was increased by 0.5 Gy. This study shows that dextran sulfate exerts a radioprotective influence on the hemopoietic system and hence survival when administered prophylactically.

  3. DEXTRAN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dextrans are homopolysaccharides of glucose that feature a substantial number of consecutive alpha- (1 to 6) linkages in their major chains. The exact structure of each type of dextran depends on its specific microbial strain of origin. Dextrans are produced by certain lactic acid bacteria, partic...

  4. Hypertonic Saline Dextran Ameliorates Organ Damage in Beagle Hemorrhagic Shock

    PubMed Central

    You, Guo-xing; Wang, Ying; Chen, Gan; Wang, Quan; Zhang, Xi-gang; Zhao, Lian; Zhou, Hong; He, Yue-zhong

    2015-01-01

    Objective The goal of this study was to investigate the effect of hypertonic saline with 6% Dextran-70 (HSD) resuscitation on organ damage and the resuscitation efficiency of the combination of HSD and lactated ringers (LR) in a model of hemorrhage shock in dogs. Methods Beagles were bled to hold their mean arterial pressure (MAP) at 50±5 mmHg for 1 h. After hemorrhage, beagles were divided into three groups (n = 7) to receive pre-hospital resuscitation for 1 h (R1): HSD (4 ml/kg), LR (40 ml/kg), and HSD+LR (a combination of 4 ml/kg HSD and 40 ml/kg LR). Next, LR was transfused into all groups as in-hospital resuscitation (R2). After two hours of observation (R3), autologous blood was transfused. Hemodynamic responses and systemic oxygenation were measured at predetermined phases. Three days after resuscitation, the animals were sacrificed and tissues including kidney, lung, liver and intestinal were obtained for pathological analysis. Results Although the initial resuscitation with HSD was shown to be faster than LR with regard to an ascending MAP, the HSD group showed a similar hemodynamic performance compared to the LR group throughout the experiment. Compared with the LR group, the systemic oxygenation performance in the HSD group was similar but showed a lower venous-to-arterial CO2 gradient (Pv-aCO2) at R3 (p < 0.05). Additionally, the histology score of the kidneys, lungs and liver were significantly lower in the HSD group than in the LR group (p < 0.05). The HSD+LR group showed a superior hemodynamic response but higher extravascular lung water (EVLW) and lower arterial oxygen tension (PaO2) than the other groups (p < 0.05). The HSD+LR group showed a marginally improved systemic oxygenation performance and lower histology score than other groups. Conclusions Resuscitation after hemorrhagic shock with a bolus of HSD showed a similar hemodynamic response compared with LR at ten times the volume of HSD, but HSD showed superior efficacy in organ protection

  5. Myristica fragrans seed extract protects against dextran sulfate sodium-induced colitis in mice.

    PubMed

    Kim, Hyojung; Bu, Youngmin; Lee, Beom-Joon; Bae, Jinhyun; Park, Sujin; Kim, Jinsung; Lee, Kyungjin; Cha, Jae-Myung; Ryu, Bongha; Ko, Seok-Jae; Han, Gajin; Min, Byungil; Park, Jae-Woo

    2013-10-01

    Nutmeg (seed of Myristica fragrans [MF]) is one of the most commonly used spices in the world and also a well-known herb for the treatment of various intestinal diseases, including colitis in traditional Korean medicine. The purpose of the current study was to investigate whether water extract of MF (MFE) can protect against dextran sulfate sodium (DSS) induced colitis in a mouse model. Colitis was induced by 5% DSS in balb/c mice. MFE (100, 300 or 1000 mg/kg) was orally administered to the mice twice a day for 7 days. Body weight, colon length, clinical score, and histological score were assessed to determine the effects on colitis. Proinflammatory cytokines (interferon-γ, tumor necrosis factor-α, interleukin [IL]-1β, and IL-6) were measured to investigate the mechanisms of action. MFE dose dependently inhibited the colon shortening and histological damage to the colon. However, it did not prevent weight loss. MFE also inhibited proinflammatory cytokines. The current results suggest that MFE ameliorates DSS-induced colitis in mice by inhibiting inflammatory cytokines. Further investigation, including the exact mechanisms is needed. PMID:24063406

  6. Arginine as an eluent overcomes the hindrance of monoclonal antibody quantification by dextran sulfate in protein A affinity chromatography.

    PubMed

    Kim, Bong Gyun; Park, Hong Woo

    2015-01-01

    Analytical chromatography using protein A affinity columns was employed for the fast and simple quantitative analysis of monoclonal antibodies (mAb) from suspension cultures of recombinant Chinese hamster ovary (rCHO) cells. Reliable results could not be obtained from analysis of rCHO cell culture supernatants containing dextran sulfate using elution buffers such as phosphate, glycine, or MgCl2 . These problems increased as the number of analysis and the concentration of dextran sulfate in samples increased. Arginine was identified as an alternative eluent to overcome the hindrance by dextran sulfate. When the samples contain dextran sulfate up to 100 mg/L, the elution buffer containing 0.6-1.0 M arginine at pH 3.0-3.8 is useful for the effective analysis. Reproducible results in the mAb quantification could be obtained by this developed arginine elution buffer from rCHO cell culture supernatants containing dextran sulfate. PMID:26363185

  7. Comparative efficacy of chloramphenicol loaded chondroitin sulfate and dextran sulfate nanoparticles to treat intracellular Salmonella infections.

    PubMed

    Kiruthika, V; Maya, S; Suresh, Maneesha K; Kumar, V Anil; Jayakumar, R; Biswas, Raja

    2015-03-01

    Salmonella Paratyphi A is a food-borne Gram-negative pathogen and a major public health challenge in the developing world. Upon reaching the intestine, S. Paratyphi A penetrates the intestinal epithelial barrier; and infects phagocytes such as macrophages and dendritic cells. S. Paratyphi A surviving within macrophages is protected from the lethal action of antibiotics due to their poor penetration into the intracellular compartments. Hence we have developed chloramphenicol loaded chondroitin sulfate (CS-Cm Nps) and dextran sulfate (DS-Cm Nps) nanoparticles through ionotropic-gelation method for the intracellular delivery of chloramphenicol. The size of these nanoparticles ranged between 100 and 200 nm in diameter. The encapsulation efficiency of both the nanoparticles was found to be around 65%. Both the nanoparticles are found to be non-hemolytic and non-toxic to fibroblast and epithelial cells. The prepared nanoparticles exhibited sustained release of the drug of up to 40% at pH 5 and 20-25% at pH 7.0 after 168 h. The anti-microbial activities of both nanoparticles were tested under in vitro and ex vivo conditions. The delivery of DS-Cm Nps into the intracellular compartments of the macrophages was 4 fold more compared to the CS-Cm Nps which lead to the enhanced intracellular antimicrobial activity of Ds-Cm Nps. Enhanced anti-microbial activity of Ds-Cm Nps was further confirmed in an ex vivo chicken intestine infection model. Our results showed that Cm loaded DS Nps can be used to treat intracellular Salmonella infections. PMID:25645750

  8. Plant-derived polysaccharide supplements inhibit dextran sulfate sodium-induced colitis in the rat.

    PubMed

    Koetzner, Lee; Grover, Gary; Boulet, Jamie; Jacoby, Henry I

    2010-05-01

    Several plant-derived polysaccharides have been shown to have anti-inflammatory activity in animal models. Ambrotose complex and Advanced Ambrotose are dietary supplements that include aloe vera gel, arabinogalactan, fucoidan, and rice starch, all of which have shown such activity. This study was designed to evaluate these formulations against dextran sulfate sodium (DSS)-induced colitis in rats and to confirm their short-term safety after 14 days of daily dosing. Rats were dosed daily orally with vehicle, Ambrotose or Advanced Ambrotose. On day six groups of rats received tap water or 5% Dextran Sulfate sodium. Ambrotose and Advanced Ambrotose significantly lowered the disease scores and partially prevented the shortening of colon length. An increase in monocyte count was induced by dextran sulfate sodium and inhibited by Ambrotose and Advanced Ambrotose. There were no observable adverse effects after 14-day daily doses. The mechanism of action of the formulations against DSS-induced colitis may be related to its effect on monocyte count. PMID:19513840

  9. Tanshinone IIA Protects against Dextran Sulfate Sodium- (DSS-) Induced Colitis in Mice by Modulation of Neutrophil Infiltration and Activation

    PubMed Central

    Liu, Xiaowei; He, Haiyue; Huang, Tingting; Lei, Zhen; Liu, Fuquan; An, Guangyu; Wen, Tao

    2016-01-01

    Neutrophils play a critical role in the initiation and maintenance of intestinal inflammation. However, conventional neutrophil-targeted therapies can impair normal host defense. Tanshinone IIA has been recently revealed to act directly on neutrophils. Hence, we aimed at investigating whether Tanshinone IIA can protect against experimental colitis through modulation of neutrophils. We induced colitis in C57BL/6 mice by giving 3% dextran sulfate sodium (DSS) orally, and meanwhile, we treated mice daily with Tanshinone IIA intraperitoneally. The severity of colitis was evaluated by calculating disease activity index (DAI) and histological parameters. Neutrophil infiltration and activation in the colons of mice were measured. Moreover, whether Tanshinone IIA has direct effects on neutrophil migration and activation was determined in vitro. Our data showed that Tanshinone IIA significantly ameliorated the severity of DSS-induced colitis in mice, evidenced by the reduced DAI and improved colonic inflammation. In addition, Tanshinone IIA decreased neutrophil infiltration of intestinal mucosa and activation and reduced colonic inflammatory cytokines in DSS-treated mice. Furthermore, Tanshinone IIA was demonstrated to significantly suppress neutrophil migration and activation. These results provide compelling evidence that Tanshinone IIA has a therapeutic potential for alleviating inflammatory colitis in mice, which is possibly mediated by the immunomodulation of neutrophils. PMID:26881040

  10. Monocolonization of Germ-Free Mice with Bacteroides fragilis Protects against Dextran Sulfate Sodium-Induced Acute Colitis

    PubMed Central

    Liu, Ju-Yun; Li, Yen-Peng; Huang, Yen-Te; Chuang, Hsiao-Li

    2014-01-01

    Ulcerative colitis is inflammatory conditions of the colon caused by interplay of genetic and environmental factors. Previous studies indicated that the gut microflora may be involved in the colonic inflammation. Bacteroides fragilis (BF) is a Gram-negative anaerobe belonging to the colonic symbiotic. We aimed to investigate the protective role of BF in a colitis model induced in germ-free (GF) mice by dextran sulfate sodium (DSS). GF C57BL/6JNarl mice were colonized with BF for 28 days before acute colitis was induced by DSS. BF colonization significantly increased animal survival by 40%, with less reduction in colon length, and decreased infiltration of inflammatory cells (macrophages and neutrophils) in colon mucosa following challenge with DSS. In addition, BF could enhance the mRNA expression of anti-inflammatory-related cytokine such as interleukin 10 (IL-10) with polymorphism cytokine IL-17 and diminish that of proinflammatory-related tumor necrosis factor α with inducible nitric oxide synthase in the ulcerated colon. Myeloperoxidase activity was also decreased in BF-DSS mice. Taking these together, the BF colonization significantly ameliorated DSS-induced colitis by suppressing the activity of inflammatory-related molecules and inducing the production of anti-inflammatory cytokines. BF may play an important role in maintaining intestinal immune system homeostasis and regulate inflammatory responses. PMID:24971344

  11. A Picrorhiza kurroa Derivative, Picroliv, Attenuates the Development of Dextran-Sulfate-Sodium-Induced Colitis in Mice

    PubMed Central

    Zhang, De-Kui; Yu, Jian-Jie; Li, Yu-Min; Wei, Li-Na; Yu, Yi; Feng, Yan-Hu; Wang, Xiang

    2012-01-01

    Background. Free radicals and proinflammatory cytokines have been shown to play a critical role in the pathogenesis of ulcerative colitis (UC). Picroliv, a Picrorhiza kurroa derivative, has been demonstrated to have antioxidant and anti-inflammatory effect. The purpose of the study was to investigate the effects of picroliv on experimental model of UC in mice. Materials and Methods. Picroliv was administrated orally by gavage to mice with colitis induced by dextran sulfate sodium (DSS). Disease activity index (DAI), colon length, and histology score were observed. Myeloperoxidase (MPO) activity, and SOD, MDA concentrations were measured by enzyme-linked immunosorbent assay (ELISA) while the expression of cytokine mRNAs was studied by real-time-quantitative polymerase chain reaction and also ELISA. The expression of NF-κB p65 was observed by immunohistochemistry staining and western blotting. Results. A significant improvement was observed in DAI and histological score in mice treated with picroliv, and incerased MPO activity, MDA concentrations, and the expression of IL-1β, TNF-α, and NF-κB p65 in mice with DSS-induced colitis were significantly reduced while decreased SOD level increased following administration of picroliv. Conclusion. The administration of picroliv leads to an amelioration of DSS-induced colitis, suggesting administration of picroliv may provide a therapeutic approach for UC. PMID:23125487

  12. Probiotic bacteria lactobacillus and bifidobacterium attenuate inflammation in dextran sulfate sodium-induced experimental colitis in mice.

    PubMed

    Toumi, R; Soufli, I; Rafa, H; Belkhelfa, M; Biad, A; Touil-Boukoffa, C

    2014-01-01

    It is widely accepted that inflammatory Bowel disease (IBD) arises from a dysregulated mucosal immune response to the enteric microbiota in the gut of a genetically susceptible individual. No definitive therapies are available for this inflammatory disorder. Therefore it became imperative to develop new strategies for treating this disease. Probiotics have emerged as a potential new therapeutic strategy for IBD, however their exact mechanisms of action is still poorly defined. In this study, we address the potential effect of a probiotic cocktail (Ultrabiotique®) composed of four live bacterial strains (L. acidophilus, L. plantarum, B. lactis and B.breve) to promote recovery from acute colitis. Probiotic was given to mice by oral gavage after the onset of colitis and the establishment of dextran sulfate sodium (DSS)-induced intestinal injury. Clinical parameters were monitored daily, histological scores of colitis and the production of nitric oxide (NO) and interferon-γ (IFN-γ) were determined. In addition, TLR4, NF-κB and iNOS colonic expression were examined. Probiotic treatment ameliorated clinical symptoms and histological scores. NO and IFN-γ production in plasma were decreased by probiotic. These results were associated with reduced TLR4, iNOS and NF-кB expression in colonic tissue. In conclusion, probiotic exerted anti-inflammatory effects and contributed to a rapid recovery of DSS-induced acute colitis. PMID:25572742

  13. Monocolonization of germ-free mice with Bacteroides fragilis protects against dextran sulfate sodium-induced acute colitis.

    PubMed

    Chiu, Chien-Chao; Ching, Yung-Hao; Wang, Yu-Chih; Liu, Ju-Yun; Li, Yen-Peng; Huang, Yen-Te; Chuang, Hsiao-Li

    2014-01-01

    Ulcerative colitis is inflammatory conditions of the colon caused by interplay of genetic and environmental factors. Previous studies indicated that the gut microflora may be involved in the colonic inflammation. Bacteroides fragilis (BF) is a Gram-negative anaerobe belonging to the colonic symbiotic. We aimed to investigate the protective role of BF in a colitis model induced in germ-free (GF) mice by dextran sulfate sodium (DSS). GF C57BL/6JNarl mice were colonized with BF for 28 days before acute colitis was induced by DSS. BF colonization significantly increased animal survival by 40%, with less reduction in colon length, and decreased infiltration of inflammatory cells (macrophages and neutrophils) in colon mucosa following challenge with DSS. In addition, BF could enhance the mRNA expression of anti-inflammatory-related cytokine such as interleukin 10 (IL-10) with polymorphism cytokine IL-17 and diminish that of proinflammatory-related tumor necrosis factor α with inducible nitric oxide synthase in the ulcerated colon. Myeloperoxidase activity was also decreased in BF-DSS mice. Taking these together, the BF colonization significantly ameliorated DSS-induced colitis by suppressing the activity of inflammatory-related molecules and inducing the production of anti-inflammatory cytokines. BF may play an important role in maintaining intestinal immune system homeostasis and regulate inflammatory responses. PMID:24971344

  14. Preventive Effects of Spirogyra neglecta and a Polysaccharide Extract against Dextran Sodium Sulfate Induced Colitis in Mice.

    PubMed

    Taya, Sirinya; Kakehashi, Anna; Wongpoomchai, Rawiwan; Gi, Min; Ishii, Naomi; Wanibuchi, Hideki

    2016-01-01

    Ulcerative colitis (UC) results from colonic epithelial barrier defects and impaired mucosal immune responses. In this study, we aimed to investigate the modifying effects of a Spirogyra neglecta extract (SNE), a polysaccharide extract (PE) and a chloroform fraction (CF) on dextran sodium sulfate (DSS)-induced colitis in mice and to determine the mechanisms. To induce colitis, ICR mice received 3% DSS in their drinking water for 7 days. Seven days preceding the DSS treatment, oral administration of SNE, PE and CF at doses of 50, 25 and 0.25 mg/kg body weight (low dose), 200, 100 and 1 mg/kg body weight (high dose) and vehicle was started and continued for 14 days. Histologic findings showed that DSS-induced damage of colonic epithelial structure and inflammation was attenuated in mice pre-treated with SNE, PE and CF. Furthermore, SNE and PE significantly protected colonic epithelial cells from DSS-induced cell cycle arrest, while SNE, PE and CF significantly diminished apoptosis. Proteome analysis demonstrated that SNE and PE might ameliorate DSS-induced colitis by inducing antioxidant enzymes, restoring impaired mitochondria function, and regulating inflammatory cytokines, proliferation and apoptosis. These results suggest that SNE and PE could prevent DSS-induced colitis in ICR mice by protection against and/or aiding recovery from damage to the colonic epithelium, reducing ROS and maintaining normal mitochondrial function and apoptosis. PMID:27221924

  15. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery

    PubMed Central

    Chaiyasan, Wanachat; Srinivas, Sangly P.

    2015-01-01

    Purpose To examine the benefits of chitosan-dextran sulfate nanoparticles (CDNs) as a topical ocular delivery system with lutein as a model drug. Methods CDNs were developed by polyelectrolyte complexation of positively charged chitosan (CS) and negatively charged dextran sulfate (DS). 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and polyethylene glycol 400 (PEG400) were used as co-crosslinking and stabilizing agents, respectively. The influence of these on the properties of CDNs, including drug release and mucoadhesiveness, was examined. The chemical stability of lutein in CDNs (LCDNs) was also examined. Results Typically, LCDNs showed a spherical shape, possessing a mean size of ~400 nm with a narrow size distribution. The entrapment efficiency of lutein was in the range of 60%–76%. LCDNs possessing a positive surface charge (+46 mV) were found to be mucoadhesive. The release profile of LCDNs followed Higuchi’s square root model, suggesting drug release by diffusion from the polymer matrix. Lutein in LCDNs showed increased chemical stability during storage compared to its solution form. Conclusions These characteristics of CDNs make them suitable for drug delivery to the ocular surface. PMID:26604662

  16. Effect of dextran and dextran sulfate on the structural and rheological properties of model acid milk gels.

    PubMed

    Pachekrepapol, U; Horne, D S; Lucey, J A

    2015-05-01

    Various types of polysaccharides are widely used in cultured dairy products. However, the interaction mechanisms, between milk proteins and these polysaccharides, are not entirely clear. To explore the interactions between uncharged and charged polysaccharides and the caseins, we used a model acid-milk-gel system, which allowed acidification to occur separately from gelation. The effect of adding uncharged dextran (DX; molecular weight ~2.0×10(6) Da) and negatively charged dextran sulfate (DS; molecular weight ~1.4×10(6) Da) to model acid milk gels was studied. Two concentrations (0.075 and 0.5%, wt/wt) of DX or DS were added to cold milk (~0°C) that had been acidified to pH values 4.4, 4.6, 4.8, or 4.9. Acidified milks containing DX or DS were then quiescently heated at the rate of 0.5°C/min to 30°C, which induced gelation, and gels were then held at 30°C for 17 h to facilitate gel development. Dynamic small-amplitude-oscillation rheology and large-deformation (shear) tests were performed. Microstructure of gels was examined by fluorescence microscopy. Gels made with a high concentration of DX gelled at a lower temperature, but after 17 h at 30°C, these gels exhibited lower storage moduli and lower yield-stress values. At pH 4.8 or 4.9 (pH values greater than the isoelectric point of caseins), addition of 0.5% DS to acidified milk resulted in lower gelation temperature. At pH 4.4 (pH values less than the isoelectric point of caseins), addition of 0.5% DS to acidified milk resulted in gels with very high stiffness values. Gels made at pH 4.8 or 4.9 with both concentrations of DS had much lower stiffness and yield-stress values than control gels. Microstructural analysis indicated that gels made at pH 4.4 with the addition of 0.5% DX exhibited large protein strands and pores, whereas gels made with 0.075% DX or the control gels had a finer protein matrix. At higher pH values (>4.4), gels made with 0.5% DX had a finer structure. At all pH values, gels made

  17. Preparation and Characterization of Mucoadhesive Buccal Nanoparticles Using Chitosan and Dextran Sulfate.

    PubMed

    Suh, Ji Woon; Lee, Ji-Soo; Ko, Sanghoon; Lee, Hyeon Gyu

    2016-07-01

    The aim of this study was to formulate buccal mucoadhesive nanoparticles (NPs) using the natural mucoadhesive polymers. The natural mucoadhesive polymers chitosan (CS) and dextran sulfate sodium salt (DS) were used to prepare mucoadhesive NPs using the ionic gelation method. As the molecular weight of DS decreased, the amount of mucin and the number of buccal cells adsorbed on DS increased. The CS/DS NPs ranged from 100 to 200 nm in diameter. The adhesive interactions of CS/DS NPs with mucin were not significantly different from those of CS/sodium triphosphate pentabasic (TPP) NPs; however, CS/DS NPs exhibited 5 times greater mucoadhesive activity to buccal cells compared to control CS/TPP NPs in ex vivo adhesion tests. These results indicate that the buccal mucoadhesive properties of NPs can be improved using natural mucoadhesive polymers. PMID:27222213

  18. Over-Expression of CD200 Protects Mice from Dextran Sodium Sulfate Induced Colitis

    PubMed Central

    Chen, Zhiqi; Yu, Kai; Zhu, Fang; Gorczynski, Reginald

    2016-01-01

    Background and aim CD200:CD200 receptor (CD200R) interactions lead to potent immunosuppression and inhibition of autoimmune inflammation. We investigated the effect of "knockout"of CD200 or CD200R, or over-expression of CD200, on susceptibility to dextran sodium sulfate (DSS)—induced colitis, a mouse model of inflammatory bowel disease (IBD). Methods Acute or chronic colitis was induced by administration of dextran sodium sulfate (DSS) in four groups of age-matched C57BL/6 female mice: (1) CD200-transgenic mice (CD200tg); (2) wild-type (WT) mice; (3) CD200 receptor 1-deficient (CD200R1KO) mice; and (4) CD200-deficient (CD200KO) mice. The extent of colitis was determined using a histological scoring system. Colon tissues were collected for quantitative RT-PCR and Immunohistochemical staining. Supernatants from colonic explant cultures and mononuclear cells isolated from colonic tissue were used for ELISA. Results CD200KO and CD200R1KO mice showed greater sensitivity to acute colitis than WT mice, with accelerated loss of body weight, significantly higher histological scores, more severe infiltration of macrophages, neutrophils and CD3+ cells, and greater expression of macrophage-derived inflammatory cytokines, whose production was inhibited in vitro (in WT/CD200KO mouse cells) by CD200. In contrast, CD200tg mice showed less sensitivity to DSS compared with WT mice, with attenuation of all of the features seen in other groups. In a chronic colitis model, greater infiltration of Foxp3+ regulatory T (Treg) cells was seen in the colon of CD200tg mice compared to WT mice, and anti-CD25 mAb given to these mice attenuated protection. Conclusions The CD200:CD200R axis plays an immunoregulatory role in control of DSS induced colitis in mice. PMID:26841120

  19. Effects of the Sijunzi decoction on the immunological function in rats with dextran sulfate-induced ulcerative colitis

    PubMed Central

    YU, WANGUI; LU, BING; ZHANG, HENGWEN; ZHANG, YANXIANG; YAN, JIN

    2016-01-01

    The present study investigated the effects of the Sijunzi decoction (SJZD) at various dosages on the immunological function of rats with 3% dextran sulfate sodium (DSS; molecular weight 5,000)-induced ulcerative colitis (UC). A total of 40 male Wistar rats were randomly divided into 5 groups: Normal, model, low-dose SJZD, moderate-dose SJZD and high-dose SJZD groups. The 3% DSS was intragastrically administered for 7 consecutive days in order to induce the UC model. The normal group consumed distilled water. Subsequently, SJZD (5.0, 10.0 and 30.0 g/kg) was intragastrically administered, and scores of the disease activity index (DAI) were calculated. After 2 weeks, all the rats were sacrificed. Scores of the colon mucosa damage index (CMDI) were evaluated; and secretory immunoglobulin A (sIgA) and interleukin-2 (IL-2) were measured in intestinal tissue by ELISA assays. The model group rats had ulcers, hyperemia and interstitial edema and infiltrated inflammatory cells. SJZD attenuated the severity of the gross lesions and reduced the histopathological injuries. Compared with the normal group, DAI and CMDI were significantly increased (P<0.01), and levels of determined sIgA in the intestinal mucosa and IL-2 in the intestinal tissue were significantly decreased (P<0.05) in the model group. Compared with the model group, moderate and high doses of SJZD showed a restoration effect on all the aforementioned indexes, and the high dose was the most effective. In conclusion, SJZD can ameliorate inflammation in DSS-induced UC rats. The mechanism is most likely due to enhancing intestinal local immunity. PMID:27347409

  20. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis.

    PubMed

    Kang, Chil-Sung; Ban, Mingi; Choi, Eun-Jeong; Moon, Hyung-Geun; Jeon, Jun-Sung; Kim, Dae-Kyum; Park, Soo-Kyung; Jeon, Seong Gyu; Roh, Tae-Young; Myung, Seung-Jae; Gho, Yong Song; Kim, Jae Gyu; Kim, Yoon-Keun

    2013-01-01

    Gut microbiota play an important part in the pathogenesis of mucosal inflammation, such as inflammatory bowel disease (IBD). However, owing to the complexity of the gut microbiota, our understanding of the roles of commensal and pathogenic bacteria in the maintenance of immune homeostasis in the gut is evolving only slowly. Here, we evaluated the role of gut microbiota and their secreting extracellular vesicles (EV) in the development of mucosal inflammation in the gut. Experimental IBD model was established by oral application of dextran sulfate sodium (DSS) to C57BL/6 mice. The composition of gut microbiota and bacteria-derived EV in stools was evaluated by metagenome sequencing using bacterial common primer of 16S rDNA. Metagenomics in the IBD mouse model showed that the change in stool EV composition was more drastic, compared to the change of bacterial composition. Oral DSS application decreased the composition of EV from Akkermansia muciniphila and Bacteroides acidifaciens in stools, whereas increased EV from TM7 phylum, especially from species DQ777900_s and AJ400239_s. In vitro pretreatment of A. muciniphila-derived EV ameliorated the production of a pro-inflammatory cytokine IL-6 from colon epithelial cells induced by Escherichia coli EV. Additionally, oral application of A. muciniphila EV also protected DSS-induced IBD phenotypes, such as body weight loss, colon length, and inflammatory cell infiltration of colon wall. Our data provides insight into the role of gut microbiota-derived EV in regulation of intestinal immunity and homeostasis, and A. muciniphila-derived EV have protective effects in the development of DSS-induced colitis. PMID:24204633

  1. Poultry enteric inflammation model with dextran sodium sulfate mediated chemical induction and feed restriction in broilers.

    PubMed

    Kuttappan, V A; Berghman, L R; Vicuña, E A; Latorre, J D; Menconi, A; Wolchok, J D; Wolfenden, A D; Faulkner, O B; Tellez, G I; Hargis, B M; Bielke, L R

    2015-06-01

    Gut inflammation is a cardinal event occurring in various gastrointestinal diseases regardless of etiology. A potential mechanism of action for antibiotic growth promoters and probiotics is alleviation or attenuation of such inflammation. In vivo inflammation models and markers to quantify changes in inflammation, such as paracellular leakage and tight junction function, are necessary tools in the search for methods to reduce enteric inflammation. Dextran sodium sulfate (DSS) and feed restriction (FRS), and fluorescein isothiocyanate dextran (FITC-d; 3 to 5 kDa) marker were evaluated for induction and assessment of enteric inflammation in broilers. Three independent experiments were conducted where birds received an inflammation inducer treatment and an oral gavage of FITC-d (2.2 mg/bird) 2.5 h before killing on d 4, followed by measurement of serum FITC-d levels and release of FITC-d from different regions of gastrointestinal tract (GIT) to evaluate tight junction function. Experiment 1 tested control (CON) and DSS; Experiments 2 and 3 evaluated CON, DSS, and FRS. In all experiments DSS, as well as FRS in Experiments 2 and 3, showed higher (P<0.05) leakage of FITC-d into serum than CON, but FRS was not different from DSS. The amount of FITC-d retained in duodenal and cecal tissue was affected (P<0.05) by FRS in Experiments 2 and 3, and DSS affected FITC-d retention in duodenum only, suggesting differences in gut passage or absorption/adsorption. In conclusion, DSS oral gavage and FRS could induce leaky gut, with changes in serum FITC-d and migration of FITC-d from GIT. PMID:25877409

  2. Evaluation of changes in serum chemistry in association with feed withdrawal or high dose oral gavage with Dextran Sodium Sulfate (DSS) induced gut leakage in broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dextran sodium sulfate (DSS) has been shown to be effective at inducing enteric inflammation in broiler chickens, resulting in increased leakage of orally administered fluorescein isothiocyanate dextran to circulation. In a previous study, two doses of DSS (0.45g/dose) administered as oral gavage re...

  3. Mucoadhesive polyethylenimine-dextran sulfate nanoparticles containing Punica granatum peel extract as a novel sustained-release antimicrobial.

    PubMed

    Tiyaboonchai, Waree; Rodleang, Ingdao; Ounaroon, Anan

    2015-06-01

    Mucoadhesive polyethylenimine-dextran sulfate nanoparticles (PDNPs) were developed for local oral mucosa delivery. Punica granatum peel extract (PGE) was loaded into PDNPs for oral malodor reduction and caries prevention. PDNPs were constructed using the polyelectrolyte complexation technique employing oppositely charged polymers polyethylenimine (PEI) and dextran sulfate (DS), with PEG 400 as a stabilizer. Under optimal conditions, spherical particles of ∼ 500 nm with a zeta potential of ∼+28 mV were produced. Up to 98%, drug entrapment efficiency was observed. The mass ratio of PEI:DS played a significant role in controlling particle size and entrapment efficacy. PDNPs shown to be a good mucoadhesive drug delivery system as confirmed by ex vivo wash off test. In vitro dissolution studies revealed that PGE-loaded PDNPs manifested a prolong release characteristic with a burst release within 5 min. In addition, they remained effectively against oral bacteria. PMID:24438035

  4. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice.

    PubMed

    Håkansson, Å; Tormo-Badia, N; Baridi, A; Xu, J; Molin, G; Hagslätt, M-L; Karlsson, C; Jeppsson, B; Cilio, C M; Ahrné, S

    2015-02-01

    Ulcerative colitis (UC) is characterized by chronic inflammation of the colonic mucosa. Administration of dextran sulfate sodium (DSS) to animals is a frequently used model to mimic human colitis. Deregulation of the immune response to the enteric microflora or pathogens as well as increased intestinal permeability have been proposed as disease-driving mechanisms. To enlarge the understanding of the pathogenesis, we have studied the effect of DSS on the immune system and gut microbiota in mice. Intestinal inflammation was verified through histological evaluation and myeloperoxidase activity. Immunological changes were assessed by flow cytometry in spleen, Peyer's patches and mesenteric lymph nodes and through multiplex cytokine profiling. In addition, quantification of the total amount of bacteria on colonic mucosa as well as the total amount of lactobacilli, Akkermansia, Desulfovibrio and Enterobacteriaceae was performed by the use of quantitative PCR. Diversity and community structure were analysed by terminal restriction fragment length polymorphism (T-RFLP) patterns, and principal component analysis was utilized on immunological and T-RFLP patterns. DSS-induced colitis show clinical and histological similarities to UC. The composition of the colonic microflora was profoundly changed and correlated with several alterations of the immune system. The results demonstrate a relationship between multiple immunological changes and alterations of the gut microbiota after DSS administration. These data highlight and improve the definition of the immunological basis of the disease and suggest a role for dysregulation of the gut microbiota in the pathogenesis of colitis. PMID:24414342

  5. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis

    PubMed Central

    Zhang, Wei; Xu, Li; Cho, Si-Young; Min, Kyung-Jin; Oda, Tatsuya; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-01-01

    This study investigates the in vivo functions of ginseng berry extract (GB) as a therapy for dextran sodium sulfate (DSS)-induced colitis. C57BL/6 mice were given drinking water containing DSS (3%) for eight days to induce acute colitis. At the same time, the mice received an oral dose of GB (50 mg/kg) once daily. The GB-treated mice were less susceptible to the development of acute colitis than were control mice treated with saline, as determined by weight loss, disease activity, and colon histology. The administration of GB to DSS-treated mice also reduced the numbers and inhibited the activation of colon-infiltrating T cells, neutrophils, intestinal CD103−CD11c+ dendritic cells (cDCs), and macrophages. In addition, GB treatment promoted the migration of CD103+CD11c+ cDCs and expansion of Foxp3+ regulatory T cells in the colons of DSS-treated mice. Similarly, in the DSS-induced chronic colitis model, GB treatment improved the macroscopic and histological appearance of the colon wall when compared to untreated control mice, as indicated by longer colon length and lower histological scores. This is the first report to show that oral administration of GB suppresses immune activation and protects against experimentally induced colitis. PMID:27058552

  6. Anti-Inflammatory Effects of Inonotus obliquus in Colitis Induced by Dextran Sodium Sulfate

    PubMed Central

    Choi, Se Young; Hur, Sun Jin; An, Chi Sun; Jeon, Yun Hui; Jeoung, Young Jun; Bak, Jong Phil; Lim, Beong Ou

    2010-01-01

    A total of 28 male BALB/c mice (average weight 20.7 ± 1.6 g) were divided into 4 treatment groups and fed a commercial diet (A), a commercial diet + induced colitis by dextran sodium sulfate (DSS) (B), Inonotus obliquus (IO) administration (C), and IO administration + induced colitis by DSS (D). IO treatment (C, D) decreased the expression of tumor necrosis factor (TNF)-α and signal transducers and activators of transcription (STAT)1 compared to those of the colitis induced group (B). The expressions of IL-4 and STAT6 were decreased in group D compared to the colitis induced group (B). The serum immunoglobulin (Ig)E level decreased in IO treatment groups (C, D) compared to no IO treatment groups (A and B) although there was no significant difference between the IO treatment groups. Extract from IO itself had a weak cytotoxic effect on murine macrophage cell line (RAW264.7 cells). Extract from IO inhibited lipopolysaccharide- (LPS-) induced, TNF-α, STAT1, pSTAT1, STAT6, and pSTAT6 production in RAW264.7 cells. PMID:20300439

  7. Allicin Alleviates Dextran Sodium Sulfate- (DSS-) Induced Ulcerative Colitis in BALB/c Mice.

    PubMed

    Pandurangan, Ashok Kumar; Ismail, Salmiah; Saadatdoust, Zeinab; Esa, Norhaizan Mohd

    2015-01-01

    The objective of this study is to evaluate the effect of allicin (10 mg/kg body weight, orally) in an experimental murine model of UC by administering 2.5% dextran sodium sulfate (DSS) in drinking water to BALB/c mice. DSS-induced mice presented reduced body weight, which was improved by allicin administration. We noted increases in CD68 expression, myeloperoxidase (MPO) activities, and Malonaldehyde (MDA) and mRNA levels of proinflammatory cytokines, such as tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and IL-17, and decrease in the activities of enzymic antioxidants such as superoxide dismutase (SOD), Catalase (CAT), Glutathione reductase (GR), and Glutathione peroxidase (GPx) in DSS-induced mice. However, allicin treatment significantly decreased CD68, MPO, MDA, and proinflammatory cytokines and increased the enzymic antioxidants significantly (P < 0.05). In addition, allicin was capable of reducing the activation and nuclear accumulation of signal transducer and activator of transcription 3 (STAT3), thereby preventing degradation of the inhibitory protein IκB and inducing inhibition of the nuclear translocation of nuclear factor (NF)-κB-p65 in the colonic mucosa. These findings suggest that allicin exerts clinically useful anti-inflammatory effects mediated through the suppression of the NF-κB and IL-6/p-STAT3(Y705) pathways. PMID:26075036

  8. Allicin Alleviates Dextran Sodium Sulfate- (DSS-) Induced Ulcerative Colitis in BALB/c Mice

    PubMed Central

    Ismail, Salmiah; Saadatdoust, Zeinab; Esa, Norhaizan Mohd.

    2015-01-01

    The objective of this study is to evaluate the effect of allicin (10 mg/kg body weight, orally) in an experimental murine model of UC by administering 2.5% dextran sodium sulfate (DSS) in drinking water to BALB/c mice. DSS-induced mice presented reduced body weight, which was improved by allicin administration. We noted increases in CD68 expression, myeloperoxidase (MPO) activities, and Malonaldehyde (MDA) and mRNA levels of proinflammatory cytokines, such as tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and IL-17, and decrease in the activities of enzymic antioxidants such as superoxide dismutase (SOD), Catalase (CAT), Glutathione reductase (GR), and Glutathione peroxidase (GPx) in DSS-induced mice. However, allicin treatment significantly decreased CD68, MPO, MDA, and proinflammatory cytokines and increased the enzymic antioxidants significantly (P < 0.05). In addition, allicin was capable of reducing the activation and nuclear accumulation of signal transducer and activator of transcription 3 (STAT3), thereby preventing degradation of the inhibitory protein IκB and inducing inhibition of the nuclear translocation of nuclear factor (NF)-κB-p65 in the colonic mucosa. These findings suggest that allicin exerts clinically useful anti-inflammatory effects mediated through the suppression of the NF-κB and IL-6/p-STAT3Y705 pathways. PMID:26075036

  9. Anti-inflammatory effects of Inonotus obliquus in colitis induced by dextran sodium sulfate.

    PubMed

    Choi, Se Young; Hur, Sun Jin; An, Chi Sun; Jeon, Yun Hui; Jeoung, Young Jun; Bak, Jong Phil; Lim, Beong Ou

    2010-01-01

    A total of 28 male BALB/c mice (average weight 20.7 +/- 1.6 g) were divided into 4 treatment groups and fed a commercial diet (A), a commercial diet + induced colitis by dextran sodium sulfate (DSS) (B), Inonotus obliquus (IO) administration (C), and IO administration + induced colitis by DSS (D). IO treatment (C, D) decreased the expression of tumor necrosis factor (TNF)-alpha and signal transducers and activators of transcription (STAT)1 compared to those of the colitis induced group (B). The expressions of IL-4 and STAT6 were decreased in group D compared to the colitis induced group (B). The serum immunoglobulin (Ig)E level decreased in IO treatment groups (C, D) compared to no IO treatment groups (A and B) although there was no significant difference between the IO treatment groups. Extract from IO itself had a weak cytotoxic effect on murine macrophage cell line (RAW264.7 cells). Extract from IO inhibited lipopolysaccharide- (LPS-) induced, TNF-alpha, STAT1, pSTAT1, STAT6, and pSTAT6 production in RAW264.7 cells. PMID:20300439

  10. Ginsenosides Regulate PXR/NF-κB Signaling and Attenuate Dextran Sulfate Sodium-Induced Colitis.

    PubMed

    Zhang, Jun; Cao, Lijuan; Wang, Hong; Cheng, Xuefang; Wang, Lin; Zhu, Lin; Yan, Tingting; Xie, Yang; Wu, Yuzheng; Zhao, Min; Ma, Sijing; Wu, Mengqiu; Wang, Guangji; Hao, Haiping

    2015-08-01

    Pregnane X receptor (PXR) activation exhibits anti-inflammatory effects via repressing nuclear factor-κB (NF-κB); however, its overactivation may disrupt homeostasis of various enzymes and transporters. Here we found that ginsenosides restore PXR/NF-κB signaling in inflamed conditions without disrupting PXR function in normal conditions. The effects and mechanisms of ginsenosides in regulating PXR/NF-κB signals were determined both in vitro and in vivo. Ginsenosides significantly inhibited NF-κB activation and restored the expression of PXR target genes in tumor necrosis factor-α-stimulated LS174T cells. Despite not being PXR agonists, ginsenosides repressed NF-κB activation in a PXR-dependent manner. Ginsenosides significantly increased the physical association between PXR and the NF-κB p65 subunit and thereby decreased the nuclear translocation of p65. Ginsenoside Rb1 and compound K (CK) were major bioactive compounds in the regulating PXR/NF-κB signaling. Consistently, ginsenosides significantly attenuated dextran sulfate sodium-induced experimental colitis, which was associated with restored PXR/NF-κB signaling. This study indicates that ginsenosides may elicit anti-inflammatory effects via targeting PXR/NF-κB interaction without disrupting PXR function in healthy conditions. Ginsenoside Rb1 and CK may serve as leading compounds in the discovery of new drugs that target PXR/NF-κB interaction in therapy for inflammatory bowel disease. PMID:25986850

  11. Inhibitory effect of the gallotannin corilagin on dextran sulfate sodium-induced murine ulcerative colitis.

    PubMed

    Xiao, Hai-Tao; Lin, Cheng-Yuan; Ho, Derek H H; Peng, Jiao; Chen, Yan; Tsang, Siu-Wai; Wong, Michael; Zhang, Xiao-Jun; Zhang, Man; Bian, Zhao-Xiang

    2013-11-22

    The therapeutic effect of corilagin (1) was evaluated in an acute colitis model induced by dextran sulfate sodium (DSS) in mice, and the mechanism of action was investigated in this study. Animals were challenged with 2% DSS drinking water for 5 consecutive days and then intraperitoneally treated with 1 (7.5, 15, and 30 mg/kg) daily for 7 days. It was found that 1 significantly decreased the disease activity index, inhibited the shortening of colon length, reduced colon tissue damage, and suppressed myeloperoxidase activity. Moreover, 1 greatly suppressed the secretion of TNF-α, IL-6, and IL-1β, inhibited the degradation of IκB α, and down-regulated expression of cleaved caspase-3 and cleaved caspase-9 in colon tissues of DSS-treated mice. These findings demonstrated that 1 exerts a protective effect on DSS-induced colitis, and its underlying mechanisms are associated with inhibition of the NF-κB pathway that mitigates colon inflammatory responses and apoptosis of intestinal epithelial cells. PMID:24200352

  12. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    SciTech Connect

    Kanbe, Takamasa |; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki |; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Kawasaki, Hironaka; Murawaki, Yoshikazu; Shiota, Goshi . E-mail: gshiota@grape.med.tottori-u.ac.jp

    2006-07-14

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SR{alpha} promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes.

  13. Effect of Nanometric Lactobacillus plantarum in Kimchi on Dextran Sulfate Sodium-Induced Colitis in Mice.

    PubMed

    Lee, Hyun Ah; Bong, Yeon-Ju; Kim, Hyunung; Jeong, Ji-Kang; Kim, Hee-Young; Lee, Kwang-Won; Park, Kun-Young

    2015-10-01

    Nanometric Lactobacillus plantarum (nLp) is a processed form of Lab. plantarum derived from kimchi and is 0.5-1.0 μm in size. This study was undertaken to determine the effect of nLp and kimchi plus nLp (K-nLp) on a dextran sulfate sodium (DSS)-induced mouse model of colitis. Animals fed nLp or K-nLp had longer colons, but lower colon weights per unit length than DSS controls. In addition, nLp- or K-nLp-fed animals showed lower levels of proinflammatory cytokines and inflammatory genes in serum and in colon tissues, lower populations of total bacteria, but higher populations of lactic acid bacteria in feces, and lower activities of fecal β-glucosidase and β-glucuronidase. Furthermore, these suppressive activities of nLp on colitis were equivalent to or higher than those of naive Lab. plantarum. Consequently, nLp was found to exhibit anticolitic effects, and the addition of nLp to kimchi was found to enhance the protective activity of kimchi against DSS-induced colitis. These results suggest that nLp might be an effective substitute for live probiotics and be useful as a functional ingredient with the anticolitic activity by the probiotic and food processing industries. PMID:26305853

  14. Iron/dextran sulfate multilayered microcapsules for controlled release of 10-hydroxycamptothecin.

    PubMed

    Guo, Shenglei; Zheng, Jian; Dong, Jing; Guo, Na; Jing, Lijia; Yue, Xiuli; Yan, Xiufeng; Wang, Yang; Dai, Zhifei

    2011-10-01

    Stable 10-hydroxycamptothecin (HCPT) microcrystals with a length of about 5-10μm and a ζ-potential of -38.5mV were produced by pH-induced reprecipitation in presence of a stabilizer hydroxypropylmethylcellulose. Sequential layer growth was achieved by the layer-by-layer (LbL) assembly of Fe(3+) and dextran sulfate (DS) on the surface of HCPT microcrystals via both electrostatic interaction and chemical complexation process. The satisfactory drug loading content (67.2±0.82%) as well as high encapsulation efficiency (60.56±0.82%) for four bilayers of Fe(3+)/DS coating was achieved. Both in vitro and in vivo release study revealed that the release time increased as the number of deposited Fe(3+)/DS bilayers increased. These results indicated that such iron-polysaccharide multilayered microcapsules can be a promising approach for the construction of an effective controlled release delivery system of HCPT as well as other drugs with potential cytotoxicity or short half-life time. PMID:21664925

  15. The Influence of Ghrelin on the Development of Dextran Sodium Sulfate-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Dagmara; Warzecha, Zygmunt; Ceranowicz, Piotr; Fyderek, Krzysztof; Gałązka, Krystyna; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Pihut, Małgorzata; Dembiński, Artur

    2015-01-01

    Ghrelin has protective and therapeutic effects in the gut. The aim of present studies was to investigate the effect of treatment with ghrelin on the development of colitis evoked by dextran sodium sulfate (DSS). Methods. Studies have been performed on rats. Colitis was induced by adding 5% DSS to the drinking water for 5 days. During this period animals were treated intraperitoneally twice a day with saline or ghrelin given at the dose of 8 nmol/kg/dose. On the sixth day, animals were anesthetized and the severity of colitis was assessed. Results. Treatment with ghrelin during administration of DSS reduced the development of colitis. Morphological features of colonic mucosa exhibited a reduction in the area and deep of mucosal damage. Ghrelin reversed the colitis-induced decrease in blood flow, DNA synthesis, and superoxide dismutase activity in colonic mucosa. These effects were accompanied by a decrease in the colitis-evoked increase in mucosal concentration of interleukin-1β and malondialdehyde. Treatment with ghrelin reversed the DSS-induced reduction in body weight gain. Conclusions. Administration of ghrelin exhibits the preventive effect against the development of DSS-induced colitis. This effect seems to be related to ghrelin's anti-inflammatory and antioxidative properties. PMID:26713317

  16. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice

    PubMed Central

    Pandurangan, Ashok Kumar; Mohebali, Nooshin; Norhaizan, Mohd Esa; Looi, Chung Yeng

    2015-01-01

    Gallic acid (GA) is a polyhydroxy phenolic compound that has been detected in various natural products, such as green tea, strawberries, grapes, bananas, and many other fruits. In inflammatory bowel disease, inflammation is promoted by oxidative stress. GA is a strong antioxidant; thus, we evaluated the cytoprotective and anti-inflammatory role of GA in a dextran sulfate sodium (DSS)-induced mouse colitis model. Experimental acute colitis was induced in male BALB/c mice by administering 2.5% DSS in the drinking water for 7 days. The disease activity index; colon weight/length ratio; histopathological analysis; mRNA expressions of IL-21 and IL-23; and protein expression of nuclear erythroid 2-related factor 2 (Nrf2) were compared between the control and experimental mice. The colonic content of malondialdehyde and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity were examined as parameters of the redox state. We determined that GA significantly attenuated the disease activity index and colon shortening, and reduced the histopathological evidence of injury. GA also significantly (P<0.05) reduced the expressions of IL-21 and IL-23. Furthermore, GA activates/upregulates the expression of Nrf2 and its downstream targets, including UDP-GT and NQO1, in DSS-induced mice. The findings of this study demonstrate the protective effect of GA on experimental colitis, which is probably due to an antioxidant nature of GA. PMID:26251571

  17. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis.

    PubMed

    Zhang, Wei; Xu, Li; Cho, Si-Young; Min, Kyung-Jin; Oda, Tatsuya; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-01-01

    This study investigates the in vivo functions of ginseng berry extract (GB) as a therapy for dextran sodium sulfate (DSS)-induced colitis. C57BL/6 mice were given drinking water containing DSS (3%) for eight days to induce acute colitis. At the same time, the mice received an oral dose of GB (50 mg/kg) once daily. The GB-treated mice were less susceptible to the development of acute colitis than were control mice treated with saline, as determined by weight loss, disease activity, and colon histology. The administration of GB to DSS-treated mice also reduced the numbers and inhibited the activation of colon-infiltrating T cells, neutrophils, intestinal CD103(-)CD11c⁺ dendritic cells (cDCs), and macrophages. In addition, GB treatment promoted the migration of CD103⁺CD11c⁺ cDCs and expansion of Foxp3⁺ regulatory T cells in the colons of DSS-treated mice. Similarly, in the DSS-induced chronic colitis model, GB treatment improved the macroscopic and histological appearance of the colon wall when compared to untreated control mice, as indicated by longer colon length and lower histological scores. This is the first report to show that oral administration of GB suppresses immune activation and protects against experimentally induced colitis. PMID:27058552

  18. Proinflammatory role of the histamine H4 receptor in dextrane sodium sulfate-induced acute colitis.

    PubMed

    Schirmer, Bastian; Rezniczek, Thomas; Seifert, Roland; Neumann, Detlef

    2015-11-01

    Millions of people worldwide are suffering from inflammatory bowel disease (IBD), which severely affects patients' life qualities and even life expectancies. The cause of the ailment is unknown and a profound understanding of the underlying pathogenetic mechanisms is still lacking. The biogenic amine histamine is one of several inflammatory mediators, to which a pathogenetic role in IBD has been attributed. Out of the four known histamine receptors, the histamine H4 receptor (H4R) has been demonstrated to act proinflammatory in experimental models of several inflammatory diseases. In order to evaluate a potential involvement of H4R in IBD we investigated the effect of genetic or pharmacological blockade of H4R-signaling in the model of dextran sodium sulfate (DSS)-induced colitis in mice. We analysed severity and progression of clinical signs of colitis, as well as histopathologic alterations in the colons and systemic or local cytokine concentrations. Both genetic deficiency and pharmacological blockade of H4R with the selective antagonist JNJ7777120 improved clinical and histological signs of colitis and dampened the inflammatory cytokine response. Our results indicate a proinflammatory role of histamine via H4R in IBD, thus extending the current pathophysiological understanding of IBD and demonstrating the therapeutic potential of selective H4R-antagonists for patients suffering from IBD. PMID:26365468

  19. Amorphous nanodrugs prepared by complexation with polysaccharides: carrageenan versus dextran sulfate.

    PubMed

    Cheow, Wean Sin; Kiew, Tie Yi; Hadinoto, Kunn

    2015-03-01

    Amorphous nanodrugs prepared by electrostatic complexation of drug molecules with oppositely charged polysaccharides represent a promising bioavailability enhancement strategy for poorly-soluble drugs owed to their high supersaturation generation capability and simple preparation. Using ciprofloxacin (CIP) as the model drug, we investigated the effects of using dextran sulfate (DXT) or carrageenan (CGN) on the (1) preparation efficiency, (2) physical characteristics, (3) supersaturation generation, (4) antimicrobial activity, and (5) cytotoxicity of the amorphous drug-polysaccharide nanoparticle complex (nanoplex) produced. Owing to the higher charge density and chain flexibility of DXT, coupled with the greater hydrophobicity of CGN, the CIP-DXT nanoplex exhibited superior preparation efficiency and larger size than the CIP-CGN nanoplex. Whereas the low solubility and high gelation tendency of CGN resulted in superior supersaturation generation capability for the CIP-DXT nanoplex. The non-cytotoxicity, antimicrobial activity, colloidal, and amorphous state stability were established for both nanoplexes, making them an ideal supersaturated drug delivery system. PMID:25498670

  20. Dietary Uptake of Wedelia chinensis Extract Attenuates Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Chen, Yung-Hsiang; Huang, Wen-Ching; Huang, Li-Ting; Lin, Wen-Ching; Arulselvan, Palanisamy; Liao, Jiunn-Wang; Lin, Shu-Hui; Hsiao, Pei-Wen; Kuo, Sheng-Chu; Yang, Ning-Sun

    2013-01-01

    Scope Traditional medicinal herbs are increasingly used as alternative therapies in patients with inflammatory diseases. Here we evaluated the effect of Wedelia chinensis, a medicinal herb commonly used in Asia, on the prevention of dextran sulfate sodium (DSS)-induced acute colitis in mice. General safety and the effect of different extraction methods on the bioactivity of W. chinensis were also explored. Methods and Results C57BL/6 mice were administrated hot water extract of fresh W. chinensis (WCHF) orally for one week followed by drinking water containing 2% DSS for nine days. WCHF significantly attenuated the symptoms of colitis including diarrhea, rectal bleeding and loss of body weight; it also reduced the shortening of colon length and histopathological damage caused by colonic inflammation. Among four W. chinensis extracts prepared using different extraction techniques, WCHF showed the highest anti-colitis efficacy. Analyses of specific T-cell regulatory cytokines (TNF-α, IL-4, IFN-γ, IL-17, TGF-β, IL-12) revealed that WCHF treatment can suppress the Th1 and Th17, but not Th2, responses in colon tissues and dendritic cells of DSS-induced colitis mice. A 28-day subacute toxicity study showed that daily oral administration of WCHF (100, 500, 1000 mg/kg body weight) was not toxic to mice. Conclusion Together, our findings suggest that specific extracts of W. chinensis have nutritional potential for future development into nutraceuticals or dietary supplements for treatment of inflammatory bowel disease. PMID:23734189

  1. Different cleavage site for high molecular weight kininogen in vivo following intravenous injection of dextran sulfate in the rabbit

    SciTech Connect

    Wiggins, R.C.

    1986-04-01

    Purified radiolabeled rabbit Hageman factor, prekallikrein, and high molecular weight kininogen were used to examine Hageman factor system molecular dynamics after the intravenous injection of heparin-like dextran sulfate polymer in the rabbit. Hageman factor system proteins rapidly disappeared from the circulation following dextran sulfate injection, as measured by radial immunodiffusion, by kaolin-releasable kinin formation, and by measuring circulating levels of radiolabeled Hageman factor, prekallikrein, and high molecular weight kininogen. /sup 125/I-Hageman factor was distributed mainly to lung, liver, and spleen following dextran sulfate injection. Proteolysis of circulating /sup 125/I-Hageman factor occurred at a site within a disulfide loop into fragments of 50,000 and 30,000 molecular weight. Proteolysis of /sup 125/I-prekallikrein also occurred with visualization of a 50,000 molecular weight fragment. Although extensive proteolysis of /sup 131/I-high molecular weight kininogen was observed, the cleavage fragments were not the same as those generated during contact activation in vitro. The major fragment of high molecular weight kininogen observed in vivo was at 80,000 molecular weight, in contrast to the 65,000 molecular weight fragment generated by kallikrein in vitro. These results indicate that high molecular weight kininogen can undergo proteolysis in vivo into fragments not known to be associated with kinin release.

  2. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin.

    PubMed

    Lopes, Marlene; Shrestha, Neha; Correia, Alexandra; Shahbazi, Mohammad-Ali; Sarmento, Bruno; Hirvonen, Jouni; Veiga, Francisco; Seiça, Raquel; Ribeiro, António; Santos, Hélder A

    2016-06-28

    The potential of nanoparticles (NPs) to overcome the barriers for oral delivery of protein drugs have led to the development of platforms capable of improving their bioavailability. However, despite the progresses in drug delivery technologies, the success of oral delivery of insulin remains elusive and the disclosure of insulin mechanisms of absorption remains to be clarified. To overcome multiple barriers faced by oral insulin and to enhance the insulin permeability across the intestinal epithelium, here insulin-loaded alginate/dextran sulfate (ADS)-NPs were formulated and dual-coated with chitosan (CS) and albumin (ALB). The nanosystem was characterized by its pH-sensitivity and mucoadhesivity, which enabled to prevent 70% of in vitro insulin release in simulated gastric conditions and allowed a sustained insulin release following the passage to simulated intestinal conditions. The pH and time-dependent morphology of the NPs was correlated to the release and permeation profile of insulin. Dual CS/ALB coating of the ADS-NPs demonstrated augmented intestinal interactions with the intestinal cells in comparison to the uncoated-NPs, resulting in a higher permeability of insulin across Caco-2/HT29-MTX/Raji B cell monolayers. The permeability of the insulin-loaded ALB-NPs was reduced after the temperature was decreased and after co-incubation with chlorpromazine, suggesting an active insulin transport by clathrin-mediated endocytosis. Moreover, the permeability inhibition with the pre-treatment with sodium chlorate suggested that the interaction between glycocalix and the NPs was critical for insulin permeation. Overall, the developed nanosystem has clinical potential for the oral delivery of insulin and therapy of type 1 diabetes mellitus. PMID:27074369

  3. Removal of Soluble Fms-Like Tyrosine Kinase-1 by Dextran Sulfate Apheresis in Preeclampsia.

    PubMed

    Thadhani, Ravi; Hagmann, Henning; Schaarschmidt, Wiebke; Roth, Bernhard; Cingoez, Tuelay; Karumanchi, S Ananth; Wenger, Julia; Lucchesi, Kathryn J; Tamez, Hector; Lindner, Tom; Fridman, Alexander; Thome, Ulrich; Kribs, Angela; Danner, Marco; Hamacher, Stefanie; Mallmann, Peter; Stepan, Holger; Benzing, Thomas

    2016-03-01

    Preeclampsia is a devastating complication of pregnancy. Soluble Fms-like tyrosine kinase-1 (sFlt-1) is an antiangiogenic protein believed to mediate the signs and symptoms of preeclampsia. We conducted an open pilot study to evaluate the safety and potential efficacy of therapeutic apheresis with a plasma-specific dextran sulfate column to remove circulating sFlt-1 in 11 pregnant women (20-38 years of age) with very preterm preeclampsia (23-32 weeks of gestation, systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg, new onset protein/creatinine ratio >0.30 g/g, and sFlt-1/placental growth factor ratio >85). We evaluated the extent of sFlt-1 removal, proteinuria reduction, pregnancy continuation, and neonatal and fetal safety of apheresis after one (n=6), two (n=4), or three (n=1) apheresis treatments. Mean sFlt-1 levels were reduced by 18% (range 7%-28%) with concomitant reductions of 44% in protein/creatinine ratios. Pregnancy continued for 8 days (range 2-11) and 15 days (range 11-21) in women treated once and multiple times, respectively, compared with 3 days (range 0-14) in untreated contemporaneous preeclampsia controls (n=22). Transient maternal BP reduction during apheresis was managed by withholding pre-apheresis antihypertensive therapy, saline prehydration, and reducing blood flow through the apheresis column. Compared with infants born prematurely to untreated women with and without preeclampsia (n=22 per group), no adverse effects of apheresis were observed. In conclusion, therapeutic apheresis reduced circulating sFlt-1 and proteinuria in women with very preterm preeclampsia and appeared to prolong pregnancy without major adverse maternal or fetal consequences. A controlled trial is warranted to confirm these findings. PMID:26405111

  4. Treatment of hyperlipidemia with a modified low density lipoprotein apheresis system with dextran sulfate.

    PubMed

    Zhao, Yi-Hua; Zou, Yuan-Guo; Sun, Qi-Jun; Xi, Dai; Xing, Chang-Ying

    2007-08-01

    Many low density lipoprotein (LDL) apheresis systems have been applied to patients with hyperlipidemia, but these systems usually work on the basis of complicated equipment and the cost of treatment is expensive. In order to achieve effective treatment of hyperlipidemia at a lower cost, we developed a new LDL apheresis system with dextran sulfate (LAS-DS). In this study, 50 patients with hyperlipidemia were treated 120 times with the new LAS-DS. In each treatment, 600 +/- 100 mL of plasma (equal to approximately 25% of the total plasma of patients) was collected by apheresis, and DS solution and calcium chloride solution were added into the collected plasma as LDL absorber and catalyzer, respectively. DS selectively binds LDL cholesterol (LDL-C) under the catalysis of calcium ion and the LDL-C-DS complex is removed by centrifugation. The treated plasma was transfused back into the patients and the excessive calcium in the plasma was removed by the cation exchange column integrated in the transfusion set. After treatment with our new system, the acute mean LDL-C reduction was 97% in the apheresis plasma of hyperlipidemia patients. The corresponding reduction was 55.2% and 69.4% for total cholesterol and total triglyceride. There were insignificant reductions of high density lipoprotein cholesterol (HDL-C) and albumin. The new LDL apheresis system with DS that we developed is very simple to operate without relying on complicated equipment, and it can achieve significant clinical results at a much lower cost compared with existing systems. Based on this study we think the new system can provide a safe, effective and much cheaper means for the treatment of hyperlipidemia patients. PMID:17661829

  5. Kimchi Protects Against Azoxymethane/Dextran Sulfate Sodium–Induced Colorectal Carcinogenesis in Mice

    PubMed Central

    Kim, Hee-Young; Song, Jia-Le; Chang, Hee-Kyung; Kang, Soon-Ah

    2014-01-01

    Abstract The chemopreventive effects of different types and quantities of kimchi prepared with different subingredients, including commercial kimchi (CK), standardized kimchi (SK), cancer-preventive kimchi (CPK), and anticancer kimchi (ACK), on colorectal carcinogenesis in mice were evaluated. The development of colon cancer was induced in male BALB/c mice with a single intraperitoneal injection of azoxymethane (AOM, 10 mg/kg body weight) and subsequent treatment with 2% dextran sulfate sodium (DSS) in drinking water for 7 days for two cycles. After exposure to AOM and DSS, treatment with the methanolic extracts from different kimchis, particularly 1.89 g/kg of ACK, significantly increased colon length, decreased the ratio of colon weight/length, and resulted in the lowest number of tumors compared with the other kimchi-treated groups. Histological observation revealed that ACK was able to suppress AOM- and DSS-induced colonic mucosal damage and neoplasia. ACK also significantly decreased the mRNA levels of proinflammatory cytokines (TNF-α, IL-6, and IFN-γ) as well as the mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2 (COX-2). In addition, the mRNA and protein expression of p53 and p21 was elevated in colon tissues from the ACK-treated mice compared with the other kimchi-treated groups. Our results suggest that kimchi exerted a suppressive effect on AOM- and DSS-induced colorectal carcinogenesis in the BALB/c mice. The anticancer effects of ACK were particularly potent. Thus, it is possible that the health-promoting subingredients added to ACK might be used to prevent colon carcinogenesis in humans. PMID:25029638

  6. Dietary flaxseed intake exacerbates acute colonic mucosal injury and inflammation induced by dextran sodium sulfate.

    PubMed

    Zarepoor, Leila; Lu, Jenifer T; Zhang, Claire; Wu, Wenqing; Lepp, Dion; Robinson, Lindsay; Wanasundara, Janitha; Cui, Steve; Villeneuve, Sébastien; Fofana, Bourlaye; Tsao, Rong; Wood, Geoffrey A; Power, Krista A

    2014-06-15

    Flaxseed (FS), a dietary oilseed, contains a variety of anti-inflammatory bioactives, including fermentable fiber, phenolic compounds (lignans), and the n-3 polyunsaturated fatty acid (PUFA) α-linolenic acid. The objective of this study was to determine the effects of FS and its n-3 PUFA-rich kernel or lignan- and soluble fiber-rich hull on colitis severity in a mouse model of acute colonic inflammation. C57BL/6 male mice were fed a basal diet (negative control) or a basal diet supplemented with 10% FS, 6% kernel, or 4% hull for 3 wk prior to and during colitis induction via 5 days of 2% (wt/vol) dextran sodium sulfate (DSS) in their drinking water (n = 12/group). An increase in anti-inflammatory metabolites (hepatic n-3 PUFAs, serum mammalian lignans, and cecal short-chain fatty acids) was associated with consumption of all FS-based diets, but not with anti-inflammatory effects in DSS-exposed mice. Dietary FS exacerbated DSS-induced acute colitis, as indicated by a heightened disease activity index and an increase in colonic injury and inflammatory biomarkers [histological damage, apoptosis, myeloperoxidase, inflammatory cytokines (IL-6 and IL-1β), and NF-κB signaling-related genes (Nfkb1, Ccl5, Bcl2a1a, Egfr, Relb, Birc3, and Atf1)]. Additionally, the adverse effect of the FS diet was extended systemically, as serum cytokines (IL-6, IFNγ, and IL-1β) and hepatic cholesterol levels were increased. The adverse effects of FS were not associated with alterations in fecal microbial load or systemic bacterial translocation (endotoxemia). Collectively, this study demonstrates that although consumption of a 10% FS diet enhanced the levels of n-3 PUFAs, short-chain polyunsaturated fatty acids, and lignans in mice, it exacerbated DSS-induced colonic injury and inflammation. PMID:24763556

  7. Fibrinogen blocks the autoactivation and thrombin-mediated activation of factor XI on dextran sulfate.

    PubMed Central

    Scott, C F; Colman, R W

    1992-01-01

    The intrinsic pathway of blood coagulation is activated when factor XIa, one of the three contact-system enzymes, is generated and then activates factor IX. Factor XI has been shown to be efficiently activated in vitro by surface-bound factor XIIa after factor XI is transported to the surface by its cofactor, high molecular weight kininogen (HK). However, individuals lacking any of the three contact-system proteins--namely, factor XII, prekallikrein, and HK--do not suffer from bleeding abnormalities. This mystery has led several investigators to search for an "alternate" activation pathway for factor XI. Recently, factor XI has been reported to be autoactivated on the soluble "surface" dextran sulfate, and thrombin was shown to accelerate the autoactivation. However, it was also reported that HK, the cofactor for factor XIIa-mediated activation of factor XI, actually diminishes the thrombin-catalyzed activation rate of factor XI. Nonetheless, it was suggested that thrombin was a more efficient activator than factor XIIa. In this report we investigated the effect of fibrinogen, the major coagulation protein in plasma, on the activation rate of factor XI. Fibrinogen, the preferred substrate for thrombin in plasma, virtually prevented autoactivation of factor XI as well as the thrombin-mediated activation of factor XI, while having no effect on factor XIIa-catalyzed activation. HK dramatically curtailed the autoactivation of factor XI in addition to the thrombin-mediated activation. These data indicate that factor XI would not be autoactivated in a plasma environment, and thrombin would, therefore, be unlikely to potentiate the activation. We believe that the "missing pathway" for factor XI activation remains an enigma that warrants further investigation. PMID:1454798

  8. Stable nanoparticles prepared by heating electrostatic complexes of whey protein isolate-dextran conjugate and chondroitin sulfate.

    PubMed

    Dai, Qingyuan; Zhu, Xiuling; Abbas, Shabbar; Karangwa, Eric; Zhang, Xiaoming; Xia, Shuqin; Feng, Biao; Jia, Chengsheng

    2015-04-29

    A simple and green method was developed for preparing the stable biopolymer nanoparticles with pH and salt resistance. The method involved the macromolecular crowding Maillard process and heat-induced gelation process. The conjugates of whey protein isolate (WPI) and dextran were produced by Maillard reaction. The nanoparticles were fabricated by heating electrostatic complexes of WPI-dextran conjugate and chondroitin sulfate (ChS) above the denaturation temperature and near the isoelectric point of WPI. Then, the nanoparticles were characterized by spectrophotometry, dynamic laser scattering, zeta potential, transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. Results showed that the nanoparticles were stable in the pH range from 1.0 to 8.0 and in the presence of high salt concentration of 200 mM NaCl. WPI-dextran conjugate, WPI, and ChS were assembled into the nanoparticles with dextran conjugated to WPI/ChS shell and WPI/ChS core. The repulsive steric interactions, from both dextran covalently conjugated to WPI and ChS electrostatically interacted with WPI, were the major formation mechanism of the stable nanoparticles. As a nutrient model, lutein could be effectively encapsulated into the nanoparticles. Additionally, the nanoparticles exhibited a spherical shape and homogeneous size distribution regardless of lutein loading. The results suggested that the stable nanoparticles from proteins and strong polyelectrolyte polysaccharides would be used as a promising target delivery system for hydrophobic nutrients and drugs at physiological pH and salt conditions. PMID:25844903

  9. Oral tolerance is inducible during active dextran sulfate sodium-induced colitis

    PubMed Central

    Ino, Satoshi; Kohda, Chikara; Takeshima, Kosuke; Ishikawa, Hiroki; Norose, Tomoko; Yamochi, Toshiko; Takimoto, Masafumi; Takahashi, Hiroshi; Tanaka, Kazuo

    2016-01-01

    AIM: To investigate whether oral tolerance is inducible during the active phase of dextran sulfate sodium (DSS)-induced colitis. METHODS: Colitis was induced in 6- to 8-wk-old female BALB/c mice by the administration of 2% DSS. To induce oral tolerance, mice that received water with DSS [DSS (+)] and mice that received autoclaved water [DSS (-)] were intragastrically (i.g.) administered ovalbumin (OVA) as a tolerogen before systemic challenge with OVA. Following this, serum levels of OVA-specific IgE antibodies were measured. In mice with active colitis, CD4+CD25+Foxp3+ cell and B10 cell frequencies were evaluated using flow cytometry. Cytokine mRNA expression profiles were evaluated by reverse transcription real-time polymerase chain reaction. RESULTS: Regardless of the presence of DSS colitis, OVA-specific immunoglobulin E concentrations were significantly reduced in mice that were i.g. administered OVA compared to mice that were i.g. administered PBS [DSS (+): 4.4 (4.2-9.5) ng/mL vs 83.9 (66.1-123.2) ng/mL, P < 0.01; DSS (-): 27.7 (0.1-54.5) ng/mL vs 116.5 (80.6-213.6) ng/mL, P < 0.01]. These results demonstrated that oral tolerance was induced in both the presence and absence of colitis. In the spleen and mesenteric lymph nodes (MLN), the frequencies of CD4+CD25+Foxp3+ cells and B10 cells, both of which are associated with oral tolerance, did not significantly change. In the spleen, interferon-γ mRNA expression significantly decreased in mice with colitis [DSS (+): 0.42 (0.31-0.53) vs DSS (-): 1.00 (0.84-1.39), P < 0.01]. The expression levels of other cytokines did not significantly change. CONCLUSION: Oral tolerance is inducible during active DSS colitis. The stability of regulatory cell populations in the spleen and MLN in colitis might correlate with these results. PMID:27158540

  10. Dextran sulfate sodium-induced acute colitis impairs dermal lymphatic function in mice

    PubMed Central

    Agollah, Germaine D; Wu, Grace; Peng, Ho-Lan; Kwon, Sunkuk

    2015-01-01

    AIM: To investigate whether dermal lymphatic function and architecture are systemically altered in dextran sulfate sodium (DSS)-induced acute colitis. METHODS: Balb/c mice were administered 4% DSS in lieu of drinking water ad libitum for 7 d and monitored to assess disease activity including body weight, diarrhea severity, and fecal bleeding. Control mice received standard drinking water with no DSS. Changes in mesenteric lymphatics were assessed following oral administration of a fluorescently-labelled fatty acid analogue, while dermal lymphatic function and architecture was longitudinally characterized using dynamic near-infrared fluorescence (NIRF) imaging following intradermal injection of indocyanine green (ICG) at the base of the tail or to the dorsal aspect of the left paw prior to, 4, and 7 d after DSS administration. We also measured dye clearance rate after injection of Alexa680-bovine serum albumin (BSA). NIRF imaging data was analyzed to reveal lymphatic contractile activity after selecting fixed regions of interest (ROIs) of the same size in fluorescent lymphatic vessels on fluorescence images. The averaged fluorescence intensity within the ROI of each fluorescence image was plotted as a function of imaging time and the lymphatic contraction frequency was computed by assessing the number of fluorescent pulses arriving at a ROI. RESULTS: Mice treated with DSS developed acute inflammation with clinical symptoms of loss of body weight, loose feces/watery diarrhea, and fecal blood, all of which were aggravated as disease progressed to 7 d. Histological examination of colons of DSS-treated mice confirmed acute inflammation, characterized by segmental to complete loss of colonic mucosa with an associated chronic inflammatory cell infiltrate that extended into the deeper layers of the wall of the colon, compared to control mice. In situ intravital imaging revealed that mice with acute colitis showed significantly fewer fluorescent mesenteric lymphatic vessels

  11. Soluble epoxide hydrolase deficiency inhibits dextran sulfate sodium-induced colitis and carcinogenesis in mice.

    PubMed

    Zhang, Wanying; Li, Haonan; Dong, Hua; Liao, Jie; Hammock, Bruce D; Yang, Guang-Yu

    2013-12-01

    Soluble epoxide hydrolase (sEH) hydrolyses/inactivates anti-inflammatory epoxyeicosatrienoic acids (EETs) to their corresponding diols, and targeting sEH leads to strong anti-inflammatory effects. In the present study, using a tissue microarray and immunohistochemical approach, a significant increase of sEH expression was identified in ulcerative colitis (UC)-associated dysplasia and adenocarcinoma. The effects of deficiency in the sEH gene were determined on dextran sulfate sodium (DSS) colitis-induced carcinogenesis. The effects of EETs on lipopolysaccharide (LPS)-activated macrophages were analyzed in vitro. With extensive histopathological and immunohistochemical analyses, compared to wild-type mice, sEH(-/-) mice exhibited a significant decrease in tumor incidence (13/20 vs. 6/19, p<0.05) and a markedly reduced average tumor size (59.62±20.91 mm(3) vs. 22.42±11.22 mm(3)), and a significant number of pre-cancerous dysplasia (3±1.18 vs. 2±0.83, p<0.01). The inflammatory activity, as measured by the extent/proportion of erosion/ulceration/dense lymphoplasmacytosis (called active colitis index) in the colon, was significantly lower in sEH(-/-) mice (44.7%±24.9% vs. 20.2%±16.2%, p<0.01). The quantitative polymerase chain reaction (qPCR) assays demonstrated significantly low levels of cytokines/chemokines including monocyte chemoattractant protein (MCP-1), inducible nitric oxide synthase (iNOS), vasopressin-activated calcium-mobilizing (VCAM-1), interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). In vitro, LPS-activated macrophages treated with 14,15-EET showed a significant reduction of LPS-triggered IL-1β and TNF-α expression. Eicosanoic acid metabolic profiling revealed a significant increase of the ratios of EETs/ dihydroeicosatrienoic acids (DHETs) and epoxyoctadecennoic acid/dihydroxyoctadecenoic acid (EpOMEs/DiHOMEs). These results indicate that sEH plays an important role in the development of colitis and in inducing carcinogenesis

  12. Long-Term Effects of Bone Marrow-Derived Mesenchymal Stem Cells in Dextran Sulfate Sodium-Induced Murine Chronic Colitis

    PubMed Central

    Lee, Hyun Jung; Oh, Sun-Hee; Jang, Hui Won; Kwon, Ji-Hee; Lee, Kyoung Jin; Kim, Chung Hee; Park, Soo Jung; Hong, Sung Pil; Cheon, Jae Hee; Kim, Tae Il; Kim, Won Ho

    2016-01-01

    Background/Aims Bone marrow-derived mesenchymal stem cells (BM-MSCs) have shown beneficial effects in experimental colitis models, but the underlying mechanisms are not fully understood. We investigated the long-term effects of BM-MSCs, particularly in mice with chronic colitis. Methods Chronic colitis was induced by administering 3% dextran sulfate sodium (DSS) in a series of three cycles. BM-MSCs were injected intravenously into DSS-treated mice three times during the first cycle. On day 33, the therapeutic effects were evaluated with clinicopathologic profiles and histological scoring. Inflammatory mediators were measured with real-time polymerase chain reaction. Results Systemic infusion of BM-MSCs ameliorated the severity of colitis, and body weight restoration was significantly promoted in the BM-MSC-treated mice. In addition, BM-MSC treatment showed a sustained beneficial effect throughout the three cycles. Microscopic examination revealed that the mice treated with BM-MSCs had fewer inflammatory infiltrates, a lesser extent of inflammation, and less crypt structure damage compared with mice with DSS-induced colitis. Anti-inflammatory cytokine levels of interleukin-10 were significantly increased in the inflamed colons of BM-MSC-treated mice compared with DSS-induced colitis mice. Conclusions Systemic infusion of BM-MSCs at the onset of disease exerted preventive and rapid recovery effects, with long-term immunosuppressive action in mice with repeated DSS-induced chronic colitis. PMID:27114436

  13. Proteomic profiling of dextran sulfate sodium induced acute ulcerative colitis mice serum exosomes and their immunomodulatory impact on macrophages.

    PubMed

    Wong, Wing-Yan; Lee, Magnolia Muk-Lan; Chan, Brandon Dow; Kam, Richard Kin-Tin; Zhang, Ge; Lu, Ai-Ping; Tai, William Chi-Shing

    2016-04-01

    Macrophages are essential for the maintenance of intestinal homeostasis, and their activation has been proposed to be critical to the pathogenesis of inflammatory bowel disease (IBD). Although there are many recognized mediators of macrophage activation, increasing evidence suggests that macrophages respond to exosome stimulation. Exosomes are 40-150 nm microvesicles released from different cell types and are found in a variety of physiological fluids, including serum. As studies have shown that circulating exosomes participate in intercellular communication and can mediate the immune response, we hypothesized that exosomes may play a role in the pathogenesis of IBD though modulation of macrophage activity. In this study, we used the dextran sulfate sodium (DSS) induced acute colitis mice model to investigate the effect of serum exosomes on macrophages and identify exosome proteins potentially involved in macrophage activation. We treated RAW264.7 macrophages with serum exosomes isolated from dextran sulfate sodium induced mice and found that treatment induced phosphorylation of p38 and ERK and production of tumor necrosis factor α when compared to treatment with exosomes isolated from control mice. Subsequent proteomic analysis identified 56 differentially expressed proteins, a majority of which were acute-phase proteins and immunoglobulins. Bioinformatics analysis suggested these proteins were mainly involved in the complement and coagulation cascade, which has been implicated in macrophage activation. Our findings provide new insight into the role of circulating serum exosomes in acute colitis and contribute to the understanding of macrophage activation in the pathogenesis of IBD. PMID:26806198

  14. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration.

    PubMed

    Rocha, Rui; Santos, Rita S; Madureira, Pedro; Almeida, Carina; Azevedo, Nuno F

    2016-05-20

    Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria. PMID:27021959

  15. Therapeutic effect of a hydroxynaphthoquinone fraction on dextran sulfate sodium-induced ulcerative colitis

    PubMed Central

    Zhang, Zi-Liang; Fan, Hua-Ying; Yang, Ming-Yan; Zhang, Zuo-Kai; Liu, Ke

    2014-01-01

    AIM: To evaluate the therapeutic effect of hydroxynaphthoquinone mixture (HM) on dextran sulfate sodium (DSS)-induced colitis and explore the underlying mechanisms. METHODS: BALB/c mice received 3.5% DSS for 6 d to induce ulcerative colitis. Groups of mice were orally administered HM 3.5, 7 and 14 mg/kg and mesalazine 200 mg/kg per day for 7 d. During the experiment, clinical signs and body weight, stool consistency and visible fecal blood were monitored and recorded daily. A disease activity index score was calculated for each animal. At the conclusion of the experiment, the colonic histopathological lesions were evaluated. Myeloperoxidase (MPO) activity and tumor necrosis factor-α (TNF-α) levels were determined. Protein expression levels of TNF-α, nuclear factor-κB (NF-κB) p65, inhibitor of κB (IκB) and phosphorylation of IκB (p-IκB) were analyzed by Western blot analysis. RESULTS: Administration of 3.5% DSS for 6 d successfully induced acute colitis associated with soft stool, diarrhea, rectal bleeding, and colon shortening, as well as a loss of body weight. Administration of HM effectively attenuated the severity of colonic mucosa injury. For histopathological analysis, HM treatment improved histological alterations and lowered pathological scores compared with the DSS only group. This manifested as a reduction in the extent of colon injury and inflammatory cell infiltration, as well as the degree of mucosal destruction. In addition, HM at doses of 7 and 14 mg/kg significantly decreased MPO activity in colonic tissue (0.98 ± 0.22 U/g vs 1.32 ± 0.24 U/g, 0.89 ± 0.37 U/g vs 1.32 ± 0.24 U/g tissue, P < 0.05) and serum TNF-α levels (68.78 ± 7.34 ng/L vs 88.98 ± 17.79 ng/L, 64.13 ± 14.13 ng/L vs 88.98 ± 17.79 ng/L, P < 0.05). Furthermore, HM down-regulated the expression of TNF-α, NF-κB p65 and p-IκBα in colonic tissue while up-regulating IκBα protein expression. These results suggest that the significant anti-inflammatory effect of HM may be

  16. Mechanism of Formation and Stabilization of Nanoparticles Produced by Heating Electrostatic Complexes of WPI-Dextran Conjugate and Chondroitin Sulfate.

    PubMed

    Dai, Qingyuan; Zhu, Xiuling; Yu, Jingyang; Karangwa, Eric; Xia, Shuqin; Zhang, Xiaoming; Jia, Chengsheng

    2016-07-13

    Protein conformational changes were demonstrated in biopolymer nanoparticles, and molecular forces were studied to elucidate the formation and stabilization mechanism of biopolymer nanoparticles. The biopolymer nanoparticles were prepared by heating electrostatic complexes of whey protein isolate (WPI)-dextran conjugate (WD) and chondroitin sulfate (ChS) above the denaturation temperature and near the isoelectric point of WPI. The internal characteristics of biopolymer nanoparticles were analyzed by several spectroscopic techniques. Results showed that grafted dextran significantly (p < 0.05) prevented the formation of large aggregates of WD dispersion during heat treatment. However, heat treatment slightly induced the hydrophobicity changes of the microenvironment around fluorophores of WD. ChS electrostatic interaction with WD changed the fluorescence intensity of WD regardless of heat treatment. Far-UV circular dichroism (CD) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopies confirmed that glycosylation and ionic polysaccharide did not significantly cause protein conformational changes in WD and ChS (WDC) during heat treatment. In addition, hydrophobic bonds were the major molecular force for the formation and stabilization of biopolymer nanoparticles. However, hydrogen bonds slightly influenced their formation and stabilization. Ionic bonds only promoted the formation of biopolymer nanoparticles, while disulfide bonds partly contributed to their stability. This work will be beneficial to understand protein conformational changes and molecular forces in biopolymer nanoparticles, and to prepare the stable biopolymer nanoparticles from heating electrostatic complexes of native or glycosylated protein and polysaccharide. PMID:27329490

  17. Improved brain delivery of vincristine using dextran sulfate complex solid lipid nanoparticles: optimization and in vivo evaluation.

    PubMed

    Aboutaleb, Ehsan; Atyabi, Fatemeh; Khoshayand, Mohammad Reza; Vatanara, Ali Reza; Ostad, Seyed Nasser; Kobarfard, Farzad; Dinarvand, Rassoul

    2014-07-01

    Vincristine (VC) sulfate, a freely water-soluble cytotoxic agent was incorporated into cetyl palmitate solid lipid nanoparticles (SLNs) with the aid of dextran sodium sulfate (DS), a poly anion, using a microemulsion method. The manufacturing process was optimized using response surface methodology (Box-Behnken design). SLNs were characterized for size, zeta potential, morphology, crystallinity, and release behavior. The drug encapsulation efficiency reached up to 93% and release study revealed sustained drug release. SLN formulation showed comparable cytotoxic effect in comparison to VC sulfate solution against the MDA-MB-231 cells. The in vivo studies following injection to rat revealed higher plasma and tissue concentrations and longer drug mean residence times compared to VC solution. Using cumarin-6 as a model drug, it was shown that drug delivery to the brain was enhanced close to five times using SLNs prepared in this study compared to free cumarin-6. It can be concluded that complexes of cetyl palmitate SLNs with DS could produce high VC-loaded SLNs suitable for delivery of anticancer drugs to brain tumors. PMID:23893939

  18. Dextran Sulfate Suppression of Viruses in the HIV Family: Inhibition of Virion Binding to CD4+ Cells

    NASA Astrophysics Data System (ADS)

    Mitsuya, Hiroaki; Looney, David J.; Kuno, Sachiko; Ueno, Ryuji; Wong-Staal, Flossie; Broder, Samuel

    1988-04-01

    The first step in the infection of human T lymphocytes by human immunodeficiency virus type 1 (HIV-1) is attachment to the target cell receptor, the CD4 antigen. This step may be vulnerable to attack by antibodies, chemicals, or small peptides. Dextran sulfate (molecular weight approximately 8000), which has been given to patients as an anticoagulant or antilipemic agent for more than two decades, was found to block the binding of virions to various target T lymphocytes, inhibit syncytia formation, and exert a potent inhibitory effect against HIV-1 in vitro at concentrations that may be clinically attainable in human beings. This drug also suppressed the replication of HIV-2 in vitro. These observations could have theoretical and clinical implications in the strategy to develop drugs against HIV types 1 and 2.

  19. Oat β-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice.

    PubMed

    Liu, Bo; Lin, Qinlu; Yang, Tao; Zeng, Linna; Shi, Limin; Chen, Yaya; Luo, Feijun

    2015-11-01

    Ulcerative colitis is a major inflammatory bowel disease (IBD), characterized by inflammation within the gastrointestinal tract through chronic or relapsing immune system activation. The aim of this study is to investigate the potential protective effect of oat β-glucan (βG) against colitis induced by DSS in mice. Eighty mice were randomly divided into the control group (no DSS, no βG), DSS group (DSS only), DSS + L-βG group (DSS plus 500 mg per kg βG), and DSS + H-βG group (DSS plus 1000 mg per kg βG). Compared with the DSS group, administration of βG significantly reduced clinical symptoms with less weight loss, diarrhea and shortening of the colon, the severity of colitis was significantly inhibited as evidenced by the reduced disease activity index (DAI) and degree of histological damage in colon. Moreover, treatment with βG not only decreased myeloperoxidase activity (MPO), and nitric oxide (NO) and malondialdehyde (MDA) levels, but also inhibited mRNA and protein expression of pro-inflammatory factors such as TNF-α, IL-1β, IL-6 and iNOS. This suggests that oat βG in diet might exhibit an anti-inflammatory function against colitis through inhibition of expression of pro-inflammatory factors. PMID:26292622

  20. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor

    PubMed Central

    Zhang, Xianxie; Wang, Yuguang; Ma, Zengchun; Liang, Qiande; Tang, Xianglin; Hu, Donghua; Tan, Hongling; Xiao, Chengrong; Gao, Yue

    2015-01-01

    Tanshinone IIA (Tan IIA) (C19H18O3) is one of the major active lipophilic components in a conventional Chinese medicine called danshen, and it has long been used in the People’s Republic of China and other neighboring countries to treat patients suffering from inflammatory bowel disease (IBD). Previous experiments by many teams determined which mechanism of Tan IIA is relevant to the treatment of IBD associated with inflammation and the pregnane X receptor (PXR). The current study demonstrated that Tan IIA is an efficacious PXR agonist and its ability to induce CYP3A4 mRNA and protein expression was mediated by the transactivation of PXR, a known target of abrogating inflammation in IBD. Clinical symptoms in mice and histological assessment data suggested that administration of Tan IIA in mice demonstrated significant protection and showed that in DSS-induced IBD it acts in a concentration-dependent manner. PXR-silenced mice treated with Tan IIA demonstrated low protection against DSS-induced mouse IBD and exacerbated the severity of IBD compared with wild-type mice; PXR-silenced mice demonstrated the necessity for PXR in Tan IIA-mediated upregulation of xenobiotic metabolism genes. The IBD treatment effects of Tan IIA are partially due to PXR-mediated upregulation of xenobiotic metabolism and downregulation of inflammatory mediators. The novel findings reported here may contribute to the effective utilization of Tan IIA and its derivatives as a PXR ligand in the treatment of human IBD. This suggests that Tan IIA may have considerable clinical utility. PMID:26674743

  1. Enhanced K(+) secretion in dextran sulfate-induced colitis reflects upregulation of large conductance apical K(+) channels (BK; Kcnma1).

    PubMed

    Kanthesh, Basalingappa M; Sandle, Geoffrey I; Rajendran, Vazhaikkurichi M

    2013-11-01

    Defective colonic Na(+) and Cl(-) absorption is a feature of active ulcerative colitis (UC), but little is known about changes in colonic K(+) transport. We therefore investigated colonic K(+) transport in a rat model of dextran sulfate-induced colitis. Colitis was induced in rat distal colon using 5% dextran sulfate sodium (DSS). Short-circuit current (Isc, indicating electrogenic ion transport) and (86)Rb (K(+) surrogate) fluxes were measured in colonic mucosa mounted in Ussing chambers under voltage-clamp conditions in the presence of mucosal orthovanadate (a P-type ATPase inhibitor). Serum aldosterone was measured by immunoassay. Control animals exhibited zero net K(+) flux. By contrast, DSS-treated animals exhibited active K(+) secretion, which was inhibited by 98, 76, and 22% by Ba(2+) (nonspecific K(+) channel blocker), iberiotoxin (IbTX; BK channel blocker), and TRAM-34 (IK channel blocker), respectively. Apical BK channel α-subunit mRNA abundance and protein expression, and serum aldosterone levels in DSS-treated animals, were enhanced 6-, 3-, and 6-fold respectively, compared with controls. Increasing intracellular Ca(2+) with carbachol (CCH), or intracellular cAMP with forskolin (FSK), stimulated both active Cl(-) secretion and active K(+) secretion in controls but had no or little effect in DSS-treated animals. In DSS-induced colitis, active K(+) secretion involves upregulation of apical BK channel expression, which may be aldosterone-dependent, whereas Cl(-) secretion is diminished. Since similar ion transport abnormalities occur in patients with UC, diarrhea in this disease may reflect increased colonic K(+) secretion (rather than increased Cl(-) secretion), as well as defective Na(+) and Cl(-) absorption. PMID:23986198

  2. Cleavage of type I procollagen by C- and N-proteinases is more rapid if the substrate is aggregated with dextran sulfate or polyethylene glycol.

    PubMed

    Hojima, Y; Behta, B; Romanic, A M; Prockop, D J

    1994-12-01

    The enzymes procollagen C- and N-proteinases specifically cleave carboxyl- and amino-terminal propeptides of procollagens. After cleavage of the propeptides, the resulting collagens self-assemble into fibrils. In most previous experiments with the enzymes, the substrate was monomeric type I procollagen. Here we have prepared aggregates of type I procollagen from chick embryo tendons by using 1 to 100 micrograms/ml of 500-kDa dextran sulfate or 3 to 5% (w/v) polyethylene glycol (M(r) 3350). Aggregation of the substrate with dextran sulfate increased its rate of cleavage by purified or crude C-proteinase from chick embryo tendons 10- to 15-fold. Aggregation of the substrate with 25 to 100 microgram/ml of dextran sulfate increased the rate of cleavage by purified N-proteinase about 4-fold. The rate of cleavage by crude N-proteinase was enhanced only about 2-fold, apparently because of partial precipitation of the enzyme by dextran sulfate. Using polyethylene glycol to aggregate the substrate increased the rate of cleavage by procollagen C-proteinases 5- to 20-fold. Aggregation with polyethylene glycol also increased the rate of cleavage by purified procollagen N-proteinases 2- to 5-fold. With crude N-proteinase, the rate of cleavage was increased only 1.5-fold. The results suggest that the rate of cleavage of the substrate by both enzymes is increased by the aggregation of the substrate itself by dextran sulfate or polyethylene glycol. The increased rates of cleavage seen after aggregation of substrate can be used to develop more sensitive assays for the enzymic activities. PMID:7887459

  3. Ferrous sulfate, but not iron polymaltose complex, aggravates local and systemic inflammation and oxidative stress in dextran sodium sulfate-induced colitis in rats

    PubMed Central

    Toblli, Jorge E; Cao, Gabriel; Angerosa, Margarita

    2015-01-01

    Background and aims Iron deficiency is common in inflammatory bowel disease, yet oral iron therapy may worsen the disease symptoms and increase systemic and local oxidative stress. The aim of this study was to compare the effects of oral ferrous sulfate and iron polymaltose complex on inflammatory and oxidative stress markers in colitic rats. Methods Animals were divided into four groups with ten animals each. Rats of three groups received dextran sodium sulfate to induce colitis and animals of two of these groups received 5 mg iron/kg of body weight a day, as ferrous sulfate or iron polymaltose complex, for 7 days. Gross colon anatomy, histology of colon and liver, stainings of L-ferritin, Prussian blue, hepcidin, tumor necrosis factor-α, and interleukin-6, as well serum levels of liver enzymes, inflammatory markers, and iron markers, were assessed. Results Body weight, gross anatomy, crypt injury and inflammation scores, inflammatory parameters in liver and colon, as well as serum and liver hepcidin levels were not significantly different between colitic animals without iron treatment and colitic animals treated with iron polymaltose complex. In contrast, ferrous sulfate treatment caused significant worsening of these parameters. As opposed to ferrous sulfate, iron polymaltose complex caused less or no additional oxidative stress in the colon and liver compared to colitic animals without iron treatment. Conclusion Iron polymaltose complex had negligible effects on colonic tissue erosion, local or systemic oxidative stress, and local or systemic inflammation, even at high therapeutic doses, and may thus represent a valuable oral treatment of iron deficiency in inflammatory bowel disease. PMID:26005335

  4. Addition of Berberine to 5-Aminosalicylic Acid for Treatment of Dextran Sulfate Sodium-Induced Chronic Colitis in C57BL/6 Mice

    PubMed Central

    Li, Yan-hong; Zhang, Man; Xiao, Hai-tao; Fu, Hai-bo; Ho, Alan; Lin, Cheng-yuan; Huang, Yu; Lin, Ge; Bian, Zhao-xiang

    2015-01-01

    Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Alternative medicine berberine has received massive attention for its potential in UC treatment. Conventional therapies with the addition of berberine are becoming attractive as novel therapies in UC. In the present study, we investigated the preclinical activity of a conventional oral 5-aminosalicylic acid (5-ASA) therapy plus berberine in experimental colitis. A subclinical dose of 5-ASA (200 mg/kg/day) alone or 5-ASA plus berberine (20 mg/kg/day) was orally administered for 30 days to C57BL/6 mice with colitis induced by three cycles of 2% dextran sulfate sodium (DSS). The disease severity, inflammatory responses, drug accumulation and potential toxicity of colitis mice were examined. The results showed that comparing to 5-ASA alone, 5-ASA plus berberine more potently ameliorated DSS-induced disease severity, colon shortening, and colon histological injury. Further, the up-regulation in mRNA level of colonic TNF-α as well as NFκB and JAK2 phosphorylation caused by DSS were more pronouncedly reversed in animals treated with the combination therapy than those treated with 5-ASA alone. Moreover, the addition of berberine to 5-ASA more significantly inhibited lymphocyte TNF-α secretion of DSS mice than 5-ASA alone. In the meanwhile, no extra drug accumulation or potential toxicity to major organs of colitis mice was observed with this combination treatment. In summary, our studies provide preclinical rationale for the addition of berberine to 5-ASA as a promising therapeutic strategy in clinic by reducing dose of standard therapy. PMID:26642326

  5. Addition of Berberine to 5-Aminosalicylic Acid for Treatment of Dextran Sulfate Sodium-Induced Chronic Colitis in C57BL/6 Mice.

    PubMed

    Li, Yan-hong; Zhang, Man; Xiao, Hai-tao; Fu, Hai-bo; Ho, Alan; Lin, Cheng-yuan; Huang, Yu; Lin, Ge; Bian, Zhao-xiang

    2015-01-01

    Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Alternative medicine berberine has received massive attention for its potential in UC treatment. Conventional therapies with the addition of berberine are becoming attractive as novel therapies in UC. In the present study, we investigated the preclinical activity of a conventional oral 5-aminosalicylic acid (5-ASA) therapy plus berberine in experimental colitis. A subclinical dose of 5-ASA (200 mg/kg/day) alone or 5-ASA plus berberine (20 mg/kg/day) was orally administered for 30 days to C57BL/6 mice with colitis induced by three cycles of 2% dextran sulfate sodium (DSS). The disease severity, inflammatory responses, drug accumulation and potential toxicity of colitis mice were examined. The results showed that comparing to 5-ASA alone, 5-ASA plus berberine more potently ameliorated DSS-induced disease severity, colon shortening, and colon histological injury. Further, the up-regulation in mRNA level of colonic TNF-α as well as NFκB and JAK2 phosphorylation caused by DSS were more pronouncedly reversed in animals treated with the combination therapy than those treated with 5-ASA alone. Moreover, the addition of berberine to 5-ASA more significantly inhibited lymphocyte TNF-α secretion of DSS mice than 5-ASA alone. In the meanwhile, no extra drug accumulation or potential toxicity to major organs of colitis mice was observed with this combination treatment. In summary, our studies provide preclinical rationale for the addition of berberine to 5-ASA as a promising therapeutic strategy in clinic by reducing dose of standard therapy. PMID:26642326

  6. In Vitro and In Vivo Evaluations of Sodium Lauryl Sulfate and Dextran Sulfate as Microbicides against Herpes Simplex and Human Immunodeficiency Viruses

    PubMed Central

    Piret, Jocelyne; Lamontagne, Julie; Bestman-Smith, Julie; Roy, Sylvie; Gourde, Pierrette; Désormeaux, André; Omar, Rabeea F.; Juhász, Julianna; Bergeron, Michel G.

    2000-01-01

    The efficacy of sodium lauryl sulfate (SLS), a sulfated anionic chaotropic surfactant, and dextran sulfate (DS), a polysulfated carbohydrate, against herpes simplex virus (HSV) and human immunodeficiency virus (HIV) infections was evaluated in cultured cells and in different murine models of HSV infection. Results showed that both SLS and DS were potent inhibitors of the infectivities of various HSV-1 and HSV-2 strains. Pretreatment of HIV-1 (strain NL4-3) with SLS also reduced its infectivity to 1G5 cells. DS prevented the binding of HSV to cell surface receptors and therefore its entry into cells. Pretreatment of HSV-1 (strain F) with 50 μM SLS resulted in a complete loss of virus infectivity to Vero cells. However, viruses were able to enter into cells and to produce in the nuclei capsid shells devoid of a DNA core. The amount of the glycoprotein D gene produced in these cells remained unchanged compared to controls, suggesting that SLS could interfere with the maturation of the virus. At a higher SLS concentration (100 μM), HSV was highly damaged by SLS pretreatment and only a few viral particles could enter into cells to produce abnormal capsids. Although DS was a more potent inhibitor of HSV infectivity in vitro, it was unable to provide any protection in murine models of HSV infection. However, SLS conferred a complete protection of animals infected cutaneously with pretreated viruses. In addition, skin pretreatment of mice with a polymer formulation containing SLS completely prevented the development of cutaneous lesions. More interestingly, intravaginal pretreatment of mice with SLS in a buffered solution also completely protected against lethal HSV-2 infection. Taken together, our results suggest that SLS could thus represent a candidate of choice as a microbicide to prevent the sexual transmission of HIV, HSV, and possibly other pathogens that cause sexually transmitted diseases. PMID:10618073

  7. Dextran Sodium Sulfate (DSS) Induces Colitis in Mice by Forming Nano-Lipocomplexes with Medium-Chain-Length Fatty Acids in the Colon

    PubMed Central

    Laroui, Hamed; Ingersoll, Sarah A.; Liu, Hong Chun; Baker, Mark T.; Ayyadurai, Saravanan; Charania, Moiz A.; Laroui, Famina; Yan, Yutao; Sitaraman, Shanthi V.; Merlin, Didier

    2012-01-01

    Inflammatory bowel diseases (IBDs), primarily ulcerative colitis and Crohn's disease, are inflammatory disorders caused by multiple factors. Research on IBD has often used the dextran sodium sulfate (DSS)-induced colitis mouse model. DSS induces in vivo but not in vitro intestinal inflammation. In addition, no DSS-associated molecule (free glucose, sodium sulfate solution, free dextran) induces in vitro or in vivo intestinal inflammation. We find that DSS but not dextran associated molecules established linkages with medium-chain-length fatty acids (MCFAs), such as dodecanoate, that are present in the colonic lumen. DSS complexed to MCFAs forms nanometer-sized vesicles ∼200 nm in diameter that can fuse with colonocyte membranes. The arrival of nanometer-sized DSS/MCFA vesicles in the cytoplasm may activate intestinal inflammatory signaling pathways. We also show that the inflammatory activity of DSS is mediated by the dextran moieties. The deleterious effect of DSS is localized principally in the distal colon, therefore it will be important to chemically modify DSS to develop materials beneficial to the colon without affecting colon-targeting specificity. PMID:22427817

  8. Rapid induction of colorectal tumors in rats initiated with 1,2-dimethylhydrazine followed by dextran sodium sulfate treatment.

    PubMed

    Onose, Jun-ichi; Imai, Toshio; Hasumura, Mai; Ueda, Makoto; Hirose, Masao

    2003-08-20

    To establish a rapid bioassay system with neoplastic end-points for detection of colorectal carcinogenesis modifiers, we evaluated the effects of dextran sodium sulfate (DSS) treatment on the different stages of carcinogenesis in rats initiated with 1,2-dimethylhydrazine (DMH). F344 male rats were given three subcutaneous injections of DMH (40 mg/kg body weight) in a week, and were administered drinking water containing 1.0% DSS ad libitum either during or after the initiation period for a week, or both during and after initiation periods for 2 weeks. At the 10th week of the experiment, although the numbers of aberrant crypt foci were significantly decreased in all groups treated with DSS and given DMH-initiation as compared with DMH alone, dysplastic foci/adenomas/adenocarcinomas were increased. The incidences and multiplicities of these lesions were highest in rats treated with DSS after DMH-initiation period. At the 26th week, the incidences of adenocarcinomas (100 vs. 20% in DMH alone) and their multiplicities (6.6 +/- 0.8/rat vs. 0.2 +/- 0.4/rat in DMH alone) were also highest in this group. These results indicate that short-term DSS-treatment in the post-initiation period significantly accelerates DMH-induced colorectal tumor development in rats, so that this protocol may effective for establishment of a rapid bioassay system with neoplastic end-points. PMID:12957352

  9. Vitamin A Inhibits Development of Dextran Sulfate Sodium-Induced Colitis and Colon Cancer in a Mouse Model.

    PubMed

    Okayasu, Isao; Hana, Kiyomi; Nemoto, Noriko; Yoshida, Tsutomu; Saegusa, Makoto; Yokota-Nakatsuma, Aya; Song, Si-Young; Iwata, Makoto

    2016-01-01

    Vitamin A is essential to mucosal immunity and cell differentiation. The fact that lack of it might involve chronic inflammation and increased risk of cancer has been reported. Little is known about the mechanism of vitamin A deficiency in the development of colitis and its influence on development of colorectal cancer. To determine the influence of vitamin A deficiency on colitis and colorectal cancer development, an experimental study using a colitis mouse model was performed. Dextran sulfate sodium (DSS) colitis was induced in vitamin A-deficient and vitamin A-supplemented mice. Further, colorectal carcinoma was induced by a combination of azoxymethane preinjection and DSS colitis. Results were compared between the two groups mainly by immunohistochemical analysis. Colitis was more severe and recovery from colitis was slower in vitamin A-deficient mice than in vitamin A-supplemented mice. Compared with vitamin A-supplemented mice, vitamin A-deficient mice had decreases in colonic subepithelial myofibroblasts and the ratio of mucosal IgA(+)/IgG(+) cells, increases in CD11c(+) dendritic cells, and a higher rate of development of colorectal carcinoma with colitis following azoxymethane. Vitamin A lipid droplets in subepithelial myofibroblasts were decreased in vitamin A-deficient mice, suggesting alterations in colonic crypt niche function. Thus, vitamin A inhibited colitis and the development of colorectal cancer. PMID:27298823

  10. Colon carcinogenesis in wild type and immune compromised mice after treatment with azoxymethane, and azoxymethane with dextran sodium sulfate.

    PubMed

    Whetstone, Ryan D; Wittel, Uwe A; Michels, Nicole M; Gulizia, James M; Gold, Barry

    2016-07-01

    The association between inflammation and the risk of colorectal cancer (CRC) is well documented in animal models and in humans, but the mechanistic role of inflammation in CRC is less well understood. To address this question, the induction of colon tumors was evaluated in (i) wild type (WT) and athymic BALB/c mice treated with the colon carcinogen azoxymethane (AOM) as a single agent, and (ii) in an inflammation model of colon cancer employing AOM and dextran sodium sulfate (DSS) in WT, athymic, TCRβ(-/-) , TCRδ(-/-) and TCRβ(-/-) TCRδ(-/-) C57Bl/6 mice. The athymic BALB/c mice treated with only AOM developed 90% fewer tumors than the WT mice. The difference in response was not due to metabolic activation of AOM or repair of DNA adducts. In the inflammation model using a standard sequential exposure to AOM followed by DSS treatment, the tumor incidence in WT mice was 58% with 7 adenomas and 6 adenocarcinomas. In contrast, the TCRβ(-/-) , TCRδ(-/-) and TCRβ(-/-) TCRδ(-/-) C57Bl/6 mice showed adenoma incidences of 10, 33, and 11%, respectively, and none of the immune compromised mice developed adenocarcinomas. When the DSS exposure was increased and the AOM lowered, no difference was observed between WT and TCRβ(-/-) mice due to an increase in the incidence in the TCR null mice without concomitant increase in the WT mice. No tumors were observed in mice treated with AOM or DSS alone. © 2015 Wiley Periodicals, Inc. PMID:26153082

  11. Dietary Geraniol by Oral or Enema Administration Strongly Reduces Dysbiosis and Systemic Inflammation in Dextran Sulfate Sodium-Treated Mice.

    PubMed

    De Fazio, Luigia; Spisni, Enzo; Cavazza, Elena; Strillacci, Antonio; Candela, Marco; Centanni, Manuela; Ricci, Chiara; Rizzello, Fernando; Campieri, Massimo; Valerii, Maria C

    2016-01-01

    (Trans)-3,7-Dimethyl-2,6-octadien-1-ol, commonly called geraniol (Ge-OH), is an acyclic monoterpene alcohol with well-known anti-inflammatory, antitumoral, and antimicrobial properties. It is widely used as a preservative in the food industry and as an antimicrobial agent in animal farming. The present study investigated the role of Ge-OH as an anti-inflammatory and anti-dysbiotic agent in the dextran sulfate sodium (DSS)-induced colitis mouse model. Ge-OH was orally administered to C57BL/6 mice at daily doses of 30 and 120 mg kg((-1)) body weight, starting 6 days before DSS treatment and ending the day after DSS removal. Furthermore, Ge-OH 120 mg kg((-1)) dose body weight was administered via enema during the acute phase of colitis to facilitate its on-site action. The results show that orally or enema-administered Ge-OH is a powerful antimicrobial agent able to prevent colitis-associated dysbiosis and decrease the inflammatory systemic profile of colitic mice. As a whole, Ge-OH strongly improved the clinical signs of colitis and significantly reduced cyclooxygenase-2 (COX-2) expression in colonocytes and in the gut wall. Ge-OH could be a powerful drug for the treatment of intestinal inflammation and dysbiosis. PMID:26973525

  12. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis.

    PubMed

    Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan

    2015-01-01

    Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-β-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis. PMID:26013555

  13. Protective Effect of Ceratonia siliqua L. Against a Dextran Sulfate Sodium-Induced Alterations in Liver and Kidney in Rat.

    PubMed

    Rtibi, Kaïs; Selmi, Slimen; Jabri, Mohammed-Amine; El-Benna, Jamel; Amri, Mohamed; Marzouki, Lamjed; Sebai, Hichem

    2016-09-01

    The aim of the present study is to investigate the potential protective role of Ceratonia siliqua L. against dextran sodium sulfate (DSS)-induced oxidative damage and inflammation in liver and kidney of rats. The hepatotoxicity and nephrotoxicity were induced in rats by oral administration of synthetic DSS (5%) in the drinking water for over 7 days. However, carob pods aqueous extract (CPAE; 50 and 100 mg/kg body weight) was given by oral administration for 21 days. Myeloperoxidase (MPO) activity, malondialdehyde, H2O2 content, as well as the levels of antioxidant enzymes in organs were measured to observe the possible mechanisms. As a result, the CPAE counteracted DSS-induced increase of MPO activity, lipoperoxidation, and the activity of antioxidant enzymes, such as superoxide dismutase and catalase (CAT). DSS administration increased also in the organs hydrogen peroxide (H2O2) and free iron levels, whereas the CPAE pretreatment reversed all intracellular mediator perturbations. It was concluded that the CPAE exerted a potential protective effect against DSS-induced inflammation and oxidative stress in the rat organs. Consequently, it is essential that adequate care is taken when we use carob pods for patients with hepatotoxicity and nephrotoxicity. PMID:27627702

  14. Vitamin A Inhibits Development of Dextran Sulfate Sodium-Induced Colitis and Colon Cancer in a Mouse Model

    PubMed Central

    Okayasu, Isao; Hana, Kiyomi; Nemoto, Noriko; Yoshida, Tsutomu; Saegusa, Makoto; Yokota-Nakatsuma, Aya; Song, Si-Young; Iwata, Makoto

    2016-01-01

    Vitamin A is essential to mucosal immunity and cell differentiation. The fact that lack of it might involve chronic inflammation and increased risk of cancer has been reported. Little is known about the mechanism of vitamin A deficiency in the development of colitis and its influence on development of colorectal cancer. To determine the influence of vitamin A deficiency on colitis and colorectal cancer development, an experimental study using a colitis mouse model was performed. Dextran sulfate sodium (DSS) colitis was induced in vitamin A-deficient and vitamin A-supplemented mice. Further, colorectal carcinoma was induced by a combination of azoxymethane preinjection and DSS colitis. Results were compared between the two groups mainly by immunohistochemical analysis. Colitis was more severe and recovery from colitis was slower in vitamin A-deficient mice than in vitamin A-supplemented mice. Compared with vitamin A-supplemented mice, vitamin A-deficient mice had decreases in colonic subepithelial myofibroblasts and the ratio of mucosal IgA+/IgG+ cells, increases in CD11c+ dendritic cells, and a higher rate of development of colorectal carcinoma with colitis following azoxymethane. Vitamin A lipid droplets in subepithelial myofibroblasts were decreased in vitamin A-deficient mice, suggesting alterations in colonic crypt niche function. Thus, vitamin A inhibited colitis and the development of colorectal cancer. PMID:27298823

  15. Strawberry phytochemicals inhibit azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in Crj: CD-1 mice.

    PubMed

    Shi, Ni; Clinton, Steven K; Liu, Zhihua; Wang, Yongquan; Riedl, Kenneth M; Schwartz, Steven J; Zhang, Xiaoli; Pan, Zui; Chen, Tong

    2015-03-01

    Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg-1 body weight). One week after injection, mice were administered 2% (w/v) dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05). The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease. PMID:25763529

  16. Strawberry Phytochemicals Inhibit Azoxymethane/Dextran Sodium Sulfate-Induced Colorectal Carcinogenesis in Crj: CD-1 Mice

    PubMed Central

    Shi, Ni; Clinton, Steven K.; Liu, Zhihua; Wang, Yongquan; Riedl, Kenneth M.; Schwartz, Steven J.; Zhang, Xiaoli; Pan, Zui; Chen, Tong

    2015-01-01

    Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg−1 body weight). One week after injection, mice were administered 2% (w/v) dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05). The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease. PMID:25763529

  17. Development of hydroxy-based sphingosine kinase inhibitors and anti-inflammation in dextran sodium sulfate induced colitis in mice.

    PubMed

    Xi, Meiyang; Ge, Jun; Wang, Xiaojian; Sun, Chenbin; Liu, Tianqi; Fang, Liang; Xiao, Qiong; Yin, Dali

    2016-07-15

    Sphingosine kinase (SphK)-catalyzed production of sphingosine-1-phosphate (S1P) regulates cell growth, survival and proliferation as well as inflammatory status in animals. In recent study we reported the N'-(3-(benzyloxy)benzylidene)-3,4,5-trihydroxybenzohydrazide scaffold as a potent SphK inhibitor. As a continuation of these efforts, 51 derivatives were synthesized and evaluated by SphK1/2 inhibitory activities for structure-activity relationship (SAR) study. Among them, 33 was identified as the most potent SphK inhibitor. Potency of 33 was also observed to efficiently decrease SphK1/2 expression in human colorectal cancer cells (HCT116) and significantly inhibit dextran sodium sulfate (DSS)-induced colitis as well as the decreased expression of interleukin (IL)-6 and cyclooxygenase-2 (COX-2) in mouse models. Collectively, 33 was validated as an effective SphK inhibitor, which can be served as anti-inflammatory agent to probably treat inflammatory bowel diseases in human. PMID:27255176

  18. Lactobacillus fermentum BR11, a potential new probiotic, alleviates symptoms of colitis induced by dextran sulfate sodium (DSS) in rats.

    PubMed

    Geier, Mark S; Butler, Ross N; Giffard, Philip M; Howarth, Gordon S

    2007-03-20

    Current treatments for inflammatory bowel disease (IBD) are relatively ineffective. Recently, probiotics have emerged as a potential treatment modality for numerous gastrointestinal disorders, including IBD. Few probiotics, however, have undergone appropriate preclinical screening in vivo. The current study compared the effects of four candidate probiotics on development of dextran sulfate sodium (DSS)-induced colitis in rats. Sprague Dawley rats were gavaged 1 mL of the potential probiotic (1 x 10(10) CFU/mL), or vehicle, twice daily for 14 days. Strains tested were Lactobacillus rhamnosus GG (LGG), Streptococcus thermophilus TH-4 (TH-4), Bifidobacterium lactis Bb12 (Bb12) and Lactobacillus fermentum BR11 (BR11). Colitis was induced from day 7 to 14 via administration of 2% DSS in drinking water. Disease activity index (DAI) was monitored daily until rats were killed at day 14. DAI decreased in DSS+Bb12 and DSS+BR11 compared to DSS+Vehicle. Colon length increased in DSS+BR11 (10%) and DSS+LGG (10%) compared to DSS+Vehicle. DSS+Bb12 and DSS+BR11 prevented the distal colon crypt hyperplasia evident in DSS+Vehicle, DSS+LGG and DSS+TH-4. BR11 was most effective at reducing colitic symptoms. Bb12 had minimal effects, whilst TH-4 did not prevent DSS-colitis and LGG actually exacerbated some indicators of colitis. Further studies into the potential benefits of L. fermentum BR11 are indicated. PMID:17150273

  19. New nasal nanocomplex self-assembled from charged biomacromolecules: N,N,N-Trimethyl chitosan and dextran sulfate.

    PubMed

    Kulkarni, Abhijeet D; Vanjari, Yogesh H; Sancheti, Karan H; Patel, Harun M; Belgamwar, Veena S; Surana, Sanjay J; Pardeshi, Chandrakantsing V

    2016-07-01

    Although chitosan (CHT, a linear cationic polysaccharide) is biodegradable, biocompatible, non-toxic, and mucoadhesive in nature, the low solubility of CHT in aqueous and alkaline media limits its applicability in pharmaceutical and biomedical field. This necessitate the introduction of new chemically-modified derivatives of CHT those can surmount the solubility barrier. Herein, N,N,N-trimethyl chitosan (TMC), a quaternized hydrophilic derivative of CHT, was synthesized by two-step reductive methylation of CHT and characterized for (1)H NMR and zeta potential measurements. Polyelectrolyte complexes (PECs) based on TMC and dextran sulfate (DS) were prepared via ionic interactions between charged functional groups of former polysaccharides at different pH conditions (pH 5, 8, 10, and 12) and characterized for physicochemical (particle size and zeta potential) and solid- state characterizations (HR-TEM, SEM, FTIR, TGA and XRD). At alkaline pH conditions, the participant polymer chains (TMC and DS) are sufficiently close to form more stable PECs. The release efficiency was assessed after loading a model drug into optimized PEC formulation. Data indicated that the PECs fabricated at alkaline pH presents a reliable formulation for pharmaceutical and biomedical applications. PMID:27017981

  20. Dietary Geraniol by Oral or Enema Administration Strongly Reduces Dysbiosis and Systemic Inflammation in Dextran Sulfate Sodium-Treated Mice

    PubMed Central

    De Fazio, Luigia; Spisni, Enzo; Cavazza, Elena; Strillacci, Antonio; Candela, Marco; Centanni, Manuela; Ricci, Chiara; Rizzello, Fernando; Campieri, Massimo; Valerii, Maria C.

    2016-01-01

    (Trans)-3,7-Dimethyl-2,6-octadien-1-ol, commonly called geraniol (Ge-OH), is an acyclic monoterpene alcohol with well-known anti-inflammatory, antitumoral, and antimicrobial properties. It is widely used as a preservative in the food industry and as an antimicrobial agent in animal farming. The present study investigated the role of Ge-OH as an anti-inflammatory and anti-dysbiotic agent in the dextran sulfate sodium (DSS)-induced colitis mouse model. Ge-OH was orally administered to C57BL/6 mice at daily doses of 30 and 120 mg kg(−1) body weight, starting 6 days before DSS treatment and ending the day after DSS removal. Furthermore, Ge-OH 120 mg kg(−1) dose body weight was administered via enema during the acute phase of colitis to facilitate its on-site action. The results show that orally or enema-administered Ge-OH is a powerful antimicrobial agent able to prevent colitis-associated dysbiosis and decrease the inflammatory systemic profile of colitic mice. As a whole, Ge-OH strongly improved the clinical signs of colitis and significantly reduced cyclooxygenase-2 (COX-2) expression in colonocytes and in the gut wall. Ge-OH could be a powerful drug for the treatment of intestinal inflammation and dysbiosis. PMID:26973525

  1. Baicalin down regulates the expression of TLR4 and NFkB-p65 in colon tissue in mice with colitis induced by dextran sulfate sodium

    PubMed Central

    Feng, Jinshan; Guo, Cancan; Zhu, Yuzhen; Pang, Liping; Yang, Zheng; Zou, Ying; Zheng, Xuebao

    2014-01-01

    Background: Baicalin is one of flavonoid extracts from Scutellaria baicalensis, which has several functions including anti-inflammation, anti-bacteria, antitumor and et al. However, the mechanisms of anti-inflammatory of baicalin in ulcerative colitis is not clear. Methods: Mice colitis models were established by dextran sodium sulfate, Mice administrated with baicalin (100 mg/kg) and mesalazine (100 mg/kg) twice daily by intragastric injection for 7 days after colitis induced were defined as treated group. Then the mice were sacrificed and the colon samples were collected. Toll-like receptor-2, 4, 9 were detected by immunohistochemistry. Signaling proteins such as TLR4, MyD88, and NF-κB p65 were analyzed by western blotting. Cytokine’s mRNA include TNF-α, IL-6 IL-10 and IL-13 were measured by reverse transcription polymerase chain reaction. Modified disease activity index were used to analyse the severity of the disease by assessed of diarrhea, stool (occult) blood and body weight loss of the mice. Results: Compared with control and model groups, modified disease activity index in baicalin and mesalazine treated, mice decreased gradually. Immunohistochemistry analysis showed the expression of TLR4, but not TLR2 and TLR9, in the mucosa of mice colon were decreased. Western blot analysis showed that in colitis model, the expression of NF-κB p65 and TLR4 decreased (P < 0.05), while the expression of MyD88 increased significantly compared to control group, and MyD88 expression can not be repressed by baicalin (P < 0.05). Baicalin and mesalazine treatment suppressed the expression of TNF-α, IL-6 and IL-13 mRNA (P < 0.05), yet up-regulated the expression of IL-10 mRNA (P < 0.05), compared to the DDS and control groups. Conclusions: Baicalin administration by intragastric injection ameliorates the severity of colon inflammation. The possible mechanism of anti-inflammatory response by baicalin may involve in the blocking of the TLR4/NF-κB-p65/IL-6 signaling pathway

  2. Effects of natural raw meal (NRM) on high-fat diet and dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice

    PubMed Central

    Shin, Sung-Ho; Song, Jia-Le; Park, Myoung-Gyu; Park, Mi-Hyun; Hwang, Sung-Joo

    2015-01-01

    BACKGROUND/OBJECTIVES Colitis is a serious health problem, and chronic obesity is associated with the progression of colitis. The aim of this study was to determine the effects of natural raw meal (NRM) on high-fat diet (HFD, 45%) and dextran sulfate sodium (DSS, 2% w/v)-induced colitis in C57BL/6J mice. MATERIALS/METHODS Body weight, colon length, and colon weight-to-length ratio, were measured directly. Serum levels of obesity-related biomarkers, triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL), high density lipoprotein (HDL), insulin, leptin, and adiponectin were determined using commercial kits. Serum levels of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were detected using a commercial ELISA kit. Histological study was performed using a hematoxylin and eosin (H&E) staining assay. Colonic mRNA expressions of TNF-α, IL-1β, IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were determined by RT-PCR assay. RESULTS Body weight and obesity-related biomarkers (TG, TC, LDL, HDL, insulin, leptin, and adiponectin) were regulated and obesity was prevented in NRM treated mice. NRM significantly suppressed colon shortening and reduced colon weight-to-length ratio in HFD+DSS induced colitis in C57BL/6J mice (P < 0.05). Histological observations suggested that NRM reduced edema, mucosal damage, and the loss of crypts induced by HFD and DSS. In addition, NRM decreased the serum levels of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6 and inhibited the mRNA expressions of these cytokines, and iNOS and COX-2 in colon mucosa (P < 0.05). CONCLUSION The results suggest that NRM has an anti-inflammatory effect against HFD and DSS-induced colitis in mice, and that these effects are due to the amelioration of HFD and/or DSS-induced inflammatory reactions. PMID:26634051

  3. Protective role of G-CSF in dextran sulfate sodium-induced acute colitis through generating gut-homing macrophages.

    PubMed

    Meshkibaf, Shahab; Martins, Andrew J; Henry, Garth T; Kim, Sung Ouk

    2016-02-01

    Granulocyte colony-stimulating factor (G-CSF) is a pleiotropic cytokine best known for its role in promoting the generation and function of neutrophils. G-CSF is also found to be involved in macrophage generation and immune regulation; however, its in vivo role in immune homeostasis is largely unknown. Here, we examined the role of G-CSF in dextran sulfate sodium (DSS)-induced acute colitis using G-CSF receptor-deficient (G-CSFR(-/-)) mice. Mice were administered with 1.5% DSS in drinking water for 5days, and the severity of colitis was measured for the next 5days. GCSFR(-/-) mice were more susceptible to DSS-induced colitis than G-CSFR(+/+) or G-CSFR(-/+) mice. G-CSFR(-/-) mice harbored less F4/80(+) macrophages, but a similar number of neutrophils, in the intestine. In vitro, bone marrow-derived macrophages prepared in the presence of both G-CSF and macrophage colony-stimulating factor (M-CSF) (G-BMDM) expressed higher levels of regulatory macrophage markers such as programmed death ligand 2 (PDL2), CD71 and CD206, but not in arginase I, transforming growth factor (TGF)-β, Ym1 (chitinase-like 3) and FIZZ1 (found in inflammatory zone 1), and lower levels of inducible nitric oxide synthase (iNOS), CD80 and CD86 than bone marrow-derived macrophages prepared in the presence of M-CSF alone (BMDM), in response to interleukin (IL)-4/IL-13 and lipopolysaccharide (LPS)/interferon (IFN)-γ, respectively. Adoptive transfer of G-BMDM, but not BMDM, protected G-CSFR(-/-) mice from DSS-induced colitis, and suppressed expression of tumor necrosis factor (TNF)-α, IL-1β and iNOS in the intestine. These results suggest that G-CSF plays an important role in preventing colitis, likely through populating immune regulatory macrophages in the intestine. PMID:26687628

  4. The Sasa quelpaertensis Leaf Extract Inhibits the Dextran Sulfate Sodium-induced Mouse Colitis Through Modulation of Antioxidant Enzyme Expression

    PubMed Central

    Yeom, Yiseul; Kim, Yuri

    2015-01-01

    Background: Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease. The objective of this study is to investigate the protective effect of Sasa quelpaertensis leaf extract (SQE) against oxidative stress in mice with dextran sulfate sodium (DSS)-induced colitis. Methods: Mice were treated with SQE (100 mg/kg or 300 mg/kg body weight) by gavage in advance two weeks before inflammation was induced. Then, the mice were administered with 2.5% DSS in drinking water for 7 days and normal drinking water for 7 days between two DSS treatment. Disease activity index values, gut motility, and severity of the resulting oxidative DNA damage were analyzed. The antioxidant effect of SQE was evaluated by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) activity in plasma samples. Catalase activity and expressions levels of glutathione peroxidase 1 (Gpx1), SOD1, and SOD2 were also detected in colon tissues. Results: Administration of SQE significantly reduced the severity of DSS-induced colitis compared to the control (Ctrl) group. Levels of 8-oxo-dG, an oxidative DNA damage marker, were significantly lower in the SQE group compared to the untreated DSS Ctrl group. In the SQE (300 mg/kg) group, MDA levels were significantly lower, while SOD and catalase activity levels in the plasma samples were significantly higher compared with the DSS Ctrl group. The expression levels of the antioxidant enzymes, SOD2 and Gpx1, were significantly higher, while the levels of SOD 1 expression were lower, in the colon tissues of the DSS Ctrl group compared with those of the Ctrl group. In contrast, administration of SQE significantly down-regulated SOD2 and Gpx1 expressions and up-regulated SOD1 expression. Conclusions: These results indicate that SQE efficiently suppresses oxidative stress in DSS-induced colitis in mice, and its action is associated with the regulation of antioxidant enzymes. PMID:26151047

  5. Porcine β-defensin 2 attenuates inflammation and mucosal lesions in dextran sodium sulfate-induced colitis.

    PubMed

    Han, Feifei; Zhang, Haiwen; Xia, Xi; Xiong, Haitao; Song, Deguang; Zong, Xin; Wang, Yizhen

    2015-02-15

    Intestinal permeability plays a critical role in the etiopathogenesis of ulcerative colitis. Defensins, including porcine β-defensin (pBD)2, are crucial antimicrobial peptides for gut protection owing to their antibacterial and immunomodulatory activities. The purpose of this study was to investigate the protective effects of pBD2 on mucosal injury and the disruption of the epithelial barrier during the pathological process of dextran sodium sulfate (DSS)-induced colitis. The effects and mechanism of pBD2 were evaluated both using a DSS-induced C57BL/6 mouse model and, in vitro, using Caco-2 and RAW264.7 cells. DSS-induced colitis was characterized by higher disease activity index, shortened colon length, elevated activities of myeloperoxidase and eosinophil peroxidase, histologic evidence of inflammation, and increased expression levels of TNF-α, IL-6, and IL-8. pBD2 increased the expression of zonula occludens-1, zonula occludens-2, claudin-1, mucin-1, and mucin-2 mRNA and proteins, and it decreased permeability to FITC-D, as well as apoptosis, in DSS-treated mice. pBD2 also decreased inflammatory infiltrates of the colon epithelium. In Caco-2 cells, pBD2 increased transepithelial electrical resistance and mucin mRNA expression, and it decreased the permeability of FITC-D while preserving the structural integrity of the tight junctions. The effects of pBD2 appeared to be through upregulation of the expression of genes associated with tight junctions and mucins, and by suppressing DSS-induced increases in inflammation, inducible NO synthase, cyclooxygenase-2, and apoptosis. These results show that pBD2 improves DSS-induced changes in mucosal lesions and paracellular permeability, possibly by affecting the activation of NF-κB signaling. The present study demonstrates that intrarectal administration of pBD2 may be a novel preventive option for ulcerative colitis. PMID:25601921

  6. MicroRNA-155 deletion promotes tumorigenesis in the azoxymethane-dextran sulfate sodium model of colon cancer.

    PubMed

    Velázquez, Kandy T; Enos, Reilly T; McClellan, Jamie L; Cranford, Taryn L; Chatzistamou, Ioulia; Singh, Udai P; Nagarkatti, Mitzi; Nagarkatti, Prakash S; Fan, Daping; Murphy, E Angela

    2016-03-15

    Clinical studies have linked microRNA-155 (miR-155) expression in the tumor microenvironment to poor prognosis. However, whether miR-155 upregulation is predictive of a pro- or antitumorigenic response is unclear, as the limited preclinical data available remain controversial. We examined miR-155 expression in tumor tissue from colon cancer patients. Furthermore, we investigated the role of this microRNA in proliferation and apoptosis, inflammatory processes, immune cell populations, and transforming growth factor-β/SMAD signaling in a chemically induced (azoxymethane-dextran sulfate sodium) mouse model of colitis-associated colon cancer. We found a higher expression of miR-155 in the tumor region than in nontumor colon tissue of patients with colon cancer. Deletion of miR-155 in mice resulted in a greater number of polyps/adenomas, an increased symptom severity score, a higher grade of epithelial dysplasia, and a decrease in survival. Surprisingly, these findings were associated with an increase in apoptosis in the normal mucosa, but there was no change in proliferation. The protumorigenic effects of miR-155 deletion do not appear to be driven solely by dysregulation of inflammation, as both genotypes had relatively similar levels of inflammatory mediators. The enhanced tumorigenic response in miR-155(-/-) mice was associated with alterations in macrophages and neutrophils, as markers for these populations were decreased and increased, respectively. Furthermore, we demonstrated a greater activation of the transforming growth factor-β/SMAD pathway in miR-155(-/-) mice, which was correlated with the increased tumorigenesis. Given the multiple targets of miR-155, careful evaluation of its role in tumorigenesis is necessary prior to any consideration of its potential as a biomarker and/or therapeutic target in colon cancer. PMID:26744471

  7. Poly(3,4-ethylenedioxythiophene):dextran sulfate (PEDOT:DS) - a highly processable conductive organic biopolymer.

    PubMed

    Harman, David G; Gorkin, Robert; Stevens, Leo; Thompson, Brianna; Wagner, Klaudia; Weng, Bo; Chung, Johnson H Y; In Het Panhuis, Marc; Wallace, Gordon G

    2015-03-01

    A novel water-dispersible conducting polymer analogous to poly(3,4-dioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been chemically synthesized in a single reaction in high yield. PEDOT:DS, a new member of the polythiophene family, is composed of a complex between PEDOT and the sulfonated polysaccharide polyanion dextran sulfate. Drop-cast films of aqueous suspensions of the material display a native conductivity of up to 7 ± 1 S cm(-1), increasing to 20 ± 2 S cm(-1) after treatment with ethylene glycol and thermal annealing. Mass ratios of the precursors NaDS and EDOT were varied from 5:1 to 2:1 and a decrease in the NaDS:EDOT ratio produces tougher, less hygroscopic films of higher conductivity. Ultraviolet-visible spectroelectrochemistry yields spectra typical of PEDOT complexes. Cyclic voltammetry reveals that PEDOT:DS is electrochemically active from -1.0 to 0.8 V vs. Ag/Ag(+) in acetonitrile, with similar characteristics to PEDOT:PSS. Water dispersions of PEDOT:DS are successfully processed by drop casting, spray coating, inkjet printing and extrusion printing. Furthermore, laser etching of dried films allows the creation of patterns with excellent definition. To assess the cytotoxicity of PEDOT:DS, L-929 cells were cultured with a polymer complex concentration range of 0.002 to 0.2 g l(-1) in cell culture medium. No significant difference is found between the proliferation rates of L-929 cells exposed to PEDOT:DS and those in plain medium after 96h. However, PEDOT:PSS shows around 25% less cell growth after 4 days, even at the lowest concentration. Taken together, these results suggest PEDOT:DS has exceptional potential as an electromaterial for the biointerface. PMID:25484333

  8. Systemic responses of mice to dextran sulfate sodium-induced acute ulcerative colitis using 1H NMR spectroscopy.

    PubMed

    Dong, Fangcong; Zhang, Lulu; Hao, Fuhua; Tang, Huiru; Wang, Yulan

    2013-06-01

    The interplay between genetic mutation and environmental factors is believed to contribute to the etiology of inflammatory bowel disease (IBD). While focused attention has been paid to the aforementioned research, time-specific and organ-specific metabolic changes associated with IBD are still lacking. Here, we induced acute ulcerative colitis in mice by providing water containing 3% dextran sulfate sodium (DSS) for 7 days and investigated the metabolic changes of plasma, urine, and a range of biological tissues by employing a (1)H nuclear magnetic resonance (NMR)-based metabonomics approach with complementary information on serum clinical chemistry and histopathology. We found that DSS-induced acute ulcerative colitis leads to significant elevations in the levels of amino acids in plasma and decreased levels in the membrane-related metabolites and a range of nucleotides, nucleobases, and nucleosides in the colon. In addition, acute-colitis-induced elevations in the levels of nucleotides in the liver were observed, accompanied by reduced levels of glucose. DSS-induced acute colitis also resulted in increased levels of oxidized glutathione and attenuated levels of taurine in the spleen. Furthermore, acute colitis resulted in depletion in the levels of gut microbial cometabolites in urine along with an increase in citric acid cycle intermediates. These findings suggest that DSS-induced acute colitis causes a disturbance of lipid and energy metabolism, damage to the colon and liver, a promoted antioxidative and anti-inflammatory response, and perturbed gut microbiotal communities. The information obtained here provided details of the time-dependent and holistic metabolic changes in the development of the DSS-induced acute ulcerative colitis, which could be useful in discovery of novel therapeutic targets for management of IBD. PMID:23651354

  9. Stability of Reference Genes for Messenger RNA Quantification by Real-Time PCR in Mouse Dextran Sodium Sulfate Experimental Colitis

    PubMed Central

    Eissa, Nour; Hussein, Hayam; Wang, Hongxing; Rabbi, Mohammad F.; Bernstein, Charles N.

    2016-01-01

    Background Many animal models have been developed to characterize the complexity of colonic inflammation. In dextran sodium sulfate (DSS) experimental colitis in mice the choice of reference genes is critical for accurate quantification of target genes using quantitative real time PCR (RT-qPCR). No studies have addressed the performance of reference genes in mice DSS-experimental colitis. This study aimed to determine the stability of reference genes expression (RGE) in DSS-experimental murine colitis. Methods Colitis was induced in male C57BL/6 mice using DSS5% for 5 days, control group received water. RNA was extracted from inflamed and non-inflamed colon. Using RT-qPCR, comparative analysis of 13 RGE was performed according to predefined criteria and relative colonic TNF-α and IL-1β gene expression was determined by calculating the difference in the threshold cycle. Results Colitis significantly altered the stability of mucosal RGE. Commonly used glyceraldehyde-3-phosphate dehydrogenase (Gapdh), β-actin (Actb), or β2-microglobulin (β2m) showed the highest variability within the inflamed and control groups. Conversely, TATA-box-binding protein (Tbp) and eukaryotic translation elongation factor 2 (Eef2) were not affected by inflammation and were the most stable genes. Normalization of colonic TNF-α and IL-1β mRNA levels was dependent on the reference gene used. Depending on the genes used to normalize the data, statistical significance varied from significant when TBP / Eef2 were used to non-significant when Gapdh, Actb or β2m were used. Conclusions This study highlights the appropriate choice of RGE to ensure adequate normalization of RT-qPCR data when using this model. Suboptimal RGE may explain controversial results from published studies. We recommend using Tbp and Eef2 instead of Gapdh, Actb or β2m as reference genes. PMID:27244258

  10. High-fat diets rich in saturated fat protect against azoxymethane/dextran sulfate sodium-induced colon cancer.

    PubMed

    Enos, Reilly T; Velázquez, Kandy T; McClellan, Jamie L; Cranford, Taryn L; Nagarkatti, Mitzi; Nagarkatti, Prakash S; Davis, J Mark; Murphy, E Angela

    2016-06-01

    High-fat-diet (HFD) consumption is associated with colon cancer risk. However, little is known about how the lipid composition of a HFD can influence prooncogenic processes. We examined the effects of three HFDs differing in the percentage of total calories from saturated fat (SF) (6, 12, and 24% of total caloric intake), but identical in total fat (40%), and a commercially available Western diet (26 and 41% saturated and total fat, respectively) on colon cancer development using the azoxymethane (AOM)/dextran sulfate sodium (DSS) murine model. A second dose-response experiment was performed using diets supplemented with the saturated-fatty-acid (SFA)-rich coconut oil. In experiment 1, we found an inverse association between SF content and tumor burden. Furthermore, increased SF content was associated with reduced inflammation, increased apoptosis, and decreased proliferation. The second dose-response experiment was performed to test whether this effect may be attributed to the SF content of the diets. Consistent with the initial experiment, we found that high SF content was protective, at least in male mice; there was a decrease in mortality in mice consuming the highest concentration of SFAs. To explore a potential mechanism for these findings, we examined colonic mucin 2 (Muc2) protein content and found that the HFDs with the highest SF content had the greatest concentration of Muc2. Our data suggest that high dietary SF is protective in the AOM/DSS model of colon cancer, which may be due, at least in part, to the ability of SF to maintain intestinal barrier integrity through increased colonic Muc2. PMID:27033117

  11. Qingchang Wenzhong Decoction Ameliorates Dextran Sulphate Sodium-Induced Ulcerative Colitis in Rats by Downregulating the IP10/CXCR3 Axis-Mediated Inflammatory Response

    PubMed Central

    Mao, Tang-you; Shi, Rui; Zhao, Wei-han; Guo, Yi; Gao, Kang-li; Chen, Chen; Xie, Tian-hong; Li, Jun-xiang

    2016-01-01

    Qingchang Wenzhong Decoction (QCWZD) is an effective traditional Chinese medicine prescription. Our previous studies have shown that QCWZD has significant efficacy in patients with mild-to-moderate ulcerative colitis (UC) and in colonic mucosa repair in UC rat models. However, the exact underlying mechanism remains unknown. Thus, this study was conducted to determine QCWZD's efficacy and mechanism in dextran sulphate sodium- (DSS-) induced UC rat models, which were established by 7-day administration of 4.5% DSS solution. QCWZD was administered daily for 7 days, after which the rats were euthanized. Disease activity index (DAI), histological score (HS), and myeloperoxidase (MPO) level were determined to evaluate UC severity. Serum interferon gamma-induced protein 10 (IP10) levels were determined using ELISA kits. Western blotting and real-time polymerase chain reaction were, respectively, used to determine colonic protein and gene expression of IP10, chemokine (cys-x-cys motif) receptor (CXCR)3, and nuclear factor- (NF-) κB p65. Intragastric QCWZD administration ameliorated DSS-induced UC, as evidenced by decreased DAI, HS, and MPO levels. Furthermore, QCWZD decreased the protein and gene expression of IP10, CXCR3, and NF-κB p65. Overall, these results suggest that QCWZD ameliorates DSS-induced UC in rats by downregulating the IP10/CXCR3 axis-mediated inflammatory response and may be a novel UC therapy. PMID:27413386

  12. Different Effects of Three Selected Lactobacillus Strains in Dextran Sulfate Sodium-Induced Colitis in BALB/c Mice

    PubMed Central

    Cui, Yi; Wei, Hongyun; Lu, Fanggen; Liu, Xiaowei; Liu, Deliang; Gu, Li; Ouyang, Chunhui

    2016-01-01

    Aim To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice. Methods Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage. Results The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model. Conclusions Administration of an L. crispatus CCTCC M206119 supplement aggravated

  13. The small intestinal apical hydrolase activities are decreased in the piglet with bowel inflammation induced by dextran sodium sulfate.

    PubMed

    Lackeyram, D; Mine, Y; Archbold, T; Fan, M Z

    2012-12-01

    Inflammatory bowel disease (IBD) is characterized by cramping, abdominal pain, bloating, constipation, and diarrhea. We tested the hypothesis that compromised activities of the major small intestinal apical hydrolases contribute to the symptoms of IBD. Changes in hydrolytic kinetics, target protein abundances, and mRNA expression of intestinal alkaline phosphatase (IAP), lactase, maltase, sucrase-isomaltase (SI), maltase-glucoamylase (MGA), and aminopeptidase N (APN) in piglets with colonic inflammation chemically induced by dextran sodium sulfate (DSS) were investigated. Yorkshire piglets at 5 d of age, with an average initial BW of about 3 kg, were fitted with intragastric catheters and were divided into control (CON; n = 6) and treatment groups (DSS; n = 5). Both groups were infused with an equal volume of either saline or 1.25 g of DSS · kg BW(-1) · d(-1) in saline, respectively, for 10 d. Enzyme kinetic experiments for IAP, lactase, maltase, SI, MGA, and APN were measured at 37°C with isolated proximal jejunal apical membrane. Target hydrolase protein abundances in the apical membrane were analyzed by Western blotting and their mRNA abundances in the jejunum were measured by quantitative real-time reverse transcription (RT-) PCR with β-actin as the housekeeping gene. Expressed as percentage of the CON, DSS treatment decreased (P < 0.05) the maximal specific activities of IAP (53%), lactase (78%), maltase (56%), SI (72%), MGA (29%), and APN (22%) as well as the target hydrolase protein abundances of IAP (39%), lactase (35%), SI (36%), and APN (54%), respectively. Decreases (P < 0.05) in the mRNA abundances (% of the CON) for lactase (25%), SI (52%), MGA (75%), and APN (39%) were observed in the DSS group. However, DSS treatment increased (P < 0.05) the jejunal IAP mRNA abundance by 3.5 fold. We conclude that decreases in the small intestinal apical activities of these examined hydrolases likely contribute to overgrowth of pathogenic bacterial populations in

  14. Effects of early life dextran sulfate sodium administration on pathology and immune response in broilers and layers.

    PubMed

    Simon, K; Arts, J A J; de Vries Reilingh, G; Kemp, B; Lammers, A

    2016-07-01

    Intestinal pathology early in life may affect immune development and therefore immune responses later in life. Dextran sulfate sodium (DSS) induces colitis in rodents and is a widely used model for inflammatory bowel diseases. The present study investigated DSS as a model for early life intestinal pathology and its consequences on intestinal pathology, ileal cytokine, and immunoglobulin mRNA expression levels as well as the antibody response towards an immunological challenge later in life in chickens. Broiler and layer chicks received 2.5% DSS in drinking water during d 11 through d 18 post hatch or plain drinking water as a control. As an immunological challenge all birds received a combination of Escherichia coli lipopolysaccharide (LPS) and human serum albumin (HuSA) intramuscularly (i.m.) at d 35, and antibody titers against LPS, HuSA, and keyhole limpet hemocyanin (KLH) were determined to investigate effects of intestinal inflammation early in life on humoral immunity later in life. DSS treated birds showed a decrease in BW from which broilers quickly recovered, but which persisted for several weeks in layers. Histological examination of intestinal samples showed symptoms similar to those in rodents, including shortening and loss of villi and crypts as well as damage of the epithelial cell layer of different parts of the intestine. Effects of DSS on intestinal morphology were less severe in broilers that also showed a lower mortality in response to DSS than layers. No effect of DSS on ileal cytokine expression levels could be observed, but ileal immunoglobulin expression levels were decreased in DSS treated broilers that also showed lower antibody titers against LPS in response to the challenge. In conclusion, DSS may serve as a model for intestinal pathology early in life, although more research on the appropriate dose is necessary and is likely to differ between breeds. Results from the present study could indicate that broilers are less susceptible to DSS

  15. Preparation and characterization of ferrofluid stabilized with biocompatible chitosan and dextran sulfate hybrid biopolymer as a potential magnetic resonance imaging (MRI) T2 contrast agent.

    PubMed

    Tsai, Zei-Tsan; Tsai, Fu-Yuan; Yang, Wei-Cheng; Wang, Jen-Fei; Liu, Chao-Lin; Shen, Chia-Rui; Yen, Tzu-Chen

    2012-11-01

    Chitosan is the deacetylated form of chitin and used in numerous applications. Because it is a good dispersant for metal and/or oxide nanoparticle synthesis, chitosan and its derivatives have been utilized as coating agents for magnetic nanoparticles synthesis, including superparamagnetic iron oxide nanoparticles (SPIONs). Herein, we demonstrate the water-soluble SPIONs encapsulated with a hybrid polymer composed of polyelectrolyte complexes (PECs) from chitosan, the positively charged polymer, and dextran sulfate, the negatively charged polymer. The as-prepared hybrid ferrofluid, in which iron chloride salts (Fe³⁺ and Fe²⁺) were directly coprecipitated inside the hybrid polymeric matrices, was physic-chemically characterized. Its features include the z-average diameter of 114.3 nm, polydispersity index of 0.174, zeta potential of −41.5 mV and iron concentration of 8.44 mg Fe/mL. Moreover, based on the polymer chain persistence lengths, the anionic surface of the nanoparticles as well as the high R2/R1 ratio of 13.5, we depict the morphology of SPIONs as a cluster because chitosan chains are chemisorbed onto the anionic magnetite surfaces by tangling of the dextran sulfate. Finally, the cellular uptake and biocompatibility assays indicate that the hybrid polymer encapsulating the SPIONs exhibited great potential as a magnetic resonance imaging T2 contrast agent for cell tracking. PMID:23203267

  16. An experimental model of colitis induced by dextran sulfate sodium from acute progresses to chronicity in C57BL/6: correlation between conditions of mice and the environment

    PubMed Central

    Taghipour, Niloofar; Molaei, Mahsa; Mosaffa, Nariman; Rostami-Nejad, Mohammad; Asadzadeh Aghdaei, Hamid; Anissian, Ali; Azimzadeh, Pedram; Zali, Mohammad Reza

    2016-01-01

    Aim: To induce acute colitis progresses to chronicity in C57BL/6 mice by dextran sulfate sodium. Background: Murine models are essential tools to understand IBD pathogenesis. Among different types of chemically induced colitis models, the dextran sulfate sodium (DSS)-induced colitis model is the most common model of IBD, due to its simplicity. Patients and methods: Male C57BL/6 mice 6–8 weeks old, were collected and matched by age with controls. C57BL/6 mice treated with 2 cycles of 3.5% DSS for 4 days and 4 days of pure water between each cycle. After that, mice were sacrificed and the entire colon was removed. Small sections of the colon were fixed in formaldehyde, embedded in paraffin and sectioned with a microtome. Sections were stained with hematoxylin eosin to analyses the degree of inflammation. Results: After the first cycle oral administration of DSS, mice with severe and visible rectal bleeding and diarrhea entered into the acute phase. After day 4-5, bleeding and diarrhea were improved and mice entered into the chronic phase with peak levels of weight loss. Macroscopically, the inflammation was predominantly located in the distal colon. Microscopically, examination of the distal colon sections showed a decrease number of goblet cells, loss of crypts, signs of surface epithelial regeneration and moderate to severe infiltration of inflammatory cells in the mucosa. Conclusion: In order to achieve an experimental colitis model, our protocol is recommended for future therapies in IBD experimental modeling. PMID:26744614

  17. Interrelationship between partition behavior of organic compounds and proteins in aqueous dextran-polyethylene glycol and polyethylene glycol-sodium sulfate two-phase systems.

    PubMed

    Ferreira, Luisa A; da Silva, Nuno R; Wlodarczyk, Samarina R; Loureiro, Joana A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2016-04-22

    Partition behavior of adenosine and guanine mononucleotides was examined in aqueous dextran-polyethylene glycol (PEG) and PEG-sodium sulfate two-phase systems. The partition coefficients for each series of mononucleotides were analyzed as a functions of the number of phosphate groups and found to be dependent on the nature of nucleic base and on the type of ATPS utilized. It was concluded that an average contribution of a phosphate group into logarithm of partition coefficient of a mononucleotide cannot be used to estimate the difference between the electrostatic properties of the coexisting phases of ATPS. The data obtained in this study were considered together with those for other organic compounds and proteins reported previously, and the linear interrelationship between logarithms of partition coefficients in dextran-PEG, PEG-Na2SO4 and PEG-Na2SO4-0.215M NaCl (all in 0.01M Na- or K/Na-phosphate buffer, pH 7.4 or 6.8) was established. Similar relationship was found for the previously reported data for proteins in Dex-PEG, PEG-600-Na2SO4, and PEG-8000-Na2SO4 ATPS. It is suggested that the linear relationships of the kind established in ATPS may be observed for biological properties of compounds as well. PMID:27016118

  18. Hydrogen sulfide from a NaHS source attenuates dextran sulfate sodium (DSS)-induced inflammation via inhibiting nuclear factor-κB

    PubMed Central

    Chen, Xi; Liu, Xi-shuang

    2016-01-01

    This study investigated the alleviating effects of hydrogen sulfide (H2S), derived from sodium hydrosulfide (NaHS), on inflammation induced by dextran sulfate sodium (DSS) in both in vivo and in vitro models. We found that NaHS injection markedly decreased rectal bleeding, diarrhea, and histological injury in DSS-challenged mice. NaHS (20 μmol/L) reversed DSS-induced inhibition in cell viability in Caco-2 cells and alleviated pro-inflammation cytokine expression in vivo and in vitro, indicating an anti-inflammatory function for H2S. It was also found that H2S may regulate cytokine expression by inhibiting the nuclear factor-κB (NF-κB) signaling pathway. In conclusion, our results demonstrated that H2S alleviated DSS-induced inflammation in vivo and in vitro and that the signal mechanism might be associated with the NF-κB signaling pathway. PMID:26984841

  19. Interpretation with a Donnan-based concept of the influence of simple salt concentration on the apparent binding of divalent ions to the polyelectrolytes polystyrenesulfonate and dextran sulfate

    USGS Publications Warehouse

    Marinsky, J.A.; Baldwin, Robert F.; Reddy, M.M.

    1985-01-01

    It has been shown that the apparent enhancement of divalent metal ion binding to polyions such as polystyrenesulfonate (PSS) and dextran sulfate (DS) by decreasing the ionic strength of these mixed counterion systems (M2+, M+, X-, polyion) can be anticipated with the Donnan-based model developed by one of us (J.A.M.). Ion-exchange distribution methods have been employed to measure the removal by the polyion of trace divalent metal ion from simple salt (NaClO4)-polyion (NaPSS) mixtures. These data and polyion interaction data published earlier by Mattai and Kwak for the mixed counterion systems MgCl2-LiCl-DS and MgCl2-CsCl-DS have been shown to be amenable to rather precise analysis by this model. ?? 1985 American Chemical Society.

  20. Genetic Deletion of Klf4 in the Mouse Intestinal Epithelium Ameliorates Dextran Sodium Sulfate–induced Colitis by Modulating the NF-κB Pathway Inflammatory Response

    PubMed Central

    Ghaleb, Amr M.; Laroui, Hamed; Merlin, Didier; Yang, Vincent W.

    2014-01-01

    Background Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor expressed in the differentiated epithelial cells lining of the intestine. Under physiological conditions, KLF4 inhibits cell proliferation. Conversely, KLF4 mediates proinflammatory signaling in macrophages and its overexpression in the esophageal epithelium activates cytokines, leading to inflammation-mediated esophageal squamous cell cancer formation in mice. Here, we tested whether KLF4 has a proinflammatory activity in experimental colitis in mice. Methods Villin-Cre;Klf4fl/fl mice with intestine-specific Klf4 deletion (Klf4ΔIS) and control mice with floxed Klf4 gene (Klf4fl/fl) were treated or not with 3% dextran sodium sulfate (DSS) for 7 days to induce colitis. Additionally, WT mice were administered or not, nanoparticles loaded with scrambled or Klf4-siRNA, and concomitantly given DSS. Results Compared with DSS-treated Klf4fl/fl mice, DSS-treated Klf4ΔIS mice were significantly less sensitive to DSS-induced colitis. DSS treatment of Klf4fl/fl mice induced Klf4 expression in the crypt zone of the colonic epithelium. DSS-treated Klf4ΔIS mice had increased proliferation relative to DSS-treated control mice. DSS treatment induced NF-κB signaling pathway in Klf4fl/fl mice colon but not Klf4ΔIS mice. Additionally, WT mice given DSS and nanoparticle/Klf4-siRNA were less sensitive to colitis and had reduced Klf4 expression and while maintaining the proliferative response in the colonic epithelium. Conclusions Our results indicate that Klf4 is an important mediator of DSS-induced colonic inflammation by modulating NF-κB signaling pathway and could be involved in the pathogenesis and/or propagation of inflammatory bowel disease. Thus, Klf4 may represent a novel therapeutic target in inflammatory bowel disease. PMID:24681655

  1. The Algal Meroterpene 11-Hydroxy-1'-O-Methylamentadione Ameloriates Dextran Sulfate Sodium-Induced Colitis in Mice.

    PubMed

    Zbakh, Hanaa; Talero, Elena; Avila, Javier; Alcaide, Antonio; de Los Reyes, Carolina; Zubía, Eva; Motilva, Virginia

    2016-01-01

    Inflammatory bowel disease (IBD) is a complex class of immune disorders. Unfortunately, a treatment for total remission has not yet been found, while the use of natural product-based therapies has emerged as a promising intervention. The present study was aimed to investigate the anti-inflammatory effects of the algal meroterpene 11-hydroxy-1'-O-methylamentadione (AMT-E) in a murine model of dextran sodium sulphate (DSS)-induced colitis. AMT-E was orally administered daily (1, 10, and 20 mg/kg animal) to DSS treated mice (3% w/v) for 7 days. AMT-E prevented body weight loss and colon shortening and effectively attenuated the extent of the colonic damage. Similarly, AMT-E increased mucus production and reduced myeloperoxidase activity (marker for anti-inflammatory activity). Moreover, the algal meroterpene decreased the tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-10 levels, and caused a significant reduction of the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Our results demonstrate the protective effects of AMT-E on experimental colitis, provide an insight of the underlying mechanisms of this compound, and suggest that this class of marine natural products might be an interesting candidate for further studies on the prevention/treatment of IBD. PMID:27527191

  2. The Algal Meroterpene 11-Hydroxy-1′-O-Methylamentadione Ameloriates Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Zbakh, Hanaa; Talero, Elena; Avila, Javier; Alcaide, Antonio; de los Reyes, Carolina; Zubía, Eva; Motilva, Virginia

    2016-01-01

    Inflammatory bowel disease (IBD) is a complex class of immune disorders. Unfortunately, a treatment for total remission has not yet been found, while the use of natural product-based therapies has emerged as a promising intervention. The present study was aimed to investigate the anti-inflammatory effects of the algal meroterpene 11-hydroxy-1′-O-methylamentadione (AMT-E) in a murine model of dextran sodium sulphate (DSS)-induced colitis. AMT-E was orally administered daily (1, 10, and 20 mg/kg animal) to DSS treated mice (3% w/v) for 7 days. AMT-E prevented body weight loss and colon shortening and effectively attenuated the extent of the colonic damage. Similarly, AMT-E increased mucus production and reduced myeloperoxidase activity (marker for anti-inflammatory activity). Moreover, the algal meroterpene decreased the tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-10 levels, and caused a significant reduction of the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Our results demonstrate the protective effects of AMT-E on experimental colitis, provide an insight of the underlying mechanisms of this compound, and suggest that this class of marine natural products might be an interesting candidate for further studies on the prevention/treatment of IBD. PMID:27527191

  3. White and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate.

    PubMed

    Monk, Jennifer M; Zhang, Claire P; Wu, Wenqing; Zarepoor, Leila; Lu, Jenifer T; Liu, Ronghua; Pauls, K Peter; Wood, Geoffrey A; Tsao, Rong; Robinson, Lindsay E; Power, Krista A

    2015-07-01

    Common beans are a rich source of nondigestible fermentable components and phenolic compounds that have anti-inflammatory effects. We assessed the gut-health-promoting potential of kidney beans in healthy mice and their ability to attenuate colonic inflammation following dextran sodium sulphate (DSS) exposure (via drinking water, 2% DSS w/v, 7 days). C57BL/6 mice were fed one of three isocaloric diets: basal diet control (BD), or BD supplemented with 20% cooked white (WK) or dark red kidney (DK) bean flour for 3 weeks. In healthy mice, anti-inflammatory microbial-derived cecal short chain fatty acid (SCFA) levels (acetate, butyrate and propionate), colon crypt height and colonic Mucin 1 (MUC1) and Resistin-like Molecule beta (Relmβ) mRNA expression all increased in WK- and DK-fed mice compared to BD, indicative of enhanced microbial activity, gut barrier integrity and antimicrobial defense response. During colitis, both bean diets reduced (a) disease severity, (b) colonic histological damage and (c) increased mRNA expression of antimicrobial and barrier integrity-promoting genes (Toll-like Receptor 4 (TLR4), MUC1-3, Relmβ and Trefoil Factor 3 (TFF3)) and reduced proinflammatory mediator expression [interleukin (IL)-1β, IL-6, interferon (IFN)γ, tumor necrosis factor (TNF)α and monocyte chemoattractant protein-1], which correlated with reduced colon tissue protein levels. Further, bean diets exerted a systemic anti-inflammatory effect during colitis by reducing serum levels of IL-17A, IFNγ, TNFα, IL-1β and IL-6. In conclusion, both WK and DK bean-supplemented diets enhanced microbial-derived SCFA metabolite production, gut barrier integrity and the microbial defensive response in the healthy colon, which supported an anti-inflammatory phenotype during colitis. Collectively, these data demonstrate a beneficial colon-function priming effect of bean consumption that mitigates colitis severity. PMID:25841250

  4. Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis.

    PubMed

    Trivedi, P P; Jena, G B

    2013-09-01

    Ulcerative colitis affects many people worldwide. Inflammation and oxidative stress play a vital role in its pathogenesis. Previously, we reported that ulcerative colitis leads to systemic genotoxicity in mice. The present study was aimed at elucidating the role of α-lipoic acid in ulcerative colitis-associated local and systemic damage in mice. Experimental colitis was induced using 3%w/v dextran sulfate sodium in drinking water for 2 cycles. α-Lipoic acid was administered in a co-treatment (20, 40, 80 mg/kg bw) and post-treatment (80 mg/kg bw) schedule. Various biochemical parameters, histological evaluation, comet and micronucleus assays, immunohistochemistry and western blot analysis were employed to evaluate the effect of α-lipoic acid in mice with ulcerative colitis. The protective effect of α-lipoic acid was mediated through the modulation of nuclear factor kappa B, cyclooxygenase-2, interleukin 17, signal transducer and activator of transcription 3, nuclear erythroid 2-related factor 2, NADPH: quinone oxidoreductase-1, matrix metalloproteinase-9 and connective tissue growth factor. Further, ulcerative colitis led to an increased gut permeability, plasma lipopolysaccharide level, systemic inflammation and genotoxicity in mice, which was reduced with α-lipoic acid treatment. The present study identifies the underlying mechanisms involved in α-lipoic acid-mediated protection against ulcerative colitis and the associated systemic damage in mice. PMID:23793040

  5. Inhibitory effects of Dendrobium candidum Wall ex Lindl. on azoxymethane- and dextran sulfate sodium-induced colon carcinogenesis in C57BL/6 mice

    PubMed Central

    WANG, QIANG; SUN, PENG; LI, GUIJIE; ZHU, KAI; WANG, CUN; ZHAO, XIN

    2014-01-01

    Dendrobium candidum Wall ex Lindl. was purchased for the evaluation of azoxymethane (AOM)- and dextran sulfate sodium (DSS)-induced colon carcinogenesis in C57BL/6 mice. The body weights of the AOM- and DSS-induced colon cancer control groups were lighter than those of the untreated mice. D. candidum increased the body weights of the mice compared with the control group, and reduced the levels of the serum proinflammatory cytokines, IL-6, IL-12, TNF-α and IFN-γ, compared with the colon cancer control group. Reverse transcription-polymerase chain reaction and western blot analyses of the apoptotic-related genes, bax, bcl-2, caspase-3 and caspase-9, were performed in the colon tissues. The high-concentration D. candidum group showed a significant increase in the mRNA and protein expression levels of bax, caspase-3 and caspase-9 and decreased expression levels of bcl-2 compared with the control group. These results indicate that D. candidum Wall ex Lindl. exhibits preventive effects against colon carcinogenesis in mice. PMID:24396476

  6. Identification of Commensal Bacterial Strains That Modulate Yersinia enterocolitica and Dextran Sodium Sulfate-Induced Inflammatory Responses: Implications for the Development of Probiotics▿

    PubMed Central

    Frick, Julia S.; Fink, Kerstin; Kahl, Frauke; Niemiec, Maria J.; Quitadamo, Matteo; Schenk, Katrin; Autenrieth, Ingo B.

    2007-01-01

    An increasing body of evidence suggests that probiotic bacteria are effective in the treatment of enteric infections, although the molecular basis of this activity remains elusive. To identify putative probiotics, we tested commensal bacteria in terms of their toxicity, invasiveness, inhibition of Yersinia-induced inflammation in vitro and in vivo, and modulation of dextran sodium sulfate (DSS)-induced colitis in mice. The commensal bacteria Escherichia coli, Bifidobacterium adolescentis, Bacteroides vulgatus, Bacteroides distasonis, and Streptococcus salivarius were screened for adhesion to, invasion of, and toxicity for host epithelial cells (EC), and the strains were tested for their ability to inhibit Y. enterocolitica-induced NF-κB activation. Additionally, B. adolescentis was administered to mice orally infected with Y. enterocolitica and to mice with mucosae impaired by DSS treatment. None of the commensal bacteria tested was toxic for or invaded the EC. B. adolescentis, B. distasonis, B. vulgatus, and S. salivarius inhibited the Y. enterocolitica-induced NF-κB activation and interleukin-8 production in EC. In line with these findings, B. adolescentis-fed mice had significantly lower results for mean pathogen burden in the visceral organs, intestinal tumor necrosis factor alpha mRNA expression, and loss of body weight upon oral infection with Y. enterocolitica. In addition, the administration of B. adolescentis decelerated inflammation upon DSS treatment in mice. We suggest that our approach might help to identify new probiotics to be used for the treatment of inflammatory and infectious gastrointestinal disorders. PMID:17485456

  7. Dietary Supplementation with a Low Dose of Polyphenol-Rich Grape Pomace Extract Prevents Dextran Sulfate Sodium-Induced Colitis in Rats.

    PubMed

    Boussenna, Ahlem; Joubert-Zakeyh, Juliette; Fraisse, Didier; Pereira, Bruno; Vasson, Marie-Paule; Texier, Odile; Felgines, Catherine

    2016-08-01

    Evidence from several epidemiological and experimental studies points to a beneficial role of dietary polyphenols in inflammatory bowel disease. In this study, we investigate the protective effect of dietary supplementation with various amounts of a polyphenol-rich grape pomace extract (GPE) on the development of dextran sulfate sodium (DSS)-induced colitis in rats. Rats were fed 21 days on a semisynthetic diet enriched with GPE (0.1%, 0.5%, and 1%), and acute colitis was induced by DSS (40 g/L in the drinking water) administration during the last 7 days. The low GPE content in the diet (0.1%) attenuated clinical signs and colon shortening and limited DSS-induced histological lesions. GPE 0.1% also attenuated the DSS-induced increase in myeloperoxidase activity and improved superoxide dismutase activity. Higher amounts of GPE in the diet induced only weak and nonsignificant protective effects. These results suggest that consumption of a low amount of polyphenol-rich GPE helps protect against colitis development. PMID:27355494

  8. Dead Nano-Sized Lactobacillus plantarum Inhibits Azoxymethane/Dextran Sulfate Sodium-Induced Colon Cancer in Balb/c Mice.

    PubMed

    Lee, Hyun Ah; Kim, Hyunung; Lee, Kwang-Won; Park, Kun-Young

    2015-12-01

    The chemopreventive effects of dead nano-sized Lactobacillus plantarum (nLp) on colon carcinogenesis, induced by dextran sulfate sodium and azoxymethane, were evaluated using Balb/c mice and compared with the effects of pure live L. plantarum (pLp). nLp is a dead shrunken form of L. plantarum derived from kimchi and has a particle size of 0.5-1.0 μm. Animals fed nLp showed less weight loss, longer colons, lower colon weight/length ratios, and fewer colonic tumors compared with pLp. In addition, the administration of nLp significantly reduced the expression of inflammatory markers, mediated the expression of cell cycle and apoptotic markers in colon tissues, and elevated fecal IgA levels more than pLp. Accordingly, the present study shows that the anticolorectal cancer activities of nLp are greater than those of pLp and suggests this is due to the suppression of inflammation, the induction of cell cycle arrest and apoptosis, and enhanced IgA secretion. PMID:26595186

  9. Acetylsalicylic Acid reduces the severity of dextran sodium sulfate-induced colitis and increases the formation of anti-inflammatory lipid mediators.

    PubMed

    Köhnke, Thomas; Gomolka, Beate; Bilal, Süleyman; Zhou, Xiangzhi; Sun, Yanping; Rothe, Michael; Baumgart, Daniel C; Weylandt, Karsten H

    2013-01-01

    The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA) enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI) protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA) after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation. PMID:24083240

  10. Evaluation of chemical mediators and cellular response during acute and chronic gut inflammatory response induced by dextran sodium sulfate in mice.

    PubMed

    Bento, Allisson Freire; Leite, Daniela Ferraz Pereira; Marcon, Rodrigo; Claudino, Rafaela Franco; Dutra, Rafael Cypriano; Cola, Maíra; Martini, Alessandra Cadete; Calixto, João B

    2012-12-01

    Inflammatory bowel disease (IBD) affects millions of people worldwide but its pathophysiology remains unclear. Therefore, experimental models of colitis have contributed crucially for the understanding of IBD, and also in the investigations for effective therapies. Herein we investigated the kinetics of inflammatory mediator production and cell infiltration during acute and chronic dextran sodium sulfate (DSS)-induced colitis. The induction phases with DSS were characterized by severe disease activity with massive colonic polymorphonuclear infiltration and increased levels of tumor necrosis factor-α (TNF-α), keratinocyte-derived chemokine (CXCL1/KC), interleukin (IL)-17 and vascular adhesion molecule-1 (VCAM-1). Interestingly, in the recovery periods, we found marked increase of anti-inflammatory mediators IL-10, IL-4, transforming growth factor-β (TGF-β) and cyclooxygenase 2 (COX-2) that seems be essential for the resolution of intestinal inflammation. Furthermore, nuclear factor κB (NFκB) and regulatory T cell marker forkhead box P3 (FoxP3) were increased gradually during experimental colitis, demonstrating a discrepant profile response and evident immune disbalance in the chronic phase of intestinal mucosal inflammation. Taken together, these results provide valuable information for studies on DSS-induced colitis and especially for the identification of biomarkers that predict disease course and possible therapeutic interventions. PMID:23000912

  11. Selenium-Containing Phycocyanin from Se-Enriched Spirulina platensis Reduces Inflammation in Dextran Sulfate Sodium-Induced Colitis by Inhibiting NF-κB Activation.

    PubMed

    Zhu, Chenghui; Ling, Qinjie; Cai, Zhihui; Wang, Yun; Zhang, Yibo; Hoffmann, Peter R; Zheng, Wenjie; Zhou, Tianhong; Huang, Zhi

    2016-06-22

    Selenium (Se) plays an important role in fine-tuning immune responses. Inflammatory bowel disease (IBD) involves hyperresponsive immunity of the digestive tract, and a low Se level might aggravate IBD progression; however, the beneficial effects of natural Se-enriched diets on IBD remain unknown. Previously, we developed high-yield Se-enriched Spirulina platensis (Se-SP) as an excellent organic nutritional Se source. Here we prepared Se-containing phycocyanin (Se-PC) from Se-SP and observed that Se-PC administration effectively reduced the extent of colitis in mouse induced by dextran sulfate sodium. Supplementation with Se-PC resulted in significant protective effects, including mitigation of body weight loss, bloody diarrhea, and colonic inflammatory damage. The anti-inflammatory effects of Se-PC supplementation were found to involve modulation of cytokines, including IL-6, TNF-α, MCP-1, and IL-10. Mechanistically, Se-PC inhibited the activation of macrophages by suppressing the nuclear translocation of NF-κB, which is involved in the transcription of these pro-inflammatory cytokines. These results together suggest potential benefits of Se-PC as a functional Se supplement to reduce the symptoms of IBD. PMID:27223481

  12. Protective Effect of Dietary Lily Bulb on Dextran Sulfate Sodium-Induced Colitis in Rats Fed a High-Fat Diet.

    PubMed

    Okazaki, Yukako; Chiji, Hideyuki; Kato, Norihisa

    2016-01-01

    Lily bulb is traditionally consumed in East Asia and contains high amounts of glucomannan. This study investigated the effect of dietary lily bulb on dextran sulfate sodium (DSS)-induced colitis in rats fed a high-fat (HF) diet. Male Sprague-Dawley rats were fed a diet containing 30% beef tallow with or without 7% steamed lily bulb powder for 17 d. Experimental colitis was induced by replacing drinking water with DSS during the last 7 d. The disease activity index (DAI) was significantly lower in the lily bulb+DSS group than in the DSS group on day 17. The fecal abundance of Bifidobacterium was significantly reduced in the DSS group compared with that in the control group, but it was recovered by lily bulb intake. Cecal butyrate, fecal mucins, and alkaline phosphatase (ALP) activity were significantly higher in the DSS group than in the control group. Dietary lily bulb potentiated the increase in cecal butyrate, fecal mucins, and the ALP activity caused by DSS treatment. These results indicate that lily bulb attenuates DSS-induced colitis by modulating colonic microflora, organic acids, mucins, and ALP activity in HF diet-fed rats. PMID:27465728

  13. Surface modification of poly(tetramethylene adipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan and dextran sulfate polyelectrolyte multiplayer.

    PubMed

    Yu, Da-Guang; Jou, Chi-Hsiung; Lin, Wen-Ching; Yang, Ming-Chien

    2007-02-15

    The improvement of hydrophilicity and hemocompatibility of poly(tetramethylene adipate-co-terephthalate) (PTAT) membrane was developed via polyelectrolyte multilayers (PEMs) immobilization. The polysaccharide PEMs included chitosan (CS, as a positive-charged and antibacterial agent) and dextran sulfate (DS, as a negative-charged and anti-adhesive agent) were successfully prepared using the aminolyzed PTAT membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of as-modified PTAT membranes reached to the steady value after four bilayers of coating, hence suggesting that the full coverage was achieved. It could be found that the PTAT-PEMs membranes with DS as the outmost layer could resist the platelet adhesion and human plasma fibrinogen (HPF) adsorption, thereby prolonging effectively the blood coagulation times. According to L929 fibroblast cell growth inhibition index, the as-prepared PTAT membranes exhibited non-cytotoxic. Overall results demonstrated that such an easy, valid and shape-independent processing should be potential for surface modification of PTAT membrane in the application of hemodialysis devices. PMID:17174535

  14. Ethanol extract of Cordyceps militaris grown on germinated soybeans attenuates dextran-sodium-sulfate- (DSS-) induced colitis by suppressing the expression of matrix metalloproteinases and inflammatory mediators.

    PubMed

    Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    The effect of Cordyceps militaris (CM) grown on germinated soybeans (GSC) in the inflammatory bowel disease (IBD) model was studied. To demonstrate the preventive effect of GSC extract in a dextran-sodium-sulfate- (DSS-) induced acute colitis mouse model, GSC was administered 2 days before DSS coadministration. GSC significantly suppressed DSS-induced disease activity index (DAI) as well as histopathological scores, compared to control or CM-treated group. To elucidate the anti-IBD activity of GSC, we checked the level of matrix metalloproteinases (MMPs) and inflammatory mediators. GSC extract decreased the level of MMP-3 and -9 mRNAs and p53 proteins. The level and activity of LPS-induced MMP-9 were reduced in GSC-treated RAW264.7 cells. It also attenuated the level of inducible nitric oxide synthase (iNOS) and tumor necrosis factor- (TNF-) α mRNAs both in colon tissue and in macrophage cells. These results suggest that GSC can be applied as a protective agent against IBDs. PMID:23841050

  15. Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis

    PubMed Central

    Ritchie, Lauren E.; Sturino, Joseph M.; Carroll, Raymond J.; Rooney, Lloyd W.; Azcarate-Peril, M. Andrea; Turner, Nancy D.

    2015-01-01

    The microbiota affects host health, and dysbiosis is involved in colitis. Sorghum bran influences butyrate concentrations during dextran sodium sulfate (DSS) colitis, suggesting microbiota changes. We aimed to characterize the microbiota during colitis, and ascertain if polyphenol-rich sorghum bran diets mitigate these effects. Rats (n = 80) were fed diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins), or Hi Tannin black (both) sorghum bran. Inflammation was induced three times using 3% DSS for 48 h (40 rats, 2 week separation), and the microbiota characterized by pyrosequencing. The Firmicutes/Bacteroidetes ratio was higher in Cellulose DSS rats. Colonic injury negatively correlated with Firmicutes, Actinobacteria, Lactobacillales and Lactobacillus, and positively correlated with Unknown/Unclassified. Post DSS#2, richness was significantly lower in Sumac and Hi Tannin black. Post DSS#3 Bacteroidales, Bacteroides, Clostridiales, Lactobacillales and Lactobacillus were reduced, with no Clostridium identified. Diet significantly affected Bacteroidales, Bacteroides, Clostridiales and Lactobacillus post DSS#2 and #3. Post DSS#3 diet significantly affected all genus, including Bacteroides and Lactobacillus, and diversity and richness increased. Sumac and Hi Tannin black DSS had significantly higher richness compared to controls. Thus, these sorghum brans may protect against alterations observed during colitis including reduced microbial diversity and richness, and dysbiosis of Firmicutes/Bacteroidetes. PMID:25764457

  16. Acetylsalicylic Acid Reduces the Severity of Dextran Sodium Sulfate-Induced Colitis and Increases the Formation of Anti-Inflammatory Lipid Mediators

    PubMed Central

    Köhnke, Thomas; Bilal, Süleyman; Zhou, Xiangzhi; Rothe, Michael; Baumgart, Daniel C.; Weylandt, Karsten H.

    2013-01-01

    The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA) enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI) protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA) after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation. PMID:24083240

  17. Effect of particle size on their accumulation in an inflammatory lesion in a dextran sulfate sodium (DSS)-induced colitis model.

    PubMed

    Watanabe, Ayaka; Tanaka, Hiroki; Sakurai, Yu; Tange, Kota; Nakai, Yuta; Ohkawara, Tatsuya; Takeda, Hiroshi; Harashima, Hideyoshi; Akita, Hidetaka

    2016-07-25

    Taking advantage of the enhanced permeation and retention (EPR) effect is a promising approach for delivering macromolecules or nanoparticles to tumors. Recent studies revealed that this strategy is also applicable for targeting other pathological lesions (i.e. inflammatory disease). In the present study, we report the optimal size of a nanoparticle for allowing the higher accumulation of a particle in an inflammatory lesion using a dextran sulfate sodium (DSS)-induced colitis model. As a nanoparticle platform, we utilized a SS-cleavable and pH-activated lipid-like material (ssPalm), that can be used to produce particles in a variety of sizes ranging from 50nm to 180nm while using the same lipid composition. In healthy mice, particle accumulation remained low regardless of size. In contrast, the accumulation in inflammatory colon tissue was enhanced depending on the progress of the inflammation. In this situation, the apparent uptake clearance accumulation of a mid-sized particle (113nm on average) was higher than that for smaller and larger (54nm and 183nm in average, respectively) ones. Therefore, controlling particle size is an important parameter for the extensive targeting of inflammatory lesion. PMID:27231121

  18. Curcumin represses the activity of inhibitor-κB kinase in dextran sulfate sodium-induced colitis by S-nitrosylation.

    PubMed

    Kao, Ning-Jo; Hu, Jia-Yuan; Wu, Chien-Sheng; Kong, Zwe-Ling

    2016-09-01

    In this study, we investigated the preventive effects of curcumin using dextran sulfate sodium (DSS)-induced colitis and the potential role of curcumin in regulation of anti-inflammation through S-nitrosylation. After curcumin treatment for 6days, the body weight and disease activity index of DSS-induced mice was alleviated and the colonic length was also rescued. Western blot presented that the protein expression of iNOS can be reduced by curcumin. Consistently, mRNA level of iNOS and pro-inflammatory cytokines, such as TNFα, IL-1β, and IL-6, was also repressed. Moreover, Curcumin reduced the amount of nitrite in DSS-induced colitis but not affected total S-nitrosylation level on proteins on day 6, indicating that curcumin inhibited NO oxidation. Furthermore, the protection of S-nitrosylation on IKKβ in DSS-induced colitis for 6days by curcumin caused the repression of IκB phosphorylation and NF-κB activation. In conclusion, this study verified that curcumin-mediated S-nitrosylation may be as an important regulator for anti-inflammation in DSS-induced colitis of mice. PMID:27233000

  19. Effect of N-acetylcysteine on the murine model of colitis induced by dextran sodium sulfate through up-regulating PON1 activity.

    PubMed

    You, Yu; Fu, Jian-Jiang; Meng, Jun; Huang, Guo-Dong; Liu, Yu-Hui

    2009-08-01

    Reactive oxygen species (ROS) are increased in inflammatory bowel disease (IBD) and have been implicated as mediators of intestinal inflammation. We investigated the hypothesis that N-acetylcysteine (NAC) as a glutathione (GSH) precursor attenuates disease progression in a murine dextran sodium sulfate (DSS)-induced colitis model. A colitis model was induced by adding 5% DSS into the drinking water for 7 days. BALB/c mice were injiciatur enema with saline, 5-ASA, N-acetylcysteine, respectively, and free drinking water as control group. DSS-treated mice developed severe colitis as shown by bloody diarrhea, weight loss, and pathologic involvement. Colon lengths were significantly decreased in DSS-treated mice with decreased GSH activity too (P < 0.01). ROS in the colon, the level of interleukin 1 beta (IL-1 beta) in colonic mucosa, serum tumor necrosis factor a (TNF-alpha), MPO, and MDA were significantly increased in DSS-treated animals (P < 0.01), with decreased PON1 activity (P < 0.01). However, NAC significantly decreased colonic MPO activity, ROS, TNF-alpha and IL-1 beta levels and increased PON1 activity and GSH concentration. Moreover, NAC attenuated the macroscopic colonic damage and the histopathologic changes-induced by DSS while similar to 5-ASA group. These results suggest that NAC may be effective in the treatment of colitis through its up-regulating PON1 and scavenging oxygen-derived free radicals. PMID:19034653

  20. Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis.

    PubMed

    Ritchie, Lauren E; Sturino, Joseph M; Carroll, Raymond J; Rooney, Lloyd W; Azcarate-Peril, M Andrea; Turner, Nancy D

    2015-03-01

    The microbiota affects host health, and dysbiosis is involved in colitis. Sorghum bran influences butyrate concentrations during dextran sodium sulfate (DSS) colitis, suggesting microbiota changes. We aimed to characterize the microbiota during colitis, and ascertain if polyphenol-rich sorghum bran diets mitigate these effects. Rats (n = 80) were fed diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins), or Hi Tannin black (both) sorghum bran. Inflammation was induced three times using 3% DSS for 48 h (40 rats, 2 week separation), and the microbiota characterized by pyrosequencing. The Firmicutes/Bacteroidetes ratio was higher in Cellulose DSS rats. Colonic injury negatively correlated with Firmicutes, Actinobacteria, Lactobacillales and Lactobacillus, and positively correlated with Unknown/Unclassified. Post DSS#2, richness was significantly lower in Sumac and Hi Tannin black. Post DSS#3 Bacteroidales, Bacteroides, Clostridiales, Lactobacillales and Lactobacillus were reduced, with no Clostridium identified. Diet significantly affected Bacteroidales, Bacteroides, Clostridiales and Lactobacillus post DSS#2 and #3. Post DSS#3 diet significantly affected all genus, including Bacteroides and Lactobacillus, and diversity and richness increased. Sumac and Hi Tannin black DSS had significantly higher richness compared to controls. Thus, these sorghum brans may protect against alterations observed during colitis including reduced microbial diversity and richness, and dysbiosis of Firmicutes/Bacteroidetes. PMID:25764457

  1. Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice

    PubMed Central

    Reichmann, Florian; Hassan, Ahmed Mostafa; Farzi, Aitak; Jain, Piyush; Schuligoi, Rufina; Holzer, Peter

    2015-01-01

    Psychological stress causes disease exacerbation and relapses in inflammatory bowel disease (IBD) patients. Since studies on stress processing during visceral inflammation are lacking, we investigated the effects of experimental colitis as well as psychological stress on neurochemical and neuroendocrine changes as well as behaviour in mice. Dextran sulfate sodium (DSS)-induced colitis and water avoidance stress (WAS) were used as mouse models of colitis and mild psychological stress, respectively. We measured WAS-associated behaviour, gene expression and proinflammatory cytokine levels within the amygdala, hippocampus and hypothalamus as well as plasma levels of cytokines and corticosterone in male C57BL/6N mice. Animals with DSS-induced colitis presented with prolonged immobility during the WAS session, which was associated with brain region-dependent alterations of neuropeptide Y (NPY), NPY receptor Y1, corticotropin-releasing hormone (CRH), CRH receptor 1, brain-derived neurotrophic factor and glucocorticoid receptor gene expression. Furthermore, the combination of DSS and WAS increased interleukin-6 and growth regulated oncogene-α levels in the brain. Altered gut-brain signalling in the course of DSS-induced colitis is thought to cause the observed distinct gene expression changes in the limbic system and the aberrant molecular and behavioural stress responses. These findings provide new insights into the effects of stress during IBD. PMID:26066467

  2. Bovine milk-derived α-lactalbumin inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sodium sulfate-treated mice.

    PubMed

    Yamaguchi, Makoto; Takai, Shoko; Hosono, Akira; Seki, Taiichiro

    2014-01-01

    Cyclooxygenase-2 is expressed early in colon carcinogenesis and plays crucial role in the progress of the disease. Recently, we found that α-lactalbumin had anti-inflammatory activity by inhibiting cyclooxygenase-2. In experiment 1, we investigated the effects of α-lactalbumin on the colon carcinogenesis initiated with azoxymethane (AOM) followed by promotion with dextran sodium sulfate (DSS) in mice. Dietary treatment with α-lactalbumin decreased fecal occult blood score at 3 days after DSS intake. α-Lactalbumin also decreased the colon tumor at week 9. In experiment 2, AOM-treated mice were sacrificed at 7 days after DSS intake. The plasma and colon prostaglandin E2 (PGE2) levels in AOM/DSS-treated mice were higher than those in the DSS-treated mice without initiation by AOM. α-Lactalbumin decreased PGE2 in both plasma and colon. These results suggest that α-lactalbumin effectively inhibited colon carcinogenesis, and the inhibition may be due to the decreased PGE2 by inhibiting cyclooxygenase-2 at cancer promotion stages. PMID:25036966

  3. Enterococcus durans TN-3 Induces Regulatory T Cells and Suppresses the Development of Dextran Sulfate Sodium (DSS)-Induced Experimental Colitis

    PubMed Central

    Kanda, Toshihiro; Ohno, Masashi; Imaeda, Hirotsugu; Shimada, Takashi; Inatomi, Osamu; Bamba, Shigeki; Sugimoto, Mitsushige; Andoh, Akira

    2016-01-01

    Background and Aims Probiotic properties of Enterococcus strains have been reported previously. In this study, we investigated the effects of Enterococcus (E.) durans TN-3 on the development of dextran sulfate sodium (DSS) colitis. Methods BALB/c mice were fed with 4.0% DSS in normal chow. Administration of TN-3 (10mg/day) was initiated 7days before the start of DSS feeding. Mucosal cytokine expression was analyzed by real time-PCR and immunohistochemistry. The lymphocyte subpopulation were analyzed by flow cytometry. The gut microbiota profile was analyzed by a terminal-restriction fragment length polymorphism method (T-RFLP). Results The disease activity index and histological colitis score were significantly lower in the DSS plus TN-3 group than in the DSS group. The mucosal mRNA expression of proinflammatory cytokines (IL-1β, IL-6, IL-17A and IFN-γ) decreased significantly in the DSS plus TN-3 group as compared to the DSS group. The proportion of regulatory T cells (Treg cells) in the mucosa increased significantly in the DSS plus TN-3 group as compared to the DSS group. Both fecal butyrate levels and the diversity of fecal microbial community were significantly higher in the TN-3 plus DSS group than in the DSS group. Conclusions E. durans TN-3 exerted an inhibitory effect on the development of DSS colitis. This action might be mediated by the induction of Treg cells and the restoration of the diversity of the gut microbiota. PMID:27438072

  4. Development of antiviral gene therapy for Monodon baculovirus using dsRNA loaded chitosan-dextran sulfate nanocapsule delivery system in Penaeus monodon post-larvae.

    PubMed

    Ramesh Kumar, D; Elumalai, Rajasegaran; Raichur, Ashok M; Sanjuktha, M; Rajan, J J; Alavandi, S V; Vijayan, K K; Poornima, M; Santiago, T C

    2016-07-01

    In the present study, a suitable carrier system was developed for the delivery of dsRNA into Penaeus monodon (P. monodon) post larvae to silence the Monodon baculovirus (MBV) structural gene of p74. The carrier system was developed by layer by layer adsorption of oppositely charged chitosan-dextran sulfate, on charged silica nanoparticles. The silica template was removedto produce multilayered hollow nanocapsules (CS-DS) that were utilized for dsRNA loading at an alkaline pH. The capsule's surface was modified by conjugating with shrimp feed for enhanced cellular uptake. In vivo cellular uptake of CS-DS/FITC loaded nanocapsules conjugated with feed was studied after oral administration into post-larvae. The results revealed that the encapsulated FITC was effectively delivered and exhibited a sustained release into the cytoplasm of shrimp post-larvae. The MBV challenge study for structural gene p74was conducted after 3-25 days of post infection (dpi) with respective CS-DS/dsRNA coated with feed. The results showed a significant survival rate of 86.63% and effective gene silencing in P. monodon. Our findings indicated that the delivery of dsRNA using shrimp feed coatedCS-DSnanocapsules could be a novel approach to prevent viral infections in shrimp. PMID:27132538

  5. N-acetylcysteine improves redox status, mitochondrial dysfunction, mucin-depleted crypts and epithelial hyperplasia in dextran sulfate sodium-induced oxidative colitis in mice.

    PubMed

    Amrouche-Mekkioui, Ilhem; Djerdjouri, Bahia

    2012-09-15

    The effect of N-acetylcysteine (NAC), a pharmacological antioxidant was investigated in a murine model of chronic colitis. Male NMRI mice were given 5% dextran sulfate sodium (DSS) in drinking water for 5 days followed by 10 days of water, three times. Compared to control mice given water, DSS-treated mice displayed severe imbalanced redox status with decreased glutathione and catalase, but increased malondialdehyde, protein carbonyls, nitric oxide and myeloperoxidase levels, at days 35th (active colitis) and 45th (recovery period). It also resulted in mitochondrial dysfunction, mucosal ulcers, mucin-depleted crypts and epithelial cell apoptosis. Crypt abscesses and glandular hyperplasia occurred selectively in distal colon. NAC (150 mg/kg) given in drinking water for 45 days along with 3 DSS cycles improved the hallmarks of DSS-colitis. Interestingly, the moderate impact of NAC on lipids and proteins oxidation correlated with myeloperoxidase and nitric oxide levels.NAC as a mucoregulator and a thiol restoring agent is protective on oxidative crypt alterations, mucin depletion, epithelial cell hyperplasia and apoptosis. Taken together, our results highlight the role of NAC as a scavenger of phagocytes-derived reactive oxygen species in mice DDS-colitis, suggesting that a long term NAC diet might be beneficial in inflammatory bowel diseases and colorectal cancer. PMID:22732651

  6. Extracorporeal irradiation of the blood in a rate model for human acute myelocytic leukemia: increased efficacy after combination with cell mobilization by low-molecular-weight dextran sulfate

    SciTech Connect

    Hagenbeek, A.; Martens, A.C.M.

    1981-10-01

    The efficacy of extracorporeal irradiation of the blood (ECIB) in combination with cell mobilization by dextran sulfate (DS; MW 17,000) was investigated in a rat model for human acute myelocytic leukemia. Repeated injections with DS (q* 3 hr) induced a significant increase in the number of peripheral leukemic cells, i.e., up to 4.5 times the original number 6 hr after the first injection. Cell mobilization in combination with ECIB (2 x 8 hr) caused a depletion of the blood compartments and the rapidly exchangeable tissue pool down to 10 to 25% of their original sizes, as determined by measuring the distribution of infused /sup 51/Cr-labeled leukemic cells and organ weights. These size reductions are about two times as great as those in rats treated with ECIB alone. In addition, the slowly exchangeable tissue pools are significantly depleted when DS is added to ECIB treatment. The reduction the total tumor load was about 50%. This, however, is too small to result in a significant different in survival time between treated and nontreated leukemic rats.

  7. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation

    PubMed Central

    Dou, Wei; Zhang, Jingjing; Ren, Gaiyan; Ding, Lili; Sun, Aning; Deng, Chao; Wu, Xiaojun; Wei, Xiaohui; Mani, Sridhar; Wang, Zhengtao

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gastrointestinal (GI) tract, and currently no curative treatment available. Mangiferin, a natural glucosylxanthone mainly from the fruit, leaves and stem bark of the mango tree, has strong anti-inflammatory activity. We sought to investigate whether mangiferin attenuates inflammation in a mouse model of chemically induced IBD. Pre-administration of mangiferin significantly attenuated dextran sulfate sodium (DSS)-induced body weight loss, diarrhea, colon shortening and histological injury, which correlated with the decline in the activity of myeloperoxidase (MPO) and the level of tumor necrosis factor-α (TNF-α) in the colon. DSS-induced degradation of inhibitory κBα (IκBα) and the phosphorylation of nuclear factor-kappa B (NF-κB) p65 as well as the mRNA expression of pro-inflammatory mediators (inducible NO synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), TNF-α, interleukin-1β (IL-1β) and IL-6) in the colon were also downregulated by mangiferin treatment. Additionally, the phosphorylation/activation of DSS-induced mitogen-activated protein kinase (MAPK) proteins was also inhibited by mangiferin treatment. In accordance with the in vivo results, mangiferin exposure blocked TNF-α-stimulated nuclear translocation of NF-κB in RAW264.7 mouse macrophage cells. Transient transfection gene reporter assay performed in TNF-α-stimulated HT-29 human colorectal adenocarcinoma cells indicated that mangiferin inhibits NF-κB transcriptional activity in a dose-dependent manner. The current study clearly demonstrates a protective role for mangiferin in experimental IBD through NF-κB and MAPK signaling inhibition. Since mangiferin is a natural compound with little toxicity, the results may contribute to the effective utilization of mangiferin in the treatment of human IBD. PMID:25194678

  8. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation.

    PubMed

    Melgar, Silvia; Karlsson, Agneta; Michaëlsson, Erik

    2005-06-01

    Exposure to dextran sulfate sodium (DSS) induces acute colitis, which is normally resolved after DSS removal. To study chronicity, mice are typically subjected to three to five cycles of weekly DSS exposures, each followed by a 1- to 2-wk rest period. Here, we describe a novel and convenient way of inducing chronic, progressive colitis by a single exposure to DSS. C57BL/6 mice exposed to DSS for 5 days developed acute colitis that progressed to severe chronic inflammation. The plasma haptoglobin levels remained high during the chronic phase, showing that the inflammation was active. Surprisingly, the mice regained their original weight along with the progression of colitis, and the only apparent symptom was loose feces. Histopathological changes 4 wk after DSS removal were dense infiltrates of mononuclear cells, irregular epithelial structure, and persistent deposits of collagen. A progressive production of the cytokines IL-1beta, IL-12 p70, and IL-17 correlated with the extensive cellular infiltration, whereas high IFN-gamma production was mainly found late in the chronic phase. Similar to C57BL/6 mice, BALB/c mice exposed to 5 days of DSS developed acute colitis as previously described. The acute colitis was accompanied by elevated plasma levels of haptoglobin and increased colonic levels of IL-1alpha/beta, IL-6, IL-18, and granulocyte colony-stimulating factor. However, soon after DSS removal, BALB/c mice recovered and were symptom free within 2 wk and completely recovered 4 wk after DSS removal in terms of histopathology, haptoglobin levels, and local cytokine production. In summary, these data stress the effect of genetic background on the outcome of DSS provocation. We believe that the present protocol to induce chronic colitis in C57BL/6 mice offers a robust model for validating future therapies for treatment of inflammatory bowel disease. PMID:15637179

  9. Deletion of cationic amino acid transporter 2 exacerbates dextran sulfate sodium colitis and leads to an IL-17-predominant T cell response.

    PubMed

    Singh, Kshipra; Coburn, Lori A; Barry, Daniel P; Asim, Mohammad; Scull, Brooks P; Allaman, Margaret M; Lewis, Nuruddeen D; Washington, M Kay; Rosen, Michael J; Williams, Christopher S; Chaturvedi, Rupesh; Wilson, Keith T

    2013-08-01

    L-Arginine (L-Arg) is a semiessential amino acid that has altered availability in human ulcerative colitis (UC), a form of inflammatory bowel disease, and is beneficial in murine colitis induced by dextran sulfate sodium (DSS), a model with similarity to UC. We assessed the role of cationic amino acid transporter 2 (CAT2), the inducible transporter of L-Arg, in DSS colitis. Expression of CAT2 was upregulated in tissues from colitic mice and localized predominantly to colonic macrophages. CAT2-deficient (CAT2-/-) mice exposed to DSS exhibited worsening of survival, body weight loss, colon weight, and histological injury. These effects were associated with increased serum L-Arg and decreased tissue L-Arg uptake and inducible nitric oxide synthase protein expression. Clinical benefits of L-Arg supplementation in wild-type mice were lost in CAT2-/- mice. There was increased infiltration of macrophages, dendritic cells, granulocytes, and T cells in colitic CAT2-/- compared with wild-type mice. Cytokine profiling revealed increases in proinflammatory granulocyte colony-stimulating factor, macrophage inflammatory protein-1α, IL-15, and regulated and normal T cell-expressed and -secreted and a shift from an IFN-γ- to an IL-17-predominant T cell response, as well as an increase in IL-13, in tissues from colitic CAT2-/- mice. However, there were no increases in other T helper cell type 2 cytokines, nor was there a global increase in macrophage-derived proinflammatory cytokines. The increase in IL-17 derived from both CD4 and γδ T cells and was associated with colonic IL-6 expression. Thus CAT2 plays an important role in controlling inflammation and IL-17 activation in an injury model of colitis, and impaired L-Arg availability may contribute to UC pathogenesis. PMID:23703655

  10. Chemoprevention of azoxymethane/dextran sodium sulfate-induced mouse colon carcinogenesis by freeze-dried yam sanyaku and its constituent diosgenin.

    PubMed

    Miyoshi, Noriyuki; Nagasawa, Tomoki; Mabuchi, Ryota; Yasui, Yumiko; Wakabayashi, Keiji; Tanaka, Takuji; Ohshima, Hiroshi

    2011-06-01

    The effects of sanyaku, a traditional Chinese medicine [freeze-dried powder of the yam tuber (Dioscorea)], and its major steroidal saponin constituent, diosgenin, on colon carcinogenesis were investigated. Male ICR mice were subjected to a single intraperitoneal injection of azoxymethane (AOM; 10 mg/kg body weight) followed by administration of 1.5% dextran sodium sulfate (DSS) in drinking water for 7 days to establish carcinogenesis. Commercial diosgenin or sanyaku, which contained diosgenin at 63.8 ± 1.2 mg/kg dry weight, was given in the diet at 20, 100, or 500 mg/kg for 17 weeks. Groups of mice that received diosgenin or sanyaku at all doses yielded significantly less number of colon tumors compared with the AOM/DSS-treated mice. Occurrence of colonic mucosal ulcer and dysplastic crypt induced by AOM/DSS treatment was also significantly decreased by the administration of diosgenin and sanyaku, which was in accordance with the significant reduction of AOM/DSS-mediated increases in expression of inflammatory cytokines such as IL-1β by diosgenin and sanyaku. Furthermore, elevated levels of serum triglyceride in the AOM/DSS-treated mice tended to be reduced in mice given diosgenin and sanyaku. Microarray and real-time reverse transcriptase PCR analyses revealed that diosgenin administration increased 12-fold the expression of lipoprotein lipase, which may contribute to reduced serum triglyceride levels. Other genes altered by diosgenin included those associated with antioxidative stress responses and apoptosis, such as heme oxygenase-1, superoxide dismutase-3, and caspase-6. Our results imply that the Chinese medicine sanyaku and the tubers of various yams containing diosgenin as food could be ingested to prevent colon carcinogenesis in humans. PMID:21367960

  11. Deletion of Intestinal Epithelial Cell STAT3 Promotes T Lymphocyte STAT3 Activation and Chronic Colitis Following Acute Dextran Sodium Sulfate Injury in Mice

    PubMed Central

    Willson, Tara A.; Jurickova, Ingrid; Collins, Margaret; Denson, Lee A.

    2015-01-01

    BACKGROUND Intestinal epithelial cell (IEC) Stat3 is required for wound healing following acute Dextran Sodium Sulfate (DSS) injury. We hypothesized that loss of IEC STAT3 would promote the development of chronic colitis following acute DSS injury. METHODS Colitis was induced in IEC-specific Stat3 deficient mice (Stat3ΔIEC) and littermate controls (Stat3Flx/Flx) with 4%DSS for 7 days, followed by water consumption for 21 days. Epithelial and immune mediators and severity of colitis were determined. RESULTS Survival, colon length, and histologic injury were significantly worse at day 28 in Stat3ΔIEC mice. IEC proliferation and apoptosis did not vary by genotype at day 14 or day 28. The colonic lamina propria frequency of pSTAT3+ cells was increased at day 28 and correlated with histologic injury in Stat3ΔIEC mice. The frequency of colonic F480+pSTAT3+ macrophages and CD3+pSTAT3+ T-lymphocytes were increased in Stat3ΔIEC mice as compared to Stat3Flx/Flx controls. In Stat3ΔIEC mice, colonic expression of Stat3 target genes Reg3β and Reg3γ which mediate epithelial restitution were significantly decreased, while expression of IL-17a, IFNγ, CXCL2, CXCL10, and CCL2 were significantly increased and correlated with the increase in histologic severity at Day 28(p<.05). IL-17a expression also correlated with the increased lamina propria frequency of CD3+pSTAT3+ T-lymphocytes. CONCLUSIONS Loss of intestinal epithelial Stat3 leads to more severe chronic inflammation following acute injury which is not accounted for by a sustained defect in epithelial proliferation or apoptosis 7 or 21 days after one cycle of DSS but rather defective REG3 expression and expansion of pSTAT3+ lymphocytes and IL-17a expression. PMID:23429443

  12. Arctigenin but not arctiin acts as the major effective constituent of Arctium lappa L. fruit for attenuating colonic inflammatory response induced by dextran sulfate sodium in mice.

    PubMed

    Wu, Xin; Yang, Yan; Dou, Yannong; Ye, Jun; Bian, Difei; Wei, Zhifeng; Tong, Bei; Kong, Lingyi; Xia, Yufeng; Dai, Yue

    2014-12-01

    The crude powder of the fruit of Arctium lappa L. (ALF) has previously been reported to attenuate experimental colitis in mice. But, its main effective ingredient and underlying mechanisms remain to be identified. In this study, ALF was extracted with ethanol, and then successively fractionated into petroleum ether, ethyl acetate, n-butanol and water fraction. Experimental colitis was induced by dextran sulfate sodium (DSS) in mice. Among the four fractions of ALF, the ethyl acetate fraction showed the most significant inhibition of DSS-induced colitis in mice. The comparative studies of arctigenin and arctiin (the two main ingredients of ethyl acetate fraction) indicated that arctigenin rather than arctiin could reduce the loss of body weight, disease activity index and histological damage in the colon. Arctigenin markedly recovered the loss of intestinal epithelial cells (E-cadherin-positive cells) and decreased the infiltration of neutrophils (MPO-positive cells) and macrophages (CD68-positive cells). Arctigenin could down-regulate the expressions of TNF-α, IL-6, MIP-2, MCP-1, MAdCAM-1, ICAM-1 and VCAM-1 at both protein and mRNA levels in colonic tissues. Also, it markedly decreased the MDA level, but increased SOD activity and the GSH level. Of note, the efficacy of arctigenin was comparable or even superior to that of the positive control mesalazine. Moreover, it significantly suppressed the phosphorylation of MAPKs and the activation of NF-κB, including phosphorylation of IκBα and p65, p65 translocation and DNA binding activity. In conclusion, arctigenin but not arctiin is the main active ingredient of ALF for attenuating colitis via down-regulating the activation of MAPK and NF-κB pathways. PMID:25284342

  13. Serum Amino Acids Profile and the Beneficial Effects of L-Arginine or L-Glutamine Supplementation in Dextran Sulfate Sodium Colitis

    PubMed Central

    Wu, Miaomiao; Liu, Gang; Yang, Guan; Xion, Yan; Su, Dingding; Wu, Li; Li, Tiejun; Chen, Shuai; Duan, Jielin; Yin, Yulong; Wu, Guoyao

    2014-01-01

    This study was conducted to investigate serum amino acids profile in dextran sulfate sodium (DSS)-induced colitis, and impacts of graded dose of arginine or glutamine supplementation on the colitis. Using DSS-induced colitis model, which is similar to human ulcerative colitis, we determined serum profile of amino acids at day 3, 7, 10 and 12 (5 days post DSS treatment). Meanwhile, effects of graded dose of arginine (0.4%, 0.8%, and 1.5%) or glutamine (0.5%, 1.0% and 2.0%) supplementation on clinical parameters, serum amino acids, colonic tight junction proteins, colonic anti-oxidative indicators [catalase, total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px)], colonic pro-inflammatory cytokines [interleukin-1 beta (IL-1β), IL-6, IL-17 and tumor necrosis factor alpha (TNF-α)] in DSS-induced colitis were fully analyzed at day 7 and 12. Additionally, the activation of signal transduction pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt), and myosin light chain kinase (MLCK)- myosin light chain (MLC20), were analyzed using immunoblotting. Serum amino acids analysis showed that DSS treatment changed the serum contents of amino acids, such as Trp, Glu, and Gln (P<0.05). Dietary arginine or glutamine supplementation had significant (P<0.05) influence on the clinical and biochemical parameters (T-SOD, IL-17 and TNF-α) in colitis model. These results were associated with colonic NF-κB, PI3K-Akt and MLCK signaling pathways. In conclusion, arginine or glutamine could be a potential therapy for intestinal inflammatory diseases. PMID:24505477

  14. Dextran Sodium Sulfate-Induced Inflammation Alters the Expression of Proteins by Intestinal Escherichia coli Strains in a Gnotobiotic Mouse Model

    PubMed Central

    Schumann, Sara; Alpert, Carl; Engst, Wolfram; Loh, Gunnar

    2012-01-01

    To identify Escherichia coli proteins involved in adaptation to intestinal inflammation, mice were monoassociated with the colitogenic E. coli strain UNC or with the probiotic E. coli strain Nissle. Intestinal inflammation was induced by treating the mice with 3.5% dextran sodium sulfate (DSS). Differentially expressed proteins in E. coli strains collected from cecal contents were identified by 2-dimensional difference gel electrophoresis. In both strains, acute inflammation led to the downregulation of pathways involved in carbohydrate breakdown and energy generation. Accordingly, DSS-treated mice had lower concentrations of bacterial fermentation products in their cecal contents than control mice. Differentially expressed proteins also included the Fe-S cluster repair protein NfuA, the tryptophanase TnaA, and the uncharacterized protein YggE. NfuA expression was 3-fold higher in E. coli strains from DSS-treated than from control mice. Reporter experiments confirmed the induction of nfuA in response to iron deprivation, mimicking Fe-S cluster destruction by inflammation. YggE expression, which has been reported to reduce the intracellular level of reactive oxygen species, was 4- to 8-fold higher in E. coli Nissle than in E. coli UNC. This was confirmed by in vitro reporter gene assays indicating that Nissle is better equipped to cope with oxidative stress than UNC. Nissle isolated from DSS-treated and control mice had TnaA levels 4- to 7-fold-higher than those of UNC. Levels of indole resulting from the TnaA reaction were higher in control animals associated with E. coli Nissle. Because of its anti-inflammatory effect, indole is hypothesized to be involved in the extension of the remission phase in ulcerative colitis described for E. coli Nissle. PMID:22210207

  15. Calcium-Ask1-MKK7-JNK2-c-Src Signaling Cascade Mediates Disruption of Intestinal Epithelial Tight Junctions by Dextran Sulfate Sodium

    PubMed Central

    Samak, Geetha; Chaudhry, Kamaljit K.; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H.; Rao, RadhaKrishna

    2015-01-01

    Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with the symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca2+ concentration, and depletion of intracellular Ca2+ by BAPTA or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of Ask1 or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased Tyr-phosphorylation of occludin, ZO-1, E-cadherin and β-catenin. SP600125 abrogated DSS-induced Tyr-phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto phosphorylation of c-Src. This study demonstrates that Ca2+-Ask1-MKK7-JNK2-cSrc signaling cascade mediates DSS-induced tight junction disruption and barrier dysfunction. PMID:25377781

  16. mTOR Inhibition Attenuates Dextran Sulfate Sodium-Induced Colitis by Suppressing T Cell Proliferation and Balancing TH1/TH17/Treg Profile

    PubMed Central

    Wang, Yilin; Wang, Zhengting; Pei, Yaofei; Fan, Rong; Liu, Xiqiang; Wang, Lei; Zhou, Jie; Zheng, Sichang; Zhang, Tianyu; Lin, Yun; Zhang, Maochen; Tao, Ran; Zhong, Jie

    2016-01-01

    It has been established that mammalian target of Rapamycin (mTOR) inhibitors have anti-inflammatory effects in models of experimental colitis. However, the underlying mechanism is largely unknown. In this research, we investigate the anti-inflammatory effects of AZD8055, a potent mTOR inhibitor, on T cell response in dextran sulfate sodium (DSS)-induced colitis in mice, a commonly used animal model of inflammatory bowel diseases (IBD). Severity of colitis is evaluated by changing of body weight, bloody stool, fecal consistency, histology evaluation and cytokine expression. We find that AZD8055 treatment attenuates DSS-induced body weight loss, colon length shortening and pathological damage of the colon. And AZD8055 treatment decreases colonic expression of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-17A, IL-1β,IL-6 and tumor necrosis factor(TNF)-a and increases colonic expression of anti-inflammatory cytokines IL-10. We show that AZD8055 treatment decreases the percentages of CD4+ T cells and CD8+ T cells in spleen, lymph nodes and peripheral blood of mice. We also find that AZD8055 treatment significantly reduces the number of T helper 1(TH1) cells and TH17 cells and increases regulatory T (Treg) cells in the lamina propria and mesenteric lymph nodes. Furthermore, we demonstrates that AZD8055 suppresses the proliferation of CD4+ and CD8+ T cells and the differentiation of TH1/TH17 cells and expands Treg cells in vitro. The results suggest that, in experimental colitis, AZD8055 exerts anti-inflammatory effect by regulating T helper cell polarization and proliferation. PMID:27128484

  17. Hyaluronan-Mediated Leukocyte Adhesion and Dextran Sulfate Sodium-Induced Colitis Are Attenuated in the Absence of Signal Transducer and Activator of Transcription 1

    PubMed Central

    Bandyopadhyay, Sudip K.; de la Motte, Carol A.; Kessler, Sean P.; Hascall, Vincent C.; Hill, David R.; Strong, Scott A.

    2008-01-01

    Inflammatory bowel disease is a chronic inflammatory condition of the intestinal mucosa whose etiology is unclear but is likely to be multifactorial. We have shown previously that an increased amount of hyaluronan (HA) is present both in the inflamed mucosa of inflammatory bowel disease patients and in isolated human cells after polyI:C treatment. The signal transducer and activator of transcription (STAT)1 protein plays an important role in many signaling pathways that are associated with inflammation. We therefore investigated the role of STAT1 in adhesive interactions that occur between leukocytes and polyI:C-induced mucosal smooth muscle cells (M-SMCs). Activation of STAT1 was observed after the polyI:C treatment of M-SMCs. Specific phosphorylation of tyrosine and serine residues of STAT1 was observed in polyI:C-treated, but not untreated, M-SMC cultures. To evaluate further the role of STAT1, a corresponding STAT-1-null mouse was used. PolyI:C-induced, HA-mediated leukocyte adhesion to colon SMCs from STAT1-null mice was significantly decreased compared with that from wild-type control mice. In vivo, using the dextran sulfate sodium-induced model of colon inflammation, both tissue damage and HA deposition were attenuated in STAT1-null mice compared with that in wild-type control mice. Additionally, the inter-α-trypsin inhibitor (IαI), a proteoglycan essential for facilitating leukocyte binding to the HA matrix, was reduced in STAT1-null mice. Together, these results demonstrate that STAT1 plays an important role in HA-mediated inflammatory processes. PMID:18818378

  18. Anti-inflammatory effects of novel AP-1 and NF-κB inhibitors in dextran-sulfate-sodium-induced colitis in rats

    PubMed Central

    EL-SALHY, MAGDY; UMEZAWA, KAZUO

    2016-01-01

    The aim of the present study was to elucidate the anti-inflammatory effects of the two novel anti-inflammatory substances, 3-[(dodecylthiocarbonyl)-methyl]-glutarimide (DTCM-G) and dehydroxymethylepoxyquinomicin (DHMEQ), on DSS-induced colitis in rats. For this purpose, rats with dextran sulfate sodium (DSS)-induced colitis were randomly divided into 3 groups with 10 animals in each group as follows: i) the control group, which received 0.5 ml of 0.5% carboxymethyl cellulose (CMC; vehicle), ii) rats that received DTCM-G (20 mg/kg body weight in 0.5% CMC; the DTCM-G group), and iii) rats that received DHMEQ (15 mg/kg body weight in 0.5% CMC; the DHMEQ group). The animals were sacrificed after the 5-day treatment period, and tissue samples were taken from their colons and sectioned for histological evaluation. The tissue sections were stained with hematoxylin and eosin, and immunostained for leukocytes, lymphocytes, macrophages/monocytes and mast cells. The disease activity index (DAI), histological grading of colitis, and densities of several types of submucosal immune cells were compared between the controls, and the DTCM-G and DHMEQ groups. The DAI values were significantly lower in both the DTCM-G and DHMEQ groups than in the control group. The total scores for the histological grading of colitis were also significantly lower in the DTCM-G and DHMEQ groups than in the control group. The submucosal densities of leucocytes, lymphocytes, macrophages/monocytes and mast cells were significantly lower in the DTCM-G and DHMEQ groups than in the control group. Our findings indicate that the anti-inflammatory and anticancer effects of DTCM-G and DHMEQ, and the absence of any associated toxicity render them excellent therapeutic candidates for clinical use in the treatment of colitis. PMID:27082818

  19. Dextran sulfate sodium administered orally is depolymerized in the stomach and induces cell cycle arrest plus apoptosis in the colon in early mouse colitis.

    PubMed

    Araki, Yoshio; Bamba, Tadao; Mukaisho, Ken-ichi; Kanauchi, Osamu; Ban, Hiromitsu; Bamba, Shigeki; Andoh, Akira; Fujiyama, Yoshihide; Hattori, Takanori; Sugihara, Hiroyuki

    2012-11-01

    The mechanisms responsible for human inflammatory bowel disease remain poorly understood. The pathogenic factors for dextran sulfate sodium (DSS)-induced colitis, one of the experimental animal colitis models, also remain unknown. Furthermore, detailed studies on DSS metabolism in the gut lumen have not been reported. Therefore, we investigated DSS metabolism in the mouse gut lumen and report the mechanisms which induce colitis. DSS was labeled with 2-aminopyridine (pyridylamino-DSS, PA-DSS). PA-DSS was administered orally to male BALB/cA Jcl mice. The metabolites and histological findings were observed using HPLC and light or fluorescence microscopy. PA-DSS with Mr 5000 was depolymerized rapidly in the gastric lumen, and the depolymerized PA-DSS was absorbed in the small intestine. Therefore, the majority of the PA-DSS in the cecal contents returned to Mr 5000 PA-DSS, escaping absorption in the small intestine. Mr 5000 DSS induced severe colitis, and immunostaining using an anti-mouse Ki-67 antibody and the TUNEL assay showed that DSS arrested the cell cycle at the G0 phase and induced apoptosis of the colonic epithelium. Mr 2500 PA-DSS, however, induced these same effects weakly. During these processes, we observed that the epithelial cells can depolymerize DSS themselves. An in vitro study using Caco-2 cells also showed similar effects. Mr 5000 DSS was depolymerized in the gut lumen and epithelial cells. Therefore, the molecular mass distribution of the DSS differed between each part in the lumen. As an early stage event, DSS induced colitis through cell cycle arrest and apoptosis according to its molecular mass. PMID:22895560

  20. Oroxyloside prevents dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB pathway through PPARγ activation.

    PubMed

    Wang, Xiaoping; Sun, Yang; Zhao, Yue; Ding, Youxiang; Zhang, Xiaobo; Kong, Lingyi; Li, Zhiyu; Guo, Qinglong; Zhao, Li

    2016-04-15

    Oroxyloside, as a metabolite of oroxylin A, may harbor various beneficial bioactivities which have rarely been reported in the previous studies. Here we established the dextran sulfate sodium (DSS)-induced experimental colitis and evaluated the anti-inflammatory effect of oroxyloside in vivo. As a result, oroxyloside attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. Furthermore, oroxyloside inhibited inflammatory cell infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities as well. The production of pro-inflammatory cytokines in serum and colon was also significantly reduced by oroxyloside. We unraveled the underlying mechanisms that oroxyloside inhibited NF-κB pathway by activating Peroxisome Proliferator-Activated Receptor γ (PPARγ) to attenuate DSS-induced colitis. Moreover, we investigated the anti-inflammatory effect and mechanisms of oroxyloside in the mouse macrophage cell line RAW264.7 and bone marrow derived macrophages (BMDM). Oroxyloside decreased several LPS-induced inflammatory cytokines, including IL-1β, IL-6 and TNF-α in RAW264.7 and BMDM. We also found that oroxyloside inhibited LPS-induced activation of NF-κB signaling pathway via activating PPARγ in RAW 264.7 and BMDM. Docking study showed that oroxyloside could bind with PPARγ. GW9662, the inhibitor of PPARγ, and PPARγ siRNA transfection blocked the effect of oroxyloside on PPARγ activation. Our study suggested that oroxyloside prevented DSS-induced colitis by inhibiting NF-κB pathway through PPARγ activation. Therefore, oroxyloside may be a promising and effective agent for inflammatory bowel disease (IBD). PMID:26947454

  1. Anti-Colitic Effects of Kanjangs (Fermented Soy Sauce and Sesame Sauce) in Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Lim, Yaung-Iee

    2014-01-01

    Abstract This study was conducted to investigate the preventive effects of different kanjangs (Korean soy sauces), including acid-hydrolyzed soy sauce (AHSS), fermented soy sauce (FSS), and fermented sesame sauce (FSeS), on 2% dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice. The fermented sauces, particularly FSeS, significantly suppressed DSS-induced body weight loss, increased colon length, and decreased colon weight/length ratios. Histological observations suggested that the fermented sauces prevented edema, mucosal damage, and the loss of crypts induced by DSS compared to the control mice and animals fed AHSS. FSeS and FSS decreased the serum levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-6, and IL-17α. mRNA expression of these cytokines as well as that of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colon mucosa was also inhibited by the two sauces. Our results suggest that fermented sauces, especially FSeS, exert an anticolitic effect partially by reducing the serum levels of proinflammatory cytokines and inhibiting the mRNA expression of these factors in the colon tissue of mice treated with DSS. However, AHSS did not protect against DSS-induced colitis. In addition, low-dose treatment (4 mL/kg) with the fermented sauces resulted in greater anticolitic effects than consumption of a high quantity (8 mL/kg) of the sauces. PMID:25188463

  2. The Involvement of Ca2+ Signal Pathways in Distal Colonic Myocytes in a Rat Model of Dextran Sulfate Sodium-induced Colitis

    PubMed Central

    Wang, Yan; Li, Jun-Xia; Ji, Guang-Ju; Zhai, Kui; Wang, Hua-Hong; Liu, Xin-Guang

    2016-01-01

    Background: Disrupted Ca2+ homeostasis contributes to the development of colonic dysmotility in ulcerative colitis (UC), but the underlying mechanisms are unknown. This study aimed to examine the alteration of colonic smooth muscle (SM) Ca2+ signaling and Ca2+ handling proteins in a rat model of dextran sulfate sodium (DSS)-induced UC. Methods: Male Sprague-Dawley rats were randomly divided into control (n = 18) and DSS (n = 17) groups. Acute colitis was induced by 5% DSS in the drinking water for 7 days. Contractility of colonic SM strips (controls, n = 8 and DSS, n = 7) was measured in an organ bath. Cytosolic resting Ca2+ levels (n = 3 in each group) and Ca2+ transients (n = 3 in each group) were measured in single colonic SM cells. Ca2+ handling protein expression was determined by Western blotting (n = 4 in each group). Differences between control and DSS groups were analyzed by a two-sample independent t-test. Results: Average tension and amplitude of spontaneous contractions of colonic muscle strips were significantly enhanced in DSS-treated rats compared with controls (1.25 ± 0.08 g vs. 0.96 ± 0.05 g, P = 0.007; and 2.67 ± 0.62 g vs. 0.52 ± 0.10 g, P = 0.013). Average tensions of carbachol-evoked contractions were much weaker in the DSS group (1.08 ± 0.10 g vs. 1.80 ± 0.19 g, P = 0.006). Spontaneous Ca2+ transients were observed in more SM cells from DSS-treated rats (15/30 cells) than from controls (5/36 cells). Peak caffeine-induced intracellular Ca2+ release was lower in SM cells of DSS-treated rats than controls (0.413 ± 0.046 vs. 0.548 ± 0.041, P = 0.033). Finally, several Ca2+ handling proteins in colonic SM were altered by DSS treatment, including sarcoplasmic reticulum calcium-transporting ATPase 2a downregulation and phospholamban and inositol 1,4,5-trisphosphate receptor 1 upregulation. Conclusions: Impaired intracellular Ca2+ signaling of colonic SM, caused by alteration of Ca2+ handing proteins, contribute to colonic dysmotility in DSS

  3. Anti-inflammatory effects of novel AP-1 and NF-κB inhibitors in dextran-sulfate-sodium-induced colitis in rats.

    PubMed

    El-Salhy, Magdy; Umezawa, Kazuo

    2016-06-01

    The aim of the present study was to elucidate the anti-inflammatory effects of the two novel anti-inflammatory substances, 3-[(dodecylthiocarbonyl)‑methyl]-glutarimide (DTCM-G) and dehydroxymethylepoxyquinomicin (DHMEQ), on DSS-induced colitis in rats. For this purpose, rats with dextran sulfate sodium (DSS)-induced colitis were randomly divided into 3 groups with 10 animals in each group as follows: i) the control group, which received 0.5 ml of 0.5% carboxymethyl cellulose (CMC; vehicle), ii) rats that received DTCM-G (20 mg/kg body weight in 0.5% CMC; the DTCM-G group), and iii) rats that received DHMEQ (15 mg/kg body weight in 0.5% CMC; the DHMEQ group). The animals were sacrificed after the 5-day treatment period, and tissue samples were taken from their colons and sectioned for histological evaluation. The tissue sections were stained with hematoxylin and eosin, and immunostained for leukocytes, lymphocytes, macrophages/monocytes and mast cells. The disease activity index (DAI), histological grading of colitis, and densities of several types of submucosal immune cells were compared between the controls, and the DTCM-G and DHMEQ groups. The DAI values were significantly lower in both the DTCM-G and DHMEQ groups than in the control group. The total scores for the histological grading of colitis were also significantly lower in the DTCM-G and DHMEQ groups than in the control group. The submucosal densities of leucocytes, lymphocytes, macrophages/monocytes and mast cells were significantly lower in the DTCM-G and DHMEQ groups than in the control group. Our findings indicate that the anti-inflammatory and anticancer effects of DTCM-G and DHMEQ, and the absence of any associated toxicity render them excellent therapeutic candidates for clinical use in the treatment of colitis. PMID:27082818

  4. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester, a polymeric colon-specific prodrug releasing 5-aminosalicylic acid and benzocaine, ameliorates TNBS-induced rat colitis.

    PubMed

    Nam, Joon; Kim, Wooseong; Lee, Sunyoung; Jeong, Seongkeun; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin

    2016-06-01

    Local anesthetics have beneficial effects on colitis. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester (Dex-5-ESA), designed as a polymeric colon-specific prodrug liberating 5-ASA and benzocaine in the large intestine, was prepared and its therapeutic activity against colitis was evaluated using a TNBS-induced rat colitis model. Dex-5-ESA liberated 5-ASA and benzocaine in the cecal contents while (bio)chemically stable in the small intestinal contents and mucosa. Oral administration of Dex-5-ESA (equivalent to 10 mg 5-ASA/kg, twice a day) alleviated colonic injury and reduced MPO activity in the inflamed colon. In parallel, pro-inflammatory mediators, COX-2, iNOS and CINC-3, elevated by TNBS-induced colitis, were substantially diminished in the inflamed colon. Dex-5-ESA was much more effective for the treatment of colitis than 5-(4-ethoxycarbonylphenylazo)salicylic acid (5-ESA) that may not deliver benzocaine to the large intestine. Our data suggest that Dex-5-ESA is a polymeric colon-specific prodrug, liberating 5-ASA and benzocaine in the target site (large intestine), probably exerting anti-colitic effects by combined action of 5-ASA and benzocaine. PMID:26377354

  5. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  6. The epigenetic effects of aspirin: the modification of histone H3 lysine 27 acetylation in the prevention of colon carcinogenesis in azoxymethane- and dextran sulfate sodium-treated CF-1 mice.

    PubMed

    Guo, Yue; Liu, Yue; Zhang, Chengyue; Su, Zheng-Yuan; Li, Wenji; Huang, Mou-Tuan; Kong, Ah-Ng

    2016-06-01

    Colorectal cancer (CRC) is the third most common cancer worldwide. Chronic inflammation appears to enhance the risk of CRC. Emerging evidence has suggested that epigenetic mechanisms play an important role in CRC. Aspirin [acetylsalicylic acid (ASA)] has been shown to prevent CRC; however, the epigenetic mechanisms of its action remain unknown. This study investigated the protective role of ASA in azoxymethane (AOM)-initiated and dextran sulfate sodium (DSS)-promoted colitis-associated colon cancer (CAC) and examined the epigenetic effects, particularly on histone 3 lysine 27 acetylation (H3K27ac), underlying the preventive effect of ASA. CF-1 mice were fed with AIN-93M diet with or without 0.02% ASA from 1 week prior to AOM initiation until the mice were killed 20 weeks after AOM injection. Our results showed that AOM/DSS + ASA significantly suppressed inflammatory colitis symptoms and tumor multiplicity. AOM/DSS + ASA reduced AOM/DSS-induced protein expression and the activity of histone deacetylases (HDACs) and globally restored H3K27ac. Furthermore, AOM/DSS + ASA inhibited AOM/DSS-induced enrichment of H3K27ac in the promoters of inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) that corresponded to the dramatic suppression of the messenger RNA (mRNA) and protein levels. Surprisingly, no significant changes in the H3K27ac abundance in the prostaglandin-endoperoxide synthase 2 (Cox-2) promoters or in the Cox-2 mRNA and protein expression were observed. Collectively, our results suggest that a potential novel epigenetic mechanism underlies the chemopreventive effects of ASA, and this mechanism attenuates CAC in AOM/DSS-induced CF-1 mice via the inhibition of HDACs and the modification of H3K27ac marks that suppress iNOS, TNF-α and IL-6. PMID:27207670

  7. White button, portabella, and shiitake mushroom supplementation up-regulates interleukin-23 secretion in acute dextran sodium sulfate colitis C57BL/6 mice and murine macrophage J.744.1 cell line.

    PubMed

    Chandra, Lawrance C; Traoré, Djibril; French, Christine; Marlow, Denver; D'Offay, Jean; Clarke, Stephen L; Smith, Brenda J; Kuvibidila, Solo

    2013-05-01

    Interleukin-23 (IL-23), a cytokine produced primarily by dendritic cells, is involved in host defense against gut pathogens and promotes innate immunity and inflammatory responses through the IL-23/interleukin-17 axis. We previously reported that extracts from edible mushrooms enhanced antimicrobial α-defensin production n HL60 cells. Because IL-23 is involved in defensin production, we hypothesized that edible mushrooms may modulate its secretion and gut inflammation. Eight-week-old C57BL/6 mice were fed the AIN76 diet or the same diet supplemented with 5% white button (WBM), portabella, or shiitake mushrooms. To assess in vivo and in vitro cytokine secretion, 7 to 8 mice per group received 3% dextran sodium sulfate (DSS) in drinking water during the last 5 days of the 6-week feeding period. To delineate the mechanisms by which mushrooms alter IL-23 secretion, J.744.1 cells were incubated with (100 μg/mL) WBM, portabella, and shiitake extracts without and with 100 μg/mL curdlan (a dectin-1 agonist) or 1 mg/mL laminarin (a dectin-1 antagonist). The dectin-1 receptor is a pattern-recognition receptor found in phagocytes, and its activation promotes antimicrobial innate immunity and inflammatory responses. In DSS-untreated mice, mushrooms significantly increased IL-23 plasma levels but decreased those of interleukin-6 (IL-6) (P < .05). In DSS-treated mice, mushroom-supplemented diets increased IL-6 and IL-23 levels (P < .05). Mushroom extracts potentiated curdlan-induced IL-23 secretion, and mushroom-induced IL-23 secretion was not blocked by laminarin in vitro, suggesting the involvement of both dectin-1-dependent and dectin-1-independent pathways. Although all mushrooms tended to increase IL-6 in the colon, only WBM and shiitake tended to increase IL-23 levels. These data suggest that edible mushrooms may enhance gut immunity through IL-23. PMID:23684440

  8. Changes in the Expression and Distribution of Claudins, Increased Epithelial Apoptosis, and a Mannan-Binding Lectin-Associated Immune Response Lead to Barrier Dysfunction in Dextran Sodium Sulfate-Induced Rat Colitis

    PubMed Central

    Yuan, Bosi; Zhou, Shuping; Lu, Youke; Liu, Jiong; Jin, Xinxin; Wan, Haijun; Wang, Fangyu

    2015-01-01

    Background/Aims This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. Methods Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic epithelium were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling method assay. Results The lactulose and sucralose excretion levels in the urine of rats with DSS-induced colitis were significantly higher than those in the control rats. Mannitol excretion was lower and lactulose/mannitol ratios and sucralose/mannitol ratios were significantly increased compared with those in the control group (p<0.05). Compared with the controls, the expression of sealing claudins (claudin 3, claudin 5, and claudin 8) was significantly decreased, but that of claudin 1 was increased. The expression of pore-forming claudin 2 was upregulated and claudin 7 was downregulated in DSS-induced colitis. The epithelial apoptotic ratio was 2.8%±1.2% in controls and was significantly increased to 7.2%±1.2% in DSS-induced colitis. The expression of MBL and MASP-2 in the intestinal mucosa showed intense staining in controls, whereas there was weak staining in the rats with colitis. Conclusions There was increased intestinal permeability in DSS-induced colitis. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and the MASP-2-induced immune response impaired the intestinal epithelium and contributed to high intestinal permeability. PMID:25717051

  9. Anti-inflammatory Actions of (+)-3'α-Angeloxy-4'-keto-3',4'-dihydroseselin (Pd-Ib) against Dextran Sulfate Sodium-Induced Colitis in C57BL/6 Mice.

    PubMed

    Mu, Huai-Xue; Liu, Jing; Fatima, Sarwat; Lin, Cheng-Yuan; Shi, Xiao-Ke; Du, Bin; Xiao, Hai-Tao; Fan, Bao-Min; Bian, Zhao-Xiang

    2016-04-22

    The immunoregulatory protective properties of (+)-3'α-angeloxy-4'-keto-3',4'-dihydroseselin (Pd-Ib) isolated from Bupleurum malconense has not been reported. In the present study, the therapeutic effect of Pd-Ib (30, 60, and 120 mg/kg/day) was examined in a mouse model of dextran sulfate sodium (DSS)-induced acute colitis. Administration of Pd-Ib significantly reduced the disease activity index, inhibited the shortening of colon length, reduced colonic tissue damage, and suppressed colonic myeloperoxidase activity and nitric oxide levels in mice with DSS-induced colitis. Moreover, Pd-Ib greatly suppressed the secretion of pro-inflammatory cytokines TNF-α, IFN-γ, IL-6, and IL-17A while enhancing the level of anti-inflammatory cytokine IL-4. The protein levels of phosphorylated STAT3 (p-STAT3) and phosphorylated p38 (p-p38) were down-regulated in the colonic tissues of DSS-treated mice. Importantly, the anti-inflammatory effect of Pd-Ib against acute colitis was comparable to the anti-inflammatory sulfa drug sulfasalazine (300 mg/kg). Furthermore, the in vitro study showed that the inhibitory effect of Pd-Ib on p-STAT3 and IL-6 protein levels was accompanied by the reduction of MAPKs (JNK and p38). In conclusion, this study suggested that Pd-Ib attenuated DSS-induced acute colitis via the regulation of interleukins principally through the STAT3 and MAPK pathways. PMID:26905227

  10. Dextran Preserves Native Corneal Structure During Decellularization.

    PubMed

    Lynch, Amy P; Wilson, Samantha L; Ahearne, Mark

    2016-06-01

    Corneal decellularization has become an increasingly popular technique for generating scaffolds for corneal regeneration. Most decellularization procedures result in tissue swelling, thus limiting their application. Here, the use of a polysaccharide, dextran, to reduce swelling and conserve the native corneal structure during decellularization was investigated. Corneas were treated with 1% Triton X-100, 0.5% sodium dodecyl sulfate, and nucleases under constant rotation followed by extensive washing. To reduce swelling, decellularization solutions were supplemented with 5% dextran either throughout the whole decellularization process or during the washing cycles only. Quantitative analysis of DNA content showed a 96% reduction after decellularization regardless of the addition of dextran. Dextran resulted in a significant reduction in swelling from 3.85 ± 0.43 nm without to 1.94 ± 0.29-2.01 ± 0.37 nm (p < 0.05) remaining at similar dimensions to the native tissue (1.73 ± 0.23 nm). Tissue transparency was restored to all decellularized corneas following submersion in glycerol. Transmission electron microscopy (TEM) analysis found that dextran must be present throughout the decellularization protocol to preserve the native corneal architecture, anisotropy analysis demonstrated comparable results (0.22 ± 0.03) to the native cornea (0.24 ± 0.02), p > 0.05. Dextran can counteract the detrimental effects of decellularizing agents on the biomechanical properties of the tissue resulting in similar compressive moduli (mean before decellularization: 5.40 ± 1.18 kPa; mean after decellularization with dextran: 5.64 ± 1.34 kPa, p > 0.05). Cells remained viable in the presence of decellularized scaffolds. The findings of this study indicate that dextran not only prevents significant corneal swelling during decellularization but also enhances the maintenance of the native corneal ultrastructure. PMID:27068608

  11. Periodate oxidation of dextrans

    SciTech Connect

    Mirgorodskaya, O.A.; Poletaeva, L.V.

    1986-03-01

    The authors estimate the degree of oxidation of the thiol group in dextran with various mol. wt. and make an attempt at a kinetic description of the main parameters of the process. Polyglucin was used. The results are shown of experiments done on the estimation of the amount of products formed in the process of oxidation of polyglucin in which the reaction stopped as a result of complete exhaustion of one of the original reagents. To estimate the reactivity of the thiol group toward oxidation, the authors studied the interaction of potassium periodate with alpha-D-glucose, isolated by the monomer unit of dextran.

  12. Dextran Nanoparticle Synthesis and Properties

    PubMed Central

    Wasiak, Iga; Kulikowska, Aleksandra; Janczewska, Magdalena; Michalak, Magdalena; Cymerman, Iwona A.; Nagalski, Andrzej; Kallinger, Peter; Szymanski, Wladyslaw W.; Ciach, Tomasz

    2016-01-01

    Dextran is widely exploited in medical products and as a component of drug-delivering nanoparticles (NPs). Here, we tested whether dextran can serve as the main substrate of NPs and form a stable backbone. We tested dextrans with several molecular masses under several synthesis conditions to optimize NP stability. The analysis of the obtained nanoparticles showed that dextran NPs that were synthesized from 70 kDa dextran with a 5% degree of oxidation of the polysaccharide chain and 50% substitution with dodecylamine formed a NP backbone composed of modified dextran subunits, the mean diameter of which in an aqueous environment was around 100 nm. Dextran NPs could be stored in a dry state and reassembled in water. Moreover, we found that different chemical moieties (e.g., drugs such as doxorubicin) can be attached to the dextran NPs via a pH-dependent bond that allows release of the drug with lowering pH. We conclude that dextran NPs are a promising nano drug carrier. PMID:26752182

  13. Effect of Diethylaminoethyl Dextran on the Growth of Mycoplasma in Agar

    PubMed Central

    Tauraso, Nicola M.

    1967-01-01

    The growth of certain strains of Mycoplasma is inhibited by substances present in commercial agar preparations. The addition of diethylaminoethyl (DEAE) dextran (10 mg per 100 ml) to agar media appears to enhance the growth of some strains. Of eight strains initially tested, the presence of DEAE dextran grossly enhanced the growth of three strains. One strain appeared not to be affected, and a clearly enhancing effect was not evident with four strains. Quantitative studies revealed that growth enhancement varied from 10 colony-forming units (CFU) for M. hominis type II (strain Campo) to 103.3 CFU for M. pulmonis (strain 880). The growth-enhancing effect is probably due to the ability of DEAE dextran to bind the sulfated polysaccharide moieties in agar and not to the DEAE dextran, per se. Images PMID:6025444

  14. Cellulose Supplementation Early in Life Ameliorates Colitis in Adult Mice

    PubMed Central

    Nagy-Szakal, Dorottya; Hollister, Emily B.; Luna, Ruth Ann; Szigeti, Reka; Tatevian, Nina; Smith, C. Wayne; Versalovic, James; Kellermayer, Richard

    2013-01-01

    Decreased consumption of dietary fibers, such as cellulose, has been proposed to promote the emergence of inflammatory bowel diseases (IBD: Crohn disease [CD] and ulcerative colitis [UC]) where intestinal microbes are recognized to play an etiologic role. However, it is not known if transient fiber consumption during critical developmental periods may prevent consecutive intestinal inflammation. The incidence of IBD peaks in young adulthood indicating that pediatric environmental exposures may be important in the etiology of this disease group. We studied the effects of transient dietary cellulose supplementation on dextran sulfate sodium (DSS) colitis susceptibility during the pediatric period in mice. Cellulose supplementation stimulated substantial shifts in the colonic mucosal microbiome. Several bacterial taxa decreased in relative abundance (e.g., Coriobacteriaceae [p = 0.001]), and other taxa increased in abundance (e.g., Peptostreptococcaceae [p = 0.008] and Clostridiaceae [p = 0.048]). Some of these shifts persisted for 10 days following the cessation of cellulose supplementation. The changes in the gut microbiome were associated with transient trophic and anticolitic effects 10 days following the cessation of a cellulose-enriched diet, but these changes diminished by 40 days following reversal to a low cellulose diet. These findings emphasize the transient protective effect of dietary cellulose in the mammalian large bowel and highlight the potential role of dietary fibers in amelioration of intestinal inflammation. PMID:23437211

  15. Conjugated Linoleic Acid Ameliorates Inflammation-Induced Colorectal Cancer in Mice through Activation of PPARγ1–3

    PubMed Central

    Evans, Nicholas P.; Misyak, Sarah A.; Schmelz, Eva M.; Guri, Amir J.; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-01-01

    Conjugated linoleic acid (CLA) exerts a protective effect on experimental inflammatory bowel disease and shows promise as a chemopreventive agent against colorectal cancer (CRC) in mice, although the mechanisms by which it exerts its beneficial effects against malignancies in the gut are not completely understood. Mice lacking PPARγ in immune and epithelial cells and PPARγ-expressing littermates were fed either control or CLA-supplemented (1 g CLA/100 g) diets to determine the role of PPARγ in inflammation-induced CRC. To induce tumor formation and colitis, mice were treated with azoxymethane and then challenged with 2% dextran sodium sulfate, respectively. Dietary CLA ameliorated disease activity, decreased colitis, and prevented adenocarcinoma formation in the PPARγ-expressing floxed mice but not in the tissue-specific PPARγ-null mice. Dietary CLA supplementation significantly decreased the percentages of macrophages in the mesenteric lymph nodes (MLN) regardless of the genotype and increased regulatory T cell numbers in MLN of PPARγ-expressing, but not in the tissue-specific, PPARγ-null mice. Colonic tumor necrosis factor-α mRNA expression was significantly suppressed in CLA-fed, PPARγ-expressing mice. This study suggests CLA ameliorates colitis and prevents tumor formation in part through a PPARγ-dependent mechanism. PMID:20089779

  16. Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels.

    PubMed

    Jin, Rong; Moreira Teixeira, Liliana S; Dijkstra, Pieter J; van Blitterswijk, Clemens A; Karperien, Marcel; Feijen, Jan

    2011-05-30

    In this study, injectable hydrogels were prepared by horseradish peroxidase-mediated co-crosslinking of dextran-tyramine (Dex-TA) and heparin-tyramine (Hep-TA) conjugates and used as scaffolds for cartilage tissue engineering. The swelling and mechanical properties of these hydrogels can be easily controlled by the Dex-TA/Hep-TA weight ratio. When chondrocytes were incorporated in these gels, cell viability and proliferation were highest for gels with a 50/50 weight ratio of Dex-TA/Hep-TA. Moreover, these hydrogels induced an enhanced production of chondroitin sulfate and a more abundant presence of collagen as compared to Dex-TA hydrogels. The results indicate that injectable Dex-TA/Hep-TA hydrogels are promising scaffolds for cartilage regeneration. PMID:21291927

  17. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis

    PubMed Central

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-01-01

    AIM: To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. METHODS: The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα-/-) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. RESULTS: Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα-/- mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. CONCLUSION: This is

  18. Dextran-mediated interbacterial aggregation between dextran-synthesizing streptococci and Actinomyces viscosus.

    PubMed Central

    Bourgeau, G; McBride, B C

    1976-01-01

    Streptococcus sanguis and Streptococcus mutans bind to the surface of Actinomyces viscosus, producing large microbial aggregates. Aggregates form rapidly and are not easily dissociated by vigorous mixing. The binding is mediated by dextran. Glucose-grown streptococci will not aggregate unless they are first mixed with high-molecular-weight dextran. Aggregation is induced with dextrans isolated from Leuconostoc, S. sanguis, or S. mutans. Sucrose-grown streptococci will adhere to A. viscosus without the addition of an exogenous source of dextran. A. viscosus will bind dextran and then bind glucose-grown streptococci. Aggregation occurs over a wide pH range and is dependent on cations. The aggregating activity of A. viscosus is both protease and heat sensitive. The aggregating activity of S. sanguis is heat stable but sensitive to dextranase. Images PMID:1279004

  19. Glucosamine sulfate

    MedlinePlus

    ... to control arthritis pain. These creams usually contain camphor and other ingredients in addition to glucosamine. Glucosamine ... in combination with chondroitin sulfate, shark cartilage, and camphor for up to 8 weeks. Glucosamine sulfate can ...

  20. Chondroitin sulfate

    MedlinePlus

    ... If you have asthma, use chondroitin sulfate cautiously. Blood clotting disorders: In theory, administering chondroitin sulfate might increase the risk of bleeding in people with blood clotting disorders. Prostate cancer: Early research suggests that chondroitin ...

  1. Barium Sulfate

    MedlinePlus

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  2. 21 CFR 582.1275 - Dextrans.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dextrans. 582.1275 Section 582.1275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives §...

  3. 21 CFR 582.1275 - Dextrans.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dextrans. 582.1275 Section 582.1275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives §...

  4. Genetic and pharmacological targeting of TPL-2 kinase ameliorates experimental colitis: a potential target for the treatment of Crohn's disease?

    PubMed

    Lawrenz, M; Visekruna, A; Kühl, A; Schmidt, N; Kaufmann, S H E; Steinhoff, U

    2012-03-01

    Inflammatory bowel disease is characterized by dysregulated immune responses against intestinal microflora leading to marked activation of nuclear factor-κB (NF-κB) with subsequent production of pro-inflammatory cytokines. Besides NF-κB, the tumor progression locus 2 (TPL-2)/extracellular signal-regulated kinase (ERK) pathway also regulates inflammatory cytokines such as interleukin-1β and tumor necrosis factor-α, but its role during intestinal inflammation is incompletely understood. We analyzed the impact of TPL-2 in the dextran sulfate sodium-induced experimental colitis model. Despite normal activation of NF-κB, animals lacking TPL-2 developed only mild colitis with reduced synthesis of inflammatory cytokines. Further, pharmacological inhibition of the TPL-2 kinase was similarly effective in ameliorating colitis as TPL-2 deficiency without obvious side effects. Because increased TPL-2/ERK activation was seen in patients with Crohn's disease (CD) but not ulcerative colitis, our findings encourage further investigation of TPL-2 kinase as potential target for the treatment of CD patients. PMID:22157885

  5. Glucosamine sulfate

    MedlinePlus

    ... 8 weeks. Glucosamine sulfate can cause some mild side effects including nausea, heartburn, diarrhea, and constipation. Uncommon side effects are drowsiness, skin reactions, and headache. These are ...

  6. Characterization of collagenous meshworks by volume exclusion of dextrans.

    PubMed Central

    Bert, J L; Pearce, R H; Mathieson, J M; Warner, S J

    1980-01-01

    The volumes from which 3H-labelled dextrans are excluded by dermal collagenous fibres were calculated by dilution of dextran probes. Five dextrans, of average Stokes' radii 1.72, 2.53, 3.92, 4.54 and 14.24nm, were investigated at concentrations between 0.1 and 3% (w/w). The excluded volume was dependent on dextran concentration only for the two smaller probes. The largest dextran was shown not to bind to the fibres. A plot of the square root of excluded volume against Stokes' radius was linear for the four smallest dextrans, corresponding to the predictions of Ogston's [(1958) Trans. Faraday Soc. 54, 1754--1757] rod-and-sphere model of fibrous exclusion, and suggesting that dextrans of Stokes' radius between 1.72 and 4.54 nm were excluded by a cylindrical solid fibre of radius 2.90 +/- 0.72 nm. Larger molecules were excluded by a structure of much greater size, since the volume exclusion for the largest dextran was only slightly greater than that of the dextran less than one-third its radius. The excluded volume of 3H2O fell slightly below the line describing the dextran data, indicating that water had access to most of the volume not occupied by the collagenous fibres. PMID:6169339

  7. Fucoidan Extracts Ameliorate Acute Colitis.

    PubMed

    Lean, Qi Ying; Eri, Rajaraman D; Fitton, J Helen; Patel, Rahul P; Gueven, Nuri

    2015-01-01

    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore represent

  8. Fucoidan Extracts Ameliorate Acute Colitis

    PubMed Central

    Lean, Qi Ying; Eri, Rajaraman D.; Fitton, J. Helen; Patel, Rahul P.; Gueven, Nuri

    2015-01-01

    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn’s disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore

  9. The use of aqueous PEG/dextran phase separation for the preparation of dextran microspheres.

    PubMed

    Stenekes, R J; Franssen, O; van Bommel, E M; Crommelin, D J; Hennink, W E

    1999-06-10

    A novel procedure to prepare dextran microspheres, without the use of organic solvents was developed. The method is based on phase separation which occurs in aqueous solutions of PEG and methacrylated dextran (dexMA). After stirring this two phase system a water-in-water emulsion is formed. When dexMA forms the discontinuous phase, dextran microspheres can be obtained by polymerization of the methacryloyl groups attached to dextran. The aim of this study was to gain insight into the formulation parameters that affect the particle characteristics. Therefore, it was necessary to establish dexMA/PEG/water phase diagrams. Lower polymer molecular weights and higher degrees of MA substitution resulted in less pronounced phase separation (binodal shifts to higher concentrations). The volume weight mean microsphere diameter varied between 2.5 and 20 microm, depending on the viscosities of both phases and the PEG/dexMA volume ratio. A more viscous continuous phase and/or a less viscous discontinuous phase resulted in smaller microspheres. Furthermore, the particle size increased with decreasing PEG/dexMA volume ratios. The particle characteristics, like cross-link density, initial water content and size can be tailored by adjusting the formulation parameters. PMID:10361149

  10. Sulfated polyanions inhibit invasion of erythrocytes by plasmodial merozoites and cytoadherence of endothelial cells to parasitized erythrocytes.

    PubMed Central

    Xiao, L; Yang, C; Patterson, P S; Udhayakumar, V; Lal, A A

    1996-01-01

    Sulfated proteoglycans have been shown to be involved in the binding of sporozoites of malaria parasites to hepatocytes. In this study, we have evaluated the effect of sulfated glycosaminoglycans on the invasion of erythrocytes by Plasmodium falciparum merozoites and cytoadherence of parasitized erythrocytes (PRBC) to endothelial cells. Invasion of erythrocytes by HB3EC-6 (an HB3 line selected for high binding to endothelial cells) was inhibited by dextran sulfate 500K, dextran sulfate 5K, sulfatides, fucoidan, and heparin but not by chondroitin sulfate A. With the exception of sulfatides, the invasion-inhibitory effect was not mediated by killing of parasites. Cytoadherence of HB3EC-6 to human microvascular endothelial cells (HMEC-1) and inhibited by these sulfated glycoconjugates. The highly sulfated dextran sulfate 500K had the highest inhibitory effect on both invasion and cytoadherence, whereas the positively charged protamine sulfate promoted cytoadherence. Because preincubation of PRBC with sulfated glycosaminoglycans and treatment of target cells with heparinase had no significant inhibition on cytoadherence, it is unlikely that sulfated glycoconjugates are used directly by endothelial cells as cytoadhesion receptors. In an vivo experiment, we found that the administration of dextran sulfate 500K to CBA/Ca mice infected with Plasmodium berghei ANKA reduced parasitemia and delayed the death associated with anemia. These observations suggest that sulfated polyanions inhibit the invasion of erythrocytes by merozoites and cytoadherence of PRBC to endothelial cells by increasing negative repulsive charge and sterically interfering with the ligand-receptor interaction after binding to target cells. PMID:8606103

  11. Chemically sulfated natural galactomannans with specific antiviral and anticoagulant activities.

    PubMed

    Muschin, Tegshi; Budragchaa, Davaanyam; Kanamoto, Taisei; Nakashima, Hideki; Ichiyama, Koji; Yamamoto, Naoki; Shuqin, Han; Yoshida, Takashi

    2016-08-01

    Naturally occurring galactomannans were sulfated to give sulfated galactomannans with degrees of substitution of 0.7-1.4 per sugar unit and molecular weights of M¯n=0.6×10(4)-2.4×10(4). Sulfated galactomannans were found to have specific biological activities in vitro such as anticoagulant, anti-HIV and anti-Dengue virus activities. The biological activities were compared with those of standard dextran and curdlan sulfates, which are polysaccharides with potent antiviral activity and low cytotoxicity. It was found that sulfated galactomannans had moderate to high anticoagulant activity, 13.4-36.6unit/mg, compared to that of dextran and curdlan sulfates, 22.7 and 10.0unit/mg, and high anti-HIV and anti-Dengue virus activities, 0.04-0.8μg/mL and 0.2-1.1μg/mL, compared to those curdlan sulfates, 0.1μg/mL, respectively. The cytotoxicity on MT-4 and LCC-MK2 cells was low. Surface plasmon resonance (SPR) of sulfated galactomannans revealed strong interaction with poly-l-lysine as a model compound of virus proteins, and suggested that the specific biological activities might originate in the electrostatic interaction of negatively charged sulfate groups of sulfated galactomannans and positively charged amino groups of surface proteins of viruses. These results suggest that sulfated galactomannans effectively prevented the infection of cells by viruses and the degree of substitution and molecular weights played important roles in the biological activities. PMID:27154517

  12. Development of dextran nanoparticles for stabilizing delicate proteins

    NASA Astrophysics Data System (ADS)

    Wu, Fei; Zhou, Zhihua; Su, Jing; Wei, Liangming; Yuan, Weien; Jin, Tuo

    2013-04-01

    One of the most challenging problems in the development of protein pharmaceuticals is to deal with stabilities of proteins due to its complicated structures. This study aims to develop a novel approach to stabilize and encapsulate proteins into dextran nanoparticles without contacting the interface between the aqueous phase and the organic phase. The bovine serum albumin, granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), β-galactosidase, and myoglobin were selected as model proteins. The proteins were added into an aqueous solution containing the dextran and polyethylene glycol, and then encapsulated into dextran nanoparticles by aqueous-aqueous freezing-induced phase separation. The encapsulation efficiency and recovery of dextran nanoparticles were determined. The dextran nanoparticles loaded with proteins were characterized by scanning electron microscopy and particle size analysis. The protein aggregation was determined by size-exclusion chromatography-high-performance chromatography, and the bioactivity of proteins recovered during formulation steps was determined. The bioactivity of GM-CSF, G-CSF, and β-galactosidase were examined by the proliferation of TF-1 cell, NSF-60 cell, and ortho-nitrophenyl- β-galactoside assay, respectively. The results of bioactivity recovered show that this novel dextran nanoparticle can preserve the protein's bioactivity during the preparation process. LysoSensor™ Yellow/Blue dextran, a pH-sensitive indicator with fluorescence excited at two channels, was encapsulated into dextran nanoparticles to investigate the ability of dextran nanoparticles to resist the acidic microenvironment (pH < 2.5). The result shows that the dextran nanoparticles attenuate the acidic microenvironment in the poly (lactic-co-glycolic acid) microsphere by means of the dilution effect. These novel dextran nanoparticles provided an appealing approach to stabilize the delicate proteins for

  13. Orally Administered Enoxaparin Ameliorates Acute Colitis by Reducing Macrophage-Associated Inflammatory Responses

    PubMed Central

    Lean, Qi Ying; Eri, Rajaraman D.; Randall-Demllo, Sarron; Sohal, Sukhwinder Singh; Stewart, Niall; Peterson, Gregory M.; Gueven, Nuri; Patel, Rahul P.

    2015-01-01

    Inflammatory bowel diseases, such as ulcerative colitis, cause significant morbidity and decreased quality of life. The currently available treatments are not effective in all patients, can be expensive and have potential to cause severe side effects. This prompts the need for new treatment modalities. Enoxaparin, a widely used antithrombotic agent, is reported to possess anti-inflammatory properties and therefore we evaluated its therapeutic potential in a mouse model of colitis. Acute colitis was induced in male C57BL/6 mice by administration of dextran sulfate sodium (DSS). Mice were treated once daily with enoxaparin via oral or intraperitoneal administration and monitored for colitis activities. On termination (day 8), colons were collected for macroscopic evaluation and cytokine measurement, and processed for histology and immunohistochemistry. Oral but not intraperitoneal administration of enoxaparin significantly ameliorated DSS-induced colitis. Oral enoxaparin-treated mice retained their body weight and displayed less diarrhea and fecal blood loss compared to the untreated colitis group. Colon weight in enoxaparin-treated mice was significantly lower, indicating reduced inflammation and edema. Histological examination of untreated colitis mice showed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and the presence of edema, while all aspects of this pathology were alleviated by oral enoxaparin. Reduced number of macrophages in the colon of oral enoxaparin-treated mice was accompanied by decreased levels of pro-inflammatory cytokines. Oral enoxaparin significantly reduces the inflammatory pathology associated with DSS-induced colitis in mice and could therefore represent a novel therapeutic option for the management of ulcerative colitis. PMID:26218284

  14. Bacillus polyfermenticus Ameliorates Colonic Inflammation by Promoting Cytoprotective Effects in Colitic Mice12

    PubMed Central

    Im, Eunok; Choi, Yoon Jeong; Pothoulakis, Charalabos; Rhee, Sang Hoon

    2009-01-01

    Although human consumption of Bacillus polyfermenticus provides several health benefits, the probiotic effect of this bacterium against colonic inflammation has not yet, to our knowledge, been studied. Therefore, we induced colitis in mice by oral or intrarectal administration of dextran sodium sulfate (DSS) or trinitrobenzenosulfonic acid (TNBS), respectively, and investigated the effect of B. polyfermenticus on colitis. We found that mice treated with DSS or TNBS along with B. polyfermenticus had reduced mortality and severity of colitis (weight loss, diarrhea, and mucosal damages) than mice treated with DSS or TNBS alone. B. polyfermenticus also reduced the expression of inflammatory molecules, including chemokine (C-X-C motif) ligand 1, intercellular adhesion molecule, and tumor necrosis factor-α, but enhanced the expression of the antiinflammatory cytokine interleukin-10 in the inflamed mouse colon. Moreover, B. polyfermenticus suppressed apoptosis both in vivo in inflamed colonic mucosa and in vitro in colonic epithelial cells stimulated with apoptosis-inducing agents (FasL or Clostridium difficile Toxin A) when the apoptotic response was determined by a terminal deoxynucleotidyl transferase dUTP nick end labeling assay and cleavage of poly(ADP-ribose) polymerase or caspase-3, respectively. Treating colonic epithelial cells with B. polyfermenticus-conditioned medium (BPCM) enhanced cell proliferation and induced the phosphoinositide 3-kinases/Akt signaling pathway, suggesting that this bacterium can promote epithelial cell proliferation. BPCM also promoted the migration of colonic epithelial cells. These data suggest that B. polyfermenticus ameliorates colonic inflammation by suppressing apoptosis and promoting epithelial cell proliferation and migration. PMID:19675103

  15. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype.

    PubMed

    Zhu, Wei; Jin, Zaishun; Yu, Jianbo; Liang, Jun; Yang, Qingdong; Li, Fujuan; Shi, Xuekui; Zhu, Xiaodong; Zhang, Xiaoli

    2016-06-01

    Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the intestinal tract. Baicalin, originally isolated from the root of the Chinese herb Huangqin (Scutellaria baicalensis Georgi) and its main active ingredient, has a protective effect against inflammatory responses in several diseases. The present study investigated the effects of baicalin on macrophage polarization and its therapeutic role in IBD. Murine peritoneal macrophages and mice with colitis were treated with baicalin. Macrophage subset distribution, M1 and M2 macrophage-associated mRNA expression, and interferon regulatory factor 4 and 5 (IRF4 and IRF5) expression were analyzed. siRNA transfection into mouse peritoneal macrophages was utilized to suppress IRF4. Fluorescence-activated cell sorting, western blot, and real-time PCR analyses were performed. Baicalin (50μM) limited lipopolysaccharide (LPS)-induced M1 macrophage polarization; decreased LPS-induced tumor necrosis factor α, interleukin (IL)-23, and IRF5 expression; and increased IL-10, arginase-1 (Arg-1), and IRF4 expression. siRNA-mediated IRF4 silencing significantly impaired baicalin activity. Furthermore, pretreatment with baicalin (100mg/kg) in mice with dextran sodium sulfate (DSS)-induced colitis ameliorated the severity of colitis and significantly decreased the disease activity index (baicalin group, 3.33±0.52 vs. DSS group, 5.67±1.03). Baicalin (100mg/kg) also repressed IRF5 protein expression and promoted IRF4 protein expression in the lamina propria mononuclear cells, and induced macrophage polarization to the M2 phenotype. In summary, our results showed that baicalin upregulates IRF4 protein expression and reverses LPS-induced macrophage subset redistribution. Thus, baicalin alleviates DSS-induced colitis by modulating macrophage polarization to the M2 phenotype. PMID:27039210

  16. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    NASA Astrophysics Data System (ADS)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  17. Liquid chromatography of dextrans on porous silica beds.

    PubMed

    Eltekov, A Yu

    2005-12-23

    Kinetics, equilibrium isotherms and chromatography retention times for sorption of dextrans T-10, T-20, T-40, T-70, T-110, T-161, T-250 and T-500 on porous silica were measured at 25 degrees C. The Henry constant and retention factors for the dextrans were obtained. The values of the partition coefficient for the distribution of the dextrans between the bulk solution and the pore space were calculated within the framework of a pore volume filling model with consideration given to the ratio between the sizes of the macromolecular coils and the pore inlet. The measurements showed that this parameter depends on the structure of the sorbent and the molecular mass distribution of the dextran. The interaction of aqueous dextran solution with porous silica is characterized by the sieve effect. Large macromolecular coils of dextran T-161 cannot penetrate into the pore space of the silica sorbent with pore diameter 14 nm. The difference in Henry law constants calculated from adsorption and chromatographic data for dextrans T-70 and T-110 can be explained by the slow diffusion of dextran macromolecules into silica pores under chromatographic conditions. PMID:16183069

  18. 21 CFR 520.1182 - Iron dextran suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Iron dextran suspension. 520.1182 Section 520.1182... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1182 Iron dextran suspension. (a) Specifications. Each milliliter (mL) of suspension contains 55.56 milligrams (mg) iron as...

  19. 21 CFR 520.1182 - Iron dextran suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Iron dextran suspension. 520.1182 Section 520.1182... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1182 Iron dextran suspension. (a) Specifications. Each milliliter (mL) of suspension contains 55.56 milligrams (mg) iron as...

  20. 21 CFR 520.1182 - Iron dextran suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron dextran suspension. 520.1182 Section 520.1182... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1182 Iron dextran suspension. (a) Specifications. Each milliliter (mL) of suspension contains 55.56 milligrams (mg) iron as...

  1. 21 CFR 520.1182 - Iron dextran suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Iron dextran suspension. 520.1182 Section 520.1182... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1182 Iron dextran suspension. (a) Specifications. Each milliliter (mL) of suspension contains 55.56 milligrams (mg) iron as...

  2. 21 CFR 520.1182 - Iron dextran suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Iron dextran suspension. 520.1182 Section 520.1182... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1182 Iron dextran suspension. (a) Specifications. Each milliliter (mL) of suspension contains 55.56 milligrams (mg) iron as...

  3. Action of dextran-modified hyaluronidase in experimental silicosis

    SciTech Connect

    Arkhipova, O.G.; Yaglov, V.V.; Maksimenko, A.V.; Pavlovskaya, L.V.; Konovalova, O.Yu.; Varsanovich, E.A.; Bezrukavnikova, L.M.; Fedorova, V.I.; Fedorova, V.N.; Torchilin, V.P.

    1987-07-01

    The authors study the effect of hyaluronidase stabilized by covalent addition to dextran, modified by partial oxidation, on the development of the pneumofibrosis in silicosis. Rats were used in the investigations. Of the two preparations studied with stabilized hyaluronidase action, that stabilized by covalent addition of lidase to aldehyde-dextran proved to be the more effective.

  4. Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model.

    PubMed

    Souza, Éricka L; Elian, Samir D; Paula, Laís M; Garcia, Cristiana C; Vieira, Angélica T; Teixeira, Mauro M; Arantes, Rosa M; Nicoli, Jacques R; Martins, Flaviano S

    2016-03-01

    Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the gut that include ulcerative colitis and Crohn's disease. Probiotics are live micro-organisms that may be used as adjuvant therapy for patients with IBD. The aim of this study was to evaluate the effect of prophylactic ingestion of Escherichia coli strain Nissle 1917 (EcN) in a murine model of colitis. For induction of colitis, mice were given a 3.5 % dextran sodium sulfate (DSS) solution for 7 days in drinking water. EcN administration to mice subjected to DSS-induced colitis resulted in significant reduction in clinical and histopathological signs of disease and preservation of intestinal permeability. We observed reduced inflammation, as assessed by reduced levels of neutrophils, eosinophils, chemokines and cytokines. We observed an increase in the number of regulatory T-cells in Peyer's patches. Germ-free mice received faecal content from control or EcN-treated mice and were then subjected to DSS-induced colitis. We observed protection from colitis in animals that were colonized with faecal content from EcN-treated mice. These results suggest that preventative oral administration of EcN or faecal microbiota transplantation with EcN-containing microbiota ameliorates DSS-induced colitis by modifying inflammatory responsiveness to DSS. PMID:26758971

  5. Dimethyl sulfate

    Integrated Risk Information System (IRIS)

    Dimethyl sulfate ; CASRN 77 - 78 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  6. Diethyl sulfate

    Integrated Risk Information System (IRIS)

    Diethyl sulfate ; CASRN 64 - 67 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  7. Chondroitin sulfate

    MedlinePlus

    Natural Medicines Comprehensive Database rates effectiveness based on scientific evidence according to the following scale: Effective, Likely ... The following doses have been studied in scientific research: BY MOUTH: ... dose of chondroitin sulfate is 800-2000 mg taken as a single dose or in two ...

  8. Synthesis and spectroscopic characterization of copper(H)-dextran complexes

    NASA Astrophysics Data System (ADS)

    Mitić, Ž.; Nikolić, G. S.; Cakić, M.; Nikolić, R.; Ilić, Lj.

    2007-09-01

    Synthesis of stable copper(II) complexes with reduced dextran derivatives can be realized with low molar polysaccharides of an average molar mass 5000 g mol-1. A copper(II) content of 4 20% is achieved at pH 7 8 and at the boiling point. Copper(II) complex formation with dextran was analyzed by spectrophotometric VIS methods. The IR spectra of copper(II) complexes with dextran were analyzed to find the most stable conformation of the glucopyranose unit. The ESR parameters of the spectrum indicate a square-planar coordination of the Cu(II) ion with four oxygen ligand atoms in the same plane. Copper deficiency causes a number of pathological states [1]. In both human and veterinary medicine, commercial copper preparations based on dextran and its derivatives are used for such purposes [2]. According to the literature data, dextran has the ability of complex formation with various biometals (Zn, Fe, Co, Ca, and Mg) [3 6]. Iron complexes with different polysaccharides have special importance and they have been described in detail [7]. Synthetic procedures for the complex formation of Cu(II) with polysaccharides, including dextran, are described in scientific and patent literature [8]. However, literature data on the complex formation possibility of the Cu(II) ion with dextran derivatives are scarce.

  9. Escherichia coli Strain Nissle 1917 Ameliorates Experimental Colitis via Toll-Like Receptor 2- and Toll-Like Receptor 4-Dependent Pathways

    PubMed Central

    Grabig, A.; Paclik, D.; Guzy, C.; Dankof, A.; Baumgart, D. C.; Erckenbrecht, J.; Raupach, B.; Sonnenborn, U.; Eckert, J.; Schumann, R. R.; Wiedenmann, B.; Dignass, A. U.; Sturm, A.

    2006-01-01

    Toll-like receptors (TLRs) are key components of the innate immune system that trigger antimicrobial host defense responses. The aim of the present study was to analyze the effects of probiotic Escherichia coli Nissle strain 1917 in experimental colitis induced in TLR-2 and TLR-4 knockout mice. Colitis was induced in wild-type (wt), TLR-2 knockout, and TLR-4 knockout mice via administration of 5% dextran sodium sulfate (DSS). Mice were treated with either 0.9% NaCl or 107 E. coli Nissle 1917 twice daily, followed by the determination of disease activity, mucosal damage, and cytokine secretion. wt and TLR-2 knockout mice exposed to DSS developed acute colitis, whereas TLR-4 knockout mice developed significantly less inflammation. In wt mice, but not TLR-2 or TLR-4 knockout mice, E. coli Nissle 1917 ameliorated colitis and decreased proinflammatory cytokine secretion. In TLR-2 knockout mice a selective reduction of gamma interferon secretion was observed after E. coli Nissle 1917 treatment. In TLR-4 knockout mice, cytokine secretion was almost undetectable and not modulated by E. coli Nissle 1917, indicating that TLR-4 knockout mice do not develop colitis similar to the wt mice. Coculture of E. coli Nissle 1917 and human T cells increased TLR-2 and TLR-4 protein expression in T cells and increased NF-κB activity via TLR-2 and TLR-4. In conclusion, our data provide evidence that E. coli Nissle 1917 ameliorates experimental induced colitis in mice via TLR-2- and TLR-4-dependent pathways. PMID:16790781

  10. Concerted actions of ameliorated colitis, aberrant crypt foci inhibition and 15-hydroxyprostaglandin dehydrogenase induction by sonic hedgehog inhibitor led to prevention of colitis-associated cancer.

    PubMed

    Kangwan, Napapan; Kim, Yoon-Jae; Han, Young-Min; Jeong, Migyeong; Park, Jong-Min; Hahm, Ki-Baik

    2016-03-15

    The sonic hedgehog (Shh) signaling has been known to contribute to carcinogenesis in organ, where hedgehog exerted organogenesis and in cancers, which are developed based on mutagenic inflammation. Therefore, colitis-associated cancer (CAC) can be a good model to prove whether Shh inhibitors can be applied to prevent, as the efforts to discover potent anti-inflammatory agent are active to prevent CAC. Here, under the hypothesis that Shh inhibitors can prevent CAC, mouse model was generated to develop CAC by azoxymethane (AOM)-initiated, dextran sodium sulfate-promoted carcinogenesis. Shh inhibitors, cerulenin and itraconazole were treated by oral gavage and the mice were sacrificed at early phase of 3 weeks and late phase of 16 weeks. Compared to control group, the number of aberrant crypt foci at 3 weeks and tumor incidence at 16 weeks were all significantly decreased with Shh inhibitor. Significant attenuations of macrophage infiltration accompanied with significant decreases of IL-6, COX-2, STAT3 and NF-κB as well as significant ameliorations of β-catenin nuclear translocation, cyclin D1 and CDK4 were imposed with Shh inhibitors. Especially, CAC was accompanied with significant cancellation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), but their levels were significantly preserved with Shh inhibitors. Among inflammatory mediators, significantly decreased levels of IL-6 and TNF-α, regulated with repressed NF-κb and STAT3, were prominent with Shh inhibitor, whereas significant inductions of apoptosis were noted with Shh inhibitors. In conclusion, Shh inhibitors significantly prevented CAC covering either ameliorating oncogenic inflammation or suppressing tumor proliferation, especially supported with significant inhibition of IL-6 and STAT3 signaling, 15-PGDH preservation and apoptosis induction. PMID:26476372

  11. Targeted 25-hydroxyvitamin D3 1α-hydroxylase adoptive gene therapy ameliorates dss-induced colitis without causing hypercalcemia in mice.

    PubMed

    Li, Bo; Baylink, David J; Walter, Michael H; Lau, Kin-Hing William; Meng, Xianmei; Wang, Jun; Cherkas, Andriy; Tang, Xiaolei; Qin, Xuezhong

    2015-02-01

    Systemic 1,25(OH)2D3 treatment ameliorating murine inflammatory bowel diseases (IBD) could not be applied to patients because of hypercalcemia. We tested the hypothesis that increasing 1,25(OH)2D3 synthesis locally by targeting delivery of the 1α-hydroxylase gene (CYP27B1) to the inflamed bowel would ameliorate IBD without causing hypercalcemia. Our targeting strategy is the use of CD11b(+)/Gr1(+) monocytes as the cell vehicle and a macrophage-specific promoter (Mac1) to control CYP27B1 expression. The CD11b(+)/Gr1(+) monocytes migrated initially to inflamed colon and some healthy tissues in dextran sulfate sodium (DSS) colitis mice; however, only the migration of monocytes to the inflamed colon was sustained. Adoptive transfer of Gr1(+) monocytes did not cause hepatic injury. Infusion of Mac1-CYP27B1-modified monocytes increased body weight gain, survival, and colon length, and expedited mucosal regeneration. Expression of pathogenic Th17 and Th1 cytokines (interleukin (IL)-17a and interferon (IFN)-α) was decreased, while expression of protective Th2 cytokines (IL-5 and IL-13) was increased, by the treatment. This therapy also enhanced tight junction gene expression in the colon. No hypercalcemia occurred following this therapy. In conclusion, we have for the first time obtained proof-of-principle evidence for a novel monocyte-based adoptive CYP27B1 gene therapy using a mouse IBD model. This strategy could be developed into a novel therapy for IBD and other autoimmune diseases. PMID:25327179

  12. Biophysical basis of hypoxic radioprotection by deoxygenated dextran-hemoglobin

    SciTech Connect

    Wong, J.T.; Hill, R.P.

    1986-08-01

    Perfusion with deoxygenated dextran-hemoglobin provides an effective method for inducing hypoxic radioprotection of normal tissues during radiation treatment of tumors. In this study, the dependence of P50, the half-saturation pressure of oxygen binding to dextran-hemoglobin, was analyzed as a function of solution temperature and pH. The variation of attainable radioprotection with P50, and with the amount of collateral blood entering into the perfused region, was calculated. Upon perfusion of canine gracilis muscle with deoxygenated dextran-hemoglobin, a rapid onset of extensive venous hypoxia was observed.

  13. Hypertonic saline dextran resuscitation of thermal injury.

    PubMed Central

    Horton, J W; White, D J; Baxter, C R

    1990-01-01

    Burn treatment requires large volumes of crystalloid, which may exacerbate burn-induced cardiopulmonary dysfunction. Small-volume hypertonic saline dextran (HSD) resuscitation has been used for effective treatment of several types of shock. In this study isolated coronary perfused guinea pig hearts were used to determine if HSD improved left ventricular contractile response to burn injuries. Parameters measured included left ventricular pressure (LVP) and maximal rate of LVP rise (+dP/dt max) and fall (-dP/dt max) at a constant preload. Third-degree scald burns comprising 45% of total body surface area (burn groups, N = 75), or 0% for controls (group 1, N = 25) were produced using a template device. In group 2, 25 burned guinea pigs were not fluid resuscitated and served as untreated burns; 20 burns were resuscitated with 4 mL lactated Ringer's (LR) solution/kg/% burn for 24 hours (group 3); additional burn groups were treated with an initial bolus of HSD (4 mL/kg, 2400 mOsm, sodium chloride, 6% dextran 70) followed by either 1, 2, or 4 mL LR/kg/% burn over 24 hours (groups 4, 5, and 6, respectively). Untreated burn injury significantly impaired cardiac function, as indicated by a fall in LVP (from 88 +/- 3 to 68 +/- 4 mmHg; p = 0.01) and +/- dP/dt max (from 1352 +/- 50 to 1261 +/- 90 and from 1150 +/- 35 to 993 +/- 59; p = 0.01, respectively) and a downward shift of LV function curves from those obtained from control hearts. Compared to untreated burns, hearts from burned animals treated with LR alone showed no significant improvement in cardiac function. However hearts from burned animals treated with HSD + 1 mL LR/kg/% burn had significantly higher LVP (79 +/- 4 vs. 68 +/- 4 mmHg, p = 0.01) and +/- dP/dt max (+dP/dt: 1387 +/- 60 vs. 1261 +/- 90 mmHg/sc, p = 0.01; -dP/dt: 1079 +/- 50 vs. 993 +/- 59 mmHg/sc, p = 0.01) than hearts from untreated burned animals and generated left ventricular function curves comparable to those calculated for hearts from control

  14. Rapid transport of polyacrylates in dextran matrix

    SciTech Connect

    Maeda, H.; Nakamura, K.; Sasaki, S.

    1993-12-31

    The authors have observed the rapid transport of polyacrylate(PA) in the matrix of dextran. (1) In the salt-free media, the transport of PA depended on the kind of its couterions. The rates were in the following order: tetramethylammonium > Li+ > tetrabutylammonium > Na+ > NH{sub 4}+ > Cs+. (2) The transport rate of PAA in buffer solutions of about 30mM ionic strength increased with the degree of ionization {alpha} but remained constant in the range of {alpha} greater than about 0.4. The effect of the counterion condensation on the transport rate was thus clearly demonstrated. (3) The transport rate of NaPA was nearly identical in the presence of 0.1 M NaCl and no added salt. It decreased to less than half in 0.2 M NaCl and in 0.5 M NaCl no rapid transport was observed any more and ordinary diffusion behavior was observed instead.

  15. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    SciTech Connect

    Cheng, Jian; Zhang, Lin; Dai, Weiqi; Mao, Yuqing; Li, Sainan; Wang, Jingjie; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  16. Celastrol Ameliorates Ulcerative Colitis-Related Colorectal Cancer in Mice via Suppressing Inflammatory Responses and Epithelial-Mesenchymal Transition

    PubMed Central

    Lin, Lianjie; Sun, Yan; Wang, Dongxu; Zheng, Shihang; Zhang, Jing; Zheng, Changqing

    2016-01-01

    Celastrol, also named as tripterine, is a pharmacologically active ingredient extracted from the root of traditional Chinese herb Tripterygium wilfordii Hook F with potent anti-inflammatory and anti-tumor activities. In the present study, we investigated the effects of celastrol on ulcerative colitis-related colorectal cancer (UC-CRC) as well as CRC in vivo and in vitro and explored its underlying mechanisms. UC-CRC model was induced in C57BL/6 mice by administration of azoxymethane (AOM) and dextran sodium sulfate (DSS). Colonic tumor xenograft models were developed in BALB/c-nu mice by subcutaneous injection with HCT116 and HT-29 cells. Intragastric administration of celastrol (2 mg/kg/d) for 14 weeks significantly increased the survival ratio and reduced the multiplicity of colonic neoplasms compared with AOM/DSS model mice. Mechanically, celastrol treatment significantly prevented AOM/DSS-induced up-regulation of expression levels of oncologic markers including mutated p53 and phospho-p53, β-catenin and proliferating cell nuclear antigen (PCNA). In addition, treatment with celastrol inhibited inflammatory responses, as indicated by the decrease of serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, down-regulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and inactivation of nuclear factor κB (NF-κB). Moreover, celastrol obviously suppressed epithelial-mesenchymal transition (EMT) through up-regulating E-cadherin and down-regulating N-cadherin, Vimentin and Snail. Additionally, we also demonstrated that celastrol inhibited human CRC cell proliferation and attenuated colonic xenograft tumor growth via reversing EMT. Taken together, celastrol could effectively ameliorate UC-CRC by suppressing inflammatory responses and EMT, suggesting a potential drug candidate for UC-CRC therapy. PMID:26793111

  17. The major fimbrial subunit of Bordetella pertussis binds to sulfated sugars.

    PubMed Central

    Geuijen, C A; Willems, R J; Mooi, F R

    1996-01-01

    Bordetella pertussis fimbriae are composed of major and minor subunits, and recently it was shown that the minor fimbrial subunit binds to Vla-5, a receptor located on monocytes (W. Hazenbos, C. Geuijen, B. van den Berg, F. Mooi, and R. van Furth, J. Infect. Dis. 171:924-929, 1995). Here we present evidence that the major subunits bind to sulfated sugars, which are ubiquitous in the respiratory tract. Binding was observed to chondroitin sulfate, heparan sulfate, and dextran sulfate but not to dextran. Removal of the minor subunit from fimbriae did not significantly affect binding to sulfated sugars, indicating that the major subunit alone is sufficient for this binding. Fimbriae were also able to bind HEp-2 cells, which are known to display glycoconjugates on their surface. This binding was not dependent on the presence of the minor subunit. However, binding was dependent on the sulfation state of the glycoconjugates, since inhibition of the sulfation resulted in a significant reduction of fimbria binding. The specificity of fimbria binding was further characterized by using heparan sulfate-derived disaccharides in inhibition assays. Two disaccharides were highly effective inhibitors, and it was observed that both the degree of sulfation and the arrangement of the sulfate groups on the disaccharides were important for binding to fimbriae. B. pertussis bacteria also bound to sulfated sugars and HEp-2 cells, and analysis of B. pertussis mutants indicated that both filamentous hemagglutinin and fimbriae were required for this binding. A host protein present in the extracellular matrix, fibronectin, has binding activities similar to those of B. pertussis fimbriae, binding to both Vla-5 and sulfated sugars. Two regions in the major fimbrial subunit were identified which showed similarity with fibronectin peptides which bind to sulfated sugars. Thus, B. pertussis fimbriae exemplify molecular mimicry and may co-opt host processes by mimicking natural ligand

  18. Dextran induces differentiation of circulating endothelial progenitor cells

    PubMed Central

    Obi, Syotaro; Masuda, Haruchika; Akimaru, Hiroshi; Shizuno, Tomoko; Yamamoto, Kimiko; Ando, Joji; Asahara, Takayuki

    2014-01-01

    Abstract Endothelial progenitor cells (EPCs) have been demonstrated to be effective for the treatment of cardiovascular diseases. However, the differentiation process from circulation to adhesion has not been clarified because circulating EPCs rarely attached to dishes in EPC cultures previously. Here we investigated whether immature circulating EPCs differentiate into mature adhesive EPCs in response to dextran. When floating‐circulating EPCs derived from ex vivo expanded human cord blood were cultured with 5% and 10% dextran, they attached to fibronectin‐coated dishes and grew exponentially. The bioactivities of adhesion, proliferation, migration, tube formation, and differentiated type of EPC colony formation increased in EPCs exposed to dextran. The surface protein expression rate of the endothelial markers vascular endothelial growth factor (VEGF)‐R1/2, VE‐cadherin, Tie2, ICAM1, VCAM1, and integrin αv/β3 increased in EPCs exposed to dextran. The mRNA levels of VEGF‐R1/2, VE‐cadherin, Tie2, endothelial nitric oxide synthase, MMP9, and VEGF increased in EPCs treated with dextran. Those of endothelium‐related transcription factors ID1/2, FOXM1, HEY1, SMAD1, FOSL1, NFkB1, NRF2, HIF1A, EPAS1 increased in dextran‐treated EPCs; however, those of hematopoietic‐ and antiangiogenic‐related transcription factors TAL1, RUNX1, c‐MYB, GATA1/2, ERG, FOXH1, HHEX, SMAD2/3 decreased in dextran‐exposed EPCs. Inhibitor analysis showed that PI3K/Akt, ERK1/2, JNK, and p38 signal transduction pathways are involved in the differentiation in response to dextran. In conclusion, dextran induces differentiation of circulating EPCs in terms of adhesion, migration, proliferation, and vasculogenesis. The differentiation mechanism in response to dextran is regulated by multiple signal transductions including PI3K/Akt, ERK1/2, JNK, and p38. These findings indicate that dextran is an effective treatment for EPCs in regenerative medicines. PMID:24760515

  19. Anti-hygroscopic effect of dextrans in herbal formulations.

    PubMed

    Tong, Henry H Y; Wong, Sammas Y S; Law, Marcus W L; Chu, Kevin K W; Chow, Albert H L

    2008-11-01

    Equilibrium moisture sorptions of two dried aqueous herbal extracts and their mixtures with dextrans of various molecular weights were investigated as a function of relative humidity at ambient temperature, and the data were analyzed by both the Guggenheim-Anderson-deBoer (GAB) and Brunauer-Emmett-Teller (BET) equations. Glass transition temperatures (T(g)) of the samples were measured by differential scanning calorimetry, and their dependence on the moisture contents of the extracts was analyzed by the linear, Fox and expanded Gordon-Taylor mathematical models. All dextran-extract mixtures exhibited single T(g) values, indicating that they existed as single homogeneous phases. The BET equation was found adequate for description of the moisture sorption isotherms for all samples. The dextrans appeared to reduce the hygroscopicity of the herbal extracts solely by a dilution effect. The observed increase in T(g) and accompanying decrease in tackiness of the herbal extracts in the presence of dextrans may be explained by the ability of dextrans to restrict the molecular mobility of simple sugars and to counteract the plasticizing effect of water in the extracts. The expanded Gordon-Taylor equation has proved useful in predicting the T(g) of hygroscopic amorphous herbal mixtures. PMID:18706495

  20. Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10{sup −/−} mice by attenuating the activation of T cells and promoting their apoptosis

    SciTech Connect

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Price, Robert L.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2012-01-15

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10{sup −/−} mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10{sup −/−} mice. After JWH-133 treatment, the percentage of CD4{sup +} T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. -- Highlights: ► JWH-133, a cannnabinoid receptor-2 agonist ameliorates experimental colitis. ► JWH-133 suppressed inflammation and

  1. Assessment of Dextran Antigenicity of Intravenous Iron Preparations with Enzyme-Linked Immunosorbent Assay (ELISA)

    PubMed Central

    Neiser, Susann; Koskenkorva, Taija S.; Schwarz, Katrin; Wilhelm, Maria; Burckhardt, Susanna

    2016-01-01

    Intravenous iron preparations are typically classified as non-dextran-based or dextran/dextran-based complexes. The carbohydrate shell for each of these preparations is unique and is key in determining the various physicochemical properties, the metabolic pathway, and the immunogenicity of the iron-carbohydrate complex. As intravenous dextran can cause severe, antibody-mediated dextran-induced anaphylactic reactions (DIAR), the purpose of this study was to explore the potential of various intravenous iron preparations, non-dextran-based or dextran/dextran-based, to induce these reactions. An IgG-isotype mouse monoclonal anti-dextran antibody (5E7H3) and an enzyme-linked immunosorbent assay (ELISA) were developed to investigate the dextran antigenicity of low molecular weight iron dextran, ferumoxytol, iron isomaltoside 1000, ferric gluconate, iron sucrose and ferric carboxymaltose, as well as isomaltoside 1000, the isolated carbohydrate component of iron isomaltoside 1000. Low molecular weight iron dextran, as well as dextran-based ferumoxytol and iron isomaltoside 1000, reacted with 5E7H3, whereas ferric carboxymaltose, iron sucrose, sodium ferric gluconate, and isolated isomaltoside 1000 did not. Consistent results were obtained with reverse single radial immunodiffusion assay. The results strongly support the hypothesis that, while the carbohydrate alone (isomaltoside 1000) does not form immune complexes with anti-dextran antibodies, iron isomaltoside 1000 complex reacts with anti-dextran antibodies by forming multivalent immune complexes. Moreover, non-dextran based preparations, such as iron sucrose and ferric carboxymaltose, do not react with anti-dextran antibodies. This assay allows to assess the theoretical possibility of a substance to induce antibody-mediated DIARs. Nevertheless, as this is only one possible mechanism that may cause a hypersensitivity reaction, a broader set of assays will be required to get an understanding of the mechanisms that may

  2. Lymphoscintigraphy in melanoma patients using Tc-99m dextran

    SciTech Connect

    Marciano, D.; Padgett, H.; Henze, E.; Carlson, C.; Bennett, L.R.

    1984-01-01

    Surgical removal of regional lymph nodes draining the site of a melanoma is a generally practiced procedure. It is often difficult in many cases of truncal melanomas near the midline or near the waistline to determine which group or groups of nodes to remove. Colloidal Au-198, Tc-99m sulfur colloid, and Tc-99m antimony sulfur colloid have all been used and have given useful clinical information. Objections, however, have been raised to the local radiation dose with these compounds. To reduce this problem while obtaining greater information on lymph flow, the authors have studied dextran, a macromolecule commonly used as plasma substitute. Dextran (average mol. wt. 72,000) labeled with Tc-99m has been used to study lymph drainage from the site of truncal melanoma in 29 patients. Serial images in the first hour following intradermal injection clearly demonstrate tracer in efferent lymphatics within 5 to 10 minutes, and brief pooling in the regional lymph nodes between 20 and 60 minutes. When compared with particulate tracers such as micro Tc-99m sulfur colloid, the Tc-99m dextran appears to move much faster through the lymphatics. Overall distribution of the Tc-99m dextran to lymph nodes is very similar to previous findings with micro Tc-99m sulfur colloid. Dextran drainage to more than one group of regional nodes was seen in 12/29 patients as compared with 17/50 patients using micro Tc-99m sulfur colloid. The superior images with Tc-99m dextran appear to make it the agent of choice.

  3. Rheological Study of Dextran-Modified Magnetite Nanoparticle Water Suspension

    NASA Astrophysics Data System (ADS)

    Józefczak, A.; Hornowski, T.; Rozynek, Z.; Skumiel, A.; Fossum, J. O.

    2013-04-01

    The aim of this work is to investigate the effect of surface modification of superparamagnetic magnetite nanoparticles (sterically stabilized by sodium oleate) by the dextran biocompatible layer on the rheological behavior of water-based magnetic fluids. The flow curves were measured as a function of the magnetic field strength by means of rheometry. The measured viscosity is generally dependent on both the particle concentration and the geometrical factors such as the particle shape and thickness of the adsorbed layers. The rheological properties of the magnetic fluids studied show the effect of the magnetic field strength and the presence of the surfactant second layer (dextran) on their viscosity.

  4. Effects of molecular weight of dextran on the adherence of Streptococcus sanguis to damaged heart valves.

    PubMed Central

    Ramirez-Ronda, C H

    1980-01-01

    Dextran-producing streptococci such as Streptococcus sanguis are the organisms most frequently associated with infective endocarditis in humans. A series of experiments was designed to study how the molecular weight of dextrans affects the adherence of an endocarditis strain of S. sanguis to canine heart valves covered with platelets and fibrin. The data indicated that this adherence was dependent on dextrans of high molecular weight, such as dextran T-2000 or glucans isolated from S. sanguis or S. mutans. The adherence properties of the strain studied were not modified by prior exposure of the bacterial cells of valve leaflets to high-molecular-weight dextrans. Preexposure of bacterial cells or valve leaflets to low-molecular-weight dextrans decreased their adherence. Low-molecular-weight dextrans interfered with adherence of dextran-positive strains to damaged heart valves. PMID:6156909

  5. 77 FR 50121 - Hospira, Inc.; Withdrawal of Approval of a New Drug Application for DEXTRAN 70

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ...% Dextran 70 and 0.9% NaCl or/5% Dextrose 500 mL Glass Bottle) held by Hospira, Inc., 275 North Field Dr...% Dextran 70 and 0.9% NaCl or/5% Dextrose 500 mL Glass Bottle) under the process in Sec. 314.150(c)(21 CFR..., approval of NDA 080- 819, DEXTRAN 70 [6% Dextran 70 and 0.9% NaCl or/5% Dextrose 500 mL Glass Bottle],...

  6. Enhanced plasma persistence of therapeutic enzymes by coupling to soluble dextran.

    PubMed Central

    Sherwood, R F; Baird, J K; Atkinson, T; Wiblin, C N; Rutter, D A; Ellwood, D C

    1977-01-01

    Conjugation of carboxypeptidase G and arginase, two enzymes of therapeutic interest, to a soluble dextran significantly enhanced plasma persistence in normal and tumour-bearing mice. A prolonged decrease in arginine concentrations in plasma of tumour-bearing mice was demonstrated by using the dextran-linked arginase. Gel filtration of dextran-enzyme conjugate showed that enzyme activity co-chromatographed as a single peak with carbohydrate, and enzyme was shown to be covalently linked to the dextran. PMID:880251

  7. Boehmeria nivea Attenuates the Development of Dextran Sulfate Sodium-Induced Experimental Colitis

    PubMed Central

    Shin, Eun Ju; Sung, Mi Jeong; Yang, Hye Jeong; Kim, Myung Sunny; Hwang, Jin-Taek

    2014-01-01

    We examined the therapeutic effect of an ethanol extract derived from Boehmeria nivea (Linn.) Gaudich in a mouse model of experimental colitis. Treatment with 70% ethanol extract derived from B. nivea (EBN) at a dose of 100, 200, or 500 mg/(kg·d) improved colon shortening, body weight, the disease activity index (DAI), and histopathological score of DSS-induced colitis mice. DSS significantly increased the levels of cyclooxygenase-(COX-) 2 in colon tissue relative to that of the untreated control group. EBN administered at 100, 200, or 500 mg/(kg·d) reduced COX-2 levels in the DSS-treated mice. In addition, EBN decreased the DSS-induced secretion of the inflammatory cytokine interleukin-6 (IL-6) and chemokine monocyte chemotactic protein-1 (MCP-1). Taken together, these data suggest that B. nivea extract is effective in preventing colitis. PMID:25045208

  8. Effect of sophoridine on dextran sulfate sodium-induced colitis in C57BL/6 mice.

    PubMed

    Zhao, Wen-Chang; Song, Li-Jun; Deng, Hong-Zhu

    2010-11-01

    Sophoridine (SRI), one of the quinolizidine alkaloids, is a new anticancer drug with noticeable antitumor action and lower toxicity. To our knowledge, there is no report about its effect on colitis. Repeated colitis was induced by administration of four cycles of 4% DSS. The severity of colitis was assessed on the basis of clinical signs, colon length and histology scores. Moreover, cecum secretory immunoglobulin A (sIgA) and plasma haptoglobin (HP) were analyzed by enzyme-linked immunosorbent assay and ICAM-1, and macrophage migration inhibitory factor (MIF) gene expression was analyzed by quantitative reverse transcriptase real-time polymerase chain reaction using SYBR Green I. SRI administration significantly attenuated the damage and caused substantial reduction of the rise in plasma HP, and maintained the level of cecum sIgA. SRI inhibited the ICAM-1 gene expression and had no effect on MIF gene expression. In conclusion, for the first time, the activity of SRI on DSS-induced colitis mice was investigated, which suggests that SRI could be an attractive therapeutic option in the treatment of inflammatory bowel disease. PMID:21061213

  9. Treatment of dextran sodium sulfate-induced experimental colitis by adoptive transfer of peritoneal cells

    PubMed Central

    Liu, Ting; Ren, Jun; Wang, Wei; Wei, Xia-wei; Shen, Guo-bo; Liu, Yan-tong; Luo, Min; Xu, Guang-chao; Shao, Bin; Deng, Sen-yi; He, Zhi-yao; Liang, Xiao; Liu, Yu; Wen, Yan-Zhu; Xiang, Rong; Yang, Li; Deng, Hong-xin; Wei, Yu-quan

    2015-01-01

    The adoptive transfer of the natural regulatory B cells and macrophages should be a useful treatment for inflammation and autoimmune disease. However, it is usually difficult to isolate these cells from the tissues and expand them. Here, we investigated the feasibility of adoptively transferring peritoneal cells (PCs) as a treatment for DSS-induced colitis. We found that peritoneal cavity can provide an easily accessible site for harvesting enough number of PCs, namely, two-dose PCs for the treatment from a mouse in one operation. Adoptive therapy of these cells from healthy mice or those with disease is effectively in reducing the disease activity score. The natural B cells and macrophages of the infused PCs can selectively migrate to lesion sites and regulate the expression of Stat3, NF−κB, Smad3 and Smad7. Additionally, PCs exert dual activity of IL-10 and TGF-β secreted spontaneously by both peritoneal B cells and macrophages, which in turn enhance the induction of regulatory B cells and Macrophages in microenvironment of inflammation. Moreover, PCs can re-establish immunological tolerance in the OVA-immunized mice. Thus, our findings provide a new strategy for colitis therapy and could be of importance in additional exploration of other inflammation and autoimmune diseases therapy. PMID:26565726

  10. Bimodality in the dodecylpyridinium bromide-sodium dextran sulfate system as observed by an electrophoretic method

    SciTech Connect

    Shirahama, Keishiro; Kameyama, Keiichi; Takagi, Toshio

    1992-08-06

    This paper discusses how a DDPB-SDS binding isotherm was analyzed using an electrophoretic method to reveal evidence in support of Hill`s theory predicting that two species are observed when ligands are bound highly cooperatively to a polymer which could accommodate a small number of binding sites to the ligand -- {open_quotes}bimodality in a small system{close_quotes}. 16 refs., 7 figs.

  11. Microbial Dextran-Hydrolyzing Enzymes: Fundamentals and Applications

    PubMed Central

    Khalikova, Elvira; Susi, Petri; Korpela, Timo

    2005-01-01

    Dextran is a chemically and physically complex polymer, breakdown of which is carried out by a variety of endo- and exodextranases. Enzymes in many groups can be classified as dextranases according to function: such enzymes include dextranhydrolases, glucodextranases, exoisomaltohydrolases, exoisomaltotriohydrases, and branched-dextran exo-1,2-α-glucosidases. Cycloisomalto-oligosaccharide glucanotransferase does not formally belong to the dextranases even though its side reaction produces hydrolyzed dextrans. A new classification system for glycosylhydrolases and glycosyltransferases, which is based on amino acid sequence similarities, divides the dextranases into five families. However, this classification is still incomplete since sequence information is missing for many of the enzymes that have been biochemically characterized as dextranases. Dextran-degrading enzymes have been isolated from a wide range of microorganisms. The major characteristics of these enzymes, the methods for analyzing their activities and biological roles, analysis of primary sequence data, and three-dimensional structures of dextranases have been dealt with in this review. Dextranases are promising for future use in various scientific and biotechnological applications. PMID:15944458

  12. Keratan Sulfate Biosynthesis

    PubMed Central

    Funderburgh, James L.

    2010-01-01

    Summary Keratan sulfate was originally identified as the major glycosaminoglycan of cornea but is now known to modify at least a dozen different proteins in a wide variety of tissues. Despite a large body of research documenting keratan sulfate structure, and an increasing interest in the biological functions of keratan sulfate, until recently little was known of the specific enzymes involved in keratan sulfate biosynthesis or of the molecular mechanisms that control keratan sulfate expression. In the last 2 years, however, marked progress has been achieved in identification of genes involved in keratan sulfate biosynthesis and in development of experimental conditions to study keratan sulfate secretion and control in vitro. This review summarizes current understanding of keratan sulfate structure and recent developments in understanding keratan sulfate biosynthesis. PMID:12512857

  13. Hydrodynamic chromatography using flow of a highly concentrated dextran solution through a coiled tube.

    PubMed

    Miyagawa, Yoichi; Morisada, Shintaro; Ohto, Keisuke; Hidetaka, Kawakita

    2016-08-01

    Separation of colloidal particles in non-Newtonian fluid is important in food engineering. Using hydrodynamic chromatography, colloidal particles and starch granules originating from corn were individually injected into dextran solutions (Mw 2,000,000g/mol) flowing through a coiled tube for efficient size separation. Rheological properties of dextran solutions ranging from 50 to 250g/L were determined, revealing pseudoplastic fluid behavior. Velocity profiles for dextran solution flow in coiled tubes were obtained from rheological power law parameters. Suspensions of colloidal particles of diameters 1.0 and 20μm were individually injected into the dextran flows, demonstrating that dextran solutions at high concentration separated colloidal particles. Starch granules were separated by size using a dextran solution flow (250g/L). Thus, we expect to obtain efficient separation of colloidal particles in foods using highly concentrated dextran solutions. PMID:27112856

  14. Chondroitin sulfate perlecan enhances collagen fibril formation. Implications for perlecan chondrodysplasias.

    PubMed

    Kvist, Alexander J; Johnson, Anna E; Mörgelin, Matthias; Gustafsson, Erika; Bengtsson, Eva; Lindblom, Karin; Aszódi, Attila; Fässler, Reinhard; Sasaki, Takako; Timpl, Rupert; Aspberg, Anders

    2006-11-01

    Inactivation of the perlecan gene leads to perinatal lethal chondrodysplasia. The similarity to the phenotypes of the Col2A1 knock-out and the disproportionate micromelia mutation suggests perlecan involvement in cartilage collagen matrix assembly. We now present a mechanism for the defect in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional to the content of the 4,6-disulfated disaccharide in the different cartilage extracts, with growth plate cartilage glycosaminoglycan being the most efficient enhancer. These findings demonstrate a role for perlecan chondroitin sulfate side chains in cartilage extracellular matrix assembly and provide an explanation for the perlecan-null chondrodysplasia. PMID:16956876

  15. Preparation and characterization of dextran nanobubbles for oxygen delivery.

    PubMed

    Cavalli, R; Bisazza, A; Giustetto, P; Civra, A; Lembo, D; Trotta, G; Guiot, C; Trotta, M

    2009-11-01

    Dextran nanobubbles were prepared with a dextran shell and a perfluoropentan core in which oxygen was stored. To increase the stability polyvinylpirrolidone was also added to the formulation as stabilizing agent. Rhodamine B was used as fluorescent marker to obtain fluorescent nanobubbles. The nanobubble formulations showed sizes of about 500nm, a negative surface charge and a good capacity of loading oxygen, no hemolytic activity or toxic effect on cell lines. The fluorescent labelled nanobubbles could be internalized in Vero cells. Oxygen-filled nanobubbles were able to release oxygen in different hypoxic solutions at different time after their preparation in in vitro experiments. The oxygen release kinetics could be enhanced after nanobubble insonation with ultrasound at 2.5MHz. The oxygen-filled nanobubble formulations might be proposed for therapeutic applications in various diseases. PMID:19616610

  16. Pharmacokinetic study of medicinal polymers: models based on dextrans

    SciTech Connect

    Kulakov, V.N.; Pimenova, G.N.; Matveev, V.A.; Sedov, V.V.; Vasil'ev, A.E.

    1986-09-01

    The authors study the pharmacokinetics of dextrans with various molecular masses modified by fluorescein isothiocyanate (FITC) using a radioisotope method. The radionuclide /sup 125/I was selectively bound to a FITC residue attached to the polysaccharide by electrochemical iodination under potentiostatic conditions. In the experiments, dextrans modified by FITC were labeled with /sup 125/I (DF-/sup 125/I) by electrochemical iodination. The separation of DF-/sup 125/I and FITC from ionic forms of the radionuclide not bound to the polymer was carried out. The properties of the samples obtained are presented. The radioactivity accumulated in the rate organs and urine studied are shown. The features of DF-/sup 125/I behavior in the blood and liver are examined.

  17. Initial studies of hypoxic radioprotection by deoxygenated dextran-hemoglobin

    SciTech Connect

    Hill, R.P.; Porter, L.S.; Ives, S.A.; Wong, J.T.F.

    1984-03-01

    Initial studies were performed to examine the potential of perfused dextran-hemoglobin to protect pig skin or mouse bone marrow cells against radiation damage. Some protection was indicated in both systems. In the pig skin a protection factor of 1.5 was observed for moist desquamation, and 2.0 for necrosis. These results suggest the possibility of using blood substitutes to induce tissue hypoxia for therapeutic purposes.

  18. Emulsifying properties of biodegradable polylactide-grafted dextran copolymers.

    PubMed

    Raynaud, J; Choquenet, B; Marie, E; Dellacherie, E; Nouvel, C; Six, J-L; Durand, A

    2008-03-01

    Amphiphilic glycopolymers, polylactide-grafted dextran copolymers (Dex-g-PLA), were synthesized with a well-controlled architecture obtained through a three-step procedure: partial silylation of the dextran hydroxyl groups, ring-opening polymerization of D,L-lactide initiated from remaining hydroxyl groups, silylether deprotection under very mild conditions. Depending on their proportion in polylactide (PLA), these copolymers exhibited solubility either in water or in organic solvents. The emulsifying properties of these glycopolymers were studied: depending on their PLA-to-dextran ratio, they were able to stabilize either direct or inverse emulsions. Droplet size was related to the amount of amphiphilic copolymer in the continuous phase. The aging mechanism of both direct and inverse emulsions was shown to be Ostwald ripening in the first weeks following preparation. Finally inverse miniemulsion copolymerization of acrylamide and N, N'-methylenebisacrylamide was performed in the presence of an amphiphilic Dex-g-PLA stabilizer. Polyacrylamide hydrogel nanoparticles were prepared in that way. PMID:18271550

  19. Ocular injectable formulation assessment for oxidized dextran-based hydrogels.

    PubMed

    Maia, João; Ribeiro, Maximiano P; Ventura, Carla; Carvalho, Rui A; Correia, Ilídio J; Gil, Maria H

    2009-07-01

    Initiator-free injectable hydrogels are very interesting for drug and/or cell delivery applications, since they can be administered in a minimally invasive way, and avoid the use of potentially harmful chemical initiators. In the current work, oxidized dextran crosslinked with adipic acid dihydrazide hydrogels were further characterized and tuned to produce formulations, with the aim of producing an injectable formulation for the possible treatment of posterior eye diseases. The gelation rate and the hydrogel dissolution profile were shown to be dependent on the balance between the degree of dextran oxidation, and the concentration of both components. For the in vitro studies, rabbit corneal endothelial cells were seeded on the hydrogels to assess cytotoxicity. Hydrogels prepared with low oxidized dextrans were able to promote cell adhesion and proliferation to confluence in just 24h, while more highly oxidized samples promoted cell adhesion and proliferation, but without achieving confluence. Cell viability studies were performed using MTS assays to verify the non-cytotoxicity of hydrogels and their degradation byproducts, rendering these formulations attractive for further in vivo studies. PMID:19286432

  20. Hemodynamic effects of colloid concentration in experimental hemorrhage: a comparison of Ringer's acetate, 3% dextran-60, and 6% dextran-70.

    PubMed

    Schött, U; Lindbom, L O; Sjöstrand, U

    1988-04-01

    Hemodynamic effects of iso-oncotic 3% dextran-60, 6% dextran-70, and Ringer's acetate were compared in 28 male pigs (25 to 30 kg) subjected to experimental trauma and hemorrhage. The animals were kept anesthetized with 75% N2O/25% O2, 0.8% halothane. Hemodynamic and respiratory conditions were allowed to stabilize for one hour preoperatively (baseline data). After surgical trauma (arthroplasty), three 0.5 L of arterial blood samples were withdrawn and replaced with autologous red cells mixed with one liter of 3% dextran-60 in one group 1 (n = 9), one liter of 6% dextran-70 in group 2 (n = 10), and 3 L of Ringer's acetate in group 3 (n = 9). Pulmonary capillary wedge pressure (WP) was kept at baseline level for a further 10 h with infusion of the respective fluid; for this purpose, groups 1 through 3 needed additional infusions of 0.8 +/- 0.3, 0.5 +/- 0.4, and 5.3 +/- 3 (SD) L, respectively. Group 1 showed the highest jejunal capillary blood flow at 10 h and the lowest intragroup variations in hemodynamic and respiratory data. Group 2 had the highest pulmonary arterial pressures and group 3 had the lowest colloid oncotic and arterial BP and left ventricular volume indices. In group 3, the Hct and serum albumin indicated insufficient plasma volume replacement. This group had a significantly larger (p less than .05) amount of tissue water in skin, skeletal muscle, and jejunum than the other groups; no significant difference in lung or heart muscle water was found between the groups.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2450720

  1. The effect of maltose on dextran yield and molecular weight distribution.

    PubMed

    Rodrigues, Sueli; Lona, Liliane M F; Franco, Telma T

    2005-11-01

    Dextran synthesis has been studied since the Second World War, when it was used as blood plasma expander. This polysaccharide composed of glucose units is linked by an alpha-1,6-glucosidic bond. Dextransucrase is a bacterial extra cellular enzyme, which promotes the dextran synthesis from sucrose. When, besides sucrose, another substrate (acceptor) is also present in the reactor, oligosaccharides are produced and part of the glucosyl moieties from glucose is consumed to form these acceptor products, decreasing the dextran yield. Although dextran enzymatic synthesis has been extensively studied, there are few published studies regarding its molecular weight distribution. In this work, the effect of maltose on yield and dextran molecular weight synthesized using dextransucrase from Leuconostoc mesenteroides B512F, was investigated. According to the obtained results, maltose is not able to control and reduce dextran molecular weight distribution and synthesis carried out with or without maltose presented the same molecular weight distribution profile. PMID:16163491

  2. Phagocytosis of hybrid molecular nanosomal compositions containing oxidized dextrans conjugated with isonicotinic acid hydrazide by macrophages.

    PubMed

    Shkurupy, V A; Arkhipov, S A; Troitsky, A V; Luzgina, N G; Zaikovskaja, M V; Ufimceva, E G; Iljine, D A; Akhramenko, E S; Gulyaeva, E P; Bistrova, T N

    2009-12-01

    We studied phagocytic activity of macrophages towards hybrid molecular nanosomal compositions consisting of 150-800-nm nanoliposomes containing oxidized dextrans with a molecular weight of 35 and 60 kDa obtained by chemical ("permanganate") and radiochemical oxidation of dextran conjugated with isonicotinic acid hydrazide (dextrazides, intracellular prolonged antituberculous drugs). Phagocytic activity of macrophages towards hybrid molecular nanosomal compositions containing dextrazides obtained by chemical oxidation of dextrans is higher than activity towards hybrid molecular nanosomal compositions containing dextrazides prepared by radiochemical oxidation and depends on the size of hybrid molecular nanosomal compositions and molecular weight of oxidized dextrans. PMID:21116494

  3. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Pradhan, Pallab; Giri, Jyotsnendu; Banerjee, Rinti; Bellare, Jayesh; Bahadur, Dhirendra

    2007-04-01

    In vitro cytocompatibility and cellular interactions of lauric acid and dextran-coated magnetite nanoparticles were evaluated with two different cell lines (mouse fibroblast and human cervical carcinoma). Lauric acid-coated magnetite nanoparticles were less cytocompatible than dextran-coated magnetite nanoparticles and cellular uptake of lauric acid-coated magnetic nanoparticles was more than that of dextran-coated magnetite nanoparticles. Lesser cytocompatibility and higher uptake of lauric acid-coated magnetite nanoparticles as compared to dextran-coated magnetic nanoparticles may be due to different cellular interactions by coating material. Thus, coating plays an important role in modulation of biocompatibility and cellular interaction of magnetic nanoparticles.

  4. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies. PMID:21419855

  5. Heparan Sulfate Proteoglycans

    PubMed Central

    Sarrazin, Stephane; Lamanna, William C.; Esko, Jeffrey D.

    2011-01-01

    Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein–heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level. PMID:21690215

  6. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy.

    PubMed

    Bisht, Savita; Maitra, Amarnath

    2009-01-01

    Chemotherapy is a major therapeutic approach for the treatment of localized and metastasized cancers. Whereas potent chemotherapeutic agents seem promising in the test tube, clinical trials often fail due to unfavorable pharmacokinetics, poor delivery, low local concentrations, and limited accumulation in the target cell. The pathophysiology of the tumor vasculature and stromal compartment presents a major obstacle to effective delivery of agents to solid tumors. Poor perfusion of the tumor, arterio-venous shunting, necrotic and hypoxic areas, as well as a high interstitial fluid pressure work against favorable drug uptake. Thus, targeted drug delivery using long-circulating particulate drug carriers such as hydrogels of controlled size (<100 nm diameter) holds immense potential to improve the treatment of cancer by selectively providing therapeutically effective drug concentrations at the tumor site [through enhanced permeability and retention (EPR) effect] while reducing undesirable side effects. This review focuses on the progress of targeted delivery of nanoparticulated anticancer drug such as doxorubicin chemically conjugated with dextran and encapsulated in chitosan nanoparticles to solid tumor with reduced side effect of drug. Regulated particle size and long circulation of these hydrogel nanoparticles in blood help them accumulate in tumor tissue through EPR effect as evident from the significant regression of the tumor volume. The cardiotoxicity of doxorubicin can be minimized by coupling the drug with dextran and encapsulating it in chitosan nanoparticles. PMID:20049807

  7. Chromatography of Penicillins, Penicilloates, and Penicilloylamides on Dextran Gels

    PubMed Central

    Hyslop, Newton E.; Milligan, Richard J.

    1974-01-01

    The factors influencing the chromatographic behavior on dextran gels of penicillins and their derivatives were investigated by comparing elution profiles and partition coefficients (KD and KAV) of penicillins differing in side-chain structure and among penicillin derivatives of identical side-chain but different nuclear structure. Under the conditions of pH and ionic strength employed (pH 7.4, 0.145 M NaCl, 0.05 M PO4), side-chain adsorptive effects best explained the anomalous behavior of benzylpenicillin and of oxacillin and its chlorine-substituted analogues. Polar side-chain substituents, such as the amino group of ampicillin and the carboxyl group of carbenicillin, and cleavage of the β-lactam ring, exemplified by penicilloates and penicilloylamines, both appeared to interfere with side-chain-directed adsorption. The differential adsorption of penicillins and their derivatives to dextran gels is not only of theoretical interest relative to the mechanism of chromatography but of practical application to analytical and preparative procedures in penicillin chemistry. PMID:15825415

  8. Haematolohical Profile of Subacute Oral Toxicity of Molybdenum and Ameliorative Efficacy of Copper Salt in Goats

    PubMed Central

    Kusum; Raina, R.; Verma, P. K.; Pankaj, N. K.; Kant, V.; Kumar, J.; Srivastava, A. K.

    2010-01-01

    Molybdenum toxicity produces a state of secondary hypocuprosis, resulting into alterations in normal hematological profile. In the present study, ammonium molybdate alone and with copper sulfate (II) pentahydrate (ameliorative agent) was administered orally for 30 consecutive days in healthy goats of group 1 and 2, respectively, to access the effect on the hematological profile on different predetermined days of dosing. Administration of ammonium molybdate alone produced significant decline in the mean values of hemoglobin (Hb), packed cell volume (PCV), total leukocyte count (TLC), total erythrocyte count (TEC), and mean corpuscular hemoglobin concentration (MCHC), with a significant increase in neutrophil level and mean corpuscular volume (MCV). However, values of erythrocyte sedimentation rate, mean corpuscular hemoglobin, and differential leukocyte count were not significantly altered. On comparing observations of ameliorative group with the group 1 goats, it is concluded that the ameliorative copper salt has beneficial effects in alleviating the alterations in the values of Hb, PCV, TLC, TEC, MCV, MCHC, and neutrophils. PMID:21170251

  9. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon.

    PubMed

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2016-01-01

    Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes. PMID:24845476

  10. Automotive sulfate emission data.

    PubMed Central

    Somers, J H

    1975-01-01

    This paper discusses automotive sulfate emission results obtained by the Office of Mobile Source Air Pollution Control of EPA, General Motors, Ford, Chrysler, and Esso. This work has been directed towards obtaining sulfate emission factors for cars with and without catalyst. While the EPA and Chrysler investigations have found significant sulfate formation in noncatalyst cars, GM, Ford, and Esso have found only trace levels from noncatalyst cars. All of these investigators agree that much higher quantities of sulfate are emitted from catalyst cars. The work done to date shows pelleted catalysts to have much lower sulfate emissions over the low speed-EPA Federal Test Procedures than monolith catalysts. This is probably due to temporary storage of sulfates on the catalyst due to chemical interaction with the alumina pellets. The sulfate compounds are, to a large degree, emitted later under higher speed conditions which result in higher catalyst temperatures which decompose the alumina salt. Future work will be directed towards further elucidation of this storage mechanism as well as determining in detail how factors such as air injection rate and catalyst location affect sulfate emissions. PMID:50932