Science.gov

Sample records for ameliorates tnfalpha-induced insulin

  1. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-09-01

    Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle microvascular recruitment. We demonstrated that a high-fat diet induces vascular adiponectin and insulin resistance but globular adiponectin administration can restore vascular insulin responses and improve insulin's metabolic action via an AMPK- and nitric oxide-dependent mechanism. This suggests that globular adiponectin might have a therapeutic potential for improving insulin resistance and preventing cardiovascular complications in patients with diabetes via modulation of microvascular insulin responses. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague-Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by

  2. Atorvastatin ameliorates endothelium-specific insulin resistance induced by high glucose combined with high insulin.

    PubMed

    Yang, Ou; Li, Jinliang; Chen, Haiyan; Li, Jie; Kong, Jian

    2016-09-01

    The aim of the present study was to establish an endothelial cell model of endothelium-specific insulin resistance to evaluate the effect of atorvastatin on insulin resistance-associated endothelial dysfunction and to identify the potential pathway responsible for its action. Cultured human umbilical vein endothelial cells (HUVECs) were pretreated with different concentrations of glucose with, or without, 10‑5 M insulin for 24 h, following which the cells were treated with atorvastatin. The tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS‑1), the production of nitric oxide (NO), the activity and phosphorylation level of endothelial NO synthase (eNOS) on serine1177, and the mRNA levels of endothelin‑1 (ET‑1) were assessed during the experimental procedure. Treatment of the HUVECs with 30 mM glucose and 10‑5 M insulin for 24 h impaired insulin signaling, with reductions in the tyrosine phosphorylation of IR and protein expression of IRS‑1 by almost 75 and 65%, respectively. This, in turn, decreased the activity and phosphorylation of eNOS on serine1177, and reduced the production of NO by almost 80%. By contrast, the mRNA levels of ET‑1 were upregulated. All these changes were ameliorated by atorvastatin. Taken together, these results demonstrated that high concentrations of glucose and insulin impaired insulin signaling leading to endothelial dysfunction, and that atorvastatin ameliorated these changes, acting primarily through the phosphatidylinositol 3-kinase/Akt/eNOS signaling pathway. PMID:27484094

  3. Exercise ameliorates insulin resistance via Ca2+ signals distinct from those of insulin for GLUT4 translocation in skeletal muscles.

    PubMed

    Park, Dae-Ryoung; Park, Kwang-Hyun; Kim, Byung-Ju; Yoon, Chung-Su; Kim, Uh-Hyun

    2015-04-01

    Muscle contraction and insulin induce glucose uptake in skeletal muscle through GLUT4 membrane translocation. Beneficial effects of exercise on glucose homeostasis in insulin-resistant individuals are known to be due to their distinct mechanism between contraction and insulin action on glucose uptake in skeletal muscle. However, the underlying mechanisms are not clear. Here we show that in skeletal muscle, distinct Ca(2+) second messengers regulate GLUT4 translocation by contraction and insulin treatment; d-myo-inositol 1,4,5-trisphosphate/nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose/NAADP are main players for insulin- and contraction-induced glucose uptake, respectively. Different patterns of phosphorylation of AMPK and Ca(2+)/calmodulin-dependent protein kinase II were shown in electrical stimuli (ES)- and insulin-induced glucose uptake pathways. ES-induced Ca(2+) signals and glucose uptake are dependent on glycolysis, which influences formation of NAD(P)-derived signaling messengers, whereas insulin-induced signals are not. High-fat diet (HFD) induced a defect in only insulin-mediated, but not ES-mediated, Ca(2+) signaling for glucose uptake, which is related to a specifically lower NAADP formation. Exercise decreases blood glucose levels in HFD-induced insulin resistance mice via NAADP formation. Thus we conclude that different usage of Ca(2+) signaling in contraction/insulin-stimulated glucose uptake in skeletal muscle may account for the mechanism by which exercise ameliorates glucose homeostasis in individuals with type 2 diabetes. PMID:25409702

  4. Cocoa-rich diet ameliorates hepatic insulin resistance by modulating insulin signaling and glucose homeostasis in Zucker diabetic fatty rats.

    PubMed

    Cordero-Herrera, Isabel; Martín, María Ángeles; Escrivá, Fernando; Álvarez, Carmen; Goya, Luis; Ramos, Sonia

    2015-07-01

    Insulin resistance is the primary characteristic of type 2 diabetes and results from insulin signaling defects. Cocoa has been shown to exert anti-diabetic effects by lowering glucose levels. However, the molecular mechanisms responsible for this preventive activity and whether cocoa exerts potential beneficial effects on the insulin signaling pathway in the liver remain largely unknown. Thus, in this study, the potential anti-diabetic properties of cocoa on glucose homeostasis and insulin signaling were evaluated in type 2 diabetic Zucker diabetic fatty (ZDF) rats. Male ZDF rats were fed a control or cocoa-rich diet (10%), and Zucker lean animals received the control diet. ZDF rats supplemented with cocoa (ZDF-Co) showed a significant decrease in body weight gain, glucose and insulin levels, as well as an improved glucose tolerance and insulin resistance. Cocoa-rich diet further ameliorated the hepatic insulin resistance by abolishing the increased serine-phosphorylated levels of the insulin receptor substrate 1 and preventing the inactivation of the glycogen synthase kinase 3/glycogen synthase pathway in the liver of cocoa-fed ZDF rats. The anti-hyperglycemic effect of cocoa appeared to be at least mediated through the decreased levels of hepatic phosphoenolpyruvate carboxykinase and increased values of glucokinase and glucose transporter 2 in the liver of ZDF-Co rats. Moreover, cocoa-rich diet suppressed c-Jun N-terminal kinase and p38 activation caused by insulin resistance. These findings suggest that cocoa has the potential to alleviate both hyperglycemia and hepatic insulin resistance in type 2 diabetic ZDF rats. PMID:25814291

  5. Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction.

    PubMed

    Guan, Lili; Feng, Haiyan; Gong, Dezheng; Zhao, Xu; Cai, Li; Wu, Qiong; Yuan, Bo; Yang, Mei; Zhao, Jie; Zou, Yuan

    2013-12-01

    Insulin resistance (IR) increases with age and plays a key role in the pathogenesis of type 2 diabetes mellitus. Oxidative stress and mitochondrial dysfunction are supposed to be major factors leading to age-related IR. Genipin, an extract from Gardenia jasminoides Ellis fruit, has been reported to stimulate insulin secretion in pancreatic islet cells by regulating mitochondrial function. In this study, we first investigated the effects of genipin on insulin sensitivity and the potential mitochondrial mechanisms in the liver of aging rats. The rats were randomly assigned to receive intraperitoneal injections of either 25mg/kg genipin or vehicle once daily for 12days. The aging rats showed hyperinsulinemia and hyperlipidemia, and insulin resistance as examined by the decreased glucose decay constant rate during insulin tolerance test (kITT). The hepatic tissues showed steatosis and reduced glycogen content. Hepatic malondialdehyde level and mitochondrial reactive oxygen species (ROS) were higher, and levels of mitochondrial membrane potential (MMP) and ATP were lower as compared with the normal control rats. Administration of genipin ameliorated systemic and hepatic insulin resistance, alleviated hyperinsulinemia, hyperglyceridemia and hepatic steatosis, relieved hepatic oxidative stress and mitochondrial dysfunction in aging rats. Furthermore, genipin not only improved insulin sensitivity by promoting insulin-stimulated glucose consumption and glycogen synthesis, inhibited cellular ROS overproduction and alleviated the reduction of levels of MMP and ATP, but also reversed oxidative stress-associated JNK hyperactivation and reduced Akt phosphorylation in palmitate-treated L02 hepatocytes. In conclusion, genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. PMID:24041487

  6. miR-200a regulates Rheb-mediated amelioration of insulin resistance after duodenal–jejunal bypass

    PubMed Central

    Guo, W; Han, H; Wang, Y; Zhang, X; Liu, S; Zhang, G; Hu, S

    2016-01-01

    Objectives: Duodenal–jejunal bypass (DJB) surgery can induce the rapid and durable remission of diabetes. Recent studies indicate that ameliorated hepatic insulin resistance and improved insulin signaling might contribute to the diabetic control observed after DJB. Ras homolog enriched in brain (Rheb) is reported to have an important role in insulin pathway, and some microRNAs (miRNAs) have been found to regulate Rheb. This study was conducted to investigate the effects of DJB on hepatic insulin resistance and the effects of miRNA-200a, a Rheb-targeting miRNA, on the development of DJB-induced amelioration in hepatic insulin resistance. Subjects: We investigated hepatic insulin signaling change and mapped the hepatic miRNAome involved in a rat model of DJB. We studied the effects of miR-200a on Rheb signaling pathway in buffalo rat liver cell lines. Liver tissues were studied and glucose tolerance tests were conducted in DJB rats injected with lentivirus encoding miR-200a inhibitor and diabetic rats injected with miR-200a mimic. Results: Rheb is a potential target of miR-200a. Transfection with an miR-200a inhibitor increased Rheb protein levels and enhanced the feedback action on insulin receptor substrate-dependent insulin signaling, whereas transfection with an miR-200a mimic produced the opposite effects. A luciferase assay confirmed that miR-200a bind to the 3′UTR (untranslated regions) of Rheb. Global downregulation of miR-200a in DJB rats showed impaired insulin sensitivity whereas upregulation of miR-200a in diabetic rats showed amelioration of diabetes. Conclusions: A novel mechanism was identified, in which miR-200a regulates the Rheb-mediated amelioration of insulin resistance in DJB. The findings suggest miR-200a should be further explored as a potential target for the treatment of diabetes. PMID:27121251

  7. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue.

    PubMed

    Zhao, Wenjun; Li, Aiyun; Feng, Xin; Hou, Ting; Liu, Kang; Liu, Baolin; Zhang, Ning

    2016-09-01

    This study aims to investigate the effects of metformin and resveratrol on muscle insulin resistance with emphasis on the regulation of lipolysis in hypoxic adipose tissue. ICR mice were fed with high fat diet (HFD) for 10days with administration of metformin, resveratrol, or intraperitoneal injection of digoxin. Adipose hypoxia, inflammation and cAMP/PKA-dependent lipolysis were investigated. Moreover, lipid deposition and insulin resistance were examined in the muscle. Metformin and resveratrol attenuated adipose hypoxia, inhibited HIF-1α expression and inflammation in the adipose tissue of HFD-fed mice. Metformin and resveratrol inhibited lipolysis through prevention of PKA/HSL activation by decreasing the accumulation of cAMP via preserving PDE3B. Metformin and resveratrol reduced FFAs influx and DAG accumulation, and thus improved insulin signaling in the muscle by inhibiting PKCθ translocation. This study presents a new view of regulating lipid metabolism to ameliorate insulin resistance and provides the clinical guiding significance for obesity and type 2 diabetes with metformin and resveratrol treatment. PMID:27343375

  8. Levocetirizine ameliorates high fructose diet-induced insulin resistance, vascular dysfunction and hepatic steatosis in rats.

    PubMed

    Shawky, Noha M; Shehatou, George S G; Abdel Rahim, Mona; Suddek, Ghada M; Gameil, Nariman M

    2014-10-01

    This study investigates the possible protective effects of levocetirizine against fructose-induced insulin resistance, hepatic steatosis and vascular dysfunction, in comparison to pioglitazone, a standard insulin sensitizer. Male Sprague Dawley rats (150-200 g) were divided into 4 groups. Three groups were fed on high fructose diets (HFD) containing 60% w/w fructose, while the fourth control group was fed on standard laboratory food for 8 weeks. AUCOGTT, AUCITT, fasting glucose, HOMA-IR, hepatic glutathione (GSH) and malondialdehyde (MDA) levels, serum total cholesterol, LDL-C, C-reactive protein (CRP) level and lactate dehydrogenase (LDH) activity and liver steatosis scores were significantly higher in HFD group compared to control group. Moreover, body weight gain, food intake, feeding efficiency, HOMA-β, Emax and pEC50 of acetylcholine-induced relaxations of aortic rings and hepatic superoxide dismutase (SOD) activity were significantly lower in HFD group than in control group. Treatment with levocetirizine caused significant decreases in AUCOGTT, AUCITT, HOMA-IR, hepatic GSH and MDA levels and serum CRP level and LDH activity and significant increases in hepatic SOD activity and HOMA-β when compared with the HFD group. Although levocetirizine failed to alter TC and LDL-C levels, it produced a significant increase in HDL-C level relative to control group. Levocetirizine was also able to improve acetylcholine-induced relaxations of aortic rings, indicating a protective effect against insulin resistance-induced endothelial damage comparable to that offered by pioglitazone. Moreover, levocetirizine substantially attenuated insulin resistance-associated liver macrovesicular steatosis. These findings demonstrate that levocetirizine ameliorates insulin resistance, improves glucose tolerance and attenuates insulin resistance-linked hepatic steatosis and vascular damage. PMID:25064340

  9. HDAC2 deficiency sensitizes colon cancer cells to TNFalpha-induced apoptosis through inhibition of NF-kappaB activity.

    PubMed

    Kaler, Pawan; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard; Klampfer, Lidija

    2008-04-15

    HDAC inhibitors exert potent anti-tumorigenic and anti-inflammatory activity. Their effects are selective for transformed cells, and we recently demonstrated that transformation of epithelial cells with k-Ras sensitizes cells to HDACi induced apoptosis. The aim of this study was to determine whether the ability of HDACi to modulate signaling by a major pro-inflammatory cytokine, TNFalpha, is also restricted to cells that harbor mutant k-Ras. We used the system of two isogenic cell lines that differ by the presence of mutant k-Ras, HCT116 and Hke3 cells. Treatment of cells with TNFalpha alone did not induce apoptosis; however HDACi potentiated TNFalpha-induced apoptosis in both HCT116 and Hke3 cells. Thus, the ability of HDACi to sensitize cells to TNFalpha-induced apoptosis appears to be k-Ras independent. We demonstrated that HDACi inhibited TNFalpha-induced NF-kappaB transcriptional and DNA binding activity in both cell lines, underlying the increased apoptosis in cells treated with both agents. We showed that overexpression of HDAC2 enhanced TNFalpha-induced NF-kappaB activity and that silencing of HDAC2 decreased NF-kappaB activity. Finally, silencing of HDAC2 expression was sufficient to sensitize colon cancer cells to TNFalpha-induced apoptosis. The ability of HDACi to interfere with NF-kappaB activity is likely to contribute to their potent anti-tumorigenic and anti-inflammatory activity. PMID:18314102

  10. Inhibition of MEK1 Signaling Pathway in the Liver Ameliorates Insulin Resistance

    PubMed Central

    Ueyama, Atsunori; Ban, Nobuhiro; Fukazawa, Masanori; Hirayama, Tohru; Takeda, Minako; Yata, Tatsuo; Muramatsu, Hiroyasu; Hoshino, Masaki; Yamamoto, Marii; Matsuo, Masao; Kawashima, Yuka; Iwase, Tatsuhiko; Kitazawa, Takehisa; Kushima, Youichi; Yamada, Yuichiro; Kawabe, Yoshiki

    2016-01-01

    Although mitogen-activated protein kinase kinase (MEK) is a key signaling molecule and a negative regulator of insulin action, it is still uncertain whether MEK can be a therapeutic target for amelioration of insulin resistance (IR) in type 2 diabetes (T2D) in vivo. To clarify whether MEK inhibition improves T2D, we examined the effect of continuous MEK inhibition with two structurally different MEK inhibitors, RO5126766 and RO4987655, in mouse models of T2D. RO5126766 and RO4987655 were administered via dietary admixture. Both compounds decreased blood glucose and improved glucose tolerance in doses sufficient to sustain inhibition of extracellular signal-regulated kinase (ERK)1/2 phosphorylation downstream of MEK in insulin-responsive tissues in db/db mice. A hyperinsulinemic-euglycemic clamp test showed increased glucose infusion rate (GIR) in db/db mice treated with these compounds, and about 60% of the increase was attributed to the inhibition of endogenous glucose production, suggesting that the liver is responsible for the improvement of IR. By means of adenovirus-mediated Mek1 shRNA expression, we confirmed that blood glucose levels are reduced by suppression of MEK1 expression in the liver of db/db mice. Taken together, these results suggested that the MEK signaling pathway could be a novel therapeutic target for novel antidiabetic agents. PMID:26839898

  11. Inhibition of MEK1 Signaling Pathway in the Liver Ameliorates Insulin Resistance.

    PubMed

    Ueyama, Atsunori; Ban, Nobuhiro; Fukazawa, Masanori; Hirayama, Tohru; Takeda, Minako; Yata, Tatsuo; Muramatsu, Hiroyasu; Hoshino, Masaki; Yamamoto, Marii; Matsuo, Masao; Kawashima, Yuka; Iwase, Tatsuhiko; Kitazawa, Takehisa; Kushima, Youichi; Yamada, Yuichiro; Kawabe, Yoshiki

    2016-01-01

    Although mitogen-activated protein kinase kinase (MEK) is a key signaling molecule and a negative regulator of insulin action, it is still uncertain whether MEK can be a therapeutic target for amelioration of insulin resistance (IR) in type 2 diabetes (T2D) in vivo. To clarify whether MEK inhibition improves T2D, we examined the effect of continuous MEK inhibition with two structurally different MEK inhibitors, RO5126766 and RO4987655, in mouse models of T2D. RO5126766 and RO4987655 were administered via dietary admixture. Both compounds decreased blood glucose and improved glucose tolerance in doses sufficient to sustain inhibition of extracellular signal-regulated kinase (ERK)1/2 phosphorylation downstream of MEK in insulin-responsive tissues in db/db mice. A hyperinsulinemic-euglycemic clamp test showed increased glucose infusion rate (GIR) in db/db mice treated with these compounds, and about 60% of the increase was attributed to the inhibition of endogenous glucose production, suggesting that the liver is responsible for the improvement of IR. By means of adenovirus-mediated Mek1 shRNA expression, we confirmed that blood glucose levels are reduced by suppression of MEK1 expression in the liver of db/db mice. Taken together, these results suggested that the MEK signaling pathway could be a novel therapeutic target for novel antidiabetic agents. PMID:26839898

  12. Whole Body Vibration Improves Insulin Resistance in db/db Mice: Amelioration of Lipid Accumulation and Oxidative Stress.

    PubMed

    Liu, Ying; Zhai, Mingming; Guo, Fan; Shi, Tengrui; Liu, Jiangzheng; Wang, Xin; Zhang, Xiaodi; Jing, Da; Hai, Chunxu

    2016-07-01

    Insulin resistance (IR) is the hallmark of type 2 diabetes mellitus (T2DM), which is one of the most important chronic noncommunicable diseases. Effective and feasible strategies to treat IR are still urgently needed. Previous research studies reported that whole body vibration (WBV) was beneficial for IR in clinical; however, its underlying mechanisms remains unknown. In the present study, db/db mice were treated with WBV administration 60 min/day for 12 weeks and the impaired insulin sensitivity was improved. Besides, liver steatosis was also ameliorated. Further explorations revealed that WBV could reduce the expression of SREBP1c and increase the expression of GSH-Px and consequently suppress oxidative stress. In conclusion, WBV attenuates oxidative stress to ameliorate liver steatosis and thus improves insulin resistance in db/db mice. Therefore, WBV administration is a promising treatment for individuals who suffered from central obesity and IR. PMID:26945578

  13. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats

    PubMed Central

    Kamarapani, Norathirah; Nor Hussein, Fuzina; Wan Ismail, Wan Iryani; Hassan, Hamzah Fansuri

    2015-01-01

    The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC) which received standard rodent diet, the high fat diet (HFD) which received high fat diet only, the high fat diet treated with T. crispa (HFDTC), and the high fat diet treated with orlistat (HFDO). After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05) reduced the body weight (41.14 ± 1.40%), adiposity index serum levels (4.910 ± 0.80%), aspartate aminotransferase (AST: 161 ± 4.71 U/L), alanine aminotransferase (ALT: 100.95 ± 3.10 U/L), total cholesterol (TC: 18.55 ± 0.26 mmol/L), triglycerides (TG: 3.70 ± 0.11 mmol/L), blood glucose (8.50 ± 0.30 mmo/L), resistin (0.74 ± 0.20 ng/mL), and leptin (17.428 ± 1.50 ng/mL) hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL) and C-peptide (136.48 pmol/L) hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet. PMID:25821506

  14. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats.

    PubMed

    Abu, Mohd Nazri; Samat, Suhana; Kamarapani, Norathirah; Nor Hussein, Fuzina; Wan Ismail, Wan Iryani; Hassan, Hamzah Fansuri

    2015-01-01

    The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC) which received standard rodent diet, the high fat diet (HFD) which received high fat diet only, the high fat diet treated with T. crispa (HFDTC), and the high fat diet treated with orlistat (HFDO). After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05) reduced the body weight (41.14 ± 1.40%), adiposity index serum levels (4.910 ± 0.80%), aspartate aminotransferase (AST: 161 ± 4.71 U/L), alanine aminotransferase (ALT: 100.95 ± 3.10 U/L), total cholesterol (TC: 18.55 ± 0.26 mmol/L), triglycerides (TG: 3.70 ± 0.11 mmol/L), blood glucose (8.50 ± 0.30 mmo/L), resistin (0.74 ± 0.20 ng/mL), and leptin (17.428 ± 1.50 ng/mL) hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL) and C-peptide (136.48 pmol/L) hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet. PMID:25821506

  15. Direct renin inhibitor ameliorates insulin resistance by improving insulin signaling and oxidative stress in the skeletal muscle from post-infarct heart failure in mice.

    PubMed

    Fukushima, Arata; Kinugawa, Shintaro; Takada, Shingo; Matsumoto, Junichi; Furihata, Takaaki; Mizushima, Wataru; Tsuda, Masaya; Yokota, Takashi; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-05-15

    Insulin resistance can occur as a consequence of heart failure (HF). Activation of the renin-angiotensin system (RAS) may play a crucial role in this phenomenon. We thus investigated the effect of a direct renin inhibitor, aliskiren, on insulin resistance in HF after myocardial infarction (MI). MI and sham operation were performed in male C57BL/6J mice. The mice were divided into 4 groups and treated with sham-operation (Sham, n=10), sham-operation and aliskiren (Sham+Aliskiren; 10mg/kg/day, n=10), MI (n=11), or MI and aliskiren (MI+Aliskiren, n=11). After 4 weeks, MI mice showed left ventricular dilation and dysfunction, which were not affected by aliskiren. The percent decrease of blood glucose after insulin load was significantly smaller in MI than in Sham (14±5% vs. 36±2%), and was ameliorated in MI+Aliskiren (34±5%) mice. Insulin-stimulated serine-phosphorylation of Akt and glucose transporter 4 translocation were decreased in the skeletal muscle of MI compared to Sham by 57% and 69%, and both changes were ameliorated in the MI+Aliskiren group (91% and 94%). Aliskiren administration in MI mice significantly inhibited plasma renin activity and angiotensin II (Ang II) levels. Moreover, (pro)renin receptor expression and local Ang II production were upregulated in skeletal muscle from MI and were attenuated in MI+Aliskiren mice, in tandem with a decrease in superoxide production and NAD(P)H oxidase activities. In conclusion, aliskiren ameliorated insulin resistance in HF by improving insulin signaling in the skeletal muscle, at least partly by inhibiting systemic and (pro)renin receptor-mediated local RAS activation, and subsequent NAD(P)H oxidase-induced oxidative stress. PMID:26988296

  16. Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat.

    PubMed

    Prakash, Prem; Singh, Vishal; Jain, Manish; Rana, Minakshi; Khanna, Vivek; Barthwal, Manoj Kumar; Dikshit, Madhu

    2014-03-15

    High dietary fructose causes insulin resistance syndrome (IRS), primarily due to simultaneous induction of genes involved in glucose, lipid and mitochondrial oxidative metabolism. The present study evaluates effect of a hepatoprotective agent, silymarin (SYM) on fructose-induced metabolic abnormalities in the rat and also assessed the associated thrombotic complications. Wistar rats were kept on high fructose (HFr) diet throughout the 12-week study duration (9 weeks of HFr feeding and subsequently 3 weeks of HFr plus SYM oral administration [once daily]). SYM treatment significantly reduced the HFr diet-induced increase expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α/β, peroxisome proliferator-activated receptor (PPAR)-α, forkhead box protein O1 (FOXO1), sterol regulatory element binding protein (SREBP)-1c, liver X receptor (LXR)-β, fatty acid synthase (FAS) and PPARγ genes in rat liver. SYM also reduced HFr diet mediated increase in plasma triglycerides (TG), non-esterified fatty acids (NEFA), uric acid, malondialdehyde (MDA), total nitrite and pro-inflammatory cytokines (C-reactive protein [CRP], interleukin-6 [IL-6], interferon-gamma [IFN-γ] and tumor necrosis factor [TNF]) levels. Moreover, SYM ameliorated HFr diet induced reduction in glucose utilization and endothelial dysfunction. Additionally, SYM significantly reduced platelet activation (adhesion and aggregation), prolonged ferric chloride-induced blood vessel occlusion time and protected against exacerbated myocardial ischemia reperfusion (MI-RP) injury. SYM treatment prevented HFr induced mRNA expression of hepatic PGC-1α/β and also its target transcription factors which was accompanied with recovery in insulin sensitivity and reduced propensity towards thrombotic complications and aggravated MI-RP injury. PMID:24486395

  17. DNA-binding activity of TNF-{alpha} inducing protein from Helicobacter pylori

    SciTech Connect

    Kuzuhara, T. Suganuma, M.; Oka, K.; Fujiki, H.

    2007-11-03

    Tumor necrosis factor-{alpha} (TNF-{alpha}) inducing protein (Tip{alpha}) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-{alpha} and chemokine genes and activation of nuclear factor-{kappa}B. Since Tip{alpha} enters gastric cancer cells, the Tip{alpha} binding molecules in the cells should be investigated. The direct DNA-binding activity of Tip{alpha} was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tip{alpha} and DNA, revealed that the affinity of Tip{alpha} for (dGdC)10 is 2400 times stronger than that of del-Tip{alpha}, an inactive Tip{alpha}. This suggests a strong correlation between DNA-binding activity and carcinogenic activity of Tip{alpha}. And the DNA-binding activity of Tip{alpha} was first demonstrated with a molecule secreted from H. pylori.

  18. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4

    PubMed Central

    Runtuwene, Joshua; Cheng, Kai-Chun; Asakawa, Akihiro; Amitani, Haruka; Amitani, Marie; Morinaga, Akinori; Takimoto, Yoshiyuki; Kairupan, Bernabas Harold Ralph; Inui, Akio

    2016-01-01

    Background Rosmarinic acid (RA) is a natural substance that may be useful for treating diabetes mellitus. The present study investigated the effects of RA on glucose homeostasis and insulin regulation in rats with streptozocin (STZ)-induced type 1 diabetes or high-fat diet (HFD)-induced type 2 diabetes. Methods Glucose homeostasis was determined using oral glucose tolerance tests and postprandial glucose tests, and insulin activity was evaluated using insulin tolerance tests and the homeostatic model assessment for insulin resistance. Additionally, the protein expression levels of PEPCK and GLUT4 were determined using Western blot analysis. Results RA administration exerted a marked hypoglycemic effect on STZ-induced diabetic rats and enhanced glucose utilization and insulin sensitivity in HFD-fed diabetic rats. These effects of RA were dose-dependent. Meanwhile, RA administration reversed the STZ- and HFD-induced increase in PEPCK expression in the liver and the STZ- and HFD-induced decrease in GLUT4 expression in skeletal muscle. Conclusion RA reduces hyperglycemia and ameliorates insulin sensitivity by decreasing PEPCK expression and increasing GLUT4 expression. PMID:27462144

  19. Differential regulation of matrix degrading enzymes in a TNFalpha-induced model of nucleus pulposus tissue degeneration.

    PubMed

    Séguin, Cheryle A; Bojarski, Marla; Pilliar, Robert M; Roughley, Peter J; Kandel, Rita A

    2006-09-01

    Intervertebral disc degeneration occurs commonly and is linked to persistent back pain and the development of disc herniation. The mechanisms responsible for tissue catabolism have not yet been fully elucidated. Previously we characterized an in vitro model of TNFalpha-induced nucleus pulposus degeneration, which demonstrates decreased expression of matrix macromolecules, increased expression of matrix degrading enzymes, and the activation of aggrecanase-mediated proteoglycan degradation [Seguin, C.A., Pilliar, R.M., Roughley, P.J., and Kandel, R.A. 2005. Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine 30: 1940-1948]. This study explores the intracellular pathways activated during TNFalpha-induced matrix degradation. We demonstrate that in nucleus pulposus cells, the p38 and JNK pathways regulate induction of MMP-1 and -3; p38, JNK, and NF-kappaB regulate the induction of MMP-13; and ERK regulates the up-regulation of MT1-MMP mRNA in response to TNFalpha. Induction of ADAMTS-4 and -5 mRNA occurred downstream of NF-kappaB activation. Depletion of tissue proteoglycans was mediated by ERK and NF-kappaB-dependent "aggrecanase" activity, suggesting MT1-MMP and ADAMTS-4 and -5 as effectors of TNFalpha-induced tissue catabolism. PMID:16934445

  20. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia

    PubMed Central

    Xin, Ying; Jiang, Xin; Wang, Yishu; Su, Xuejin; Sun, Meiyu; Zhang, Lihong; Tan, Yi; Wintergerst, Kupper A.; Li, Yan; Li, Yulin

    2016-01-01

    Background The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) into insulin-producing cells (IPCs) for autologous transplantation may alleviate those limitations. Methods hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 106 differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ)-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice. Results The differentiated IPCs were characterized by Dithizone (DTZ) positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo. Conclusions IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation. PMID:26756576

  1. Long-Term Consumption of Platycodi Radix Ameliorates Obesity and Insulin Resistance via the Activation of AMPK Pathways.

    PubMed

    Lee, Chae Eun; Hur, Haeng Jeon; Hwang, Jin-Taek; Sung, Mi Jeong; Yang, Hye Jeong; Kim, Hyun-Jin; Park, Jae Ho; Kwon, Dae Young; Kim, Myung-Sunny

    2012-01-01

    This study was designed to evaluate the effects and mechanism of Platycodi radix, having white balloon flower (Platycodon grandiflorum for. albiflorum (Honda) H. Hara) on obesity and insulin resistance. The extracts of Platycodi radix with white balloon flower were tested in cultured cells and administered into mice on a high-fat diet. The Platycodi radix activated the AMPK/ACC phosphorylation in C2C12 myotubes and also suppressed adipocyte differentiation in 3T3-L1 cells. In experimental animal, it suppressed the weight gain of obese mice and ameliorated obesity-induced insulin resistance. It also reduced the elevated circulating mediators, including triglyceride (TG), T-CHO, leptin, resistin, and monocyte chemotactic protein (MCP)-1 in obesity. As shown in C2C12 myotubes, the administration of Platycodi radix extracts also recovered the AMPK/ACC phosphorylation in the muscle of obese mice. These results suggest that Platycodi radix with white balloon flower ameliorates obesity and insulin resistance in obese mice via the activation of AMPK/ACC pathways and reductions of adipocyte differentiation. PMID:22829857

  2. Green Synthesis of Oxovanadium(IV)/chitosan Nanocomposites and Its Ameliorative Effect on Hyperglycemia, Insulin Resistance, and Oxidative Stress.

    PubMed

    Liu, Yanjun; Jie, Xu; Guo, Yongli; Zhang, Xin; Wang, Jingfeng; Xue, Changhu

    2016-02-01

    In this paper, the preparation, characterization, and ameliorative effect on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, oxidative stress in mice of novel oxovanadium(IV)/chitosan (OV/CS) nanocomposites were investigated. The nanobiocomposite was produced by chemical reduction by chitosan and L-ascorbic acid using microwave heating, under environment-friendly conditions, using aqueous solutions, and notably, by using both mediators as reducing and stabilizing agents. In addition, OV/CS nanocomposites were characterized by transmission electron microscopy, energy dispersive spectroscopy, particle size, and zeta potential measurements. In vivo experiments were designed to examine whether the OV/CS nanocomposites would provide additional benefits on oxidative stress, hyperglycemia, and insulin resistance in mice with type 2 diabetes. The results rendered insulin resistant by treating with OV/CS nanocomposites alleviate insulin resistance and improve oxidative stress. Such nanocomposite seem to be a valuable therapy to achieve and/or maintain glycemic control and therapeutic agents in the treatment arsenal for insulin resistance and type 2 diabetes. PMID:26144273

  3. Emodin ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    PubMed

    Cao, Yanni; Chang, Shufang; Dong, Jie; Zhu, Shenyin; Zheng, Xiaoying; Li, Juan; Long, Rui; Zhou, Yuanda; Cui, Jianyu; Zhang, Ye

    2016-06-01

    Emodin, an anthraquinone derivative isolated from root and rhizome of Rheum palmatum, has been reported to have promising anti-diabetic activity. The present study was to explore the possible mechanism of emodin to ameliorate insulin resistance. Insulin resistance was induced by feeding a high fat diet to Sprague-Dawley rats. The blood glucose and lipid profiles in serum were measured by an enzymatic method, and a hyperinsulinaemic-euglycaemic clamp was used to evaluate insulin resistance. L6 cells were cultured and treated with palmitic acid and emodin. The lipid content was assayed in the soleus muscle and L6 cells by Oil Red O staining. Western blot, qRT-PCR, and immunohistochemical staining were used to detect the following in the rat soleus muscle and L6 cells: protein levels, mRNA levels of FATP1, FATP4, transporter fatty acid translocase (FAT/CD36), and plasma membrane-associated fatty acid protein (FABPpm). We found that blood glucose, triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly decreased in the emodin group. Oil Red O staining and the level of TG in skeletal muscle and L6 cells confirmed that lipid deposition decreased after treatment with emodin. Furthermore, the protein levels and mRNA levels of FATP1 in skeletal muscle and in L6 cells of rats were significantly decreased, yet the protein levels and mRNA levels of FATP4, FAT/CD36 and FABPpm did not drop off significantly. The study suggest that emodin ameliorates insulin resistance by reducing FATP1-mediated skeletal muscle lipid accumulation in rats fed a high fat diet. PMID:27020550

  4. Purified Betacyanins from Hylocereus undatus Peel Ameliorate Obesity and Insulin Resistance in High-Fat-Diet-Fed Mice.

    PubMed

    Song, Haizhao; Chu, Qiang; Xu, Dongdong; Xu, Yang; Zheng, Xiaodong

    2016-01-13

    Natural bioactive compounds in food have been shown to be beneficial in preventing the development of obesity, diabetes, and other metabolic diseases. Increasing evidence indicates that betacyanins possess free-radical-scavenging and antioxidant activities, suggesting their beneficial effects on metabolic disorders. The main objective of this study was to isolate and identify the betaycanins from Hylocereus undatus (white-fleshed pitaya) peel and evaluate their ability to ameliorate obesity, insulin resistance, and hepatic steatosis in high-fat-diet (HFD)-induced obese mice. The purified pitaya peel betacyanins (PPBNs) were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS), and the male C57BL/6 mice were fed a low-fat diet, HFD, or HFD supplemented with PPBNs for 14 weeks. Our results showed that the white-fleshed pitaya peel contains 14 kinds of betacyanins and dietary PPBNs reduced HFD-induced body weight gain and ameliorated adipose tissue hypertrophy, hepatosteatosis, glucose intolerance, and insulin resistance. Moreover, the hepatic gene expression analysis indicated that PPBN supplementation increased the expression levels of lipid-metabolism-related genes (AdipoR2, Cpt1a, Cpt1b, Acox1, PPARγ, Insig1, and Insig2) and FGF21-related genes (β-Klotho and FGFR1/2) but decreased the expression level of Fads2, Fas, and FGF21, suggesting that the protective effect of PPBNs might be associated with the induced fatty acid oxidation, decreased fatty acid biosynthesis, and alleviated FGF21 resistance. PMID:26653843

  5. Hydrogen Sulfide Treatment Promotes Glucose Uptake by Increasing Insulin Receptor Sensitivity and Ameliorates Kidney Lesions in Type 2 Diabetes

    PubMed Central

    Xue, Rong; Hao, Dan-Dan; Sun, Ji-Ping; Li, Wen-Wen; Zhao, Man-Man; Li, Xing-Hui; Chen, Ying; Zhu, Jian-Hua; Ding, Ying-Jiong; Liu, Jun

    2013-01-01

    Abstract Aims: To examine if hydrogen sulfide (H2S) can promote glucose uptake and provide amelioration in type 2 diabetes. Results: Treatment with sodium hydrosulfide (NaHS, an H2S donor) increased glucose uptake in both myotubes and adipocytes. The H2S gas solution showed similar effects. The NaHS effects were blocked by an siRNA-mediated knockdown of the insulin receptor (IR). NaHS also increased phosphorylation of the IR, PI3K, and Akt. In Goto-Kakizaki (GK) diabetic rats, chronic NaHS treatment (30 μmol·kg−1·day−1) decreased fasting blood glucose, increased insulin sensitivity, and increased glucose tolerance with increased phosphorylation of PI3K and Akt in muscles. Similar insulin-sensitizing effects of NaHS treatment were also observed in Wistar rats. Moreover, glucose uptake was reduced in the cells with siRNA-mediated knockdown of the H2S-generating enzyme cystathionine γ-lyase in the presence or absence of exogenous H2S. Moreover, chronic NaHS treatment reduced oxygen species and the number of crescentic glomeruli in the kidney of GK rats. Innovation and Conclusion: This study provides the first piece of evidence for the insulin-sensitizing effect of NaHS/H2S in the both in vitro and in vivo models of insulin resistance. Rebound Track: This work was rejected during a standard peer review and rescued by the Rebound Peer Review (Antoxid Redox Signal 16: 293–296, 2012) with the following serving as open reviewers: Jin-Song Bian, Samuel Dudley, Hideo Kimura, and Xian Wang. Antioxid. Redox Signal. 19, 5–23. PMID:23293908

  6. Consumption of Clarified Grapefruit Juice Ameliorates High-Fat Diet Induced Insulin Resistance and Weight Gain in Mice

    PubMed Central

    Chudnovskiy, Rostislav; Thompson, Airlia; Tharp, Kevin; Hellerstein, Marc; Napoli, Joseph L.; Stahl, Andreas

    2014-01-01

    To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25–50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ), ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13–17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet. PMID:25296035

  7. Consumption of clarified grapefruit juice ameliorates high-fat diet induced insulin resistance and weight gain in mice.

    PubMed

    Chudnovskiy, Rostislav; Thompson, Airlia; Tharp, Kevin; Hellerstein, Marc; Napoli, Joseph L; Stahl, Andreas

    2014-01-01

    To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25-50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ), ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13-17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet. PMID:25296035

  8. Sulforaphane ameliorates the insulin responsiveness and the lipid profile but does not alter the antioxidant response in diabetic rats.

    PubMed

    de Souza, Carolina Guerini; da Motta, Leonardo Lisbôa; de Assis, Adriano Martimbianco; Rech, Anderson; Bruch, Ricardo; Klamt, Fábio; Souza, Diogo Onofre

    2016-04-20

    Diabetes is one of the most prevalent chronic non-communicable diseases and is characterized by hyperglycemia and increased oxidative stress. These two alterations are also responsible for the main diabetic complications: cardiovascular disease, retinopathy, nephropathy and peripheral neuropathy. Diabetes progression is governed by pancreatic β-cell failure, and recent studies showed that sulforaphane (SFN) might be able to prevent this change, preserving insulin production. Consequently, our goal was to test the effects of SFN on metabolic parameters related to diabetic complications and antioxidant defenses (superoxide dismutase, catalase and sulfhydryl groups) in the pancreas, liver and kidney of non-diabetic and diabetic rats. Male Wistar rats were treated with water or 0.5 mg kg(-1) SFN i.p. for 21 days after diabetes induction. In diabetic animals treated with SFN, the serum levels of total cholesterol, non-HDL cholesterol and triacylglycerols were similar to those of non-diabetic animals, and the insulin responsiveness was higher than that of the diabetic animals that did not receive the compound. No effect of SFN on the superoxide dismutase and catalase activity or sulfhydryl groups was observed in the pancreas, liver or kidney of the treated animals. We conclude that SFN ameliorates some features of clinical diabetic complications particularly the lipid profile and insulin responsiveness, but it does not modulate the antioxidant response induced by superoxide dismutase, catalase and sulfhydryl groups in the evaluated organs. PMID:27025193

  9. Endurance exercise training ameliorates insulin resistance and reticulum stress in adipose and hepatic tissue in obese rats.

    PubMed

    da Luz, Gabrielle; Frederico, Marisa J S; da Silva, Sabrina; Vitto, Marcelo F; Cesconetto, Patricia A; de Pinho, Ricardo A; Pauli, José R; Silva, Adelino S R; Cintra, Dennys E; Ropelle, Eduardo R; De Souza, Cláudio T

    2011-09-01

    Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-κB activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, IκB and NF-κB) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2α phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue. PMID:21249392

  10. Insulin Receptor-Overexpressing β-Cells Ameliorate Hyperglycemia in Diabetic Rats through Wnt Signaling Activation

    PubMed Central

    Lee, Moon-Kyu

    2013-01-01

    To investigate the therapeutic efficacy and mechanism of β-cells with insulin receptor (IR) overexpression on diabetes mellitus (DM), rat insulinoma (INS-1) cells were engineered to stably express human insulin receptor (INS-IR cells), and subsequently transplanted into streptozotocin- induced diabetic rats. Compared with INS-1 cells, INS-IR cells showed improved β-cell function, including the increase in glucose utilization, calcium mobilization, and insulin secretion, and exhibited a higher rate of cell proliferation, and maintained lower levels of blood glucose in diabetic rats. These results were attributed to the increase of β-catenin/PPARγ complex bindings to peroxisome proliferator response elements in rat glucokinase (GK) promoter and the prolongation of S-phase of cell cycle by cyclin D1. These events resulted from more rapid and higher phosphorylation levels of insulin-signaling intermediates, including insulin receptor substrate (IRS)-1/IRS-2/phosphotylinositol 3 kinase/v-akt murine thymoma viral oncogene homolog (AKT) 1, and the consequent enhancement of β-catenin nuclear translocation and Wnt responsive genes including GK and cyclin D1. Indeed, the higher functionality and proliferation shown in INS-IR cells were offset by β-catenin, cyclin D1, GK, AKT1, and IRS-2 gene depletion. In addition, the promotion of cell proliferation and insulin secretion by Wnt signaling activation was shown by 100 nM insulin treatment, and to a similar degree, was shown in INS-IR cells. In this regard, this study suggests that transferring INS-IR cells into diabetic animals is an effective and feasible DM treatment. Accordingly, the method might be a promising alternative strategy for treatment of DM given the adverse effects of insulin among patients, including the increased risk of modest weight gain and hypoglycemia. Additionally, this study demonstrates that the novel mechanism of cross-talk between insulin and Wnt signaling plays a primary role in the higher

  11. Polydatin supplementation ameliorates diet-induced development of insulin resistance and hepatic steatosis in rats.

    PubMed

    Zhang, Qi; Tan, Yingying; Zhang, Nan; Yao, Fanrong

    2015-01-01

    The pathophysiology of non-alcoholic fatty liver disease remains to be elucidated, and the currently available treatments are not entirely effective. Polydatin, a stilbenoid compound derived from the rhizome of Polygonum cuspidatum, has previously been demonstrated to possess hepatoprotective effects. The present study aimed to determine the effects of polydatin supplementation on hepatic fat accumulation and injury in rats fed a high-fat diet. In addition, the mechanisms underlying the protective effects of polydatin were examined. Male Sprague Dawley rats were randomly divided into four groups and received one of four treatment regimes for 12 weeks: Control diet, control diet supplemented with polydatin, high-fat diet, or high-fat diet supplemented with polydatin. Polydatin was supplemented in the drinking water at a concentration of 0.3% (wt/vol). The results of the present study showed that long-term high-fat feeding resulted in fatty liver in rats, which was manifested by excessive hepatic neutral fat accumulation and elevated plasma alanine aminotransferase and aspartate aminotransferase levels. Polydatin supplementation alleviated the hepatic pathological changes, and attenuated the insulin resistance, as shown by an improved homeostasis model assessment of basal insulin resistance values and a glucose tolerance test. Polydatin supplementation also corrected abnormal leptin and adiponectin levels. Specifically, polydatin supplementation enhanced insulin sensitivity in the liver, as shown by improved insulin receptor substrate 2 expression levels and Akt phosphorylation in the rat liver, following high-fat diet feeding. The results of the present study suggest that polydatin protects rats against high-fat feeding-induced insulin resistance and hepatic steatosis. Polydatin may be an effective hepatoprotective agent and a potential candidate for the prevention of fatty liver disease and insulin resistance. PMID:25333896

  12. Phycocyanin ameliorates alloxan-induced diabetes mellitus in mice: Involved in insulin signaling pathway and GK expression.

    PubMed

    Ou, Yu; Ren, Zhiheng; Wang, Jianhui; Yang, Xuegan

    2016-03-01

    The therapeutic potential and molecular mechanism of phycocyanin from Spirulina on alloxan-induced diabetes mice was investigated. In the experiment, 4-week treatment of phycocyanin at the dose of 100 and 200 mg/kg body weight in alloxan-induced diabetes mice resulted in improved metrics in comparison with alloxan-induced diabetes group. These metrics include blood glucose levels, glycosylated serum protein (GSP), glycosylated hemoglobin (GHb) and fasting serum insulin (FINS) levels. As its molecular mode of action, phycocyanin leads to the increase of IRS-1 tyrosine phosphorylation and the decrease of IRS-1 serine phosphorylation, also accompany with increased level of Akt phosphorylation on Ser473 in the liver and pancreas in diabetic mice. In addition, phycocyanin treatment enhanced the glucokinase (GK) level in the liver and pancreas, and the glucokinase regulatory protein (GKRP) level in the liver in diabetic mice. The results suggest that phycocyanin ameliorates alloxan-induced diabetes mellitus in mice by activating insulin signaling pathway and GK expression in pancreas and liver in diabetic mice. PMID:26827782

  13. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    SciTech Connect

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui; Han, Bing; Pan, Chunming; Zhao, Shuangxia; Song, Huaidong; Ma, Qinyun

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration of SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.

  14. Enzamin ameliorates adipose tissue inflammation with impaired adipocytokine expression and insulin resistance in db/db mice.

    PubMed

    Tamura, Yukinori; Yano, Masato; Kawao, Naoyuki; Okumoto, Katsumi; Ueshima, Shigeru; Kaji, Hiroshi; Matsuo, Osamu

    2013-01-01

    The effects of Enzamin on obesity-related metabolic disorders in obese db/db mice were examined to explore a novel agent for the prevention of insulin resistance. Db/db mice were treated with water containing Enzamin (0·1 and 1·0 %) for 8 weeks from 6 weeks of age. Enzamin treatment at 1·0 %, but not at 0·1 %, significantly decreased the fasting plasma glucose, serum total cholesterol and TAG levels in db/db mice, without affecting body weight gain and body fat composition. Furthermore, insulin sensitivity and glucose tolerance were improved by the treatment of db/db mice with 1·0 % Enzamin. Immunohistochemical studies and gene expression analysis showed that 1·0 % Enzamin treatment suppressed macrophage accumulation and inflammation in the adipose tissue. In addition, 1·0 % Enzamin treatment increased serum adiponectin in db/db mice. Treatment with 1·0 % Enzamin also significantly suppressed the expression of NADPH oxidase subunits, suggesting an antioxidative effect for Enzamin in the adipose tissue. Furthermore, in vitro experiments demonstrated that the lipopolysaccharide-induced inflammatory reaction was significantly suppressed by Enzamin treatment in macrophages. Enzamin treatment increased the expression of GLUT4 mRNA in muscle, but not GLUT2 mRNA in the liver of db/db mice. Enzamin also increased the mRNA expression of carnitine palmitoyltransferase 1a (CPT1a, muscle isoform) in db/db mice, whereas Enzamin treatment did not affect the mRNA expression of CPT1b (liver isoform) in db/db mice. In conclusion, our data indicate that Enzamin can improve insulin resistance by ameliorating impaired adipocytokine expression, presumably through its anti-inflammatory action, and that Enzamin possesses a potential for preventing the metabolic syndrome. PMID:25191587

  15. Inhibition of 11β-hydroxysteroid dehydrogenase type 1 ameliorates obesity-related insulin resistance.

    PubMed

    Shao, Shiying; Zhang, Xiaojie; Zhang, Muxun

    2016-09-01

    Excess 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) may be implicated in the development of obesity related metabolic disorders. The present study measured the expression level of 11β-HSD1 in visceral adipose tissues from 23 patients undergoing abdominal operation. Correlation of 11β-HSD1 expression with BMI, waist-to-hip ratio (WHR), HOMA-IR, and serum lipids was evaluated by spearman correlation analysis. High-fat diet-induced obese (DIO) rats were orally dosed with BVT.2733 for 4 weeks. Weight, plasma insulin, and lipids were detected at the end of the treatment. The effects of 11β-HSD1 inhibition on the key insulin-signaling cascade and adipocytokines were measured by western blot and ELISA respectively. 11β-HSD1 was increased in patients with central obesity, the expression level of which was closely related with WHR (r = 0.5851), BMI (r = 0.4952), and HOMA-IR (r = 0.4637). Obesity related insulin resistance in high-fat DIO rats, as reflected by a marked decrease in IRS-1, IRS-2, GLUT4, and PI3K, could be attenuated by 11β-HSD1 inhibition. Furthermore, the down-regulation of 11β-HSD1 could correct the disordered profiles of adipocytokines including adiponectin, IL-6, and TNF-α. These findings indicated that 11β-HSD1 inhibition can give a potential benefit in reducing obesity and lowering insulin resistance by modulating the insulin-signaling pathway and adipocytokine production. PMID:27268236

  16. Physical exercise ameliorates the toxic effect of fluoride on the insulin-glucose system.

    PubMed

    Lombarte, Mercedes; Fina, Brenda L; Lupo, Maela; Buzalaf, Marília A; Rigalli, Alfredo

    2013-07-01

    Daily intake of water with fluoride concentrations >1.5 mg/l produces insulin resistance (IR). On the other hand, physical activity increases insulin sensitivity in the muscle. Therefore, the aim of this study was to evaluate the effect of physical activity on IR in rats treated with sodium fluoride (NaF) in drinking water. Sprague-Dawley rats were divided into three groups (n=10/group): Control (drinking water without NaF), NaF (drinking water with NaF 15 mg/l for 30 days), and Exercise (daily running on a treadmill for 60 min at 2.25 m/min and drinking water with NaF 15 mg/l for 30 days). IR was evaluated with the homeostasis model assessment-IR (HOMA-IR) index using fasting plasma levels of glucose and insulin. IR increased in rats treated with 15 mg/l NaF in drinking water. A decrease in IR was observed in rats that performed physical activity and drank water with 15 mg/l NaF; the Exercise group also showed an increase in the amounts of bone fluoride. The variation in the HOMA-IR values could be the consequence of variation in the sensitivity of tissues to insulin or decrease in plasma fluoride levels due to bone fluoride intake. These findings indicate that the performance of daily physical activity could reduce the negative effects of the chronic ingestion of NaF on glucose homeostasis. PMID:23660080

  17. Inhibition of Ceramide De Novo Synthesis Ameliorates Diet Induced Skeletal Muscles Insulin Resistance

    PubMed Central

    Kurek, Krzysztof; Mikłosz, Agnieszka; Łukaszuk, Bartłomiej; Chabowski, Adrian; Górski, Jan; Żendzian-Piotrowska, Małgorzata

    2015-01-01

    Nowadays wrong nutritional habits and lack of physical activity give a rich soil for the development of insulin resistance and obesity. Many researches indicate lipids, especially the one from the sphingolipids class, as the group of molecules heavily implicated in the progress of insulin resistance in skeletal muscle. Recently, scientists have focused their scrutiny on myriocin, a potent chemical compound that inhibits ceramide (i.e., central hub of sphingolipids signaling pathway) de novo synthesis. In the present research we evaluated the effects of myriocin application on type 2 diabetes mellitus in three different types of skeletal muscles: (1) slow-oxidative (red gastrocnemius), (2) oxidative-glycolytic (soleus), and (3) glycolytic (white gastrocnemius). For these reasons the animals were randomly divided into four groups: “control” (C), “myriocin” (M), “high fat diet” (HFD), “high fat diet” (HFD), and “high fat diet + myriocin” (HFD + M). Our in vivo study demonstrated that ceramide synthesis inhibition reduces intramuscular ceramide, its precursor sphinganine, and its derivatives sphingosine and sphingosine-1-phosphate concentrations. Moreover, FFA and TG contents were also decreased after myriocin treatment. Thus, myriocin presents potential therapeutic perspectives with respect to the treatment of insulin resistance and its serious consequences in obese patients. PMID:26380311

  18. Novel PPAR Pan Agonist, ZBH Ameliorates Hyperlipidemia and Insulin Resistance in High Fat Diet Induced Hyperlipidemic Hamster

    PubMed Central

    Xie, Xinni; Xue, Nina; Jin, Xueyuan; Wang, Lili

    2014-01-01

    Effective and safe pharmacological interventions for hyperlipidemia remains badly needed. By incorporating the key pharmacophore of fibrates into the natural scaffold of resveratrol, a novel structural compound ZBH was constructed. In present study, we found ZBH reserved approximately one third of the sirtuin 1 (SIRT1) activation produced by resveratrol at in-vitro enzyme activity assay, directly bound to and activated all three peroxisome proliferator-activated receptor (PPAR) subtypes respectively in PPAR binding and transactivation assays. Moreover, ZBH (EC50, 1.75 µM) activate PPARα 21 fold more efficiently than the well-known PPAR pan agonist bezafibrate (EC50, 37.37 µM) in the cellular transactivation assays. In the high fat diet induced hyperlipidemic hamsters, 5-week treatment with ZBH significantly lowered serum triglyceride, total cholesterol, LDL-C, FFA, hyperinsulinemia, and improved insulin sensitivity more potently than bezafibrate. Meanwhile, serum transaminases, creatine phosphokinase and CREA levels were found not altered by ZBH intervention. Mechanism study indicated ZBH promoted the expression of PPARα target genes and SIRT1 mRNA. Hepatic lipogenesis was markedly decreased via down-regulation of lipogenic genes, and fatty acid uptake and oxidation was simultaneously increased in the liver and skeletal muscle via up-regulation of lipolysis genes. Glucose uptake and utilization was also significantly promoted in skeletal muscle. These results suggested that ZBH significantly lowered hyperlipidemia and ameliorated insulin resistance more efficiently than bezafibrate in the hyperlipidemic hamsters primarily by activating of PPARα, and SIRT1 promotion and activation. ZBH thus presents a potential new agent to combat hyperlipidemia. PMID:24759758

  19. Novel PPAR pan agonist, ZBH ameliorates hyperlipidemia and insulin resistance in high fat diet induced hyperlipidemic hamster.

    PubMed

    Chen, Wei; Fan, Shiyong; Xie, Xinni; Xue, Nina; Jin, Xueyuan; Wang, Lili

    2014-01-01

    Effective and safe pharmacological interventions for hyperlipidemia remains badly needed. By incorporating the key pharmacophore of fibrates into the natural scaffold of resveratrol, a novel structural compound ZBH was constructed. In present study, we found ZBH reserved approximately one third of the sirtuin 1 (SIRT1) activation produced by resveratrol at in-vitro enzyme activity assay, directly bound to and activated all three peroxisome proliferator-activated receptor (PPAR) subtypes respectively in PPAR binding and transactivation assays. Moreover, ZBH (EC₅₀, 1.75 µM) activate PPARα 21 fold more efficiently than the well-known PPAR pan agonist bezafibrate (EC₅₀ 37.37 µM) in the cellular transactivation assays. In the high fat diet induced hyperlipidemic hamsters, 5-week treatment with ZBH significantly lowered serum triglyceride, total cholesterol, LDL-C, FFA, hyperinsulinemia, and improved insulin sensitivity more potently than bezafibrate. Meanwhile, serum transaminases, creatine phosphokinase and CREA levels were found not altered by ZBH intervention. Mechanism study indicated ZBH promoted the expression of PPARα target genes and SIRT1 mRNA. Hepatic lipogenesis was markedly decreased via down-regulation of lipogenic genes, and fatty acid uptake and oxidation was simultaneously increased in the liver and skeletal muscle via up-regulation of lipolysis genes. Glucose uptake and utilization was also significantly promoted in skeletal muscle. These results suggested that ZBH significantly lowered hyperlipidemia and ameliorated insulin resistance more efficiently than bezafibrate in the hyperlipidemic hamsters primarily by activating of PPARα, and SIRT1 promotion and activation. ZBH thus presents a potential new agent to combat hyperlipidemia. PMID:24759758

  20. Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3K/Akt pathway.

    PubMed

    Zhang, Yongxiang; Hai, Jie; Cao, Meng; Zhang, Yongli; Pei, Sujuan; Wang, Junbo; Zhang, Qinggui

    2013-11-01

    Silibinin (SIL) is a well-studied hepato-protective agent against a spectrum of liver diseases. However, the role of SIL in non-alcoholic fatty liver disease (NAFLD) induced insulin resistance and underlying signaling is not fully characterized. In this study, Sprague-Dawley (SD) rats were fed with high-fat diet to develop NAFLD with or without an SIL co-treatment. NAFLD rats showed typical NAFLD symptoms including histological changes, insulin resistance, and glucose metabolism dysfunction. SIL co-treatment significantly ameliorated these pathological features partly through restoring the IRS-1/PI3K/Akt pathway. In addition, BRL-3A and HepG2 cells were incubated with palmitic acid (PA) to induce steatosis. SIL co-treatment in cells also reduced lipid accumulation, recovered cell viability, and down-regulated the protein expression of resistin, the marker for insulin resistance. Specific blocker of PI3K abolished the ameliorative effects of SIL on cellular steatosis. In conclusion, SIL alleviated steatosis and insulin resistance both in vivo and in vitro partly through regulating the IRS-1/PI3K/Akt pathway. PMID:24036369

  1. Vescalagin from Pink Wax Apple [Syzygium samarangense (Blume) Merrill and Perry] Alleviates Hepatic Insulin Resistance and Ameliorates Glycemic Metabolism Abnormality in Rats Fed a High-Fructose Diet.

    PubMed

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-10

    This study investigates the ameliorative effect of vescalagin (VES) isolated from Pink wax apple fruit on hepatic insulin resistance and abnormal carbohydrate metabolism in high-fructose diet (HFD)-induced hyperglycemic rats. The results show that in HFD rats, VES significantly reduced the values of the area under the curve for glucose in an oral glucose tolerance test and the homeostasis model assessment of insulin resistance index. VES significantly enhanced the activity of hepatic antioxidant enzymes while reducing thiobarbituric acid-reactive substances in HFD rats. Western blot assay revealed that VES reduced hepatic protein expression involved in inflammation pathways while up-regulating expression of hepatic insulin signaling-related proteins. Moreover, VES up-regulated the expression of hepatic glycogen synthase and hepatic glycolysis-related proteins while down-regulating hepatic gluconeogenesis-related proteins in HFD rats. This study suggests some therapeutic potential of VES in preventing the progression of diabetes mellitus. PMID:26800576

  2. Enrichment, Distribution of Vanadium-Containing Protein in Vanadium-Enriched Sea Cucumber Apostichopus japonicus and the Ameliorative Effect on Insulin Resistance.

    PubMed

    Liu, Yanjun; Zhou, Qingxin; Zhao, Yanlei; Wang, Yiming; Wang, Yuming; Wang, Jingfeng; Xu, Jie; Xue, Changhu

    2016-05-01

    Sea cucumbers are a potential source of natural organic vanadium that may improve insulin resistance. In this work, vanadium was accumulated rapidly in blood, body wall, and intestine by sea cucumber Apostichopus japonicus. Furthermore, water-soluble vanadium-containing proteins, the main form of the organic vanadium, were tentatively accumulated and isolated by a bioaccumulation experiment. It was also designed to evaluate the beneficial effect of vanadium-containing proteins (VCPs) from sea cucumber rich in vanadium on the development of hyperglycemia and insulin resistance in C57BL/6J mice fed with a high-fat high-sucrose diet (HFSD). HFSD mice treated with VCPs significantly decreased fasting blood glucose, serum insulin, and HOMA-IR values as compared to HFSD mice, respectively. Serum adiponectin, resistin, TNF-α, and leptin levels in insulin-resistant mice were dramatically reduced by a VCP supplement. These results show an ameliorative effect on insulin resistance by treatment with VCPs. Such compound seems to be a valuable therapy to achieve and/or maintain glycemic control and therapeutic agents in the treatment arsenal for insulin resistance and type 2 diabetes. PMID:26419760

  3. Enhanced Glucose Transport, but not Phosphorylation Capacity, Ameliorates Lipopolysaccharide-Induced Impairments in Insulin-Stimulated Muscle Glucose Uptake.

    PubMed

    Otero, Yolanda F; Mulligan, Kimberly X; Barnes, Tammy M; Ford, Eric A; Malabanan, Carlo M; Zong, Haihong; Pessin, Jeffrey E; Wasserman, David H; McGuinness, Owen P

    2016-06-01

    Lipopolysaccharide (LPS) is known to impair insulin-stimulated muscle glucose uptake (MGU). We determined if increased glucose transport (GLUT4) or phosphorylation capacity (hexokinase II; HKII) could overcome the impairment in MGU. We used mice that overexpressed GLUT4 (GLUT4) or HKII (HK) in skeletal muscle. Studies were performed in conscious, chronically catheterized (carotid artery and jugular vein) mice. Mice received an intravenous bolus of either LPS (10 μg/g body weight) or vehicle (VEH). After 5 h, a hyperinsulinemic-euglycemic clamp was performed. As MGU is also dependent on cardiovascular function that is negatively affected by LPS, cardiac function was assessed using echocardiography. LPS decreased whole body glucose disposal and MGU in wild-type (WT) and HK mice. In contrast, the decrease was attenuated in GLUT4 mice. Although membrane-associated GLUT4 was increased in VEH-treated GLUT4 mice, LPS impaired membrane-associated GLUT4 in GLUT4 mice to the same level as LPS-treated WT mice. This suggested that overexpression of GLUT4 had further benefits beyond preserving transport activity. In fact, GLUT4 overexpression attenuated the LPS-induced decrease in cardiac function. The maintenance of MGU in GLUT4 mice following LPS was accompanied by sustained anaerobic glycolytic flux as suggested by increased muscle Pdk4 expression, and elevated lactate availability. Thus, enhanced glucose transport, but not phosphorylation capacity, ameliorates LPS-induced impairments in MGU. This benefit is mediated by long-term adaptations to the overexpression of GLUT4 that sustain muscle anaerobic glycolytic flux and cardiac function in response to LPS. PMID:26682946

  4. Chinese medicine Jinlida (JLD) ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    PubMed

    Zang, Sha-Sha; Song, An; Liu, Yi-Xuan; Wang, Chao; Song, Guang-Yao; Li, Xiao-Ling; Zhu, Ya-Jun; Yu, Xian; Li, Ling; Liu, Chen-Xi; Kang, Jun-Cong; Ren, Lu-Ping

    2015-01-01

    The present paper reports the effects of Jinlida (JLD), a traditional Chinese medicine which has been given as a treatment for high-fat-diet (HFD)-induced insulin resistance. A randomized controlled experiment was conducted to provide evidence in support of the affects of JLD on insulin resistance induced by HFD. The affect of JLD on blood glucose, lipid, insulin, adiponectin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) in serum and lipid content in skeletal muscle was measured. Genes and proteins of the AMPK signaling pathway were analyzed by real time RT-PCR and Western blot. Adiponectin receptor 1 and 2 (ADIPOR1, ADIPOR2) and other genes involved in mitochondrial function and fat oxidation were analyzed by real time RT-PCR. Histological staining was also performed. JLD or pioglitazone administration ameliorated fasting plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), ALT, AST and non-esterified fatty acid (NEFA) (P < 0.05). Treatment with JLD or pioglitazone significantly reverted muscle lipid content (P < 0.05). JLD (1.5 g/kg) significantly increased plasma adiponectin concentration by 60.17% and increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation in skeletal muscle (P < 0.05). JLD administration increased levels of ADIPOR1 and ADIPOR2 by 1.48 and 1.29 respectively. Levels of genes involved in mitochondrial function and fat oxidation were increased. This study provides the molecular mechanism by which JLD ameliorates HFD-induced insulin resistance in rats. PMID:26064395

  5. Chinese medicine Jinlida (JLD) ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle

    PubMed Central

    Zang, Sha-Sha; Song, An; Liu, Yi-Xuan; Wang, Chao; Song, Guang-Yao; Li, Xiao-Ling; Zhu, Ya-Jun; Yu, Xian; Li, Ling; Liu, Chen-Xi; Kang, Jun-Cong; Ren, Lu-Ping

    2015-01-01

    The present paper reports the effects of Jinlida (JLD), a traditional Chinese medicine which has been given as a treatment for high-fat-diet (HFD)-induced insulin resistance. A randomized controlled experiment was conducted to provide evidence in support of the affects of JLD on insulin resistance induced by HFD. The affect of JLD on blood glucose, lipid, insulin, adiponectin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) in serum and lipid content in skeletal muscle was measured. Genes and proteins of the AMPK signaling pathway were analyzed by real time RT-PCR and Western blot. Adiponectin receptor 1 and 2 (ADIPOR1, ADIPOR2) and other genes involved in mitochondrial function and fat oxidation were analyzed by real time RT-PCR. Histological staining was also performed. JLD or pioglitazone administration ameliorated fasting plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), ALT, AST and non-esterified fatty acid (NEFA) (P < 0.05). Treatment with JLD or pioglitazone significantly reverted muscle lipid content (P < 0.05). JLD (1.5 g/kg) significantly increased plasma adiponectin concentration by 60.17% and increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation in skeletal muscle (P < 0.05). JLD administration increased levels of ADIPOR1 and ADIPOR2 by 1.48 and 1.29 respectively. Levels of genes involved in mitochondrial function and fat oxidation were increased. This study provides the molecular mechanism by which JLD ameliorates HFD-induced insulin resistance in rats. PMID:26064395

  6. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    PubMed Central

    Hafizi Abu Bakar, Mohamad; Sarmidi, Mohamad Roji; Kai, Cheng Kian; Huri, Hasniza Zaman; Yaakob, Harisun

    2014-01-01

    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes. PMID:25474091

  7. Induction of placental heme oxygenase-1 is protective against TNFalpha-induced cytotoxicity and promotes vessel relaxation.

    PubMed Central

    Ahmed, A.; Rahman, M.; Zhang, X.; Acevedo, C. H.; Nijjar, S.; Rushton, I.; Bussolati, B.; St John, J.

    2000-01-01

    BACKGROUND: Pregnancy is characterized by an inflammatory-like process and this may be exacerbated in preeclampsia. The heme oxygenase (HO) enzymes generate carbon monoxide (CO) that induces blood vessel relaxation and biliverdin that acts as an endogenous antioxidant. MATERIALS AND METHODS: We examined the expression and localization of HO-1 and HO-2 in normal and preeclamptic placenta using reverse transcription polymerase chain reaction (RT-PCR), RNase protection assay, immunoblotting and immunohistochemistry. In addition, the effect of HO activation on tumor necrosis factor-alpha (TNFalpha) induced placental damage and on feto-placental circulation was studied. RESULTS: We provide the first evidence for the role of HO as an endogenous placental factor involved with cytoprotection and placental blood vessel relaxation. HO-1 was significantly higher at term, compared with first trimester placentae indicating its role in placental vascular development and regulation. HO-1 predominantly localized in the extravascular connective tissue that forms the perivascular contractile sheath around the developing blood vessels. HO-2 was localized in the capillaries, as well as the villous stroma, with weak staining of trophoblast. Induction of HO-1 caused a significant attenuation of TNFalpha-mediated cellular damage in placental villous explants, as assessed by lactate dehydrogenase leakage (p < 0.01). HO-1 protein was significantly reduced in placentae from pregnancies complicated with preeclampsia, compared with gestationally matched normal pregnancies. This suggests that the impairment of HO-1 activation may compromise the compensatory mechanism and predispose the placenta to cellular injury and subsequent maternal endothelial cell activation. Isometric contractility studies showed that hemin reduced vascular tension by 61% in U46619-preconstricted placental arteries. Hemin-induced vessel relaxation and CO production was inhibited by HO inhibitor, tin protoporphyrin IX

  8. Voluntary Exercise Can Ameliorate Insulin Resistance by Reducing iNOS-Mediated S-Nitrosylation of Akt in the Liver in Obese Rats

    PubMed Central

    Nakamoto, Hideko; Kaneki, Masao; Goto, Sataro; Shimokado, Kentaro; Kobayashi, Hiroyuki; Naito, Hisashi

    2015-01-01

    Voluntary exercise can ameliorate insulin resistance. The underlying mechanism, however, remains to be elucidated. We previously demonstrated that inducible nitric oxide synthase (iNOS) in the liver plays an important role in hepatic insulin resistance in the setting of obesity. In this study, we tried to verify our hypothesis that voluntary exercise improves insulin resistance by reducing the expression of iNOS and subsequent S-nitrosylation of key molecules of glucose metabolism in the liver. Twenty-one Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus, and 18 non-diabetic control Long-Evans Tokushima Otsuka (LETO) rats were randomly assigned to a sedentary group or exercise group subjected to voluntary wheel running for 20 weeks. The voluntary exercise significantly reduced the fasting blood glucose and HOMA-IR in the OLETF rats. In addition, the exercise decreased the amount of iNOS mRNA in the liver in the OLETF rats. Moreover, exercise reduced the levels of S-nitrosylated Akt in the liver, which were increased in the OLETF rats, to those observed in the LETO rats. These findings support our hypothesis that voluntary exercise improves insulin resistance, at least partly, by suppressing the iNOS expression and subsequent S-nitrosylation of Akt, a key molecule of the signal transduction pathways in glucose metabolism in the liver. PMID:26172834

  9. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways.

    PubMed

    Zhou, Jun; Xu, Gang; Ma, Shuai; Li, Fen; Yuan, Miao; Xu, Huibi; Huang, Kaixun

    2015-11-27

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressions of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. PMID:26474703

  10. Correction of Diabetic Hyperglycemia and Amelioration of Metabolic Anomalies by Minicircle DNA Mediated Glucose-Dependent Hepatic Insulin Production

    PubMed Central

    Alam, Tausif; Wai, Philip; Held, Dustie; Vakili, Sahar Taba Taba; Forsberg, Erik; Sollinger, Hans

    2013-01-01

    Type 1 diabetes mellitus (T1DM) is caused by immune destruction of insulin-producing pancreatic β-cells. Commonly used insulin injection therapy does not provide a dynamic blood glucose control to prevent long-term systemic T1DM-associated damages. Donor shortage and the limited long-term success of islet transplants have stimulated the development of novel therapies for T1DM. Gene therapy-based glucose-regulated hepatic insulin production is a promising strategy to treat T1DM. We have developed gene constructs which cause glucose-concentration–dependent human insulin production in liver cells. A novel set of human insulin expression constructs containing a combination of elements to improve gene transcription, mRNA processing, and translation efficiency were generated as minicircle DNA preparations that lack bacterial and viral DNA. Hepatocytes transduced with the new constructs, ex vivo, produced large amounts of glucose-inducible human insulin. In vivo, insulin minicircle DNA (TA1m) treated streptozotocin (STZ)-diabetic rats demonstrated euglycemia when fasted or fed, ad libitum. Weight loss due to uncontrolled hyperglycemia was reversed in insulin gene treated diabetic rats to normal rate of weight gain, lasting ∼1 month. Intraperitoneal glucose tolerance test (IPGT) demonstrated in vivo glucose-responsive changes in insulin levels to correct hyperglycemia within 45 minutes. A single TA1m treatment raised serum albumin levels in diabetic rats to normal and significantly reduced hypertriglyceridemia and hypercholesterolemia. Elevated serum levels of aspartate transaminase, alanine aminotransferase, and alkaline phosphatase were restored to normal or greatly reduced in treated rats, indicating normalization of liver function. Non-viral insulin minicircle DNA-based TA1m mediated glucose-dependent insulin production in liver may represent a safe and promising approach to treat T1DM. PMID:23826312

  11. Insulin

    MedlinePlus

    ... pump is connected to your body by a flexible tube that has a tip that sticks under your skin. A cartridge of insulin is put in the pump. The insulin flows through the tube into your body. The pump controls how much insulin goes into your body. The ...

  12. 4-Hydroxyisoleucine ameliorates an insulin resistant-like state in 3T3-L1 adipocytes by regulating TACE/TIMP3 expression

    PubMed Central

    Gao, Feng; Du, Wen; Zafar, Mohammad Ishraq; Shafqat, Raja Adeel; Jian, Liumeng; Cai, Qin; Lu, Furong

    2015-01-01

    Background Obesity-associated insulin resistance (IR) is highly correlated with soluble tumor necrosis factor-α (sTNF-α), which is released from transmembranous TNF-α by TNF-α converting enzyme (TACE). In vivo, TACE activity is suppressed by tissue inhibitor of metalloproteinase 3 (TIMP3). Agents that can interact with TACE/TIMP3 to improve obesity-related IR would be highly valuable. In the current study, we assessed whether (2S,3R,4S)-4-hydroxyisoleucine (4-HIL) could modulate TACE/TIMP3 and ameliorate an obesity-induced IR-like state in 3T3-L1 adipocytes. Materials and methods 3T3-L1 adipocytes were incubated in the presence of 25 mM glucose and 0.6 nM insulin to induce an IR-like state, and were then treated with different concentrations of 4-HIL or 10 µM pioglitazone (positive control). The glucose uptake rate was determined using the 2-deoxy-[3H]-d-glucose method, and the levels of sTNF-α in the cell supernatant were determined using ELISA. The protein expression of TACE, TIMP3, and insulin signaling-related molecules was measured using western blotting. Results Exposure to high glucose and insulin for 18 hours increased the levels of sTNF-α in the cell supernatant. The phosphorylation of insulin receptor substrate-1 (IRS-1) Ser307 and Akt Ser473 was increased, whereas the protein expression of IRS-1, Akt, and glucose transporter-4 was decreased. The insulin-induced glucose uptake was reduced by 67% in 3T3-L1 adipocytes, which indicated the presence of an IR-like state. The above indexes, which demonstrated the successful induction of an IR-like state, were reversed by 4-HIL in a dose-dependent manner by downregulating and upregulating the protein expression of TACE and TIMP3 proteins, respectively. Conclusion 4-HIL improved an obesity-associated IR-like state in 3T3-L1 adipocytes by targeting TACE/TIMP3 and the insulin signaling pathway. PMID:26527864

  13. Apigenin Ameliorates Dyslipidemia, Hepatic Steatosis and Insulin Resistance by Modulating Metabolic and Transcriptional Profiles in the Liver of High-Fat Diet-Induced Obese Mice.

    PubMed

    Jung, Un Ju; Cho, Yun-Young; Choi, Myung-Sook

    2016-01-01

    Several in vitro and in vivo studies have reported the anti-inflammatory, anti-diabetic and anti-obesity effects of the flavonoid apigenin. However, the long-term supplementary effects of low-dose apigenin on obesity are unclear. Therefore, we investigated the protective effects of apigenin against obesity and related metabolic disturbances by exploring the metabolic and transcriptional responses in high-fat diet (HFD)-induced obese mice. C57BL/6J mice were fed an HFD or apigenin (0.005%, w/w)-supplemented HFD for 16 weeks. In HFD-fed mice, apigenin lowered plasma levels of free fatty acid, total cholesterol, apolipoprotein B and hepatic dysfunction markers and ameliorated hepatic steatosis and hepatomegaly, without altering food intake and adiposity. These effects were partly attributed to upregulated expression of genes regulating fatty acid oxidation, tricarboxylic acid cycle, oxidative phosphorylation, electron transport chain and cholesterol homeostasis, downregulated expression of lipolytic and lipogenic genes and decreased activities of enzymes responsible for triglyceride and cholesterol ester synthesis in the liver. Moreover, apigenin lowered plasma levels of pro-inflammatory mediators and fasting blood glucose. The anti-hyperglycemic effect of apigenin appeared to be related to decreased insulin resistance, hyperinsulinemia and hepatic gluconeogenic enzymes activities. Thus, apigenin can ameliorate HFD-induced comorbidities via metabolic and transcriptional modulations in the liver. PMID:27213439

  14. Apigenin Ameliorates Dyslipidemia, Hepatic Steatosis and Insulin Resistance by Modulating Metabolic and Transcriptional Profiles in the Liver of High-Fat Diet-Induced Obese Mice

    PubMed Central

    Jung, Un Ju; Cho, Yun-Young; Choi, Myung-Sook

    2016-01-01

    Several in vitro and in vivo studies have reported the anti-inflammatory, anti-diabetic and anti-obesity effects of the flavonoid apigenin. However, the long-term supplementary effects of low-dose apigenin on obesity are unclear. Therefore, we investigated the protective effects of apigenin against obesity and related metabolic disturbances by exploring the metabolic and transcriptional responses in high-fat diet (HFD)-induced obese mice. C57BL/6J mice were fed an HFD or apigenin (0.005%, w/w)-supplemented HFD for 16 weeks. In HFD-fed mice, apigenin lowered plasma levels of free fatty acid, total cholesterol, apolipoprotein B and hepatic dysfunction markers and ameliorated hepatic steatosis and hepatomegaly, without altering food intake and adiposity. These effects were partly attributed to upregulated expression of genes regulating fatty acid oxidation, tricarboxylic acid cycle, oxidative phosphorylation, electron transport chain and cholesterol homeostasis, downregulated expression of lipolytic and lipogenic genes and decreased activities of enzymes responsible for triglyceride and cholesterol ester synthesis in the liver. Moreover, apigenin lowered plasma levels of pro-inflammatory mediators and fasting blood glucose. The anti-hyperglycemic effect of apigenin appeared to be related to decreased insulin resistance, hyperinsulinemia and hepatic gluconeogenic enzymes activities. Thus, apigenin can ameliorate HFD-induced comorbidities via metabolic and transcriptional modulations in the liver. PMID:27213439

  15. Oat beta-glucan ameliorates insulin resistance in mice fed on high-fat and high-fructose diet

    PubMed Central

    Zheng, Jie; Shen, Nanhui; Wang, Shuanghui; Zhao, Guohua

    2013-01-01

    Methods This study sought to evaluate the impact of oat beta-glucan on insulin resistance in mice fed on high-fat and high-fructose diet with fructose (10%, w/v) added in drinking water for 10 weeks. Results The results showed that supplementation with oat beta-glucan could significantly reduce the insulin resistance both in low-dose (200 mg/kg−1 body weight) and high-dose (500 mg/kg−1 body weight) groups, but the high-dose group showed a more significant improvement in insulin resistance (P<0.01) compared with model control (MC) group along with significant improvement in hepatic glycogen level, oral glucose, and insulin tolerance. Moreover, hepatic glucokinase activity was markedly enhanced both in low-dose and high-dose groups compared with that of MC group (P<0.05). Conclusion These results suggested that supplementation of oat beta-glucan alleviated insulin resistance and the effect was dose dependent. PMID:24371433

  16. Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1–dependent manner

    PubMed Central

    Pajvani, Utpal B.; Shawber, Carrie J.; Samuel, Varman T.; Birkenfeld, Andreas L.; Shulman, Gerald I.; Kitajewski, Jan; Accili, Domenico

    2012-01-01

    Summary Transcription factor FoxO1 promotes hepatic glucose production. Genetic inhibition of FoxO1 function prevents diabetes in experimental animal models, providing impetus to identify pharmacological approaches to modulate its function. Altered Notch signaling is seen in tumorigenesis, and Notch antagonists are in clinical testing for cancer application. Here, we report that FoxO1 and Notch coordinately regulate hepatic glucose metabolism. Combined haploinsufficiency of FoxO1 and Notch1 markedly improves insulin sensitivity in diet-induced insulin resistance, as does liver-specific knockout of the Notch transcriptional effector, Rbp-Jk. Conversely, Notch1 gain-of-function promotes insulin resistance in a FoxO1-dependent manner and induces Glucose-6-phosphatase expression. Pharmacological blockade of Notch signaling with γ-secretase inhibitors improves insulin sensitivity following in vivo administration in lean and in obese, insulin-resistant mice. The data identify a heretofore unknown metabolic function of Notch, and suggest that Notch inhibition is beneficial to diabetes treatment, in part by helping to offset excessive FoxO1–driven hepatic glucose production. PMID:21804540

  17. Lifestyle and Metformin Ameliorate Insulin Sensitivity Independently of the Genetic Burden of Established Insulin Resistance Variants in Diabetes Prevention Program Participants.

    PubMed

    Hivert, Marie-France; Christophi, Costas A; Franks, Paul W; Jablonski, Kathleen A; Ehrmann, David A; Kahn, Steven E; Horton, Edward S; Pollin, Toni I; Mather, Kieren J; Perreault, Leigh; Barrett-Connor, Elizabeth; Knowler, William C; Florez, Jose C

    2016-02-01

    Large genome-wide association studies of glycemic traits have identified genetics variants that are associated with insulin resistance (IR) in the general population. It is unknown whether people with genetic enrichment for these IR variants respond differently to interventions that aim to improve insulin sensitivity. We built a genetic risk score (GRS) based on 17 established IR variants and effect sizes (weighted IR-GRS) in 2,713 participants of the Diabetes Prevention Program (DPP) with genetic consent. We tested associations between the weighted IR-GRS and insulin sensitivity index (ISI) at baseline in all participants, and with change in ISI over 1 year of follow-up in the DPP intervention (metformin and lifestyle) and control (placebo) arms. All models were adjusted for age, sex, ethnicity, and waist circumference at baseline (plus baseline ISI for 1-year ISI change models). A higher IR-GRS was associated with lower baseline ISI (β = -0.754 [SE = 0.229] log-ISI per unit, P = 0.001 in fully adjusted models). There was no differential effect of treatment for the association between the IR-GRS on the change in ISI; higher IR-GRS was associated with an attenuation in ISI improvement over 1 year (β = -0.520 [SE = 0.233], P = 0.03 in fully adjusted models; all treatment arms). Lifestyle intervention and metformin treatment improved the ISI, regardless of the genetic burden of IR variants. PMID:26525880

  18. Exercise and dietary change ameliorate high fat diet induced obesity and insulin resistance via mTOR signaling pathway

    PubMed Central

    Bae, Ju Yong; Shin, Ki Ok; Woo, Jinhee; Woo, Sang Heon; Jang, Ki Soeng; Lee, Yul Hyo; Kang, Sunghwun

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effect of exercise and dietary change on obesity and insulin resistance and mTOR signaling protein levels in skeletal muscles of obese rats. [Methods] Sixty male Sprague-Dawley rats were divided into CO (Normal diet) and HF (High Fat diet) groups in order to induce obesity for 15 weeks. The rats were then subdivided into CO, COT (CO + Training), HF, HFT (HF + Training), HFND (Dietary change), and HFNDT (HFND + Training) groups (10 rats / group). The training groups underwent moderate-intensity treadmill exercise for 8 weeks, after which soleus muscles were excised and analyzed. Data was statistically analyzed by independent t-test and One-way ANOVA tests with a 0.05 significance level. [Results] Fasting blood glucose, plasma insulin, and HOMA-IR in the HF group were significantly higher, as compared with other groups (p <.05). Protein levels of insulin receptor subunit-1 (IRS-1), IRS-2, and p-Akt were significantly higher in the HFT, HFND, and HFNDT groups, as compared with HF group. In addition, the protein levels of the mammalian target of rapamycin complex 1 (mTORC1) and ribosomal S6 protein kinase 1 were significantly decreased by exercise and dietary change (p <.05). However, mTORC2 and phosphoinositide 3-kinase were significantly increased (p <.05). [Conclusion] In summary, despite the negative impact of continuous high fat intake, regular exercise and dietary change showed a positive effect on insulin resistance and mTOR signaling protein levels. PMID:27508151

  19. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  20. Abnormalities in carbohydrate and lipid metabolisms in high-fructose dietfed insulin-resistant rats: amelioration by Catharanthus roseus treatments.

    PubMed

    Rasineni, Karuna; Bellamkonda, Ramesh; Singareddy, Sreenivasa Reddy; Desireddy, Saralakumari

    2013-09-01

    High intake of dietary fructose has been shown to exert a number of adverse metabolic effects in humans and experimental animals. The present study was proposed to elucidate the effect of Catharanthus roseus (C. roseus) leaf powder treatment on alterations in carbohydrate and lipid metabolisms in rats fed with high-fructose diet. Male Wistar rats of body weight around 180 g were divided into four groups, two of these groups (groups C and C+CR) were fed with standard pellet diet and the other two groups (groups F and F+CR) were fed with high-fructose (66 %) diet. C. roseus leaf powder suspension in water (100 mg/kg body weight/day) was administered orally to group C+CR and group F+CR. At the end of a 60-day experimental period, biochemical parameters related to carbohydrate and lipid metabolisms were assayed. C. roseus treatment completely prevented the fructose-induced increased body weight, hyperglycemia, and hypertriglyceridemia. Hyperinsulinemia and insulin resistance observed in group F was significantly decreased with C. roseus treatment in group F+CR. The alterations observed in the activities of enzymes of carbohydrate and lipid metabolisms and contents of hepatic tissue lipids in group F rats were significantly restored to near normal values by C. roseus treatment in group F+CR. In conclusion, our study demonstrates that C. roseus treatment is effective in preventing fructose-induced insulin resistance and hypertriglyceridemia while attenuating the fructose-induced alterations in carbohydrate and lipid metabolisms. This study suggests that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it. PMID:23334857

  1. Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity.

    PubMed

    Špolcová, Andrea; Mikulášková, Barbora; Holubová, Martina; Nagelová, Veronika; Pirnik, Zdenko; Zemenová, Jana; Haluzík, Martin; Železná, Blanka; Galas, Marie-Christine; Maletínská, Lenka

    2015-01-01

    Numerous epidemiological and experimental studies have demonstrated that patients who suffer from metabolic disorders, such as type 2 diabetes mellitus (T2DM) or obesity, have higher risks of cognitive dysfunction and of Alzheimer's disease (AD). Impaired insulin signaling in the brain could contribute to the formation of neurofibrillary tangles, which contain an abnormally hyperphosphorylated tau protein. This study aimed to determine whether potential tau hyperphosphorylation could be detected in an obesity-induced pre-diabetes state and whether anorexigenic agents could affect this state. We demonstrated that 6-month-old mice with monosodium glutamate (MSG) obesity, which represent a model of obesity-induced pre-diabetes, had increased tau phosphorylation at Ser396 and Thr231 in the hippocampus compared with the controls, as determined by western blots. Two weeks of subcutaneous treatment with a lipidized analog of prolactin-releasing peptide (palm-PrRP31) or with the T2DM drug liraglutide, which both had a central anorexigenic effect, resulted in increased phosphorylation of the insulin cascade kinases PDK1 (Ser241), Akt (Thr308), and GSK-3β (Ser9). Furthermore, these drugs attenuated phosphorylation at Ser396, Thr231, and Thr212 of tau and of the primary tau kinases in the hippocampi of 6-month-old MSG-obese mice. We identified tau hyperphosphorylation in the obesity-induced pre-diabetes state in MSG-obese mice and demonstrated the beneficial effects of palm-PrRP31 and liraglutide, both of known central anorexigenic effects, on hippocampal insulin signaling and on tau phosphorylation. PMID:25624414

  2. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    PubMed

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity. PMID:27207538

  3. 18-carbon polyunsaturated fatty acids ameliorate palmitate-induced inflammation and insulin resistance in mouse C2C12 myotubes.

    PubMed

    Chen, Pei-Yin; Wang, John; Lin, Yi-Chin; Li, Chien-Chun; Tsai, Chia-Wen; Liu, Te-Chung; Chen, Haw-Wen; Huang, Chin-Shiu; Lii, Chong-Kuei; Liu, Kai-Li

    2015-05-01

    Skeletal muscle is a major site of insulin action. Intramuscular lipid accumulation results in inflammation, which has a strong correlation with skeletal muscle insulin resistance (IR). The aim of this study was to explore the effects of linoleic acid, alpha-linolenic acid, and gamma-linolenic acid (GLA), 18-carbon polyunsaturated fatty acids (PUFAs), on palmitic acid (PA)-induced inflammatory responses and IR in C2C12 myotubes. Our data demonstrated that these three test 18-carbon PUFAs can inhibit PA-induced interleukin-6 and tumor necrosis factor-α messenger RNA (mRNA) expression and IR as evidenced by increases in phosphorylated AKT and the 160-kD AKT substrate, mRNA and plasma membrane protein expression of glucose transporter 4, and glucose uptake. Moreover, the 18-carbon PUFAs blocked the effects of PA on activation of mitogen-activated protein kinases (MAPKs), protein kinase C-θ (PKC-θ), AMP-activated protein kinase (AMPK) and nuclear factor-κB (NF-κB). Of note, supplementation with GLA-rich borage oil decreased proinflammatory cytokine production and hindered the activation of MAPKs, PKC-θ and NF-κB in the skeletal muscles of diabetic mice. The 18-carbon PUFAs did not reverse PA-induced inflammation or IR in C2C12 myotubes transfected with a constitutively active mutant IκB kinase-β plasmid, which suggests the importance of the inhibition of NF-κB activation by the 18-carbon PUFAs. Moreover, blockade of AMPK activation by short hairpin RNA annulled the inhibitory effects of the 18-carbon PUFAs on PA-induced IR but not inflammation. Our findings suggest that the 18-carbon PUFAs may be useful in the management of PA-induced inflammation and IR in myotubes. PMID:25687616

  4. Methanolic leaf extract of Gymnema sylvestre augments glucose uptake and ameliorates insulin resistance by upregulating glucose transporter-4, peroxisome proliferator-activated receptor-gamma, adiponectin, and leptin levels in vitro

    PubMed Central

    Kumar, Puttanarasaiah Mahesh; Venkataranganna, Marikunte V.; Manjunath, Kirangadur; Viswanatha, Gollapalle L.; Ashok, Godavarthi

    2016-01-01

    Aims: The present study was undertaken to evaluate the effect of methanolic leaf extract of Gymnema sylvestre (MLGS) on glucose transport (GLUT) and insulin resistance in vitro. Materials and Methods: Peroxisome proliferator-activated receptor-gamma (PPAR-γ) and GLUT-4 expression were assessed in L6 myotubes for concluding the GLUT activity, and adiponectin and leptin expression was studied in 3T3 L1 murine adipocyte cell line to determine the effect of MLGS (250-750 μg/ml) on insulin resistance. Results: The findings of the experiments have demonstrated a significant and dose-dependent increase in glucose uptake in all the tested concentrations of MLGS, further the glucose uptake activity of MLGS (750 μg/ml) was at par with rosiglitazone (50 μg/ml). Concomitantly, MLGS has shown enhanced GLUT-4 and PPAR-γ gene expressions in L6 myotubes. Furthermore, cycloheximide (CHX) had completely abolished the glucose uptake activity of MLGS when co-incubated, which further confirmed that glucose uptake activity of MLGS was linked to enhanced expression of GLUT-4 and PPAR-γ. In addition, in another experimental set, MLGS showed enhanced expression of adiponectin and leptin, thus confirms the ameliorative effect of MLGS on insulin resistance. Conclusion: These findings suggest that MLGS has an enhanced glucose uptake activity in L6 myotubes, and ameliorate the insulin resistance in 3T3 L1 murine adipocyte cell line in vitro. PMID:27104035

  5. Eicosapentaenoic acid-enriched phospholipid ameliorates insulin resistance and lipid metabolism in diet-induced-obese mice

    PubMed Central

    2013-01-01

    Background Over the past two decades, a striking increase in the number of people with metabolic syndrome (MS) has taken place worldwide. With the elevated risk of not only diabetes but also cardiovascular morbidity and mortality, there is urgent need for strategies to prevent this emerging global epidemic. The present study was undertaken to investigate the effects of dietary eicosapentaenoic acid-enriched phospholipid (EPA-PL) on metabolic disorders. Methods Male C57BL/6J mice (n = 7) were fed one of the following 4 diets for a period of 4 weeks: 1) a modified AIN-96G diet with 5% corn oil (control diet); 2) a high fat (20%, wt/wt) and high fructose (20%, wt/wt) diet (HF diet); 3) the HF diet containing 1% SOY-PL (SOY-PL diet); 4) the HF diet containing 1% EPA-PL (EPA-PL diet). The oral glucose tolerance test was performed. Plasma TG, TC, glucose, NEFA, insulin, leptin, adiponectin, TNF-α and IL-6 levels were assessed. In addition, hepatic lipid levels, lipogenic, and lipidolytic enzyme activities and gene expressions were evaluated. Results Both EPA-PL and SOY-PL significantly inhibited body weight gain and white adipose tissue accumulation, alleviated glucose intolerance, and lowered both serum fasting glucose and NEFA levels substantially. Only EPA-PL significantly reduced serum TNF-α and IL-6 levels, and increased serum adiponectin level. EPA-PL was more effective in reducing hepatic and serum TG and TC levels than SOY-PL. Both EPA-PL and SOY-PL reduced the activities of hepatic lipogenic enzymes, such as FAS and G6PDH, but only EPA-PL significantly increased CPT, peroxisomal β-oxidation enzymes activities and CPT-1a mRNA level. Alterations of hepatic lipogenic gene expressions, such as FAS, G6PDH, ACC, SCD-1 and SREBP-1c were consistent with changes in related enzyme activities. Conclusions According to our study, EPA-PL supplementation was efficacious in suppressing body fat accumulation, and alleviating insulin resistance and hepatic steatosis by

  6. TNF{alpha} induced FOXP3-NF{kappa}B interaction dampens the tumor suppressor role of FOXP3 in gastric cancer cells

    SciTech Connect

    Hao, Qiang; Li, Weina; Zhang, Cun; Qin, Xin; Xue, Xiaochang; Li, Meng; Shu, Zhen; Xu, Tianjiao; Xu, Yujin; Wang, Weihua; Zhang, Wei; Zhang, Yingqi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer FOXP3 inhibition of cell proliferation is p21-dependent under basal conditions. Black-Right-Pointing-Pointer Inflammation induced by TNF{alpha} inhibits the tumor suppressor role of FOXP3. Black-Right-Pointing-Pointer Interaction between p65 and FOXP3 inhibits p21 transcription activation. -- Abstract: Controversial roles of FOXP3 in different cancers have been reported previously, while its role in gastric cancer is largely unknown. Here we found that FOXP3 is unexpectedly upregulated in some gastric cancer cells. To test whether increased FOXP3 remains the tumor suppressor role in gastric cancer as seen in other cancers, we test its function in cell proliferation both at basal and TNF{alpha} mimicked inflammatory condition. Compared with the proliferation inhibitory role observed in basal condition, FOXP3 is insufficient to inhibit the cell proliferation under TNF{alpha} treatment. Molecularly, we found that TNF{alpha} induced an interaction between FOXP3 and p65, which in turn drive the FOXP3 away from the promoter of the well known target p21. Our data here suggest that although FOXP3 is upregulated in gastric cancer, its tumor suppressor role has been dampened due to the inflammation environment.

  7. Pro-Insulin-Like Growth Factor-II Ameliorates Age-Related Inefficient Regenerative Response by Orchestrating Self-Reinforcement Mechanism of Muscle Regeneration.

    PubMed

    Ikemoto-Uezumi, Madoka; Uezumi, Akiyoshi; Tsuchida, Kunihiro; Fukada, So-ichiro; Yamamoto, Hiroshi; Yamamoto, Naoki; Shiomi, Kosuke; Hashimoto, Naohiro

    2015-08-01

    Sarcopenia, age-related muscle weakness, increases the frequency of falls and fractures in elderly people, which can trigger severe muscle injury. Rapid and successful recovery from muscle injury is essential not to cause further frailty and loss of independence. In fact, we showed insufficient muscle regeneration in aged mice. Although the number of satellite cells, muscle stem cells, decreases with age, the remaining satellite cells maintain the myogenic capacity equivalent to young mice. Transplantation of young green fluorescent protein (GFP)-Tg mice-derived satellite cells into young and aged mice revealed that age-related deterioration of the muscle environment contributes to the decline in regenerative capacity of satellite cells. Thus, extrinsic changes rather than intrinsic changes in satellite cells appear to be a major determinant of inefficient muscle regeneration with age. Comprehensive protein expression analysis identified a decrease in insulin-like growth factor-II (IGF-II) level in regenerating muscle of aged mice. We found that pro- and big-IGF-II but not mature IGF-II specifically express during muscle regeneration and the expressions are not only delayed but also decreased in absolute quantity with age. Supplementation of pro-IGF-II in aged mice ameliorated the inefficient regenerative response by promoting proliferation of satellite cells, angiogenesis, and suppressing adipogenic differentiation of platelet derived growth factor receptor (PDGFR)α(+) mesenchymal progenitors. We further revealed that pro-IGF-II but not mature IGF-II specifically inhibits the pathological adipogenesis of PDGFRα(+) cells. Together, these results uncovered a distinctive pro-IGF-II-mediated self-reinforcement mechanism of muscle regeneration and suggest that supplementation of pro-IGF-II could be one of the most effective therapeutic approaches for muscle injury in elderly people. PMID:25917344

  8. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling

    PubMed Central

    Yang, Shasha; Deng, Huacong; Zhang, Qunzhou; Xie, Jing; Zeng, Hui; Jin, Xiaolong; Ling, Zixi; Shan, Qiaoyun; Liu, Momo; Ma, Yuefei; Tang, Juan; Wei, Qianping

    2016-01-01

    Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication. PMID:26986757

  9. The Novel Angiotensin II Receptor Blocker Azilsartan Medoxomil Ameliorates Insulin Resistance Induced by Chronic Angiotensin II Treatment in Rat Skeletal Muscle

    PubMed Central

    Lastra, Guido; Santos, Fernando R.; Hooshmand, Payam; Hooshmand, Paria; Mugerfeld, Irina; Aroor, Annayya R.; DeMarco, Vincent G.; Sowers, James R.; Henriksen, Erik J.

    2013-01-01

    Angiotensin receptor (type 1) blockers (ARBs) can reduce both hypertension and insulin resistance induced by local and systemic activation of the renin-angiotensin-aldosterone system. The effectiveness of azilsartan medoxomil (AZIL-M), a novel imidazole-based ARB, to facilitate metabolic improvements in conditions of angiotensin II (Ang II)-associated insulin resistance is currently unknown. The aim of this study was to determine the impact of chronic AZIL-M treatment on glucose transport activity and key insulin signaling elements in red skeletal muscle of Ang II-treated rats. Male Sprague-Dawley rats were treated for 8 weeks with or without Ang II (200 ng/kg/min) combined with either vehicle or AZIL-M (1 mg/kg/day). Ang II induced significant (p < 0.05) increases in blood pressure, which were completely prevented by AZIL-M. Furthermore, Ang II reduced insulin-mediated glucose transport activity in incubated soleus muscle, and AZIL-M co-treatment increased this parameter. Moreover, AZIL-M treatment of Ang II-infused animals increased the absolute phosphorylation of insulin signaling molecules, including Akt [both Ser473 (81%) and Thr308 (23%)] and AS160 Thr642 (42%), in red gastrocnemius muscle frozen in situ. Absolute AMPKα (Thr172) phosphorylation increased (98%) by AZIL-M treatment, and relative Thr389 phosphorylation of p70 S6K1, a negative regulator of insulin signaling, decreased (51%) with AZIL-M treatment. These results indicate that ARB AZIL-M improves the in vitro insulin action on glucose transport in red soleus muscle and the functionality of the Akt/AS160 axis in red gastrocnemius muscle in situ in Ang II-induced insulin-resistant rats, with the latter modification possibly associated with enhanced AMPKα and suppressed p70 S6K1 activation. PMID:23922555

  10. Ameliorative effect of vanadyl(IV)-ascorbate complex on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, and oxidative stress in mice.

    PubMed

    Liu, Yanjun; Xu, Jie; Guo, Yongli; Xue, Yong; Wang, Jingfeng; Xue, Changhu

    2015-10-01

    There is mounting evidence demonstrating causative links between hyperglycemia, oxidative stress, and insulin resistance, the core pathophysiological features of type 2 diabetes mellitus. Using a combinational approach, we synthesized a vanadium-antioxidant (i.e., l-ascorbic acid) complex and examined its effect on insulin resistance and oxidative stress. This study was designed to examine whether vanadyl(IV)-ascorbate complex (VOAsc) would reduce oxidative stress, hyperglycemia, and insulin resistance in high-fat high-sucrose diet (HFSD)-induced type 2 diabetes in mice. Male C57BL/6J mice were fed a HFSD for 12 weeks to induce insulin resistance, rendering them diabetic. Diabetic mice were treated with rosiglitazone, sodium l-ascorbate, or VOAsc. At the end of treatment, fasting blood glucose, fasting serum insulin, homeostasis model assessment-insulin resistance index, and serum adipocytokine levels were measured. Serum levels of nitric oxide (NO) parameters were also determined. The liver was isolated and used for determination of malondialdehyde, reduced glutathione, and catalase levels, and superoxide dismutase and glutathione peroxidase activities. VOAsc groups exhibited significant reductions in serum adipocytokine and NO levels, and oxidative stress parameters compared to the corresponding values in the untreated diabetic mice. The results indicated that VOAsc is non-toxic. In conclusion, we identified VOAsc as a potentially effective adjunct therapy for the management of type 2 diabetes. PMID:26302923

  11. Fraction from Wax Apple [Syzygium samarangense (Blume) Merrill and Perry] Fruit Extract Ameliorates Insulin Resistance via Modulating Insulin Signaling and Inflammation Pathway in Tumor Necrosis Factor α-Treated FL83B Mouse Hepatocytes

    PubMed Central

    Shen, Szu-Chuan; Chang, Wen-Chang; Chang, Chiao-Li

    2012-01-01

    Inflammation is associated with the development of insulin resistance in Type 2 diabetes mellitus. In the present study, mouse FL83B cells were treated with tumor necrosis factor-alpha (TNF-α) to induce insulin resistance, and then co-incubated with a fraction from wax apple fruit extract (FWFE). This fraction significantly increased the uptake of the nonradioactive fluorescent indicator 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) in insulin resistant cells. Western blot analysis revealed that, compared with the TNF-α-treated control group, FWFE increased the expression of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), protein kinase B (Akt/PKB), phosphatidylinositol-3 kinase (PI3K), and glucose transporter 2 (GLUT-2), and increased IR tyrosyl phosporylation, in insulin resistant FL83B cells. However, FWFE decreased phosphorylation of c-Jun N-terminal kinases (JNK), but not the expression of the intercellular signal-regulated kinases (ERK), in the same cells. These results suggest that FWFE might alleviate insulin resistance in TNF-α-treated FL83B cells by activating PI3K-Akt/PKB signaling and inhibiting inflammatory response via suppression of JNK, rather than ERK, activation. PMID:22942720

  12. Amelioration of obesity-associated inflammation and insulin resistance in c57bl/6 mice via macrophage polarization by fish oil supplementation.

    PubMed

    Bashir, Samina; Sharma, Yadhu; Elahi, Asif; Khan, Farah

    2016-07-01

    Enormous phenotypic plasticity makes macrophages the target cells in obesity-associated inflammatory diseases. Thus, nutritional components that polarize macrophages toward antiinflammatory phenotype can partially reverse inflammatory diseases like insulin resistance. In the present study, macrophage-polarizing and insulin-sensitizing properties of fish oil (FO) were evaluated in obese insulin-resistant c57bl/6 mice fed high-fat diet (HFD-IR) after oral supplementation with FO (4, 8 or 16mg/kg body weight) and compared to lean and HFD-IR mice. FO-supplemented HFD-IR mice exhibited reduced adiposity index, serum cholesterol and triglycerides and increased insulin sensitization and showed improved adipose tissue physiology under light and transmission electron microscopy. NF-κB/P65 expression showed a downward shift on FO supplementation. The surface marker of M1 macrophages (CD-86) and the TLR-4 expression reduced with the increased supplementation of FO. Expression of arginase 1, an important marker of M2 macrophages, increased in a dose-dependent manner in response to FO dosage, which was observed at protein level by the western blotting and at mRNA level by real-time PCR. The cytokine profile of adipose tissue macrophages showed a steep shift toward antiinflammatory ones (IL-4 and IL-10) from the inflammatory TNF-α, IFN-γ, IL-2 and IL-1β. Thus, macrophage polarization seems to be the plausible mechanism via which FO alleviates obesity-induced inflammation and insulin resistance. PMID:27260471

  13. C333H ameliorated insulin resistance through selectively modulating peroxisome proliferator-activated receptor γ in brown adipose tissue of db/db mice.

    PubMed

    Zhang, Ning; Chen, Wei; Zhou, Xinbo; Zhou, Xiaolin; Xie, Xinni; Meng, Aimin; Li, Song; Wang, Lili

    2013-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a unique target for insulin sensitizer agents. These drugs have been used for the clinical treatment of type 2 diabetes for almost twenty years. However, serious safety issues are associated with the PPARγ agonist thiazolidinediones (TZDs). Selective PPARγ modulators (SPPARMs) which retain insulin sensitization without TZDs-like side effects are emerging as a promising new generation of insulin sensitizers. C333H is a novel structure compound synthesized by our laboratory. In diabetic rodent models, C333H has insulin-sensitizing and glucose-lowering activity comparable to that of TZDs, and causes no significant increase in body weight or adipose tissue weight in db/db mice. In diabetic db/db mice, C333H elevated circulating high molecular weight adiponectin isoforms, decreased PPARγ 273 serine phosphorylation in brown adipose tissue and selectively modulated the expression of a subset of PPARγ target genes in adipose tissue. In vitro, C333H weakly recruited coactivator and weakly dissociated corepressor activity. These findings suggest that C333H has similar properties to SPPARMs and may be a potential therapeutic agent for the treatment of type 2 diabetes. PMID:23563593

  14. Amelioration of oxidative stress and insulin resistance by soy isoflavones (from Glycine max) in ovariectomized Wistar rats fed with high fat diet: the molecular mechanisms.

    PubMed

    Sankar, P; Zachariah, Bobby; Vickneshwaran, V; Jacob, Sajini Elizabeth; Sridhar, M G

    2015-03-01

    Estrogen deficiency after menopause accelerates the redox imbalance and insulin signaling, leading to oxidative stress (OS) and insulin resistance (IR). The molecular mechanisms by which the loss of ovarian hormone leads to OS and IR remain unclear. In the present study we found that rats when subjected to ovariectomy (OVX) resulted in reduction of whole blood antioxidants and elevation of oxidant markers. The expression of anti-oxidant enzymes, superoxide dismutase (SOD1) and glutathione peroxidase (GPX1) was suppressed whereas the pro-oxidative enzyme NADPH oxidase (NOX4) and mitogen activated protein (MAP) kinases ERK 1/2 and p38 were increased at different tissues. Treatment with soy (SIF, 150 mg/kg BW for 12 weeks) extract markedly reversed these metabolic changes and improved OS. Ovariectomized rats also displayed glucose intolerance (GI) and IR as evident from the impaired glucose tolerance test, and reduced expression of adipose and hepatic insulin receptor beta (IRβ) and adipose tissue GLUT4. Treatment with SIF reversed the ovariectomy induced GI and IR. On the other hand, all these metabolic changes were further augmented when ovariectomy was followed by a high fat diet, and these changes were also reversed by SIF. Taken together, these findings emphasized the antioxidant property and anti-diabetic effects of soy isoflavones suggesting the use of this natural phytoestrogen as a strategy for relieving oxidative stress and insulin resistance in postmenopausal women. PMID:25660477

  15. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Sandeep Varma, R; Patki, Pralhad Sadashiv

    2013-03-01

    Hepatic lipid accumulation and oxidative stress contribute to non-alcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activity of quercetin would attenuate events leading to NAFLD. Addition of 2.0mM oleic acid (OA) into the culture media induced fatty liver condition in HepG2 cells by 24h. It was marked by significant accumulation of lipid droplets as determined by Oil-Red-O (ORO) based colorimetric assay, increased triacylglycerol (TAG) and increased lipid peroxidation. The inflammatory cytokines TNF-α and IL-8 levels were significantly increased with decreased antioxidant molecules. OA induced insulin resistance which was evident by inhibition of glucose uptake and cell proliferation. Quercetin (10 μM) increased cell proliferation by 3.05 folds with decreased TAG content (45%) and was effective in increasing insulin mediated glucose uptake by 2.65 folds. The intracellular glutathione content was increased by 2.0 folds without substantial increase in GSSG content. Quercetin (10 μM) decreased TNF-α and IL-8 by 59.74% and 41.11% respectively and inhibited generation of lipid peroxides by 50.5%. In addition, RT-PCR results confirmed quercetin (10 μM) inhibited TNF-alpha gene expression. Further, superoxide dismutase, catalase and glutathione peroxidase activities were increased by 1.68, 2.19 and 1.71 folds respectively. Albumin and urea content was increased while the alanine aminotransferase (ALAT) activity was significantly decreased by quercetin. Hence, quercetin effectively reversed NAFLD symptoms by decreased triacyl glycerol accumulation, insulin resistance, inflammatory cytokine secretion and increased cellular antioxidants in OA induced hepatic steatosis in HepG2 cells. PMID:23348005

  16. Insulin-like growth factor-I (IGF-I) analogue, LR(3)IGF-I, ameliorates the loss of body weight but not of skeletal muscle during food restriction.

    PubMed

    Tomas, F M

    2001-04-01

    Insulin-like growth factor-I (IGF-I) is known to have anabolic effects in freely fed rats. We have investigated the ability of infused LR(3)IGF-I, an analogue of IGF-I, to attenuate the loss of lean tissue due to food restriction in young (5 weeks) and adult (12 weeks) rats. Groups of rats received food at 100%, 78%, 56% or 33% of ad libitum levels. Within each nutrition group the rats were continuously infused with LR(3)IGF-I at (98 nmol/day)/kg body weight or vehicle for 7 days. At each level of food intake, rats infused with LR(3)IGF-I maintained higher body weight (around 3-8%;P< 0.001) and nitrogen retention (P< 0.001) than those infused with vehicle alone but muscle protein was not conserved. LR(3)IGF-I infusion increased fat loss only in young rats (P< 0.05) despite a reduction in plasma insulin levels in both age groups (P< 0.01). Muscle protein turnover rates were unaffected by LR(3)IGF-I in young rats. In adult rats LR(3)IGF-I exacerbated the effects of food restriction through increased rates of protein breakdown, reduced RNA content and reduced rates of protein synthesis (P< 0.05) despite their larger fat reserves. Although young and adult rats show differing metabolic responses, we conclude that infusion of LR(3)IGF-I to either group during short-term food restriction does not ameliorate the loss of lean tissue by allowing more efficient utilization and/or partitioning of nutrients. PMID:11472075

  17. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    SciTech Connect

    Das, Joydeep; Vasan, Vandana; Sil, Parames C.

    2012-01-15

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markers and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4 signaling

  18. A Chinese Herbal Decoction, Dang Gui Bu Xue Tang, Prepared from Radix Astragali and Radix Angelicae sinensis, Ameliorates Insulin Resistance Induced by A High-Fructose Diet in Rats

    PubMed Central

    Liu, I-Min; Tzeng, Thing-Fong; Liou, Shorong-Shii

    2011-01-01

    Dang Gui Bu Xue Tang (DBT), a Chinese medicinal decoction contains Radix Angelicae sinensis (Danggui) and Radix Astragali (Huangqi) at a ratio of 1 : 5, is used commonly for treating women's ailments. This study was conducted to explore the effects of this preparation on insulin resistance in rats fed with 6-week diet containing 60% fructose. Similar to the action of rosiglitazone (4 mg kg−1 per day by an oral administration), repeated oral administration of DBT (2.5 g kg−1 per day) for 14 days was found to significantly alleviate the hyperglycemia but made no influence on plasma lipid profiles nor weight gain in fructose chow-fed rats. Also, the higher degree of insulin resistance as measured by homeostasis model assessment of basal insulin resistance in fructose chow-fed rats was significantly decreased by repeated DBT treatment. DBT displays the characteristic of rosiglitazone by increasing the whole-body insulin sensitivity in fructose chow-fed rats after 2-week treatment, as evidenced by the marked elevation of composite whole-body insulin sensitivity index during the oral glucose tolerance test. DBT improves insulin sensitivity through increased post-receptor insulin signaling mediated by enhancements in insulin receptor substrate-1-associated phosphatidylinositol 3-kinase step and glucose transporter subtype 4 translocation in soleus muscles of animals exhibiting insulin resistance. DBT is therefore proposed as potentially useful adjuvant therapy for patients with insulin resistance and/or the patients who wish to increase insulin sensitivity. PMID:19233878

  19. Adipocyte lipolysis and insulin resistance.

    PubMed

    Morigny, Pauline; Houssier, Marianne; Mouisel, Etienne; Langin, Dominique

    2016-06-01

    Obesity-induced insulin resistance is a major risk factor for the development of type 2 diabetes. Basal fat cell lipolysis (i.e., fat cell triacylglycerol breakdown into fatty acids and glycerol in the absence of stimulatory factors) is elevated during obesity and is closely associated with insulin resistance. Inhibition of adipocyte lipolysis may therefore be a promising therapeutic strategy for treating insulin resistance and preventing obesity-associated type 2 diabetes. In this review, we explore the relationship between adipose lipolysis and insulin sensitivity. After providing an overview of the components of fat cell lipolytic machinery, we describe the hypotheses that may support the causality between lipolysis and insulin resistance. Excessive circulating fatty acids may ectopically accumulate in insulin-sensitive tissues and impair insulin action. Increased basal lipolysis may also modify the secretory profile of adipose tissue, influencing whole body insulin sensitivity. Finally, excessive fatty acid release may also worsen adipose tissue inflammation, a well-known parameter contributing to insulin resistance. Partial genetic or pharmacologic inhibition of fat cell lipases in mice as well as short term clinical trials using antilipolytic drugs in humans support the benefit of fat cell lipolysis inhibition on systemic insulin sensitivity and glucose metabolism, which occurs without an increase of fat mass. Modulation of fatty acid fluxes and, putatively, of fat cell secretory pattern may explain the amelioration of insulin sensitivity whereas changes in adipose tissue immune response do not seem involved. PMID:26542285

  20. Aqueous Fraction of Beta vulgaris Ameliorates Hyperglycemia in Diabetic Mice due to Enhanced Glucose Stimulated Insulin Secretion, Mediated by Acetylcholine and GLP-1, and Elevated Glucose Uptake via Increased Membrane Bound GLUT4 Transporters

    PubMed Central

    Kabir, Ashraf Ul; Samad, Mehdi Bin; Ahmed, Arif; Jahan, Mohammad Rajib; Akhter, Farjana; Tasnim, Jinat; Hasan, S. M. Nageeb; Sayfe, Sania Sarker; Hannan, J. M. A.

    2015-01-01

    Background The study was designed to investigate the probable mechanisms of anti-hyperglycemic activity of B. Vulgaris. Methodology/Principal Findings Aqueous fraction of B. Vulgaris extract was the only active fraction (50mg/kg). Plasma insulin level was found to be the highest at 30 mins after B. Vulgaris administration at a dose of 200mg/kg. B. Vulgaris treated mice were also assayed for plasma Acetylcholine, Glucagon Like Peptide-1 (GLP-1), Gastric Inhibitory Peptide (GIP), Vasoactive Intestinal Peptide, Pituitary Adenylate Cyclase-Activating Peptide (PACAP), Insulin Like Growth Factor-1 (IGF-1), Pancreatic Polypeptides (PP), and Somatostatin, along with the corresponding insulin levels. Plasma Acetylcholine and GLP-1 significantly increased in B. Vulgaris treated animals and were further studied. Pharmacological enhancers, inhibitors, and antagonists of Acetylcholine and GLP-1 were also administered to the test animals, and corresponding insulin levels were measured. These studies confirmed the role of acetylcholine and GLP-1 in enhanced insulin secretion (p<0.05). Principal signaling molecules were quantified in isolated mice islets for the respective pathways to elucidate their activities. Elevated concentrations of Acetylcholine and GLP-1 in B. Vulgaris treated mice were found to be sufficient to activate the respective pathways for insulin secretion (p<0.05). The amount of membrane bound GLUT1 and GLUT4 transporters were quantified and the subsequent glucose uptake and glycogen synthesis were assayed. We showed that levels of membrane bound GLUT4 transporters, glucose-6-phosphate in skeletal myocytes, activity of glycogen synthase, and level of glycogen deposited in the skeletal muscles all increased (p<0.05). Conclusion Findings of the present study clearly prove the role of Acetylcholine and GLP-1 in the Insulin secreting activity of B. Vulgaris. Increased glucose uptake in the skeletal muscles and subsequent glycogen synthesis may also play a part in

  1. Nymphaea rubra ameliorates TNF-α-induced insulin resistance via suppression of c-Jun NH2-terminal kinase and nuclear factor-κB in the rat skeletal muscle cells.

    PubMed

    Gautam, Sudeep; Rahuja, Neha; Ishrat, Nayab; Asthana, R K; Mishra, D K; Maurya, Rakesh; Jain, Swatantra Kumar; Srivastava, Arvind Kumar

    2014-12-01

    In this work, we demonstrated insulin signaling and the anti-inflammatory effects by the chloroform fraction of ethanolic extract of Nymphaea rubra flowers in TNF-α-induced insulin resistance in the rat skeletal muscle cell line (L6 myotubes) to dissect out its anti-hyperglycemic mechanism. N. rubra enhances the GLUT4-mediated glucose transport in a dose dependent manner and also increases the tyrosine phosphorylation of both IR-β and IRS-1, and the IRS-1 associated PI-3 kinase activity in TNF-α-treated L6 myotubes. Moreover, N. rubra decreases Ser(307) phosphorylation of IRS-1 by the suppression of JNK and NF-κB activation. In conclusion, N. rubra reverses the insulin resistance by the inhibition of c-Jun NH2-Terminal Kinase and Nuclear-κB. PMID:25234391

  2. SIRT2 regulates insulin sensitivity in insulin resistant neuronal cells.

    PubMed

    Arora, Amita; Dey, Chinmoy Sankar

    2016-06-10

    Insulin resistance in brain is well-associated with pathophysiology of deficits in whole-body energy metabolism, neurodegenerative diseases etc. Among the seven sirtuins, SIRT2 is the major deacetylase expressed in brain. Inhibition of SIRT2 confers neuroprotection in case of Parkinson's disease (PD) and Huntington's disease (HD). However, the role of this sirtuin in neuronal insulin resistance is not known. In this study, we report the role of SIRT2 in regulating insulin-sensitivity in neuronal cells in vitro. Using approaches like pharmacological inhibition of SIRT2, siRNA mediated SIRT2 knockdown and over-expression of wild-type and catalytically-mutated SIRT2, we observed that downregulation of SIRT2 ameliorated the reduced activity of AKT and increased insulin-stimulated glucose uptake in insulin resistant neuro-2a cells. The data was supported by over expression of catalytically-inactive SIRT2 in insulin-resistant human SH-SY5Y neuronal cells. Data highlights a crucial role of SIRT2 in regulation of neuronal insulin sensitivity under insulin resistant condition. PMID:27163642

  3. Oral Insulin

    PubMed Central

    2010-01-01

    Oral insulin is an exciting area of research and development in the field of diabetology. This brief review covers the various approaches used in the development of oral insulin, and highlights some of the recent data related to novel oral insulin preparation. PMID:21059246

  4. Biosimilar Insulins

    PubMed Central

    Hompesch, Marcus

    2014-01-01

    Until now most of the insulin used in developed countries has been manufactured and distributed by a small number of multinational companies. Beyond the established insulin manufacturers, a number of new players have developed insulin manufacturing capacities based on modern biotechnological methods. Because the patents for many of the approved insulin formulations have expired or are going to expire soon, these not yet established companies are increasingly interested in seeking market approval for their insulin products as biosimilar insulins (BI) in highly regulated markets like the EU and the United States. Differences in the manufacturing process (none of the insulin manufacturing procedures are 100% identical) can lead to insulins that to some extent may differ from the originator insulin. The key questions are if subtle differences in the structure of the insulins, purity, and so on are clinically relevant and may result in different biological effects. The aim of this article is to introduce and discuss basic aspects that may be of relevance with regard to BI. PMID:24876530

  5. Biosimilar insulins.

    PubMed

    Heinemann, Lutz

    2012-08-01

    Until now most insulin used in developed countries is manufactured and distributed by a small number of multinational companies. Other pharmaceutical companies - many of these are located in countries such as India or China - are also able to manufacture insulin with modern biotechnological methods. Additionally, the patents for many insulin formulations have expired or are going to expire soon. This enables such companies to produce insulins and to apply for market approval of these as biosimilar insulins (BIs) in highly regulated markets such as the EU or the US. To understand the complexity of BIs' approval and usage, scientific and regulatory aspects have to be discussed. Differences in the manufacturing process (none of the insulin-manufacturing procedures are identical) result in the fact that all insulin that might become BIs differ from the originator insulin to some extent. The question is, have such differences in the structure of the insulin molecule and or the purity and so on clinically relevant consequences for the biological effects induced or not. The guidelines already in place in the EU for market approval require that the manufacturer demonstrates that his insulin has a safety and efficacy profile that is similar to that of the 'original' insulin formulation. Recently guidelines for biosimilars were issued in the US; however, these do not cover insulin. Although a challenging approval process for insulins to become BI might be regarded as a hurdle to keep companies out of certain markets, it is fair to say that the potential safety and efficacy issues surrounding BI are substantial and relevant, and do warrant a careful and evidence-driven approval process. Nevertheless, it is very likely that in the next years, BIs will come to the market also in highly regulated markets. PMID:22583127

  6. Insulin resistance and insulin sensitizers.

    PubMed

    Stumvoll, M; Häring, H

    2001-01-01

    Insulin resistance is a key factor in the pathogenesis of type 2 diabetes mellitus and a co-factor in the development of dyslipidaemia, hypertension and atherosclerosis. The causes of insulin resistance include factors such as obesity and physical inactivity, and there may also be genetic factors. The mechanism of obesity-related insulin resistance involves the release of factors from adipocytes which exert a negative effect on glucose metabolism: free fatty acids, tumour necrosis factor-alpha and the recently discovered hormone, resistin. The two resulting abnormalities observed consistently in glucose-intolerant states are impaired suppression of endogenous glucose production, and impaired stimulation of glucose uptake. Among the genetic factors, a polymorphism (Pro12Ala) in the peroxisome proliferator-activated receptor (PPAR) gamma is associated with a reduced risk of type 2 diabetes mellitus and increased insulin sensitivity, primarily that of lipolysis. On the other hand, the association with insulin resistance of a common polymorphism (Gly972Arg) in the insulin receptor substrate 1, long believed to be a plausible candidate gene, is weak at best. This polymorphism may instead be associated with reduced insulin secretion, which, in view of the recent recognition of the insulin signalling system in beta-cells, results in the development of a novel pathogenic concept. Finally, fine-mapping and positional cloning of the susceptibility locus on chromosome 2 resulted in the identification of a polymorphism (UCSNP-43 G/A) in the calpain-10 gene. In non-diabetic Pima Indians, this polymorphism was associated with insulin resistance of glucose disposal. The pharmacological treatment of insulin resistance has recently acquired a novel class of agents: the thiazolidinediones. They act through regulation of PPARgamma-dependent genes and probably interfere favourably with factors released from adipocytes which mediate obesity-associated insulin resistance. PMID:11684868

  7. Insulin Test

    MedlinePlus

    ... people with type 2 diabetes , polycystic ovarian syndrome (PCOS) , prediabetes or heart disease , or metabolic syndrome . A ... resistance), especially in obese individuals and those with PCOS . This test involves an IV-infusion of insulin, ...

  8. Diabetes and Insulin

    MedlinePlus

    ... years, but may eventually need insulin to maintain glucose control. What are the different types of insulin? Different ... glulisine • Short-acting: regular human insulin Basal insulin. Controls blood glucose levels between meals and throughout the night. This ...

  9. Insulin therapy in type 2 diabetes.

    PubMed

    Mudaliar, S; Edelman, S V

    2001-12-01

    concentration is normalized. If combination therapy is not successful, a split-mixed regimen of intermediate- and rapid-acting insulin equally divided between the prebreakfast and pre-dinner periods is advised for oese patients, and more intensive regimens are advised for thin patients. Insulin therapy is invariably associated with weight gain and hypoglycemia. The use of metformin or glitazones in combination with insulin has been demonstrated to have insulin-sparing properties. Also, metformin use may ameliorate weight gain. The use of continuous subcutaneous insulin infusion pumps can be particularly beneficial in treating patients with type 2 diabetes mellitus who do not respond satisfactorily to more conventional treatment strategies. Intraperitoneal insulin delivery systems hold considerable promise in type 2 diabetes because of their more physiologic delivery of insulin and their ability to inhibit hepatic glucose production selectively, with less peripheral insulinemia than with subcutaneous insulin injections. Newer insulin analogues such as the rapidly acting Lispro insulin and the peakless, long-acting glargine insulin are increasingly being used because of their unique physiologic pharmacokinetics. New developments such as inhaled and buccal insulin preparations will also make it easier for many patients to initiate and maintain a proper insulin regimen. Finally, a new generation of gut peptides such as amylin and GLP-1 will add a new dimension to glycemic control through modification of nutrient delivery and other mechanisms; however, the ultimate goal in the management of type 2 diabetes is the primary prevention of the disease. The Diabetes Prevention Program (DPP) sponsored by the National Institutes of Health has currently randomly assigned more than 3000 persons with impaired glucose tolerance and at high risk of developing diabetes into three treatment arms: metformin arm, an intensive lifestyle-modification arm, and a placebo arm. The study will conclude in

  10. Technosphere insulin: an inhaled prandial insulin product.

    PubMed

    Neumiller, Joshua J; Campbell, R Keith

    2010-06-01

    Given the important role of insulin in the treatment of diabetes mellitus and in light of common barriers to insulin use, new strategies for insulin delivery by routes other than intravenous and subcutaneous injection have been investigated since the discovery of insulin in the 1920s. Most companies researching and developing pulmonary administration systems for the use of insulin announced the termination of product development following the failure of the first US FDA-approved inhaled insulin product, Exubera. One company in particular continued their pursuit of a useful inhaled insulin product. MannKind Corporation has developed a powder formulation of insulin that allows for a high percentage of the administered insulin to be absorbed via the lung. Their product, AFREZZA (Technosphere insulin), is currently under review by the FDA for use in patients with diabetes. Technosphere insulin appears to overcome some of the barriers that contributed to the market withdrawal of Exubera by the manufacturer. Studies with Technosphere insulin have shown it to be a unique insulin formulation in that it is very rapid acting, has a relatively short duration of action, and is efficacious in terms of improved glycemic control without contributing to increased weight gain or the incidence of hypoglycemia when compared with other prandial insulin products. Additionally, Technosphere insulin has demonstrated a favorable safety and tolerability profile in clinical studies to date. PMID:20462282

  11. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    PubMed Central

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  12. Insulin Human Inhalation

    MedlinePlus

    Insulin inhalation is used in combination with a long-acting insulin to treat type 1 diabetes (condition in which the body does not produce insulin and therefore cannot control the amount of sugar ...

  13. Giving an insulin injection

    MedlinePlus

    ... One Type of Insulin Wash your hands with soap and water. Dry them well. Check the insulin ... syringe before injecting it. Wash your hands with soap and water. Dry them well. Check the insulin ...

  14. Insulin Lispro Injection

    MedlinePlus

    ... is a short-acting, man-made version of human insulin. Insulin lispro works by replacing the insulin ... niacin (Niacor, Niaspan, in Advicor); certain medications for human immunodeficiency virus (HIV) or acquired immunodeficiency syndrome (AIDS) ...

  15. Nonobese, insulin-deficient Ins2Akita mice develop type 2 diabetes phenotypes including insulin resistance and cardiac remodeling.

    PubMed

    Hong, Eun-Gyoung; Jung, Dae Young; Ko, Hwi Jin; Zhang, Zhiyou; Ma, Zhexi; Jun, John Y; Kim, Jae Hyeong; Sumner, Andrew D; Vary, Thomas C; Gardner, Thomas W; Bronson, Sarah K; Kim, Jason K

    2007-12-01

    Although insulin resistance has been traditionally associated with type 2 diabetes, recent evidence in humans and animal models indicates that insulin resistance may also develop in type 1 diabetes. A point mutation of insulin 2 gene in Ins2(Akita) mice leads to pancreatic beta-cell apoptosis and hyperglycemia, and these mice are commonly used to investigate type 1 diabetes and complications. Since insulin resistance plays an important role in diabetic complications, we performed hyperinsulinemic-euglycemic clamps in awake Ins2(Akita) and wild-type mice to measure insulin action and glucose metabolism in vivo. Nonobese Ins2(Akita) mice developed insulin resistance, as indicated by an approximately 80% reduction in glucose infusion rate during clamps. Insulin resistance was due to approximately 50% decreases in glucose uptake in skeletal muscle and brown adipose tissue as well as hepatic insulin action. Skeletal muscle insulin resistance was associated with a 40% reduction in total GLUT4 and a threefold increase in PKCepsilon levels in Ins2(Akita) mice. Chronic phloridzin treatment lowered systemic glucose levels and normalized muscle insulin action, GLUT4 and PKCepsilon levels in Ins2(Akita) mice, indicating that hyperglycemia plays a role in insulin resistance. Echocardiography showed significant cardiac remodeling with ventricular hypertrophy that was ameliorated following chronic phloridzin treatment in Ins2(Akita) mice. Overall, we report for the first time that nonobese, insulin-deficient Ins2(Akita) mice develop type 2 diabetes phenotypes including peripheral and hepatic insulin resistance and cardiac remodeling. Our findings provide important insights into the pathogenesis of metabolic abnormalities and complications affecting type 1 diabetes and lean type 2 diabetes subjects. PMID:17911348

  16. Clinical utility of insulin and insulin analogs

    PubMed Central

    Sanlioglu, Ahter D.; Altunbas, Hasan Ali; Balci, Mustafa Kemal; Griffith, Thomas S.; Sanlioglu, Salih

    2013-01-01

    Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect—rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes. PMID:23584214

  17. Resveratrol improves insulin signaling in a tissue-specific manner under insulin-resistant conditions only: in vitro and in vivo experiments in rodents.

    PubMed

    Kang, Wonyoung; Hong, Hyun Ju; Guan, Jian; Kim, Dong Geon; Yang, Eun-Jin; Koh, Gwanpyo; Park, Doekbae; Han, Chang Hoon; Lee, Young-Jae; Lee, Dae-Ho

    2012-03-01

    Resveratrol (RSV) has various metabolic effects, especially with relatively high-dose therapy. However, the ability of RSV to modulate insulin signaling has not been completely evaluated. Here, we determined whether RSV alters insulin signaling in insulin-responsive cells and tissues. The effects of RSV on insulin signaling in 3T3-L1 adipocytes under both insulin-sensitive and insulin-resistant states and in insulin-sensitive tissues of high fat-fed diet-induced obese (DIO) mice were investigated. Insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation (Y612) was suppressed in RSV-treated adipocytes compared with untreated adipocytes, as was the insulin-stimulated Akt phosphorylation (Ser473). However, under an insulin-resistant condition that was made by incubating 3T3-L1 adipocytes in the conditioned medium from lipopolysaccharide-stimulated LAW264.7 cells, RSV reduced inducible nitric oxide synthase expression and IκBα protein degradation and improved insulin-stimulated Akt phosphorylation (Ser473). In DIO mice, relatively low-dose RSV (30 mg/kg daily for 2 weeks) therapy lowered fasting blood glucose level and serum insulin, increased hepatic glycogen content, and ameliorated fatty liver without change in body weight. The insulin-stimulated Akt phosphorylation was decreased in the liver and white adipose tissue of DIO mice, but it was completely normalized by RSV treatment. However, in the skeletal muscle of DIO mice, insulin signaling was not improved by RSV treatment, whereas the phosphorylation of adenosine monophosphate-activated protein kinase α (Thr172) was improved by it. Our results show that RSV enhances insulin action only under insulin-resistant conditions and suggest that the effect of RSV may depend on the type of tissue being targeted and its metabolic status. PMID:21945106

  18. Concentrated insulins: the new basal insulins

    PubMed Central

    Lamos, Elizabeth M; Younk, Lisa M; Davis, Stephen N

    2016-01-01

    Introduction Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered This review highlights the published reports of the pharmacokinetic (PK) and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration. PMID:27022271

  19. A Model of Insulin Resistance and Nonalcoholic Steatohepatitis in Rats

    PubMed Central

    Svegliati-Baroni, Gianluca; Candelaresi, Cinzia; Saccomanno, Stefania; Ferretti, Gianna; Bachetti, Tiziana; Marzioni, Marco; De Minicis, Samuele; Nobili, Liliana; Salzano, Renata; Omenetti, Alessia; Pacetti, Deborah; Sigmund, Soeren; Benedetti, Antonio; Casini, Alessandro

    2006-01-01

    Insulin resistance induces nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH). We used a high-fat, high-calorie solid diet (HFD) to create a model of insulin resistance and NASH in nongenetically modified rats and to study the relationship between visceral adipose tissue and liver. Obesity and insulin resistance occurred in HFD rats, accompanied by a progressive increase in visceral adipose tissue tumor necrosis factor (TNF)-α mRNA and in circulating free fatty acids. HFD also decreased adiponectin mRNA and peroxisome proliferator-activated receptor (PPAR)-α expression in the visceral adipose tissue and the liver, respectively, and induced hepatic insulin resistance through TNF-α-mediated c-Jun N-terminal kinase (JNK)-dependent insulin receptor substrate-1Ser307 phosphorylation. These modifications lead to hepatic steatosis accompanied by oxidative stress phenomena, necroinflammation, and hepatocyte apoptosis at 4 weeks and by pericentral fibrosis at 6 months. Supplementation of n-3 polyunsaturated fatty acid, a PPARα ligand, to HFD-treated animals restored hepatic adiponectin and PPARα expression, reduced TNF-α hepatic levels, and ameliorated fatty liver and the degree of liver injury. Thus, our model mimics the most common features of NASH in humans and provides an ideal tool to study the role of individual pathogenetic events (as for PPARα down-regulation) and to define any future experimental therapy, such as n-3 polyunsaturated fatty acid, which ameliorated the degree of liver injury. PMID:16936261

  20. Insulin pumps.

    PubMed

    Pickup, J

    2011-02-01

    The last year has seen a continued uptake of insulin pump therapy in most countries. The USA is still a leader in pump use, with probably some 40% of type 1 diabetic patients on continuous subcutaneous insulin infusion (CSII), but the large variation in usage within Europe remains, with relatively high use (> 15%) in, for example, Norway, Austria, Germany and Sweden and low use (< 5%) in Spain, the UK, Finland and Portugal. There is much speculation on the factors responsible for this variation, and the possibilities include physician attitudes to CSII and knowledge about its benefits and indications for its use (and inappropriate beliefs about dangers), the availability of reimbursement from insurance companies or funding from national health services, the availability of sufficient diabetes nurse educators and dietitians trained in pump procedures, and clear referral pathways for the pump candidate from general practitioner or general hospital to specialist pump centre. There are now several comprehensive national guidelines on CSII use (see ATTD Yearbook 2009) but more work needs to be done in unifying uptake and ensuring all those who can benefit do so. Technology developments recently include increasing use of pumps with continuous glucose monitoring (CGM) connectivity (see elsewhere in this volume) and the emergence of numerous manufacturers developing so-called 'patch pumps', often for the type 2 diabetes market. Interestingly, the evidence base for CSII in this group is not well established, and for this reason the selected papers on CSII in this section include several in this area. The use of CSII in diabetic pregnancy is a long-established practice, in spite of the lack of evidence that it is superior to multiple daily injections (MDI), and few randomised controlled trials have been done in recent years. Several papers in this field this year continue the debate about the usefulness of CSII in diabetic pregnancy and are reviewed here. It is pleasing

  1. Enhanced autophagy ameliorates cardiac proteinopathy

    PubMed Central

    Bhuiyan, Md. Shenuarin; Pattison, J. Scott; Osinska, Hanna; James, Jeanne; Gulick, James; McLendon, Patrick M.; Hill, Joseph A.; Sadoshima, Junichi; Robbins, Jeffrey

    2013-01-01

    Basal autophagy is a crucial mechanism in cellular homeostasis, underlying both normal cellular recycling and the clearance of damaged or misfolded proteins, organelles and aggregates. We showed here that enhanced levels of autophagy induced by either autophagic gene overexpression or voluntary exercise ameliorated desmin-related cardiomyopathy (DRC). To increase levels of basal autophagy, we generated an inducible Tg mouse expressing autophagy-related 7 (Atg7), a critical and rate-limiting autophagy protein. Hearts from these mice had enhanced autophagy, but normal morphology and function. We crossed these mice with CryABR120G mice, a model of DRC in which autophagy is significantly attenuated in the heart, to test the functional significance of autophagy activation in a proteotoxic model of heart failure. Sustained Atg7-induced autophagy in the CryABR120G hearts decreased interstitial fibrosis, ameliorated ventricular dysfunction, decreased cardiac hypertrophy, reduced intracellular aggregates and prolonged survival. To determine whether different methods of autophagy upregulation have additive or even synergistic benefits, we subjected the autophagy-deficient CryABR120G mice and the Atg7-crossed CryABR120G mice to voluntary exercise, which also upregulates autophagy. The entire exercised Atg7-crossed CryABR120G cohort survived to 7 months. These findings suggest that activating autophagy may be a viable therapeutic strategy for improving cardiac performance under proteotoxic conditions. PMID:24177425

  2. Human insulin genome sequence map, biochemical structure of insulin for recombinant DNA insulin.

    PubMed

    Chakraborty, Chiranjib; Mungantiwar, Ashish A

    2003-08-01

    Insulin is a essential molecule for type I diabetes that is marketed by very few companies. It is the first molecule, which was made by recombinant technology; but the commercialization process is very difficult. Knowledge about biochemical structure of insulin and human insulin genome sequence map is pivotal to large scale manufacturing of recombinant DNA Insulin. This paper reviews human insulin genome sequence map, the amino acid sequence of porcine insulin, crystal structure of porcine insulin, insulin monomer, aggregation surfaces of insulin, conformational variation in the insulin monomer, insulin X-ray structures for recombinant DNA technology in the synthesis of human insulin in Escherichia coli. PMID:12769691

  3. SIRT1 attenuates high glucose-induced insulin resistance via reducing mitochondrial dysfunction in skeletal muscle cells.

    PubMed

    Zhang, Hao-Hao; Ma, Xiao-Jun; Wu, Li-Na; Zhao, Yan-Yan; Zhang, Peng-Yu; Zhang, Ying-Hui; Shao, Ming-Wei; Liu, Fei; Li, Fei; Qin, Gui-Jun

    2015-05-01

    Insulin resistance is often characterized as the most critical factor contributing to the development of type 2 diabetes mellitus (T2DM). Sustained high glucose is an important extracellular environment that induces insulin resistance. Acquired insulin resistance is associated with reduced insulin-stimulated mitochondrial activity as a result of increased mitochondrial dysfunction. Silent information regulator 1 (SIRT1) is one member of the SIRT2 (Sir2)-like family of proteins involved in glucose homeostasis and insulin secretion in mammals. Although SIRT1 has a therapeutic effect on metabolic deterioration in insulin resistance, it is still not clear how SIRT1 is involved in the development of insulin resistance. Here, we demonstrate that pcDNA3.1 vector-mediated overexpression of SIRT1 attenuates insulin resistance in the high glucose-induced insulin-resistant skeleton muscle cells. These beneficial effects were associated with ameliorated mitochondrial dysfunction. Further studies have demonstrated that SIRT1 restores mitochondrial complex I activity leading to decreased oxidative stress and mitochondrial dysfunction. Furthermore, SIRT1 significantly elevated the level of another SIRT which is named SIRT3, and SIRT3 siRNA-suppressed SIRT1-induced mitochondria complex activity increments. Taken together, these results showed that SIRT1 improves insulin sensitivity via the amelioration of mitochondrial dysfunction, and this is achieved through the SIRT1-SIRT3-mitochondrial complex I pathway. PMID:25710929

  4. Galphaz negatively regulates insulin secretion and glucose clearance.

    PubMed

    Kimple, Michelle E; Joseph, Jamie W; Bailey, Candice L; Fueger, Patrick T; Hendry, Ian A; Newgard, Christopher B; Casey, Patrick J

    2008-02-22

    Relatively little is known about the in vivo functions of the alpha subunit of the heterotrimeric G protein Gz (Galphaz). Clues to one potential function recently emerged with the finding that activation of Galphaz inhibits glucose-stimulated insulin secretion in an insulinoma cell line (Kimple, M. E., Nixon, A. B., Kelly, P., Bailey, C. L., Young, K. H., Fields, T. A., and Casey, P. J. (2005) J. Biol. Chem. 280, 31708-31713). To extend this study in vivo, a Galphaz knock-out mouse model was utilized to determine whether Galphaz function plays a role in the inhibition of insulin secretion. No differences were discovered in the gross morphology of the pancreatic islets or in the islet DNA, protein, or insulin content between Galphaz-null and wild-type mice. There was also no difference between the insulin sensitivity of Galphaz-null mice and wild-type controls, as measured by insulin tolerance tests. Galphaz-null mice did, however, display increased plasma insulin concentrations and a corresponding increase in glucose clearance following intraperitoneal and oral glucose challenge as compared with wild-type controls. The increased plasma insulin observed in Galphaz-null mice is most likely a direct result of enhanced insulin secretion, since pancreatic islets isolated from Galphaz-null mice exhibited significantly higher glucose-stimulated insulin secretion than those of wild-type mice. Finally, the increased insulin secretion observed in Galphaz-null islets appears to be due to the relief of a tonic inhibition of adenylyl cyclase, as cAMP production was significantly increased in Galphaz-null islets in the absence of exogenous stimulation. These findings indicate that Galphaz may be a potential new target for therapeutics aimed at ameliorating beta-cell dysfunction in Type 2 diabetes. PMID:18096703

  5. Giving an insulin injection

    MedlinePlus

    ... room temperature for a month. Gather your supplies: insulin, needles, syringes, alcohol wipes, and a container for used needles ... the plunger to get the right dose of insulin into the syringe. Check the syringe for air bubbles. If there ...

  6. Inflammation and Insulin Resistance

    PubMed Central

    de Luca, Carl; Olefsky, Jerrold M.

    2008-01-01

    Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and the Metabolic syndrome. In this review, we focus on the interconnection between obesity, inflammation and insulin resistance. Pro-inflammatory cytokines can cause insulin resistance in adipose tissue, skeletal muscle and liver by inhibiting insulin signal transduction. The sources of cytokines in insulin resistant states are the insulin target tissue themselves, primarily fat and liver, but to a larger extent the activated tissue resident macrophages. While the initiating factors of this inflammatory response remain to be fully determined, chronic inflammation in these tissues could cause localized insulin resistance via autocrine/paracrine cytokine signaling and systemic insulin resistance via endocrine cytokine signaling all of which contribute to the abnormal metabolic state. PMID:18053812

  7. High-mix insulins

    PubMed Central

    Kalra, Sanjay; Farooqi, Mohammad Hamed; El-Houni, Ali E.

    2015-01-01

    Premix insulins are commonly used insulin preparations, which are available in varying ratios of different molecules. These drugs contain one short- or rapid-acting, and one intermediate- or long-acting insulin. High-mix insulins are mixtures of insulins that contain 50% or more than 50% of short-acting insulin. This review describes the clinical pharmacology of high-mix insulins, including data from randomized controlled trials. It suggests various ways, in which high-mix insulin can be used, including once daily, twice daily, thrice daily, hetero-mix, and reverse regimes. The authors provide a rational framework to help diabetes care professionals, identify indications for pragmatic high-mix use. PMID:26425485

  8. Insulin pump (image)

    MedlinePlus

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  9. Adherence to Insulin Therapy.

    PubMed

    Sarbacker, G Blair; Urteaga, Elizabeth M

    2016-08-01

    IN BRIEF Six million people with diabetes use insulin either alone or in combination with an oral medication. Many barriers exist that lead to poor adherence with insulin. However, there is an underwhelming amount of data on interventions to address these barriers and improve insulin adherence. Until pharmacological advancements create easier, more acceptable insulin regimens, it is imperative to involve patients in shared decision-making. PMID:27574371

  10. Insulin therapy in pregnancy.

    PubMed

    Kalra, Sanjay; Jawad, Fatema

    2016-09-01

    Insulin is the mainstay of pharmacotherapy in pregnancy complicated by diabetes. This review covers the various insulin regimes and preparations, explaining how to use them, and decide appropriate doses in pregnancy. It approaches insulin treatment from a patient - centred, as well as physician and obstetrician friendly viewpoint, providing pragmatic guidance for management of diabetes in pregnancy. PMID:27582152

  11. Insulin Degludec (rDNA Origin) Injection

    MedlinePlus

    ... man-made version of human insulin. Insulin degludec works by replacing the insulin that is normally produced ... insulin label to make sure you received the right type of insulin from the pharmacy.Insulin degludec ...

  12. Inhibition of Src homology 2 domain-containing phosphatase 1 increases insulin sensitivity in high-fat diet-induced insulin-resistant mice.

    PubMed

    Krüger, Janine; Wellnhofer, Ernst; Meyborg, Heike; Stawowy, Philipp; Östman, Arne; Kintscher, Ulrich; Kappert, Kai

    2016-03-01

    Insulin resistance plays a crucial role in the development of type 2 diabetes. Insulin receptor signalling is antagonized and tightly controlled by protein tyrosine phosphatases (PTPs). However, the precise role of the PTP src homology 2 domain-containing phosphatase 1 (SHP-1) in insulin resistance has not been explored. Male C57BL/6J mice were fed a high-fat diet (HFD, 60% kcal from fat), to induce insulin resistance, or a low-fat diet (LFD, 10% kcal from fat) for 10 weeks. Afterwards, HFD-fed mice were pharmacologically treated with the SHP-1 (Ptpn6) inhibitor sodium stibogluconate and the broad spectrum pan-PTP inhibitor bis(maltolato)oxovanadium(IV) (BMOV). Both inhibitors ameliorated the metabolic phenotype, as evidenced by reduced body weight, improved insulin sensitivity and glucose tolerance, which was not due to altered PTP gene expression. In parallel, phosphorylation of the insulin receptor and of the insulin signalling key intermediate Akt was enhanced, and both PTP inhibitors and siRNA-mediated SHP-1 downregulation resulted in an increased glucose uptake in vitro. Finally, recombinant SHP-1 was capable of dephosphorylating the ligand-induced tyrosine-phosphorylated insulin receptor. These results indicate a central role of SHP-1 in insulin signalling during obesity, and SHP-1 inhibition as a potential therapeutic approach in metabolic diseases. PMID:27047746

  13. (-)-Epicatechin improves insulin sensitivity in high fat diet-fed mice.

    PubMed

    Cremonini, Eleonora; Bettaieb, Ahmed; Haj, Fawaz G; Fraga, Cesar G; Oteiza, Patricia I

    2016-06-01

    Obesity constitutes a major public health concern, being frequently associated with type 2 diabetes (T2D). Evidence from studies in humans and experimental animals suggest that consumption of the flavan-3-ol (-)-epicatechin (EC) and of EC-rich foods may improve insulin sensitivity. To further understand the potential benefits of dietary EC consumption on insulin resistance, this study investigated the capacity of EC supplementation to prevent high fat diet (HFD)-induced insulin resistance in mice. To assess the underlying mechanisms, the effects of HFD and EC consumption on the activation of the insulin cascade and of its negative modulators were evaluated. HFD consumption for 15 w caused obesity and insulin resistance in C57BL/6J mice as evidenced by high fasted and fed plasma glucose and insulin levels, and impaired ITT and GTT tests. This was associated with alterations in the activation of components of the insulin-triggered signaling cascade (insulin receptor, IRS1, ERK1/2, Akt) in adipose and liver tissues. EC supplementation prevented/ameliorated all these parameters. EC acted improving insulin sensitivity in the HFD-fed mice in part through a downregulation of the inhibitory molecules JNK, IKK, PKC and protein tyrosine phosphatase 1B (PTP1B). Thus, the above results suggest that consumption of EC-rich foods could constitute a dietary strategy to mitigate obesity-associated insulin resistance. PMID:26968772

  14. Oral Insulin Reloaded

    PubMed Central

    Heinemann, Lutz; Plum-Mörschel, Leona

    2014-01-01

    Optimal coverage of insulin needs is the paramount aim of insulin replacement therapy in patients with diabetes mellitus. To apply insulin without breaking the skin barrier by a needle and/or to allow a more physiological provision of insulin are the main reasons triggering the continuous search for alternative routes of insulin administration. Despite numerous attempts over the past 9 decades to develop an insulin pill, no insulin for oral dosing is commercially available. By way of a structured approach, we aim to provide a systematic update on the most recent developments toward an orally available insulin formulation with a clear focus on data from clinical-experimental and clinical studies. Thirteen companies that claim to be working on oral insulin formulations were identified. However, only 6 of these companies published new clinical trial results within the past 5 years. Interestingly, these clinical data reports make up a mere 4% of the considerably high total number of publications on the development of oral insulin formulations within this time period. While this picture clearly reflects the rising research interest in orally bioavailable insulin formulations, it also highlights the fact that the lion’s share of research efforts is still allocated to the preclinical stages. PMID:24876606

  15. Metabolic Actions of Angiotensin II and Insulin: A Microvascular Endothelial Balancing Act

    PubMed Central

    Muniyappa, Ranganath; Yavuz, Shazene

    2012-01-01

    Metabolic actions of insulin to promote glucose disposal are augmented by nitric oxide (NO)-dependent increases in microvascular blood flow to skeletal muscle. The balance between NO-dependent vasodilator actions and endothelin-1-dependent vasoconstrictor actions of insulin is regulated by phosphatidylinositol 3-kinase-dependent (PI3K) - and mitogen-activated protein kinase (MAPK)-dependent signaling in vascular endothelium, respectively. Angiotensin II acting on AT2 receptor increases capillary blood flow to increase insulin-mediated glucose disposal. In contrast, AT1 receptor activation leads to reduced NO bioavailability, impaired insulin signaling, vasoconstriction, and insulin resistance. Insulin-resistant states are characterized by dysregulated local renin-angiotensin-aldosterone system (RAAS). Under insulin-resistant conditions, pathway-specific impairment in PI3K-dependent signaling may cause imbalance between production of NO and secretion of endothelin-1, leading to decreased blood flow, which worsens insulin resistance. Similarly, excess AT1 receptor activity in the microvasculature may selectively impair vasodilation while simultaneously potentiating the vasoconstrictor actions of insulin. Therapeutic interventions that target pathway-selective impairment in insulin signaling and the imbalance in AT1 and AT2 receptor signaling in microvascular endothelium may simultaneously ameliorate endothelial dysfunction and insulin resistance. In the present review, we discuss molecular mechanisms in the endothelium underlying microvascular and metabolic actions of insulin and Angiotensin II, the mechanistic basis for microvascular endothelial dysfunction and insulin resistance in RAAS dysregulated clinical states, and the rationale for therapeutic strategies that restore the balance in vasodilator and constrictor actions of insulin and Angiotensin II in the microvasculature. PMID:22684034

  16. Umbelliferone attenuates unpredictable chronic mild stress induced-insulin resistance in rats.

    PubMed

    Su, Qiang; Tao, Weiwei; Wang, Hanqing; Chen, Yanyan; Huang, Huang; Chen, Gang

    2016-05-01

    The aim of this study was to investigate whether umbelliferone (Umb) could attenuate insulin resistance in unpredictable chronic mild stress (CUMS)-induced rats. Behavioral changes were evaluated through sucrose preference test (SPT), open-field test, forced swimming test, and tail suspension test (TST), suggesting that Umb (20 and 40 mg/kg) could effectively improve depression symptoms. Oral glucose tolerance test and serum insulin indicated that Umb attributed to the control of blood glucose levels. The phosphorylation of insulin receptor, insulin receptor substrate (IRS)-1, glycogen synthase kinase-3β, PI3K, and Akt was increased in Umb (20 and 40 mg/kg) treatment according to Western blot analysis. Taken together, the current results suggested the ameliorative effect of Umb against insulin resistance in the CUMS-induced rats. © 2016 IUBMB Life, 68(5):403-409, 2016. PMID:27027512

  17. Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis.

    PubMed

    Lee, Ji-Min; Seo, Woo-Young; Han, Hye-Sook; Oh, Kyoung-Jin; Lee, Yong-Soo; Kim, Don-Kyu; Choi, Seri; Choi, Byeong Hun; Harris, Robert A; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2016-01-01

    The role of a glucagon/cAMP-dependent protein kinase-inducible coactivator PGC-1α signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner-interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis. Here, we show that hepatic SMILE expression was induced by feeding in normal mice but not in db/db and high-fat diet (HFD)-fed mice. Interestingly, SMILE expression was induced by insulin in mouse primary hepatocyte and liver. Hepatic SMILE expression was not altered by refeeding in liver-specific insulin receptor knockout (LIRKO) or PKB β-deficient (PKBβ(-/-)) mice. At the molecular level, SMILE inhibited hepatocyte nuclear factor 4-mediated transcriptional activity via direct competition with PGC-1α. Moreover, ablation of SMILE augmented gluconeogenesis and increased blood glucose levels in mice. Conversely, overexpression of SMILE reduced hepatic gluconeogenic gene expression and ameliorated hyperglycemia and glucose intolerance in db/db and HFD-fed mice. Therefore, SMILE is an insulin-inducible corepressor that suppresses hepatic gluconeogenesis. Small molecules that enhance SMILE expression would have potential for treating hyperglycemia in diabetes. PMID:26340929

  18. Dietary Amelioration of Helicobacter Infection

    PubMed Central

    Fahey, Jed W.; Stephenson, Katherine K.; Wallace, Alison J.

    2015-01-01

    We review herein the basis for using dietary components to treat and/or prevent Helicobacter pylori infection, with emphasis on: (a) work reported in the last decade, (b) dietary components for which there is mechanism-based plausibility, and (c) components for which clinical results on H. pylori amelioration are available. There is evidence that a diet-based treatment may reduce the levels and/or the virulence of H. pylori colonization without completely eradicating the organism in treated individuals. This concept was endorsed a decade ago by the participants in a small international consensus conference held in Honolulu, Hawaii, USA, and interest in such a diet-based approach has increased dramatically since then. This approach is attractive in terms of cost, treatment, tolerability and cultural acceptability. This review therefore highlights specific foods, food components, and food products, grouped as follows: bee products (e.g. honey and propolis), probiotics, dairy products, vegetables, fruits, oils, essential oils, and herbs, spices and other plants. A discussion of the small number of clinical studies that are available is supplemented by supportive in vitro and animal studies. This very large body of in vitro and pre-clinical evidence must now be followed up with rationally designed, unambiguous human trials. PMID:25799054

  19. Dietary amelioration of Helicobacter infection.

    PubMed

    Fahey, Jed W; Stephenson, Katherine K; Wallace, Alison J

    2015-06-01

    We review herein the basis for using dietary components to treat and/or prevent Helicobacter pylori infection, with emphasis on (a) work reported in the last decade, (b) dietary components for which there is mechanism-based plausibility, and (c) components for which clinical results on H pylori amelioration are available. There is evidence that a diet-based treatment may reduce the levels and/or the virulence of H pylori colonization without completely eradicating the organism in treated individuals. This concept was endorsed a decade ago by the participants in a small international consensus conference held in Honolulu, Hawaii, USA, and interest in such a diet-based approach has increased dramatically since then. This approach is attractive in terms of cost, treatment, tolerability, and cultural acceptability. This review, therefore, highlights specific foods, food components, and food products, grouped as follows: bee products (eg, honey and propolis); probiotics; dairy products; vegetables; fruits; oils; essential oils; and herbs, spices, and other plants. A discussion of the small number of clinical studies that are available is supplemented by supportive in vitro and animal studies. This very large body of in vitro and preclinical evidence must now be followed up with rationally designed, unambiguous human trials. PMID:25799054

  20. The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence

    PubMed Central

    Boylan, Michael; Achall, Rajesh; Shirras, Alan; Broughton, Susan J.

    2015-01-01

    The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. PMID:26020640

  1. The Drosophila insulin receptor independently modulates lifespan and locomotor senescence.

    PubMed

    Ismail, Mohd Zamri Bin Haji; Hodges, Matt D; Boylan, Michael; Achall, Rajesh; Shirras, Alan; Broughton, Susan J

    2015-01-01

    The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. PMID:26020640

  2. Ameliorative potential of Tamarindus indica on high fat diet induced nonalcoholic fatty liver disease in rats.

    PubMed

    Sasidharan, Suja Rani; Joseph, Joshua Allan; Anandakumar, Senthilkumar; Venkatesan, Vijayabalaji; Madhavan, Chandrasekharan Nair Ariyattu; Agarwal, Amit

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD), the prevalence of which is rising globally with current upsurge in obesity, is one of the most frequent causes of chronic liver diseases. The present study evaluated the ameliorative effect of extract of Tamarindus indica seed coat (ETS) on high fat diet (HFD) induced NAFLD, after daily administration at 45, 90, and 180 mg/kg body weight dose levels for a period of 6 weeks, in albino Wistar rats. Treatment with ETS at all tested dose levels significantly attenuated the pathological alterations associated with HFD induced NAFLD viz. hepatomegaly, elevated hepatic lipid and lipid peroxides, serum alanine aminotransferase, and free fatty acid levels as well as micro-/macrohepatic steatosis. Moreover, extract treatment markedly reduced body weight and adiposity along with an improvement in insulin resistance index. The study findings, therefore suggested the therapeutic potential of ETS against NAFLD, acting in part through antiobesity, insulin sensitizing, and antioxidant mechanisms. PMID:24688399

  3. Ameliorative Potential of Tamarindus indica on High Fat Diet Induced Nonalcoholic Fatty Liver Disease in Rats

    PubMed Central

    Sasidharan, Suja Rani; Anandakumar, Senthilkumar; Venkatesan, Vijayabalaji; Ariyattu Madhavan, Chandrasekharan Nair; Agarwal, Amit

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD), the prevalence of which is rising globally with current upsurge in obesity, is one of the most frequent causes of chronic liver diseases. The present study evaluated the ameliorative effect of extract of Tamarindus indica seed coat (ETS) on high fat diet (HFD) induced NAFLD, after daily administration at 45, 90, and 180 mg/kg body weight dose levels for a period of 6 weeks, in albino Wistar rats. Treatment with ETS at all tested dose levels significantly attenuated the pathological alterations associated with HFD induced NAFLD viz. hepatomegaly, elevated hepatic lipid and lipid peroxides, serum alanine aminotransferase, and free fatty acid levels as well as micro-/macrohepatic steatosis. Moreover, extract treatment markedly reduced body weight and adiposity along with an improvement in insulin resistance index. The study findings, therefore suggested the therapeutic potential of ETS against NAFLD, acting in part through antiobesity, insulin sensitizing, and antioxidant mechanisms. PMID:24688399

  4. Fucoidan Extracts Ameliorate Acute Colitis.

    PubMed

    Lean, Qi Ying; Eri, Rajaraman D; Fitton, J Helen; Patel, Rahul P; Gueven, Nuri

    2015-01-01

    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore represent

  5. Anatabine ameliorates experimental autoimmune thyroiditis.

    PubMed

    Caturegli, Patrizio; De Remigis, Alessandra; Ferlito, Marcella; Landek-Salgado, Melissa A; Iwama, Shintaro; Tzou, Shey-Cherng; Ladenson, Paul W

    2012-09-01

    Tobacco smoking favorably influences the course of Hashimoto thyroiditis, possibly through the antiinflammatory proprieties of nicotine. In this study we tested anatabine, another tobacco alkaloid, in a model of experimental autoimmune thyroiditis. Experimental autoimmune thyroiditis was induced by different doses of thyroglobulin, to produce a disease of low, moderate, or high severity, in 88 CBA/J female mice: 43 drank anatabine supplemented water and 45 regular water. Mice were bled after immunization and killed to assess thyroid histopathology, thyroglobulin antibodies, T(4), and thyroid RNA expression of 84 inflammatory genes. We also stimulated in vitro a macrophage cell line with interferon-γ or lipopolysaccharide plus or minus anatabine to quantitate inducible nitric oxide synthase and cyclooxygenase 2 protein expression. Anatabine reduced the incidence and severity of thyroiditis in the moderate disease category: only 13 of 21 mice (62%) developed thyroid infiltrates when drinking anatabine as compared with 22 of 23 (96%) controls (relative risk 0.59, P = 0.0174). The median thyroiditis severity was 0.5 and 2.0 in anatabine and controls, respectively (P = 0.0007 by Wilcoxon rank sum test). Anatabine also reduced the antibody response to thyroglobulin on d 14 (P = 0.029) and d 21 (P = 0.045) after immunization and improved the recovery of thyroid function on d 21 (P = 0.049). In the thyroid transcriptome, anatabine restored expression of IL-18 and IL-1 receptor type 2 to preimmunization levels. Finally, anatabine suppressed in a dose-dependent manner macrophage production of inducible nitric oxide synthase and cyclooxygenase 2. Anatabine ameliorates disease in a model of autoimmune thyroiditis, making the delineation of its mechanisms of action and potential clinical utility worthwhile. PMID:22807490

  6. Fucoidan Extracts Ameliorate Acute Colitis

    PubMed Central

    Lean, Qi Ying; Eri, Rajaraman D.; Fitton, J. Helen; Patel, Rahul P.; Gueven, Nuri

    2015-01-01

    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn’s disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore

  7. Eicosapentaenoic acid ameliorates hyperglycemia in high-fat diet-sensitive diabetes mice in conjunction with restoration of hypoadiponectinemia

    PubMed Central

    Morimoto, M; Lee, E-Y; Zhang, X; Inaba, Y; Inoue, H; Ogawa, M; Shirasawa, T; Yokosuka, O; Miki, T

    2016-01-01

    Background/Objective: Eicosapentaenoic acid (EPA) exerts pleiotropic effects on metabolic disorders such as atherosclerosis and dyslipidemia, but its effectiveness in the treatment of type 2 diabetes mellitus remains controversial. Methods: We examined the antidiabetic effect of EPA in insulin receptor mutant (InsrP1195L/+) mice that exhibit high-fat diet (HFD)-dependent hyperglycemia. Results: EPA supplementation was found to alleviate hyperglycemia of InsrP1195L/+ mice fed HFD (InsrP1195L/+/HFD mice), which was accompanied by amelioration of increased gluconeogenesis and impaired insulin signaling, as assessed by glucose-6-phosphatase (G6pc) expression on refeeding and insulin-induced phosphorylation of Akt in the liver, respectively. We found that serum levels of adiponectin, the antidiabetic adipokine, were decreased by HFD along with the body weight gain in InsrP1195L/+ mice but not in wild-type mice, suggesting that InsrP1195L/+ mice are prone to hypoadiponectinemia in response to obesity. Interestingly, the blood glucose levels of InsrP1195L/+ mice were in reverse proportion to their serum adiponectin levels and EPA supplementation ameliorated their hyperglycemia in conjunction with the restoration of hypoadiponectinemia. Conclusions: EPA exerts an antidiabetic effect in InsrP1195L/+/HFD mice, an HFD-sensitive, insulin-resistant animal model, possibly through its action against hypoadiponectinemia. PMID:27348201

  8. Flexibility in insulin prescription

    PubMed Central

    Kalra, Sanjay; Gupta, Yashdeep; Unnikrishnan, Ambika Gopalakrishnan

    2016-01-01

    This communication explores the concept of flexibility, a propos insulin preparations and insulin regimes used in the management of type 2 diabetes. The flexibility of an insulin regime or preparation is defined as their ability to be injected at variable times, with variable injection-meal time gaps, in a dose frequency and quantum determined by shared decision making, with a minimal requirement of glucose monitoring and health professional consultation, with no compromise on safety, efficiency and tolerability. The relative flexibility of various basal, prandial and dual action insulins, as well as intensive regimes, is compared. The biopsychosocial model of health is used to assess the utility of different insulins while encouraging a philosophy of flexible insulin usage. PMID:27186563

  9. Flexibility in insulin prescription.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep; Unnikrishnan, Ambika Gopalakrishnan

    2016-01-01

    This communication explores the concept of flexibility, a propos insulin preparations and insulin regimes used in the management of type 2 diabetes. The flexibility of an insulin regime or preparation is defined as their ability to be injected at variable times, with variable injection-meal time gaps, in a dose frequency and quantum determined by shared decision making, with a minimal requirement of glucose monitoring and health professional consultation, with no compromise on safety, efficiency and tolerability. The relative flexibility of various basal, prandial and dual action insulins, as well as intensive regimes, is compared. The biopsychosocial model of health is used to assess the utility of different insulins while encouraging a philosophy of flexible insulin usage. PMID:27186563

  10. Insulin Treatment Directly Restores Neutrophil Phagocytosis and Bactericidal Activity in Diabetic Mice and Thereby Improves Surgical Site Staphylococcus aureus Infection

    PubMed Central

    Yano, Hidekazu; Fujino, Keiichi; Nakashima, Masahiro; Yamamoto, Yoritsuna; Miyazaki, Hiromi; Hamada, Koji; Ono, Satoshi; Iwaya, Keiichi; Saitoh, Daizoh; Seki, Shuhji; Tanaka, Yuji

    2012-01-01

    Bacterial infections, including surgical site infections (SSI), are a common and serious complication of diabetes. Staphylococcus aureus, which is eliminated mainly by neutrophils, is a major cause of SSI in diabetic patients. However, the precise mechanisms by which diabetes predisposes to staphylococcal infection are not fully elucidated. The effect of insulin on this infection is also not well understood. We therefore investigated the effect of insulin treatment on SSI and neutrophil function in diabetic mice. S. aureus was inoculated into the abdominal muscle in diabetic db/db and high-fat-diet (HFD)-fed mice with or without insulin treatment. Although the diabetic db/db mice developed SSI, insulin treatment ameliorated the infection. db/db mice had neutrophil dysfunction, such as decreased phagocytosis, superoxide production, and killing activity of S. aureus; however, insulin treatment restored these functions. Ex vivo treatment (coincubation) of neutrophils with insulin and euglycemic control by phlorizin suggest that insulin may directly activate neutrophil phagocytic and bactericidal activity independently of its euglycemic effect. However, insulin may indirectly restore superoxide production by neutrophils through its euglycemic effect. HFD-fed mice with mild hyperglycemia also developed more severe SSI by S. aureus than control mice and had impaired neutrophil phagocytic and bactericidal activity, which was improved by insulin treatment. Unlike db/db mice, in HFD mice, superoxide production was increased in neutrophils and subsequently suppressed by insulin treatment. Glycemic control by insulin also normalized the neutrophil superoxide-producing capability in HFD mice. Thus, insulin may restore neutrophil phagocytosis and bactericidal activity, thereby ameliorating SSI. PMID:23027538

  11. Insulin structure and function.

    PubMed

    Mayer, John P; Zhang, Faming; DiMarchi, Richard D

    2007-01-01

    Throughout much of the last century insulin served a central role in the advancement of peptide chemistry, pharmacology, cell signaling and structural biology. These discoveries have provided a steadily improved quantity and quality of life for those afflicted with diabetes. The collective work serves as a foundation for the development of insulin analogs and mimetics capable of providing more tailored therapy. Advancements in patient care have been paced by breakthroughs in core technologies, such as semisynthesis, high performance chromatography, rDNA-biosynthesis and formulation sciences. How the structural and conformational dynamics of this endocrine hormone elicit its biological response remains a vigorous area of study. Numerous insulin analogs have served to coordinate structural biology and biochemical signaling to provide a first level understanding of insulin action. The introduction of broad chemical diversity to the study of insulin has been limited by the inefficiency in total chemical synthesis, and the inherent limitations in rDNA-biosynthesis and semisynthetic approaches. The goals of continued investigation remain the delivery of insulin therapy where glycemic control is more precise and hypoglycemic liability is minimized. Additional objectives for medicinal chemists are the identification of superagonists and insulins more suitable for non-injectable delivery. The historical advancements in the synthesis of insulin analogs by multiple methods is reviewed with the specific structural elements of critical importance being highlighted. The functional refinement of this hormone as directed to improved patient care with insulin analogs of more precise pharmacology is reported. PMID:17410596

  12. Alternative Devices for Taking Insulin

    MedlinePlus

    ... pumps contain enough insulin for several days. An infusion set carries insulin from the pump to the ... tube or needle inserted under the skin. Disposable infusion sets are used with insulin pumps to deliver ...

  13. Anti-insulin antibody test

    MedlinePlus

    Insulin antibodies - serum; Insulin Ab test ... Normally, there are no antibodies against insulin in your blood. Normal value ranges may vary slightly among different laboratories. Some labs use different measurements or ...

  14. Inhibition of Lipolysis Ameliorates Diabetic Phenotype in a Mouse Model of Obstructive Sleep Apnea.

    PubMed

    Weiszenstein, Martin; Shimoda, Larissa A; Koc, Michal; Seda, Ondrej; Polak, Jan

    2016-08-01

    Obstructive sleep apnea (OSA) is associated with insulin resistance, glucose intolerance, and type 2 diabetes. Causal mechanisms mediating this association are not well defined; however, augmented lipolysis in adipose might be involved. Here, we investigated the effect of acipimox treatment (lipolysis inhibitor) on glucose tolerance and insulin sensitivity in mice exposed to intermittent hypoxia (IH). C57BL6/J mice were exposed for 14 days to IH or control conditions. IH was created by decreasing the fraction of inspired oxygen from 20.9 to 6.5%, 60 times/h. Control exposure was air (fraction of inspired oxygen, 20.9%) delivered at an identical flow rate. Acipimox was provided in drinking water (0.5 g/ml) during exposures. After exposures, intraperitoneal insulin (0.5 IU/kg) and glucose (1 g/kg) tolerance tests were performed, and primary adipocytes were isolated for lipolysis experiments. IH elevated fasting glucose by 51% and worsened glucose tolerance and insulin sensitivity by 33 and 102%, respectively. In parallel, IH increased spontaneous lipolysis by 264%, and reduced epididymal fat mass by 15% and adipocyte size by 8%. Acipimox treatment prevented IH-induced lipolysis and increased epididymal fat mass and adipocyte size by 19 and 10%, respectively. Acipimox fully prevented IH-induced impairments in fasting glycemia, glucose tolerance, and insulin sensitivity. For all reported results, P less than 0.05 was considered significant. Augmented lipolysis contributes to insulin resistance and glucose intolerance observed in mice exposed to IH. Acipimox treatment ameliorated the metabolic consequences of IH and might represent a novel treatment option for patients with obstructive sleep apnea. PMID:26978122

  15. Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats.

    PubMed

    Lubaczeuski, C; Balbo, S L; Ribeiro, R A; Vettorazzi, J F; Santos-Silva, J C; Carneiro, E M; Bonfleur, M L

    2015-05-01

    The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca(2+) mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca(2+) mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats. PMID:25714886

  16. Insulin degludec and insulin aspart: novel insulins for the management of diabetes mellitus

    PubMed Central

    Atkin, Stephen; Javed, Zeeshan; Fulcher, Gregory

    2015-01-01

    Patients with type 2 diabetes mellitus require insulin as disease progresses to attain or maintain glycaemic targets. Basal insulin is commonly prescribed initially, alone or with one or more rapid-acting prandial insulin doses, to limit mealtime glucose excursions (a basal–bolus regimen). Both patients and physicians must balance the advantages of improved glycaemic control with the risk of hypoglycaemia and increasing regimen complexity. The rapid-acting insulin analogues (insulin aspart, insulin lispro and insulin glulisine) all have similar pharmacokinetic and pharmacodynamic characteristics and clinical efficacy/safety profiles. However, there are important differences in the pharmacokinetic and pharmacodynamic profiles of basal insulins (insulin glargine, insulin detemir and insulin degludec). Insulin degludec is an ultra-long-acting insulin analogue with a flat and stable glucose-lowering profile, a duration of action exceeding 30 h and less inter-patient variation in glucose-lowering effect than insulin glargine. In particular, the chemical properties of insulin degludec have allowed the development of a soluble co-formulation with prandial insulin aspart (insulin degludec/insulin aspart) that provides basal insulin coverage for at least 24 h with additional mealtime insulin for one or two meals depending on dose frequency. Pharmacokinetic and pharmacodynamic studies have shown that the distinct, long basal glucose-lowering action of insulin degludec and the prandial glucose-lowering effect of insulin aspart are maintained in the co-formulation. Evidence from pivotal phase III clinical trials indicates that insulin degludec/insulin aspart translate into sustained glycaemic control with less hypoglycaemia and the potential for a simpler insulin regimen with fewer daily injections. PMID:26568812

  17. Insulin degludec and insulin aspart: novel insulins for the management of diabetes mellitus.

    PubMed

    Atkin, Stephen; Javed, Zeeshan; Fulcher, Gregory

    2015-11-01

    Patients with type 2 diabetes mellitus require insulin as disease progresses to attain or maintain glycaemic targets. Basal insulin is commonly prescribed initially, alone or with one or more rapid-acting prandial insulin doses, to limit mealtime glucose excursions (a basal-bolus regimen). Both patients and physicians must balance the advantages of improved glycaemic control with the risk of hypoglycaemia and increasing regimen complexity. The rapid-acting insulin analogues (insulin aspart, insulin lispro and insulin glulisine) all have similar pharmacokinetic and pharmacodynamic characteristics and clinical efficacy/safety profiles. However, there are important differences in the pharmacokinetic and pharmacodynamic profiles of basal insulins (insulin glargine, insulin detemir and insulin degludec). Insulin degludec is an ultra-long-acting insulin analogue with a flat and stable glucose-lowering profile, a duration of action exceeding 30 h and less inter-patient variation in glucose-lowering effect than insulin glargine. In particular, the chemical properties of insulin degludec have allowed the development of a soluble co-formulation with prandial insulin aspart (insulin degludec/insulin aspart) that provides basal insulin coverage for at least 24 h with additional mealtime insulin for one or two meals depending on dose frequency. Pharmacokinetic and pharmacodynamic studies have shown that the distinct, long basal glucose-lowering action of insulin degludec and the prandial glucose-lowering effect of insulin aspart are maintained in the co-formulation. Evidence from pivotal phase III clinical trials indicates that insulin degludec/insulin aspart translate into sustained glycaemic control with less hypoglycaemia and the potential for a simpler insulin regimen with fewer daily injections. PMID:26568812

  18. Methionine restriction improves renal insulin signalling in aged kidneys.

    PubMed

    Grant, Louise; Lees, Emma K; Forney, Laura A; Mody, Nimesh; Gettys, Thomas; Brown, Paul A J; Wilson, Heather M; Delibegovic, Mirela

    2016-07-01

    Dietary methionine restriction (MR) leads to loss of adiposity, improved insulin sensitivity and lifespan extension. The possibility that dietary MR can protect the kidney from age-associated deterioration has not been addressed. Aged (10-month old) male and female mice were placed on a MR (0.172% methionine) or control diet (0.86% methionine) for 8-weeks and blood glucose, renal insulin signalling, and gene expression were assessed. Methionine restriction lead to decreased blood glucose levels compared to control-fed mice, and enhanced insulin-stimulated phosphorylation of PKB/Akt and S6 in kidneys, indicative of improved glucose homeostasis. Increased expression of lipogenic genes and downregulation of PEPCK were observed, suggesting that kidneys from MR-fed animals are more insulin sensitive. Interestingly, renal gene expression of the mitochondrial uncoupling protein UCP1 was upregulated in MR-fed animals, as were the anti-ageing and renoprotective genes Sirt1, FGF21, klotho, and β-klotho. This was associated with alterations in renal histology trending towards reduced frequency of proximal tubule intersections containing vacuoles in mice that had been on dietary MR for 190days compared to control-fed mice, which exhibited a pre-diabetic status. Our results indicate that dietary MR may offer therapeutic potential in ameliorating the renal functional decline related to ageing and other disorders associated with metabolic dysfunction by enhancing renal insulin sensitivity and renoprotective gene expression. PMID:27453066

  19. Reducing Plasma Membrane Sphingomyelin Increases Insulin Sensitivity ▿

    PubMed Central

    Li, Zhiqiang; Zhang, Hongqi; Liu, Jing; Liang, Chien-Ping; Li, Yan; Li, Yue; Teitelman, Gladys; Beyer, Thomas; Bui, Hai H.; Peake, David A.; Zhang, Youyan; Sanders, Phillip E.; Kuo, Ming-Shang; Park, Tae-Sik; Cao, Guoqing; Jiang, Xian-Cheng

    2011-01-01

    It has been shown that inhibition of de novo sphingolipid synthesis increases insulin sensitivity. For further exploration of the mechanism involved, we utilized two models: heterozygous serine palmitoyltransferase (SPT) subunit 2 (Sptlc2) gene knockout mice and sphingomyelin synthase 2 (Sms2) gene knockout mice. SPT is the key enzyme in sphingolipid biosynthesis, and Sptlc2 is one of its subunits. Homozygous Sptlc2-deficient mice are embryonic lethal. However, heterozygous Sptlc2-deficient mice that were viable and without major developmental defects demonstrated decreased ceramide and sphingomyelin levels in the cell plasma membranes, as well as heightened sensitivity to insulin. Moreover, these mutant mice were protected from high-fat diet-induced obesity and insulin resistance. SMS is the last enzyme for sphingomyelin biosynthesis, and SMS2 is one of its isoforms. Sms2 deficiency increased cell membrane ceramide but decreased SM levels. Sms2 deficiency also increased insulin sensitivity and ameliorated high-fat diet-induced obesity. We have concluded that Sptlc2 heterozygous deficiency- or Sms2 deficiency-mediated reduction of SM in the plasma membranes leads to an improvement in tissue and whole-body insulin sensitivity. PMID:21844222

  20. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  1. Devices for insulin administration.

    PubMed

    Selam, J L; Charles, M A

    1990-09-01

    There is a significant need for revised, safe, and more effective insulin-delivery methods than subcutaneous injections in the treatment of both type I (insulin-dependent) and type II (non-insulin-dependent) diabetes. The aim of this review is to describe the rationale and methods for better use of injection and infusion devices for intensive insulin therapy and to describe results of animal and human research that will lead to an implantable artificial pancreas. Injection devices, e.g., jet injectors, insulin pens, and access ports, cannot be considered as a major breakthrough in the quest for improved control, although they may improve the patient's comfort. External pumps have benefits over multiple injections and conventional insulin therapy only in specific subgroups of patients, e.g., those with recurrent severe hypoglycemia, but only when used by experienced personnel. The external artificial pancreas (Biostator) is also to be used by experienced personnel for limited clinical and research applications, e.g., surgery of the diabetic patient. The development of an implantable version of the artificial pancreas is linked to progress in the field of reliable long-duration glucose sensors. Finally, programmable implantable insulin pumps, used as an open-loop delivery system, are the most promising alternative to intensive subcutaneous insulin strategies in the short term, although clear evidence of improved safety and efficacy remains to be documented. PMID:2226111

  2. Extracts of black bean peel and pomegranate peel ameliorate oxidative stress-induced hyperglycemia in mice.

    PubMed

    Wang, Jian-Yun; Zhu, Chuang; Qian, Tian-Wei; Guo, Hao; Wang, Dong-Dong; Zhang, Fan; Yin, Xiaoxing

    2015-01-01

    Oxidative stress has a central role in the progression of diabetes mellitus (DM), which can directly result in the injury of islet β cells and consequent hyperglycemia. The aim of the present study was to evaluate the possible protective effects of black bean peel extract (BBPE), pomegranate peel extract (PPE) and a combination of the two (PPE + BBPE) on streptozotocin-induced DM mice. Oxidative stress was assessed by the levels of total antioxidative capability and glutathione in the serum. Fasting blood glucose and insulin levels, as well as the pancreas weight index and the histological changes in the pancreas, were also determined. The results showed that, after fours weeks of treatment with PPE, BBPE or PPE + BBPE, DM mice showed, to different degrees, a decrease in blood glucose, increases in insulin secretion and the pancreas weight index, and an increase in antioxidative activity. These changes were particularly evident in the DM mice subjected to the combined intervention strategy of PPE + BBPE. The histological findings indicated that the injury to the pancreatic islets in DM mice was also ameliorated following treatment. In conclusion, PPE and BBPE, particularly the combination of the two, have the ability to ameliorate hyperglycemia by inhibiting oxidative stress-induced pancreatic damage; this finding may be useful in the prevention and treatment of DM. PMID:25452774

  3. Vibration exercise decreases insulin resistance and modulates the insulin signaling pathway in a type 2 diabetic rat model

    PubMed Central

    Liu, Ying; Liu, Chang; Lu, Mei-Li; Tang, Fu-Tian; Hou, Xu-Wei; Yang, Jing; Liu, Tao

    2015-01-01

    Vibration exercise (VE) is a new type of physical training, but little is known about its effects on insulin resistance at the molecular level. A Sprague-Dawley rat model of type 2 diabetes with insulin resistance was induced with a high-fat diet and low-dose streptozotocin. Animals were then subjected to 8 wk of VE consisting of placing the rats on a vibration stand bracket (8 cm × 8 cm × 20 cm) with a maximum vertical vibration displacement of 52 mm for 15 min twice a day, 6 d each week. Various metabolic markers and the phosphorylation and expression of proteins within the PI3K/AKT insulin signaling pathway were assessed. The high-fat diet and low-dose streptozotocin increased food intake, body weight, and levels of blood glucose, triglycerides, total cholesterol, and free fatty acids, while Kitt rate, 2-deoxyglucose uptake, and glycogen levels were decreased. These effects were ameliorated in animals receiving VE. VE treatment activated the PI3K/AKT insulin-signaling pathway, and also increased the expression of GLUT4. In conclusion, VE improved the metabolic issues associated with the diabetic state by suppressing the reduction of IRS1, AKT2, and GLUT4 in the diabetic condition, indicating that VE could be used as a therapeutic intervention for insulin resistance and type 2 diabetes. PMID:26550236

  4. Insulin use: preventable errors.

    PubMed

    2014-01-01

    Insulin is vital for patients with type 1 diabetes and useful for certain patients with type 2 diabetes. The serious consequences of insulin-related medication errors are overdose, resulting in severe hypoglycaemia, causing seizures, coma and even death; or underdose, resulting in hyperglycaemia and sometimes ketoacidosis. Errors associated with the preparation and administration of insulin are often reported, both outside and inside the hospital setting. These errors are preventable. By analysing reports from organisations devoted to medication error prevention and from poison control centres, as well as a few studies and detailed case reports of medication errors, various types of error associated with insulin use have been identified, especially in the hospital setting. Generally, patients know more about the practicalities of their insulin treatment than healthcare professionals with intermittent involvement. Medication errors involving insulin can occur at each step of the medication-use process: prescribing, data entry, preparation, dispensing and administration. When prescribing insulin, wrong-dose errors have been caused by the use of abbreviations, especially "U" instead of the word "units" (often resulting in a 10-fold overdose because the "U" is read as a zero), or by failing to write the drug's name correctly or in full. In electronic prescribing, the sheer number of insulin products is a source of confusion and, ultimately, wrong-dose errors, and often overdose. Prescribing, dispensing or administration software is rarely compatible with insulin prescriptions in which the dose is adjusted on the basis of the patient's subsequent capillary blood glucose readings, and can therefore generate errors. When preparing and dispensing insulin, a tuberculin syringe is sometimes used instead of an insulin syringe, leading to overdose. Other errors arise from confusion created by similar packaging, between different insulin products or between insulin and other

  5. Insulin Resistance of Puberty.

    PubMed

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity. PMID:27179965

  6. Opposite effects of genistein on the regulation of insulin-mediated glucose homeostasis in adipose tissue

    PubMed Central

    Wang, M; Gao, X J; Zhao, W W; Zhao, W J; Jiang, C H; Huang, F; Kou, J P; Liu, B L; Liu, K

    2013-01-01

    BACKGROUND AND PURPOSE Genistein is an isoflavone phytoestrogen found in a number of plants such as soybeans and there is accumulating evidence that it has beneficial effects on the regulation of glucose homeostasis. In this study we evaluated the effect of genistein on glucose homeostasis and its underlying mechanisms in normal and insulin-resistant conditions. EXPERIMENTAL APPROACH To induce insulin resistance, mice or differentiated 3T3-L1 adipocytes were treated with macrophage-derived conditioned medium. A glucose tolerance test was used to investigate the effect of genistein. Insulin signalling activation, glucose transporter-4 (GLUT4) translocation and AMP-activated PK (AMPK) activation were detected by Western blot analysis or elisa. KEY RESULTS Genistein impaired glucose tolerance and attenuated insulin sensitivity in normal mice by inhibiting the insulin-induced phosphorylation of insulin receptor substrate-1 (IRS1) at tyrosine residues, leading to inhibition of insulin-mediated GLUT4 translocation in adipocytes. Mac-CM, an inflammatory stimulus induced glucose intolerance accompanied by impaired insulin sensitivity; genistein reversed these changes by restoring the disturbed IRS1 function, leading to an improvement in GLUT4 translocation. In addition, genistein increased AMPK activity under both normal and inflammatory conditions; this was shown to contribute to the anti-inflammatory effect of genistein, which leads to an improvement in insulin signalling and the amelioration of insulin resistance. CONCLUSION AND IMPLICATIONS Genistein showed opposite effects on insulin sensitivity under normal and inflammatory conditions in adipose tissue and this action was derived from its negative or positive regulation of IRS1 function. Its up-regulation of AMPK activity contributes to the inhibition of inflammation implicated in insulin resistance. PMID:23763311

  7. Insulin treatment normalizes retinal neuroinflammation but not markers of synapse loss in diabetic rats

    PubMed Central

    Masser, Dustin R.; VanGuilder Starkey, Heather D.; Bixler, Georgina V.; Dunton, Wendy; Bronson, Sarah K.; Freeman, Willard M.

    2014-01-01

    Diabetic retinopathy is one of the leading causes of blindness in developed countries, and a majority of patients with type I and type II diabetes will develop some degree of vision loss despite blood glucose control regimens. The effects of different insulin therapy regimens on early metabolic, inflammatory and neuronal retinal disease processes such as retinal neuroinflammation and synapse loss have not been extensively investigated. This study compared 3 months non-diabetic and streptozotocin (STZ)-induced diabetic Sprague Dawley rats. Diabetic rats received either no insulin treatment, systemic insulin treatment beginning after 1 week uncontrolled diabetes (early intervention, 11 weeks on insulin), or after 1.5 months uncontrolled diabetes (late intervention, 6 weeks on insulin). Changes in both whole animal metabolic and retinal inflammatory markers were prevented by early initiation of insulin treatment. These metabolic and inflammatory changes were also normalized by the later insulin intervention. Insulin treatment begun 1 week after diabetes induction ameliorated loss of retinal synapse markers. Synapse markers and presumably synapse numbers were equivalent in uncontrolled diabetes and when insulin treatment began at 1.5 months of diabetes. These findings are in agreement with previous demonstrations that retinal synapses are lost within 1 month of uncontrolled diabetes and suggest that synapses are not regained with glycemic control and restoration of insulin signaling. However, increased expression of metabolic and inflammatory markers associated with diabetes was reversed in both groups of insulin treatment. This study also emphasizes the need for insulin treatment groups in diabetic retinopathy studies to provide a more faithful modeling of the human condition. PMID:24931083

  8. SGLT2 inhibitors provide an effective therapeutic option for diabetes complicated with insulin antibodies.

    PubMed

    Hayashi, Akinori; Takano, Koji; Kawai, Sayuki; Shichiri, Masayoshi

    2016-02-29

    Diabetes mellitus complicated with insulin antibodies is rare in clinical practice but usually difficult to control. A high amount of insulin antibodies, especially with low affinity and high binding capacity, leads to unstable glycemic control characterized by hyperglycemia unresponsive to large volume of insulin and unanticipated hypoglycemia. There are several treatment options, such as changing insulin preparation, immunosupression with glucocorticoids, and plasmapheresis, most of which are of limited efficacy. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of drug which decrease renal glucose reabsorption and lowers plasma glucose level independent of insulin action. We report here a case with diabetes complicated with insulin antibodies who was effectively controlled by an SGLT2 inhibitor. A 47-year-old man with type 2 diabetes treated with insulin had very poor glycemic control characterized by postprandial hyperglycemia unresponsive to insulin therapy and repetitive hypoglycemia due to insulin antibodies. Treatment with ipragliflozin, an SGLT2 inhibitor, improved HbA1c from 8.4% to 6.0% and glycated albumin from 29.4% to 17.9%. Continuous glucose monitoring revealed improvement of glycemic profile (average glucose level from 212 mg/dL to 99 mg/dL and glycemic standard deviation from 92 mg/dL to 14 mg/dL) with disappearance of hypoglycemic events. This treatment further ameliorated the characteristics of insulin antibodies and resulted in reduced insulin requirement. SGLT2 inhibitors may offer an effective treatment option for managing the poor glycemic control in diabetes complicated with insulin antibodies. PMID:26549210

  9. Is it dietary insulin?

    PubMed

    Vaarala, Outi

    2006-10-01

    In humans the primary trigger of insulin-specific immunity is a modified self-antigen, that is, dietary bovine insulin, which breaks neonatal tolerance to self-insulin. The immune response induced by bovine insulin spreads to react with human insulin. This primary immune response induced in the gut immune system is regulated by the mechanisms of oral tolerance. Genetic factors and environmental factors, such as the gut microflora, breast milk-derived factors, and enteral infections, control the development of oral tolerance. The age of host modifies the immune response to oral antigens because the permeability of the gut decreases with age and mucosal immune response, such as IgA response, develops with age. The factors that control the function of the gut immune system may either be protective from autoimmunity by supporting tolerance, or they may induce autoimmunity by abating tolerance to dietary insulin. There is accumulating evidence that the intestinal immune system is aberrant in children with type 1 diabetes (T1D). Intestinal immune activation and increased gut permeability are associated with T1D. These aberrancies may be responsible for the impaired control of tolerance to dietary insulin. Later in life, factors that activate insulin-specific immune cells derived from the gut may switch the response toward cytotoxic immunity. Viruses, which infect beta cells, may release autoantigens and potentiate their presentation by an infection-associated "danger signal." This kind of secondary immunization may cause functional changes in the dietary insulin primed immune cells, and lead to the infiltration of insulin-reactive T cells to the pancreatic islets. PMID:17130578

  10. Metabolomic Response of Skeletal Muscle to Aerobic Exercise Training in Insulin Resistant Type 1 Diabetic Rats

    PubMed Central

    Dotzert, Michelle S.; Murray, Michael R.; McDonald, Matthew W.; Olver, T. Dylan; Velenosi, Thomas J.; Hennop, Anzel; Noble, Earl G.; Urquhart, Brad L.; Melling, C. W. James

    2016-01-01

    The etiology of insulin resistance in Type 1 Diabetes (T1D) is unknown, however it affects approximately 20% of T1D patients. Intramyocellular lipids (IMCL) have been identified as a mechanism of insulin resistance. We examined skeletal muscle of T1D rats to determine if alterations in lipid metabolism were evident and whether aerobic exercise training improves IMCL and insulin resistance. To do so, 48 male Sprague-Dawley rats were divided into control (C), sedentary diabetes (D) and diabetes exercise (DX) groups. Following multiple low-dose Streptozotocin (STZ) injections (20 mg/kg), glycemia (9–15 mM) was maintained using insulin treatment. DX were treadmill trained at high intensity (~75% V02max; 5days/week) for 10 weeks. The results demonstrate that D exhibited insulin resistance compared with C and DX, indicated by decreased glucose infusion rate during a hyperinsulinemic-euglycemic clamp (p < 0.05). There were no differences between C and DX, suggesting that exercise improved insulin resistance (p < 0.05). Metabolomics analysis revealed a significant shift in lipid metabolism whereby notable fatty acid metabolites (arachidonic acid, palmitic acid and several polyunsaturated fatty acids) were significantly elevated in D compared to C and DX. Based on the intermediates observed, insulin resistance in T1D is characterized by an insulin-desensitizing intramyocellular fatty acid metabolite profile that is ameliorated with exercise training. PMID:27197730

  11. Metabolomic Response of Skeletal Muscle to Aerobic Exercise Training in Insulin Resistant Type 1 Diabetic Rats.

    PubMed

    Dotzert, Michelle S; Murray, Michael R; McDonald, Matthew W; Olver, T Dylan; Velenosi, Thomas J; Hennop, Anzel; Noble, Earl G; Urquhart, Brad L; Melling, C W James

    2016-01-01

    The etiology of insulin resistance in Type 1 Diabetes (T1D) is unknown, however it affects approximately 20% of T1D patients. Intramyocellular lipids (IMCL) have been identified as a mechanism of insulin resistance. We examined skeletal muscle of T1D rats to determine if alterations in lipid metabolism were evident and whether aerobic exercise training improves IMCL and insulin resistance. To do so, 48 male Sprague-Dawley rats were divided into control (C), sedentary diabetes (D) and diabetes exercise (DX) groups. Following multiple low-dose Streptozotocin (STZ) injections (20 mg/kg), glycemia (9-15 mM) was maintained using insulin treatment. DX were treadmill trained at high intensity (~75% V02max; 5days/week) for 10 weeks. The results demonstrate that D exhibited insulin resistance compared with C and DX, indicated by decreased glucose infusion rate during a hyperinsulinemic-euglycemic clamp (p < 0.05). There were no differences between C and DX, suggesting that exercise improved insulin resistance (p < 0.05). Metabolomics analysis revealed a significant shift in lipid metabolism whereby notable fatty acid metabolites (arachidonic acid, palmitic acid and several polyunsaturated fatty acids) were significantly elevated in D compared to C and DX. Based on the intermediates observed, insulin resistance in T1D is characterized by an insulin-desensitizing intramyocellular fatty acid metabolite profile that is ameliorated with exercise training. PMID:27197730

  12. Ginseng Berry Extract Supplementation Improves Age-Related Decline of Insulin Signaling in Mice

    PubMed Central

    Seo, Eunhui; Kim, Sunmi; Lee, Sang Jun; Oh, Byung-Chul; Jun, Hee-Sook

    2015-01-01

    The aim of this study was to evaluate the effects of ginseng berry extract on insulin sensitivity and associated molecular mechanisms in aged mice. C57BL/6 mice (15 months old) were maintained on a regular diet (CON) or a regular diet supplemented with 0.05% ginseng berry extract (GBD) for 24 or 32 weeks. GBD-fed mice showed significantly lower serum insulin levels (p = 0.016) and insulin resistance scores (HOMA-IR) (p = 0.012), suggesting that GBD improved insulin sensitivity. Pancreatic islet hypertrophy was also ameliorated in GBD-fed mice (p = 0.007). Protein levels of tyrosine phosphorylated insulin receptor substrate (IRS)-1 (p = 0.047), and protein kinase B (AKT) (p = 0.037), were up-regulated in the muscle of insulin-injected GBD-fed mice compared with CON-fed mice. The expressions of forkhead box protein O1 (FOXO1) (p = 0.036) and peroxisome proliferator-activated receptor gamma (PPARγ) (p = 0.032), which are known as aging- and insulin resistance-related genes, were also increased in the muscle of GBD-fed mice. We conclude that ginseng berry extract consumption might increase activation of IRS-1 and AKT, contributing to the improvement of insulin sensitivity in aged mice. PMID:25912041

  13. MicroRNA-16 modulates macrophage polarization leading to improved insulin sensitivity in myoblasts.

    PubMed

    Talari, Malathi; Kapadia, Bandish; Kain, Vasundhara; Seshadri, Sriram; Prajapati, Bhumika; Rajput, Parth; Misra, Parimal; Parsa, Kishore V L

    2015-12-01

    Uncontrolled inflammation leads to several diseases such as insulin resistance, T2D and several types of cancers. The functional role of microRNAs in inflammation induced insulin resistance is poorly studied. MicroRNAs are post-transcriptional regulatory molecules which mediate diverse biological processes. We here show that miR-16 expression levels are down-regulated in different inflammatory conditions such as LPS/IFNγ or palmitate treated macrophages, palmitate exposed myoblasts and insulin responsive tissues of high sucrose diet induced insulin resistant rats. Importantly, forced expression of miR-16 in macrophages impaired the production of TNF-α, IL-6 and IFN-β leading to enhanced insulin stimulated glucose uptake in co-cultured skeletal myoblasts. Further, ectopic expression of miR-16 enhanced insulin stimulated glucose uptake in skeletal myoblasts via the up-regulation of GLUT4 and MEF2A, two key players involved in insulin stimulated glucose uptake. Collectively, our data highlight the important role of miR-16 in ameliorating inflammation induced insulin resistance. PMID:26453808

  14. Ginseng berry extract supplementation improves age-related decline of insulin signaling in mice.

    PubMed

    Seo, Eunhui; Kim, Sunmi; Lee, Sang Jun; Oh, Byung-Chul; Jun, Hee-Sook

    2015-04-01

    The aim of this study was to evaluate the effects of ginseng berry extract on insulin sensitivity and associated molecular mechanisms in aged mice. C57BL/6 mice (15 months old) were maintained on a regular diet (CON) or a regular diet supplemented with 0.05% ginseng berry extract (GBD) for 24 or 32 weeks. GBD-fed mice showed significantly lower serum insulin levels (p = 0.016) and insulin resistance scores (HOMA-IR) (p = 0.012), suggesting that GBD improved insulin sensitivity. Pancreatic islet hypertrophy was also ameliorated in GBD-fed mice (p = 0.007). Protein levels of tyrosine phosphorylated insulin receptor substrate (IRS)-1 (p = 0.047), and protein kinase B (AKT) (p = 0.037), were up-regulated in the muscle of insulin-injected GBD-fed mice compared with CON-fed mice. The expressions of forkhead box protein O1 (FOXO1) (p = 0.036) and peroxisome proliferator-activated receptor gamma (PPARγ) (p = 0.032), which are known as aging- and insulin resistance-related genes, were also increased in the muscle of GBD-fed mice. We conclude that ginseng berry extract consumption might increase activation of IRS-1 and AKT, contributing to the improvement of insulin sensitivity in aged mice. PMID:25912041

  15. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... is calculated as tartaric acid for grapes, malic acid for apples, and citric acid for other fruit... natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust the fixed acid level by adding ameliorating material (water, sugar, or a combination of both)...

  16. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... is calculated as tartaric acid for grapes, malic acid for apples, and citric acid for other fruit... natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust the fixed acid level by adding ameliorating material (water, sugar, or a combination of both)...

  17. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... is calculated as tartaric acid for grapes, malic acid for apples, and citric acid for other fruit... natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust the fixed acid level by adding ameliorating material (water, sugar, or a combination of both)...

  18. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust... acid level of the juice or wine by 0.1 gram per liter (the fixed acid level of the juice or wine may not be less than 5.0 gram per liter after the addition of ameliorating material). (b) Limitations....

  19. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust... acid level of the juice or wine by 0.1 gram per liter (the fixed acid level of the juice or wine may not be less than 5.0 gram per liter after the addition of ameliorating material). (b) Limitations....

  20. Drosophila insulin degrading enzyme and rat skeletal muscle insulin protease cleave insulin at similar sites

    SciTech Connect

    Duckworth, W.C.; Garcia, J.V.; Liepnieks, J.J.; Hamel, F.G.; Hermodson, M.A.; Frank, B.H.; Rosner, M.R. )

    1989-03-21

    Insulin degradation is an integral part of the cellular action of insulin. Recent evidence suggests that the enzyme insulin protease is involved in the degradation of insulin in mammalian tissues. Drosophila, which has insulin-like hormones and insulin receptor homologues, also expresses an insulin degrading enzyme with properties that are very similar to those of mammalian insulin protease. In the present study, the insulin cleavage products generated by the Drosophila insulin degrading enzyme were identified and compared with the products generated by the mammalian insulin protease. Both purified enzymes were incubated with porcine insulin specifically labeled with {sup 125}I on either the A19 or B26 position, and the degradation products were analyzed by HPLC before and after sulfitolysis. Isolation and sequencing of the cleavage products indicated that both enzymes cleave the A chain of intact insulin at identical sites between residues A13 and A14 and A14 and A15. These results demonstrate that all the insulin cleavage sites generated by the Drosopohila insulin degrading enzyme are shared in common with the mammalian insulin protease. These data support the hypothesis that there is evolutionary conservation of the insulin degrading enzyme and further suggest that this enzyme plays an important role in cellular function.

  1. Tagging insulin in microgravity

    NASA Technical Reports Server (NTRS)

    Dobeck, Michael; Nelson, Ronald S.

    1992-01-01

    Knowing the exact subcellular sites of action of insulin in the body has the potential to give basic science investigators a basis from which a cause and cure for this disease can be approached. The goal of this project is to create a test reagent that can be used to visualize these subcellular sites. The unique microgravity environment of the Shuttle will allow the creation of a reagent that has the possibility of elucidating the subcellular sites of action of insulin. Several techniques have been used in an attempt to isolate the sites of action of items such as insulin. One of these is autoradiography in which the test item is obtained from animals fed radioactive materials. What is clearly needed is to visualize individual insulin molecules at their sites of action. The insulin tagging process to be used on G-399 involves the conjugation of insulin molecules with ferritin molecules to create a reagent that will be used back on Earth in an attempt to elucidate the sites of action of insulin.

  2. Technosphere inhaled insulin (Afrezza).

    PubMed

    Rendell, M

    2014-12-01

    Technosphere® insulin uses a unique carrier -fumaryl diketopiperazine (FDKP)- which adsorbs insulin to form microparticles to permit delivery to the alveoli by inhalation. Toxicity studies have been entirely negative. The pulmonary absorption of insulin is very rapid, and the disappearance time is shorter than for subcutaneously delivered rapid-acting insulins. As a result, after inhalation, there is a rapid drop in glucose levels which subsequently return to normal in a shorter time than after subcutaneous insulin administration. Consequently, there is a lower incidence of hypoglycemic reactions. Pulmonary function studies have shown a small, reversible decrease in FEV1, and pulmonary imaging studies have shown no adverse effect. The inhalation of Technosphere insulin can produce a cough in up to 27% of patients. The cough has resulted in discontinuance in as many as 9% of users. Technosphere insulin has been approved for use in type 1 and type 2 diabetes. Long-term studies of pulmonary safety and surveillance for malignancy will be performed in the future. Studies to assess the optimal time dosing regimen are needed. PMID:25588086

  3. [Alleged suicide by insulin].

    PubMed

    Birngruber, Christoph G; Krüll, Ralf; Dettmeyer, Reinhard; Verhoff, Marcel A

    2015-01-01

    A 26-year-old man, who was on probation, was found dead in his home by his mother. Insulin vials and 2 insulin pens, which the man's stepfather (an insulin-dependent diabetic) had been missing for over a week, were found next to the deceased. The circumstances suggested suicide by an injected insulin overdose. At the time of the autopsy, the corpse showed already marked signs of autolysis. Clinical chemical tests confirmed the injection of insulin, but indicated hyperglycemia at the time of death. Toxicological analyses revealed that the man had consumed amphetamine, cannabinoids, and tramadol in the recent past. Histological examination finally revealed extensive bronchopneumonia as the cause of death. The most plausible explanation for the results of the autopsy and the additional examinations was an injection of insulin as a failed attempt of self-treatment. It is conceivable that the man had discovered by a rapid test that he was a diabetic, but had decided not to go to a doctor to avoid disclosure of parole violation due to continued drug abuse. He may have misinterpreted the symptoms caused by his worsening bronchitis and the developing bronchopneumonia as symptoms of a diabetic metabolic status and may have felt compelled to treat himself with insulin. PMID:26419091

  4. Insulin and the law.

    PubMed

    Marks, Vincent

    2015-11-01

    Hypoglycaemia, if it can be proved, may be used as a defence against almost any criminal charge provided it can be established that the perpetrator was in a state of neuroglycopenic (hypoglycaemic) automatism at the time of the offence. Hypoglycaemia produced by exogenous insulin can also be used as a suicidal or homicidal weapon. This paper discusses some of the pitfalls confronting the investigator of suspected insulin misuse including problems arising from the increasing prevalence of insulin analogues and the unreliability of immunoassays for their detection and measurement in the forensic context. PMID:26092979

  5. Insulin glulisine: insulin receptor signaling characteristics in vivo.

    PubMed

    Hennige, Anita M; Lehmann, Rainer; Weigert, Cora; Moeschel, Klaus; Schäuble, Myriam; Metzinger, Elisabeth; Lammers, Reiner; Häring, Hans-Ulrich

    2005-02-01

    In recent years, recombinant DNA technology has been used to design insulin molecules that overcome the limitations of regular insulin in mealtime supplementation. However, safety issues have been raised with these alternatives, as the alteration of the three-dimensional structure may alter the interaction with the insulin and/or IGF-I receptors and therefore lead to the activation of alternate metabolic as well as mitogenic signaling pathways. It is therefore essential to carefully study acute and long-term effects in a preclinical state, as insulin therapy is meant to be a lifelong treatment. In this study, we determined in vivo the insulin receptor signaling characteristics activated by insulin glulisine (Lys(B3), Glu(B29)) at the level of insulin receptor phosphorylation, insulin receptor substrate phosphorylation, and downstream signaling elements such as phosphatidylinositol (PI) 3-kinase, AKT, and mitogen-activated protein kinase. C57BL/6 mice were injected with insulin glulisine or regular insulin and Western blot analysis was performed for liver and muscle tissue. The extent and time course of insulin receptor phosphorylation and activation of downstream signaling elements after insulin glulisine treatment was similar to that of human regular insulin in vivo. Moreover, insulin signaling in hypothalamic tissue determined by PI 3-kinase activity was comparable. Therefore, insulin glulisine may be a useful tool for diabetes treatment. PMID:15677493

  6. Camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats.

    PubMed

    Meena, Sunita; Rajput, Yudhishthir S; Pandey, Amit K; Sharma, Rajan; Singh, Raghvendar

    2016-08-01

    This study was designed to assess anti-diabetic potential of goat, camel, cow and buffalo milk in streptozotocin (STZ) induced type 1 diabetic albino wistar rats. A total of 48 rats were taken for the study where one group was kept as non-diabetic control group (8 rats) while others (40 rats) were made diabetic by STZ (50 mg/kg of body weight) injection. Among diabetic rats, a control group (8 rats) was kept and referred as diabetic control whereas other four groups (8 rats each) of diabetic rats were fed on 50 ml of goat or camel or cow or buffalo milk for 4 weeks. All the rats (non-diabetic and diabetic) were maintained on standard diet for four weeks. STZ administration resulted in enhancement of glucose, total cholesterol, triglyceride, low density lipoprotein, HbA1c and reduction in high density lipoprotein in plasma and lowering of antioxidative enzymes (catalase, glutathione peroxidase and superoxide dismutase) activities in pancreas, kidney, liver and RBCs, coupled with enhanced levels of TBARS and protein carbonyls in pancreas, kidney, liver and plasma. OGTT carried out at the end of 4 week milk feeding indicated that all milks helped in early maintenance of glucose level. All milks reduced atherogenic index. In camel milk fed diabetic group, insulin concentration enhanced to level noted for non-diabetic control while goat, cow and buffalo milk failed to restore insulin level. HbA1c level was also restored only in camel milk fed diabetic group. The level of antioxidative enzymes (catalase, GPx and SOD) in pancreas enhanced in all milk fed groups. Camel milk and to a reasonable extent goat milk reduced formation of TBARS and PCs in tissues and blood. It can be concluded that camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats. Further, only camel milk completely ameliorated oxidative damage in pancreas and normalised insulin level. PMID:27600979

  7. Protamine zinc insulin combined with sodium selenite improves glycometabolism in the diabetic KKAy mice

    PubMed Central

    Lu, Juan; Ji, Wenjun; Zhao, Mei; Wang, Meng; Yan, Wenhui; Chen, Mingxia; Ren, Shuting; Yuan, Bingxiang; Wang, Bing; Chen, Lina

    2016-01-01

    Long-term, high dosage protamine zinc insulin (PZI) treatments produce adverse reactions. The trace element selenium (Se) is a candidate for the prevention of diabetes due to anti-oxidative stress activity and the regulation of glycometabolism. In this study, we aimed to investigate the anti-diabetic effects of a combination of PZI and Se on type 2 diabetes. Diabetic KKAy mice were randomized into the following groups: model group and groups that were subcutaneously injected with PZI, Se, high or low dose PZI + Se for 6 weeks. PZI combined with Se decreased the body weight and fasting blood glucose levels. Moreover, this treatment also improved insulin tolerance, as determined by the reduced values from the oral glucose tolerance test and insulin tolerance test, and increased insulin levels and insulin sensitivity index. PZI combined with Se ameliorated skeletal muscle and β-cell damage and the impaired mitochondrial morphology. Oxidative stress was also reduced. Furthermore, PZI combined with Se upregulated phosphatidylinositol 3-kinase (PI3K) and downregulated protein tyrosine phosphatase 1B (PTP1B). Importantly, the low dosage combination produced effects similar to PZI alone. In conclusion, PZI combined with Se improved glycometabolism and ameliorated the tissue and mitochondrial damage, which might be associated with the PI3K and PTP1B pathways. PMID:27212152

  8. Protamine zinc insulin combined with sodium selenite improves glycometabolism in the diabetic KKAy mice.

    PubMed

    Lu, Juan; Ji, Wenjun; Zhao, Mei; Wang, Meng; Yan, Wenhui; Chen, Mingxia; Ren, Shuting; Yuan, Bingxiang; Wang, Bing; Chen, Lina

    2016-01-01

    Long-term, high dosage protamine zinc insulin (PZI) treatments produce adverse reactions. The trace element selenium (Se) is a candidate for the prevention of diabetes due to anti-oxidative stress activity and the regulation of glycometabolism. In this study, we aimed to investigate the anti-diabetic effects of a combination of PZI and Se on type 2 diabetes. Diabetic KKAy mice were randomized into the following groups: model group and groups that were subcutaneously injected with PZI, Se, high or low dose PZI + Se for 6 weeks. PZI combined with Se decreased the body weight and fasting blood glucose levels. Moreover, this treatment also improved insulin tolerance, as determined by the reduced values from the oral glucose tolerance test and insulin tolerance test, and increased insulin levels and insulin sensitivity index. PZI combined with Se ameliorated skeletal muscle and β-cell damage and the impaired mitochondrial morphology. Oxidative stress was also reduced. Furthermore, PZI combined with Se upregulated phosphatidylinositol 3-kinase (PI3K) and downregulated protein tyrosine phosphatase 1B (PTP1B). Importantly, the low dosage combination produced effects similar to PZI alone. In conclusion, PZI combined with Se improved glycometabolism and ameliorated the tissue and mitochondrial damage, which might be associated with the PI3K and PTP1B pathways. PMID:27212152

  9. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats.

    PubMed

    Ren, Bei; Qin, Weiwei; Wu, Feihua; Wang, Shanshan; Pan, Cheng; Wang, Liying; Zeng, Biao; Ma, Shiping; Liang, Jingyu

    2016-02-15

    Vascular endothelial dysfunction is regarded as the initial step of vascular complications in diabetes mellitus. This study investigated the amelioration of apigenin and naringenin in type 2 diabetic (T2D) rats induced by high-fat diet and streptozotocin and explored the underlying mechanism. Apigenin or naringenin was intragastrically administered at 50 or 100mg/kg once a day for 6 weeks. Biochemical parameters including blood glucose, glycated serum protein, serum lipid, insulin, superoxide dismutase (SOD), malonaldehyde and intercellular adhesion molecule-1 (ICAM-1) were measured. Vascular reactivity in isolated thoracic aortic rings was examined. Pathological features of the thoracic aorta were further observed through optical microscopy and transmission electron microscopy. Lastly, we evaluated their effects on insulin resistance of palmitic acid (PA)-induced endothelial cells. Compared with diabetic control group, apigenin and naringenin significantly decreased the levels of blood glucose, serum lipid, malonaldehyde, ICAM-1 and insulin resistance index, increased SOD activity and improved impaired glucose tolerance. Apigenin and naringenin restored phenylephrine-mediated contractions and acetylcholine or insulin-induced relaxations in aortic tissues. Furthermore, pathological damage in the thoracic aorta of apigenin and naringenin groups was more remissive than diabetic control group. In vitro, apigenin and naringenin inhibited NF-κB activation and ICAM-1 mRNA expression in PA-treated endothelial cells and improved nitric oxide production in the presence of insulin. In conclusion, both apigenin and naringenin can ameliorate glucose and lipid metabolism, as well as endothelial dysfunction in T2D rats at least in part by down-regulating oxidative stress and inflammation. In general, apigenin showed greater potency than naringenin equivalent. PMID:26801071

  10. All about Insulin Resistance

    MedlinePlus

    ... news is that cutting calories, being active, and losing weight can reverse insulin resistance and lower your ... you’ll lose weight. Studies have shown that losing even 7% of your weight, may help. For ...

  11. Insulin Delivery System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    When Programmable Implantable Medication System (PIMS) is implanted in human body, it delivers precise programmed amounts of insulin over long periods of time. Mini-Med Technologies has been refining the Technologies since initial development at APL. The size of a hockey puck, and encased in titanium shell, PIMS holds about 2 1/2 teaspoons of insulin at a programmed basal rate. If a change in measured blood sugar level dictates a different dose, the patient can vary the amount of insulin delivered by holding a small radio transceiver over the implanted system and dialing in a specific program held in the PIMS computer memory. Insulin refills are accomplished approximately 4 times a year by hypodermic needle.

  12. Insulin Resistance and Prediabetes

    MedlinePlus

    ... sleep apnea; and cigarette smoking. [ Top ] Does sleep matter? Yes. Studies show that untreated sleep problems, especially ... a severe form of insulin resistance may have dark patches of skin, usually on the back of ...

  13. Insulin Lispro Injection

    MedlinePlus

    ... a solution (liquid) and a suspension (liquid with particles that will settle on standing) to inject subcutaneously ( ... if it is colored, cloudy, or contains solid particles. If you are using insulin lispro suspension, the ...

  14. Insulin Human Inhalation

    MedlinePlus

    ... inhalation comes as a powder to inhale by mouth using a special inhaler. It is usually used ... to your doctor.Before you use your insulin oral inhaler the first time, read the written instructions ...

  15. Moving toward the ideal insulin for insulin pumps.

    PubMed

    Cengiz, Eda; Bode, Bruce; Van Name, Michelle; Tamborlane, William V

    2016-01-01

    Advances in insulin formulations have been important for diabetes management and achieving optimal glycemic control. Rapid-acting insulin analogs provide a faster time-action profile than regular insulin and are approved for use in pumps. However, the need remains for therapy to deliver a more physiologic insulin profile. New insulin formulations and delivery methods are in development, with the aim of accelerating insulin absorption to accomplish ultra-fast-acting insulin time-action profiles. Furthermore, the integration of continuous glucose monitoring with insulin pump therapy enables on-going adjustment of insulin delivery to optimize glycemic control throughout the day and night. These technological and pharmacological advances are likely to facilitate the development of closed-loop pump systems (i.e., artificial pancreas), and improve glycemic control and quality of life for patients with diabetes. PMID:26560137

  16. Insulin allergy treated with human insulin (recombinant DNA).

    PubMed

    De Leeuw, I; Delvigne, C; Bekaert, J

    1982-01-01

    Two insulin-dependent diabetic subjects treated with pork and beef insulin during a period of 6 mo developed severe local reactions. Both patients had an important allergic history (asthma, urticaria, drug reactions, rhinitis). Skin-testing revealed type I allergy to beef and pork insulin. Specific IgE-insulin binding was demonstrated with both insulins. After negative skin testing with NPH Lilly human insulin (recombinant DNA), treatment was started with this compound and remained successful during a period of 6-9 mo. In one patient a local reaction occurred when regular human insulin (recombinant DNA) was added to NPH in order to obtain better control. Skin testing with regular human insulin was positive, but not with NPH human insulin alone. The mechanism of this phenomenon remains unsolved. PMID:6765530

  17. Melatonin ameliorates metabolic risk factors, modulates apoptotic proteins, and protects the rat heart against diabetes-induced apoptosis.

    PubMed

    Amin, Ali H; El-Missiry, Mohamed A; Othman, Azza I

    2015-01-15

    The present study investigated the ability of melatonin in reducing metabolic risk factors and cardiac apoptosis induced by diabetes. Streptozotocin (60 mg/kg, i.p.) was injected into male rats, and after diabetic induction melatonin (10mg/kg i.g.) was administered orally for 21 days. Diabetic hearts showed increased number of apoptotic cells with downregulation of Bcl-2 and activation of p53 and CD95 as well as the caspases 9, 8 and 3. In addition, there was a significant decrease in insulin level, hyperglycemia, elevated HOMA-IR, glycosylated hemoglobin (HbA1c), total lipids, triglycerides, total cholesterol, low and very low-density lipoprotein and decreased high-density lipoprotein. These changes were coupled with a significant increase in the activities of creatin kinase-MB (CK-MB) and lactate dehydrogenase (LDH) in the serum of the diabetic rats indicating myocardium injury. Oral administration of melatonin for 3 weeks after diabetes induction ameliorated the levels of hyperglycemia, insulin, HbA1c, lipids profile and HOMA-IR. The oral melatonin treatment of diabetic rats significantly decreased the number of apoptotic cells in the heart compared to diabetic rats. It enhanced Bcl-2 expression and blocked the activation of CD95 as well as caspases 9, 8 and 3. These changes were accompanied with significant improvement of CK-MB and LDH in the serum indicating the ameliorative effect of melatonin on myocardium injury. Melatonin effectively ameliorated diabetic myocardium injury, apoptosis, reduced the metabolic risk factors and modulated important steps in both extrinsic and intrinsic pathways of apoptosis. Thus, melatonin may be a promising pharmacological agent for ameliorating potential cardiomyopathy associated with diabetes. PMID:25510232

  18. Insulin pump therapy in pregnancy.

    PubMed

    Kesavadev, Jothydev

    2016-09-01

    Control of blood glucose during pregnancy is difficult because of wide variations, ongoing hormonal changes and mood swings. The need for multiple injections, pain at the injection site, regular monitoring and skillful handling of the syringes/pen further makes insulin therapy inconvenient. Insulin pump is gaining popularity in pregnancy because it mimics the insulin delivery of a healthy human pancreas. Multiple guidelines have also recommended the use of insulin pump in pregnancy to maintain the glycaemic control. The pump can release small doses of insulin continuously (basal), or a bolus dose close to mealtime to control the spike in blood glucose after a meal and the newer devices can shut down insulin delivery before the occurrence of hypoglycaemia. Pump insulin of choice is rapid acting analogue insulin. This review underscores the role of insulin pump in pregnancy, their usage, advantages and disadvantages in the light of existing literature and clinic experience. PMID:27582150

  19. Pioglitazone ameliorates the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice.

    PubMed

    Takada, Shingo; Hirabayashi, Kagami; Kinugawa, Shintaro; Yokota, Takashi; Matsushima, Shouji; Suga, Tadashi; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Mizushima, Wataru; Masaki, Yoshihiro; Furihata, Takaaki; Katsuyama, Ryoichi; Okita, Koichi; Tsutsui, Hiroyuki

    2014-10-01

    We have reported that exercise capacity is reduced in high fat diet (HFD)-induced diabetic mice, and that this reduction is associated with impaired mitochondrial function in skeletal muscle (SKM). However, it remains to be clarified whether the treatment of diabetes ameliorates the reduced exercise capacity. Therefore, we examined whether an insulin-sensitizing drug, pioglitazone, could improve exercise capacity in HFD mice. C57BL/6J mice were fed a normal diet (ND) or HFD, then treated with or without pioglitazone (3 mg/kg/day) to yield the following 4 groups: ND+vehicle, ND+pioglitazone, HFD+vehicle, and HFD+pioglitazone (n=10 each). After 8 weeks, body weight, plasma glucose, and insulin in the HFD+vehicle were significantly increased compared to the ND+vehicle group. Pioglitazone normalized the insulin levels in HFD-fed mice, but did not affect the body weight or plasma glucose. Exercise capacity determined by treadmill tests was significantly reduced in the HFD+vehicle, and this reduction was almost completely ameliorated in HFD+pioglitazone mice. ADP-dependent mitochondrial respiration, complex I and III activities, and citrate synthase activity were significantly decreased in the SKM of the HFD+vehicle animals, and these decreases were also attenuated by pioglitazone. NAD(P)H oxidase activity was significantly increased in the HFD+vehicle compared with the ND+vehicle, and this increase was ameliorated in HFD+pioglitazone mice. Pioglitazone improved the exercise capacity in diabetic mice, which was due to the improvement in mitochondrial function and attenuation of oxidative stress in the SKM. Our data suggest that pioglitazone may be useful as an agent for the treatment of diabetes mellitus. PMID:24964389

  20. Influence of anti-insulin antibodies on insulin immunoassays in the autoimmune insulin syndrome.

    PubMed

    Casesnoves, A; Mauri, M; Dominguez, J R; Alfayate, R; Picó, A M

    1998-11-01

    The autoimmune insulin syndrome (AIS) is a rare, benign syndrome characterized by hyperinsulinaemia and hypoglycaemia associated with the presence of autoantibodies to insulin in patients who have not been treated with insulin. We report here the case of a 52-year-old patient with recurrent attacks of severe postprandial hypoglycaemia and we also present the effect of anti-insulin antibodies on insulin immunoassays. The patient was submitted to the following diagnostic tests: 5-h oral glucose tolerance test (OGTT), a prolonged 72-h fast and an insulin tolerance test (ITT). Serum glucose, total and free insulin, C-peptide, proinsulin, insulin antibodies and other autoantibodies were measured. Insulin concentrations were measured by two methods: a double antibody radioimmunoassay (RIA) and an immunoradiometric assay (IRMA). Insulin concentration measured by RIA was extremely high in the OGTT and 72-h fast. In contrast, insulin concentrations measured by IRMA were between 120 and 888 pmol/L in the OGTT and between 37 and 133 pmol/L during the 72-h fast. Fasting free-insulin concentrations measured by RIA were between 2224 and 2669 pmol/L, whereas free-insulin concentrations measured by IRMA ranged between 93 and 237 pmol/L. Total insulin concentrations measured by RIA and IRMA were 57,615 and 94,021 pmol/L, respectively. The C-peptide concentrations were moderately high in the three tests. Serum insulin antibody concentrations were extremely high (62-71%), compared with less than 3% in normal serum samples. In conclusion, the high insulin concentrations measured by RIA were caused by insulin autoantibodies. However, insulin concentrations measured by IRMA were not influenced by them. We conclude that IRMA is the more accurate method for measuring insulin concentrations in such cases. PMID:9838991

  1. Selective PPARγ modulator INT131 normalizes insulin signaling defects and improves bone mass in diet-induced obese mice

    PubMed Central

    Lee, Dae Ho; Huang, Hu; Choi, Kangduk; Mantzoros, Christos

    2012-01-01

    INT131 is a potent non-thiazolidinedione (TZD)-selective peroxisome proliferator-activated receptor-γ modulator being developed for the treatment of type 2 diabetes. In preclinical studies and a phase II clinical trial, INT131 has been shown to lower glucose levels and ameliorate insulin resistance without typical TZD side effects. To determine whether the insulin-sensitizing action of INT131 is mediated by effects on insulin-mediated glucose homeostasis and insulin signaling, high-fat diet-induced obese (DIO) insulin-resistant mice treated with INT131 were studied. INT131's effects on bone density were also investigated. Treatment with INT131 enhanced systemic insulin sensitivity, as revealed by lower insulin levels in the fasted state and an increase in the area above the curve during an insulin tolerance test. These effects were independent of changes in adiposity. Insulin-stimulated PI3K activity in skeletal muscle and adipose tissue of DIO mice was significantly reduced ∼50–65%, but this was restored completely by INT131 therapy. The INT131 effects on PI3K activity are most likely due to increased IRS-1 tyrosine phosphorylation. Concurrently, insulin-mediated Akt phosphorylation also increased after INT131 treatment in DIO mice. Importantly, INT131 therapy caused a significant increase in bone mineral density without alteration in circulating osteocalcin in these mice. These data suggest that a newly developed insulin-sensitizing agent, INT131, normalizes obesity-related defects in insulin action on PI3K signaling in insulin target tissues by a mechanism involved in glycemic control. If these data are confirmed in humans, INT131 could be used for treating type 2 diabetes without loss in bone mass. PMID:22215652

  2. Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance.

    PubMed

    Shihabudeen, Mohamed Sham; Roy, Debasish; James, Joel; Thirumurugan, Kavitha

    2015-10-15

    Adipose tissue secretes adipokines that regulate insulin sensitivity in adipocytes and other peripheral tissues critical to glucose metabolism. Insulin resistance is associated with severe alterations in adipokines characterized by release of increased pro-inflammatory cytokines and decreased anti-inflammatory cytokines from adipose tissue. The role of Farnesoid X receptor (FXR) activation on adipokines in relation to adipose tissue inflammation and insulin resistance is not completely explored. For the first time, we have evaluated the ability of Chenodeoxycholic acid (CDCA), an endogenous FXR ligand, in restoring the disturbance in adipokine secretion and insulin resistance in palmitate treated 3T3-L1 cells and adipose tissues of High fat diet (HFD) rats. CDCA suppressed several of the tested pro-inflammatory adipokines (TNF-α, MCP-1, IL-6, Chemerin, PAI, RBP4, resistin, vaspin), and enhanced the major anti-inflammatory and insulin sensitizing adipokines (adiponectin, leptin). CDCA suppressed the activation of critical inflammatory regulators such as NF-κB and IKKβ which are activated by palmitate treatment in differentiated cells and HFD in rats. We show the altered adipokines in insulin resistance, its association with inflammatory regulators, and the role of CDCA in amelioration of insulin resistance by modulation of adipokines. PMID:26188168

  3. Myeloid lineage cell-restricted insulin resistance protects apolipoproteinE-deficient mice against atherosclerosis

    PubMed Central

    Baumgartl, Julia; Baudler, Stephanie; Scherner, Maximilian; Babaev, Vladimir; Makowski, Liza; Suttles, Jill; McDuffie, Marcia; Fazio, Sergio; Kahn, C. Ronald; Hotamisligil, Gökhan S.; Krone, Wilhelm; Linton, MacRae; Brüning, Jens C.

    2014-01-01

    Summary Inflammatory processes play an important role in the pathogenesis of vascular diseases, and insulin-resistant diabetes mellitus type 2 represents an important risk factor for the development of atherosclerosis. To directly address the role of insulin resistance in myeloid lineage cells in the development of atherosclerosis, we have created mice with myeloid lineagespecific inactivation of the insulin receptor gene. On an ApoE-deficient background, MphIRKO mice developed smaller atherosclerotic lesions. There was a dramatic decrease in LPS-stimulated IL-6 and IL-1β expression in the presence of macrophage autonomous insulin resistance. Consistently, while insulin-resistant IRS-2-deficient mice on an ApoE-deficient background display aggravated atherosclerosis, fetal liver cell transplantation of IRS-2–/–ApoE–/– cells ameliorated atherosclerosis in Apo-E-deficient mice. Thus, systemic versus myeloid cell-restricted insulin resistance has opposing effects on the development of atherosclerosis, providing direct evidence that myeloid lineage autonomous insulin signaling provides proinflammatory signals predisposing to the development of atherosclerosis. PMID:16581002

  4. Depression and Insulin Resistance

    PubMed Central

    Pearson, Sue; Schmidt, Mike; Patton, George; Dwyer, Terry; Blizzard, Leigh; Otahal, Petr; Venn, Alison

    2010-01-01

    OBJECTIVE To examine the association between depressive disorder and insulin resistance in a sample of young adults using the Composite International Diagnostic Interview to ascertain depression status. RESEARCH DESIGN AND METHODS Cross-sectional data were collected from 1,732 participants aged between 26 and 36 years. Insulin resistance was derived from blood chemistry measures of fasting insulin and glucose using the homeostasis model assessment method. Those identified with mild, moderate, or severe depression were classified as having depressive disorder. RESULTS The 12-month prevalence of depressive disorder was 5.4% among men and 11.7% among women. In unadjusted models mean insulin resistance was 17.2% (95% CI 0.7–36.0%, P = 0.04) higher in men and 11.4% (1.5–22.0%, P = 0.02) higher in women with depressive disorder. After adjustment for behavioral and dietary factors, the increased level of insulin resistance associated with depressive disorder was 13.2% (−3.1 to 32.3%, P = 0.12) in men and 6.1% (−4.1 to 17.4%, P = 0.25) in women. Waist circumference was identified as a mediator in the relationship between depression and insulin resistance, reducing the β coefficient in the fully adjusted models in men by 38% and in women by 42%. CONCLUSIONS A positive association was found between depressive disorder and insulin resistance in this population-based sample of young adult men and women. The association seemed to be mediated partially by waist circumference. PMID:20185745

  5. Insulin and IGF-1 regularize energy metabolites in neural cells expressing full-length mutant huntingtin.

    PubMed

    Naia, Luana; Ribeiro, Márcio; Rodrigues, Joana; Duarte, Ana I; Lopes, Carla; Rosenstock, Tatiana R; Hayden, Michael R; Rego, A Cristina

    2016-08-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder linked to the expression of mutant huntingtin. Bioenergetic dysfunction has been described to contribute to HD pathogenesis. Thus, treatment paradigms aimed to ameliorate energy deficits appear to be suitable candidates in HD. In previous studies, we observed protective effects of insulin growth factor-1 (IGF-1) in YAC128 and R6/2 mice, two HD mouse models, whereas IGF-1 and/or insulin halted mitochondrial-driven oxidative stress in mutant striatal cells and mitochondrial dysfunction in HD human lymphoblasts. Here, we analyzed the effect of IGF-1 versus insulin on energy metabolic parameters using striatal cells derived from HD knock-in mice and primary cortical cultures from YAC128 mice. STHdh(Q111/Q111) cells exhibited decreased ATP/ADP ratio and increased phosphocreatine levels. Moreover, pyruvate levels were increased in mutant cells, most probably in consequence of a decrease in pyruvate dehydrogenase (PDH) protein expression and increased PDH phosphorylation, reflecting its inactivation. Insulin and IGF-1 treatment significantly decreased phosphocreatine levels, whereas IGF-1 only decreased pyruvate levels in mutant cells. In a different scenario, primary cortical cultures derived from YAC128 mice also displayed energetic abnormalities. We observed a decrease in both ATP/ADP and phosphocreatine levels, which were prevented following exposure to insulin or IGF-1. Furthermore, decreased lactate levels in YAC128 cultures occurred concomitantly with a decline in lactate dehydrogenase activity, which was ameliorated with both insulin and IGF-1. These data demonstrate differential HD-associated metabolic dysfunction in striatal cell lines and primary cortical cultures, both of which being alleviated by insulin and IGF-1. PMID:26876526

  6. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  7. New Insulins and New Aspects in Insulin Delivery.

    PubMed

    Woo, Vincent C

    2015-08-01

    The major abnormality in both type 1 and type 2 diabetes is insulin deficiency. The methods of replacing insulin have improved throughout the decades, but hypoglycemia is still the limiting factor for many individuals with diabetes, and it prevents them from achieving ideal glycemic targets. New insulin and newer delivery systems are being developed that can improve some of the limitations of current insulins or make the delivery of insulins more acceptable for some patients. Extending the duration of action of basal insulins and shortening the peak of fast-acting insulins may have advantages for individuals with diabetes. Different delivery systems may make insulin more acceptable to patients and may have other advantages, which may aid in attaining better glycemic control. PMID:26233724

  8. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... unless it is used in an external insulin pump. In patients with type 2 diabetes, insulin aspart ... also can be used with an external insulin pump. Before using insulin aspart in a pump system, ...

  9. Insulin Detemir (rDNA Origin) Injection

    MedlinePlus

    ... man-made version of human insulin. Insulin detemir works by replacing the insulin that is normally produced ... using an insulin pen, always remove the needle right after you inject your dose. Dispose of needles ...

  10. Combining GLP-1 receptor agonists with insulin: therapeutic rationales and clinical findings.

    PubMed

    Holst, J J; Vilsbøll, T

    2013-01-01

    Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose-dependent manner, thus conferring glycaemic control with a low incidence of hypoglycaemia. GLP-1RAs also promote weight loss, and have beneficial effects on markers of β cell function, lipid levels, blood pressure and cardiovascular risk markers. However, the durability of their effectiveness is unknown and, compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic potential of GLP-1RA-insulin combination therapy, typically showing beneficial effects on glycaemic control and body weight, with a low incidence of hypoglycaemia and, in established insulin therapy, facilitating reductions in insulin dose. In this review, the physiological and pharmacological rationale for using GLP-1RA and insulin therapies in combination is discussed, and data from clinical studies that have assessed the efficacy and safety of this treatment strategy are outlined. PMID:22646532

  11. Black Cohosh Ameliorates Metabolic Disorders in Female Ovariectomized Rats.

    PubMed

    Sun, Yu; Yu, Qiuxiao; Shen, Qiyang; Bai, Wenpei; Kang, Jihong

    2016-06-01

    Estrogen deficiency is associated with metabolic derangements in menopausal women. Black cohosh has been widely used as an alternative therapy in the treatment of menopausal syndrome. However, its role in metabolism needs to be defined. The aim of the present study was to investigate the long-term effect of black cohosh on glucose and lipid metabolism in a rat model of post-menopause. Adult female Sprague-Dawley rats were sham operated (SHAM), ovariectomized (OVX), OVX with the treatment of estradiol valerate (OVX + E), or OVX with the treatment of isopropanolic black cohosh extract (OVX + iCR). Body weight, body composition, and blood glucose levels of the animals were monitored. The rats were then sacrificed after 3 months of the treatments. At the end of the experiment, OVX + iCR and OVX + E rats exhibited a significant decrease in body weight gain, body and abdominal fat mass, serum triglycerides levels, hepatic fat accumulation, and adipocyte hypertrophy compared with OVX rats. In addition, insulin resistance and glucose intolerance were improved in OVX + iCR but not in OVX + E rats. No hepatotoxicity was detected in OVX + iCR animals. Furthermore, western blot analysis suggested the increased lipolysis in adipose tissue of OVX + iCR and OVX + E rats. Data from in vitro experiments using cultured primary rat adipocytes also showed that black cohosh could affect lipolysis of adipocytes. In conclusion, the long-term treatment of black cohosh at a proper dosage ameliorated metabolic derangements in OVX rats. Thus, this drug is promising for the treatment of metabolic disorders in menopausal and post-menopausal women. PMID:26414761

  12. Development of insulin delivery systems.

    PubMed

    Siddiqui, N I; Siddiqui, Ni; Rahman, S; Nessa, A

    2008-01-01

    Delivery system of insulin is vital for its acceptance and adherence to therapy for achieving the glycemic targets. Enormous developments have occurred in the delivery system of insulin during the last twenty years and each improvement was aimed at two common goals: patients convenience and better glycemic control. Till to date, the various insulin delivery systems are: syringes/vials, injection aids, jet injectors, transmucosal delivery, transdermal delivery, external insulin infusion pump, implantable insulin pumps, insulin pens and insulin inhalers. Syringe/vial is the oldest and conventional method, still widely used and relatively cheaper. Modern plastic syringes are disposable, light weight with microfine needle for patients convenience and comfort. Oral route could be the most acceptable and viable, if the barriers can be overcome and under extensive trial. Insulin pen device is an important milestone in the delivery system of insulin as it is convenient, discrete, painless, attractive, portable with flexible life style and improved quality of life. More than 80% of European diabetic patients are using insulin pen. Future digital pen will have better memory option, blood glucose monitoring system, insulin dose calculator etc. Insulin infusion pump is a good option for the children, busy patients with flexible lifestyle and those who want to avoid multiple daily injections. Pulmonary route of insulin delivery is a promising, effective, non-invasive and acceptable alternative method. Exubera, the world first insulin inhaler was approved by FDA in 28 January 2006. But due to certain limitations, it has been withdrawn from the market in October 2007. The main concern of inhaled insulin are: long term pulmonary safety issues, cost effectiveness and user friendly device. In future, more acceptable and cost effective insulin inhaler will be introduced. Newer avenues are under extensive trial for better future insulin delivery systems. PMID:18285745

  13. Tectorigenin Attenuates Palmitate-Induced Endothelial Insulin Resistance via Targeting ROS-Associated Inflammation and IRS-1 Pathway

    PubMed Central

    Zhang, Dong-Yan; Gao, Xue-Jiao; Zhou, Ling; Qin, Xiao-Ying; Xie, Guo-Yong; Liu, Kang; Qin, Yong; Liu, Bao-Lin; Qin, Min-Jian

    2013-01-01

    Tectorigenin is a plant isoflavonoid originally isolated from the dried flower of Pueraria thomsonii Benth. Although its anti-inflammatory and anti-hyperglycosemia effects have been well documented, the effect of tectorigenin on endothelial dysfunction insulin resistance involved has not yet been reported. Herein, this study aims to investigate the action of tectorigenin on amelioration of insulin resistance in the endothelium. Palmitic acid (PA) was chosen as a stimulant to induce ROS production in endothelial cells and successfully established insulin resistance evidenced by the specific impairment of insulin PI3K signaling. Tectorigenin effectively inhibited the ability of PA to induce the production of reactive oxygen species and collapse of mitochondrial membrane potential. Moreover, tectorigenin presented strong inhibition effect on ROS-associated inflammation, as TNF-α and IL-6 production in endothelial cells was greatly reduced with suppression of IKKβ/NF-κB phosphorylation and JNK activation. Tectorigenin also can inhibit inflammation-stimulated IRS-1 serine phosphorylation and restore the impaired insulin PI3K signaling, leading to a decreased NO production. These results demonstrated its positive regulation of insulin action in the endothelium. Meanwhile, tectorigenin down-regulated endothelin-1 and vascular cell adhesion molecule-1 overexpression, and restored the loss of insulin-mediated vasodilation in rat aorta. These findings suggested that tectorigenin could inhibit ROS-associated inflammation and ameliorated endothelial dysfunction implicated in insulin resistance through regulating IRS-1 function. Tectorigenin might have potential to be applied for the management of cardiovascular diseases involved in diabetes and insulin resistance. PMID:23840461

  14. Ovarian tumors secreting insulin.

    PubMed

    Battocchio, Marialberta; Zatelli, Maria Chiara; Chiarelli, Silvia; Trento, Mariangela; Ambrosio, Maria Rosaria; Pasquali, Claudio; De Carlo, Eugenio; Dassie, Francesca; Mioni, Roberto; Rebellato, Andrea; Fallo, Francesco; Degli Uberti, Ettore; Martini, Chiara; Vettor, Roberto; Maffei, Pietro

    2015-08-01

    Combined ovarian germ cell and neuroendocrine tumors are rare. Only few cases of hyperinsulinism due to ovarian ectopic secretion have been hypothesized in the literature. An ovarian tumor was diagnosed in a 76-year-old woman, referred to our department for recurrent hypoglycemia with hyperinsulinism. In vivo tests, in particular fasting test, rapid calcium infusion test, and Octreotide test were performed. Ectopic hyperinsulinemic hypoglycemia was demonstrated in vivo and hypoglycemia disappeared after hysteroadnexectomy. Histological exam revealed an ovarian germ cell tumor with neuroendocrine and Yolk sac differentiation, while immunostaining showed insulin positivity in neuroendocrine cells. A cell culture was obtained by tumoral cells, testing Everolimus, and Pasireotide. Insulin was detected in cell culture medium and Everolimus and Pasireotide demonstrated their potentiality in reducing insulin secretion, more than controlling cell viability. Nine cases of hyperinsulinism due to ovarian ectopic secretion reported in literature have been reviewed. These data confirm the ovarian tissue potentiality to induce hyperinsulinemic hypoglycemic syndrome after neoplastic transformation. PMID:25896552

  15. Acetoacetylation of insulin

    PubMed Central

    Lindsay, D. G.; Shall, S.

    1969-01-01

    Insulin was treated with diketen at pH6·9. The reaction mixture was resolved into four components by DEAE-Sephadex chromatography. The first component was unchanged insulin. The second and third components were shown by end-group analysis to be substituted on phenylalanine B-1 and glycine A-1 respectively. The fourth component was disubstituted on both phenylalanine B-1 and glycine A-1. The ∈-amino group of lysine B-29 was not involved in the reaction at low reagent concentrations. The purity of these derivatives was checked by their electrophoretic behaviour and by measurement of the rate of their reaction with trinitrobenzenesulphonic acid. The hormonal activity of the derivatives was determined. The effect of the modifications on the hormonal activity and the tertiary structure of insulin is discussed. ImagesFig. 10. PMID:5353531

  16. Insulin and carbohydrate dysregulation.

    PubMed

    Gelato, Marie C

    2003-04-01

    Patients with human immunodeficiency virus receiving highly active antiretroviral therapy (HAART) may experience abnormal body composition changes as well as metabolic abnormalities, including dyslipidemia, increases in triglycerides, low high-density lipoprotein cholesterol levels, and abnormal carbohydrate metabolism, ranging from insulin resistance with and without glucose intolerance to frank diabetes. Whether the body composition changes (i.e., increased visceral adiposity and fat wasting in the peripheral tissues) are linked to abnormalities in carbohydrate metabolism is unclear. The use of HAART with and without therapy with protease inhibitors (PIs) is related to carbohydrate abnormalities and changes in body composition. Regimens that include PIs appear to have a higher incidence of insulin resistance (up to 90%) and diabetes mellitus (up to 40%). The etiology of these abnormalities is not well understood; what is known about insulin and carbohydrate dysregulation with HAART is discussed. PMID:12652377

  17. Insulin C-peptide test

    MedlinePlus

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin produced by the body and insulin injected ...

  18. Alternative Devices for Taking Insulin

    MedlinePlus

    ... continuous glucose monitoring (CGM) system an insulin delivery system a computer program that adjusts insulin delivery based on changes in glucose levels CGM systems approved by the U.S. Food and Drug Administration ( ...

  19. Insulin formulations--a review.

    PubMed

    Gualandi-Signorini, A M; Giorgi, G

    2001-01-01

    Although the improvement on insulin therapy since it was first conceived, it is still far from mimicking physiological secretion of pancreatic b-cells and research to find new insulin formulations and new routes of administration continues. Human biosynthetic insulin (rapid-acting, intermediate-acting and long-acting), produced by recombinant DNA technique, is currently available. The pharmacokinetic profile of rapid-acting insulin (regular) does not adequately reproduce the physiological post-prandial insulin response. This has led to the development of molecular analogues with slight modifications that prevent the spontaneous polymerisation underlying delayed absorption. Fast-acting analogues such as Lyspro and Aspart can be injected immediately before the meal, inducing a very fast and substantial peak of insulin, similar to that produced by b-cells, but have the disadvantage of short duration of action. For this reason, and because of the difficulty of obtaining sufficient basal insulin concentrations to control preprandial blood glucose levels with current long-acting insulins, analogues known as Glargine and Detemir have been synthesized. They have virtually no plasma peak and acts for about 24 h. These characteristics make it ideal to cover basal insulin requirement. With insulin analogues, it also seems possible to overcome the problem of intra- and inter-individual variability in absorption after subcutaneous injection. This variability is directly proportional to the duration of insulin action. Research into new routes of administration has led to production of inhaled insulin powder, soon to become commercially available. Insulin is absorbed through the lung alveoli. Trials to evaluate efficacy and toleration have shown that inhaled insulin has a similar kinetic profile to the fast-acting injected analogue and can therefore be used for mealtime requirement, combined with a single daily injection of long-acting insulin. Oral insulin is currently being

  20. Oral Insulin and Buccal Insulin: A Critical Reappraisal

    PubMed Central

    Heinemann, Lutz; Jacques, Yves

    2009-01-01

    Despite the availability of modern insulin injection devices with needles that are so sharp and thin that practically no injection pain takes place, it is still the dream of patients with diabetes to, for example, swallow a tablet with insulin. This is not associated with any pain and would allow more discretion. Therefore, availability of oral insulin would not only ease insulin therapy, it would certainly increase compliance. However, despite numerous attempts to develop such a “tablet” in the past 85 years, still no oral insulin is commercially available. Buccal insulin is currently in the last stages of clinical development by one company and might become available in the United States and Europe in the coming years (it is already on the market in some other countries). The aim of this review is to critically describe the different approaches that are currently under development. Optimal coverage of prandial insulin requirements is the aim with both routes of insulin administration (at least with most approaches). The speed of onset of metabolic effect seen with some oral insulin approaches is rapid, but absorption appears to be lower when the tablet is taken immediately prior to a meal. With all approaches, considerable amounts of insulin have to be applied in order to induce therapeutically relevant increases in the metabolic effect because of the low relative biopotency of buccal insulin. Unfortunately, the number of publications about clinical–experimental and clinical studies is surprisingly low. In addition, there is no study published in which the variability of the metabolic effect induced (with and without a meal) was studied adequately. In summary, after the failure of inhaled insulin, oral insulin and buccal insulin are hot candidates to come to the market as the next alternative routes of insulin administration. PMID:20144297

  1. Cinnamon, glucose and insulin sensitivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compounds found in cinnamon not only improve the function of insulin but also function as antioxidants and may be anti-inflammatory. This is very important since insulin function, antioxidant status, and inflammatory response are closely linked; with decreased insulin sensitivity there is also decr...

  2. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  3. Insulin resistance in the liver: Deficiency or excess of insulin?

    PubMed Central

    Bazotte, Roberto B; Silva, Lorena G; Schiavon, Fabiana PM

    2014-01-01

    In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states. PMID:25486190

  4. [Insulin therapy of diabetes].

    PubMed

    Lechleitner, Monika; Roden, Michael; Weitgasser, Raimund; Ludvik, Bernhard; Fasching, Peter; Hoppichler, Friedrich; Kautzky-Willer, Alexandra; Schernthaner, Guntram; Prager, Rudolf; Wascher, Thomas C

    2016-04-01

    Hyperglycemia contributes to morbidity and mortality in patients with diabetes. Thus, reaching treatment targets with regard to control of glycemia is a central goal in the therapy of diabetic patients. The present article represents the recommendations of the Austrian Diabetes Association for the practical use of insulin according to current scientific evidence and clinical studies. PMID:27052221

  5. Insulin Resistance and Prediabetes

    MedlinePlus

    ... to be used in most health care providers' offices. The clamp is a research tool used by scientists to learn more about glucose metabolism. Research has shown that if blood tests indicate prediabetes, insulin ... care provider's office or commercial facility and sending the sample to ...

  6. New Insulin Delivery Recommendations.

    PubMed

    Frid, Anders H; Kreugel, Gillian; Grassi, Giorgio; Halimi, Serge; Hicks, Debbie; Hirsch, Laurence J; Smith, Mike J; Wellhoener, Regine; Bode, Bruce W; Hirsch, Irl B; Kalra, Sanjay; Ji, Linong; Strauss, Kenneth W

    2016-09-01

    Many primary care professionals manage injection or infusion therapies in patients with diabetes. Few published guidelines have been available to help such professionals and their patients manage these therapies. Herein, we present new, practical, and comprehensive recommendations for diabetes injections and infusions. These recommendations were informed by a large international survey of current practice and were written and vetted by 183 diabetes experts from 54 countries at the Forum for Injection Technique and Therapy: Expert Recommendations (FITTER) workshop held in Rome, Italy, in 2015. Recommendations are organized around the themes of anatomy, physiology, pathology, psychology, and technology. Key among the recommendations are that the shortest needles (currently the 4-mm pen and 6-mm syringe needles) are safe, effective, and less painful and should be the first-line choice in all patient categories; intramuscular injections should be avoided, especially with long-acting insulins, because severe hypoglycemia may result; lipohypertrophy is a frequent complication of therapy that distorts insulin absorption, and, therefore, injections and infusions should not be given into these lesions and correct site rotation will help prevent them; effective long-term therapy with insulin is critically dependent on addressing psychological hurdles upstream, even before insulin has been started; inappropriate disposal of used sharps poses a risk of infection with blood-borne pathogens; and mitigation is possible with proper training, effective disposal strategies, and the use of safety devices. Adherence to these new recommendations should lead to more effective therapies, improved outcomes, and lower costs for patients with diabetes. PMID:27594187

  7. Stimulation of muscle protein synthesis by long-term insulin infusion in severely burned patients.

    PubMed Central

    Sakurai, Y; Aarsland, A; Herndon, D N; Chinkes, D L; Pierre, E; Nguyen, T T; Patterson, B W; Wolfe, R R

    1995-01-01

    OBJECTIVE: To determine if long-term (7 days) infusion of insulin can ameliorate altered protein kinetics in skeletal muscle of severely burned patients and to investigate the hypothesis that changes in protein kinetics during insulin infusion are associated with an increased rate of transmembrane amino acid transport from plasma into the intracellular free amino acid pool. SUMMARY BACKGROUND DATA: In critically ill patients, vigorous nutritional support alone may often fail to entirely curtail muscle catabolism; insulin stimulates muscle protein synthesis in normal volunteers. METHODS: Nine patients with severe burns were studied once during enteral feeding alone (control period), and once after 7 days of high-dose insulin. The order of treatment with insulin was randomized. Data were derived from a model based on a primed-continuous infusion of L-[15N]phenylalanine, sampling of blood from the femoral artery and vein, and biopsies of the vastus lateralis muscle. RESULTS: Net leg muscle protein balance was significantly (p < 0.05) negative during the control period. Exogenous insulin eliminated this negative balance by stimulating protein synthesis approximately 350% (p < 0.01). This was made possible in part by a sixfold increase in the inward transport of amino acids from blood (p < 0.01). There was also a significant increase in leg muscle protein breakdown. The new rates of synthesis, breakdown, and inward transport during insulin were in balance, such that there was no difference in the intracellular phenylalanine concentration from the control period. The fractional synthetic rate of protein in the wound was also stimulated by insulin by approximately 50%, but the response was variable and did not reach significance. CONCLUSIONS: Exogenous insulin may be useful in promoting muscle protein synthesis in severely catabolic patients. PMID:7677459

  8. Selective Insulin Resistance in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  9. Transdermal Insulin Delivery Using Microdermabrasion

    PubMed Central

    Andrews, Samantha; Lee, Jeong Woo; Choi, Seong-O

    2011-01-01

    Purpose Transdermal insulin delivery is an attractive needle-free alternative to subcutaneous injection conventionally used to treat diabetes. However, skin’s barrier properties prevent insulin permeation at useful levels. Methods We investigated whether microdermabrasion can selectively remove skin’s surface layers to increase skin permeability as a method to administer insulin to diabetic rats. We further assessed the relative roles of stratum corneum and viable epidermis as barriers to insulin delivery. Results Pretreatment of skin with microdermabrasion to selectively remove stratum corneum did not have a significant effect on insulin delivery or reduction in blood glucose level (BGL). Removal of full epidermis by microdermabrasion significantly reduced BGL, similar to the positive control involving subcutaneous injection of 0.1U insulin. Significant pharmacokinetic differences between microdermabrasion and subcutaneous injection were faster time to peak insulin concentration after injection and larger peak insulin concentration and area-under-the-curve after microdermabrasion. Conclusions Microdermabrasion can increase skin permeability to insulin at levels sufficient to reduce BGL. Viable epidermis is a barrier to insulin delivery such that removal of full epidermis enables significantly more insulin delivery than removal of stratum corneum alone. PMID:21499837

  10. Evidence against extrapancreatic insulin synthesis.

    PubMed Central

    Eng, J; Yalow, R S

    1981-01-01

    Labeled and unlabeled insulin in acid/ethanol tissue extracts can be concentrated up to 100-fold by using a hydrophobic adsorption technique. After adsorption to and elution from an octadecylsilyl silica column, insulin is recovered in yields greater than 75%. By using this method of concentration, insulin in brain tissues of three of four fed rats and one rabbit was found to be less than 20% of plasma concentration. The kidney is the only extrapancreatic organ in which insulin is observed to be markedly above plasma levels. Porcine-insulin-like material was not detectable in guinea pig tissues (less than 0.02 ng/g). It is concluded that insulin is not synthesized in brain or other extrapancreatic tissues and that other mammalian insulins are not found in guinea pig tissues. PMID:6270683

  11. Insulin degludec for diabetes mellitus.

    PubMed

    2013-07-01

    Over the last few years there has been a steady increase in the number of prescriptions dispensed in primary care for intermediate and long-acting insulin analogues and a reduction in prescriptions for biphasic isophane insulin. For example, in England, the volume of intermediate and long-acting insulin analogues in general practice has risen from approximately 650,000 prescriptions per quarter in 2007 to over 850,000 per quarter in 2012.(1) ▾Insulin degludec (Tresiba, Novo Nordisk) is a new long acting basal insulin analogue for the management of diabetes mellitus in adults.(2) Two strengths of insulin degludec (100 units/mL and 200 units/mL) were launched in the UK in February 2013. Here we discuss evidence for the effectiveness and safety of insulin degludec. PMID:23842634

  12. [Current concept of insulin therapy intensification, and the role of human regular insulin and rapid-acting insulin analogs in insulin treatment].

    PubMed

    Hamaguchi, Tomoya; Sadahiro, Katsuhiko; Satoh, Tomomi

    2015-03-01

    The evolution of insulin therapy from animal insulin to recombinant human regular insulin has improved diabetes treatment. Generating of rapid-acting insulin analogs, mimicking physiologic insulin action enables us to provide better control of post-prandial glucose level and lower incidence of hypoglycemia compared with human regular insulin. These rapid-acting insulin analogs show lower susceptibility of insulin precipitation and catheter occlusions, and are suitable for insulin pump therapy of continuous subcutaneous insulin infusion. Insulin lispro and insulin aspart are also applicable for diabetic patients with pregnancy, requiring excellent glycemic control. In some studies, stepwise addition of prandial insulin, as well as full basal-bolus regimen can improve glycemic control with less hypoglycemia. Treatment intensification with rapid-acting insulin analogs may offer a proper method to reach glycemic goals. PMID:25812371

  13. Cacao polyphenols ameliorate autoimmune myocarditis in mice.

    PubMed

    Zempo, Hirofumi; Suzuki, Jun-Ichi; Watanabe, Ryo; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Komuro, Issei; Isobe, Mitsuaki

    2016-04-01

    Myocarditis is a clinically severe disease; however, no effective treatment has been established. The aim of this study was to determine whether cacao bean (Theobroma cacao) polyphenols ameliorate autoimmune myocarditis. We used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. Mice with induced EAM were treated with a cacao polyphenol extract (CPE, n=12) or vehicle (n=12). On day 21, hearts were harvested and analyzed. Elevated heart weight to body weight and fibrotic area ratios as well as high cardiac cell infiltration were observed in the vehicle-treated EAM mice. However, these increases were significantly suppressed in the CPE-treated mice. Reverse transcriptase-PCR revealed that mRNA expressions of interleukin (Il)-1β, Il-6, E-selectin, vascular cell adhesion molecule-1 and collagen type 1 were lower in the CPE group compared with the vehicle group. The mRNA expressions of nicotinamide adenine dinucleotide phosphate-oxidase (Nox)2 and Nox4 were increased in the vehicle-treated EAM hearts, although CPE treatment did not significantly suppress the transcription levels. However, compared with vehicle treatment of EAM hearts, CPE treatment significantly suppressed hydrogen peroxide concentrations. Cardiac myeloperoxidase activity, the intensity of dihydroethidium staining and the phosphorylation of nuclear factor-κB p65 were also lower in the CPE group compared with the vehicle group. Our data suggest that CPE ameliorates EAM in mice. CPE is a promising dietary supplement to suppress cardiovascular inflammation and oxidative stress. PMID:26657007

  14. Means for limiting and ameliorating electrode shorting

    DOEpatents

    Van Konynenburg, Richard A.; Farmer, Joseph C.

    1999-01-01

    A fuse and filter arrangement for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

  15. Acetylcholinesterase inhibition ameliorates deficits in motivational drive

    PubMed Central

    2012-01-01

    Background Apathy is frequently observed in numerous neurological disorders, including Alzheimer's and Parkinson's, as well as neuropsychiatric disorders including schizophrenia. Apathy is defined as a lack of motivation characterized by diminished goal-oriented behavior and self-initiated activity. This study evaluated a chronic restraint stress (CRS) protocol in modeling apathetic behavior, and determined whether administration of an anticholinesterase had utility in attenuating CRS-induced phenotypes. Methods We assessed behavior as well as regional neuronal activity patterns using FosB immunohistochemistry after exposure to CRS for 6 h/d for a minimum of 21 d. Based on our FosB findings and recent clinical trials, we administered an anticholinesterase to evaluate attenuation of CRS-induced phenotypes. Results CRS resulted in behaviors that reflect motivational loss and diminished emotional responsiveness. CRS-exposed mice showed differences in FosB accumulation, including changes in the cholinergic basal forebrain system. Facilitating cholinergic signaling ameliorated CRS-induced deficits in initiation and motivational drive and rescued immediate early gene activation in the medial septum and nucleus accumbens. Conclusions Some CRS protocols may be useful for studying deficits in motivation and apathetic behavior. Amelioration of CRS-induced behaviors with an anticholinesterase supports a role for the cholinergic system in remediation of deficits in motivational drive. PMID:22433906

  16. Role of Protein Farnesylation in Burn-Induced Metabolic Derangements and Insulin Resistance in Mouse Skeletal Muscle

    PubMed Central

    Tanaka, Tomokazu; Kramer, Joshua; Yu, Yong-Ming; Fischman, Alan J.; Martyn, J. A. Jeevendra; Tompkins, Ronald G.; Kaneki, Masao

    2015-01-01

    Objective Metabolic derangements, including insulin resistance and hyperlactatemia, are a major complication of major trauma (e.g., burn injury) and affect the prognosis of burn patients. Protein farnesylation, a posttranslational lipid modification of cysteine residues, has been emerging as a potential component of inflammatory response in sepsis. However, farnesylation has not yet been studied in major trauma. To study a role of farnesylation in burn-induced metabolic aberration, we examined the effects of farnesyltransferase (FTase) inhibitor, FTI-277, on burn-induced insulin resistance and metabolic alterations in mouse skeletal muscle. Methods A full thickness burn (30% total body surface area) was produced under anesthesia in male C57BL/6 mice at 8 weeks of age. After the mice were treated with FTI-277 (5 mg/kg/day, IP) or vehicle for 3 days, muscle insulin signaling, metabolic alterations and inflammatory gene expression were evaluated. Results Burn increased FTase expression and farnesylated proteins in mouse muscle compared with sham-burn at 3 days after burn. Simultaneously, insulin-stimulated phosphorylation of insulin receptor (IR), insulin receptor substrate (IRS)-1, Akt and GSK-3β was decreased. Protein expression of PTP-1B (a negative regulator of IR-IRS-1 signaling), PTEN (a negative regulator of Akt-mediated signaling), protein degradation and lactate release by muscle, and plasma lactate levels were increased by burn. Burn-induced impaired insulin signaling and metabolic dysfunction were associated with increased inflammatory gene expression. These burn-induced alterations were reversed or ameliorated by FTI-277. Conclusions Our data demonstrate that burn increased FTase expression and protein farnesylation along with insulin resistance, metabolic alterations and inflammatory response in mouse skeletal muscle, all of which were prevented by FTI-277 treatment. These results indicate that increased protein farnesylation plays a pivotal role in burn

  17. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice.

    PubMed

    Carreras, Alba; Zhang, Shelley X L; Almendros, Isaac; Wang, Yang; Peris, Eduard; Qiao, Zhuanhong; Gozal, David

    2015-02-01

    Chronic intermittent hypoxia during sleep (IH), as occurs in sleep apnea, promotes systemic insulin resistance. Resveratrol (Resv) has been reported to ameliorate high-fat diet-induced obesity, inflammation, and insulin resistance. To examine the effect of Resv on IH-induced metabolic dysfunction, male mice were subjected to IH or room air conditions for 8 weeks and treated with either Resv or vehicle (Veh). Fasting plasma levels of glucose, insulin, and leptin were obtained, homeostatic model assessment of insulin resistance index levels were calculated, and insulin sensitivity tests (phosphorylated AKT [also known as protein kinase B]/total AKT) were performed in 2 visceral white adipose tissue (VWAT) depots (epididymal [Epi] and mesenteric [Mes]) along with flow cytometry assessments for VWAT macrophages and phenotypes (M1 and M2). IH-Veh and IH-Resv mice showed initial reductions in food intake with later recovery, with resultant lower body weights after 8 weeks but with IH-Resv showing better increases in body weight vs IH-Veh. IH-Veh and IH-Resv mice exhibited lower fasting glucose levels, but only IH-Veh had increased homeostatic model assessment of insulin resistance index vs all 3 other groups. Leptin levels were preserved in IH-Veh but were significantly lower in IH-Resv. Reduced VWAT phosphorylated-AKT/AKT responses to insulin emerged in both Mes and Epi in IH-Veh but normalized in IH-Resv. Increases total macrophage counts and in M1 to M2 ratios occurred in IH-Veh Mes and Epi compared all other 3 groups. Thus, Resv ameliorates food intake and weight gain during IH exposures and markedly attenuates VWAT inflammation and insulin resistance, thereby providing a potentially useful adjunctive therapy for metabolic morbidity in the context of sleep apnea. PMID:25406018

  18. A novel ligand conjugated nanoparticles for oral insulin delivery.

    PubMed

    Liu, Chong; Shan, Wei; Liu, Min; Zhu, Xi; Xu, Juan; Xu, Yining; Huang, Yuan

    2016-07-01

    In order to enhance the interaction between nanocarrier and gastrointestinal epithelial cells, we developed nanoparticles (NPs) modified with targeting ligand FQSIYPpIK (FQS), which specifically interact with integrin αvβ3 receptor expressing on the intestinal epithelium. The targeting NPs were prepared by coating the insulin-loaded poly(lactide-co-glycolide)-monomethoxy-poly(polyethylene glycol) micelle cores with FQS modified trimethyl chitosan chloride. In in vitro study, the fabricated NPs showed ameliorated drug release profile and improved enzymatic stability compared with micelles alone. In the integrin αvβ3 receptor over-expressed Caco-2 cells model, FQS modified NPs exhibited significantly accelerated intracellular uptake due to the active ligand-receptor mediation. Meanwhile, the targeting NPs also showed enhanced transport across the Caco-2 monolayer cells via both transcellular and paracellular pathways. Besides, orally administered FQS modified NPs produced a prominent hypoglycemic response and an increase of the serum insulin concentration in diabetic rats. Both in vitro and in vivo results demonstrated the FQS peptide modified NPs as promising intestinal cell-targeting nanocarriers for efficient oral delivery of insulin. PMID:26203690

  19. Amelioration of Diabetes by Protein S.

    PubMed

    Yasuma, Taro; Yano, Yutaka; D'Alessandro-Gabazza, Corina N; Toda, Masaaki; Gil-Bernabe, Paloma; Kobayashi, Tetsu; Nishihama, Kota; Hinneh, Josephine A; Mifuji-Moroka, Rumi; Roeen, Ziaurahman; Morser, John; Cann, Isaac; Motoh, Iwasa; Takei, Yoshiyuki; Gabazza, Esteban C

    2016-07-01

    Protein S is an anticoagulant factor that also regulates inflammation and cell apoptosis. The effect of protein S on diabetes and its complications is unknown. This study compared the development of diabetes between wild-type and transgenic mice overexpressing human protein S and the development of diabetic glomerulosclerosis between mice treated with and without human protein S and between wild-type and protein S transgenic mice. Mice overexpressing protein S showed significant improvements in blood glucose level, glucose tolerance, insulin sensitivity, and insulin secretion compared with wild-type counterparts. Exogenous protein S improved insulin sensitivity in adipocytes, skeletal muscle, and liver cell lines in db/db mice compared with controls. Significant inhibition of apoptosis with increased expression of BIRC3 and Bcl-2 and enhanced activation of Akt/PKB was induced by protein S in islet β-cells compared with controls. Diabetic wild-type mice treated with protein S and diabetic protein S transgenic mice developed significantly less severe diabetic glomerulosclerosis than controls. Patients with type 2 diabetes had significantly lower circulating free protein S than healthy control subjects. This study shows that protein S attenuates diabetes by inhibiting apoptosis of β-cells and the development of diabetic nephropathy. PMID:27207541

  20. ANTIOXIDANTS AMELIORATION OF ARSENICAL-INDUCED EFFECTS IN VIVO

    EPA Science Inventory

    Antioxidant amelioration of arsenical-induced effects in vivo. ES Hunter and EH Rogers. Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC.

    Antioxidants have been reported to ameliorate the effects of many developmental toxicants. We tested the hypothesis that oxi...

  1. Insulin improves β-cell function in glucose-intolerant rat models induced by feeding a high-fat diet.

    PubMed

    Li, Hui-qing; Wang, Bao-ping; Deng, Xiu-Ling; Zhang, Jiao-yue; Wang, Yong-bo; Zheng, Juan; Xia, Wen-fang; Zeng, Tian-shu; Chen, Lu-lu

    2011-11-01

    Insulin therapy has been shown to contribute to extended glycemia remission in newly diagnosed patients with type 2 diabetes mellitus. This study investigated the effects of insulin treatment on pancreatic lipid content, and β-cell apoptosis and proliferation in glucose-intolerant rats to explore the protective role of insulin on β-cell function. A rat glucose-intolerant model was induced by streptozotocin and a high-fat diet. Plasma and pancreatic triglycerides, free fatty acids, and insulin were measured; and pancreatic β-cell cell apoptosis and proliferation were detected by a propidium iodide cell death assay and immunofluorescence for proliferating cell nuclear antigen. Relative β-cell area was determined by immunohistochemistry for insulin, whereas insulin production in pancreas was assessed by reverse transcriptase polymerase chain reaction. Islet β-cell secreting function was assessed by the index ΔI30/ΔG30. Glucose-intolerant rats had higher pancreatic lipid content, more islet β-cell apoptosis, lower β-cell proliferation, and reduced β-cell area in pancreas when compared with controls. Insulin therapy reduced blood glucose, inhibited pancreatic lipid accumulation and islet β-cell apoptosis, and increased β-cell proliferation and β-cell area in glucose-intolerant rats. Furthermore, impaired insulin secretion and insulin production in glucose-intolerant rats were improved by insulin therapy. Insulin can preserve β-cell function by protecting islets from glucotoxicity and lipotoxicity. It can also ameliorate β-cell area by enhancing β-cell proliferation and reducing β-cell apoptosis. PMID:21550078

  2. Insulin receptor in Drosophila melanogaster

    SciTech Connect

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  3. Variability of NPH Insulin Preparations

    PubMed Central

    Belmonte, M. M.; Colle, E.; deBelle, R.; Murthy, D. Y. N.

    1971-01-01

    In 1968-69 certain juvenile diabetics receiving NPH insulin began having pre-breakfast glucosuria and mid-morning hypoglycemic reactions. A mail survey of our clinic population and a study done at the Quebec camp for diabetic children in 1969 revealed that certain lot numbers were associated with poor control and that a change to new lot numbers or alternate insulin preparations resulted in better control. “Suspect” insulin preparations and non-suspect insulins were given to newly diagnosed diabetics, and plasma insulin and glucose levels were measured over a 24-hour period. The data confirmed that the “suspect” insulins were causing early hypoglycemia and failing to control hyperglycemia during the latter hours of the 24-hour period. The lower glucose levels were associated with higher plasma insulin levels. The “suspect” insulins were further found to have elevated levels of free insulin in the supernatant fluid. The requirements for quality control of modified insulin preparations are reviewed and suggestions are offered for their improvement. PMID:5539004

  4. Pitfalls of Insulin Pump Clocks

    PubMed Central

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  5. Ameliorative anti-diabetic activity of dangnyosoko, a Chinese herbal medicine, in diabetic rats.

    PubMed

    Kim, Jong-Dae; Kang, Seock-Man; Park, Mee-Yeon; Jung, Tae-Young; Choi, Hae-Yun; Ku, Sae-Kwang

    2007-06-01

    The preventive anti-diabetic effect of dangnyosoko (DNSK), a Chinese herbal medicine, was evaluated in STZ-induced diabetic rats. DNSK was orally administered once a day from 3 d after STZ-induction at 100, 200, and 500 mg/kg for 4 weeks, and the results were compared to those for glibenclamide. Dramatic decreases in body weight and plasma insulin levels and increases in blood and urine glucose levels were detected in STZ-induced diabetic animals with disruption and disappearance of pancreatic islets and increases in glucagon- and decreases in insulin-producing cells. However, these diabetic changes were significantly and dose-dependently inhibited by treatment with DNSK, and DNSK at 100 mg/kg showed more favorable effects than glibenclamide at 5 mg/kg. Based on these results, it is thought that DNSK has favorable effects in ameliorating changes in blood and urine glucose levels and body weight, and that histopathological changes in the pancreas in STZ induce diabetes. PMID:17587685

  6. [Intensified insulin therapy and insulin micro-pumps during pregnancy].

    PubMed

    Galuppi, V

    1994-06-01

    Before conception and during pregnancy in diabetic patients, every possible effort should be made in order to obtain a good, if not perfect, metabolic control and to warrant maternal and fetal health. Multiple daily injections are required to achieve a very strict glucose regulation in pregnant patients with insulin-dependent diabetes mellitus. The most usual intensive insulin administration patterns require 3 premeal doses of short-acting insulin and 1 (at bedtime) or 2 (one in the morning and one at bedtime) injections of intermediate or slow-acting insulin. As an alternative choice, insulin pumps allow a continuous subcutaneous infusion with short-acting insulin according to a basal rate which cover the insulin need during the night and between meals. Premeal and presnack surges of insulin are administrated by the patient herself. Home glucose monitoring must be used to adjust insulin doses. Target glucose levels every diabetic pregnant woman should try to achieve are lower than in non-pregnant women: fasting glycaemia should be below 100 mg/dl, 1 hour post-prandial value below 140 mg/dl and 2 hour post-prandial level below 120 mg/dl. The stricter the control and treatment goals are, the more frequently hypoglycaemia may occur. Hypoglycaemia may be harmful especially for patients with severe diabetic complications and may affect the fetus. Therefore, every pregnant diabetic woman should receive individualized treatment and glycaemic goals according to her clinical features, her compliance and her social and cultural background. PMID:7968932

  7. Clinical Use and Evaluation of Insulin Pens.

    PubMed

    Ginsberg, Barry H

    2016-01-01

    Insulin pens are more accurate and easier to teach than other methods of insulin delivery. They also do not suffer from the risk of mismatch of insulin concentration and type of insulin syringe. The ISO standard used to test insulin pens, however, needs to be updated to reflect their clinical use. PMID:26323484

  8. Basal insulin treatment in type 2 diabetes.

    PubMed

    Hedrington, Maka S; Pulliam, Lindsay; Davis, Stephen N

    2011-06-01

    Insulin glargine is the first 24-h recombinant DNA insulin analog introduced to the market. Substitution of glycine for asparagine and addition of two arginine residues raise the isoelectric point of insulin glargine and result in microprecipitates, delaying absorption from subcutaneous tissue. This delayed absorption result in fairly flat 24-h insulin concentration profiles with no discernible peak. Large, multicenter, randomized, controlled trials in patients with type 2 diabetes show that although NPH insulin and insulin glargine are equally effective in lowering glycosylated hemoglobin (A1c) and fasting blood glucose, there is a clear advantage of insulin glargine over NPH insulin in reducing nocturnal and overall hypoglycemia. Lower risk of hypoglycemia with glargine was also consistently demonstrated by trials comparing insulin glargine and premixed analog insulins. These studies also showed greater reduction in A1c with twice-daily premixed insulins compared with glargine, when insulin glargine was administered without mealtime insulin coverage. Insulin glargine was also compared with another insulin analog, insulin detemir. Trials showed that both insulin analogs are equally effective in lowering A1c and have comparable risk of hypoglycemia. Trials comparing insulin glargine with glucagon-like peptide-1 agonists showed comparable significant reductions in A1c with both regimens. Insulin glargine is well tolerated, has low immunogenicity, reduced risks for acute myocardial infarction, and a lower risk of hypoglycemia compared with NPH insulin in individuals with type 2 diabetes. PMID:21668335

  9. Basal Insulin Treatment in Type 2 Diabetes

    PubMed Central

    Hedrington, Maka S.; Pulliam, Lindsay

    2011-01-01

    Abstract Insulin glargine is the first 24-h recombinant DNA insulin analog introduced to the market. Substitution of glycine for asparagine and addition of two arginine residues raise the isoelectric point of insulin glargine and result in microprecipitates, delaying absorption from subcutaneous tissue. This delayed absorption result in fairly flat 24-h insulin concentration profiles with no discernible peak. Large, multicenter, randomized, controlled trials in patients with type 2 diabetes show that although NPH insulin and insulin glargine are equally effective in lowering glycosylated hemoglobin (A1c) and fasting blood glucose, there is a clear advantage of insulin glargine over NPH insulin in reducing nocturnal and overall hypoglycemia. Lower risk of hypoglycemia with glargine was also consistently demonstrated by trials comparing insulin glargine and premixed analog insulins. These studies also showed greater reduction in A1c with twice-daily premixed insulins compared with glargine, when insulin glargine was administered without mealtime insulin coverage. Insulin glargine was also compared with another insulin analog, insulin detemir. Trials showed that both insulin analogs are equally effective in lowering A1c and have comparable risk of hypoglycemia. Trials comparing insulin glargine with glucagon-like peptide-1 agonists showed comparable significant reductions in A1c with both regimens. Insulin glargine is well tolerated, has low immunogenicity, reduced risks for acute myocardial infarction, and a lower risk of hypoglycemia compared with NPH insulin in individuals with type 2 diabetes. PMID:21668335

  10. Ameliorated GA approach for base station planning

    NASA Astrophysics Data System (ADS)

    Wang, Andong; Sun, Hongyue; Wu, Xiaomin

    2011-10-01

    In this paper, we aim at locating base station (BS) rationally to satisfy the most customs by using the least BSs. An ameliorated GA is proposed to search for the optimum solution. In the algorithm, we mesh the area to be planned according to least overlap length derived from coverage radius, bring into isometric grid encoding method to represent BS distribution as well as its number and develop select, crossover and mutation operators to serve our unique necessity. We also construct our comprehensive object function after synthesizing coverage ratio, overlap ratio, population and geographical conditions. Finally, after importing an electronic map of the area to be planned, a recommended strategy draft would be exported correspondingly. We eventually import HongKong, China to simulate and yield a satisfactory solution.

  11. Insulin Degludec, The New Generation Basal Insulin or Just another Basal Insulin?

    PubMed

    Nasrallah, Sami N; Reynolds, L Raymond

    2012-01-01

    The advances in recombinant DNA technology have led to an improvement in the properties of currently available long-acting insulin analogs. Insulin degludec, a new generation ultra-long-acting basal insulin, currently in phase 3 clinical trials, has a promising future in clinical use. When compared to its rival basal insulin analogs, a longer duration of action and lower incidence of hypoglycemic events in both type 1 and type 2 diabetic patients has been demonstrated.1,2 Its unique mechanism of action is based on multihexamer formation after subcutaneous injection. This reportedly allows for less pharmacodynamic variability and within-subject variability than currently available insulin analogs, and a duration of action that is over 24 hours.3 The lack of proof of carcinogenicity with insulin degludec is yet another factor that would be taken into consideration when choosing the optimal basal insulin for a diabetic individual.4 A formulation of insulin degludec with insulin aspart, Insulin degludec 70%/aspart 30%, may permit improved flexibly of dosing without compromising glycemic control or safety.5. PMID:22879797

  12. Oral Administration of Ginseng Ameliorates Cyclosporine-Induced Pancreatic Injury in an Experimental Mouse Model

    PubMed Central

    Lim, Sun Woo; Doh, Kyoung Chan; Jin, Long; Piao, Shang Guo; Heo, Seong Beom; Zheng, Yu Fen; Bae, Soo Kyung; Chung, Byung Ha; Yang, Chul Woo

    2013-01-01

    Background This study was performed to investigate whether ginseng has a protective effect in an experimental mouse model of cyclosporine-induced pancreatic injury. Methods Mice were treated with cyclosporine (30 mg/kg/day, subcutaneously) and Korean red ginseng extract (0.2 or 0.4 g/kg/day, oral gavage) for 4 weeks while on a 0.01% salt diet. The effect of ginseng on cyclosporine-induced pancreatic islet dysfunction was investigated by an intraperitoneal glucose tolerance test and measurements of serum insulin level, β cell area, macrophage infiltration, and apoptosis. Using an in vitro model, we further examined the effect of ginseng on a cyclosporine-treated insulin-secreting cell line. Oxidative stress was measured by the concentration of 8-hydroxy-2′-deoxyguanosine in serum, tissue sections, and culture media. Results Four weeks of cyclosporine treatment increased blood glucose levels and decreased insulin levels, but cotreatment with ginseng ameliorated the cyclosporine-induced glucose intolerance and hyperglycemia. Pancreatic β cell area was also greater with ginseng cotreatment compared with cyclosporine monotherapy. The production of proinflammatory molecules, such as induced nitric oxide synthase and cytokines, and the level of apoptotic cell death also decreased in pancreatic β cell with ginseng treatment. Consistent with the in vivo results, the in vitro study showed that the addition of ginseng protected against cyclosporine-induced cytotoxicity, inflammation, and apoptotic cell death. These in vivo and in vitro changes were accompanied by decreases in the levels of 8-hydroxy-2′-deoxyguanosine in pancreatic β cell in tissue section, serum, and culture media during cotreatment of ginseng with cyclosporine. Conclusions The results of our in vivo and in vitro studies demonstrate that ginseng has a protective effect against cyclosporine-induced pancreatic β cell injury via reducing oxidative stress. PMID:24009697

  13. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  14. Comparative Study of Protective Effects of Salbutamol and Beclomethasone against Insulin Induced Airway Hyper-reactivity on Isolated Tracheal Smooth Muscle of Guinea Pig

    PubMed Central

    Sharif, Mahjabeen; Tayyaba Khan, Bushra; Bakhtiar, Salman; Anwar, Mohammad Asim

    2015-01-01

    Inhalational insulin was withdrawn from the market due to its potential to produce airway hyper-reactivity and bronchoconstriction. So the present study was designed to explore the acute effects of insulin on airway reactivity of guinea pigs and protective effects of salbutamol and beclomethasone against insulin induced airway hyper-responsiveness on isolated tracheal smooth muscle of guinea pig. Effects of varying concentrations of insulin (10-7 to 10-3 M), insulin pretreated with fixed concentration of salbutamol (10-7 M) and beclomethasone (10-6 M) were studied on isolated tracheal tissue of guinea pig by constructing cumulative concentration response curves. Changes in tracheal smooth muscle contractions were recorded on four channel oscillograph. The mean ± SEM of maximum amplitudes of contraction with increasing concentrations of insulin, insulin pretreated with fixed concentration of salbutamol and beclomethasone were 35 ± 1.13 mm, 14.55 ± 0.62 mm and 22 ± 1.154 mm respectively. Although salbutamol and beclomethasone both had a profound inhibitory effect on insulin induced airway hyper-reactivity, yet salbutamol is more efficacious than beclomethasone. So we suggest that pretreatment of inhaled insulin with salbutamol may be preferred over beclomethasone in amelioration of its potential respiratory adverse effects such as bronchoconstriction. PMID:25901165

  15. Effect of Extended-Release Niacin/Laropiprant Combination on Plasma Adiponectin and Insulin Resistance in Chinese Patients with Dyslipidaemia

    PubMed Central

    Yang, Ya-Ling; Masuda, Daisaku; Yamashita, Shizuya; Tomlinson, Brian

    2015-01-01

    Objectives. This study examined whether the increase of adiponectin associated with extended-release (ER) niacin/laropiprant combination attenuates the adverse effect of niacin on glucose and insulin resistance in Hong Kong Chinese patients with dyslipidaemia. Methods. Patients (N = 121) were treated with ER niacin/laropiprant 1 g/20 mg for 4 weeks and then the dose was doubled for an additional 8 weeks. Measurements of fasting lipids, glucose, insulin, and adiponectin were performed at baseline and during the study. Results. There were significant (P < 0.001) increases in glucose (9.4 ± 13.1%), insulin (70.2 ± 91.0%), HOMA-IR (87.8 ± 103.9%), and adiponectin (169.3 ± 111.6%). The increase in adiponectin was significantly associated with increase in glucose (r = 0.221, P < 0.05), insulin (r = 0.184, P < 0.05), and HOMA-IR (r = 0.237, P < 0.01) and the association remained significant after adjustment for changes in body weight or body fat mass. Conclusion. Treatment with ER niacin/laropiprant led to a significant increase in adiponectin levels but worsening of glucose levels and insulin resistance, and the increase in adiponectin and insulin resistance were correlated suggesting the increase in adiponectin did not ameliorate the deterioration in insulin resistance. Clinical trial is registered with number on WHO-ICTRP: ChiCTR-ONC-10001038. PMID:26063948

  16. The ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) attenuates insulin resistance through suppressing GLUT-2 in rat liver.

    PubMed

    Sharawy, Maha H; El-Awady, Mohammed S; Megahed, Nirmeen; Gameil, Nariman M

    2016-05-01

    This study investigates the effect of the ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) on insulin resistance induced by high-fructose diet (HFD) in rats. Male Sprague Dawley rats were fed 60% HFD for 12 weeks and HMB (320 mg·kg(-1)·day(-1), orally) for 4 weeks. HFD significantly increased fasting insulin, fasting glucose, glycosylated hemoglobin (HBA1C), liver glycogen content, and homeostasis model assessment of insulin resistance (HOMA-IR) index, while it decreased glucose and insulin tolerance. Furthermore, HFD significantly increased serum triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and very low density lipoprotein cholesterol (VLDL-C) levels, while it significantly decreased high density lipoprotein cholesterol (HDL-C). Moreover, HFD significantly increased mRNA expression of glucose transporter type-2 (GLUT-2), the mammalian target of rapamycin (mTOR), and sterol regulatory element-binding protein-1c (SREBP-1c) but decreased peroxisome proliferator-activated receptor-alpha (PPAR-α) in liver. Aortic relaxation to acetylcholine (ACh) was impaired and histopathology showed severe hepatic steatosis. HMB significantly increased insulin tolerance and decreased fasting insulin, HOMA-IR, HBA1C, hepatic glycogen content, serum TG, LDL-C, and VLDL-C. Additionally, HMB enhanced ACh-induced relaxation, ameliorated hepatic steatosis, and decreased mRNA expression of GLUT-2. In conclusion, HMB may attenuate insulin resistance and hepatic steatosis through inhibiting GLUT-2 in liver. PMID:26871756

  17. Hepatic miR-378 targets p110α and controls glucose and lipid homeostasis by modulating hepatic insulin signalling.

    PubMed

    Liu, Wei; Cao, Hongchao; Ye, Cheng; Chang, Cunjie; Lu, Minghua; Jing, Yanyan; Zhang, Duo; Yao, Xuan; Duan, Zhengjun; Xia, Hongfeng; Wang, Yu-Cheng; Jiang, Jingjing; Liu, Mo-Fang; Yan, Jun; Ying, Hao

    2014-01-01

    Understanding the regulation of insulin signalling in tissues provides insights into carbohydrate and lipid metabolism in physiology and disease. Here we show that hepatic miR-378/378* expression changes in response to fasting and refeeding in mice. Mice overexpressing hepatic miR-378/378* exhibit pure hepatic insulin resistance. miR-378 inhibits hepatic insulin signalling through targeting p110α, a subunit of PI3K and hence a critical component of insulin signalling. Knockdown of hepatic p110α mimics the effect of miR-378, while restoration of p110α expression abolishes the action of miR-378 on insulin signalling as well as its systemic effects on glucose and lipid homeostasis. miR-378/378* knockout mice display hypoglycemia and increased hepatic triglyceride level with enhanced insulin sensitivity. Inhibition of hepatic p110α in miR-378/378* knockout mice corrects the abnormal glucose tolerance. Finally, we show that overexpression of hepatic miR-378/378* ameliorates hepatic steatosis in ob/ob mice without exacerbating hyperglycemia. Our findings establish fasting-responsive miR-378 as a critical regulator of hepatic insulin signalling. PMID:25471065

  18. Insulin Glulisine (rDNA origin) Injection

    MedlinePlus

    ... oral medication(s) for diabetes. Insulin glulisine is a short-acting, man-made version of human insulin. Insulin ... contraceptives (birth control pills, patches, rings, injections, or implants); octreotide (Sandostatin); oral medications for diabetes; oral steroids ...

  19. Initiating insulin therapy in type 2 diabetes: benefits of insulin analogs and insulin pens.

    PubMed

    Brunton, Stephen

    2008-08-01

    Despite the development of alternative therapies in recent years, insulin injections remain essential treatment for type 2 diabetes once oral therapy alone becomes inadequate. However, neither patients nor physicians are proactive enough with regard to starting insulin, despite the well-known benefits of early insulin initiation and aggressive dose titration. Barriers to starting insulin therapy are being overcome by developments in insulin and delivery device technology and are the subject of this review. A literature search spanning the last 25 years was carried out to identify publications addressing issues of insulin initiation, how insulin analogs can help overcome barriers to initiation, and the advantages of pen-type insulin delivery systems. Seventy-five publications were identified. These references illustrate that the drawbacks associated with regular exogenous human insulins (soluble and NPH) are improved with modern insulin analogs. The more rapid absorption of prandial insulin analogs compared with human insulin eliminates the need for an injection-meal-interval, increasing convenience, while basal analogs have no discernible peak in activity. Modern insulin delivery devices also have advantages over the traditional vial and syringe. Currently available insulin pens are either durable (insulin cartridge is replaceable; e.g., HumaPen, Eli Lilly [Indianapolis, IN]; NovoPen series, Novo Nordisk [Bagsvaerd, Denmark]) or disposable (prefilled; e.g., FlexPen, Novo Nordisk; SoloSTAR, sanofi-aventis [Paris, France]), with features to aid ease-of-use. These include a large dose selector, dial-up and dial-down facility, and audible clicks when selecting the dose. The potential for dosing errors is thus reduced with pen-type devices, with other benefits including a discreet appearance, ease of learning, and greater user confidence. Collectively, these features contribute to overwhelming patient preference when compared with vials and syringes. Despite the greater

  20. [The discovery of insulin].

    PubMed

    Lestradet, H

    1996-02-01

    When a medical problem is intensively studied by many teams in the world, it is frequent to see the solution found simultaneously in different countries. However that was not exactly the case concerning the extraction of a potent insulin able to cure Diabetes Mellitus. It seems necessary, seventy five years later, when passions are quenched, to reconsider the chronology of the history and put Paolesco but also Collip at the right places much before Banting and Best to whom, by a curious misinterpretation of facts, was attributed the priority of this fundamental discovery. PMID:8705382

  1. [Medication of the month. Insulin glargine (Lantus)].

    PubMed

    Scheen, A J

    2004-02-01

    Insulin glargine (Lantus) is a human insulin analogue produced by recombinant DNA technology and recently launched by Aventis. Modification of the human insulin molecule at position A21 and at the C-terminus of the B-chain results in the formation of a stable compound that is soluble at pH 4.0, but forms amorphous microprecipitates in subcutaneous tissue (pH > 7,4) from which small amounts of insulin glargine are gradually released. The plasma concentration versus time profile of insulin glargine is therefore relatively constant over 24 hours as compared to conventional human insulins, especially NPH. This allows once-daily injection as basal insulin therapy, at any moment of the clock time (but if possible at the same time from day to day). Reproducibility of plasma insulin levels is also improved with insulin glargine as compared to human NPH insulin. Insulin glargine administration should be combined to rapid insulin injections, before each meal in order to control postprandial hyperglycaemia, or with oral antidiabetic agents in type 2 diabetes. The pharmacokinetic properties of insulin glargine allow an easier titration of basal insulin dose, which should facilitate adequate blood glucose control while decreasing the risk of hypoglycaemia, especially during night time. Insulin glargine use is safe with no increased antigenicity, immunogenicity or mitogenicity reactions as compared to human insulin. Optimal use of this new insulin analogue should be integrated in a global management of the diabetic patient as well as in a new culture of insulin therapy. PMID:15112902

  2. Problems in diabetes mellitus management. Insulin resistance.

    PubMed

    Wolfsheimer, K J

    1990-12-01

    Insulin resistance is a cause for morning hyperglycemia seen in diabetic patients. Other reasons for morning hyperglycemia should be eliminated by performing an insulin response test. Once insulin resistance has been established as the cause of hyperglycemia, a step-by-step process should be used to establish the cause of the insulin resistance. Common causes of insulin resistance include hyperadrenocorticism, acromegaly, hyperthyroidism, and obesity. Hepatic disease, renal insufficiency, and sepsis are other causes of insulin resistance in practice. Less common causes include insulin antibodies, pregnancy, neoplasia, hyperandrogenism, and pheochromocytoma. If the underlying cause cannot be found or resolved, then increased doses of insulin are required to manage the hyperglycemia. PMID:2134077

  3. Insulin resistance and muscle insulin receptor substrate‐1 serine hyperphosphorylation

    PubMed Central

    Stuart, Charles A.; Howell, Mary E. A.; Cartwright, Brian M.; McCurry, Melanie P.; Lee, Michelle L.; Ramsey, Michael W.; Stone, Michael H.

    2014-01-01

    Abstract Insulin resistance in metabolic syndrome subjects is profound in spite of muscle insulin receptor and insulin‐responsive glucose transporter (GLUT4) expression being nearly normal. Insulin receptor tyrosine kinase phosphorylation of insulin receptor substrate‐1 (IRS‐1) at Tyr896 is a necessary step in insulin stimulation of translocation of GLUT4 to the cell surface. Serine phosphorylation of IRS‐1 by some kinases diminishes insulin action in mice. We evaluated the phosphorylation status of muscle IRS‐1 in 33 subjects with the metabolic syndrome and seventeen lean controls. Each underwent euglycemic insulin clamps and a thigh muscle biopsy before and after 8 weeks of either strength or endurance training. Muscle IRS‐1 phosphorylation at six sites was quantified by immunoblots. Metabolic syndrome muscle IRS‐1 had excess phosphorylation at Ser337 and Ser636 but not at Ser307, Ser789, or Ser1101. Ser337 is a target for phosphorylation by glycogen synthase kinase 3 (GSK3) and Ser636 is phosphorylated by c‐Jun N‐terminal kinase 1 (JNK1). Exercise training without weight loss did not change the IRS‐1 serine phosphorylation. These data suggest that baseline hyperphosphorylation of at least two key serines within muscle IRS‐1 diminishes the transmission of the insulin signal and thereby decreases the insulin‐stimulated translocation of GLUT4. Excess fasting phosphorylation of muscle IRS‐1 at Ser636 may be a major cause of the insulin resistance seen in obesity and might prevent improvement in insulin responsiveness when exercise training is not accompanied by weight loss. PMID:25472611

  4. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    SciTech Connect

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  5. Prokineticin Receptor‐1 Is a New Regulator of Endothelial Insulin Uptake and Capillary Formation to Control Insulin Sensitivity and Cardiovascular and Kidney Functions

    PubMed Central

    Dormishian, Mojdeh; Turkeri, Gulen; Urayama, Kyoji; Nguyen, Thu Lan; Boulberdaa, Mounia; Messaddeq, Nadia; Renault, Gilles; Henrion, Daniel; Nebigil, Canan G.

    2013-01-01

    recruitment and insulin uptake and improved heart and kidney function and insulin resistance. Conclusions We show a novel role for endothelial PKR1 signaling in cardiac, renal, and metabolic functions by regulating transendothelial insulin uptake and endothelial cell proliferation. Targeting endothelial PKR1 may serve as a therapeutic strategy for ameliorating these disorders. PMID:24152983

  6. Resource guide 2004. Insulin delivery.

    PubMed

    2004-01-01

    Syringes...pumps...jet infectors...pens...infusers...they all do the same basic thing--deliver insulin. These items carry insulin through the outermost layer of skin and into fatty tissue so it can be used by the body. This section will also cover injection aids, products designed to make infecting easier. PMID:14976945

  7. [Endogenous hyperlactatemia and insulin secretion].

    PubMed

    Ribes, G; Valette, G; Lignon, F; Loubatières-Mariani, M M

    1978-01-01

    In the normal anesthetized dog, the endogenous hyperlactatemia induced either by intense muscular work or by a high dose of phenformin (20 mg/kg subtucaneously) is followed by an increase in the pancreaticoduodenal insulin output. A previous perfusion of sodium dichloroacetate (50 mg/kg. h) opposes the hyperlactatemia, and reduces or suppresses the increase in insulin output. PMID:150887

  8. Insulin Signaling and Heart Failure.

    PubMed

    Riehle, Christian; Abel, E Dale

    2016-04-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin-resistant states such as type 2 diabetes mellitus and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes mellitus alters the systemic and neurohumoral milieu, leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead box O transcriptional signaling or glucose transport, which may also impair cardiac metabolism, structure, and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed. PMID:27034277

  9. Insulin Neuroprotection and the Mechanisms

    PubMed Central

    Yu, Li-Yun; Pei, Yu

    2015-01-01

    Objective: To analyze the mechanism of neuroprotection of insulin and which blood glucose range was benefit for insulin exerting neuroprotective action. Data Sources: The study is based on the data from PubMed. Study Selection: Articles were selected with the search terms “insulin”, “blood glucose”, “neuroprotection”, “brain”, “glycogen”, “cerebral ischemia”, “neuronal necrosis”, “glutamate”, “γ-aminobutyric acid”. Results: Insulin has neuroprotection. The mechanisms include the regulation of neurotransmitter, promoting glycogen synthesis, and inhibition of neuronal necrosis and apoptosis. Insulin could play its role in neuroprotection by avoiding hypoglycemia and hyperglycemia. Conclusions: Intermittent and long-term infusion insulin may be a benefit for patients with ischemic brain damage at blood glucose 6–9 mmol/L. PMID:25836621

  10. siRNA-Based Therapy Ameliorates Glomerulonephritis

    PubMed Central

    Shimizu, Hideki; Hori, Yuichi; Kaname, Shinya; Yamada, Koei; Nishiyama, Nobuhiro; Matsumoto, Satoru; Miyata, Kanjiro; Oba, Makoto; Yamada, Akira; Kataoka, Kazunori

    2010-01-01

    RNA interference by short interfering RNAs (siRNAs) holds promise as a therapeutic strategy, but use of siRNAs in vivo remains limited. Here, we developed a system to target delivery of siRNAs to glomeruli via poly(ethylene glycol)-poly(l-lysine)-based vehicles. The siRNA/nanocarrier complex was approximately 10 to 20 nm in diameter, a size that would allow it to move across the fenestrated endothelium to access to the mesangium. After intraperitoneal injection of fluorescence-labeled siRNA/nanocarrier complexes, we detected siRNAs in the blood circulation for a prolonged time. Repeated intraperitoneal administration of a mitogen-activated protein kinase 1 (MAPK1) siRNA/nanocarrier complex suppressed glomerular MAPK1 mRNA and protein expression in a mouse model of glomerulonephritis; this improved kidney function, reduced proteinuria, and ameliorated glomerular sclerosis. Furthermore, this therapy reduced the expression of the profibrotic markers TGF-β1, plasminogen activator inhibitor-1, and fibronectin. In conclusion, we successfully silenced intraglomerular genes with siRNA using nanocarriers. This technique could aid the investigation of molecular mechanisms of renal disease and has potential as a molecular therapy of glomerular diseases. PMID:20203158

  11. Resveratrol Pretreatment Ameliorates TNBS Colitis in Rats

    PubMed Central

    Yildiz, Gulserap; Yildiz, Yuksel; Ulutas, Pinar A.; Yaylali, Aslı; Ural, Muruvvet

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease in humans constituting a major health concern today whose prevalence has been increasing over the world. Production of reactive oxygen species (ROS) and disturbed capacity of antioxidant defense in IBD subjects have been reported. Antioxidants may play a significant role in IBD treatment. This study aimed at evaluating ameliorative effects of intraperitoneal resveratrol pretreatment on trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. Thirty five Wistar-Albino female rats were divided equally into five groups. Inflammation was induced by the intrarectal administration of TNBS under anesthesia. Intraperitoneal administration of resveratrol (RSV) at a concentration of 10mg/kg/day for 5 days before the induction of colitis significantly reduced microscopy score and malondialdehyde (MDA) levels and increased glutathione peroxidase (GSH Px) activity compared to TNBS and vehicle groups. Also an insignificant increase in catalase (CAT) activity was observed in the RSV treated group compared to TNBS and vehicle groups. In this paper, the most recent patent on the identification and treatment of IBD was indicated. In conclusion, antioxidant RSV proved to have a beneficial effect on TNBS colitis in rats. In light of these advantageous results, the RSV can be considered as adjuvant agent in IBD treatments. PMID:26246013

  12. Resveratrol Pretreatment Ameliorates TNBS Colitis in Rats.

    PubMed

    Yildiz, Gulserap; Yildiz, Yuksel; Ulutas, Pinar A; Yaylali, Asl; Ural, Muruvvet

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease in humans constituting a major health concern today whose prevalence has been increasing over the world. Production of reactive oxygen species (ROS) and disturbed capacity of antioxidant defense in IBD subjects have been reported. Antioxidants may play a significant role in IBD treatment. This study aimed at evaluating ameliorative effects of intraperitoneal resveratrol pretreatment on trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. Thirty five Wistar-Albino female rats were divided equally into five groups. Inflammation was induced by the intrarectal administration of TNBS under anesthesia. Intraperitoneal administration of resveratrol (RSV) at a concentration of 10mg/kg/day for 5 days before the induction of colitis significantly reduced microscopy score and malondialdehyde (MDA) levels and increased glutathione peroxidase (GSH Px) activity compared to TNBS and vehicle groups. Also an insignificant increase in catalase (CAT) activity was observed in the RSV treated group compared to TNBS and vehicle groups. In this paper, the most recent patent on the identification and treatment of IBD was indicated. In conclusion, antioxidant RSV proved to have a beneficial effect on TNBS colitis in rats. In light of these advantageous results, the RSV can be considered as adjuvant agent in IBD treatments. PMID:26246013

  13. Insulin and insulin like growth factor II endocytosis and signaling via insulin receptor B

    PubMed Central

    2013-01-01

    Background Insulin and insulin-like growth factors (IGFs) act on tetrameric tyrosine kinase receptors controlling essential functions including growth, metabolism, reproduction and longevity. The insulin receptor (IR) binds insulin and IGFs with different affinities triggering different cell responses. Results We showed that IGF-II induces cell proliferation and gene transcription when IR-B is over-expressed. We combined biotinylated ligands with streptavidin conjugated quantum dots and visible fluorescent proteins to visualize the binding of IGF-II and insulin to IR-B and their ensuing internalization. By confocal microscopy and flow cytometry in living cells, we studied the internalization kinetic through the IR-B of both IGF-II, known to elicit proliferative responses, and insulin, a regulator of metabolism. Conclusions IGF-II promotes a faster internalization of IR-B than insulin. We propose that IGF-II differentially activates mitogenic responses through endosomes, while insulin-activated IR-B remains at the plasma membrane. This fact could facilitate the interaction with key effector molecules involved in metabolism regulation. PMID:23497114

  14. Insulin Responsiveness in Metabolic Syndrome after Eight Weeks of Cycle Training

    PubMed Central

    Stuart, Charles A.; South, Mark A.; Lee, Michelle L.; McCurry, Melanie P.; Howell, Mary E. A.; Ramsey, Michael W.; Stone, Michael H.

    2013-01-01

    Introduction Insulin resistance in obesity is decreased after successful diet and exercise. Aerobic exercise training alone was evaluated as an intervention in subjects with the metabolic syndrome. Methods Eighteen non-diabetic, sedentary subjects, eleven with the metabolic syndrome, participated in eight weeks of increasing intensity stationary cycle training. Results Cycle training without weight loss did not change insulin resistance in metabolic syndrome subjects or sedentary control subjects. Maximal oxygen consumption (VO2max), activated muscle AMP-dependent kinase, and muscle mitochondrial marker ATP synthase all increased. Strength, lean body mass, and fat mass did not change. Activated mammalian target of rapamycin was not different after training. Training induced a shift in muscle fiber composition in both groups but in opposite directions. The proportion of 2x fibers decreased with a concomitant increase in 2a mixed fibers in the control subjects, but in metabolic syndrome, 2x fiber proportion increased and type 1 fibers decreased. Muscle fiber diameters increased in all three fiber types in metabolic syndrome subjects. Muscle insulin receptor expression increased in both groups and GLUT4 expression increased in the metabolic syndrome subjects. Excess phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser337 in metabolic syndrome muscle tended to increase further after training in spite of a decrease in total IRS-1. Conclusion In the absence of weight loss, cycle training of metabolic syndrome subjects resulted in enhanced mitochondrial biogenesis, and increased expression of insulin receptors and GLUT4 in muscle, but did not decrease the insulin resistance. The failure for the insulin signal to proceed past IRS-1 tyrosine phosphorylation may be related to excess serine phosphorylation at IRS-1 Ser337 and this is not ameliorated by eight weeks of endurance exercise training. PMID:23669880

  15. Genistein reduced insulin resistance index through modulating lipid metabolism in ovariectomized rats.

    PubMed

    Choi, Joo Sun; Koh, In-Uk; Song, Jihyun

    2012-11-01

    Postmenopausal women are at higher risk for obesity and insulin resistance due to the decline of estrogen, but genistein, a phytoestrogen, may reduce the risks of these diet-related diseases. In this study, we hypothesized that supplemental genistein has beneficial effects on insulin resistance in an ovariectomized rat model by modulating lipid metabolism. Three weeks after a sham surgery (sham) or an ovariectomy (OVX), ovariectomized Sprague-Dawley rats were placed on a diet containing 0 (OVX group) or 0.1% genistein for 4 weeks. The sham rats were fed a high-fat diet containing 0% genistein and served as the control group (sham group). The ovariectomized rats showed increases in body weight and insulin resistance index, but genistein reduced insulin resistance index and the activity of hepatic fatty acid synthetase. Genistein was also associated with increased activity of succinate dehydrogenase and carnitine palmitoyltransferase and the rate of β-oxidation in the fat tissue of rats. The ovariectomized rats given genistein had smaller-sized adipocytes. Using gene-set enrichment analysis (GSEA) of microarray data, we found that a number of gene sets of fatty acid metabolism, insulin resistance, and oxidative stress were differentially expressed by OVX and reversed by genistein. This systemic approach of GSEA enables the identification of such consensus between the gene expression changes and phenotypic changes caused by OVX and genistein supplementation. Genistein treatment could help reduce insulin resistance through the amelioration of OVX-induced metabolic dysfunction, and the GSEA approach may be useful in proposing putative targets related to insulin resistance. PMID:23176795

  16. Mechanisms of insulin resistance in the amygdala: influences on food intake.

    PubMed

    Areias, Maria Fernanda Condes; Prada, Patricia Oliveira

    2015-04-01

    Obesity is increasing worldwide and is triggered, at least in part, by enhanced caloric intake. Food intake is regulated by a complex mechanism involving the hypothalamus and hindbrain circuitries. However, evidences have showing that reward systems are also important in regulating feeding behavior. In this context, amygdala is considered a key extra-hypothalamic area regulating feeding behavior in human beings and rodents. This review focuses on the regulation of food intake by amygdala and the mechanisms of insulin resistance in this brain area. Similar to the hypothalamus the anorexigenic effect of insulin is mediated via PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B) pathway in the amygdala. Insulin decreases NPY (neuropeptide Y) and increases oxytocin mRNA levels in the amygdala. High fat diet and saturated fatty acids induce inflammation, ER (endoplasmic reticulum) stress and the activation of serine kinases such as PKCθ (protein kinase C theta), JNK (c-Jun N-terminal kinase) and IKKβ (inhibitor of nuclear factor kappa-B kinase beta) in the amygdala, which have an important role in insulin resistance in this brain region. Overexpressed PKCθ in the CeA (central nucleus of amygdala) of rats increases weight gain, food intake, insulin resistance and hepatic triglycerides content. The inhibition of ER stress ameliorates insulin action/signaling, increases oxytocin and decreases NPY gene expression in the amygdala of high fat feeding rodents. Those data suggest that PKCθ and ER stress are main mechanisms of insulin resistance in the amygdala of obese rats and play an important role regulating feeding behavior. PMID:25601576

  17. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  18. Ursolic acid and rosiglitazone combination improves insulin sensitivity by increasing the skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat diet-fed C57BL/6J mice.

    PubMed

    Sundaresan, Arjunan; Radhiga, Thangaiyan; Pugalendi, Kodukkur Viswanathan

    2016-06-01

    The aim of this present study was to investigate the effect of ursolic acid (UA) and rosiglitazone (RSG) on insulin sensitivity and proximal insulin signaling pathways in high-fat diet (HFD)-fed C57/BL/6J mice. Male C57BL/6J mice were fed either normal diet or HFD for 10 weeks, after which animals in each dietary group were divided into the following six groups (normal diet, normal diet plus UA and RSG, HFD alone, HFD plus UA, HFD plus RSG, and HFD plus UA and RSG) for the next 5 weeks. UA (5 mg/kg BW) and RSG (4 mg/kg BW) were administered as suspensions directly into the stomach using a gastric tube. The HFD diet elevated fasting plasma glucose, insulin, and homeostasis model assessment index. The expression of insulin receptor substrate (IRS)-1, phosphoinositide 3-kinase (PI3-kinase), Akt, and glucose transporter (GLUT) 4 were determined by Western blot analyses. The results demonstrated that combination treatment (UA/RSG) ameliorated HFD-induced glucose intolerance and insulin resistance by improving the homeostatic model assessment (HOMA) index. Further, combination treatment (UA/RSG) stimulated the IRS-1, PI3-kinase, Akt, and GLUT 4 translocation. These results strongly suggest that combination treatment (UA/RSG) activates IRS-PI3-kinase-Akt-dependent signaling pathways to induce GLUT 4 translocation and increases the expression of insulin receptor to improve glucose intolerance. PMID:27090933

  19. Autoantibodies to Insulin Receptor Spontaneously Develop as Anti-Idiotypes in Mice Immunized with Insulin

    NASA Astrophysics Data System (ADS)

    Shechter, Yoram; Maron, Ruth; Elias, Dana; Cohen, Irun R.

    1982-04-01

    Mice immunized with insulin developed antibodies to both insulin and the insulin receptor. The antibodies to insulin receptor displaced labeled insulin from insulin receptors and mimicked the actions of insulin in stimulating the oxidation of glucose and its incorporation into lipids, and in inhibiting lipolysis. The antibodies to insulin receptor could be blocked by or bound to the antibodies to insulin, and therefore were identified as anti-idiotypes. Thus, immunization against a hormone may activate spontaneously an idiotype-anti-idiotype network resulting in antibodies to the hormone receptor.

  20. Abnormal Secretion of Insulin and Glucagon by the In Vitro Perfused Pancreas of the Genetically Diabetic Chinese Hamster

    PubMed Central

    Frankel, Barbara J.; Gerich, John E.; Hagura, Ryoko; Fanska, Rudy E.; Gerritsen, George C.; Grodsky, Gerold M.

    1974-01-01

    Hereditary insulin-deficient diabetes mellitus occurs in certain sublines of nonobese Chinese hamsters. Several characteristics of this syndrome are similar to those seen in insulin-deficient human diabetics. Therefore, to characterize pancreatic islet function, dynamic insulin and glucagon release from normal and nonketotic diabetic hamster pancreases in response to glucose (300 mg/100 ml) and theophylline (10 mM), infused singly and together, was studied in vitro. 20-min glucose infusions of normal hamster pancreases caused biphasic insulin release, consisting of a rapid first peak and a gradually rising second phase, similar to that reported for man in vivo. Both phases were significantly reduced in the diabetic pancreases. Theophylline alone stimulated similar nonphasic insulin release in both the normal and the diabetic pancreases. Glucose and theophylline together caused greater insulin release than either stimulant alone in both normals and diabetics; however, the diabetic response was still subnormal. Glucose suppressed glucagon release from normal pancreases; suppression was significantly impaired in diabetics. Theophylline stimulated nonphasic glucagon release in both the normals and diabetics. Glucose partially suppressed the theophylline-stimulated release in both groups. Insulin/glucagon molar ratios of the diabetics were consistently subnormal, although individual hormone levels often overlapped into the normal range. In summary, the pancreases of genetically diabetic Chinese hamsters perfused in vitro showed: (a) decreased first and second phase insulin release in response to glucose-containing stimuli—only partially ameliorated by theophylline—, and (b) impaired suppression of glucagon in response to glucose, resulting in (c) a decreased insulin/glucagon molar ratio. These data support the suggestion that both alpha and beta cells of diabetic pancreases may be insensitive to glucose. Images PMID:4830228

  1. Cell factories for insulin production.

    PubMed

    Baeshen, Nabih A; Baeshen, Mohammed N; Sheikh, Abdullah; Bora, Roop S; Ahmed, Mohamed Morsi M; Ramadan, Hassan A I; Saini, Kulvinder Singh; Redwan, Elrashdy M

    2014-01-01

    The rapid increase in the number of diabetic patients globally and exploration of alternate insulin delivery methods such as inhalation or oral route that rely on higher doses, is bound to escalate the demand for recombinant insulin in near future. Current manufacturing technologies would be unable to meet the growing demand of affordable insulin due to limitation in production capacity and high production cost. Manufacturing of therapeutic recombinant proteins require an appropriate host organism with efficient machinery for posttranslational modifications and protein refolding. Recombinant human insulin has been produced predominantly using E. coli and Saccharomyces cerevisiae for therapeutic use in human. We would focus in this review, on various approaches that can be exploited to increase the production of a biologically active insulin and its analogues in E. coli and yeast. Transgenic plants are also very attractive expression system, which can be exploited to produce insulin in large quantities for therapeutic use in human. Plant-based expression system hold tremendous potential for high-capacity production of insulin in very cost-effective manner. Very high level of expression of biologically active proinsulin in seeds or leaves with long-term stability, offers a low-cost technology for both injectable as well as oral delivery of proinsulin. PMID:25270715

  2. The Antidiabetic Effect of Garlic Oil is Associated with Ameliorated Oxidative Stress but Not Ameliorated Level of Pro-inflammatory Cytokines in Skeletal Muscle of Streptozotocin-induced Diabetic Rats

    PubMed Central

    Liu, Cheng-Tzu; Hsu, Tien-Wei; Chen, Ke-Ming; Tan, Ya-Ping; Lii, Chong-Kuei; Sheen, Lee-Yan

    2012-01-01

    Oxidative stress and inflammatory condition has been broadly accepted being associated with the progression of diabetes. On the other hand, garlic (大蒜 dà suàn, bulb of Allium sativum) has been shown to possess both antioxidant and anti-inflammatory action in several clinical conditions. Our previous study demonstrated that treatment with garlic oil improves oral glucose tolerance and insulin tolerance and improves the insulin-stimulated utilization of glucose to synthesize glycogen in skeletal muscle in streptozotocin (STZ)-induced diabetes, in vivo and ex vivo, respectively. The aim of the present study is to investigate the antioxidant and anti-inflammatory effects of garlic oil (GO) in the skeletal muscle of diabetic rats. Rats with STZ-induced diabetes received GO (10, 50, or 100 mg/kg body weight) or corn oil by gavage every other day for 3 weeks. Control rats received corn oil only. GO dose-dependently improved insulin sensitivity, as assessed by the insulin tolerance test, and oral glucose tolerance. GO significantly elevated total glutathione and glutathione peroxidase activity and lowered the nitrate/nitrite content in skeletal muscle at 50 and 100 mg/kg and significantly elevated glutathione reductase activity and lowered lipid peroxidation at 100 mg/kg. By contrast, GO did not reverse diabetes-induced elevation of IL-1β and TNF-α in skeletal muscle at any tested dose. On the other hand, GO elevated the expression of GLUT4 in skeletal muscle along with glycogen content as observed with PAS staining. In conclusion, the antidiabetic effect of garlic oil is associated with ameliorated oxidative stress in skeletal muscle. PMID:24716126

  3. Biologically active insulin-derived peptides.

    PubMed

    Fawcett, Janet

    2014-06-01

    Insulin has many actions within cells many of which are dependent on the cell type. For example, insulin stimulates glucose uptake in adipose tissue and skeletal muscle but not in liver. In liver glucose influx will increase as insulin stimulates the phosphorylation of glucose and eventual storage in the form of glycogen. Insulin also increases glucose oxidation, decreases glucose production, decreases lipolysis, increases protein synthesis and inhibits protein degradation in addition to others. Many actions have been related to insulin binding to its receptor and subsequent phosphorylation cascades, but insulin action on protein degradation has been shown to be linked to insulin degradation, specifically insulin degradation by the insulin-degrading enzyme (IDE). This activity has been shown to be due to an interaction of IDE with the proteasome, which is responsible for degradation of ubiquitin-tagged proteins. Smaller fragments of insulin that are produced by the action of IDE that do not bind to the insulin receptor show a small effect on protein degradation and a modest effect on mitogenesis. These small fragments do however inhibit lipolysis in a similar manner to insulin. If fragments are larger and can bind to the receptor they have been shown to increase glucose oxidation. Studies show that fragments of the insulin molecule have cellular activity, and that the varied actions of insulin are not completely controlled by insulin binding to the insulin receptor, even though the mechanisms may not be mutually exclusive. PMID:24559166

  4. Engineered Commensal Bacteria Reprogram Intestinal Cells Into Glucose-Responsive Insulin-Secreting Cells for the Treatment of Diabetes

    PubMed Central

    Duan, Franklin F.; Liu, Joy H.

    2015-01-01

    The inactive full-length form of GLP-1(1-37) stimulates conversion of both rat and human intestinal epithelial cells into insulin-secreting cells. We investigated whether oral administration of human commensal bacteria engineered to secrete GLP-1(1-37) could ameliorate hyperglycemia in a rat model of diabetes by reprogramming intestinal cells into glucose-responsive insulin-secreting cells. Diabetic rats were fed daily with human lactobacilli engineered to secrete GLP-1(1-37). Diabetic rats fed GLP-1–secreting bacteria showed significant increases in insulin levels and, additionally, were significantly more glucose tolerant than those fed the parent bacterial strain. These rats developed insulin-producing cells within the upper intestine in numbers sufficient to replace ∼25–33% of the insulin capacity of nondiabetic healthy rats. Intestinal tissues in rats with reprogrammed cells expressed MafA, PDX-1, and FoxA2. HNF-6 expression was observed only in crypt epithelia expressing insulin and not in epithelia located higher on the villous axis. Staining for other cell markers in rats treated with GLP-1(1-37)–secreting bacteria suggested that normal function was not inhibited by the close physical proximity of reprogrammed cells. These results provide evidence of the potential for a safe and effective nonabsorbed oral treatment for diabetes and support the concept of engineered commensal bacterial signaling to mediate enteric cell function in vivo. PMID:25626737

  5. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes.

    PubMed

    Duan, Franklin F; Liu, Joy H; March, John C

    2015-05-01

    The inactive full-length form of GLP-1(1-37) stimulates conversion of both rat and human intestinal epithelial cells into insulin-secreting cells. We investigated whether oral administration of human commensal bacteria engineered to secrete GLP-1(1-37) could ameliorate hyperglycemia in a rat model of diabetes by reprogramming intestinal cells into glucose-responsive insulin-secreting cells. Diabetic rats were fed daily with human lactobacilli engineered to secrete GLP-1(1-37). Diabetic rats fed GLP-1-secreting bacteria showed significant increases in insulin levels and, additionally, were significantly more glucose tolerant than those fed the parent bacterial strain. These rats developed insulin-producing cells within the upper intestine in numbers sufficient to replace ∼25-33% of the insulin capacity of nondiabetic healthy rats. Intestinal tissues in rats with reprogrammed cells expressed MafA, PDX-1, and FoxA2. HNF-6 expression was observed only in crypt epithelia expressing insulin and not in epithelia located higher on the villous axis. Staining for other cell markers in rats treated with GLP-1(1-37)-secreting bacteria suggested that normal function was not inhibited by the close physical proximity of reprogrammed cells. These results provide evidence of the potential for a safe and effective nonabsorbed oral treatment for diabetes and support the concept of engineered commensal bacterial signaling to mediate enteric cell function in vivo. PMID:25626737

  6. Lipid signals and insulin resistance.

    PubMed

    Zhang, Chongben; Klett, Eric L; Coleman, Rosalind A

    2013-12-01

    The metabolic syndrome, a cluster of metabolic derangements that include obesity, glucose intolerance, dyslipidemia and hypertension, is a major risk factor for cardiovascular disease. Insulin resistance has been proposed to be the common feature that links obesity to the metabolic syndrome, but the mechanism remains obscure. Although the excess content of triacylglycerol in muscle and liver is highly associated with insulin resistance in these tissues, triacylglycerol itself is not causal but merely a marker. Thus, attention has turned to the accumulation of cellular lipids known to have signaling roles. This review will discuss recent progress in understanding how glycerolipids and related lipid intermediates may impair insulin signaling. PMID:24533033

  7. Insulin Receptor Signaling in Normal and Insulin-Resistant States

    PubMed Central

    Boucher, Jérémie; Kleinridders, André; Kahn, C. Ronald

    2014-01-01

    In the wake of the worldwide increase in type-2 diabetes, a major focus of research is understanding the signaling pathways impacting this disease. Insulin signaling regulates glucose, lipid, and energy homeostasis, predominantly via action on liver, skeletal muscle, and adipose tissue. Precise modulation of this pathway is vital for adaption as the individual moves from the fed to the fasted state. The positive and negative modulators acting on different steps of the signaling pathway, as well as the diversity of protein isoform interaction, ensure a proper and coordinated biological response to insulin in different tissues. Whereas genetic mutations are causes of rare and severe insulin resistance, obesity can lead to insulin resistance through a variety of mechanisms. Understanding these pathways is essential for development of new drugs to treat diabetes, metabolic syndrome, and their complications. PMID:24384568

  8. Cutaneous allergy to human (recombinant DNA) insulin.

    PubMed

    Grammer, L C; Metzger, B E; Patterson, R

    1984-03-16

    p6 report two cases of cutaneous allergy to human (recombinant DNA) insulin. Each patient had a history of systemic allergic reactions to porcine insulin and was at least as reactive to human as to porcine insulin by end-point cutaneous titration. Both patients' insulin allergy was managed with animal insulins and both have done well. Our experience with these two patients indicates that human insulin (rDNA) should not be expected to be efficacious in all patients with systemic allergy to insulin. PMID:6366262

  9. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2010-02-01

    When Exubera (EXU), the first inhaled insulin formulation to make it through the clinical development process, was introduced to the market some years ago it was hoped that this would be the first in a series of novel insulin formulations applied by this route. In addition, it was hoped that inhaled insulin would pave the way for other alternative routes of insulin administration (ARIA), i.e. oral insulin, nasal insulin or transdermal insulin to mention only some of the different attempts that have been studied in the last 90 years. The failure of EXU, i.e. its withdrawal from the market due to insufficient market success, was followed by the cessation of nearly all other attempts to develop inhaled insulin formulations. Currently there is only one company (MannKind) which moves sturdily ahead with their Technosphere insulin. This company has submitted an NDA for their product recently and hopes to bring it to the market by the end of 2010 or early 2011. Even if the product is able to pass the approval hurdles in the USA and Europe, this does not guarantee that it will become a market success. Many diabetologists were sceptical about the need/advantages of inhaled insulin/EXU from the start and the introduction of this product has raised even more scepticism. Reports about 'side effects' (development of lung cancer in patients treated with EXU) of inhaled insulin are also not helpful, even if the causality of the appearance of cancer with this type of insulin therapy is not proven. One of the very negative consequences of stopping EXU are the huge financial losses to Pfizer. The managers in charge in other pharmaceutical companies and also most venture capitalists are reluctant to invest in ARIA nowadays. This in turn means that many of the small companies that try to develop new forms of insulin administration have issues when they try to find a big brother and/or sufficient financial support. Clearly the economic crisis has further aggravated this issue. One can

  10. PPARγ Antagonist Gleevec Improves Insulin Sensitivity and Promotes the Browning of White Adipose Tissue.

    PubMed

    Choi, Sun-Sil; Kim, Eun-Sun; Jung, Ji-Eun; Marciano, David P; Jo, Ala; Koo, Ja Young; Choi, Soo Youn; Yang, Yong Ryoul; Jang, Hyun-Jun; Kim, Eung-Kyun; Park, Jiyoung; Kwon, Hyug Moo; Lee, In Hee; Park, Seung Bum; Myung, Kyung-Jae; Suh, Pann-Ghill; Griffin, Patrick R; Choi, Jang Hyun

    2016-04-01

    Blocking phosphorylation of peroxisome proliferator-activated receptor (PPAR)γ at Ser(273) is one of the key mechanisms for antidiabetes drugs to target PPARγ. Using high-throughput phosphorylation screening, we here describe that Gleevec blocks cyclin-dependent kinase 5-mediated PPARγ phosphorylation devoid of classical agonism as a PPARγ antagonist ligand. In high fat-fed mice, Gleevec improved insulin sensitivity without causing severe side effects associated with other PPARγ-targeting drugs. Furthermore, Gleevec reduces lipogenic and gluconeogenic gene expression in liver and ameliorates inflammation in adipose tissues. Interestingly, Gleevec increases browning of white adipose tissue and energy expenditure. Taken together, the results indicate that Gleevec exhibits greater beneficial effects on both glucose/lipid metabolism and energy homeostasis by blocking PPARγ phosphorylation. These data illustrate that Gleevec could be a novel therapeutic agent for use in insulin resistance and type 2 diabetes. PMID:26740599

  11. Oral Probiotic Microcapsule Formulation Ameliorates Non-Alcoholic Fatty Liver Disease in Bio F1B Golden Syrian Hamsters

    PubMed Central

    Bhathena, Jasmine; Martoni, Christopher; Kulamarva, Arun; Tomaro-Duchesneau, Catherine; Malhotra, Meenakshi; Paul, Arghya; Urbanska, Aleksandra Malgorzata; Prakash, Satya

    2013-01-01

    The beneficial effect of a microencapsulated feruloyl esterase producing Lactobacillus fermentum ATCC 11976 formulation for use in non-alcoholic fatty liver disease (NAFLD) was investigated. For which Bio F1B Golden Syrian hamsters were fed a methionine deficient/choline devoid diet to induce non-alcoholic fatty liver disease. Results, for the first time, show significant clinical benefits in experimental animals. Examination of lipids show that concentrations of hepatic free cholesterol, esterified cholesterol, triglycerides and phospholipids were significantly lowered in treated animals. In addition, serum total cholesterol, triglycerides, uric acid and insulin resistance were found to decrease in treated animals. Liver histology evaluations showed reduced fat deposits. Western blot analysis shows significant differences in expression levels of key liver enzymes in treated animals. In conclusion, these findings suggest the excellent potential of using an oral probiotic formulation to ameliorate NAFLD. PMID:23554890

  12. Parathyroidectomy Ameliorates Glucose and Blood Pressure Control in a Patient with Primary Hyperparathyroidism, Type 2 Diabetes, and Hypertension

    PubMed Central

    Kumar, Alok; Singh, Sunita

    2015-01-01

    Effect of parathyroidectomy on glucose control and hypertension is controversial. Here, we report a case of a patient with primary hyperparathyroidism, type 2 diabetes mellitus, and hypertension in whom parathyroidectomy ameliorated both glucose control and blood pressure. Once high serum calcium levels were noticed, ultrasonography of neck confirmed a well-defined oval hypoechoic mass posterior to the right lobe of the thyroid, confirmed by scintiscan. Parathyroidectomy resulted in improvement of blood pressure and blood glucose. We could stop insulin and antihypertensive medications. We conclude that in patients with type 2 diabetes with vague complaints like fatigue, body ache, and refractory hypertension, as a part of the diagnostic workup, clinicians should also check serum calcium levels and parathyroid hormone to rule out hyperparathyroidism. Correction of hyperparathyroidism may result in improvement of hypertension and glucose control. PMID:26380561

  13. Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats.

    PubMed

    Chang, Wen-Chang; Wu, James Swi-Bea; Chen, Chen-Wen; Kuo, Po-Ling; Chien, Hsu-Min; Wang, Yuh-Tai; Shen, Szu-Chuan

    2015-12-01

    Excess free fatty acid accumulation from abnormal lipid metabolism results in the insulin resistance in peripheral cells, subsequently causing hyperinsulinemia, hyperglycemia and/or hyperlipidemia in diabetes mellitus (DM) patients. Herein, we investigated the effect of phenolic acids on glucose uptake in an insulin-resistant cell-culture model and on hepatic insulin resistance and inflammation in rats fed a high-fat diet (HFD). The results show that vanillic acid (VA) demonstrated the highest glucose uptake ability among all tested phenolic acids in insulin-resistant FL83B mouse hepatocytes. Furthermore, rats fed HFD for 16 weeks were orally administered with VA daily (30 mg/kg body weight) at weeks 13-16. The results show that levels of serum insulin, glucose, triglyceride, and free fatty acid were significantly decreased in VA-treated HFD rats (p < 0.05), indicating the protective effects of VA against hyperinsulinemia, hyperglycemia and hyperlipidemia in HFD rats. Moreover, VA significantly reduced values of area under the curve for glucose (AUCglucose) in oral glucose tolerance test and homeostasis model assessment-insulin resistance (HOMA-IR) index, suggesting the improving effect on glucose tolerance and insulin resistance in HFD rats. The Western blot analysis revealed that VA significantly up-regulated expression of hepatic insulin-signaling and lipid metabolism-related protein, including insulin receptor, phosphatidylinositol-3 kinase, glucose transporter 2, and phosphorylated acetyl CoA carboxylase in HFD rats. VA also significantly down-regulated hepatic inflammation-related proteins, including cyclooxygenase-2 and monocyte chemoattractant protein-1 expressions in HFD rats. These results indicate that VA might ameliorate insulin resistance via improving hepatic insulin signaling and alleviating inflammation pathways in HFD rats. These findings also suggest the potential of VA in preventing the progression of DM. PMID:26633482

  14. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2011-02-01

    The predominant number of papers published from the middle of 2009 to the middle of 2010 about alternative routes of insulin administration (ARIA) were still about inhaled insulin. Long-term experience with Exubera was the topic of a number of publications that are also of relevance for inhaled insulin in general. The clinical trials performed with AIR insulin by Eli Lilly were published in a supplement issue of one diabetes technology journal and most of these will be presented. A number of other publications (also one in a high ranked journal) about their inhaled insulin were from another company: MannKind. The driving force behind Technosphere insulin (TI) - which is the only one still in clinical development - is Al Mann; he has put a lot of his personal fortune in this development. We will know the opinion of the regulatory authorities about TI in the near future; however, I am personally relatively confident that the Food and Drug Administration will provide TI with market approval. The more critical question for me is: will diabetologists and patients jump on this product once it becomes commercially available? Will it become a commercial success? In view of many negative feelings in the scientific community about inhaled insulin, it might be of help that MannKind publish their studies with TI systematically. Acknowledging being a believer in this route of insulin administration myself, one has to state that Exubera and AIR insulin had not offered profound advantages in terms of pharmacokinetic (PK) and pharmacodynamic (PD) properties in comparison with subcutaneously (SC) applied regular human insulin (RHI) and rapid-acting insulin analogues. The time-action profiles of these inhaled insulins were more or less comparable with that of rapid-acting insulin analogues. This is clearly different with TI which exhibits a strong metabolic effect shortly after application and a rapid decline in the metabolic effect thereafter; probably the duration of action is

  15. Alternative Devices for Taking Insulin

    MedlinePlus

    ... the day. Pumps can also give "bolus" doses—one-time larger doses—of insulin at meals and at times when blood glucose is too high based on the programming set by the user. Frequent blood glucose monitoring ...

  16. [Alternative routes for insulin administration].

    PubMed

    Lassmann-Vague, V

    1994-01-01

    Ideally, insulin administration should be done through portal route, with a precise kinetic. It should also lead to a reproducible biologic effect, with minimal side-effects and be acceptable for the majority of diabetic patients. Many alternative routes of insulin administration try to fulfill one or more of these criteria. Intraperitoneal route is already used with implantable pumps. It has proven safety and metabolic efficacy, particularly upon the reduction of severe hypoglycaemia. Nasal route could provide a rapid kinetic, but its long-term utilisation depends on improvement of bioavailability and studies of local toxicity. Results concerning intrabronchic insulin seem promising, but are still preliminary. In the future, the choice among these alternative routes of insulin administration will be guided by the development of a closed-loop system. PMID:8001707

  17. Okara ameliorates glucose tolerance in GK rats

    PubMed Central

    Hosokawa, Masaya; Katsukawa, Michiko; Tanaka, Hiroshi; Fukuda, Hitomi; Okuno, Sonomi; Tsuda, Kinsuke; Iritani, Nobuko

    2016-01-01

    Okara, a food by-product from the production of tofu and soy milk, is rich in three beneficial components: insoluble dietary fiber, β-conglycinin, and isoflavones. Although isoflavones and β-conglycinin have recently been shown to improve glucose tolerance, the effects of okara have not yet been elucidated. Therefore, we herein investigated the effects of okara on glucose tolerance in Goto-Kakizaki (GK) rats, a representative animal model of Japanese type 2 diabetes. Male GK rats were fed a 10% lard diet with or without 5% dry okara powder for 2 weeks and an oral glucose tolerance test was performed. Rats were then fed each diet for another week and sacrificed. The expression of genes that are the master regulators of glucose metabolism in adipose tissue was subsequently examined. No significant differences were observed in body weight gain or food intake between the two groups of GK rats. In the oral glucose tolerance test, increases in plasma glucose levels were suppressed by the okara diet. The mRNA expression levels of PPARγ, adiponectin, and GLUT4, which up-regulate the effects of insulin, were increased in epididymal adipose tissue by the okara diet. These results suggest that okara provides a useful means for treating type 2 diabetes. PMID:27257347

  18. Okara ameliorates glucose tolerance in GK rats.

    PubMed

    Hosokawa, Masaya; Katsukawa, Michiko; Tanaka, Hiroshi; Fukuda, Hitomi; Okuno, Sonomi; Tsuda, Kinsuke; Iritani, Nobuko

    2016-05-01

    Okara, a food by-product from the production of tofu and soy milk, is rich in three beneficial components: insoluble dietary fiber, β-conglycinin, and isoflavones. Although isoflavones and β-conglycinin have recently been shown to improve glucose tolerance, the effects of okara have not yet been elucidated. Therefore, we herein investigated the effects of okara on glucose tolerance in Goto-Kakizaki (GK) rats, a representative animal model of Japanese type 2 diabetes. Male GK rats were fed a 10% lard diet with or without 5% dry okara powder for 2 weeks and an oral glucose tolerance test was performed. Rats were then fed each diet for another week and sacrificed. The expression of genes that are the master regulators of glucose metabolism in adipose tissue was subsequently examined. No significant differences were observed in body weight gain or food intake between the two groups of GK rats. In the oral glucose tolerance test, increases in plasma glucose levels were suppressed by the okara diet. The mRNA expression levels of PPARγ, adiponectin, and GLUT4, which up-regulate the effects of insulin, were increased in epididymal adipose tissue by the okara diet. These results suggest that okara provides a useful means for treating type 2 diabetes. PMID:27257347

  19. Central insulin signaling is attenuated by long-term insulin exposure via insulin receptor substrate-1 serine phosphorylation, proteasomal degradation, and lysosomal insulin receptor degradation.

    PubMed

    Mayer, Christopher M; Belsham, Denise D

    2010-01-01

    Central insulin signaling is critical for the prevention of insulin resistance. Hyperinsulinemia contributes to insulin resistance, but it is not yet clear whether neurons are subject to cellular insulin resistance. We used an immortalized, hypothalamic, clonal cell line, mHypoE-46, which exemplifies neuronal function and expresses the components of the insulin signaling pathway, to determine how hyperinsulinemia modifies neuronal function. Western blot analysis indicated that prolonged insulin treatment of mHypoE-46 cells attenuated insulin signaling through phospho-Akt. To understand the mechanisms involved, time-course analysis was performed. Insulin exposure for 4 and 8 h phosphorylated Akt and p70-S6 kinase (S6K1), whereas 8 and 24 h treatment decreased insulin receptor (IR) and IR substrate 1 (IRS-1) protein levels. Insulin phosphorylation of S6K1 correlated with IRS-1 ser1101 phosphorylation and the mTOR-S6K1 pathway inhibitor rapamycin prevented IRS-1 serine phosphorylation. The proteasomal inhibitor epoxomicin and the lysosomal pathway inhibitor 3-methyladenine prevented the degradation of IRS-1 and IR by insulin, respectively, and pretreatment with rapamycin, epoxomicin, or 3-methyladenine prevented attenuation of insulin signaling by long-term insulin exposure. Thus, a sustained elevation of insulin levels diminishes neuronal insulin signaling through mTOR-S6K1-mediated IRS-1 serine phosphorylation, proteasomal degradation of IRS-1 and lysosomal degradation of the IR. PMID:19887566

  20. Insulin delivery methods: Past, present and future

    PubMed Central

    Shah, Rima B.; Patel, Manhar; Maahs, David M.; Shah, Viral N.

    2016-01-01

    Many patients with advanced type 2 diabetes mellitus (T2DM) and all patients with T1DM require insulin to keep blood glucose levels in the target range. The most common route of insulin administration is subcutaneous insulin injections. There are many ways to deliver insulin subcutaneously such as vials and syringes, insulin pens, and insulin pumps. Though subcutaneous insulin delivery is the standard route of insulin administration, it is associated with injection pain, needle phobia, lipodystrophy, noncompliance and peripheral hyperinsulinemia. Therefore, the need exists for delivering insulin in a minimally invasive or noninvasive and in most physiological way. Inhaled insulin was the first approved noninvasive and alternative way to deliver insulin, but it has been withdrawn from the market. Technologies are being explored to make the noninvasive delivery of insulin possible. Some of the routes of insulin administration that are under investigation are oral, buccal, nasal, peritoneal and transdermal. This review article focuses on the past, present and future of various insulin delivery techniques. This article has focused on different possible routes of insulin administration with its advantages and limitation and possible scope for the new drug development. PMID:27014614

  1. Insulin delivery methods: Past, present and future.

    PubMed

    Shah, Rima B; Patel, Manhar; Maahs, David M; Shah, Viral N

    2016-01-01

    Many patients with advanced type 2 diabetes mellitus (T2DM) and all patients with T1DM require insulin to keep blood glucose levels in the target range. The most common route of insulin administration is subcutaneous insulin injections. There are many ways to deliver insulin subcutaneously such as vials and syringes, insulin pens, and insulin pumps. Though subcutaneous insulin delivery is the standard route of insulin administration, it is associated with injection pain, needle phobia, lipodystrophy, noncompliance and peripheral hyperinsulinemia. Therefore, the need exists for delivering insulin in a minimally invasive or noninvasive and in most physiological way. Inhaled insulin was the first approved noninvasive and alternative way to deliver insulin, but it has been withdrawn from the market. Technologies are being explored to make the noninvasive delivery of insulin possible. Some of the routes of insulin administration that are under investigation are oral, buccal, nasal, peritoneal and transdermal. This review article focuses on the past, present and future of various insulin delivery techniques. This article has focused on different possible routes of insulin administration with its advantages and limitation and possible scope for the new drug development. PMID:27014614

  2. The Insulin Receptor: A New Target for Cancer Therapy

    PubMed Central

    Malaguarnera, Roberta; Belfiore, Antonino

    2011-01-01

    A large body of evidences have shown that both the IGF-I receptor (IGF-IR) and the insulin receptor (IR) play a role in cancer development and progression. In particular, IR overactivation by IGF-II is common in cancer cells, especially in dedifferentiated/stem-like cells. In spite of these findings, until very recently, only IGF-IR but not IR has been considered a target in cancer therapy. Although several preclinical studies have showed a good anti-cancer activity of selective anti-IGF-IR drugs, the results of the clinical first trials have been disappointing. In fact, only a small subset of malignant tumors has shown an objective response to these therapies. Development of resistance to anti-IGF-IR drugs may include upregulation of IR isoform A (IR-A) in cancer cells and its overactivation by increased secretion of autocrine IGF-II. These findings have led to the concept that co-targeting IR together with IGF-IR may increase therapy efficacy and prevent adaptive resistance to selective anti-IGF-IR drugs. IR blockade should be especially considered in tumors with high IR-A:IGF-IR ratio and high levels of autocrine IGF-II. Conversely, insulin sensitizers, which ameliorate insulin resistance associated with metabolic disorders and cancer treatments, may have important implications for cancer prevention and management. Only few drugs co-targeting the IR and IGF-IR are currently available. Ideally, future IR targeting strategies should be able to selectively inhibit the tumor promoting effects of IR without impairing its metabolic effects. PMID:22654833

  3. Intervention of D-glucose ameliorates the toxicity of streptozotocin in accessory sex organs of rat

    SciTech Connect

    Vikram, A.; Tripathi, D.N.; Ramarao, P.; Jena, G.B.

    2008-01-01

    Streptozotocin (STZ) is a naturally occurring compound isolated from Streptomyces achromogens. It is used extensively for inducing diabetes in experimental animals. Diabetes mellitus is known to have proven adverse effects on male sexual organs and their reproductive functions. The atrophy of prostate gland and other organs of the genitourinary tract were observed in experimental diabetic animals. STZ exhibits a structural resemblance to D-glucose due to the presence of sugar moiety in its structure. Pancreatic {beta}-cells mainly contain GLUT1 and GLUT2 glucose transporters. Possibly due to structural resemblance, STZ and D-glucose, share a common recognition site for entry into the {beta}-cells. The objective of the present study is to evaluate the effect of D-glucose on STZ-induced toxicity in accessory sex organs of male rats. Animals were kept on overnight fasting. One group received vehicle and served as negative control, while all other groups were given STZ (45 mg/kg). Animals that received only STZ served as positive control. The effect of D-glucose was studied on STZ treated animals with different dosage of D-glucose (250, 500, 1000 and 2000 mg/kg). Restoration of body weight, plasma glucose and plasma insulin was evident only at 1000 and 2000 mg/kg of D-glucose. The protective effect of D-glucose is evident only when it is administered simultaneously with STZ. In the present investigation, we report that simultaneous administration of D-glucose along with STZ ameliorates STZ-induced toxicity. This is evident from the restoration of accessory sex organ's weight, cellular morphology as well as insulin level.

  4. Dietary cocoa ameliorates obesity-related inflammation in high fat-fed mice

    PubMed Central

    Gu, Yeyi; Yu, Shan

    2013-01-01

    Purpose To investigate the effect of cocoa powder supplementation on obesity-related inflammation in high fat (HF)-fed obese mice. Methods Male C57BL/6J (n = 126) were fed with either low-fat (LF, 10 % kcal from fat) or HF (60 % kcal from fat) diet for 18 weeks. After 8 weeks, mice from HF group were randomized to HF diet or HF diet supplemented with 8 % cocoa powder (HF–HFC group) for 10 weeks. Blood and tissue samples were collected for biochemical analyses. Results Cocoa powder supplementation significantly reduced the rate of body weight gain (15.8 %) and increased fecal lipid content (55.2 %) compared to HF-fed control mice. Further, cocoa supplementation attenuated insulin resistance, as indicated by improved HOMA-IR, and reduced the severity of obesity-related fatty liver disease (decreased plasma alanine aminotransferase and liver triglyceride) compared to HF group. Cocoa supplementation also significantly decreased plasma levels of the pro-inflammatory mediators interleukin-6 (IL-6, 30.4 %), monocyte chemoattractant protein-1 (MCP-1, 25.2 %), and increased adiponectin (33.7 %) compared to HF-fed mice. Expression of pro-inflammatory genes (Il6, Il12b, Nos2, and Emr1) in the stromal vascular fraction (SVF) of the epididymal white adipose tissue (WAT) was significantly reduced (37–56 %) in the cocoa-supplemented mice. Conclusions Dietary supplementation with cocoa ameliorates obesity-related inflammation, insulin resistance, and fatty liver disease in HF-fed obese mice, principally through the down-regulation of pro-inflammatory gene expression in WAT. These effects appear to be mediated in part by a modulation of dietary fat absorption and inhibition of macrophage infiltration in WAT. PMID:23494741

  5. Biosimilar insulins: a European perspective.

    PubMed

    DeVries, J H; Gough, S C L; Kiljanski, J; Heinemann, L

    2015-05-01

    Biosimilar insulins are likely to enter clinical practice in Europe in the near future. It is important that clinicians are familiar with and understand the concept of biosimilarity and how a biosimilar drug may differ from its reference product. The present article provides an overview of biosimilars, the European regulatory requirements for biosimilars and safety issues. It also summarizes the current biosimilars approved in Europe and the key clinical issues associated with the use of biosimilar insulins. PMID:25376600

  6. Cardiovascular effects of basal insulins.

    PubMed

    Mannucci, Edoardo; Giannini, Stefano; Dicembrini, Ilaria

    2015-01-01

    Basal insulin is an important component of treatment for both type 1 and type 2 diabetes. One of the principal aims of treatment in patients with diabetes is the prevention of diabetic complications, including cardiovascular disease. There is some evidence, although controversial, that attainment of good glycemic control reduces long-term cardiovascular risk in both type 1 and type 2 diabetes. The aim of this review is to provide an overview of the potential cardiovascular safety of the different available preparations of basal insulin. Current basal insulin (neutral protamine Hagedorn [NPH], or isophane) and basal insulin analogs (glargine, detemir, and the more recent degludec) differ essentially by various measures of pharmacokinetic and pharmacodynamic effects in the bloodstream, presence and persistence of peak action, and within-subject variability in the glucose-lowering response. The currently available data show that basal insulin analogs have a lower risk of hypoglycemia than NPH human insulin, in both type 1 and type 2 diabetes, then excluding additional harmful effects on the cardiovascular system mediated by activation of the adrenergic system. Given that no biological rationale for a possible difference in cardiovascular effect of basal insulins has been proposed so far, available meta-analyses of publicly disclosed randomized controlled trials do not show any signal of increased risk of major cardiovascular events between the different basal insulin analogs. However, the number of available cardiovascular events in these trials is very small, preventing any clear-cut conclusion. The results of an ongoing clinical trial comparing glargine and degludec with regard to cardiovascular safety will provide definitive evidence. PMID:26203281

  7. Cardiovascular effects of basal insulins

    PubMed Central

    Mannucci, Edoardo; Giannini, Stefano; Dicembrini, Ilaria

    2015-01-01

    Basal insulin is an important component of treatment for both type 1 and type 2 diabetes. One of the principal aims of treatment in patients with diabetes is the prevention of diabetic complications, including cardiovascular disease. There is some evidence, although controversial, that attainment of good glycemic control reduces long-term cardiovascular risk in both type 1 and type 2 diabetes. The aim of this review is to provide an overview of the potential cardiovascular safety of the different available preparations of basal insulin. Current basal insulin (neutral protamine Hagedorn [NPH], or isophane) and basal insulin analogs (glargine, detemir, and the more recent degludec) differ essentially by various measures of pharmacokinetic and pharmacodynamic effects in the bloodstream, presence and persistence of peak action, and within-subject variability in the glucose-lowering response. The currently available data show that basal insulin analogs have a lower risk of hypoglycemia than NPH human insulin, in both type 1 and type 2 diabetes, then excluding additional harmful effects on the cardiovascular system mediated by activation of the adrenergic system. Given that no biological rationale for a possible difference in cardiovascular effect of basal insulins has been proposed so far, available meta-analyses of publicly disclosed randomized controlled trials do not show any signal of increased risk of major cardiovascular events between the different basal insulin analogs. However, the number of available cardiovascular events in these trials is very small, preventing any clear-cut conclusion. The results of an ongoing clinical trial comparing glargine and degludec with regard to cardiovascular safety will provide definitive evidence. PMID:26203281

  8. Biosimilar insulins: a European perspective

    PubMed Central

    DeVries, J H; Gough, S C L; Kiljanski, J; Heinemann, L

    2015-01-01

    Biosimilar insulins are likely to enter clinical practice in Europe in the near future. It is important that clinicians are familiar with and understand the concept of biosimilarity and how a biosimilar drug may differ from its reference product. The present article provides an overview of biosimilars, the European regulatory requirements for biosimilars and safety issues. It also summarizes the current biosimilars approved in Europe and the key clinical issues associated with the use of biosimilar insulins. PMID:25376600

  9. Intravenous Mycobacterium Bovis Bacillus Calmette-Guérin Ameliorates Nonalcoholic Fatty Liver Disease in Obese, Diabetic ob/ob Mice

    PubMed Central

    Inafuku, Masashi; Matsuzaki, Goro; Oku, Hirosuke

    2015-01-01

    Inflammation and immune response profoundly influence metabolic syndrome and fatty acid metabolism. To analyze influence of systemic inflammatory response to metabolic syndrome, we inoculated an attenuated vaccine strain of Mycobacterium bovis Bacillus Calmette–Guérin (BCG) into leptin-deficient ob/ob mice. BCG administration significantly decreased epididymal white adipose tissue weight, serum insulin levels, and a homeostasis model assessment of insulin resistance. Serum high molecular weight (HMW) adiponectin level and HMW/total adiponectin ratio of the BCG treated mice were significantly higher than those of control mice. Hepatic triglyceride accumulation and macrovesicular steatosis were markedly alleviated, and the enzymatic activities and mRNA levels of lipogenic-related genes in liver were significantly decreased in the BCG injected mice. We also exposed human hepatocellular carcinoma HepG2 cells to high levels of palmitate, which enhanced endoplasmic reticulum stress-related gene expression and impaired insulin-stimulated Akt phosphorylation (Ser473). BCG treatment ameliorated both of these detrimental events. The present study therefore suggested that BCG administration suppressed development of nonalcoholic fatty liver disease, at least partly, by alleviating fatty acid-induced insulin resistance in the liver. PMID:26039731

  10. Antiresistin RNA Oligonucleotide Ameliorates Diet-Induced Nonalcoholic Fatty Liver Disease in Mice through Attenuating Proinflammatory Cytokines.

    PubMed

    Tan, Yi; Jin, Xing Liang; Lao, Weiguo; Kim, Jane; Xiao, Linda; Qu, Xianqin

    2015-01-01

    The aim of this study was to determine whether inhibition of resistin by a synthetic antiresistin RNA (oligonucleotide) oligo ameliorates metabolic and histological abnormalities in nonalcoholic fatty liver disease (NAFLD) induced by high-fat diet (HFD) in mice. The antiresistin RNA oligo and a scrambled control oligo (25 mg/kg of body weight) were i.p. injected to HFD mice. Serum metabolic parameters and hepatic enzymes were measured after 4-week treatment. The treatment significantly reduced epididymal fat and attenuated the elevated serum resistin, cholesterol, triglycerides, glucose, and insulin with an improved glucose tolerance test. Antiresistin RNA oligo also normalized serum AST and ALT levels with improved pathohistology of NAFLD. Immunoblotting and qRT-PCR revealed that decreased protein and mRNA expression of resistin in fat and liver tissues of the treated mice were associated with reduction of adipose TNF-α and IL-6 expression and secretion into circulation. mRNA and protein expression of hepatic phosphoenolpyruvate carboxykinase (PEPCK) and sterol regulatory element-binding protein-1c (SREBP-1c) were also significantly decreased in the treated mice. Our results suggest that resistin may exacerbate NAFLD in metabolic syndrome through upregulating inflammatory cytokines and hepatic PEPCK and SREBP-1c. Antiresistin RNA oligo ameliorated metabolic abnormalities and histopathology of NAFLD through attenuating proinflammatory cytokines. PMID:25922835

  11. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting.

    PubMed

    Figueroa-Clarevega, Alejandra; Bilder, David

    2015-04-01

    Tumors kill patients not only through well-characterized perturbations to their local environment but also through poorly understood pathophysiological interactions with distant tissues. Here, we use a Drosophila tumor model to investigate the elusive mechanisms underlying such long-range interactions. Transplantation of tumors into adults induces robust wasting of adipose, muscle, and gonadal tissues that are distant from the tumor, phenotypes that resemble the cancer cachexia seen in human patients. Notably, malignant, but not benign, tumors induce peripheral wasting. We identify the insulin growth factor binding protein (IGFBP) homolog ImpL2, an antagonist of insulin signaling, as a secreted factor mediating wasting. ImpL2 is sufficient to drive tissue loss, and insulin activity is reduced in peripheral tissues of tumor-bearing hosts. Importantly, knocking down ImpL2, specifically in the tumor, ameliorates wasting phenotypes. We propose that the tumor-secreted IGFBP creates insulin resistance in distant tissues, thus driving a systemic wasting response. PMID:25850672

  12. Delayed improvement of insulin secretion after autologous islet transplantation in partially pancreatectomized patients.

    PubMed

    Jung, Hye Seung; Choi, Seong-Ho; Kim, Sung-Joo; Choi, Dong-Wook; Heo, Jin-Seok; Lee, Kyu Taek; Lee, Jong Kyun; Jang, Kee-Taek; Lee, Byung-Wan; Jee, Jae-Hwan; Noh, Jung-Hyun; Jeong, In Kyung; Yang, Tae-Young; Oh, Seung-Hoon; Ahn, You-Ran; Kim, Young-Seok; No, Heesung; Lee, Moon-Kyu; Kim, Kwang-Won

    2009-11-01

    The purpose of this study was to evaluate the effects of autologous islet transplantation (ITx) on glucose homeostasis and insulin secretory function after partial pancreatectomy (Px). Fourteen nondiabetic patients who underwent distal Px and autologous ITx for benign pancreatic tumors were enrolled in the study (Px + ITx group). Fourteen normal glucose-tolerant controls and 6 Px without ITx controls were recruited, and all groups were followed over a 24-month period. They performed the 75-g oral glucose tolerance test and the 1-mg glucagon stimulation test. Hemoglobin A(1c) was measured, and indices of insulin secretion were calculated. In the Px + ITx group, insulin secretion increased after a nadir at 6 months. Glucose tolerance, which had been abruptly impaired immediately after Px, recovered until 6 months and stabilized thereafter. As a result, differences in glucose intolerance emerged between the subjects in the Px group and those in the Px + ITx group at 24 months after Px. Characteristic variables in the better insulin secretory subjects in the Px + ITx group included younger age, less extensive pancreas resection, and a greater number of total islets. In summary, delayed amelioration of glucose intolerance was induced by autologous ITx after partial Px, even with a small number of islets. PMID:19604519

  13. CB1 receptor blockade counters age-induced insulin resistance and metabolic dysfunction.

    PubMed

    Lipina, Christopher; Vaanholt, Lobke M; Davidova, Anastasija; Mitchell, Sharon E; Storey-Gordon, Emma; Hambly, Catherine; Irving, Andrew J; Speakman, John R; Hundal, Harinder S

    2016-04-01

    The endocannabinoid system can modulate energy homeostasis by regulating feeding behaviour as well as peripheral energy storage and utilization. Importantly, many of its metabolic actions are mediated through the cannabinoid type 1 receptor (CB1R), whose hyperactivation is associated with obesity and impaired metabolic function. Herein, we explored the effects of administering rimonabant, a selective CB1R inverse agonist, upon key metabolic parameters in young (4 month old) and aged (17 month old) adult male C57BL/6 mice. Daily treatment with rimonabant for 14 days transiently reduced food intake in young and aged mice; however, the anorectic response was more profound in aged animals, coinciding with a substantive loss in body fat mass. Notably, reduced insulin sensitivity in aged skeletal muscle and liver concurred with increased CB1R mRNA abundance. Strikingly, rimonabant was shown to improve glucose tolerance and enhance skeletal muscle and liver insulin sensitivity in aged, but not young, adult mice. Moreover, rimonabant-mediated insulin sensitization in aged adipose tissue coincided with amelioration of low-grade inflammation and repressed lipogenic gene expression. Collectively, our findings indicate a key role for CB1R in aging-related insulin resistance and metabolic dysfunction and highlight CB1R blockade as a potential strategy for combating metabolic disorders associated with aging. PMID:26757949

  14. Changes of insulin sensitivity and secretion after bariatric/metabolic surgery.

    PubMed

    Mingrone, Geltrude; Cummings, David E

    2016-07-01

    Type 2 diabetes (T2D) is classically characterized by failure of pancreatic β-cell function and insulin secretion to compensate for a prevailing level of insulin resistance, typically associated with visceral obesity. Although this is usually a chronic, progressive disease in which delay of end-organ complications is the primary therapeutic goal for medical and behavioral approaches, several types of bariatric surgery, especially those that include intestinal bypass components, exert powerful antidiabetes effects to yield remission of T2D in most cases. It has become increasingly clear that in addition to the known benefits of acute caloric restriction and chronic weight loss to ameliorate T2D, bariatric/metabolic operations also engage a variety of weight-independent mechanisms to improve glucose homeostasis, enhancing insulin sensitivity and secretion to varying degrees depending on the specific operation. In this paper, we review the effects of Roux-en-Y gastric bypass, biliopancreatic diversion, and vertical sleeve gastrectomy on the primary determinants of glucose homeostasis: insulin sensitivity, insulin secretion, and, to the lesser extent that it is known, insulin-independent glucose disposal. A full understanding of these effects should help optimize surgical and device-based designs to provide maximal antidiabetes impact, and it holds the promise to identify targets for possible novel diabetes pharmacotherapeutics. These insights also contribute to the conceptual rationale for use of bariatric operations as "metabolic surgery," employed primarily to treat T2D, including among patients not obese enough to qualify for surgery based on traditional criteria related to high body mass index. PMID:27568471

  15. Insulin therapy: going the "smarter" way.

    PubMed

    Kalra, Sanjay; Joshi, Ameya; Parmar, Girish

    2014-01-01

    Insulin pharmacology has evolved from nonhuman source based extraction of insulin, to use of recombinant technologies for human insulin production, to tailor made synthetic insulin analogues. The delivery techniques of insulin have also improved, from injections to pumps, and to pumps with sensors. However, to achieve the final goal of a closed loop insulin delivery is far from achieved. One of the researches in this direction includes synthetic smart insulins. These are systems with chemical sensors for glucose, linked to reactions that trigger glucose mediated insulin delivery. Interest in this field is high and recent publications and patents show promise. The current review tries to summarize the basic concept of smart insulin as well as cater the recent developments and patents in this direction. PMID:24975640

  16. Treatment of insulin resistance in uremia.

    PubMed

    Stefanović, V; Nesić, V; Stojimirović, B

    2003-02-01

    Insulin resistance is a characteristic feature of uremia. As long as the hyperinsulinemia adequate to overcome the insulin resistance, glucose tolerance remains normal. In patients destined to develop type 2 diabetes, the beta cell compensatory response declines, and relative, or absolute, insulin deficiency develops. At this point glucose intolerance and eventually frank type 2 diabetes occur. Insulin resistance and concomitant hyperinsulinemia are present irrespective of the type of renal disease. Several studies have confirmed that hemodialysis (HD) treatment significantly improves insulin resistance. Both CAPD and CCPD are shown to improve insulin resistance in uremic patients. Comparing the effect of PD and HD treatment, it was found that the CCPD group has significantly higher insulin sensitivity than the HD group with the CAPD group similar to HD. Treatment of calcium and phosphate disturbances, including vitamin D therapy, significantly reduces insulin resistance in uremia. Treatment with recombinant human erythropoietin (EPO) is an efficient way to increase hematocrit, to reverse cardiovascular problems and to improve insulin sensitivity. Angiotensin-converting enzyme inhibitors have been shown to improve insulin resistance, hyperinsulinemia and glucose intolerance in uremic patients. Thiazolidinediones (TZDs), the new insulin-sensitizing drugs, provide the proof that pharmacologic treatment of insulin resistance can be of enormous clinical benefit. The great potential of insulin resistance therapy illuminated by the TZDs will continue to catalyze research in this area directed toward the discovery of new insulin-sensitizing agents that work through other mechanisms. PMID:12653342

  17. Human insulin: DNA technology's first drug.

    PubMed

    The, M J

    1989-11-01

    The history, biologic activity, and immunogenicity of human insulin are described. Recombinant human insulin first entered clinical trials in humans in 1980. At that time, the A and B chains of the insulin molecule were produced separately and then combined by chemical techniques. Since 1986, a different recombinant process has been used. The human genetic coding for proinsulin is inserted into Escherichia coli cells, which are then grown by fermentation to produce proinsulin. The connecting peptide is cleaved enzymatically from proinsulin to produce human insulin. Studies indicate that there are no important differences between pork insulin and human insulin in terms of therapeutic efficacy and disposition after intravenous administration. Recombinant human insulin has a faster onset of action and lower immunogenicity than pork or beef insulin. Diabetic patients may have an improvement in glucose concentrations when their therapy is switched from animal-source insulin to human insulin. Such a change usually requires a dosage adjustment, which must be determined by a physician. Pharmacists are responsible for educating patients concerning all insulin products and for preventing patients from interchanging insulin products. The availability of human insulin as the first pharmaceutical product manufactured through recombinant DNA technology, however, has had little effect on the pharmacist's role in the care of such patients. The production of human insulin through recombinant DNA technology represents an important advance in the treatment of patients with diabetes. PMID:2690608

  18. Metformin improves hepatic IRS2/PI3K/Akt signaling in insulin-resistant rats of NASH and cirrhosis.

    PubMed

    Xu, Hong; Zhou, Yang; Liu, Yongxia; Ping, Jian; Shou, Qiyang; Chen, Fangming; Ruo, Ru

    2016-05-01

    Nonalcoholic fatty liver disease and cirrhosis are strongly associated with insulin resistance and glucose intolerance. To date, the influence of metformin on glycogen synthesis in the liver is controversial. Limited studies have evaluated the effect of metformin on hepatic insulin signaling pathway in vivo In this study, an insulin-resistant rat model of nonalcoholic steatohepatitis and cirrhosis was developed by high-fat and high-sucrose diet feeding in combination with subcutaneous injection of carbon tetrachloride. Liver tissues of the model rats were featured with severe steatosis and cirrhosis, accompanied by impaired liver function and antioxidant capacity. The glucose tolerance was impaired, and the index of insulin resistance was increased significantly compared with the control. The content of hepatic glycogen was dramatically decreased. The expression of insulin receptor β (IRβ); phosphorylations of IRβ, insulin receptor substrate 2 (IRS2), and Akt; and activities of phosphatidylinositol 3-kinase (PI3K) and glycogen synthase (GS) in the liver were significantly decreased, whereas the activities of glycogen synthase kinase 3α (GSK3α) and glycogen phosphorylase a (GPa) were increased. Metformin treatment remarkably improved liver function, alleviated lipid peroxidation and histological damages of the liver, and ameliorated glucose intolerance and insulin resistance. Metfromin also significantly upregulated the expression of IRβ; increased the phosphorylations of IRβ, IRS2, and Akt; increased the activities of PI3K and GS; and decreased GSK3α and GPa activities. In conclusion, our study suggests that metformin upregulates IRβ expression and the downstream IRS2/PI3K/Akt signaling transduction, therefore, to increase hepatic glycogen storage and improve insulin resistance. These actions may be attributed to the improved liver histological alterations by metformin. PMID:26941037

  19. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome

    PubMed Central

    Xiao, Shuiming; Fei, Na; Pang, Xiaoyan; Shen, Jian; Wang, Linghua; Zhang, Baorang; Zhang, Menghui; Zhang, Xiaojun; Zhang, Chenhong; Li, Min; Sun, Lifeng; Xue, Zhengsheng; Wang, Jingjing; Feng, Jie; Yan, Feiyan; Zhao, Naisi; Liu, Jiaqi; Long, Wenmin; Zhao, Liping

    2014-01-01

    Chronic inflammation induced by endotoxin from a dysbiotic gut microbiota contributes to the development of obesity-related metabolic disorders. Modification of gut microbiota by a diet to balance its composition becomes a promising strategy to help manage obesity. A dietary scheme based on whole grains, traditional Chinese medicinal foods, and prebiotics (WTP diet) was designed to meet human nutritional needs as well as balance the gut microbiota. Ninety-three of 123 central obese volunteers (BMI ≥ 28 kg m−2) completed a self-controlled clinical trial consisting of 9-week intervention on WTP diet followed by a 14-week maintenance period. The average weight loss reached 5.79 ± 4.64 kg (6.62 ± 4.94%), in addition to improvement in insulin sensitivity, lipid profiles, and blood pressure. Pyrosequencing of fecal samples showed that phylotypes related to endotoxin-producing opportunistic pathogens of Enterobacteriaceae and Desulfovibrionaceae were reduced significantly, while those related to gut barrier-protecting bacteria of Bifidobacteriaceae increased. Gut permeability, measured as lactulose/mannitol ratio, was decreased compared with the baseline. Plasma endotoxin load as lipopolysaccharide-binding protein was also significantly reduced, with concomitant decrease in tumor necrosis factor-α, interleukin-6, and an increase in adiponectin. These results suggest that modulation of the gut microbiota via dietary intervention may enhance the intestinal barrier integrity, reduce circulating antigen load, and ultimately ameliorate the inflammation and metabolic phenotypes. PMID:24117923

  20. Coffee bean polyphenols ameliorate postprandial endothelial dysfunction in healthy male adults.

    PubMed

    Ochiai, Ryuji; Sugiura, Yoko; Otsuka, Kazuhiro; Katsuragi, Yoshihisa; Hashiguchi, Teruto

    2015-05-01

    To reveal the effect of coffee bean polyphenols (CBPs) on blood vessels, this study aimed to investigate the effect of CBPs on acute postprandial endothelial dysfunction. Thirteen healthy non-diabetic men (mean age, 44.9 ± 1.4 years) consumed a test beverage (active: containing CBPs, placebo: no CBPs) before a 554-kcal test meal containing 14 g of protein, 30 g of fat and 58 g of carbohydrates. Then, a crossover analysis was performed to investigate the time-dependent changes in flow-mediated dilation (FMD) in the brachial artery. In the active group, the postprandial impairment of FMD was significantly improved, the two-hour postprandial nitric oxide metabolite levels were significantly increased and the six-hour postprandial urinary 8-epi-prostaglandin F2α levels were significantly reduced compared to the placebo group. The test meal increased the levels of blood glucose, insulin and triglycerides in both groups with no significant intergroup differences. These findings indicate that CBPs intake ameliorates postprandial endothelial dysfunction in healthy men. PMID:25666414

  1. All-trans retinoic acid ameliorates glycemic control in diabetic mice via modulating pancreatic islet production of vascular endothelial growth factor-A.

    PubMed

    Chien, Chiao-Yun; Yuan, Tze-An; Cho, Candy Hsin-Hua; Chang, Fang-Pei; Mao, Wan-Yu; Wu, Ruei-Ren; Lee, Hsuan-Shu; Shen, Chia-Ning

    2016-09-01

    Patients with type 1 diabetes mellitus are associated with impairment in vitamin A metabolism. This study evaluated whether treatment with retinoic acid, the biologically active metabolite of vitamin A, can ameliorate diabetes. All-trans retinoic acid (atRA) was used to treat streptozotocin (STZ)-induced diabetic mice which revealed atRA administration ameliorated blood glucose levels of diabetic mice. This hyperglycemic amelioration was accompanied by an increase in the amount of β cells co-expressed Pdx1 and insulin and by restoration of the vascular laminin expression. The atRA-induced production of vascular endothelial growth factor-A from the pancreatic islets was possibly the key factor that mediated the restoration of islet vascularity and recovery of β-cell mass. Furthermore, the combination of islet transplantation and atRA administration significantly rescued hyperglycemia in diabetic mice. These findings suggest that vitamin A derivatives can potentially be used as a supplementary treatment to improve diabetes management and glycemic control. PMID:27381866

  2. Diabetic Nephropathy Amelioration by a Low-Dose Sitagliptin in an Animal Model of Type 2 Diabetes (Zucker Diabetic Fatty Rat)

    PubMed Central

    Mega, Cristina; Teixeira de Lemos, Edite; Vala, Helena; Fernandes, Rosa; Oliveira, Jorge; Mascarenhas-Melo, Filipa; Teixeira, Frederico; Reis, Flávio

    2011-01-01

    This study was performed to assess the effect of chronic low-dose sitagliptin, a dipeptidyl peptidase 4 inhibitor, on metabolic profile and on renal lesions aggravation in a rat model of type-2 diabetic nephropathy, the Zucker diabetic fatty (ZDF) rat. Diabetic and obese ZDF (fa/fa) rats and their controls ZDF (+/+) were treated for 6 weeks with vehicle (control) or sitagliptin (10 mg/kg/bw). Blood/serum glucose, HbA1c, insulin, Total-c, TGs, urea, and creatinine were assessed, as well as kidney glomerular and tubulointerstitial lesions (interstitial fibrosis/tubular atrophy), using a semiquantitative rating from 0 (absent/normal) to 3 (severe and extensive damage). Vascular lesions were scored from 0–2. Sitagliptin in the diabetic rats promoted an amelioration of glycemia, HbA1c, Total-c, and TGs, accompanied by a partial prevention of insulinopenia. Furthermore, together with urea increment prevention, renal lesions were ameliorated in the diabetic rats, including glomerular, tubulointerstitial, and vascular lesions, accompanied by reduced lipid peroxidation. In conclusion, chronic low-dose sitagliptin treatment was able to ameliorate diabetic nephropathy, which might represent a key step forward in the management of T2DM and this serious complication. PMID:22203828

  3. Metabolic disorders and adipose tissue insulin responsiveness in neonatally STZ-induced diabetic rats are improved by long-term melatonin treatment.

    PubMed

    de Oliveira, Ariclécio C; Andreotti, Sandra; Farias, Talita da S M; Torres-Leal, Francisco L; de Proença, André R G; Campaña, Amanda B; de Souza, Arnaldo H; Sertié, Rogério A L; Carpinelli, Angelo R; Cipolla-Neto, José; Lima, Fábio B

    2012-05-01

    synthase. In conclusion, melatonin treatment was capable of ameliorating the metabolic abnormalities in this particular diabetes model, including insulin resistance and promoting a better long-term glycemic control. PMID:22374967

  4. Patient Perspectives on Biosimilar Insulin.

    PubMed

    Wilkins, Alasdair R; Venkat, Manu V; Brown, Adam S; Dong, Jessica P; Ran, Nina A; Hirsch, James S; Close, Kelly L

    2014-01-01

    Given that a new wave of biosimilar insulins will likely enter the market in coming years, it is important to understand patient perspectives on these biosimilars. A survey (N = 3214) conducted by the market research company dQ&A, which maintains a 10 000-patient panel of people with type 1 or type 2 diabetes in roughly equal measure, investigated these perspectives. The survey asked whether patients would switch to a hypothetical less expensive biosimilar insulin that was approved by their provider. Approximately 66% of respondents reported that they would "definitely" or "likely" use a biosimilar insulin, while 17% reported that they were "unlikely" to use or would "definitely not use" such a product. Type 2 diabetes patients demonstrated slightly more willingness to use biosimilars than type 1 diabetes patients. Common patient concerns included whether biosimilars would be as effective as reference products (~650 respondents), whether side effect profiles would deviate from those of reference products (~220 respondents), and the design of the delivery device (~50 respondents). While cost savings associated with biosimilar insulins could increase patient uptake, especially among patients without health insurance (some recent estimates suggest that biosimilars will come at a substantial discount), patients may still need assurance that a cheaper price tag is not necessarily associated with substandard quality. Overall, the dQ&A survey indicates that the majority of patients are willing to consider biosimilar insulins, but manufacturers will need to work proactively to address and assuage patient concerns regarding efficacy, safety, drug administration, and other factors. PMID:24876533

  5. Oxidative Stress and Insulin Resistance

    PubMed Central

    Park, Kyong; Gross, Myron; Lee, Duk-Hee; Holvoet, Paul; Himes, John H.; Shikany, James M.; Jacobs, David R.

    2009-01-01

    OBJECTIVE Although cumulative evidence suggests that increased oxidative stress may lead to insulin resistance in vivo or in vitro, community-based studies are scarce. This study examined the longitudinal relationships of oxidative stress biomarkers with the development of insulin resistance and whether these relationships were independent of obesity in nondiabetic young adults. RESEARCH DESIGN AND METHODS Biomarkers of oxidative stress (F2-isoprostanes [F2Isop] and oxidized LDL [oxLDL]), insulin resistance (the homeostasis model assessment of insulin resistance [HOMA-IR]), and various fatness measures (BMI, waist circumference, and estimated percent fat) were obtained in a population-based observational study (Coronary Artery Risk Development in Young Adults) and its ancillary study (Young Adult Longitudinal Trends in Antioxidants) during 2000–2006. RESULTS There were substantial increases in estimated mean HOMA-IR over time. OxLDL and F2Isop showed little association with each other. Mean evolving HOMA-IR increased with increasing levels of oxidative stress markers (P < 0.001 for oxLDL and P = 0.06 for F2Isop), measured in 2000–2001. After additional adjustment for adiposity, a positive association between oxLDL and HOMA-IR was strongly evident, whereas the association between F2Isop and HOMA-IR was not. CONCLUSIONS We observed positive associations between each of two oxidative stress markers and insulin resistance. The association with oxidized LDL was independent of obesity, but that with F2Isop was not. PMID:19389821

  6. How to achieve a predictable basal insulin?

    PubMed

    Kurtzhals, P

    2005-09-01

    The development of insulin analogues over the last two decades have aimed at optimising the pharmacokinetic profile of subcutaneously injected insulin for therapeutic use in diabetes mellitus. Rapid acting analogues were successfully engineered and marketed in the late 1990's. In engineering long-acting analogues it has been a particular challenge to obtain action profiles that would be predictable from day to day in the same person. The most recent approach has been to acylate the insulin molecule with a fatty acid which provides the insulin molecule with a specific affinity for albumin. The first clinically available agent of this type is insulin detemir. Pharmacological studies have shown that reversible albumin binding will protract absorption following subcutaneous injection but still allow the insulin molecule to be recognised by the insulin receptor following dissociation from the carrier protein. Moreover, the molecular features of insulin detemir are attractive in that the molecule can be formulated as a neutral aqueous solution and does not precipitate after injection. Together with an important buffering mechanism effected by plasma albumin binding, this explains a highly significant reduction of within-subject variability of pharmacodynamic response observed in repeat isoglycaemic clamp studies where insulin detemir was compared to other basal insulin products. No safety considerations have been identified in using albumin as an insulin carrier to protract and buffer insulin action. In assessing the clinical attractiveness of insulin analogues, it is furthermore critically important to consider how the molecular modifications impact efficacy and safety. A number of pharmacological studies have shown that insulin detemir overall retains the molecular pharmacological properties of native human insulin, including a physiological balance between metabolic and mitogenic potencies. Taken together, insulin detemir provides an attractive novel approach for

  7. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E

    PubMed Central

    Ni, Yinhua; Nagashimada, Mayumi; Zhuge, Fen; Zhan, Lili; Nagata, Naoto; Tsutsui, Akemi; Nakanuma, Yasuni; Kaneko, Shuichi; Ota, Tsuguhito

    2015-01-01

    Hepatic insulin resistance and nonalcoholic steatohepatitis (NASH) could be caused by excessive hepatic lipid accumulation and peroxidation. Vitamin E has become a standard treatment for NASH. However, astaxanthin, an antioxidant carotenoid, inhibits lipid peroxidation more potently than vitamin E. Here, we compared the effects of astaxanthin and vitamin E in NASH. We first demonstrated that astaxanthin ameliorated hepatic steatosis in both genetically (ob/ob) and high-fat-diet-induced obese mice. In a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet, astaxanthin alleviated excessive hepatic lipid accumulation and peroxidation, increased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis. Moreover, astaxanthin caused an M2-dominant shift in macrophages/Kupffer cells and a subsequent reduction in CD4+ and CD8+ T cell recruitment in the liver, which contributed to improved insulin resistance and hepatic inflammation. Importantly, astaxanthin reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. Overall, astaxanthin was more effective at both preventing and treating NASH compared with vitamin E in mice. Furthermore, astaxanthin improved hepatic steatosis and tended to ameliorate the progression of NASH in biopsy-proven human subjects. These results suggest that astaxanthin might be a novel and promising treatment for NASH. PMID:26603489

  8. Insulin receptors in the mammary gland

    SciTech Connect

    Smith, D.H.

    1986-01-01

    Insulin binding studies were conducted using mammary membrane preparations to further the authors understanding of insulin's role in regulating mammary metabolism, particularly ruminant mammary metabolism. Specific objectives were to: (1) characterize insulin binding to bovine mammary microsomes and determine if the specificity and kinetics of binding indicate the presence of insulin receptors in bovine mammary gland; (2) examine and compare insulin binding by liver and mammary microsomes of the pig and dairy cow; (3) examine insulin binding to bovine milk fat globule membranes (MFGM) and evaluate this model's usefulness in assessing insulin receptor regulation in the mammary gland of the cow; (4) examine the effect of dietary fat in insulin binding by rat mammary and liver microsomes. The specificity and kinetics of /sup 125/I-insulin binding of bovine mammary microsomes indicated the presence of insulin receptors in bovine mammary gland. Bovine liver and mammary microsomes specifically bound less /sup 125/I-insulin than did the corresponding porcine microsomes, and mammary microsomes, regardless of species, specifically bound less /sup 125/I-insulin than did liver microsomes. These differences in binding suggest differences in insulin responsiveness between pigs and cattle, as well as between the liver and mammary glands.

  9. Characterization of the chicken muscle insulin receptor

    SciTech Connect

    Adamo, M.; Simon, J.; Rosebrough, R.W.; McMurtry, J.P.; Steele, N.C.; LeRoith, D.

    1987-12-01

    Insulin receptors are present in chicken skeletal muscle. Crude membrane preparations demonstrated specific /sup 125/I-insulin binding. The nonspecific binding was high (36-55% of total binding) and slightly lower affinity receptors were found than are typically observed for crude membrane insulin binding in other chicken tissues. Affinity crosslinking of /sup 125/I-insulin to crude membranes revealed insulin receptor alpha-subunits of Mr 128K, intermediate between those of liver (134K) and brain (124K). When solubilized and partially purified on wheat germ agglutinin (WGA) affinity columns, chicken muscle insulin receptors exhibited typical high affinity binding, with approximately 10(-10) M unlabeled insulin producing 50% inhibition of the specific /sup 125/I-insulin binding. WGA purified chicken muscle insulin receptors also exhibited insulin-stimulated autophosphorylation of the beta-subunit, which appeared as phosphorylated bands of 92- and 81K. Both bands were immunoprecipitated by anti-receptor antiserum (B10). WGA purified membranes also demonstrated dose-dependent insulin-stimulated phosphorylation of the exogenous substrate poly(Glu,Tyr)4:1. However, unlike chicken liver, chicken muscle insulin receptor number and tyrosine kinase activity were unaltered by 48 hr of fasting or 48 hr of fasting and 24 hr of refeeding. Thus, despite the presence of insulin receptors in chicken muscle showing normal coupling to receptor tyrosine kinase activity, nutritional alterations modulate these parameters in a tissue-specific manner in chickens.

  10. Transplacental passage of insulin complexed to antibody.

    PubMed Central

    Bauman, W A; Yalow, R S

    1981-01-01

    The passage of plasma proteins across the placental barrier in humans is known to be highly selective. Thus, free maternal insulin has been reported not to cross the normal maternofetal barrier, although insulin-binding antibodies have been detected in newborn infants whose diabetic mothers received insulin therapy. In this report we demonstrate, with the use of a human antiserum that permits distinction between human and animal insulins, that insulin in the cord blood of each of two neonates of insulin-treated diabetic mothers was, in part, animal insulin. The higher the antibody titer of the mother the greater was the total insulin in the cord plasma and the greater was the fraction that was animal insulin. In case 1 cord plasma insulin was 0.7 unit/liter, of which 10% was animal insulin; in case 2 cord plasma insulin was 3.5 units/liter, of which 25% was animal insulin. The demonstration that antigen restricted from transplacental passage can be transferred while complexed to antibody raises the question whether such fetal exposure would induce partial or total immunologic unresponsiveness subsequently if the fetus were rechallenged with the same antigen. PMID:7027265

  11. In vivo peripheral nervous system insulin signaling

    PubMed Central

    Grote, Caleb W.; Ryals, Janelle M.; Wright, Douglas E.

    2014-01-01

    Alterations in peripheral nervous system (PNS) insulin support may contribute to diabetic neuropathy (DN); yet, PNS insulin signaling is not fully defined. Here, we investigated in vivo insulin signaling in the PNS and compared the insulin-responsiveness to that of muscle, liver, and adipose. Nondiabetic mice were administered increasing doses of insulin to define a dose response relationship between insulin and Akt activation in the DRG and sciatic nerve. Resulting EC50 doses were used to characterize the PNS insulin signaling time course and make comparisons between insulin signaling in the PNS and other peripheral tissues (i.e., muscle, liver, adipose). The results demonstrate that the PNS is responsive to insulin and that differences in insulin signaling pathway activation exist between PNS compartments. At a therapeutically relevant dose, Akt was activated in the muscle, liver, and adipose at 30 minutes, correlating with the changes in blood glucose levels. Interestingly, the sciatic nerve showed a similar signaling profile as insulin-sensitive tissues, however there was not a comparable activation in the DRG or spinal cord. These results present new evidence regarding PNS insulin signaling pathways in vivo and provide a baseline for studies investigating the contribution of disrupted PNS insulin signaling to DN pathogenesis. PMID:24028189

  12. Amelioration of pancreatic and renal derangements in streptozotocin-induced diabetic rats by polyphenol extracts of Ginger (Zingiber officinale) rhizome.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin

    2015-12-01

    Free and bound polyphenol extracts of Zingiber officinale rhizome were investigated for their antidiabetic potential in the pancreatic and renal tissues of diabetic rats at a dose of 500mg/kg body weight. Forty Wistar rats were completely randomized into five groups: A-E consisting of eight animals each. Group A (control) comprises normal healthy animals and were orally administered 1.0mL distilled water on a daily basis for 42 days while group B-E were made up of 50mg/kg streptozotocin (STZ)-induced diabetic rats. Group C and D received 1.0mL 500mg/kg body weight free and bound polyphenol extracts respectively while group E received 1.0mL 0.6mg/kg of glibenclamide. Administration of the extracts to the diabetic rats significantly reduced (p<0.05) serum glucose and urea concentrations, increased (p<0.05) serum insulin and Homeostatic Model Assessment for β-cell dysfunction (HOMA-β) while the level of creatinine and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were not affected. Histological examination of the pancreas and kidney revealed restoration of the structural derangements caused by streptozotocin in the polyphenol extracts treated diabetic rats compared to the control groups. Therefore, polyphenols from Zingiber officinale could ameliorate diabetes-induced pancreatic and renal derangements in rats. PMID:26349770

  13. GPR40 agonist ameliorates liver X receptor-induced lipid accumulation in liver by activating AMPK pathway

    PubMed Central

    Li, Meng; Meng, Xiangyu; Xu, Jie; Huang, Xiuqing; Li, Hongxia; Li, Guoping; Wang, Shu; Man, Yong; Tang, Weiqing; Li, Jian

    2016-01-01

    Hepatic steatosis is strongly linked to insulin resistance and type 2 diabetes. GPR40 is a G protein-coupled receptor mediating free fatty acid-induced insulin secretion and thus plays a beneficial role in the improvement of diabetes. However, the impact of GPR40 agonist on hepatic steatosis still remains to be elucidated. In the present study, we found that activation of GPR40 by its agonist GW9508 attenuated Liver X receptor (LXR)-induced hepatic lipid accumulation. Activation of LXR in the livers of C57BL/6 mice fed a high-cholesterol diet and in HepG2 cells stimulated by chemical agonist caused increased expression of its target lipogenic genes and subsequent lipid accumulation. All these effects of LXR were dramatically downregulated after GW9508 supplementation. Moreover, GPR40 activation was accompanied by upregulation of AMPK pathway, whereas the inhibitive effect of GPR40 on the lipogenic gene expression was largely abrogated by AMPK knockdown. Taken together, our results demonstrated that GW9508 exerts a beneficial effect to ameliorate LXR-induced hepatic steatosis through regulation of AMPK signaling pathway. PMID:27121981

  14. GPR40 agonist ameliorates liver X receptor-induced lipid accumulation in liver by activating AMPK pathway.

    PubMed

    Li, Meng; Meng, Xiangyu; Xu, Jie; Huang, Xiuqing; Li, Hongxia; Li, Guoping; Wang, Shu; Man, Yong; Tang, Weiqing; Li, Jian

    2016-01-01

    Hepatic steatosis is strongly linked to insulin resistance and type 2 diabetes. GPR40 is a G protein-coupled receptor mediating free fatty acid-induced insulin secretion and thus plays a beneficial role in the improvement of diabetes. However, the impact of GPR40 agonist on hepatic steatosis still remains to be elucidated. In the present study, we found that activation of GPR40 by its agonist GW9508 attenuated Liver X receptor (LXR)-induced hepatic lipid accumulation. Activation of LXR in the livers of C57BL/6 mice fed a high-cholesterol diet and in HepG2 cells stimulated by chemical agonist caused increased expression of its target lipogenic genes and subsequent lipid accumulation. All these effects of LXR were dramatically downregulated after GW9508 supplementation. Moreover, GPR40 activation was accompanied by upregulation of AMPK pathway, whereas the inhibitive effect of GPR40 on the lipogenic gene expression was largely abrogated by AMPK knockdown. Taken together, our results demonstrated that GW9508 exerts a beneficial effect to ameliorate LXR-induced hepatic steatosis through regulation of AMPK signaling pathway. PMID:27121981

  15. Transient exposure of human myoblasts to tumor necrosis factor-alpha inhibits serum and insulin-like growth factor-I stimulated protein synthesis.

    PubMed

    Frost, R A; Lang, C H; Gelato, M C

    1997-10-01

    Tumor necrosis factor-alpha (TNF-alpha) induces cachexia and is postulated to be responsible for muscle wasting in several pathophysiological conditions. The purpose of the present study was to investigate whether exposure of human myoblasts to TNF-alpha could directly inhibit the ability of serum or insulin-like growth factor I (IGF-I) to stimulate protein synthesis as assessed by the incorporation of [3H]phenylalanine into protein. Serum and IGF-I stimulated protein synthesis dose dependently. Half-maximal stimulation of protein synthesis occurred at 05% serum and 8 ng/ml of IGF-I, respectively. TNF-alpha inhibited IGF-I-stimulated protein synthesis in a dose-dependent manner. Additionally, as little as 2 ng/ml of TNF-alpha impaired the ability of IGF-I to stimulate protein synthesis by 33% and, at a dose of 100 ng/ml, TNF-alpha completely prevented the increase in protein synthesis induced by either serum or a maximally stimulating dose of IGF-I. Inhibition of protein synthesis was independent of whether TNF-alpha and growth factors were added to cells simultaneously or if the cells were pretreated with growth factors. Exposure ofmyoblasts to TNF-alpha for 10 min completely inhibited serum-induced stimulation of protein synthesis. TNF-alpha inhibited protein synthesis up to 48 h after addition of the cytokine. TNF-alpha also inhibited serum-stimulated protein synthesis in human myoblasts that were differentiated into myotubes. In contrast, exposure of myoblasts to TNF-alpha had no effect on IGF-I binding and failed to alter the ability of either IGF-I or serum to stimulate [3H]thymidine uptake. These data indicate that transient exposure of myoblasts or myotubes to TNF-alpha inhibits protein synthesis. Thus, the anabolic actions of IGF-I on muscle protein synthesis may be impaired during catabolic conditions in which TNF-alpha is over expressed. PMID:9322924

  16. Treatment Approach to Patients With Severe Insulin Resistance.

    PubMed

    Church, Timothy J; Haines, Stuart T

    2016-04-01

    In Brief Patients with severe insulin resistance require >2 units/kg of body weight or 200 units/day of insulin. Yet, many patients do not achieve glycemic targets despite using very high doses of insulin. Insulin can cause weight gain, which further contributes to worsening insulin resistance. This article describes the pharmacological options for managing patients with severe insulin resistance, including the use of U-500 insulin and newer agents in combination with insulin. PMID:27092020

  17. High fat diet-induced TGF-β/Gbb signaling provokes insulin resistance through the tribbles expression.

    PubMed

    Hong, Seung-Hyun; Kang, Moonyoung; Lee, Kyu-Sun; Yu, Kweon

    2016-01-01

    Hyperglycemia, hyperlipidemia, and insulin resistance are hallmarks of obesity-induced type 2 diabetes, which is often caused by a high-fat diet (HFD). However, the molecular mechanisms underlying HFD-induced insulin resistance have not been elucidated in detail. In this study, we established a Drosophila model to investigate the molecular mechanisms of HFD-induced diabetes. HFD model flies recapitulate mammalian diabetic phenotypes including elevated triglyceride and circulating glucose levels, as well as insulin resistance. Expression of glass bottom boat (gbb), a Drosophila homolog of mammalian transforming growth factor-β (TGF-β), is elevated under HFD conditions. Furthermore, overexpression of gbb in the fat body produced obese and insulin-resistant phenotypes similar to those of HFD-fed flies, whereas inhibition of Gbb signaling significantly ameliorated HFD-induced metabolic phenotypes. We also discovered that tribbles, a negative regulator of AKT, is a target gene of Gbb signaling in the fat body. Overexpression of tribbles in flies in the fat body phenocopied the metabolic defects associated with HFD conditions or Gbb overexpression, whereas tribbles knockdown rescued these metabolic phenotypes. These results indicate that HFD-induced TGF-β/Gbb signaling provokes insulin resistance by increasing tribbles expression. PMID:27484164

  18. High fat diet-induced TGF-β/Gbb signaling provokes insulin resistance through the tribbles expression

    PubMed Central

    Hong, Seung-Hyun; Kang, Moonyoung; Lee, Kyu-Sun; Yu, Kweon

    2016-01-01

    Hyperglycemia, hyperlipidemia, and insulin resistance are hallmarks of obesity-induced type 2 diabetes, which is often caused by a high-fat diet (HFD). However, the molecular mechanisms underlying HFD-induced insulin resistance have not been elucidated in detail. In this study, we established a Drosophila model to investigate the molecular mechanisms of HFD-induced diabetes. HFD model flies recapitulate mammalian diabetic phenotypes including elevated triglyceride and circulating glucose levels, as well as insulin resistance. Expression of glass bottom boat (gbb), a Drosophila homolog of mammalian transforming growth factor-β (TGF-β), is elevated under HFD conditions. Furthermore, overexpression of gbb in the fat body produced obese and insulin-resistant phenotypes similar to those of HFD-fed flies, whereas inhibition of Gbb signaling significantly ameliorated HFD-induced metabolic phenotypes. We also discovered that tribbles, a negative regulator of AKT, is a target gene of Gbb signaling in the fat body. Overexpression of tribbles in flies in the fat body phenocopied the metabolic defects associated with HFD conditions or Gbb overexpression, whereas tribbles knockdown rescued these metabolic phenotypes. These results indicate that HFD-induced TGF-β/Gbb signaling provokes insulin resistance by increasing tribbles expression. PMID:27484164

  19. Pioglitazone and exenatide enhance cognition and downregulate hippocampal beta amyloid oligomer and microglia expression in insulin-resistant rats.

    PubMed

    Gad, Enas S; Zaitone, Sawsan A; Moustafa, Yasser M

    2016-08-01

    Insulin resistance is known to be a risk factor for cognitive impairment, most likely linked to insulin signaling, microglia overactivation, and beta amyloid (Aβ) deposition in the brain. Exenatide, a long lasting glucagon-like peptide-1 (GLP-1) analogue, enhances insulin signaling and shows neuroprotective properties. Pioglitazone, a peroxisome proliferated-activated receptor-γ (PPAR-γ) agonist, was previously reported to enhance cognition through its effect on Aβ accumulation and clearance. In the present study, insulin resistance was induced in male rats by drinking fructose for 12 weeks. The effect of monotherapy with pioglitazone (10 mg·kg(-1)) and exenatide or their combination on memory dysfunction was determined and some of the probable underlying mechanisms were studied. The current results confirmed that (1) feeding male rats with fructose syrup for 12 weeks resulted in a decline of learning and memory registered in eight-arm radial maze test; (2) treatment with pioglitazone or exenatide enhanced cognition, reduced hippocampal neurodegeneration, and reduced hippocampal microglia expression and beta amyloid oligomer deposition in a manner that is equal to monotherapies. These results may give promise for the use of pioglitazone or exenatide for ameliorating the learning and memory deficits associated with insulin resistance in clinical setting. PMID:27389824

  20. Effect of L-arginine supplementation on insulin resistance and serum adiponectin concentration in rats with fat diet

    PubMed Central

    Miczke, Anna; Suliburska, Joanna; Pupek-Musialik, Danuta; Ostrowska, Lucyna; Jabłecka, Anna; Krejpcio, Zbigniew; Skrypnik, Damian; Bogdański, Paweł

    2015-01-01

    Object: The purpose of this study was to determine whether supplementation with L-arginine, a substrate used in the production of nitric oxide, had an effect on adiponectin concentration in rats fed a high-fat diet. The influence of L-arginine on insulin resistance was also evaluated. Materials and methods: The experiment was performed using 36 Wistar rats divided into three groups: group 1 was fed a standard diet, group 2 a high-fat (HF) diet, group 3 a HF diet supplemented with L-arginine. After 42 days, serum levels of lipids, glucose, insulin, NO, and adiponectin were measured. Insulin resistance (IR) was estimated by the Homeostasis Model Assessment (HOMA). Results: Body mass was equal in all 3 groups, at the beginning as well as at the end of the study, however, in group 2 the amount of visceral fat was greater after 42 days. In group 3, there was a tendency for visceral fat to decrease. An increase in cholesterol, triglycerides, insulin and HOMA-IR, as well as a decrease in NO and adiponectin were seen in group 2, while in group 3, L-arginine supplementation ameliorated these disturbances. Conclusions: Our study shows that L-arginine supplementation in rats fed a HF diet is associated with an increase in insulin sensitivity. Our findings suggest that the underlying mechanism could be at least partially related to an increase in adiponectin concentration. PMID:26379826

  1. Using Community-Based Participatory Research to Ameliorate Cancer Disparities

    ERIC Educational Resources Information Center

    Gehlert, Sarah; Coleman, Robert

    2010-01-01

    Although much attention has been paid to health disparities in the past decades, interventions to ameliorate disparities have been largely unsuccessful. One reason is that the interventions have not been culturally tailored to the disparity populations whose problems they are meant to address. Community-engaged research has been successful in…

  2. Social buffering ameliorates conditioned fear responses in female rats.

    PubMed

    Ishii, Akiko; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2016-05-01

    The stress experienced by an animal is ameliorated when the animal is exposed to distressing stimuli along with a conspecific animal(s). This is known as social buffering. Previously, we found that the presence of an unfamiliar male rat induced social buffering and ameliorated conditioned fear responses of a male rat subjected to an auditory conditioned stimulus (CS). However, because our knowledge of social buffering is highly biased towards findings in male subjects, analyses using female subjects are crucial for comprehensively understanding the social buffering phenomenon. In the present studies, we assessed social buffering of conditioned fear responses in female rats. We found that the estrus cycle did not affect the intensity of the rats' fear responses to the CS or their degree of vigilance due to the presence of a conspecific animal. Based on these findings, we then assessed whether social buffering ameliorated conditioned fear responses in female rats without taking into account their estrus cycles. When fear conditioned female rats were exposed to the CS without the presence of a conspecific, they exhibited behavioral responses, including freezing, and elevated corticosterone levels. By contrast, the presence of an unfamiliar female rat suppressed these responses. Based on these findings, we conclude that social buffering can ameliorate conditioned fear responses in female rats. PMID:27060333

  3. Pursuit of a perfect insulin.

    PubMed

    Zaykov, Alexander N; Mayer, John P; DiMarchi, Richard D

    2016-06-01

    Insulin remains indispensable in the treatment of diabetes, but its use is hampered by its narrow therapeutic index. Although advances in peptide chemistry and recombinant DNA-based macromolecule synthesis have enabled the synthesis of structurally optimized insulin analogues, the growing epidemics of obesity and diabetes have emphasized the need for diabetes therapies that are more efficacious, safe and convenient. Accordingly, a broad set of drug candidates, targeting hyperglycaemia plus other disease abnormalities, is now progressing through the clinic. The development of an insulin therapy that is responsive to glucose concentration remains an ultimate goal, with initial prototypes now reaching the proof-of-concept stage. Simultaneously, the first alternatives to injectable delivery have progressed to registration. PMID:26988411

  4. Insulin Degludec (rDNA Origin) Injection

    MedlinePlus

    ... be used with another type of insulin (a short-acting insulin). In patients with type 2 diabetes, ... contraceptives (birth control pills, patches, rings, injections, or implants); medications for mental illness and nausea; monoamine oxidase ( ...

  5. Insulin Glargine (rDNA origin) Injection

    MedlinePlus

    ... be used with another type of insulin (a short-acting insulin). In patients with type 2 diabetes, ... therapy (birth control pills, patches, rings, injections, or implants); isoniazid (Laniazid, in Rifamate, in Rifater); lithium (Lithobid); ...

  6. Quantification of adipose tissue insulin sensitivity.

    PubMed

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses. PMID:27073214

  7. Metabolic inflammation: connecting obesity and insulin resistance.

    PubMed

    Dali-Youcef, Nassim; Mecili, Mustapha; Ricci, Roméo; Andrès, Emmanuel

    2013-05-01

    Insulin resistance is a pathological condition that arises when insulin signaling is impaired, forcing β-cells to produce more insulin in order to cope with body demands and to maintain glucose homeostasis. When the pancreas is no more able to support an appropriate insulin secretion, insulin resistance becomes decompensated and hyperglycemia is detected. One of the mechanisms leading to insulin resistance is low-grade inflammation that involves a number of protagonists such as inflammatory cytokines, lipids and their metabolites, reactive oxygen species (ROS), hypoxia and endoplasmic reticulum stress, and changes in gut microbiota profiles. We review here the molecular aspects of metabolic inflammation converging to insulin resistance and secondarily to type 2 diabetes. We also discuss the place of high-sensitivity C-reactive protein (hsCRP) in the assessment of metabolic inflammation and potential therapeutic interventions aimed to impede inflammation and therefore prevent insulin resistance. PMID:22834949

  8. Metabolism A higher power for insulin

    NASA Astrophysics Data System (ADS)

    Gribble, Fiona M.

    2005-04-01

    Glucose output from the liver is tightly regulated by insulin. But insulin holds sway over more than the liver - an unappreciated circuit in glucose control involves the opening of ion channels in the brain.

  9. Emerging Trends in Noninvasive Insulin Delivery

    PubMed Central

    Verma, Arun; Kumar, Nitin; Malviya, Rishabha; Sharma, Pramod Kumar

    2014-01-01

    This paper deals with various aspects of oral insulin delivery system. Insulin is used for the treatment of diabetes mellitus, which is characterized by the elevated glucose level (above the normal range) in the blood stream, that is, hyperglycemia. Oral route of administration of any drug is the most convenient route. Development of oral insulin is still under research. Oral insulin will cause the avoidance of pain during the injection (in subcutaneous administration), anxiety due to needle, and infections which can be developed. Different types of enzyme inhibitors, like sodium cholate, camostat, mesilate, bacitracin, leupeptin, and so forth, have been used to prevent insulin from enzymatic degradation. Subcutaneous route has been used for administration of insulin, but pain and itching at the site of administration can occur. That is why various alternative routes of insulin administration like oral route are under investigation. In this paper authors summarized advancement in insulin delivery with their formulation aspects. PMID:26556194

  10. Hypersensitivity Reaction to Insulin Glargine and Insulin Detemir in a Pediatric Patient: A Case Report.

    PubMed

    Badik, Jennifer; Chen, Jimmy; Letvak, Kira; So, Tsz-Yin

    2016-01-01

    Allergy to human insulin or its analogs is rare, but it is still a significant issue in current diabetes care. Allergic reactions can range from localized injection site reactions to generalized anaphylaxis, and they can be caused by excipients or the insulin molecules themselves. We presented a case of a 14-year-old male patient with generalized allergic reactions to insulin glargine and insulin detemir. The patient was successfully managed by being switched to a continuous subcutaneous insulin infusion with insulin aspart. Allergic reactions to insulin detemir and insulin glargine have both been well described, with insulin detemir allergy appearing to be more common. There are several potential mechanisms for insulin allergy, and immunologic characteristics vary among different insulin analogs. After confirming insulin allergy in practice, management involves treating symptoms and switching insulin preparations. This is the first documented case of allergies to both insulin glargine and insulin detemir in a pediatric patient. Exact mechanism of insulin allergy is unknown, and management strategies must be individualized for each patient. PMID:26997933

  11. Hypersensitivity Reaction to Insulin Glargine and Insulin Detemir in a Pediatric Patient: A Case Report

    PubMed Central

    Badik, Jennifer; Chen, Jimmy; Letvak, Kira

    2016-01-01

    Allergy to human insulin or its analogs is rare, but it is still a significant issue in current diabetes care. Allergic reactions can range from localized injection site reactions to generalized anaphylaxis, and they can be caused by excipients or the insulin molecules themselves. We presented a case of a 14-year-old male patient with generalized allergic reactions to insulin glargine and insulin detemir. The patient was successfully managed by being switched to a continuous subcutaneous insulin infusion with insulin aspart. Allergic reactions to insulin detemir and insulin glargine have both been well described, with insulin detemir allergy appearing to be more common. There are several potential mechanisms for insulin allergy, and immunologic characteristics vary among different insulin analogs. After confirming insulin allergy in practice, management involves treating symptoms and switching insulin preparations. This is the first documented case of allergies to both insulin glargine and insulin detemir in a pediatric patient. Exact mechanism of insulin allergy is unknown, and management strategies must be individualized for each patient. PMID:26997933

  12. A case of hypersensitivity to soluble and isophane insulins but not to insulin glargine

    PubMed Central

    Belhekar, Mahesh N.; Pai, Sarayu; Tayade, Parimal; Dalwadi, Pradip; Munshi, Renuka; Varthakavi, Prema

    2015-01-01

    Insulin is an important agent for the treatment of diabetes mellitus (DM). Allergic reactions to insulin therapy, although rare, have been evident since animal insulin became available for the treatment of DM in 1922. Hypersensitivity to insulin has considerably been reduced with the introduction of human insulin produced by recombinant deoxyribonucleic acid technology. Here, we present a case of Type 2 DM who demonstrated immediate (Type 1) hypersensitivity reaction on the sites of subcutaneous injection of soluble and isophane insulin but insulin glargine was tolerated well and provided good glycemic control. PMID:25878390

  13. A case of hypersensitivity to soluble and isophane insulins but not to insulin glargine.

    PubMed

    Belhekar, Mahesh N; Pai, Sarayu; Tayade, Parimal; Dalwadi, Pradip; Munshi, Renuka; Varthakavi, Prema

    2015-01-01

    Insulin is an important agent for the treatment of diabetes mellitus (DM). Allergic reactions to insulin therapy, although rare, have been evident since animal insulin became available for the treatment of DM in 1922. Hypersensitivity to insulin has considerably been reduced with the introduction of human insulin produced by recombinant deoxyribonucleic acid technology. Here, we present a case of Type 2 DM who demonstrated immediate (Type 1) hypersensitivity reaction on the sites of subcutaneous injection of soluble and isophane insulin but insulin glargine was tolerated well and provided good glycemic control. PMID:25878390

  14. Preventing p38 MAPK-mediated MafA degradation ameliorates β-cell dysfunction under oxidative stress.

    PubMed

    El Khattabi, Ilham; Sharma, Arun

    2013-07-01

    The reduction in the expression of glucose-responsive insulin gene transcription factor MafA accompanies the development of β-cell dysfunction under oxidative stress/diabetic milieu. Humans with type 2 diabetes have reduced MafA expression, and thus preventing this reduction could overcome β-cell dysfunction and diabetes. We previously showed that p38 MAPK, but not glycogen synthase kinase 3 (GSK3), is a major regulator of MafA degradation under oxidative stress. Here, we examined the mechanisms of this degradation and whether preventing MafA degradation under oxidative stress will overcome β-cell dysfunction. We show that under oxidative and nonoxidative conditions p38 MAPK directly binds to MafA and triggers MafA degradation via ubiquitin proteasomal pathway. However, unlike nonoxidative conditions, MafA degradation under oxidative stress depended on p38 MAPK-mediated phosphorylation at threonine (T) 134, and not T57. Furthermore the expression of alanine (A) 134-MafA, but not A57-MafA, reduced the oxidative stress-mediated loss of glucose-stimulated insulin secretion, which was independent of p38 MAPK action on protein kinase D, a regulator of insulin secretion. Interestingly, the expression of proteasomal activator PA28γ that degrades GSK3-phosphorylated (including T57) MafA was reduced under oxidative stress, explaining the dominance of p38 MAPK over the GSK3 pathway in regulating MafA stability under oxidative stress. These results identify two distinct pathways mediating p38 MAPK-dependent MafA degradation under oxidative and nonoxidative conditions and show that inhibiting MafA degradation under oxidative stress ameliorates β-cell dysfunction and could lead to novel therapies for diabetes. PMID:23660596

  15. Rhein ameliorates fatty liver disease through negative energy balance, hepatic lipogenic regulation, and immunomodulation in diet-induced obese mice.

    PubMed

    Sheng, Xiaoyan; Wang, Min; Lu, Meng; Xi, Beili; Sheng, Hongguang; Zang, Ying Qin

    2011-05-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, and inflammatory disorders. In this study, we tested the effect of rhein, a lipophilic anthraquinone derived from a traditional Chinese herbal medicine Rheum palmatum L., on NAFLD-associated hepatic steatosis, insulin resistance, and the T helper (Th)1/Th2 cytokine imbalance in high-fat diet-induced obese (DIO) mice. We found that oral administration of rhein for 40 days significantly increased energy expenditure, reduced body weight, particularly body fat content, improved insulin resistance, and lowered circulating cholesterol levels in DIO mice without affecting food intake. Rhein treatment also reduced liver triglyceride levels, reversed hepatic steatosis, and normalized alanine aminotransferase (ALT) levels in these mice. Gene analysis and Western blot showed that rhein markedly suppressed the expression of the lipogenic enzyme sterol regulatory element-binding protein-1c (SREBP-1c) and its target genes in the liver. Luciferase reporter assay revealed that rhein suppressed the transcriptional activity of SREBP-1c through its upstream regulator, liver X receptor (LXR). This suggests that rhein exerts its effects by targeting LXR, which is also supported by its inability to reduce body weight in LXR knockout mice. Moreover, multiplex ELISA displayed a downregulated Th1 response after rhein treatment. Rhein shifted the Th1/Th2 responses by inhibiting T-box expressed in T-cells (T-bet) expression and enhancing GATA-binding protein-3 (GATA-3) expression through increased signal transducer and activator of transcription 6 (STAT6) phosphorylation. These data indicate that rhein ameliorated NAFLD and associated disorders through LXR-mediated negative energy balance, metabolic regulatory pathways, and immunomodulatory activities involved in hepatic steatosis. The combined effects of rhein to target hepatic metabolic and immune pathways may be beneficial for complex metabolic

  16. [Chronic insulin urticaria. Therapeutic efficacy and good tolerability of human insulins].

    PubMed

    Mirouze, J; Monnier, L; Rodier, M; Balducchi, J P; Orsetti, A; Clot, J

    1982-10-23

    A case of type III (Arthus') hypersensitivity to insulin which occurred several years after insulin treatment was instituted is described. Its persistence even with highly purified insulins of bovine or porcine origin was suggestive of a direct reaction against insulin itself. The patient had no history of allergy and, contrary to most similar cases published, had not received intermittent insulin therapy. Using stimulation of lymphocyte blastogenesis, the authors were able to demonstrate the presence of specific antigen-mediated hypersensitivity to all insulins tested, including human insulins. The circulating immune complexes did not appear to be pathogenic, since the patient only had minimal retinopathy after 22 years of insulin-dependent diabetes. Human insulin was tolerated and proved effective in controlling both blood glucose levels and skin rashes in response to conventional insulins. PMID:6757860

  17. A retrospective database analysis of insulin use patterns in insulin-naïve patients with type 2 diabetes initiating basal insulin or mixtures

    PubMed Central

    Bonafede, Machaon MK; Kalsekar, Anupama; Pawaskar, Manjiri; Ruiz, Kimberly M; Torres, Amelito M; Kelly, Karen R; Curkendall, Suellen M

    2010-01-01

    Objective: To describe insulin persistence among patients with type 2 diabetes initiating insulin therapy with basal insulin or insulin mixtures and determine factors associated with nonpersistence. Research design and methods: The Thomson Reuters MarketScan® databases were used to retrospectively analyze insulin-naïve patients with type 2 diabetes by initiating insulin therapy. Insulin use was described using a variety of measures. The persistence to insulin was described using both a gap-based measure and the number of claims measure. Results: Patients in the basal insulin cohort (N = 15,255) primarily used insulin analogs (88.1%) and vial and syringe (97%). Patients in the mixture cohort (N = 2,732) were more likely to initiate on human insulin mixtures (62.5%) and vial and syringe (68.1%). Average time between insulin refills was 80 and 71 days for basal and mixture initiators, respectively. Nearly, 75% of basal insulin initiators and 65% of insulin mixture initiators had a 90-day gap in insulin prescriptions. More than half of all the patients had at least one insulin prescription per quarter. Patients initiating with insulin analogs were more likely to be persistent compared with those initiating with human insulin across both cohorts and measures of persistence (P < 0.001). Conclusion: Persistence to insulin therapy is poorer than one would anticipate, but appears to be higher in users of insulin analogs and insulin mixtures. PMID:20622915

  18. Carbenoxolone Treatment Ameliorated Metabolic Syndrome in WNIN/Ob Obese Rats, but Induced Severe Fat Loss and Glucose Intolerance in Lean Rats

    PubMed Central

    Prasad Sakamuri, Siva Sankara Vara; Sukapaka, Mahesh; Prathipati, Vijay Kumar; Nemani, Harishankar; Putcha, Uday Kumar; Pothana, Shailaja; Koppala, Swarupa Rani; Ponday, Lakshmi Raj Kumar; Acharya, Vani; Veetill, Giridharan Nappan; Ayyalasomayajula, Vajreswari

    2012-01-01

    Background 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates local glucocorticoid action in tissues by catalysing conversion of inactive glucocorticoids to active glucocorticoids. 11β-HSD1 inhibition ameliorates obesity and associated co-morbidities. Here, we tested the effect of 11β-HSD inhibitor, carbenoxolone (CBX) on obesity and associated comorbidities in obese rats of WNIN/Ob strain, a new animal model for genetic obesity. Methodology/Principal Findings Subcutaneous injection of CBX (50 mg/kg body weight) or volume-matched vehicle was given once daily for four weeks to three month-old WNIN/Ob lean and obese rats (n = 6 for each phenotype and for each treatment). Body composition, plasma lipids and hormones were assayed. Hepatic steatosis, adipose tissue morphology, inflammation and fibrosis were also studied. Insulin resistance and glucose intolerance were determined along with tissue glycogen content. Gene expressions were determined in liver and adipose tissue. CBX significantly inhibited 11β-HSD1 activity in liver and adipose tissue of WNIN/Ob lean and obese rats. CBX significantly decreased body fat percentage, hypertriglyceridemia, hypercholesterolemia, insulin resistance in obese rats. CBX ameliorated hepatic steatosis, adipocyte hypertrophy, adipose tissue inflammation and fibrosis in obese rats. Tissue glycogen content was significantly decreased by CBX in liver and adipose tissue of obese rats. Severe fat loss and glucose- intolerance were observed in lean rats after CBX treatment. Conclusions/Significance We conclude that 11β-HSD1 inhibition by CBX decreases obesity and associated co-morbidities in WNIN/Ob obese rats. Our study supports the hypothesis that inhibition of 11β-HSD1 is a key strategy to treat metabolic syndrome. Severe fat loss and glucose -intolerance by CBX treatment in lean rats suggest that chronic 11β-HSD1 inhibition may lead to insulin resistance in normal conditions. PMID:23284633

  19. Oral Insulin Delivery: How Far Are We?

    PubMed Central

    Fonte, Pedro; Araújo, Francisca; Reis, Salette; Sarmento, Bruno

    2013-01-01

    Oral delivery of insulin may significantly improve the quality of life of diabetes patients who routinely receive insulin by the subcutaneous route. In fact, compared with this administration route, oral delivery of insulin in diabetes treatment offers many advantages: higher patient compliance, rapid hepatic insulinization, and avoidance of peripheral hyperinsulinemia and other adverse effects such as possible hypoglycemia and weight gain. However, the oral delivery of insulin remains a challenge because its oral absorption is limited. The main barriers faced by insulin in the gastrointestinal tract are degradation by proteolytic enzymes and lack of transport across the intestinal epithelium. Several strategies to deliver insulin orally have been proposed, but without much clinical or commercial success. Protein encapsulation into nanoparticles is regarded as a promising alternative to administer insulin orally because they have the ability to promote insulin paracellular or transcellular transport across the intestinal mucosa. In this review, different delivery systems intended to increase the oral bioavailability of insulin will be discussed, with a special focus on nanoparticulate carrier systems, as well as the efforts that pharmaceutical companies are making to bring to the market the first oral delivery system of insulin. The toxicological and safety data of delivery systems, the clinical value and progress of oral insulin delivery, and the future prospects in this research field will be also scrutinized. PMID:23567010

  20. 21 CFR 522.1160 - Insulin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units...

  1. 21 CFR 522.1160 - Insulin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units...

  2. 21 CFR 522.1160 - Insulin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units...

  3. [Resistance to the action of insulin].

    PubMed

    Azevedo, M da S

    1993-06-01

    The author analyses the insulin and glucagon effect on glycaemia regulation. The structure of glucose transporters and insulin receptors is described in some detail. Finally the author attempts to explain the insulin resistance mechanism based on a post receptor alteration that would be advantageous in traditional nutrition, but is noxious in a western type society, due to excessive caloric intake. PMID:8368096

  4. Oral insulin delivery: how far are we?

    PubMed

    Fonte, Pedro; Araújo, Francisca; Reis, Salette; Sarmento, Bruno

    2013-01-01

    Oral delivery of insulin may significantly improve the quality of life of diabetes patients who routinely receive insulin by the subcutaneous route. In fact, compared with this administration route, oral delivery of insulin in diabetes treatment offers many advantages: higher patient compliance, rapid hepatic insulinization, and avoidance of peripheral hyperinsulinemia and other adverse effects such as possible hypoglycemia and weight gain. However, the oral delivery of insulin remains a challenge because its oral absorption is limited. The mainbarriers faced by insulin in the gastrointestinal tract are degradation by proteolytic enzymes and lack of transport across the intestinal epithelium. Several strategies to deliver insulin orally have been proposed, but without much clinical or commercial success. Protein encapsulation into nanoparticles is regarded as a promising alternative to administer insulin orally because they have the ability to promote insulin paracellular or transcellular transport across the intestinal mucosa. In this review, different delivery systems intended to increase the oral bioavailability of insulin will be discussed, with a special focus on nanoparticulate carrier systems, as well as the efforts that pharmaceutical companies are making to bring to the market the first oral delivery system of insulin. The toxicological and safety data of delivery systems, the clinical value and progress of oral insulin delivery, and the future prospects in this research field will be also scrutinized. PMID:23567010

  5. Insulin requirements in patients with diabetes and declining kidney function: differences between insulin analogues and human insulin?

    PubMed Central

    Kulozik, Felix

    2013-01-01

    Objectives: In diabetic nephropathy the decline of renal function causes modifications of the insulin and carbohydrate metabolism resulting in changed insulin requirements. The aim of the present study was to identify potential differences in the requirements of human insulin and various insulin analogues in patients with type 1 diabetes mellitus and renal dysfunction. Methods: The insulin requirements of 346 patients with type 1 diabetes mellitus under everyday life circumstances were assessed in an observational study. Simultaneously, laboratory parameters were measured and the estimated glomerular filtration rate (eGFR) was calculated using the formula by Cockcroft–Gault. Medical history and concomitant medication were recorded. The insulin requirements of long- and short-acting insulin were tested for a relationship with the eGFR and laboratory parameters. Results: The dosage of long-acting human insulin did not show any relation to eGFR. In contrast, a strong positive relation between dosage and renal function was found for insulin glargine and insulin detemir. After classification according to renal function, the insulin dosage at eGFR less than 60 ml/min was 29.7% lower in glargine-treated and 27.3% lower in detemir-treated patients compared with eGFR greater than 90 ml/min. Considering the whole range of eGFR, short-acting human insulin did not show a relation with renal function. Only after classification according to renal function was a dose reduction found for human insulin at eGFR less than 60 ml/min. In contrast, requirements of insulin lispro were significantly related to eGFR over the whole range of eGFR. At eGFR less than 60 ml/min the insulin dosage was 32.6% lower than at eGFR greater than 90 ml/min. The requirements of insulin aspart did not show any association with the eGFR. Conclusions: Patients with type 1 diabetes mellitus show different insulin requirements according to the renal function depending on the applied insulin. This finding is

  6. Tofogliflozin Improves Insulin Resistance in Skeletal Muscle and Accelerates Lipolysis in Adipose Tissue in Male Mice.

    PubMed

    Obata, Atsushi; Kubota, Naoto; Kubota, Tetsuya; Iwamoto, Masahiko; Sato, Hiroyuki; Sakurai, Yoshitaka; Takamoto, Iseki; Katsuyama, Hisayuki; Suzuki, Yoshiyuki; Fukazawa, Masanori; Ikeda, Sachiya; Iwayama, Kaito; Tokuyama, Kumpei; Ueki, Kohjiro; Kadowaki, Takashi

    2016-03-01

    Sodium glucose cotransporter 2 inhibitors have attracted attention as they exert antidiabetic and antiobesity effects. In this study, we investigated the effects of tofogliflozin on glucose homeostasis and its metabolic consequences and clarified the underlying molecular mechanisms. C57BL/6 mice were fed normal chow containing tofogliflozin (0.005%) for 20 weeks or a high-fat diet containing tofogliflozin (0.005%) for 8 weeks ad libitum. In addition, the animals were pair-fed in relation to controls to exclude the influence of increased food intake. Tofogliflozin reduced the body weight gain, mainly because of fat mass reduction associated with a diminished adipocyte size. Glucose tolerance and insulin sensitivity were ameliorated. The serum levels of nonesterified fatty acid and ketone bodies were increased and the respiratory quotient was decreased in the tofogliflozin-treated mice, suggesting the acceleration of lipolysis in the white adipose tissue and hepatic β-oxidation. In fact, the phosphorylation of hormone-sensitive lipase and the adipose triglyceride lipase protein levels in the white adipose tissue as well as the gene expressions related to β-oxidation, such as Cpt1α in the liver, were significantly increased. The hepatic triglyceride contents and the expression levels of lipogenic genes were decreased. Pair-fed mice exhibited almost the same results as mice fed an high-fat diet ad libitum. Moreover, a hyperinsulinemic-euglycemic clamp revealed that tofogliflozin improved insulin resistance by increasing glucose uptake, especially in the skeletal muscle, in pair-fed mice. Taken together, these results suggest tofogliflozin ameliorates insulin resistance and obesity by increasing glucose uptake in skeletal muscle and lipolysis in adipose tissue. PMID:26713783

  7. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    SciTech Connect

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-08-16

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  8. High fasting serum insulin level due to autoantibody interference in insulin immunoassay discloses autoimmune insulin syndrome: a case report.

    PubMed

    Lamy, Pierre-Jean; Sault, Corinne; Renard, Eric

    2016-08-01

    Insulin-antibodies are a cause of misleading results in insulin immunoassays. They may also mediate deleterious blood glucose variations. A patient presented with overtiredness, recurrent episodes of sweating, dizziness and fainting fits. A fasting serum insulin assay performed on a Modular platform (Modular analytic E170, Roche Diagnostic, Meylan, France) showed a highly elevated value of 194.7 mIU/L, whereas on the same sample glucose and C-peptide levels were normal. Other immunometric insulin assays were performed, as well as antibodies anti-insulin radiobinding assay (RBA) and gel filtration chromatography (GFC). While complementary insulin assays yielded closer to normal fasting levels, the free insulin concentration assessed after PEG precipitation was 14.0 mIU/L and the RBA was positive. GFC revealed that most of the insulin was complexed with a 150 kDa molecule, corresponding to an immunoglobulin G (IgG). A high fasting serum insulin level in a patient with neuroglucopenic symptoms was related to a high insulin-antibody level, suggesting an insulin autoimmune syndrome. PMID:27492703

  9. Globular Adiponectin Enhances Muscle Insulin Action via Microvascular Recruitment and Increased Insulin Delivery

    PubMed Central

    Zhao, Lina; Chai, Weidong; Fu, Zhuo; Dong, Zhenhua; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong; Liu, Zhenqi

    2014-01-01

    Rationale Adiponectin enhances insulin action and induces nitric oxide–dependent vasodilatation. Insulin delivery to muscle microcirculation and transendothelial transport are 2 discrete steps that limit insulin's action. We have shown that expansion of muscle microvascular surface area increases muscle insulin delivery and action. Objective To examine whether adiponectin modulates muscle microvascular recruitment thus insulin delivery and action in vivo. Methods and Results Overnight fasted adult male rats were studied. We determined the effects of adiponectin on muscle microvascular recruitment, using contrast-enhanced ultrasound, on insulin-mediated microvascular recruitment and whole-body glucose disposal, using contrast-enhanced ultrasound and insulin clamp, and on muscle insulin clearance and uptake with 125I-insulin. Globular adiponectin potently increased muscle microvascular blood volume without altering microvascular blood flow velocity, leading to a significantly increased microvascular blood flow. This was paralleled by a ≈30% to 40% increase in muscle insulin uptake and clearance, and ≈30% increase in insulin-stimulated whole-body glucose disposal. Inhibition of endothelial nitric oxide synthase abolished globular adiponectin-mediated muscle microvascular recruitment and insulin uptake. In cultured endothelial cells, globular adiponectin dose-dependently increased endothelial nitric oxide synthase phosphorylation but had no effect on endothelial cell internalization of insulin. Conclusions Globular adiponectin increases muscle insulin uptake by recruiting muscle microvasculature, which contributes to its insulin-sensitizing action. PMID:23459195

  10. Insulin-induced cytokine production in macrophages causes insulin resistance in hepatocytes.

    PubMed

    Manowsky, Julia; Camargo, Rodolfo Gonzalez; Kipp, Anna P; Henkel, Janin; Püschel, Gerhard P

    2016-06-01

    Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the β-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1β, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1β was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKβ, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues. PMID:27094035

  11. Activated central galanin type 1 receptor alleviated insulin resistance in diabetic rat muscle.

    PubMed

    Bu, Le; Chang, Xusheng; Cheng, Xiaoyun; Yao, Qian; Su, Bin; Sheng, Chunjun; Qu, Shen

    2016-10-01

    Evidence indicates that central galanin is involved in regulation of insulin resistance in animals. This study investigates whether type 1 galanin receptor (GAL1) in the brain mediates the ameliorative effect of galanin on insulin resistance in skeletal muscles of type 2 diabetic rats. Rats were intracerebroventricularly (i.c.v.) injected with galanin(1-13)-bradykinin(2-9) amide (M617), a GAL1 agonist, and/or Akti-1/2, an Akt inhibitor, via caudal veins once per day for 10 days. Insulin resistance in muscle tissues was evaluated by glucose tolerance and 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) tests, peroxisome proliferator-activated receptor-γ (PPARγ), glucose transporter 4 (GLUT4) mRNA expression levels, Akt phosphorylation, and GLUT4 and vesicle-associated membrane protein 2 (VAMP2) concentration at plasma membranes in muscle cells. The results show that i.c.v. treatment with M617 increased glucose tolerance, 2-NBDG uptake, PPARγ levels, Akt phosphorylation, GLUT4 protein, and GLUT4 mRNA expression levels as well as GLUT4 and VAMP2 concentration at plasma membranes. All increases may be blocked by pretreatment with Akti-1/2. These results suggest that activated central GAL1 may trigger the Akt signaling pathway to alleviate insulin resistance in muscle cells. Therefore, the impact of galanin on insulin resistance is mediated mainly by GAL1 in the brain, and the GAL1 agonist may be taken as a potential antidiabetic agent for treatment of type 2 diabetes mellitus. © 2016 Wiley Periodicals, Inc. PMID:27410235

  12. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    PubMed

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. PMID:27284106

  13. Mitochondrial efficiency and insulin resistance.

    PubMed

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Liverini, Giovanna; Iossa, Susanna

    2014-01-01

    Insulin resistance, "a relative impairment in the ability of insulin to exert its effects on glucose, protein and lipid metabolism in target tissues," has many detrimental effects on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues. Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation. Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin resistance has been proposed and many studies have dealt with possible alteration in mitochondrial function in obesity and diabetes, both in humans and animal models. Data reporting evidence of mitochondrial dysfunction in type two diabetes mellitus are numerous, even though the issue that this reduced mitochondrial function is causal in the development of the disease is not yet solved, also because a variety of parameters have been used in the studies carried out on this subject. By assessing the alterations in mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis of skeletal muscle cells, we have obtained results that allow us to suggest that an increase in mitochondrial efficiency precedes and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle. PMID:25601841

  14. Nutritional Modulation of Insulin Resistance

    PubMed Central

    Weickert, Martin O.

    2012-01-01

    Insulin resistance has been proposed as the strongest single predictor for the development of Type 2 Diabetes (T2DM). Chronic oversupply of energy from food, together with inadequate physical activity, have been recognized as the most relevant factors leading to overweight, abdominal adiposity, insulin resistance, and finally T2DM. Conversely, energy reduced diets almost invariably to facilitate weight loss and reduce abdominal fat mass and insulin resistance. However, sustained weight loss is generally difficult to achieve, and distinct metabolic characteristics in patients with T2DM further compromise success. Therefore, investigating the effects of modulating the macronutrient composition of isoenergetic diets is an interesting concept that may lead to additional important insights. Metabolic effects of various different dietary concepts and strategies have been claimed, but results from randomized controlled studies and particularly from longer-term-controlled interventions in humans are often lacking. However, some of these concepts are supported by recent research, at least in animal models and short-term studies in humans. This paper provides an update of the current literature regarding the role of nutrition in the modulation of insulin resistance, which includes the discussion of weight-loss-independent metabolic effects of commonly used dietary concepts. PMID:24278690

  15. Rapid Normalization of High Glutamic Acid Decarboxylase Autoantibody Titers and Preserved Endogenous Insulin Secretion in a Patient with Diabetes Mellitus: A Case Report and Literature Review.

    PubMed

    Ohara, Nobumasa; Kaneko, Masanori; Furukawa, Tatsuo; Koike, Tadashi; Sone, Hirohito; Tanaka, Shoichiro; Kaneko, Kenzo; Kamoi, Kyuzi

    2016-01-01

    A 59-year-old Japanese woman developed diabetes mellitus without ketoacidosis in the presence of glutamic acid decarboxylase autoantibody (GADA) (24.7 U/mL). After the amelioration of her hyperglycemia, the patient had a relatively preserved serum C-peptide level. Her endogenous insulin secretion capacity remained almost unchanged during 5 years of insulin therapy. The patient's GADA titers normalized within 15 months. The islet-related autoantibodies, including GADA, are believed to be produced following the autoimmune destruction of pancreatic beta cells and are predictive markers of type 1 diabetes mellitus. Therefore, the transient appearance of GADA in our patient may have reflected pancreatic autoimmune processes that terminated without progression to insulin deficiency. PMID:26935368

  16. Patient Perspectives on Biosimilar Insulin

    PubMed Central

    Wilkins, Alasdair R.; Venkat, Manu V.; Brown, Adam S.; Dong, Jessica P.; Ran, Nina A.; Hirsch, James S.

    2014-01-01

    Given that a new wave of biosimilar insulins will likely enter the market in coming years, it is important to understand patient perspectives on these biosimilars. A survey (N = 3214) conducted by the market research company dQ&A, which maintains a 10 000-patient panel of people with type 1 or type 2 diabetes in roughly equal measure, investigated these perspectives. The survey asked whether patients would switch to a hypothetical less expensive biosimilar insulin that was approved by their provider. Approximately 66% of respondents reported that they would “definitely” or “likely” use a biosimilar insulin, while 17% reported that they were “unlikely” to use or would “definitely not use” such a product. Type 2 diabetes patients demonstrated slightly more willingness to use biosimilars than type 1 diabetes patients. Common patient concerns included whether biosimilars would be as effective as reference products (~650 respondents), whether side effect profiles would deviate from those of reference products (~220 respondents), and the design of the delivery device (~50 respondents). While cost savings associated with biosimilar insulins could increase patient uptake, especially among patients without health insurance (some recent estimates suggest that biosimilars will come at a substantial discount), patients may still need assurance that a cheaper price tag is not necessarily associated with substandard quality. Overall, the dQ&A survey indicates that the majority of patients are willing to consider biosimilar insulins, but manufacturers will need to work proactively to address and assuage patient concerns regarding efficacy, safety, drug administration, and other factors. PMID:24876533

  17. Selective Insulin Resistance in the Kidney

    PubMed Central

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  18. Immobilization depresses insulin signaling in skeletal muscle.

    PubMed

    Hirose, M; Kaneki, M; Sugita, H; Yasuhara, S; Martyn, J A

    2000-12-01

    Prolonged immobilization depresses insulin-induced glucose transport in skeletal muscle and leads to a catabolic state in the affected areas, with resultant muscle wasting. To elucidate the altered intracellular mechanisms involved in the insulin resistance, we examined insulin-stimulated tyrosine phosphorylation of the insulin receptor beta-subunit (IR-beta) and insulin receptor substrate (IRS)-1 and activation of its further downstream molecule, phosphatidylinositol 3-kinase (PI 3-K), after unilateral hindlimb immobilization in the rat. The contralateral hindlimb served as control. After 7 days of immobilization of the rat, insulin was injected into the portal vein, and tibialis anterior muscles on both sides were extracted. Immobilization reduced insulin-stimulated tyrosine phosphorylation of IR-beta and IRS-1. Insulin-stimulated binding of IRS-1 to p85, the regulatory subunit of PI 3-K, and IRS-1-associated PI 3-K activity were also decreased in the immobilized hindlimb. Although IR-beta and p85 protein levels were unchanged, IRS-1 protein expression was downregulated by immobilization. Thus prolonged immobilization may cause depression of insulin-stimulated glucose transport in skeletal muscle by altering insulin action at multiple points, including the tyrosine phosphorylation, protein expression, and activation of essential components of insulin signaling pathways. PMID:11093909

  19. Transdermal delivery of insulin via microneedles.

    PubMed

    Narayan, Roger J

    2014-09-01

    Treatment of insulin-dependent diabetes mellitus, also known as Type 1 diabetes mellitus, requires delivery of exogenous insulin via injection or pump. An alternative to syringe-based subcutaneous delivery of insulin involves use of microneedles. These < 300 μm diameter, 50-900 μm long needle shaped devices may be used for intradermal delivery of insulin. Benefits associated with microneedle-based delivery of insulin include minimal training for use, painless insertion, as well as the potential to combine microneedles with sensors and drug delivery devices to create an autonomous artificial pancreas. In this review, the efforts of academic and industrial researchers over the past decade to examine the functionality of microneedles for delivery of insulin, including insulin-containing nanomaterials, via in vitro, ex vivo, and in vivo studies are considered. PMID:25992456

  20. Antidiabetic efficacy of citronellol, a citrus monoterpene by ameliorating the hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Srinivasan, Subramani; Muruganathan, Udaiyar

    2016-04-25

    Diabetes mellitus is a clinically complex disease characterized by chronic hyperglycemia with metabolic disturbances. During diabetes, endogenous hepatic glucose production is increased as a result of impaired activities of the key enzymes of carbohydrate metabolism. The purpose of the present study was to evaluate the antidiabetic efficacy of citronellol, a citrus monoterpene in streptozotocin (STZ)-induced diabetic rats. Diabetes mellitus was induced by a single intraperitoneal injection of STZ (40 mg/kg b.w). STZ induced diabetic rats received citronellol orally at the doses of 25, 50, and 100 mg/kg b.w for 30 days. In this study the levels of plasma glucose, insulin, hemoglobin (Hb), glycated hemoglobin (HbA1C), glycogen, and the activities of carbohydrate metabolic enzymes, liver and kidney markers were evaluated. Oral administration of citronellol (50 mg/kg) for 30 days dose dependently improved the levels of insulin, Hb and hepatic glycogen with significant decrease in glucose and HbA1C levels. The altered activities of carbohydrate metabolic enzymes, hepatic and kidney markers were restored to near normal. Citronellol supplement was found to be effective in preserving the normal histological appearance of hepatic cells and insulin-positive β-cells in STZ-rats. Our results suggest that administration of citronellol attenuates the hyperglycemia in the STZ-induced diabetic rats by ameliorating the key carbohydrate metabolic enzymes and could be developed as a functional and nutraceutical ingredient in combating diabetes mellitus. PMID:26944432

  1. Fenofibrate insulates diacylglycerol in lipid droplet/ER and preserves insulin signaling transduction in the liver of high fat fed mice.

    PubMed

    Chan, Stanley M H; Zeng, Xiao-Yi; Sun, Ruo-Qiong; Jo, Eunjung; Zhou, Xiu; Wang, Hao; Li, Songpei; Xu, Aimin; Watt, Matthew J; Ye, Ji-Ming

    2015-07-01

    Hepatic steatosis is often associated with insulin resistance as a hallmark of the metabolic syndrome in the liver. The present study investigated the effects of PPARα activation induced by fenofibrate (FB) on the relationship of insulin resistance and hepatic steatosis in mice fed a high-fat (HF) diet, which increases lipid influx into the liver. Mice were fed HF diet to induce insulin resistance and hepatic steatosis with or without FB. FB activated PPARα and ameliorated HF diet-induced glucose intolerance and hepatic insulin resistance without altering either hepatic steatosis or inflammation signaling (JNK or IKK). Interestingly, FB treatment simultaneously increased fatty acid (FA) synthesis (50%) and oxidation (66%, both p<0.01) into intermediate lipid metabolites, suggesting a FA oxidation-synthesis cycling in operation. Associated with these effects, diacylglycerols (DAGs) were sequestered within the lipid droplet/ER compartment, thus reducing their deposition in the cellular membrane, which is known to impair insulin signal transduction. These findings suggest that the reduction in membrane DAGs (rather than total hepatic steatosis) may be critical for the protection by fenofibrate-induced PPARα activation against hepatic insulin resistance induced by dietary fat. PMID:25906681

  2. Relationship of p53 accumulation in peripheral tissues of high-fat diet-induced obese rats with decrease in metabolic and oncogenic signaling of insulin.

    PubMed

    Homayounfar, Reza; Jeddi-Tehrani, Mahmood; Cheraghpour, Makan; Ghorbani, Asghar; Zand, Hamid

    2015-04-01

    This paper aimed to explore the role of p53 in adipose and some other peripheral tissues of a diet-induced obese model and targeted it using pharmacological approach to ameliorate diet-induced insulin resistance. Five week old male Wistar rats were randomly divided into three groups and fed on low-fat diet (13% control lean group), high-fat diet (41% obese group), or high-fat diet plus a single dose of pifithrin-α in the end of experiments (PFT group). Insulin, glucose, and other serum parameters were analyzed by standard colorimetric kits. Protein levels were evaluated by immunoblotting and immunofluorescence methods. After 12weeks, both body weight and insulin resistance were significantly higher in obese rats than in the control ones. P53 and PTEN protein levels were markedly elevated in peripheral tissues in addition to adipose tissues. AKT activation was decreased in the peripheral tissues of obese rats and was in correlation with the increase of p53 and PTEN level. Systemic pifithrin-α administration considerably diminished p53 levels and ameliorated AKT phosphorylation in all peripheral tissues including adipose tissues. Interestingly, the systemic inhibition of p53 was in correlation with improving insulin glucose at serum level. The present results clearly showed that p53 activation in peripheral tissues was in correlation with decreased insulin action. These results indicated p53 activation in the peripheral tissues of obese subjects as a protective mechanism against chronic insulin elevation, suggested that p53 could be a new target for the treatment of type 2 diabetes. PMID:25016051

  3. Insulin degludec and insulin degludec/insulin aspart in Ramadan: A single center experience

    PubMed Central

    Kalra, Sanjay

    2016-01-01

    This study aimed to document the utility and safety of insulin degludec (IDeg) and insulin degludec aspart (IDegAsp) in persons with type 2 diabetes, observing the Ramadan fast. An observational study was conducted at a single center, in the real world setting, on six persons who either switched to IDeg or IDegAsp a month before Ramadan or changed time of administration of IDegAsp at the onset of Ramadan, to keep the fast in a safe manner. Subjects were kept under regular monitoring and surveillance before, during, and after Ramadan, and counseled in an opposite manner. Four persons, who shifted from premixed insulin to IDegAsp, experienced a 12–18% dose reduction after 14 days. At the onset of Ramadan, the Suhur dose was reduced by 30%, and this remained unchanged during the fasting month. The Iftar dose had to be increased by 4 units. One person who shifted from neutral protamine hagedorn to IDeg demonstrated a 25% dose reduction at 20 days, without any further change in insulin requirement during Ramadan. One person who changed time of injection of IDegAsp from morning to night reported no change in dosage. No episode of major hypoglycemia was reported. IDeg and IDegAsp are effective, safe, and well-tolerated means of achieving glycemic control in persons with type 2 diabetes who wish to fast. PMID:27366727

  4. Insulin degludec and insulin degludec/insulin aspart in Ramadan: A single center experience.

    PubMed

    Kalra, Sanjay

    2016-01-01

    This study aimed to document the utility and safety of insulin degludec (IDeg) and insulin degludec aspart (IDegAsp) in persons with type 2 diabetes, observing the Ramadan fast. An observational study was conducted at a single center, in the real world setting, on six persons who either switched to IDeg or IDegAsp a month before Ramadan or changed time of administration of IDegAsp at the onset of Ramadan, to keep the fast in a safe manner. Subjects were kept under regular monitoring and surveillance before, during, and after Ramadan, and counseled in an opposite manner. Four persons, who shifted from premixed insulin to IDegAsp, experienced a 12-18% dose reduction after 14 days. At the onset of Ramadan, the Suhur dose was reduced by 30%, and this remained unchanged during the fasting month. The Iftar dose had to be increased by 4 units. One person who shifted from neutral protamine hagedorn to IDeg demonstrated a 25% dose reduction at 20 days, without any further change in insulin requirement during Ramadan. One person who changed time of injection of IDegAsp from morning to night reported no change in dosage. No episode of major hypoglycemia was reported. IDeg and IDegAsp are effective, safe, and well-tolerated means of achieving glycemic control in persons with type 2 diabetes who wish to fast. PMID:27366727

  5. Integrated insulin pump therapy with continuous glucose monitoring for improved adherence: technology update.

    PubMed

    Tumminia, Andrea; Sciacca, Laura; Frittitta, Lucia; Squatrito, Sebastiano; Vigneri, Riccardo; Le Moli, Rosario; Tomaselli, Letizia

    2015-01-01

    Insulin pump therapy combined with real-time continuous glucose monitoring, known as sensor-augmented pump (SAP) therapy, has been shown to improve metabolic control and to reduce the rate of hypoglycemia in adults with type 1 diabetes compared to multiple daily injections or standard continuous subcutaneous insulin infusion. Glycemic variability is also reduced in patients on SAP therapy. This approach allows patients to monitor their glucose levels being informed of glycemic concentration and trend. Trained diabetic patients, therefore, can appropriately modify insulin infusion and/or carbohydrate intake in order to prevent hypo- or hyperglycemia. For these reasons, SAP therapy is now considered the gold standard for type 1 diabetes treatment. To be clinically effective, however, devices and techniques using advanced technology should not only have the potential to theoretically ameliorate metabolic control, but also be well accepted by patients in terms of satisfaction and health-related quality of life, because these factors will improve treatment adherence and consequently overall outcome. SAP therapy is generally well tolerated by patients; however, many clinical trials have identified significant noncompliance in the use of this device, most notably in the pediatric and adolescent populations. In this review we aim to analyze the main reasons for good or poor adherence to SAP therapy and to provide useful tips in order to fully benefit from this kind of novel therapeutic approach. PMID:26379428

  6. XANES of Chromium in Sludges Used as Soil Ameliorants

    SciTech Connect

    Naftel, S.J.; Martin, R.R.; Sham, T.K.; Hart, B.; Powell, M.A.

    2010-12-01

    Samples of sewage sludges proposed for use as soil ameliorants in an Indo-Canadian project were tested for chromium content. Standard aqua regia extractions found one sludge to have excessive amounts of Cr. X-ray absorption near-edge structure (XANES) spectroscopy, however, indicated that the Cr was present in the relatively benign Cr(III) oxidation state in all the sludge samples.

  7. Evaluation of Soil Salinity Amelioration Technologies in Timpaki, Crete

    NASA Astrophysics Data System (ADS)

    Panagea, Ioanna; Daliakopoulos, Ioannis; Tsanis, Ioannis; Schwilch, Gudrun

    2015-04-01

    Salinization is a soil threat that adversely affects ecosystem services and diminishes soil functions in many arid and semi-arid regions. Soil salinity management depends on a range of factors, and can be complex expensive and time demanding. Besides taking no action, possible management strategies include amelioration and adaptation measures. The WOCAT Technologies Questionnaire is a standardized methodology for monitoring, evaluating and documenting sustainable land management practices through interaction with the stakeholders. Here we use WOCAT for the systematic analysis and evaluation of soil salinization amelioration measures, for the RECARE project Case Study in Greece, the Timpaki basin, a semi-arid region in south-central Crete where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinization due to irrigation with brackish water. Amelioration technologies that have already been applied in the case study by the stakeholders are examined and classified depending on the function they promote and/or improve. The documented technologies are evaluated for their impacts on ecosystem services, cost and input requirements. Preliminary results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity such as composting, mulching, rain water harvesting and seed biopriming are preferred by the stakeholders. Further work will include result validation using qualitative approaches. Keywords: soil salinity; salinization; evaluation of soil salinization amelioration techniques; WOCAT; RECARE FP7 project; Timpaki Crete

  8. Biochar from commercially cultivated seaweed for soil amelioration

    NASA Astrophysics Data System (ADS)

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-04-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum - brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma - red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity.

  9. Biochar from commercially cultivated seaweed for soil amelioration.

    PubMed

    Roberts, David A; Paul, Nicholas A; Dworjanyn, Symon A; Bird, Michael I; de Nys, Rocky

    2015-01-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum--brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma--red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity. PMID:25856799

  10. Biochar from commercially cultivated seaweed for soil amelioration

    PubMed Central

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-01-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum – brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma – red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity. PMID:25856799

  11. Insulin degludec. Uncertainty over cardiovascular harms.

    PubMed

    2014-06-01

    Insulin isophane (NPH) is the standard long-acting human insulin for patients with type 1 and type 2 diabetes. Long-acting human insulin analogues are also available: insulin glargine and insulin detemir. Uncertainties remain concerning their long-term adverse effects. Insulin degludec (Tresiba, Novo Nordisk) is another long-acting human insulin analogue, also approved in the EU for patients with type 1 and type 2 diabetes. It was authorised at a concentration of 100 units per ml, like other insulins, and also at a concentration of 200 units per ml. There are no comparative data on insulin degludec 200 units per ml in patients using high doses of insulin. Insulin degludec has mainly been evaluated in ten randomised, unblinded, "non-inferiority" trials lasting 26 to 52 weeks, nine versus insulin glargine and one versus insulin detemir. Insulin degludec was administered at a fixed time each evening, or in either the morning or evening on alternate days, at varying intervals of 8 to 40 hours between doses. Efficacy in terms of HbA1c control was similar to that of the other insulin analogues administered once a day. The frequency of severe hypoglycaemia was similar in the groups treated with insulin degludec and those treated with the other insulins (10% to 12% among patients with type 1 diabetes and less than 5% in patients with type 2 diabetes). Deaths and other serious adverse events were similarly frequent in the different groups. A meta-analysis of clinical trials, carried out by the US Food and Drug Administration, suggested an increase of about 60% in the incidence of cardiovascular complications, based on a composite endpoint combining myocardial infarction, stroke and cardiovascular death. Other adverse effects observed in these trials were already known to occur with human insulin and its analogues, including weight gain, hypersensitivity reactions, reactions at the injection site, etc. The trials were too short in duration to assess long-term harms

  12. Long-term effect of insulin on glucose transport and insulin binding in cultured adipocytes from normal and obese humans with and without non-insulin-dependent diabetes.

    PubMed Central

    Sinha, M K; Taylor, L G; Pories, W J; Flickinger, E G; Meelheim, D; Atkinson, S; Sehgal, N S; Caro, J F

    1987-01-01

    We have tested the hypothesis that in vitro exposure of insulin-resistant adipocytes with insulin results in improved insulin action. A primary culture system of adipocytes from obese subjects with or without non-insulin-dependent diabetes mellitus (NIDDM) and nonobese control subjects has been developed. The adipocytes when cultured in serum-free medium do not lose their original characteristics in regard to insulin binding and glucose transport. The adipocytes from three groups were incubated with insulin (0, 10(-10) M, and 10(-7) M) for 24 h at 37 degrees C, receptor-bound insulin was dissociated, and basal and insulin (1 X 10(-11)-10(-7) M)-stimulated glucose transport and 125I-insulin binding were determined. The 24-h insulin exposure of adipocytes from control subjects decreased basal and insulin-stimulated glucose transport. The effects of 1 X 10(-7) M insulin were more pronounced than 1 X 10(-10) M insulin. Similarly, insulin exposure decreased insulin sensitivity and responsiveness of cultured adipocytes from obese and NIDDM patients. The insulin-induced reduction in insulin sensitivity and responsiveness for glucose transport in three groups were due to alterations at insulin binding and postbinding levels. In conclusion, insulin induces insulin resistance in control adipocytes and further worsens the insulin resistance of adipocytes from obese and NIDDM subjects. For insulin to improve the insulin resistance of adipocytes from NIDDM patients, either more prolonged in vitro insulin exposure and/or other hormonal factors might be required. PMID:3308958

  13. The Effects of Anti-insulin Antibodies and Cross-reactivity with Human Recombinant Insulin Analogues in the E170 Insulin Immunometric Assay

    PubMed Central

    Kim, Serim; Hur, Mina; Moon, Hee Won; Kim, Jin Q

    2011-01-01

    Background Insulin assays are affected by varying degrees of interference from anti-insulin antibodies (IAs) and by cross-reactivity with recombinant insulin analogues. We evaluated the usefulness of the E170 insulin assay by assessing IA effects and cross-reactivity with 2 analogues. Methods Sera were obtained from 59 type 2 diabetes patients receiving continuous subcutaneous insulin infusion and 18 healthy controls. Insulin levels were determined using an E170 analyzer. To investigate the effects of IAs, we performed IA radioimmunoassays, and analyzed the differences between directly measured insulin (direct insulin) and polyethylene glycol (PEG)-treated insulins (free, IA-unbound; total, IA-bound and unbound insulin). We performed in-vitro cross-reactivity tests with insulin aspart and insulin glulisine. Results In IA-positive patients, E170 free insulin levels measured using the E170 analyzer were significantly lower than the direct insulin levels. The mean value of the direct/free insulin ratio and IA-bound insulin, which were calculated as the difference between total and free insulin, increased significantly as endogenous IA levels increased. The E170 insulin assay showed low cross-reactivities with both analogues (< 0.7%). Conclusions IAs interfered with E170 insulin assay, and the extent of interference correlated with the IA levels, which may be attributable to the increase in IA-bound insulin, and not to an error in the assay. The E170 insulin assay may measure only endogenous insulin since cross-reactivity is low. Our results suggest that the measurement of free insulin after PEG pre-treatment could be useful for β cell function assessment in diabetic patients undergoing insulin therapy. PMID:21239867

  14. Insulin-dependent (type I) diabetes mellitus.

    PubMed Central

    Rodger, W

    1991-01-01

    Insulin-dependent (type I) diabetes mellitus is a chronic disease characterized by hyperglycemia, impaired metabolism and storage of important nutrients, evidence of autoimmunity, and long-term vascular and neurologic complications. Insulin secretory function is limited. Cell membrane binding is not primarily involved. The goal of treatment is to relieve symptoms and to achieve blood glucose levels as close to normal as possible without severe hypoglycemia. However, even with education and self-monitoring of the blood glucose level, attaining recommended target values (plasma glucose level less than 8.0 mmol/L before main meals for adults) remains difficult. Human insulin offers no advantage in glycemic control but is important in the management and prevention of immune-related clinical problems (e.g., injection-site lipoatrophy, insulin resistance and allergy) associated with the use of beef or pork insulin. Therapy with one or two injections per day of mixed short-acting or intermediate-acting insulin preparations is a compromise between convenience and the potential for achieving target plasma glucose levels. Intensive insulin therapy with multiple daily injections or continuous infusion with an insulin pump improves mean glycated hemoglobin levels; however, it increases rates of severe hypoglycemia and has not been shown to decrease the incidence of clinically significant renal, retinal or neurologic dysfunction. Future prospects include automated techniques of insulin delivery, immunosuppression to preserve endogenous insulin secretion and islet transplantation. PMID:1933705

  15. [Insulin resistance - its causes and therapy possibilities].

    PubMed

    Pelikánová, Terezie

    2014-09-01

    Insulin resistance (IR) is defined as a condition where normal plasma free insuconcentrations induce a reduced response of the body. In the narrower sense we understand IR as the impairment of insulin action in the target structure which may arise at any level of the insulin signalling cascade. In the clinical conditions we usually define it as the impairment of insulin action in glucose metabolism, although it is true that the impairment may concern different effects of insulin and different cell structures. The characteristic feature of IR linked to the metabolic syndrome or Type 2 diabetes is defective signalling which affects PI3-kinase branch of insulin signalling cascade. Other insulin actions depending on the signalling through the Ras complex and MAP-kinase, may not be affected. Due to compensatory hyperinsulinemia they may be even increased. The article summarizes some recent findings regarding the structure and regulation of insulin signalling cascade and analyses selected primary and secondary causes of IR which include genetic and epigenetic factors, the microRNA regulation role, metabolic, humoral and immunological factors. The detailed knowledge of the causes of IR opens possibilities of its rational treatment. This is currently based on the treatment of curable causes of IR, i.e. consistent compensation of diabetes, weight reduction, regimen arrangements (diet, physical activity), re-assessment of the need to use corticosteroids in therapy, treatment of coexisting conditions and possibly administration of metformin or pioglitazone.Key words: cytokines - insulin resistance - insulin signalling cascade. PMID:25294764

  16. Evolving strategies for insulin delivery and therapy.

    PubMed

    Cefalu, William T

    2004-01-01

    It has now been conclusively proven that adequate control of blood glucose delays or prevents the progression of diabetic complications. In order to achieve the suggested targets for glycaemic control necessary to reduce the incidence of diabetic complications, it has been established that a more intensive insulin regimen requiring multiple insulin injections is required for patients with type 1 diabetes mellitus. For patients with type 2 diabetes, oral antidiabetic therapy is generally used initially, but given the natural history of type 2 diabetes and the need to achieve improved glycaemic control, earlier use of insulin has been promoted. However, the use of insulin in more intensive regimens for the patient with type 1 diabetes or for earlier treatment of the patient with type 2 diabetes is not routine. Many factors are responsible for this observation. Nevertheless, available device options such as insulin pens or insulin pumps are routinely available for implementation of intensive insulin therapy. However, a major limitation for advancing to intensive insulin therapy is that the only viable way to administer insulin is through injection. Delivery options that use dermal, nasal and oral approaches have been explored. The oral approach may include gastrointestinal, buccal or pulmonary uptake. Recent evidence shows that delivery of insulin via the oral cavity with uptake occurring in the pulmonary alveoli may be the most viable clinical option in the future. PMID:15161324

  17. Yeast secretory expression of insulin precursors.

    PubMed

    Kjeldsen, T

    2000-09-01

    Since the 1980s, recombinant human insulin for the treatment of diabetes mellitus has been produced using either the yeast Saccharomyces cerevisiae or the prokaryote Escherichia coli. Here, development of the insulin secretory expression system in S. cerevisiae and its subsequent optimisation is described. Expression of proinsulin in S. cerevisiae does not result in efficient secretion of proinsulin or insulin. However, expression of a cDNA encoding a proinsulin-like molecule with deletion of threonine(B30) as a fusion protein with the S. cerevisiae alpha-factor prepro-peptide (leader), followed either by replacement of the human proinsulin C-peptide with a small C-peptide (e.g. AAK), or by direct fusion of lysine(B29) to glycine(A1), results in the efficient secretion of folded single-chain proinsulin-like molecules to the culture supernatant. The secreted single-chain insulin precursor can then be purified and subsequently converted to human insulin by tryptic transpeptidation in organic aqueous medium in the presence of a threonine ester. The leader confers secretory competence to the insulin precursor, and constructed (synthetic) leaders have been developed for efficient secretory expression of the insulin precursor in the yeasts S. cerevisiae and Pichia pastories. The Kex2 endoprotease, specific for dibasic sites, cleaves the leader-insulin precursor fusion protein in the late secretory pathway and the folded insulin precursor is secreted to the culture supernatant. However, the Kex2 endoprotease processing of the pro-peptide-insulin precursor fusion protein is incomplete and a significant part of the pro-peptide-insulin precursor fusion protein is secreted to the culture supernatant in a hyperglycosylated form. A spacer peptide localised between the leader and the insulin precursor has been developed to optimise Kex2 endoprotease processing and insulin precursor fermentation yield. PMID:11030562

  18. Insulin-like activity in the retina

    SciTech Connect

    Das, A.

    1986-01-01

    A number of studies have recently demonstrated that insulin or a homologous peptide may be synthesized outside the pancreas also. The present study was designed to investigate whether insulin-like activity exists in the retina, and if it exists, whether it is due to local synthesis of insulin or a similar peptide in the retina. To determine whether the insulin-like immunoreactivity in retinal glial cells is due to binding and uptake or local synthesis of insulin, a combined approach of immunocytochemistry and in situ DNA-RNA hybridization techniques was used on cultured rat retinal glial cells. Insulin-like immunoreactivity was demonstrated in the cytoplasma of these cells. In situ hybridization studies using labeled rat insulin cDNA indicated that these cells contain the mRNA necessary for de novo synthesis of insulin or a closely homologous peptide. Since human retinal cells have, as yet, not been conveniently grown in culture, an ocular tumor cell line, human Y79 retinoblastoma was used as a model to extend these investigations. The presence of insulin-like immunoreactivity as well as insulin-specific mRNA was demonstrated in this cell line. Light microscopic autoradiography following incubation of isolated rat retinal cells with /sup 125/I-insulin showed the presence of insulin binding sites on the photoreceptors and amarcine cells. On the basis of these observations that rat retina glial cells, including Muller cells are sites of synthesis of insulin or a similar peptide, a model for the pathogenesis of dabetic retinopathy is proposed.

  19. Insulin Resistance and Skin Diseases

    PubMed Central

    Napolitano, Maddalena; Megna, Matteo; Monfrecola, Giuseppe

    2015-01-01

    In medical practice, almost every clinician may encounter patients with skin disease. However, it is not always easy for physicians of all specialties to face the daily task of determining the nature and clinical implication of dermatologic manifestations. Are they confined to the skin, representing a pure dermatologic event? Or are they also markers of internal conditions relating to the patient's overall health? In this review, we will discuss the principal cutaneous conditions which have been linked to metabolic alterations. Particularly, since insulin has an important role in homeostasis and physiology of the skin, we will focus on the relationships between insulin resistance (IR) and skin diseases, analyzing strongly IR-associated conditions such as acanthosis nigricans, acne, and psoriasis, without neglecting emerging and potential scenarios as the ones represented by hidradenitis suppurativa, androgenetic alopecia, and hirsutism. PMID:25977937

  20. FDA-Approved Biosimilar Insulin

    PubMed Central

    2014-01-01

    If a biosimilar insulin is discovered postmarketing to be subpotent, superpotent, or contaminated or the contents mislabeled, it is an adulterated product and must be quarantined for removal including from a patient’s home. Adulterated products could be considered “counterfeit” since they do not meet the original standards established by the FDA. The FDA must establish a method of regularly assaying samples of biosimilar insulin drawn directly from the supply pipeline to help ensure patient safety and evaluate clinical performance. Independent groups without conflict of interest would perform confidential comparison assay. For less than 5 cents per vial/pen, manufacturers could easily support an independent, FDA-recognized, random sample program and create a functional postmarket surveillance system that better protects the public and the manufacturer from undesired outcomes. PMID:25172881

  1. Pioglitazone Increases Whole Body Insulin Sensitivity in Obese, Insulin-Resistant Rhesus Monkeys

    PubMed Central

    Tozzo, Effie; Bhat, Gowri; Cheon, Kyeongmi; Camacho, Raul C.

    2015-01-01

    Hyperinsulinemic-euglycemic clamps are considered the "gold standard" for assessing whole body insulin sensitivity. When used in combination with tracer dilution techniques and physiological insulin concentrations, insulin sensitization can be dissected and attributed to hepatic and peripheral (primarily muscle) effects. Non-human primates (NHPs), such as rhesus monkeys, are the closest pre-clinical species to humans, and thus serve as an ideal model for testing of compound efficacy to support translation to human efficacy. We determined insulin infusion rates that resulted in high physiological insulin concentrations that elicited maximal pharmacodynamic responses during hyperinsulinemic-euglycemic clamps. These rates were then used with [U-13C]-D-glucose, to assess and document the degrees of hepatic and peripheral insulin resistance between healthy and insulin-resistant, dysmetabolic NHPs. Next, dysmetabolic NHPs were treated for 28 days with pioglitazone (3 mg/kg) and again had their insulin sensitivity assessed, illustrating a significant improvement in hepatic and peripheral insulin sensitivity. This coincided with a significant increase in insulin clearance, and normalization of circulating adiponectin. In conclusion, we have determined a physiological clamp paradigm (similar to humans) for assessing glucose turnover in NHPs. We have also demonstrated that insulin-resistant, dysmetabolic NHPs respond to the established insulin sensitizer, pioglitazone, thus confirming their use as an ideal pre-clinical translational model to assess insulin sensitizing compounds. PMID:25954816

  2. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    SciTech Connect

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-10-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono-/sup 125/I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis.

  3. [Insulin therapy for type 1 diabetes mellitus: past and present].

    PubMed

    Pires, Antonio Carlos; Chacra, Antonio Roberto

    2008-03-01

    The discovery of insulin can be considered the milestone of diabetes mellitus history and a great achievement for its treatment. The first insulin available was the regular. Afterwards, Hagedorn added the protamine to the insulin, thus, creating the NPH insulin. In the 1950s an insulin free of protamine was synthesized: the lente insulin. With the advent of molecular biology, synthetic human insulin was synthesized using recombinant DNA technology. Most recently several types of insulin analogues were available, providing the patients with better metabolic control. Type 1 diabetes mellitus treatment includes plain substitution and individualization for short-acting plus long-acting insulin according to the physician's assistance, besides regular practice of physical activities and diet orientations. In type 1 diabetes mellitus the insulin of low variability is the best choice since basal/bolus insulin therapy or continuous subcutaneous insulin infusion pump can mimetize the physiological release of insulin by beta cells. PMID:18438537

  4. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity.

    PubMed

    Cao, Li; Qin, Xing; Peterson, Matthew R; Haller, Samantha E; Wilson, Kayla A; Hu, Nan; Lin, Xin; Nair, Sreejayan; Ren, Jun; He, Guanglong

    2016-03-01

    Obesity is associated with chronic inflammation which plays a critical role in the development of cardiovascular dysfunction. Because the adaptor protein caspase recruitment domain-containing protein 9 (CARD9) in macrophages regulates innate immune responses via activation of pro-inflammatory cytokines, we hypothesize that CARD9 mediates the pro-inflammatory signaling associated with obesity en route to myocardial dysfunction. C57BL/6 wild-type (WT) and CARD9(-/-) mice were fed normal diet (ND, 12% fat) or a high fat diet (HFD, 45% fat) for 5months. At the end of 5-month HFD feeding, cardiac function was evaluated using echocardiography. Cardiomyocytes were isolated and contractile properties were measured. Immunofluorescence was performed to detect macrophage infiltration in the heart. Heart tissue homogenates, plasma, and supernatants from isolated macrophages were collected to measure the concentrations of pro-inflammatory cytokines using ELISA kits. Western immunoblotting analyses were performed on heart tissue homogenates and isolated macrophages to explore the underlying signaling mechanism(s). CARD9 knockout alleviated HFD-induced insulin resistance and glucose intolerance, prevented myocardial dysfunction with preserved cardiac fractional shortening and cardiomyocyte contractile properties. CARD9 knockout also significantly decreased the number of infiltrated macrophages in the heart with reduced myocardium-, plasma-, and macrophage-derived cytokines including IL-6, IL-1β and TNFα. Finally, CARD9 knockout abrogated the increase of p38 MAPK phosphorylation, the decrease of LC3BII/LC3BI ratio and the up-regulation of p62 expression in the heart induced by HFD feeding and restored cardiac autophagy signaling. In conclusion, CARD9 knockout ameliorates myocardial dysfunction associated with HFD-induced obesity, potentially through reduction of macrophage infiltration, suppression of p38 MAPK phosphorylation, and preservation of autophagy in the heart. PMID

  5. Ameliorative effect of vanadium on oxidative stress in stomach tissue of diabetic rats.

    PubMed

    Yilmaz-Ozden, Tugba; Kurt-Sirin, Ozlem; Tunali, Sevim; Akev, Nuriye; Can, Ayse; Yanardag, Refiye

    2014-05-01

    Between their broad spectrum of action, vanadium compounds are shown to have insulin mimetic/enhancing effects. Increasing evidence in experimental and clinical studies suggests that oxidative stress plays a major role in the pathogenesis of diabetes and on the onset of diabetic complications. Thus, preventive therapy can alleviate the possible side effects of the disease. The aim of the present study was to investigate the effect of vanadyl sulfate supplementation on the antioxidant system in the stomach tissue of diabetic rats. Male Swiss albino rats were randomly divided into 4 groups: control; control+vanadyl sulfate; diabetic; diabetic+vanadyl sulfate. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ; 65 mg/kg body weight). Vanadyl sulfate (100 mg/kg body weight) was given daily by gavage for 60 days. At the last day of the experiment, stomach tissues were taken and homogenized to make a 10% (w/v) homogenate. Catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), myeloperoxidase (MPO), carbonic anhydrase (CA), glucose-6-phosphate dehydrogenase (G6PD) and lactate dehydrogenase (LDH) activities were determined in the stomach tissue. CAT, SOD, GR, GPx, GST, CA, G6PD and LDH activities were increased in diabetic rats when compared to normal rats. Vanadium treatment significantly reduced the elevated activities of GR, GPx, GST compared with the diabetic group whereas the decreases in CAT, SOD, CA, G6PD and LDH activities were insignificant. No significant change was seen for MPO activity between the groups. It was concluded that vanadium could be used for its ameliorative effect against oxidative stress in diabetes. PMID:24856383

  6. Insulin dysfunction and Tau pathology

    PubMed Central

    El Khoury, Noura B.; Gratuze, Maud; Papon, Marie-Amélie; Bretteville, Alexis; Planel, Emmanuel

    2013-01-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia. PMID:24574966

  7. Subcutaneous insulin substitution in insulin-dependent diabetes mellitus. Pharmacokinetic and pharmacodynamic studies.

    PubMed

    Olsson, P O

    1987-01-01

    Determination of free and total insulin with radioimmunoassay, after precipitation of endogenous insulin antibodies with polyethylene glycol, was evaluated. Insulin substitution in insulin-dependent diabetic patients was investigated, embracing the 24 h free insulin and glucose profiles with different regimens, the miscibility of insulin preparations, the overnight metabolic control, and bolus doses of different size with infusion pumps. In the free and total insulin assay precipitation of immunoglobulins with polyethylene glycol was almost complete and the recovery was high. Compared to immediately precipitated and assayed plasma samples at 37 degrees C, free insulin slightly decreased in immediately processed serum (20 degrees C), and also in plasma after 3 h at 20 degrees C. In stored (-20 degrees C) unprecipitated plasma samples free insulin increased after 4 weeks and also in serum samples after 26 weeks, whereas stored PEG-supernates were stable. In healthy controls a low basal insulin was found, increasing about tenfold postprandially. No morning rise in free insulin or glucose was found. The 24 h free insulin profile was strikingly unphysiological with 1 or 2 dose regimens; there was preprandial and nocturnal hyperinsulinaemia but absence of meal-related free insulin peaks. A considerable glucose rise was found after breakfast. Intensive regimens with conventional injections or infusion pumps, gave 24 h free insulin profiles that were similar to the physiological. However, the prandial peaks were retarded; and hyperinsulinaemia was shown with infusion pumps during daytime. An immediate loss of regular insulin was demonstrated after mixture with semisynthetic human lente insulin in vitro and in vivo, but not after mixture with biosynthetic human NPH insulin. The morning glucose control was similar with a bedtime injection of intermediate-acting insulin or continuous subcutaneous insulin infusion, but less hyperinsulinaemia overnight was found with the

  8. Tyrosine isomers and hormonal signaling: A possible role for the hydroxyl free radical in insulin resistance

    PubMed Central

    Molnár, Gergő A; Mikolás, Esztella Zsóka; Szijártó, István András; Kun, Szilárd; Sélley, Eszter; Wittmann, István

    2015-01-01

    Oxidative stress processes play a major role in the development of the complications associated with diabetes and other diseases via non-enzymatic glycation, the hexosamine pathway, the polyol pathway and diacylglycerol-protein kinase C. Oxidative stress may lead to the production of hydroxyl free radicals, which can attack macromolecules, such as lipids, nucleic acids or amino acids. Phenylalanine (Phe) can be enzymatically converted to the physiological para-tyrosine (p-Tyr); however, a hydroxyl free radical attack on Phe may yield meta- and ortho-tyrosine (m- and o-Tyr, respectively) in addition to p-Tyr. Hence, m- and o-Tyr may be regarded as markers of hydroxyl free radical-induced damage. Their accumulation has been described; e.g., this accumulation has been found in the urine of patients with diabetes mellitus (DM) and/or chronic kidney disease, in cataract lenses, in vessel walls, in irradiated food and in amniotic fluid, and it may serve as an indicator of oxidative stress. The use of resveratrol to treat patients with type 2 DM led to a decrease in the urinary excretion of o-Tyr and concomitantly led to an improvement in insulin signaling and insulin sensitivity. Literature data also suggest that m- and o-Tyr may interfere with intracellular signaling. Our group has shown that erythropoietin (EPO) has insulin-like metabolic effects on fat cells in addition to its ability to promote the proliferation of erythroid precursor cells. We have shown that the supplementation of cell culture medium with m- and o-Tyr inhibits erythroblast cell proliferation, which could be ameliorated by p-Tyr. Additionally, in vivo, the o-Tyr/p-Tyr ratio is higher in patients with renal replacement therapy and a greater need for EPO. However, the o-Tyr/p-Tyr ratio was an independent determinant of EPO-resistance indices in our human study. The o-Tyr content of blood vessel walls inversely correlates with insulin- and acetylcholine-induced vasodilation, which could be further

  9. Insulin sensitizing and cardioprotective effects of Esculetin and Telmisartan combination by attenuating Ang II mediated vascular reactivity and cardiac fibrosis.

    PubMed

    Kadakol, Almesh; Pandey, Anuradha; Goru, Santosh Kumar; Malek, Vajir; Gaikwad, Anil Bhanudas

    2015-10-15

    The combination of the angiotensin receptor blockers (ARBs) with other synthetic and natural molecules has been reported to have better safety profile and therapeutic efficacy in prevention of diabetes and its associated complications than their monotherapy. Driven by the aforementioned facts, this study was conceived to evaluate the potential additive effect of combination of Telmisartan and Esculetin in prevention of insulin resistance and associated cardiac fibrosis. Recently, we have reported that Esculetin prevented cardiovascular dysfunction associated with insulin resistance (IR) and type 2 diabetes. Insulin resistance was developed by high fat diet (HFD) feeding to Wistar rats. Telmisartan and Esculetin were administered at 10 mg/kg/day and 50 mg/kg/day doses (P.O, 2 weeks), respectively either alone or in combination. Plasma biochemical analyses, vascular reactivity and immunohistochemical experiments were performed to assess the beneficial effect of Telmisartan, Esculetin and their combination on insulin resistance and associated cardiac fibrosis. The study results showed that, co-administered Telmisartan and Esculetin ameliorated the pathological features like metabolic perturbation, morphometric alterations, vascular hyper responsiveness, extracellular matrix accumulation and the expression of fibronectin and TGF-β more effectively than monotherapy in HFD fed rats. Hence, the study urges us to conclude that the solution to IR and associated cardiovascular dysfunction may lie in the Telmisartan and Esculetin combination therapy. PMID:26409041

  10. Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic β-Cell Mass in Middle-Aged Obese Diabetic Mice

    PubMed Central

    Alkhalidy, Hana; Moore, William; Zhang, Yanling; Wang, Aihua; Ali, Mostafa; Suh, Kyung-Shin; Zhen, Wei; Cheng, Zhiyong; Jia, Zhenquan; Hulver, Matthew

    2015-01-01

    Insulin resistance and a progressive decline in functional β-cell mass are hallmarks of developing type 2 diabetes (T2D). Thus, searching for natural, low-cost compounds to target these two defects could be a promising strategy to prevent the pathogenesis of T2D. Here, we show that dietary intake of flavonol kaempferol (0.05% in the diet) significantly ameliorated hyperglycemia, hyperinsulinemia, and circulating lipid profile, which were associated with the improved peripheral insulin sensitivity in middle-aged obese mice fed a high-fat (HF) diet. Kaempferol treatment reversed HF diet impaired glucose transport-4 (Glut4) and AMP-dependent protein kinase (AMPK) expression in both muscle and adipose tissues from obese mice. In vitro, kaempferol increased lipolysis and prevented high fatty acid-impaired glucose uptake, glycogen synthesis, AMPK activity, and Glut4 expression in skeletal muscle cells. Using another mouse model of T2D generated by HF diet feeding and low doses of streptozotocin injection, we found that kaempferol treatment significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in obese diabetic mice, which are associated with the improved islet β-cell mass. These results demonstrate that kaempferol may be a naturally occurring anti-diabetic agent by improving peripheral insulin sensitivity and protecting against pancreatic β-cell dysfunction. PMID:26064984

  11. TOM-independent complex formation of Bax and Bak in mammalian mitochondria during TNFalpha-induced apoptosis.

    PubMed

    Ross, K; Rudel, T; Kozjak-Pavlovic, V

    2009-05-01

    The Bcl-2 family proteins Bax and Bak are activated in response to many apoptotic stimuli. As a consequence of activation, Bax and Bak oligomerize and permeabilize the outer mitochondrial membrane to permit the release of apoptosis-inducing factors. It still remains unclear whether these proteins require components of the mitochondrial protein import machinery for their function at the mitochondria. Here, we addressed this question by using inducible RNA interference for the study of protein import in mammalian mitochondria. After induction of apoptosis, we could not detect any impact of the absence of Tom22, Tom70, Tom40, Sam50 or metaxins on the translocation of Bax and formation of Bax and Bak complexes in mitochondria. In in vitro import studies, loss of these import and assembly proteins had no or only slight effect on the formation of complexes by radiolabeled Bax and Bak. We conclude that the import and assembly machineries of mammalian mitochondria have no impact on the translocation and complex assembly of Bax and Bak upon apoptosis induction. PMID:19165229

  12. Epigenetic modifications by inhibiting histone deacetylases reverse memory impairment in insulin resistance induced cognitive deficit in mice.

    PubMed

    Sharma, Sorabh; Taliyan, Rajeev

    2016-06-01

    Insulin resistance has been reported as a strong risk factor for Alzheimer's disease. However the molecular mechanisms of association between these still remain elusive. Various studies have highlighted the involvement of histone deacetylases (HDACs) in insulin resistance and cognitive deficits. Thus, the present study was designed to investigate the possible neuroprotective role of HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA) in insulin resistance induced cognitive impairment in mice. Mice were subjected to either normal pellet diet (NPD) or high fat diet (HFD) for 8 weeks. HFD fed mice were treated with SAHA at 25 and 50 mg/kg i.p. once daily for 2 weeks. Serum insulin, glucose, triglycerides, total cholesterol and HDL-cholesterol levels were measured. A battery of behavioral parameters was performed to assess cognitive functions. Level of tumour necrosis factor (TNF-α) was measured in hippocampus to assess neuroinflammation. To further explore the molecular mechanisms we measured the histone H3 acetylation and brain derived neurotrophic factor (BDNF) level. HFD fed mice exhibit characteristic features of insulin resistance. These mice also showed a severe deficit in learning and memory along with reduced histone H3 acetylation and BDNF levels. In contrast, the mice treated with SAHA showed significant and dose dependent improvement in insulin resistant condition. These mice also showed improved learning and memory performance. SAHA treatment ameliorates the HFD induced reduction in histone H3 acetylation and BDNF levels. Based upon these results, it could be suggested that HDAC inhibitors exert neuroprotective effects by increasing H3 acetylation and subsequently BDNF level. PMID:26805421

  13. Overexpression of Carnitine Palmitoyltransferase-1 in Skeletal Muscle Is Sufficient to Enhance Fatty Acid Oxidation and Improve High-Fat Diet–Induced Insulin Resistance

    PubMed Central

    Bruce, Clinton R.; Hoy, Andrew J.; Turner, Nigel; Watt, Matthew J.; Allen, Tamara L.; Carpenter, Kevin; Cooney, Gregory J.; Febbraio, Mark A.; Kraegen, Edward W.

    2009-01-01

    OBJECTIVE—Skeletal muscle insulin resistance is associated with lipid accumulation, but whether insulin resistance is due to reduced or enhanced flux of long-chain fatty acids into the mitochondria is both controversial and unclear. We hypothesized that skeletal muscle–specific overexpression of the muscle isoform of carnitine palmitoyltransferase 1 (CPT1), the enzyme that controls the entry of long-chain fatty acyl CoA into mitochondria, would enhance rates of fatty acid oxidation and improve insulin action in muscle in high-fat diet insulin-resistant rats. RESEARCH DESIGN AND METHODS—Rats were fed a standard (chow) or high-fat diet for 4 weeks. After 3 weeks, in vivo electrotransfer was used to overexpress the muscle isoform of CPT1 in the distal hindlimb muscles (tibialis anterior and extensor digitorum longus [EDL]). Skeletal muscle insulin action was examined in vivo during a hyperinsulinemic-euglycemic clamp. RESULTS—In vivo electrotransfer produced a physiologically relevant increase of ∼20% in enzyme activity; and although the high-fat diet produced insulin resistance in the sham-treated muscle, insulin action was improved in the CPT1-overexpressing muscle. This improvement was associated with a reduction in triacylglycerol content, the membrane-to-cytosolic ratio of diacylglycerol, and protein kinase C θ activity. Importantly, overexpression of CPT1 did not affect markers of mitochondrial capacity or function, nor did it alter skeletal muscle acylcarnitine profiles irrespective of diet. CONCLUSIONS—Our data provide clear evidence that a physiological increase in the capacity of long-chain fatty acyl CoA entry into mitochondria is sufficient to ameliorate lipid-induced insulin resistance in muscle. PMID:19073774

  14. Insulin signaling pathways in lepidopteran ecdysone secretion

    PubMed Central

    Smith, Wendy A.; Lamattina, Anthony; Collins, McKensie

    2014-01-01

    Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori), the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx, the neuropeptide prothoracicotropic hormone (PTTH) appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K), LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the regulation of insect ecdysone secretion, and in the impact of nutritionally-sensitive hormones such as insulin in the control of ecdysone secretion and molting. PMID:24550835

  15. Insulin glulisine--a comprehensive preclinical evaluation.

    PubMed

    Stammberger, Ingo; Seipke, Gerhard; Bartels, Thomas

    2006-01-01

    Receptor binding and signaling and the mitogenic potential of insulin glulisine (glulisine), regular human insulin (RHI), and Asp(B10) were compared in vivo and in vitro. Insulin and insulin-like growth factor 1 (IGF-1) receptor binding was studied with human insulin receptors (293HEK cells) and the human osteosarcoma-derived cell line B10. Insulin receptor-mediated signaling was assessed in rat-1 fibroblasts overexpressing insulin receptors. Activation of insulin receptor substrates 1 and 2 (IRS-1/ IRS-2) was studied in rat and human myoblasts and rat cardiomyocytes. DNA synthesis induction was assessed by [3H] thymidine incorporation in the human epithelial breast cell line MCF10. Interaction with the IGF-1 receptor, DNA synthesis, and intracellular signal transduction were assessed in cardiac K6 myoblasts. Immunohistochemical examination of Sprague-Dawley rat tissue treated with glulisine for 6 months (n = 40), and glulisine and RHI for 12 months (n = 60), was performed. Steady-state insulin receptor binding affinity was slightly lower for glulisine versus RHI (approximately 0.70). IGF-1 receptor binding affinity was lower (four- to fivefold) for glulisine, but significantly higher (four-fold) for Asp(B10) versus RHI. Glulisine, Asp(B10), and RHI showed similar insulin receptor-association kinetics; however, Asp(B10) revealed increased insulin receptor affinity. Glulisine and RHI showed similar insulin receptor-mediated phosphorylation and IRS-2 activation. Activation of IRS-1 was 6- to 10-fold lower with glulisine; glulisine was less potent and Asp(B10) slightly more potent in stimulating DNA synthesis versus RHI. Stimulation of DNA synthesis was comparable for glulisine and RHI in K6 myoblasts. At 12 months, there was no significant difference between glulisine and RHI in proliferative activity. This preclinical evaluation suggests that structural changes in glulisine versus RHI are not associated with any safety issues. PMID:16510354

  16. Increased skeletal muscle capillarization enhances insulin sensitivity.

    PubMed

    Akerstrom, Thorbjorn; Laub, Lasse; Vedel, Kenneth; Brand, Christian Lehn; Pedersen, Bente Klarlund; Lindqvist, Anna Kaufmann; Wojtaszewski, Jørgen F P; Hellsten, Ylva

    2014-12-15

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. Therefore, we investigated whether increased skeletal muscle capillarization increases insulin sensitivity. Skeletal muscle-specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist prazosin to the drinking water of Sprague-Dawley rats (n = 33), whereas 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-wk prazosin treatment, which ensured that prazosin was cleared from the blood stream. Whole body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue-specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]glucose during the plateau phase of the clamp. Whole body insulin sensitivity increased by ∼24%, and insulin-stimulated skeletal muscle 2-deoxy-[(3)H]glucose disposal increased by ∼30% concomitant with an ∼20% increase in skeletal muscle capillarization. Adipose tissue insulin sensitivity was not affected by the treatment. Insulin-stimulated muscle glucose uptake was enhanced independent of improvements in skeletal muscle insulin signaling to glucose uptake and glycogen synthesis, suggesting that the improvement in insulin-stimulated muscle glucose uptake could be due to improved diffusion conditions for glucose in the muscle. The prazosin treatment did not affect the rats on any other parameters measured. We conclude that an increase in skeletal muscle capillarization is associated with increased insulin sensitivity. These data point toward the importance of increasing skeletal muscle capillarization for prevention or treatment of type 2 diabetes. PMID:25352432

  17. Altered insulin distribution and metabolism in type I diabetics assessed by (123I)insulin scanning

    SciTech Connect

    Hachiya, H.L.; Treves, S.T.; Kahn, C.R.; Sodoyez, J.C.; Sodoyez-Goffaux, F.

    1987-04-01

    Scintigraphic scanning with (/sup 123/I)insulin provides a direct and quantitative assessment of insulin uptake and disappearance at specific organ sites. Using this technique, the biodistribution and metabolism of insulin were studied in type 1 diabetic patients and normal subjects. The major organ of (/sup 123/I)insulin uptake in both diabetic and normal subjects was the liver. After iv injection in normal subjects, the uptake of (/sup 123/I)insulin by the liver was rapid, with peak activity at 7 min. Activity declined rapidly thereafter, consistent with rapid insulin degradation and clearance. Rapid uptake of (/sup 123/I)insulin also occurred in the kidneys, although the uptake of insulin by the kidneys was about 80% of that by liver. In type 1 diabetic patients, uptake of (/sup 123/I)insulin in these organ sites was lower than that in normal subjects; peak insulin uptakes in liver and kidneys were 21% and 40% lower than those in normal subjects, respectively. The kinetics of insulin clearance from the liver was comparable in diabetic and normal subjects, whereas clearance from the kidneys was decreased in diabetics. The plasma clearance of (/sup 123/I)insulin was decreased in diabetic patients, as was insulin degradation, assessed by trichloroacetic acid precipitability. Thirty minutes after injection, 70.9 +/- 3.8% (+/- SEM) of (/sup 123/I)insulin in the plasma of diabetics was trichloroacetic acid precipitable vs. only 53.9 +/- 4.0% in normal subjects. A positive correlation was present between the organ uptake of (123I)insulin in the liver or kidneys and insulin degradation (r = 0.74; P less than 0.001).

  18. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    SciTech Connect

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  19. Cyclosporine A-induced nephrotoxicity is ameliorated by dose reduction and conversion to sirolimus in the rat.

    PubMed

    Sereno, J; Vala, H; Nunes, S; Rocha-Pereira, P; Carvalho, E; Alves, R; Teixeira, F; Reis, F

    2015-04-01

    Side-effect minimization strategies to avoid serious side-effects of cyclosporine A (CsA), such as nephrotoxicity, have been mainly based on dose reduction and conversion to other putatively less nephrotoxic drugs, such as sirolimus (SRL), an inhibitor of the mammalian target of rapamycin. This study intended to evaluate the impact of protocols based on CsA dose reduction and further conversion to SRL on kidney function and lesions, based on serum, urine and renal tissue markers. The following 3 groups (n=6) were tested during a 9-week protocol: control (vehicle); CsA (5 mg/kg/day) and Red + Conv (CsA 30 mg/kg/day during 3 weeks + 3 weeks with CsA 5 mg/kg/day + SRL 1 mg/kg/day during the last 3 weeks). The following parameters were analysed: blood pressure, heart rate and biochemical data; serum and urine contents and clearances of creatinine, urea and neutrophil gelatinase-associated lipocalin (NGAL), as well as, glomerular filtration rate; kidney lipid peroxidation and clearance; kidney lesions were evaluated and protein expression was performed by immunohistochemistry. After the first 3 weeks of CsA (30 mg/kg/day) treatment animals showed body weight loss, hypertension, tachycardia, as well as, increased serum levels of non-HDL cholesterol, glucose, triglycerides, creatinine and urea, accompanied by decreased GFR and insulin levels. In addition, a significant increase in the expression of connective tissue growth factor, kidney injury molecule-1 (KIM-1), mammalian target of rapamycin, nuclear factor-κβ1 and transforming growth factor-β was found in the kidney, accompanied by extensive renal damage. The following 3 weeks with CsA dose reduction revealed amelioration of vascular and glomerular lesions, but without significant tubular improvement. The last 3 weeks with the conversion to sirolimus revealed high serum and urine NGAL contents but the CsA-evoked renal damage was substantially ameliorated, by reduced of connective tissue growth factor, mammalian

  20. Activation of phosphatidylinositol 3-kinase by insulin.

    PubMed Central

    Ruderman, N B; Kapeller, R; White, M F; Cantley, L C

    1990-01-01

    Insulin action appears to require the protein-tyrosine kinase domain of the beta subunit of the insulin receptor. Despite this, the identities and biochemical functions of the cellular targets of this tyrosine kinase are unknown. A phosphatidylinositol 3-kinase (PI 3-kinase) that phosphorylates the D-3 position of the inositol ring associates with several protein-tyrosine kinases. Here we report that PI 3-kinase activity is immunoprecipitated from insulin-stimulated CHO cells by antiphosphotyrosine and anti-insulin receptor antibodies. Insulin as low as 0.3 nM increased immunoprecipitable PI 3-kinase activity within 1 min. Increases in activity were much greater in CHO cells expressing the human insulin receptor (100,000 receptors per cell) than in control CHO cells (2000 receptors per cell). During insulin stimulation, various lipid products of the PI 3-kinase either appeared or increased in quantity in intact cells, suggesting that the appearance of immunoprecipitable PI 3-kinase reflects an increase in its activity in vivo. These results indicate that insulin at physiological concentrations regulates the PI 3-kinase and suggest that this regulation involves a physical association between the insulin receptor and the PI 3-kinase and tyrosyl phosphorylation. Images PMID:2154747

  1. PDE-10A inhibitors as insulin secretagogues.

    PubMed

    Cantin, Louis-David; Magnuson, Steven; Gunn, David; Barucci, Nicole; Breuhaus, Marina; Bullock, William H; Burke, Jennifer; Claus, Thomas H; Daly, Michelle; Decarr, Lynn; Gore-Willse, Ann; Hoover-Litty, Helana; Kumarasinghe, Ellalahewage S; Li, Yaxin; Liang, Sidney X; Livingston, James N; Lowinger, Timothy; Macdougall, Margit; Ogutu, Herbert O; Olague, Alan; Ott-Morgan, Ronda; Schoenleber, Robert W; Tersteegen, Adrian; Wickens, Philip; Zhang, Zhonghua; Zhu, Jian; Zhu, Lei; Sweet, Laurel J

    2007-05-15

    Modulation of cAMP levels has been linked to insulin secretion in preclinical animal models and in humans. The high expression of PDE-10A in pancreatic islets suggested that inhibition of this enzyme may provide the necessary modulation to elicit increased insulin secretion. Using an HTS approach, we have identified quinoline-based PDE-10A inhibitors as insulin secretagogues in vitro. Optimized compounds were evaluated in vivo where improvements in glucose tolerance and increases in insulin secretion were measured. PMID:17400452

  2. Angiotensin and insulin resistance: conspiracy theory.

    PubMed

    Townsend, Raymond R

    2003-04-01

    Resistance to the metabolic effects of insulin is a contender for the short list of major cardiovascular risk factors. Since the elements of the syndrome of insulin resistance were first articulated together in 1988, numerous epidemiologic investigations and treatment endeavors have established a relationship between the metabolic disarray of impaired insulin action and cardiovascular disease. Angiotensin II, the primary effector of the renin-angiotensin system, has also achieved a place in the chronicles of cardiovascular risk factors. Conspiracy mechanisms by which angiotensin II and insulin resistance interact in the pathogenesis of cardiovascular disease are reviewed, with particular attention to recent developments in this engaging area of human research. PMID:12642009

  3. Modern basal insulin analogs: An incomplete story

    PubMed Central

    Singh, Awadhesh Kumar; Gangopadhyay, Kalyan Kumar

    2014-01-01

    The currently available basal insulin does not completely mimic the endogenous insulin secretion. This has continued to promote the search for ideal basal insulin. The newer basal insulin have primarily focused on increasing the duration of action, reducing variability, and reducing the incidence of hypoglycemia, particularly nocturnal. However, the changing criteria of hypoglycemia within a short span of a few years along with the surprising introduction of major cardiac events as another outcome measure has not only clouded the assessment of basal insulin but has also polarized opinion worldwide about the utility of the newer basal insulin. A critical review of both the pre and post FDA analysis of all the basal insulin in this article attempts to clear some of the confusion surrounding the issues of hypoglycemia and glycemic control. This article also discusses all the trials and meta-analysis done on all the current basal insulin available along with their head-to-head comparison with particular attention to glycemic control and hypoglycemic events including severe and nocturnal hypoglycemia. This in-depth analysis hopes to provide a clear interpretation of the various analyses available in literature at this point of time thereby acting as an excellent guide to the readers in choosing the most appropriate basal insulin for their patient. PMID:25364672

  4. Modern basal insulin analogs: An incomplete story.

    PubMed

    Singh, Awadhesh Kumar; Gangopadhyay, Kalyan Kumar

    2014-11-01

    The currently available basal insulin does not completely mimic the endogenous insulin secretion. This has continued to promote the search for ideal basal insulin. The newer basal insulin have primarily focused on increasing the duration of action, reducing variability, and reducing the incidence of hypoglycemia, particularly nocturnal. However, the changing criteria of hypoglycemia within a short span of a few years along with the surprising introduction of major cardiac events as another outcome measure has not only clouded the assessment of basal insulin but has also polarized opinion worldwide about the utility of the newer basal insulin. A critical review of both the pre and post FDA analysis of all the basal insulin in this article attempts to clear some of the confusion surrounding the issues of hypoglycemia and glycemic control. This article also discusses all the trials and meta-analysis done on all the current basal insulin available along with their head-to-head comparison with particular attention to glycemic control and hypoglycemic events including severe and nocturnal hypoglycemia. This in-depth analysis hopes to provide a clear interpretation of the various analyses available in literature at this point of time thereby acting as an excellent guide to the readers in choosing the most appropriate basal insulin for their patient. PMID:25364672

  5. Polyelectrolyte multilayer films: A sponge for insulin?

    PubMed

    Ladhari, Nadia; Hemmerlé, Joseph; Haikel, Youssef; Voegel, Jean-Claude; Ball, Vincent

    2010-01-01

    Considering restrictive diabetes treatments, new insulin administration strategies constitute a huge medical challenge. This study aimed at developing a new support for insulin reservoirs, using polyelectrolyte multilayer films (PEM films), and thus studying this hormone release in a progressive manner. At first, insulin was loaded in (PDADMAC-PAA)n films, by immerging them for various periods of time (2, 14 and 24 h) in a solution containing this protein. Confocal laser scanning microscopy (CLSM) revealed that insulin-FITC could diffuse inside the film with a bigger concentration in the upper part of the film (after 2 and 14 h in contact with the polypeptide solution), and then in the whole film (after 24 h) from a solution at pH=4.3 (below insulin's isolelectric point). Environmental scanning electron microscopy (ESEM) and CLSM showed that the film swells upon insulin loading. We finally investigated the insulin release by ATR-FTIR spectroscopy. It revealed that a loaded (PDADMAC-PAA)15 film, immerged in distilled water, showed no measurable insulin release. In contrast, a slow unloading was observed in the presence of a NaCl 0.15 M solution (salinity close to physiological serum). This study could open the route for a new way of insulin delivery. PMID:20930331

  6. Overview of insulin and non-insulin delivery devices in the treatment of diabetes.

    PubMed

    Pisano, Michele

    2014-12-01

    Antidiabetic agents can be delivered orally or with a syringe, but other options are also available, such as insulin and non-insulin pen devices and insulin pumps. This article reviews the available delivery devices and their current place in therapy. PMID:25516696

  7. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    SciTech Connect

    Salhanick, A.I.; Amatruda, J.M. )

    1988-08-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5{prime}-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5{prime}-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable ({sup 14}C)sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus.

  8. Polymorphism of insulin antibodies in six patients with insulin-immune hypoglycaemic syndrome.

    PubMed Central

    Dozio, N; Sodoyez-Goffaux, F; Koch, M; Ziegler, B; Sodoyez, J C

    1991-01-01

    Insulin antibodies in six patients with immune hypoglycaemic syndrome were studied. The antibodies displayed a higher affinity for bovine insulin in two patients, were specific for human insulin in one patient and non-species specific in the other three patients. The predominant IgG subclass of the insulin antibodies was IgG4 in two patients, IgG3 in two and IgG1 in two. In one of these, the other three subclasses were also detectable. Insulin autoantibodies of four patients were homogeneous with regard to light chains (kappa), and those of the other two contained both kappa and gamma light chains. Analysis of insulin immune complex size by fast protein liquid chromatography was possible in three patients and demonstrated immune complexes with elution profile close to that of IgG, although not exactly superimposable to the one obtained with a mouse monoclonal insulin antibody. In two patients, avidity was too low to permit chromatography of the immune complexes, and, moreover, in these two cases insulin antibodies were of the IgG3 isotype and spontaneously formed aggregates independently of insulin binding. We conclude that insulin antibodies of the insulin immune syndrome are polymorphic but different from those generated by insulin therapy. PMID:1713812

  9. Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode.

    PubMed

    Teodorescu, Florina; Rolland, Laure; Ramarao, Viswanatha; Abderrahmani, Amar; Mandler, Daniel; Boukherroub, Rabah; Szunerits, Sabine

    2015-09-28

    An electrochemical insulin-delivery system based on reduced graphene oxide impregnated with insulin is described. Upon application of a potential pulse of -0.8 V for 30 min, up to 70 ± 4% of human insulin was released into a physiological medium while preserving its biological activity. PMID:26257079

  10. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity.

    PubMed

    Grasa-López, Ameyalli; Miliar-García, Ángel; Quevedo-Corona, Lucía; Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Reyes-Maldonado, Elba; Jaramillo-Flores, María-Eugenia

    2016-01-01

    Brown algae and its carotenoids have been shown to have a positive influence on obesity and its comorbidities. This study evaluated the effect of Undaria pinnatifida and fucoxanthin on biochemical, physiological and inflammation markers related to obesity and on the expression of genes engaged on white adipose tissue lipid metabolism in a murine model of diet-induced obesity. The treatments improved energy expenditure, β-oxidation and adipogenesis by upregulating PPARα, PGC1α, PPARγ and UCP-1. Adipogenesis was also confirmed by image analysis of the retroperitoneal adipose tissue, by measuring cell area, perimeter and cellular density. Additionally, the treatments, ameliorated adipose tissue accumulation, insulin resistance, blood pressure, cholesterol and triglycerides concentration in serum, and reduced lipogenesis and inflammation by downregulating acetyl-CoA carboxylase (ACC) gene expression, increasing serum concentration and expression of adiponectin as well as downregulating IL-6 expression. Both fucoxanthin and Undaria pinnatifida may be considered for treating obesity and other diseases related. PMID:27527189

  11. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity

    PubMed Central

    Grasa-López, Ameyalli; Miliar-García, Ángel; Quevedo-Corona, Lucía; Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Reyes-Maldonado, Elba; Jaramillo-Flores, María-Eugenia

    2016-01-01

    Brown algae and its carotenoids have been shown to have a positive influence on obesity and its comorbidities. This study evaluated the effect of Undaria pinnatifida and fucoxanthin on biochemical, physiological and inflammation markers related to obesity and on the expression of genes engaged on white adipose tissue lipid metabolism in a murine model of diet-induced obesity. The treatments improved energy expenditure, β-oxidation and adipogenesis by upregulating PPARα, PGC1α, PPARγ and UCP-1. Adipogenesis was also confirmed by image analysis of the retroperitoneal adipose tissue, by measuring cell area, perimeter and cellular density. Additionally, the treatments, ameliorated adipose tissue accumulation, insulin resistance, blood pressure, cholesterol and triglycerides concentration in serum, and reduced lipogenesis and inflammation by downregulating acetyl-CoA carboxylase (ACC) gene expression, increasing serum concentration and expression of adiponectin as well as downregulating IL-6 expression. Both fucoxanthin and Undaria pinnatifida may be considered for treating obesity and other diseases related. PMID:27527189

  12. [Effects of rilmenidine on rats made insulin resistant and hypertensive by a high fructose diet].

    PubMed

    Berthault, M F; Morin, J; Dubar, M; Ktorza, A; Ferré, P; Pénicaud, L

    1996-08-01

    This study was aimed to determine the effects of rilmenidine, an hypertensive drug, in an animal model of hypertension associated with insulin resistance, i.e. rats fed on a high fructose diet. Wistar rats were fed during four weeks either on a standard diet (S) or on a high fructose diet (F, 34.5% de fructose). In half of the F groups, rilmenidine (1 mg/kg/day) was added to the drinking water during the two last weeks of the diet (FR). Arterial blood pressure as well as insulin efficiency were determined at the end of the four weeks. Body weight gain was higher in F than in S rats (66 +/- 8 g versus 45 +/- 8 g; p < 0.05), this was prevented by rilmenidine treatment (32 +/- 2 g). Arterial systolic blood pressure was increased in F rats (162 +/- 2 vs 155 +/- 2 mmHg; p < 0.05), rilmenidine brought this value back to normal (149 +/- 3 mmHg). During the euglycemic hyperinsulinemic clamp, glucose utilization was lower (10 +/- 1 vs 14 +/- 1.5 mg/min/kg; p < 0.05) and hepatic glucose production higher (1 +/- 0.01 vs 0 mg/min/kg; p < 0.01) in F than in S rats. These changes in insulin action were totally abolished by rilmenidine. These data demonstrate that rilmenidine can ameliorate the deleterious effects of a high fructose diet, i.e. weight gain, hypertension and resistance to the effects of insulin Rilmenidine could represent a potential therapeutic agent for the treatment of hypertension associated with metabolic disorders such as syndrom X and obesity. PMID:8949387

  13. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.

    PubMed

    Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W

    2016-03-24

    Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong

  14. Potential of carnuba wax in ameliorating brittle fracture during tableting.

    PubMed

    Uhumwangho, M U; Okor, R S; Adogah, J T

    2009-01-01

    Carnuba wax (as binder) forms hard tablets even at low compression load attributable to its high plasticity. The aim of the present study is to investigate its potential in ameliorating brittle fracture (i.e., lamination and capping) a problem often encountered during tableting. Granules of paracetamol (test drug) were made by triturating the drug powder with the melted wax or starch mucilage (20%w/v). Resulting granules were separated into different size fractions which were separately compressed into tablets with and without a centre hole (as in- built defect) using different compression loads. The tablets were evaluated for tensile strength and the data used to calculate the brittle fracture index (BFI), using the expression: BFI = 0.5(T/T(0)-1) where T0 and T are the tensile strength of tablets with and without a centre hole respectively. The BFI values were significantly lower (p<0.05) in tablets made with carnuba wax compared with tablets made with maize starch as binders. Increase in particle size of the granules or lowering of the compression load further ameliorated the brittle fracture tendency of the tablets. Using granules with the larger particle size (850microm) and applying the lowest unit of load (6 arbitrary unit on the load scale of the tableting machine) the BFI values were 0.03 (carnuba wax tablets) and 0.11 (maize starch tablets). When the conditions were reversed (i.e., a highest load, 8 units and the smallest particle size, 212microm) the BFI values now became 0.17 (carnuba wax tablets) and 0.26 (maize starch tablets). The indication is that the use of large granules and low compression loads to form tablets can further enhance the potential of carnuba wax in ameliorating brittle fracture tendency of tablets during their manufacture. PMID:19168422

  15. Allantoin ameliorates chemically-induced pancreatic β-cell damage through activation of the imidazoline I3 receptors

    PubMed Central

    Amitani, Marie; Cheng, Kai-Chun; Asakawa, Akihiro; Amitani, Haruka; Kairupan, Timothy Sean; Sameshima, Nanami; Shimizu, Toshiaki; Hashiguchi, Teruto

    2015-01-01

    Objective. Allantoin is the primary active compound in yams (Dioscorea spp.). Recently, allantoin has been demonstrated to activate imidazoline 3 (I3) receptors located in pancreatic tissues. Thus, the present study aimed to investigate the role of allantoin in the effect to improve damage induced in pancreatic β-cells by streptozotocin (STZ) via the I3 receptors. Research Design and Methods. The effect of allantoin on STZ-induced apoptosis in pancreatic β-cells was examined using the ApoTox-Glo triplex assay, live/dead cell double staining assay, flow cytometric analysis, and Western blottings. The potential mechanism was investigated using KU14R: an I3 receptor antagonist, and U73122: a phospholipase C (PLC) inhibitor. The effects of allantoin on serum glucose and insulin secretion were measured in STZ-treated rats. Results. Allantoin attenuated apoptosis and cytotoxicity and increased the viability of STZ-induced β-cells in a dose-dependent manner; this effect was suppressed by KU14R and U73112. Allantoin decreased the level of caspase-3 and increased the level of phosphorylated B-cell lymphoma 2 (Bcl-2) expression detected by Western blotting. The improvement in β-cells viability was confirmed using flow cytometry analysis. Daily injection of allantoin for 8 days in STZ-treated rats significantly lowered plasma glucose and increased plasma insulin levels. This action was inhibited by treatment with KU14R. Conclusion. Allantoin ameliorates the damage of β-cells induced by STZ. The blockade by pharmacological inhibitors indicated that allantoin can activate the I3 receptors through a PLC-related pathway to decrease this damage. Therefore, allantoin and related analogs may be effective in the therapy for β-cell damage. PMID:26290782

  16. Roscovitine ameliorates endotoxin-induced uveitis through neutrophil apoptosis

    PubMed Central

    Jiang, Zhao-Xin; Qiu, Suo; Lou, Bing-Sheng; Yang, Yao; Wang, Wen-Cong; Lin, Xiao-Feng

    2016-01-01

    Neutrophils have been recognized as critical response cells during the pathogenesis of endotoxin-induced uveitis (EIU). Apoptosis of neutrophils induced by roscovitine has previously been demonstrated to ameliorate inflammation in several in vivo models. The present study aimed to assess whether roscovitine ameliorates EIU. EIU was induced in female C57BL/6 mice by a single intravitreal injection of lipopolysaccharide (LPS; 250 ng). The mice were divided into three groups as follows: LPS alone, LPS plus vehicle, LPS plus roscovitine (50 mg/kg). The mice were euthanized 12, 24, 48 and 72 h after LPS-induced uveitis. Accumulation of inflammatory cells in the vitreous body was confirmed by immunohistochemistry, and quantified following hematoxylin and eosin staining. Terminal deoxynucleotidyl transferase dUTP nick-end labeling was performed to detect of apoptotic cells. The mRNA levels of inflammatory cytokines were analyzed by reverse transcription-quantitative polymerase chain reaction and the changes in protein levels were analyzed by western blotting. Inflammatory cells accumulated in the vitreous near the optic nerve head and the quantity peaked at 24 h after LPS injection. Immunohistochemistry revealed that the majority of the inflammatory cells were neutrophils. The number of infiltrating cells was similar in the LPS and LPS plus vehicle groups, while there were significantly less in the roscovitine group at 24 h. Apoptosis of neutrophils was observed between 12 and 48 h after roscovitine injection, while no apoptosis was observed in the other groups. The mRNA expression levels of GMCSF, CINC-1 and ICAM-1 peaked at 12 h after LPS injection, and decreased to normal levels at 72 h. This trend in mRNA expression was similar in the LPS and LPS plus vehicle groups; however, the expression levels decreased more quickly in the roscovitine group at 24 and 48 h. Following roscovitine administration, upregulated cleaved caspase 3 expression levels and downregulated Mcl-1

  17. Roscovitine ameliorates endotoxin-induced uveitis through neutrophil apoptosis.

    PubMed

    Jiang, Zhao-Xin; Qiu, Suo; Lou, Bing-Sheng; Yang, Yao; Wang, Wen-Cong; Lin, Xiao-Feng

    2016-08-01

    Neutrophils have been recognized as critical response cells during the pathogenesis of endotoxin‑induced uveitis (EIU). Apoptosis of neutrophils induced by roscovitine has previously been demonstrated to ameliorate inflammation in several in vivo models. The present study aimed to assess whether roscovitine ameliorates EIU. EIU was induced in female C57BL/6 mice by a single intravitreal injection of lipopolysaccharide (LPS; 250 ng). The mice were divided into three groups as follows: LPS alone, LPS plus vehicle, LPS plus roscovitine (50 mg/kg). The mice were euthanized 12, 24, 48 and 72 h after LPS‑induced uveitis. Accumulation of inflammatory cells in the vitreous body was confirmed by immunohistochemistry, and quantified following hematoxylin and eosin staining. Terminal deoxynucleotidyl transferase dUTP nick‑end labeling was performed to detect of apoptotic cells. The mRNA levels of inflammatory cytokines were analyzed by reverse transcription‑quantitative polymerase chain reaction and the changes in protein levels were analyzed by western blotting. Inflammatory cells accumulated in the vitreous near the optic nerve head and the quantity peaked at 24 h after LPS injection. Immunohistochemistry revealed that the majority of the inflammatory cells were neutrophils. The number of infiltrating cells was similar in the LPS and LPS plus vehicle groups, while there were significantly less in the roscovitine group at 24 h. Apoptosis of neutrophils was observed between 12 and 48 h after roscovitine injection, while no apoptosis was observed in the other groups. The mRNA expression levels of GMCSF, CINC‑1 and ICAM‑1 peaked at 12 h after LPS injection, and decreased to normal levels at 72 h. This trend in mRNA expression was similar in the LPS and LPS plus vehicle groups; however, the expression levels decreased more quickly in the roscovitine group at 24 and 48 h. Following roscovitine administration, upregulated cleaved caspase 3 expression levels

  18. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150

    USGS Publications Warehouse

    Jung, T.W.; Lee, K.T.; Lee, M.W.; Ka, K.H.

    2012-01-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathology of type 2 diabetes mellitus (T2DM). Although SIRT1 has a therapeutic effect on T2DM, the mechanisms by which SIRT1 ameliorates insulin resistance (IR) remain unclear. In this study, we investigated the impact of SIRT1 on palmitate-induced ER stress in HepG2 cells and its underlying signal pathway. Treatment with resveratrol, a SIRT1 activator significantly inhibited palmitate-induced ER stress, leading to the protection against palmitate-induced ER stress and insulin resistance. Resveratrol and SIRT1 overexpression induced the expression of oxygen-regulated protein (ORP) 150 in HepG2 cells. Forkhead box O1 (FOXO1) was involved in the regulation of ORP150 expression because suppression of FOXO1 inhibited the induction of ORP150 by SIRT1. Our results indicate a novel mechanism by which SIRT1 regulates ER stress by overexpression of ORP150, and suggest that SIRT1 ameliorates palmitate-induced insulin resistance in HepG2 cells via regulation of ER stress.

  19. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet.

    PubMed

    Wada, Tsutomu; Miyashita, Yusuke; Sasaki, Motohiro; Aruga, Yusuke; Nakamura, Yuto; Ishii, Yoko; Sasahara, Masakiyo; Kanasaki, Keizo; Kitada, Munehiro; Koya, Daisuke; Shimano, Hitoshi; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2013-12-01

    Because the renin-angiotensin-aldosterone system has been implicated in the development of insulin resistance and promotion of fibrosis in some tissues, such as the vasculature, we examined the effect of eplerenone, a selective mineralocorticoid receptor (MR) antagonist, on nonalcoholic steatohepatitis (NASH) and metabolic phenotypes in a mouse model reflecting metabolic syndrome in humans. We adopted liver-specific transgenic (Tg) mice overexpressing the active form of sterol response element binding protein-1c (SREBP-1c) fed a high-fat and fructose diet (HFFD) as the animal model in the present study. When wild-type (WT) C57BL/6 and liver-specific SREBP-1c Tg mice grew while being fed HFFD for 12 wk, body weight and epididymal fat weight increased in both groups with an elevation in blood pressure and dyslipidemia. Glucose intolerance and insulin resistance were also observed. Adipose tissue hypertrophy and macrophage infiltration with crown-like structure formation were also noted in mice fed HFFD. Interestingly, the changes noted in both genotypes fed HFFD were significantly ameliorated with eplerenone. HFFD-fed Tg mice exhibited the histological features of NASH in the liver, including macrovesicular steatosis and fibrosis, whereas HFFD-fed WT mice had hepatic steatosis without apparent fibrotic changes. Eplerenone effectively ameliorated these histological abnormalities. Moreover, the direct suppressive effects of eplerenone on lipopolysaccharide-induced TNFα production in the presence and absence of aldosterone were observed in primary-cultured Kupffer cells and bone marrow-derived macrophages. These results indicated that eplerenone prevented the development of NASH and metabolic abnormalities in mice by inhibiting inflammatory responses in both Kupffer cells and macrophages. PMID:24129399

  20. Pyrroloquinoline quinone (PQQ) has potential to ameliorate streptozotocin-induced diabetes mellitus and oxidative stress in mice: A histopathological and biochemical study.

    PubMed

    Kumar, Narendra; Kar, Anand

    2015-10-01

    Enhanced oxidative stress and hyperglycemia are associated with diabetes mellitus (DM). As pyrroloquinoline quinone (PQQ) is known to protect cells from oxidative stress, the present study was undertaken to reveal the hitherto unknown effects of PQQ in DM and associated problems in different tissues. Forty two mice were randomly divided into six groups. Group I receiving only citrate buffer served as the normal control, while group II animals were injected with citrate buffer and PQQ at 20 mg/kg for 15 days and served as test drug control. Animals of groups III-VI were rendered diabetic by single dose of streptozotocin (STZ, 150 mg/kg body weight), following which PQQ at a dose of 5, 10 and 20 mg/kg, was injected to the animals of group IV, V and VI respectively for 15 days. At the end, alterations in serum indices such as glucose, different lipids, insulin, amylase, urea, uric acid, serum glutamate pyruvate transaminase and serum glutamate oxaloacetate transaminase; tissue antioxidants and histopathological alterations in liver, kidney and pancreas were evaluated. STZ-treated animals developed oxidative stress as indicated by a significant increase in tissue lipid peroxidation (LPO) and lipid hydroperoxide, serum glucose, total cholesterol, triglyceride and urea, with a parallel decrease in the levels of serum insulin and tissue antioxidants. When diabetic animals received different doses of PQQ, these adverse effects were ameliorated. However, 20 mg/kg of PQQ appeared to be most effective. Findings revealed for the first time that PQQ has the potential to mitigate STZ-induced DM and oxidative damage in different organs of mice, suggesting that it may ameliorate diabetes mellitus and associated problems. PMID:26343954

  1. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics – Resveratrol as Ameliorating Factor on LPS Induced Changes

    PubMed Central

    Kroager, Toke P.; Sanggaard, Kristian W.; Knudsen, Anders D.; Stensballe, Allan; Enghild, Jan J.; Ølholm, Jens; Richelsen, Bjørn; Pedersen, Steen B.

    2016-01-01

    Adipose tissue inflammation is believed to play a pivotal role in the development obesity-related morbidities such as insulin resistance. However, it is not known how this (low-grade) inflammatory state develops. It has been proposed that the leakage of lipopolysaccharides (LPS), originating from the gut microbiota, through the gut epithelium could drive initiation of inflammation. To get a better understanding of which proteins and intracellular pathways are affected by LPS in adipocytes, we performed SILAC proteomic analysis and identified proteins that were altered in expression. Furthermore, we tested the anti-inflammatory compound resveratrol. A total of 927 proteins were quantified by the SILAC method and of these 57- and 64 were significantly up- and downregulated by LPS, respectively. Bioinformatic analysis (GO analysis) revealed that the upregulated proteins were especially involved in the pathways of respiratory electron transport chain and inflammation. The downregulated proteins were especially involved in protein glycosylation. One of the latter proteins, GALNT2, has previously been described to regulate the expression of liver lipases such as ANGPTL3 and apoC-III affecting lipid metabolism. Furthermore, LPS treatment reduced the protein levels of the insulin sensitizing adipokine, adiponectin, and proteins participating in the final steps of triglyceride- and cholesterol synthesis. Generally, resveratrol opposed the effect induced by LPS and, as such, functioning as an ameliorating factor in disease state. Using an unbiased proteomic approach, we present novel insight of how the proteome is altered in adipocytes in response to LPS as seen in obesity. We suggest that LPS partly exerts its detrimental effects by altering glycosylation processes of the cell, which is starting to emerge as important posttranscriptional regulators of protein expression. Furthermore, resveratrol could be a prime candidate in ameliorating dysfunctioning adipose tissue

  2. Insulin Analogs Versus Human Insulin in the Treatment of Patients With Diabetic Ketoacidosis

    PubMed Central

    Umpierrez, Guillermo E.; Jones, Sidney; Smiley, Dawn; Mulligan, Patrick; Keyler, Trevor; Temponi, Angel; Semakula, Crispin; Umpierrez, Denise; Peng, Limin; Cerón, Miguel; Robalino, Gonzalo

    2009-01-01

    OBJECTIVE To compare the safety and efficacy of insulin analogs and human insulins both during acute intravenous treatment and during the transition to subcutaneous insulin in patients with diabetic ketoacidosis (DKA). RESEARCH DESIGN AND METHODS In a controlled multicenter and open-label trial, we randomly assigned patients with DKA to receive intravenous treatment with regular or glulisine insulin until resolution of DKA. After resolution of ketoacidosis, patients treated with intravenous regular insulin were transitioned to subcutaneous NPH and regular insulin twice daily (n = 34). Patients treated with intravenous glulisine insulin were transitioned to subcutaneous glargine once daily and glulisine before meals (n = 34). RESULTS There were no differences in the mean duration of treatment or in the amount of insulin infusion until resolution of DKA between intravenous treatment with regular and glulisine insulin. After transition to subcutaneous insulin, there were no differences in mean daily blood glucose levels, but patients treated with NPH and regular insulin had a higher rate of hypoglycemia (blood glucose <70 mg/dl). Fourteen patients (41%) treated with NPH and regular insulin had 26 episodes of hypoglycemia and 5 patients (15%) in the glargine and glulisine group had 8 episodes of hypoglycemia (P = 0.03). CONCLUSIONS Regular and glulisine insulin are equally effective during the acute treatment of DKA. A transition to subcutaneous glargine and glulisine after resolution of DKA resulted in similar glycemic control but in a lower rate of hypoglycemia than with NPH and regular insulin. Thus, a basal bolus regimen with glargine and glulisine is safer and should be preferred over NPH and regular insulin after the resolution of DKA. PMID:19366972

  3. KSR2 Mutations Are Associated with Obesity, Insulin Resistance, and Impaired Cellular Fuel Oxidation

    PubMed Central

    Pearce, Laura R.; Atanassova, Neli; Banton, Matthew C.; Bottomley, Bill; van der Klaauw, Agatha A.; Revelli, Jean-Pierre; Hendricks, Audrey; Keogh, Julia M.; Henning, Elana; Doree, Deon; Jeter-Jones, Sabrina; Garg, Sumedha; Bochukova, Elena G.; Bounds, Rebecca; Ashford, Sofie; Gayton, Emma; Hindmarsh, Peter C.; Shield, Julian P.H.; Crowne, Elizabeth; Barford, David; Wareham, Nick J.; O’Rahilly, Stephen; Murphy, Michael P.; Powell, David R.; Barroso, Ines; Farooqi, I. Sadaf

    2013-01-01

    Summary Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEK-ERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes. PaperFlick PMID:24209692

  4. Synthesis and Identification of FITC-Insulin Conjugates Produced Using Human Insulin and Insulin Analogues for Biomedical Applications.

    PubMed

    Jacob, Dolly; Joan Taylor, M; Tomlins, Paul; Sahota, Tarsem S

    2016-03-01

    Human insulin was fluorescently labelled with fluorescein isothiocyanate (FITC) and the conjugate species produced were identified using high performance liquid chromatography and electrospray mass spectroscopy. Mono-labelled FITC-insulin conjugate (A1 or B1) was successfully produced using human insulin at short reaction times (up to 5 h) however the product always contained some unlabelled native human insulin. As the reaction time was increased over 45 h, no unlabelled native human insulin was present and more di-labelled FITC-insulin conjugate (A1B1) was produced than mono-labelled conjugate with the appearance of tri-labelled conjugate (A1B1B29) after 20 h reaction time. The quantities switch from mono-labelled to di-labelled FITC-insulin conjugate between reaction times 9 and 20 h. In the presence of phenol or m-cresol, there appears to be a 10 % decrease in the amount of mono-labelled conjugate and an increase in di-labelled conjugate produced at lower reaction times. Clinically used insulin analogues present in commercially available preparations were successfully fluorescently labelled for future biomedical applications. PMID:26658795

  5. Insulin Signaling in Type 2 Diabetes

    PubMed Central

    Brännmark, Cecilia; Nyman, Elin; Fagerholm, Siri; Bergenholm, Linnéa; Ekstrand, Eva-Maria; Cedersund, Gunnar; Strålfors, Peter

    2013-01-01

    Type 2 diabetes originates in an expanding adipose tissue that for unknown reasons becomes insulin resistant. Insulin resistance reflects impairments in insulin signaling, but mechanisms involved are unclear because current research is fragmented. We report a systems level mechanistic understanding of insulin resistance, using systems wide and internally consistent data from human adipocytes. Based on quantitative steady-state and dynamic time course data on signaling intermediaries, normally and in diabetes, we developed a dynamic mathematical model of insulin signaling. The model structure and parameters are identical in the normal and diabetic states of the model, except for three parameters that change in diabetes: (i) reduced concentration of insulin receptor, (ii) reduced concentration of insulin-regulated glucose transporter GLUT4, and (iii) changed feedback from mammalian target of rapamycin in complex with raptor (mTORC1). Modeling reveals that at the core of insulin resistance in human adipocytes is attenuation of a positive feedback from mTORC1 to the insulin receptor substrate-1, which explains reduced sensitivity and signal strength throughout the signaling network. Model simulations with inhibition of mTORC1 are comparable with experimental data on inhibition of mTORC1 using rapamycin in human adipocytes. We demonstrate the potential of the model for identification of drug targets, e.g. increasing the feedback restores insulin signaling, both at the cellular level and, using a multilevel model, at the whole body level. Our findings suggest that insulin resistance in an expanded adipose tissue results from cell growth restriction to prevent cell necrosis. PMID:23400783

  6. A gene expression signature for insulin resistance.

    PubMed

    Konstantopoulos, Nicky; Foletta, Victoria C; Segal, David H; Shields, Katherine A; Sanigorski, Andrew; Windmill, Kelly; Swinton, Courtney; Connor, Tim; Wanyonyi, Stephen; Dyer, Thomas D; Fahey, Richard P; Watt, Rose A; Curran, Joanne E; Molero, Juan-Carlos; Krippner, Guy; Collier, Greg R; James, David E; Blangero, John; Jowett, Jeremy B; Walder, Ken R

    2011-02-11

    Insulin resistance is a heterogeneous disorder caused by a range of genetic and environmental factors, and we hypothesize that its etiology varies considerably between individuals. This heterogeneity provides significant challenges to the development of effective therapeutic regimes for long-term management of type 2 diabetes. We describe a novel strategy, using large-scale gene expression profiling, to develop a gene expression signature (GES) that reflects the overall state of insulin resistance in cells and patients. The GES was developed from 3T3-L1 adipocytes that were made "insulin resistant" by treatment with tumor necrosis factor-α (TNF-α) and then reversed with aspirin and troglitazone ("resensitized"). The GES consisted of five genes whose expression levels best discriminated between the insulin-resistant and insulin-resensitized states. We then used this GES to screen a compound library for agents that affected the GES genes in 3T3-L1 adipocytes in a way that most closely resembled the changes seen when insulin resistance was successfully reversed with aspirin and troglitazone. This screen identified both known and new insulin-sensitizing compounds including nonsteroidal anti-inflammatory agents, β-adrenergic antagonists, β-lactams, and sodium channel blockers. We tested the biological relevance of this GES in participants in the San Antonio Family Heart Study (n = 1,240) and showed that patients with the lowest GES scores were more insulin resistant (according to HOMA_IR and fasting plasma insulin levels; P < 0.001). These findings show that GES technology can be used for both the discovery of insulin-sensitizing compounds and the characterization of patients into subtypes of insulin resistance according to GES scores, opening the possibility of developing a personalized medicine approach to type 2 diabetes. PMID:21081660

  7. [The polycystic ovary syndrome and insulin resistance].

    PubMed

    Kreze, A; Hrnciar, J; Dobáková, M; Pekarová, E

    1997-10-01

    The insulin resistance syndrome and the polycystic ovary syndrome (PCOS) appear to have some following coincidences: the existence of subclinical acanthosis nigricans in PCOS hyperinsulinemic women, correlation of insulin levels and free testosterone, insulin-like growth factor I binding protein (IGFIBP), and sex-hormone binding globulin. Insulin and IGFI act synergically with luteinizing hormone increasing the activity of cytochrome P450c17 and its enzymatic activity in the adrenals. The decrease in IGFI level and IGFI receptors in the ovarian granulosa cells reduce the steroids aromatisation. The increased expression of IGFI receptors in the theca cells favours the androgens' synthesis. Long-term insulin therapy results in an increase in ovary volume and the blood androgens levels. The deterioration of insulin resistance in PSOC women progresses also by the reduction of type I of skeletal muscle fibres which are sensitive to insulin, and the increase of type II fibres which are resistant to insulin in hyperandrogenemia. Testosterone deteriorates the skeletal as well as hepatic insulin sensitivity by both its facilitating effect on lipolysis and the increase of free fatty acids. Abdominal obesity seen in PCOS and insulin resistance is composed by adipocytes with glucocorticoid receptors, which after cortisol stimulation activate the lipoprotein lipase and fat accumulation. Gynoid obesity with the preferential aromatisation of steroids is not evolved because of the low estrogens and progesterone levels in PCOS. Low progesterone levels (with anticortisol effect) support the development of abdominal obesity. Ultimately, the early peak of insulin secretion (4-8 min) in PCOS is higher. This fact should testify a certain diabetic disposition. (Ref. 37.) PMID:9490171

  8. Intraperitoneal insulin therapy for a patient with type 1 diabetes with insulin injection site inflammation.

    PubMed

    Lee, Siang Ing; Narendran, Parth

    2014-01-01

    A 36-year-old man with type 1 diabetes developed skin inflammation at the site of subcutaneous insulin injection after 10 years of basal bolus subcutaneous insulin therapy. This inflammation led to poor insulin absorption, poorly controlled blood glucose and subsequently to ketoacidosis. The problem persisted despite a trial of continuous subcutaneous insulin infusion. The patient went on to be treated with continuous intraperitoneal insulin infusion. Three months after the procedure, he was achieving good glucose control and was able to resume his normal life, with the only complication being an episode of cellulitis surrounding the port site. PMID:25188930

  9. Intraperitoneal insulin therapy for a patient with type 1 diabetes with insulin injection site inflammation

    PubMed Central

    Lee, Siang Ing; Narendran, Parth

    2014-01-01

    A 36-year-old man with type 1 diabetes developed skin inflammation at the site of subcutaneous insulin injection after 10 years of basal bolus subcutaneous insulin therapy. This inflammation led to poor insulin absorption, poorly controlled blood glucose and subsequently to ketoacidosis. The problem persisted despite a trial of continuous subcutaneous insulin infusion. The patient went on to be treated with continuous intraperitoneal insulin infusion. Three months after the procedure, he was achieving good glucose control and was able to resume his normal life, with the only complication being an episode of cellulitis surrounding the port site. PMID:25188930

  10. Changes in insulin and insulin signaling in Alzheimer's disease: cause or consequence?

    PubMed

    Stanley, Molly; Macauley, Shannon L; Holtzman, David M

    2016-07-25

    Individuals with type 2 diabetes have an increased risk for developing Alzheimer's disease (AD), although the causal relationship remains poorly understood. Alterations in insulin signaling (IS) are reported in the AD brain. Moreover, oligomers/fibrils of amyloid-β (Aβ) can lead to neuronal insulin resistance and intranasal insulin is being explored as a potential therapy for AD. Conversely, elevated insulin levels (ins) are found in AD patients and high insulin has been reported to increase Aβ levels and tau phosphorylation, which could exacerbate AD pathology. Herein, we explore whether changes in ins and IS are a cause or consequence of AD. PMID:27432942

  11. Insulin inhalation--Pfizer/Nektar Therapeutics: HMR 4006, inhaled PEG-insulin--Nektar, PEGylated insulin--Nektar.

    PubMed

    2004-01-01

    Nektar Therapeutics (formerly Inhale Therapeutic Systems) has developed a pulmonary drug delivery system for insulin [HMR 4006, Exubera]. The rationale behind developing a pulmonary drug delivery system is to ensure that insulin powder is delivered deep into the lungs, where it is easily absorbed into the bloodstream, in a hand-held inhalation device. The device converts the insulin powder particles into an aerosol cloud for the patient to inhale. No propellants are used. The inhaler requires no power source and the clear chamber ensures that the patient knows immediately when all the insulin has been inhaled. Nektar Therapeutics, developers of the inhalation device and formulation process, has licensed the system to Pfizer. Under the terms of the agreement, Pfizer will lead the clinical development of inhaled insulin, while working with Nektar Therapeutics to develop the technology required for packaging the product. Pfizer has an agreement with Hoechst Marion Roussel (now Aventis Pharma) for developing, manufacturing and promoting inhaled insulin. Under the terms of the collaboration, Aventis Pharma will supply recombinant insulin to Nektar Therapeutics to process it into dry powder for incorporation into the inhaler device. Nektar Therapeutics will receive royalties on sales of inhaled insulin marketed by Pfizer and Aventis Pharma, and milestone payments and research support from Pfizer. Aventis Pharma's codename for the product is HMR 4006.Profil, a CRO in Germany, is cooperating with Pfizer/Aventis Pharma in the development of inhaled insulin. In March 2004, Pfizer and Aventis announced that the European Medicines Evaluation Agency (EMEA) accepted the filing of the MAA for inhaled insulin (Exubera) for the treatment of type 1 and type 2 diabetes mellitus. The two companies are working with the US FDA to determine the timing for the submission of the NDA in the US. Pfizer completed five pivotal phase III clinical trials with inhaled insulin in patients with

  12. Surrogate insulin-producing cells

    PubMed Central

    Wong, Adrianne L.; Hwa, Albert; Hellman, Dov

    2012-01-01

    Diabetes, a large and growing worldwide health concern, affects the functional mass of the pancreatic beta cell, which in turn affects the glucose regulation of the body. Successful transplantation of cadaveric islets and pancreata for patients with uncontrolled type 1 diabetes has provided proof-of-concept for the development of commercial cell therapy approaches to treat diabetes. Three broad issues must be addressed before surrogate insulin-producing cells can become a reality: the development of a surrogate beta-cell source, immunoprotection, and translation. Cell therapy for diabetes is a real possibility, but many questions remain; through the collaborative efforts of multiple stakeholders this may become a reality. PMID:22891077

  13. Insulin, Aging, and the Brain: Mechanisms and Implications

    PubMed Central

    Akintola, Abimbola A.; van Heemst, Diana

    2015-01-01

    There is now an impressive body of literature implicating insulin and insulin signaling in successful aging and longevity. New information from in vivo and in vitro studies concerning insulin and insulin receptors has extended our understanding of the physiological role of insulin in the brain. However, the relevance of these to aging and longevity remains to be elucidated. Here, we review advances in our understanding of the physiological role of insulin in the brain, how insulin gets into the brain, and its relevance to aging and longevity. Furthermore, we examine possible future therapeutic applications and implications of insulin in the context of available models of delayed and accelerated aging. PMID:25705204

  14. Two Cases of Allergy to Insulin in Gestational Diabetes

    PubMed Central

    Kim, Gi Jun; Kim, Shin Bum; Jo, Seong Il; Shin, Jin Kyeong; Kwon, Hee Sun; Jeong, Heekyung; Son, Jang Won; Lee, Seong Su; Kim, Sung Rae; Kim, Byung Kee

    2015-01-01

    Allergic reaction to insulin is uncommon since the introduction of human recombinant insulin preparations and is more rare in pregnant than non-pregnant females due to altered immune reaction during pregnancy. Herein, we report two cases of allergic reaction to insulin in gestational diabetes that were successfully managed. One case was a 33-year-old female using isophane-neutral protamine Hagedorn human insulin and insulin lispro. She experienced dyspnea, cough, urticaria and itching sensation at the sites of insulin injection immediately after insulin administration. We discontinued insulin therapy and started oral hypoglycemic agents with metformin and glibenclamide. The other case was a 32-year-old female using insulin lispro and insulin detemer. She experienced pruritus and burning sensation and multiple nodules at the sites of insulin injection. We changed the insulin from insulin lispro to insulin aspart. Assessments including immunoglobulin E (IgE), IgG, eosinophil, insulin antibody level and skin biopsy were performed. In the two cases, the symptoms were resolved after changing the insulin to oral agents or other insulin preparations. We report two cases of allergic reaction to human insulin in gestational diabetes due to its rarity. PMID:26435137

  15. Two Cases of Allergy to Insulin in Gestational Diabetes.

    PubMed

    Kim, Gi Jun; Kim, Shin Bum; Jo, Seong Il; Shin, Jin Kyeong; Kwon, Hee Sun; Jeong, Heekyung; Son, Jang Won; Lee, Seong Su; Kim, Sung Rae; Kim, Byung Kee; Yoo, Soon Jib

    2015-09-01

    Allergic reaction to insulin is uncommon since the introduction of human recombinant insulin preparations and is more rare in pregnant than non-pregnant females due to altered immune reaction during pregnancy. Herein, we report two cases of allergic reaction to insulin in gestational diabetes that were successfully managed. One case was a 33-year-old female using isophane-neutral protamine Hagedorn human insulin and insulin lispro. She experienced dyspnea, cough, urticaria and itching sensation at the sites of insulin injection immediately after insulin administration. We discontinued insulin therapy and started oral hypoglycemic agents with metformin and glibenclamide. The other case was a 32-year-old female using insulin lispro and insulin detemer. She experienced pruritus and burning sensation and multiple nodules at the sites of insulin injection. We changed the insulin from insulin lispro to insulin aspart. Assessments including immunoglobulin E (IgE), IgG, eosinophil, insulin antibody level and skin biopsy were performed. In the two cases, the symptoms were resolved after changing the insulin to oral agents or other insulin preparations. We report two cases of allergic reaction to human insulin in gestational diabetes due to its rarity. PMID:26435137

  16. Insulin during pregnancy, labour and delivery.

    PubMed

    de Valk, Harold W; Visser, Gerard H A

    2011-02-01

    Optimal glycaemic control is of the utmost importance to achieve the best possible outcome of a pregnancy complicated by diabetes. This holds for pregnancies in women with preconceptional type 1 or type 2 diabetes as well as for pregnancies complicated by gestational diabetes. Glycaemic control is conventionally expressed in the HbA1c value but the HbA1c value does not completely capture the complexity of glycaemic control. The daily glucose profile measured by the patients themselves through measurements performed in capillary blood obtained by finger stick provides valuable information needed to adjust insulin therapy. Hypoglycaemia is the major threat to the pregnant woman or the woman with tight glycaemic control in the run-up to pregnancy. Repetitive hypoglycaemia can lead to hypoglycaemia unawareness, which is reversible with prevention of hypoglycaemia. A delicate balance should be struck between preventing hyperglycaemia and hypoglycaemia. Insulin requirements are not uniform across the day: it is low during the night with a more or less pronounced rise at dawn, followed by a gradual decrease during the remainder of the day. A basal amount of insulin is needed to regulate the endogenous glucose production, short-acting insulin shots are needed to handle exogenous glucose loads. Insulin therapy means two choices: the type of insulin used and the method of insulin administration. Regarding the type of insulin, the choice is between human and analogue insulins. The analogue short-acting insulin aspart has been shown to be safe during pregnancy in a randomised trial and has received registration for this indication; the short-acting analogue insulin lispro has been shown to be safe in observational studies. No such information is available on the long-acting insulin analogues detemir and glargine and both are prescribed off-label with human long-acting insulin as obvious alternatives. Randomised trials have not been able to show superiority of continuous

  17. Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells.

    PubMed

    Mehmeti, Ilir; Lortz, Stephan; Elsner, Matthias; Lenzen, Sigurd

    2014-09-26

    Oxidative folding of (pro)insulin is crucial for its assembly and biological function. This process takes place in the endoplasmic reticulum (ER) and is accomplished by protein disulfide isomerase and ER oxidoreductin 1β, generating stoichiometric amounts of hydrogen peroxide (H2O2) as byproduct. During insulin resistance in the prediabetic state, increased insulin biosynthesis can overwhelm the ER antioxidative and folding capacity, causing an imbalance in the ER redox homeostasis and oxidative stress. Peroxiredoxin 4 (Prdx4), an ER-specific antioxidative peroxidase can utilize luminal H2O2 as driving force for reoxidizing protein disulfide isomerase family members, thus efficiently contributing to disulfide bond formation. Here, we examined the functional significance of Prdx4 on β-cell function with emphasis on insulin content and secretion during stimulation with nutrient secretagogues. Overexpression of Prdx4 in glucose-responsive insulin-secreting INS-1E cells significantly metabolized luminal H2O2 and improved the glucose-induced insulin secretion, which was accompanied by the enhanced proinsulin mRNA transcription and insulin content. This β-cell beneficial effect was also observed upon stimulation with the nutrient insulin secretagogue combination of leucine plus glutamine, indicating that the effect is not restricted to glucose. However, knockdown of Prdx4 had no impact on H2O2 metabolism or β-cell function due to the fact that Prdx4 expression is negligibly low in pancreatic β-cells. Moreover, we provide evidence that the constitutively low expression of Prdx4 is highly susceptible to hyperoxidation in the presence of high glucose. Overall, these data suggest an important role of Prdx4 in maintaining insulin levels and improving the ER folding capacity also under conditions of a high insulin requirement. PMID:25122762

  18. Immunoreactive insulin and insulin-degrading activity in rat fecal extracts

    SciTech Connect

    Pillion, D.J.

    1986-05-01

    The insulin-degrading activity and insulin content of aqueous extracts of rat fecal material isolated from the proximal colon were measured by radioimmunoassay in the presence and absence of various inhibitors of proteolysis. In the absence of protease inhibitors, up to 40% of the (/sup 125/I)-insulin present in radioimmunoassay tubes was degraded to a form that was not precipitated by trichloroacetic acid. In the presence of bacitracin, EDTA or a mixture of protease inhibitors, insulin degradation was diminished to < 10%. The concentration of insulin in aqueous extracts of rat proximal colon fecal material was found to be small but significant, ranging from 10-120 ..mu..U/g wet weight when measured in the presence of protease inhibitors. The efficacy of various protease inhibitors differed when added to the aqueous fecal extract than when added to rat serum suggesting that a distinct insulinase activity was present in rat feces. Degradation of exogenously added (/sup 125/I)-insulin by the aqueous fecal extract was time- and temperature-dependent. Fecal samples obtained from streptozotocin-diabetic rats contained reduced amounts of insulin, suggesting that the fecal insulin was produced partially, but not exclusively, in the pancreas. These results indicate that fecal material in the rat proximal colon contains small amounts of insulin, as well as a rich supply of insulinase activity, and that insulin receptors located on the mucosal surface of proximal colon epithelial cells may be exposed to insulin in vivo.

  19. [B17-D-leucine]insulin and [B17-norleucine]insulin: synthesis and biological properties.

    PubMed

    Knorr, R; Danho, W; Büllesbach, E E; Gattner, H G; Zahn, H; King, G L; Kahn, C R

    1983-11-01

    The chemical synthesis of two porcine insulin analogues is described. Leucine in position B17 of the native molecule was substituted by its D-enantiomer and by L-norleucine, respectively. Both B-chain derivatives were synthesized by fragment condensation and purified as di-S-sulphonates by gel filtration followed by ion exchange chromatography on SP-Sephadex at pH3. Combination with native sulphhydryl A-chain yielded [DLeuB17]insulin and [NleB17]insulin. Both insulin analogues were isolated by gel filtration followed by ion exchange chromatography on CM-cellulose at pH 4.0. Biological activities of the analogues were determined relative to native pork insulin: 1) glucose oxidation in rat epididymal adipocytes was 6% for [DLeuB17]insulin and 16% for [NleB17]insulin, 2) receptor-binding affinity tested with cultured human fibroblasts and with rat adipocytes was 3% for [DLeuB17]insulin and 26% for [NleB17]insulin, and 3) thymidine incorporation into DNA of human fibroblasts was 35% for [DLeuB17]insulin and 100% for [NleB17]insulin. PMID:6363268

  20. Engineering predictability and protraction in a basal insulin analogue: the pharmacology of insulin detemir.

    PubMed

    Kurtzhals, P

    2004-09-01

    The suboptimal nature of the absorption profiles of human insulin formulations following subcutaneous administration has prompted the development of insulin analogues better suited for therapeutic use in diabetes mellitus. A particular challenge has been to engineer long-acting agents that do not produce unduly variable responses from one injection to another. One recent approach that has met with success has been to acylate, the insulin molecule with a fatty acid, thereby enabling reversible albumin binding. The first clinically available agent of this type is insulin detemir. Pharmacological studies have established that this principle is effective in prolonging action, primarily by retarding absorption. The solubility of insulin detemir in the vial and after injection and an important buffering mechanism effected by plasma albumin binding explain a significant decrease in within-subject variability of pharmacodynamic response observed in repeat isoglycaemic clamp studies where insulin detemir was compared to other basal insulin products. Owing to the extremely high ratio of albumin-binding sites to insulin detemir molecules at therapeutic concentrations, no safety considerations have been identified pertaining to albumin binding. The insulin detemir molecule retains the molecular pharmacological properties of native human insulin, including a physiological balance between metabolic and mitogenic potencies. Thus, insulin detemir offers the promise of an improved tolerability:efficacy ratio in the clinical setting. PMID:15306834

  1. A novel regulation of IRS1 (insulin receptor substrate-1) expression following short term insulin administration

    PubMed Central

    2005-01-01

    Reduced insulin-mediated glucose transport in skeletal muscle is a hallmark of the pathophysiology of T2DM (Type II diabetes mellitus). Impaired intracellular insulin signalling is implicated as a key underlying mechanism. Attention has focused on early signalling events such as defective tyrosine phosphorylation of IRS1 (insulin receptor substrate-1), a major target for the insulin receptor tyrosine kinase. This is required for normal induction of signalling pathways key to many of the metabolic actions of insulin. Conversely, increased serine/threonine phosphorylation of IRS1 following prolonged insulin exposure (or in obesity) reduces signalling capacity, partly by stimulating IRS1 degradation. We now show that IRS1 levels in human muscle are actually increased 3-fold following 1 h of hyperinsulinaemic euglycaemia. Similarly, transient induction of IRS1 (3-fold) in the liver or muscle of rodents occurs following feeding or insulin injection respectively. The induction by insulin is also observed in cell culture systems, although to a lesser degree, and is not due to reduced proteasomal targeting, increased protein synthesis or gene transcription. Elucidation of the mechanism by which insulin promotes IRS1 stability will permit characterization of the importance of this novel signalling event in insulin regulation of liver and muscle function. Impairment of this process would reduce IRS1 signalling capacity, thereby contributing to the development of hyperinsulinaemia/insulin resistance prior to the appearance of T2DM. PMID:16128672

  2. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system.

    PubMed

    de Araújo, Thiago M; Teixeira, Zaine; Barbosa-Sampaio, Helena C; Rezende, Luiz F; Boschero, Antonio C; Durán, Nelson; Höehr, Nelci F

    2013-06-01

    The aim of this work was to develop an efficient, biodegradable, biocompatible and safe controlled release system using insulin-loaded poly(epsilon-caprolactone) (PCL) nanoparticles. The insulin-loaded PCL nanoparticles were prepared by double emulsion method (water-in-oil-in-water) using Pluronic F68 as emulsifier. Using the double emulsion method a high insulin encapsulation efficiency (90.6 +/-1.6%) with a zeta potential of -29 +/-2.7 mV and average particle size of 796 +/-10.5 nm was obtained. Insulin-loaded PCL nanoparticles showed no toxicity to MIN6 cells. Insulin nanoparticles administered subcutaneously and intraperitoneally in rats reduced glycaemia of basal levels after 15 minutes, and presented a sustainable hypoglycemic effect on insulin-dependent type 1 diabetic rats, showing to be more efficient than unencapsulated insulin. Furthermore, these nanoparticles were not hepatotoxic, as evaluated by the effect over liver cell-death and oxidative stress scavenger system in rats. These results suggest that insulin-loaded PCL nanoparticles prepared by water-in-oil-in-water emulsion method are biocompatible, efficient and safe insulin-delivering system with controlled insulin release, which indicates that it may be a powerful tool for insulin-dependent patients care. PMID:23858976

  3. [Improvement in glycemic control, cardiovascular risk factors and anthropometric data in type 2 diabetic patients after the switch from biphasic human insulin to biphasic premix analog insulin aspart].

    PubMed

    Gero, László; Gyimesi, András; Hidvégi, Tibor; Jánosi, István

    2009-08-30

    Long-term studies involving large number of type 2 diabetic patients supplied evidence that constant adequate metabolic control may prevent the late (micro- and macrovascular) diabetic complications. In the present non-interventional, retrospective study, authors performed an analysis of type 2 diabetic patients who had been previously treated with biphasic human insulin (BHI) and their therapy was changed to biphasic analog insulin aspart 30/70 (BIAsp = NovoMix 30). The switch of the insulin therapy was carried out in years 2007 and 2008 with the cooperation of 50 accredited diabetes centers. Data were obtained at the time of therapeutical change and six months later. The number of suitable patients was 2898 with an age of 66.20 +/- 10.10 year, and the duration of diabetes was >10 years in 43% of the patients. After the six-month therapy with NovoMix 30, the mean HbA 1c level decreased statistically significantly from the initial value of 9.10 +/- 1.44% to 7.62 +/- 1.00% ( p < 0.001). The lipid profile also improved although target values were not always attained. A reduction was also observed in both systolic and diastolic blood pressure. Mean body weight decreased from 84.2 +/- 14.9 kg to 82.6 +/- 13.9 kg ( p < 0.01). All these changes occurred in spite of a significantly reduced daily insulin dose (48.4 +/- 17.6 IU) as compared with the initial value (49.0 +/- 17.4 IU, p < 0.001). A marked decrement was also observed in the frequency of hypoglycemic reactions. These results confirm that treatment with NovoMix 30 insulin leads to a significant amelioration of glycemic control as reflected by the decreased level of HbA 1c and the higher proportion of patients attaining the target value, as well as the lower frequency of hypoglycemic episodes. The significant improvements in cardiovascular risk factors are also important, but the explanation is still missing and would require the accomplishment of prospective, controlled studies. PMID:19692308

  4. Anaphylaxis to subcutaneous neutral protamine Hagedorn insulin with simultaneous sensitization to protamine and insulin.

    PubMed

    Blanco, C; Castillo, R; Quiralte, J; Delgado, J; García, I; de Pablos, P; Carrillo, T

    1996-06-01

    We report an insulin-treated diabetic patient who suffered, in a 2-month period, three severe anaphylactic reactions immediately after self-administered subcutaneous injections of neutral protamine Hagedorn (NPH) human recombinant-DNA insulin. These reactions consisted of local and systemic symptoms, including dyspnea and hypotension. A simultaneous sensitization to human insulin and to protamine was demonstrated, both by skin tests and by the determination of serum specific IgE. Suspecting protamine allergy, we performed a test dose to human lente insulin with perfect tolerance. After a 1-year follow-up with lente-insulin treatment, no reactions have occurred, despite treatment interruptions. Therefore, protamine IgE-mediated allergy probably caused our patient's reactions. In conclusion, protamine sensitization should be ruled out in any patient with a history of reactions to subcutaneous protamine-containing insulins, even if insulin sensitization is present. PMID:8837667

  5. Selective insulin resistance in hepatocyte senescence

    SciTech Connect

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas; Hoare, Matthew; Heaney, Judith; Alexander, Graeme J.M.

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  6. Can Insulin Production Suppress β Cell Growth?

    PubMed

    De Vas, Matias; Ferrer, Jorge

    2016-01-12

    While insulin has mitogenic effects in many cell types, its effects on β cells remain elusive. In this issue of Cell Metabolism, Szabat et al. (2015) genetically block insulin production in adult β cells and show that this leads to a relief of ER stress, AKT activation, and increased β cell proliferation. PMID:26771111

  7. Insulin Resistance and Heart Failure: Molecular Mechanisms

    PubMed Central

    Aroor, Annayya R.; Mandavia, Chirag H.; Sowers, James R.

    2012-01-01

    Insulin resistance and associated reductions in cardiac insulin metabolic signaling is emerging as a major factor for the development of heart failure and assumes more importance because of an epidemic increase in obesity and the cardiorenal metabolic syndrome and our aging population. Major factors contributing to the development of cardiac insulin resistance are oxidative stress, hyperglycemia, hyperlipidemia, dysregulated secretion of adipokines/cytokines and inappropriate activation of renin-angiotensin II-aldosterone system (RAAS) and the sympathetic nervous system. The effects of cardiac insulin resistance are exacerbated by metabolic, endocrine and cytokine alterations associated with systemic insulin resistance. The aggregate of these various alterations leads to an insulin resistant phenotype with metabolic inflexibility, impaired calcium handling, mitochondrial dysfunction and oxidative stress, dysregulated myocardial-endothelial interactions resulting in energy deficiency, impaired diastolic dysfunction, myocardial cell death and cardiac fibrosis. Therefore, understanding the molecular mechanisms linking insulin resistance and heart failure may help to design new and more effective mechanism-based drugs to improve myocardial and systemic insulin resistance. PMID:22999243

  8. Insulin resistance, metabolic stress, and atherosclerosis

    PubMed Central

    Pansuria, Meghana; Xi, Hang; Li, Le; Yang, Xiao-Feng; Wang, Hong

    2012-01-01

    Atherosclerosis, a pathological process that underlies the development of cardiovascular disease, is the primary cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). T2DM is characterized by hyperglycemia and insulin resistance (IR), in which target tissues fail to respond to insulin. Systemic IR is associated with impaired insulin signaling in the metabolic tissues and vasculature. Insulin receptor is highly expressed in the liver, muscle, pancreas, and adipose tissue. It is also expressed in vascular cells. It has been suggested that insulin signaling in vascular cells regulates cell proliferation and vascular function. In this review, we discuss the association between IR, metabolic stress, and atherosclerosis with focus on 1) tissue and cell distribution of insulin receptor and its differential signaling transduction and 2) potential mechanism of insulin signaling impairment and its role in the development of atherosclerosis and vascular function in metabolic disorders including hyperglycemia, hypertension, dyslipidemia, and hyperhomocysteinemia. We propose that insulin signaling impairment is the foremost biochemical mechanism underlying increased cardiovascular morbidity and mortality in atherosclerosis, T2DM, and metabolic syndrome. PMID:22202099

  9. Insulin Protects against Hepatic Damage Postburn

    PubMed Central

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes. PMID:21267509

  10. Role of mitochondrial function in insulin resistance.

    PubMed

    Brands, Myrte; Verhoeven, Arthur J; Serlie, Mireille J

    2012-01-01

    The obesity pandemic increases the prevalence of type 2 diabetes (DM2).DM2 develops when pancreatic β-cells fail and cannot compensate for the decrease in insulin sensitivity. How excessive caloric intake and weight gain cause insulin resistance has not completely been elucidated.Skeletal muscle is responsible for a major part of insulin stimulated whole-body glucose disposal and, hence, plays an important role in the pathogenesis of insulin resistance.It has been hypothesized that skeletal muscle mitochondrial dysfunction is involved in the accumulation of intramyocellular lipid metabolites leading to lipotoxicity and insulin resistance. However, findings on skeletal muscle mitochondrial function in relation to insulin resistance in human subjects are inconclusive. Differences in mitochondrial activity can be the result of several factors, including a reduced mitochondrial density, differences in insulin stimulated mitochondrial respiration, lower energy demand or reduced skeletal muscle perfusion, besides an intrinsic mitochondrial defect. The inconclusive results may be explained by the use of different techniques and study populations. Also, mitochondrial capacity is in far excess to meet energy requirements and therefore it may be questioned whether a reduced mitochondrial capacity limits mitochondrial fatty acid oxidation. Whether reduced mitochondrial function is causally related to insulin resistance or rather a consequence of the sedentary lifestyle remains to be elucidated. PMID:22399424

  11. FACTORS AFFECTING THE DEPOSITION OF AEROSOLIZED INSULIN

    EPA Science Inventory

    Abstract
    Background
    The inhalation of insulin for absorption into the bloodstream via the lung seems to be a promising technique for the treatment of diabetes mellitus. A fundamental issue to be resolved in the development of such insulin aerosol delivery systems is their...

  12. Continuous subcutaneous insulin infusion: practical issues

    PubMed Central

    Saboo, Banshi D.; Talaviya, Praful A.

    2012-01-01

    The growing number of individuals with diabetes mellitus has prompted new way of treating these patients, continuous subcutaneous insulin infusion (CSII) or insulin pump therapy is an increasingly form of intensive insulin therapy. An increasing number of individuals with diabetes mellitus individuals of all ages have started using insulin pump therapy. Not everyone is a good candidate for insulin pump therapy, and the clinician needs to be able to determine which patients are able to master the techniques required and to watch for the adverse reactions that may develop. Insulin pump increases quality of life of patient with diabetes mellitus with increasing satisfaction with treatment and decrease impact of diabetes mellitus. Manual errors by insulin pump users may lead to hypo or hyperglycemia, resulting into diabetic ketoacidosis (DKA) sometimes. Some of practical aspect is associated with insulin pump therapy such as selection of candidates, handling of pump and selection of site, and pump setting, henceforth this review is prepared to explore and solve the practical problems or issues associated with pump therapy. PMID:23565394

  13. Restoration of early rise in plasma insulin levels improves the glucose tolerance of type 2 diabetic patients.

    PubMed

    Bruttomesso, D; Pianta, A; Mari, A; Valerio, A; Marescotti, M C; Avogaro, A; Tiengo, A; Del Prato, S

    1999-01-01

    production was suppressed in a prompter and more profound manner when lispro was administered (1.39 +/- 0.10 vs. 5.00 +/- 1.22 micromol x kg(-1) x min(-1); P < 0.05), while there was no difference in the late prandial phase. These results show that an early rise in plasma insulin levels after the ingestion of a glucose load is associated with a significant improvement in glucose tolerance due to a prompter, though short-lived, suppression of endogenous glucose production. This amelioration in plasma glucose profile prevents late hyperglycemia and hyperinsulinemia. Therefore, restoration of a more physiologic profile of prandial plasma insulin profile represents a rational approach for treatment of type 2 diabetic patients. PMID:9892228

  14. Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms

    PubMed Central

    Nyström, Alexander; Thriene, Kerstin; Mittapalli, Venugopal; Kern, Johannes S; Kiritsi, Dimitra; Dengjel, Jörn; Bruckner-Tuderman, Leena

    2015-01-01

    Genetic loss of collagen VII causes recessive dystrophic epidermolysis bullosa (RDEB)—a severe skin fragility disorder associated with lifelong blistering and disabling progressive soft tissue fibrosis. Causative therapies for this complex disorder face major hurdles, and clinical implementation remains elusive. Here, we report an alternative evidence-based approach to ameliorate fibrosis and relieve symptoms in RDEB. Based on the findings that TGF-β activity is elevated in injured RDEB skin, we targeted TGF-β activity with losartan in a preclinical setting. Long-term treatment of RDEB mice efficiently reduced TGF-β signaling in chronically injured forepaws and halted fibrosis and subsequent fusion of the digits. In addition, proteomics analysis of losartan- vs. vehicle-treated RDEB skin uncovered changes in multiple proteins related to tissue inflammation. In line with this, losartan reduced inflammation and diminished TNF-α and IL-6 expression in injured forepaws. Collectively, the data argue that RDEB fibrosis is a consequence of a cascade encompassing tissue damage, TGF-β-mediated inflammation, and matrix remodeling. Inhibition of TGF-β activity limits these unwanted outcomes and thereby substantially ameliorates long-term symptoms. PMID:26194911

  15. Guanfacine ameliorates hypobaric hypoxia induced spatial working memory deficits.

    PubMed

    Kauser, H; Sahu, S; Kumar, S; Panjwani, U

    2014-01-17

    Hypobaric hypoxia (HH) observed at high altitude causes mild cognitive impairment specifically affecting attention and working memory. Adrenergic dysregulation and neuronal damage in prefrontal cortex (PFC) has been implicated in hypoxia induced memory deficits. Optimal stimulation of alpha 2A adrenergic receptor in PFC facilitates the spatial working memory (SWM) under the conditions of adrenergic dysregulation. Therefore the present study was designed to test the efficacy of alpha 2A adrenergic agonist, Guanfacine (GFC), to restore HH induced SWM deficits and PFC neuronal damage. The rats were exposed to chronic HH equivalent to 25,000ft for 7days in an animal decompression chamber and received daily treatment of GFC at a dose of 1mg/kg body weight via the intramuscular route during the period of exposure. The cognitive performance was assessed by Delayed Alternation Task (DAT) using T-Maze and PFC neuronal damage was studied by apoptotic and neurodegenerative markers. Percentage of correct choice decreased significantly while perseverative errors showed a significant increase after 7days HH exposure, GFC significantly ameliorated the SWM deficits and perseveration. There was a marked and significant increase in chromatin condensation, DNA fragmentation, neuronal pyknosis and fluoro Jade positive cells in layer II of the medial PFC in hypoxia exposed group, administration of GFC significantly reduced the magnitude of these changes. Modulation of adrenergic mechanisms by GFC may serve as an effective countermeasure in amelioration of prefrontal deficits and neurodegenerative changes during HH. PMID:24184415

  16. The ameliorative effects of a hypnotic bromvalerylurea in sepsis.

    PubMed

    Kikuchi, Satoshi; Nishihara, Tasuku; Kawasaki, Shun; Abe, Naoki; Kuwabara, Jun; Choudhury, Mohammed E; Takahashi, Hisaaki; Yano, Hajime; Nagaro, Takumi; Watanabe, Yuji; Aibiki, Mayuki; Tanaka, Junya

    2015-04-01

    Sepsis is a severe pathologic event, frequently causing death in critically ill patients. However, there are no approved drugs to treat sepsis, despite clinical trials of many agents that have distinct targets. Therefore, a novel effective treatment should be developed based on the pathogenesis of sepsis. We recently observed that an old hypnotic drug, bromvalerylurea (BU) suppressed expression of many kinds of pro- and anti-inflammatory mediators in LPS- or interferon-γ activated alveolar and peritoneal macrophages (AMs and PMs). Taken the anti-inflammatory effects of BU on macrophages, we challenged it to septic rats that had been subjected to cecum-ligation and puncture (CLP). BU was subcutaneously administered to septic rats twice per day. Seven days after CLP treatment, 85% of septic rats administrated vehicle had died, whereas administration of BU reduce the rate to 50%. Septic rats showed symptoms of multi-organ failure; respiratory, circulatory and renal system failures as revealed by histopathological analyses, blood gas test and others. BU ameliorated these symptoms. BU also prevented elevated serum-IL-6 level as well as IL-6 mRNA expression in septic rats. Collectively, BU might be a novel agent to ameliorate sepsis by preventing the onset of MOF. PMID:25732089

  17. Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration

    PubMed Central

    Patra, R. C.; Rautray, Amiya K.; Swarup, D.

    2011-01-01

    Oxidative stress has been implicated to play a role, at least in part, in pathogenesis of many disease conditions and toxicities in animals. Overproduction of reactive oxygen species and free radicals beyond the cells intrinsic capacity to neutralize following xenobiotics exposure leads to a state of oxidative stress and resultant damages of lipids, protein, and DNA. Lead and cadmium are the common environmental heavy metal pollutants and have widespread distribution. Both natural and anthropogenic sources including mining, smelting, and other industrial processes are responsible for human and animal exposure. These pollutants, many a times, are copollutants leading to concurrent exposure to living beings and resultant synergistic deleterious health effects. Several mechanisms have been explained for the damaging effects on the body system. Of late, oxidative stress has been implicated in the pathogenesis of the lead- and cadmium-induced pathotoxicity. Several ameliorative measures to counteract the oxidative damage to the body system aftermath or during exposure to these toxicants have been assessed with the use of antioxidants. The present review focuses on mechanism of lead- and cadmium-induced oxidate damages and the ameliorative measures to counteract the oxidative damage and pathotoxicity with the use of supplemented antioxidants for their beneficial effects. PMID:21547215

  18. Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms.

    PubMed

    Nyström, Alexander; Thriene, Kerstin; Mittapalli, Venugopal; Kern, Johannes S; Kiritsi, Dimitra; Dengjel, Jörn; Bruckner-Tuderman, Leena

    2015-09-01

    Genetic loss of collagen VII causes recessive dystrophic epidermolysis bullosa (RDEB)-a severe skin fragility disorder associated with lifelong blistering and disabling progressive soft tissue fibrosis. Causative therapies for this complex disorder face major hurdles, and clinical implementation remains elusive. Here, we report an alternative evidence-based approach to ameliorate fibrosis and relieve symptoms in RDEB. Based on the findings that TGF-β activity is elevated in injured RDEB skin, we targeted TGF-β activity with losartan in a preclinical setting. Long-term treatment of RDEB mice efficiently reduced TGF-β signaling in chronically injured forepaws and halted fibrosis and subsequent fusion of the digits. In addition, proteomics analysis of losartan- vs. vehicle-treated RDEB skin uncovered changes in multiple proteins related to tissue inflammation. In line with this, losartan reduced inflammation and diminished TNF-α and IL-6 expression in injured forepaws. Collectively, the data argue that RDEB fibrosis is a consequence of a cascade encompassing tissue damage, TGF-β-mediated inflammation, and matrix remodeling. Inhibition of TGF-β activity limits these unwanted outcomes and thereby substantially ameliorates long-term symptoms. PMID:26194911

  19. Curcumin ameliorates experimental autoimmune myasthenia gravis by diverse immune cells.

    PubMed

    Wang, Shan; Li, Heng; Zhang, Min; Yue, Long-Tao; Wang, Cong-Cong; Zhang, Peng; Liu, Ying; Duan, Rui-Sheng

    2016-07-28

    Curcumin is a traditional Asian medicine with diverse immunomodulatory properties used therapeutically in the treatment of many autoimmune diseases. However, the effects of curcumin on myasthenia gravis (MG) remain undefined. Here we investigated the effects and potential mechanisms of curcumin in experimental autoimmune myasthenia gravis (EAMG). Our results demonstrated that curcumin ameliorated the clinical scores of EAMG, suppressed the expression of T cell co-stimulatory molecules (CD80 and CD86) and MHC class II, down-regulated the levels of pro-inflammatory cytokines (IL-17, IFN-γ and TNF-α) and up-regulated the levels of the anti-inflammatory cytokine IL-10, shifted the balance from Th1/Th17 toward Th2/Treg, and increased the numbers of NKR-P1(+) cells (natural killer cell receptor protein 1 positive cells, including NK and NKT cells). Moreover, the administration of curcumin promoted the differentiation of B cells into a subset of B10 cells, increased the anti-R97-166 peptide IgG1 levels and decreased the relative affinity indexes of anti-R97-116 peptide IgG. In summary, curcumin effectively ameliorate EAMG, indicating that curcumin may be a potential candidate therapeutic agent for MG. PMID:27181511

  20. Ensete superbum ameliorates renal dysfunction in experimental diabetes mellitus

    PubMed Central

    Sreekutty, MS; Mini, S

    2016-01-01

    Objective(s): Hyperglycemia mediated oxidative stress plays a key role in the pathogenesis of diabetic complications like nephropathy. In the present study, we evaluated the effect of ethanolic extract of Ensete superbum seeds (ESSE) on renal dysfunction and oxidative stress in streptozotocin-induced diabetic rats. Materials and Methods: Glucose, HbA1c, total protein, albumin, renal function markers (urea, uric acid and creatinine), and lipid peroxidation levels were evaluated. Renal enzymatic and non-enzymatic antioxidants were examined along with renal histopathological study. Results: ESSE (400 mg/kg BW t) administration reduced glucose and HbA1c, and improved serum total protein and albumin in diabetic rats. ESSE in diabetic rats recorded decrement in renal function markers and renal lipid peroxidation products along with significant increment in enzymatic and non-enzymatic antioxidants. Renal morphological abnormalities of diabetic rats were markedly ameliorated by E. superbum. Conclusion: These results suggest that the antioxidant effect of E. superbum could ameliorate oxidative stress and delay/prevent the progress of diabetic nephropathy in diabetes mellitus. PMID:27096072

  1. Coypu insulin. Primary structure, conformation and biological properties of a hystricomorph rodent insulin.

    PubMed Central

    Bajaj, M; Blundell, T L; Horuk, R; Pitts, J E; Wood, S P; Gowan, L K; Schwabe, C; Wollmer, A; Gliemann, J; Gammeltoft, S

    1986-01-01

    Insulin from a hystricomorph rodent, coypu (Myocaster coypus), was isolated and purified to near homogeneity. Like the other insulins that have been characterized in this Suborder of Rodentia, coypu insulin also exhibits a very low (3%) biological potency, relative to pig insulin, on lipogenesis in isolated rat fat-cells. The receptor-binding affinity is significantly higher (5-8%) in rat fat-cells, in rat liver plasma membranes and in pig liver cells, indicating that the efficacy of coypu insulin on receptors is about 2-fold lower than that of pig insulin. The primary structures of the oxidized A- and B-chains were determined, and our sequence analysis confirms a previous report [Smith (1972) Diabetes 21, Suppl. 2, 457-460] that the C-terminus of the A-chain is extended by a single residue (i.e. aspartate-A22), in contrast with most other insulin sequences, which terminate at residue A21. In spite of a large number of amino acid substitutions (relative to mammalian insulins), computer-graphics model-building studies suggest a similar spatial arrangement for coypu insulin to that for pig insulin. The substitution of the zinc-co-ordinating site (B10-His----Gln) along with various substitutions on the intermolecular surfaces involved in the formation of higher aggregates are consistent with the observation that this insulin is predominantly 'monomeric' in nature. The c.d. spectrum of coypu insulin is relatively similar to those of casiragua insulin and of bovine insulin at low concentration. PMID:3541911

  2. Insulin antibodies in patients with type 2 diabetic receiving recombinant human insulin injection: A report of 12 cases.

    PubMed

    Hu, Xiaolei; Ma, Xiaowen; Wang, Xin; Zhao, Xiuli; Xu, Xuling; Gong, Hui; Chen, Fengling; Sun, Junjie

    2015-12-01

    We report 12 cases of patients with type 2 diabetic receiving recombinant human insulin injection, who had uncontrolled hyperglycemia or frequent episodes of hypoglycemia, high levels of serum insulin and positive insulin antibodies. The clinical characteristics and insulin antibodies pharmacokinetics parameters were analyzed. After administration of glucocorticoids, changing insulin formulations or discontinuing the insulin and switching to oral antidiabetic agents, the level of insulin antibodies decreased and the plasma glucose restored. Thus, we recommend to identify the presence of high insulin antibodies in patients with type 2 diabetes who experience unexplained high plasma glucose or frequent reoccurrence of hypoglycemia. PMID:26607016

  3. Increasing Patient Acceptance and Adherence Toward Insulin.

    PubMed

    Riddle, Matthew; Peters, Anne; Funnell, Martha

    2016-10-01

    Because of the progressive nature of type 2 diabetes mellitus (T2DM), the majority of patients will need insulin to achieve and maintain glycemic control. By maintaining glycemic control, patients will avoid acute osmotic symptoms of hyperglycemia, instability in plasma glucose (PG) over time, and prevent or delay the development of diabetes complications without adversely affecting quality of life. Despite recommendations for initiating insulin therapy, both patient and health system barriers stand in the way. To develop confidence in individualizing patient therapy and maximize outcomes for patients with T2DM, healthcare practitioners (HCPs) were updated on recommendations and clinical evidence supporting when to initiate insulin therapy, strategies for overcoming provider and patient barriers for initiating insulin therapy, and the safety and efficacy of current and emerging insulin therapy and delivery technology for patients with T2DM. PMID:27109558

  4. Molecular basis for insulin fibril assembly

    SciTech Connect

    Ivanova, Magdalena I.; Sievers, Stuart A.; Sawaya, Michael R.; Wall, Joseph S.; Eisenberg, David

    2009-12-01

    In the rare medical condition termed injection amyloidosis, extracellular fibrils of insulin are observed. We found that the segment of the insulin B-chain with sequence LVEALYL is the smallest segment that both nucleates and inhibits the fibrillation of full-length insulin in a molar ratio-dependent manner, suggesting that this segment is central to the cross-{beta} spine of the insulin fibril. In isolation from the rest of the protein, LVEALYL forms microcrystalline aggregates with fibrillar morphology, the structure of which we determined to 1 {angstrom} resolution. The LVEALYL segments are stacked into pairs of tightly interdigitated {beta}-sheets, each pair displaying the dry steric zipper interface typical of amyloid-like fibrils. This structure leads to a model for fibrils of human insulin consistent with electron microscopic, x-ray fiber diffraction, and biochemical studies.

  5. Fasting in Ramadan with an insulin pump.

    PubMed

    Kesavadev, Jothydev

    2015-05-01

    A good majority of subjects with diabetes on insulin therapies observe fasting during Ramadan. The challenge for the physician and the patient is to manage diabetes without an interruption to fasting by avoiding hypoglycaemia and simultaneously ensuring that blood glucose remain at acceptable safe levels. Insulin Pumps differ from syringes and insulin pens in that it offers a variable basal rate, different type of boluses and associated calculators. The technological advances that pumps offer, help educated subjects pre-programme a reduced basal rate throughout the day. Pumps ensure avoidance of hypoglycaemia and hyperglycaemia and preserve quality of life and enhance confidence in patients during fasting. Due to multiple benefits, insulin pumps are considered the best delivery systems for insulin during the holy month of Ramadan, despite the prerequisites for its optimal output and cost concerns. PMID:26013786

  6. The Extracellular Matrix and Insulin Resistance

    PubMed Central

    Williams, Ashley S.; Kang, Li; Wasserman, David H.

    2015-01-01

    The extracellular matrix (ECM) is a highly dynamic compartment that undergoes remodeling as a result of injury and repair. Over the past decade, mounting evidence in humans and rodents suggest that ECM remodeling is associated with diet-induced insulin resistance in several metabolic tissues. Additionally, integrin receptors for the ECM have also been implicated in the regulation of insulin action. This review will address what is currently known about the ECM, integrins and insulin action in the muscle, liver and adipose tissue. Understanding how ECM remodeling and integrin signaling regulates insulin action may aid in the development of new therapeutic targets for the treatment of insulin resistance and type 2 diabetes. PMID:26059707

  7. Molecular basis for insulin fibril assembly

    PubMed Central

    Ivanova, Magdalena I.; Sievers, Stuart A.; Sawaya, Michael R.; Wall, Joseph S.; Eisenberg, David

    2009-01-01

    In the rare medical condition termed injection amyloidosis, extracellular fibrils of insulin are observed. We found that the segment of the insulin B-chain with sequence LVEALYL is the smallest segment that both nucleates and inhibits the fibrillation of full-length insulin in a molar ratio–dependent manner, suggesting that this segment is central to the cross-β spine of the insulin fibril. In isolation from the rest of the protein, LVEALYL forms microcrystalline aggregates with fibrillar morphology, the structure of which we determined to 1 Å resolution. The LVEALYL segments are stacked into pairs of tightly interdigitated β-sheets, each pair displaying the dry steric zipper interface typical of amyloid-like fibrils. This structure leads to a model for fibrils of human insulin consistent with electron microscopic, x-ray fiber diffraction, and biochemical studies. PMID:19864624

  8. Glimpses of the history of insulin.

    PubMed

    Majumdar, S K

    2001-01-01

    The discovery of the insulin which took place at Toronto, Canada in 1921-22 is one of the most important medical discoveries of the modern age. For this miracle, Prof. John James Macleod and Frederic Grant Banting were Jointly awarded the Nobel Prize in 1923 for Physiology or Medicine. Frederick Sanger a British biochemist discovered the structure of insulin in 1958 and was awarded Nobel prize for chemistry. Diabetes mellitus is called Madhumeha in ancient Indian Ayurvedic medicine. Egyptians and Greeks knew about it. Greek physician Aretaeus of Capadocia first suggested the term "Diabetes" and described it. Though insulin was discovered about 80 years ago research interest in it still continues unabated. This paper also gives case details of the first patient on whom Insulin was first tried and chronology of research on pancreas and Insulin. PMID:15025127

  9. Insulin and Glucagon Secretion In Vitro

    NASA Technical Reports Server (NTRS)

    Rajan, Arun S.

    1998-01-01

    Long-duration space flight is associated with many physiological abnormalities in astronauts. In particular, altered regulation of the hormones insulin and glucagon may contribute to metabolic disturbances such as increased blood sugar levels, which if persistently elevated result in toxic effects. These changes are also observed in the highly prevalent disease diabetes, which affects 16 million Americans and consumes over $100 billion in annual healthcare costs. By mimicking the microgravity environment of space in the research laboratory using a NASA-developed bioreactor, one can study the physiology of insulin and glucagon secretion and determine if there are alterations in these cellular processes. The original specific objectives of the project included: (1) growing ('cell culture') of pancreatic islet beta and alpha cells that secrete insulin and glucagon respectively, in the NASA bioreactor; (2) examination of the effects of microgravity on insulin and glucagon secretion; and (3) study of molecular mechanisms of insulin and glucagon secretion if altered by microgravity.

  10. Insulin resistance and diabetes in HIV infection.

    PubMed

    Das, Satyajit

    2011-09-01

    Insulin resistance is an important and under recognized consequence of HIV treatment. Different studies have yielded widely varying estimates of the prevalence of impaired glucose metabolism in people on highly active antiretroviral therapy (HAART). The risk increases further with hepatitis C co infection. Although Protease inhibitors (PIs) are the main drug class implicated in insulin resistance, some studies have shown an association of increased risk of diabetes with cumulative exposure of nucleoside reverse transcriptase inhibitors (NRTIs). The effect of switching to other antiretrovirals has not been fully determined and the long-term consequences of insulin resistance in this population are not known. Treatment of established diabetes mellitus should generally follow existing guidelines. It is therefore reasonable to recommend general measures to increase insulin sensitivity in all patients infected with HIV, such as regular aerobic exercise and weight reduction for overweight persons. The present review article has the information of some recent patents regarding the insulin resistance in HIV infection. PMID:21824074

  11. Inhaled insulin--does it become reality?

    PubMed

    Siekmeier, R; Scheuch, G

    2008-12-01

    After more than 80 years of history the American and European Drug Agencies (FDA and EMEA) approved the first pulmonary delivered version of insulin (Exubera) from Pfizer/Nektar early 2006. However, in October 2007, Pfizer announced it would be taking Exubera off the market, citing that the drug had failed to gain market acceptance. Since 1924 various attempts have been made to get away from injectable insulin. Three alternative delivery methods where always discussed: Delivery to the upper nasal airways or the deep lungs, and through the stomach. From these, the delivery through the deep lungs is the most promising, because the physiological barriers for the uptake are the smallest, the inspired aerosol is deposited on a large area and the absorption into the blood happens through the extremely thin alveolar membrane. However, there is concern about the long-term effects of inhaling a growth protein into the lungs. It was assumed that the large surface area over which the insulin is spread out would minimize negative effects. But recent news indicates that, at least in smokers, the bronchial tumour rate under inhaled insulin seems to be increased. These findings, despite the fact that they are not yet statistical significant and in no case found in a non-smoker, give additional arguments to stop marketing this approach. Several companies worked on providing inhalable insulin and the insulin powder inhalation system Exubera was the most advanced technology. Treatment has been approved for adults only and patients with pulmonary diseases (e.g., asthma, emphysema, COPD) and smokers (current smokers and individuals who recently quitted smoking) were excluded from this therapy. Pharmacokinetics and pharmacodynamics of Exubera are similar to those found with short-acting subcutaneous human insulin or insulin analogs. It is thus possible to use Exubera as a substitute for short-acting human insulin or insulin analogs. Typical side effects of inhaled insulin were coughing

  12. Amelioration of Hyperglycaemia, Oxidative Stress and Dyslipidaemia in Alloxan-Induced Diabetic Wistar Rats Treated with Probiotic and Vitamin C

    PubMed Central

    Aluwong, Tagang; Ayo, Joseph O.; Kpukple, Alkali; Oladipo, Olusola Olalekan

    2016-01-01

    Clinical and experimental evidence suggests that hyperglycaemia is responsible for the oxidative stress in diabetes mellitus. The study was designed to investigate the comparative effects of probiotic and vitamin C (Vit-C) treatments on hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic rats. Type 1 diabetes (T1DM) was induced in male Wistar rats by a single intraperitoneal (i.p.) injection of alloxan (150 mg/kg). Six groups of the animals received the following treatment regimens for four weeks: (1) Normal saline, per os; (2) alloxan (150 mg/kg, i.p.); (3) alloxan (150 mg/kg) + insulin (4 U/kg, subcutaneously); (4) alloxan (150 mg/kg) + probiotic (4.125 × 106 CFU/100 mL per os); (5) alloxan (150 mg/kg) + Vit-C (100 mg/kg, i.m.); (6) alloxan (150 mg/kg) + probiotic (4.125 × 106 CFU/100 mL per os) + Vit-C (100 mg/kg, intramuscularly). Probiotic + Vit-C decreased (p < 0.05) blood glucose concentration in diabetic treated group, when compared with the untreated diabetic group. Probiotic + Vit-C reduced malondialdehyde concentration, in the serum, brain and kidneys, respectively, but increased the activity of antioxidant enzymes. Probiotic and Vit-C may be more effective than Vit-C alone, in ameliorating hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic rats. PMID:27164129

  13. Kolaviron, a Garcinia biflavonoid complex ameliorates hyperglycemia-mediated hepatic injury in rats via suppression of inflammatory responses

    PubMed Central

    2013-01-01

    Background Chronic inflammation plays a crucial role in hyperglycemia-induced liver injury. Kolaviron (KV), a natural biflavonoid from Garcinia kola seeds have been shown to possess anti- inflammatory properties which has not been explored in diabetes. To our knowledge, this is the first study to investigate the effect of KV on pro-inflammatory proteins in the liver of diabetic rats. Methods Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ) (50 mg/kg) in male Wistar rats. Kolaviron (100 mg/kg) was administered orally five times a week for six weeks. The concentrations of cytokines and chemokine were measured using Bio-plex Pro™ magnetic bead-based assays (Bio-Rad Laboratories, Hercules, USA). Plasma glucose and serum biomarkers of liver dysfunction were analyzed with diagnostic kits in an automated clinical chemistry analyzer. Insulin concentration was estimated by radioimmunoassay (RIA). Result Kolaviron (100mg/kg) treatment significantly ameliorated hyperglycemia and liver dysfunction. Serum levels of hepatic marker enzymes were significantly reduced in kolaviron treated diabetic rats. Kolaviron prevented diabetes induced increase in the hepatic levels of proinflammatory cytokines; interleukin (IL)-1beta, IL-6, tumour necrosis factor (TNF-α) and monocyte chemotactic protein (MCP-1). Conclusion The results of this study demonstrate that the hepatoprotective effects of kolaviron in diabetic rats may be partly associated with its modulating effect on inflammatory responses. PMID:24359406

  14. Amelioration of Hyperglycaemia, Oxidative Stress and Dyslipidaemia in Alloxan-Induced Diabetic Wistar Rats Treated with Probiotic and Vitamin C.

    PubMed

    Aluwong, Tagang; Ayo, Joseph O; Kpukple, Alkali; Oladipo, Olusola Olalekan

    2016-01-01

    Clinical and experimental evidence suggests that hyperglycaemia is responsible for the oxidative stress in diabetes mellitus. The study was designed to investigate the comparative effects of probiotic and vitamin C (Vit-C) treatments on hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic rats. Type 1 diabetes (T1DM) was induced in male Wistar rats by a single intraperitoneal (i.p.) injection of alloxan (150 mg/kg). Six groups of the animals received the following treatment regimens for four weeks: (1) Normal saline, per os; (2) alloxan (150 mg/kg, i.p.); (3) alloxan (150 mg/kg) + insulin (4 U/kg, subcutaneously); (4) alloxan (150 mg/kg) + probiotic (4.125 × 10⁶ CFU/100 mL per os); (5) alloxan (150 mg/kg) + Vit-C (100 mg/kg, i.m.); (6) alloxan (150 mg/kg) + probiotic (4.125 × 10⁶ CFU/100 mL per os) + Vit-C (100 mg/kg, intramuscularly). Probiotic + Vit-C decreased (p < 0.05) blood glucose concentration in diabetic treated group, when compared with the untreated diabetic group. Probiotic + Vit-C reduced malondialdehyde concentration, in the serum, brain and kidneys, respectively, but increased the activity of antioxidant enzymes. Probiotic and Vit-C may be more effective than Vit-C alone,