Science.gov

Sample records for amendoinzeiro arachis hypogaea

  1. Successful crosses between fungal-resistant wild species of Arachis (section Arachis) and Arachis hypogaea

    PubMed Central

    Fávero, Alessandra Pereira; dos Santos, Rodrigo Furtado; Simpson, Charles E.; Valls, José Francisco Montenegro; Vello, Natal Antonio

    2015-01-01

    Peanut (Arachis hypogaea) is the fifth most produced oil crop worldwide. Besides lack of water, fungal diseases are the most limiting factors for the crop. Several species of Arachis are resistant to certain pests and diseases. This study aimed to successfully cross the A-genome with B-K-A genome wild species previously selected for fungal disease resistance, but that are still untested. We also aimed to polyplodize the amphihaploid chromosomes; cross the synthetic amphidiploids and A. hypogaea to introgress disease resistance genes into the cultivated peanut; and analyze pollen viability and morphological descriptors for all progenies and their parents. We selected 12 A-genome accessions as male parents and three B-genome species, one K-genome species, and one A-genome species as female parents. Of the 26 distinct cross combinations, 13 different interspecific AB-genome and three AA-genome hybrids were obtained. These sterile hybrids were polyploidized and five combinations produced tetraploid flowers. Next, 16 combinations were crossed between A. hypogaea and the synthetic amphidiploids, resulting in 11 different hybrid combinations. Our results confirm that it is possible to introgress resistance genes from wild species into the peanut using artificial hybridization, and that more species than previously reported can be used, thus enhancing the genetic variability in peanut genetic improvement programs. PMID:26500440

  2. Crystal structure of peanut (Arachis hypogaea) allergen Ara h 5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Profilins from numerous species are known to be allergens, including food allergens, such as peanut (Arachis hypogaea) allergen Ara h 5, and pollen allergens, such as birch allergen Bet v 2. Patients with pollen allergy can also cross-react to peanut. Structural characterization of allergens will al...

  3. A recirculating hydroponic system for studying peanut (Arachis hypogaea L.)

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Wheeler, R. M.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 gm-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.

  4. Chemical Composition of the Essential Oils from Leaves of Edible (Arachis hypogaea L.) and Perennial (Arachis glabrata Benth.) Peanut Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts or groundnuts (Arachis hypogaea L.) are a valuable oilseed crop, but other than the seed, the rest of the plant is of minimal value. Plant material including the leaves is used as mulch or as animal feed. Perennial peanut (Arachis glabrata Benth) known as forage or rhizoma peanut produces...

  5. Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea)

    PubMed Central

    Gimenes, Marcos A; Hoshino, Andrea A; Barbosa, Andrea VG; Palmieri, Dario A; Lopes, Catalina R

    2007-01-01

    Background The genus Arachis includes Arachis hypogaea (cultivated peanut) and wild species that are used in peanut breeding or as forage. Molecular markers have been employed in several studies of this genus, but microsatellite markers have only been used in few investigations. Microsatellites are very informative and are useful to assess genetic variability, analyze mating systems and in genetic mapping. The objectives of this study were to develop A. hypogaea microsatellite loci and to evaluate the transferability of these markers to other Arachis species. Results Thirteen loci were isolated and characterized using 16 accessions of A. hypogaea. The level of variation found in A. hypogaea using microsatellites was higher than with other markers. Cross-transferability of the markers was also high. Sequencing of the fragments amplified using the primer pair Ah11 from 17 wild Arachis species showed that almost all wild species had similar repeated sequence to the one observed in A. hypogaea. Sequence data suggested that there is no correlation between taxonomic relationship of a wild species to A. hypogaea and the number of repeats found in its microsatellite loci. Conclusion These results show that microsatellite primer pairs from A. hypogaea have multiple uses. A higher level of variation among A. hypogaea accessions can be detected using microsatellite markers in comparison to other markers, such as RFLP, RAPD and AFLP. The microsatellite primers of A. hypogaea showed a very high rate of transferability to other species of the genus. These primer pairs provide important tools to evaluate the genetic variability and to assess the mating system in Arachis species. PMID:17326826

  6. Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic stilbenoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The peanut plant (Arachis hypogaea L.), when infected by a microbial pathogen, is capable of producing stilbene-derived compounds that are considered antifungal phytoalexins. In addition, the potential health benefits of other stilbenoids from peanuts, including resveratrol and pterostilbene have be...

  7. Development of trinucleotide (GGC)n SSR markers in peanut (Arachis hypogaea L.).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated peanut (Arachis hypogaea L.) is an agronomical and economical important oilseed crop. It is native to South America, but it is grown extensively in the semi-arid tropics of Asia, Africa, and Latin America. Because its genetic base is narrow, a pressed effort has been made to develop SSR m...

  8. Assessment of Adoption Gaps in Management of Aflatoxin Contamination of Groundnut ("Arachis Hypogaea" L.)

    ERIC Educational Resources Information Center

    Kumar, G. D. S.; Popat, M. N.

    2010-01-01

    One of the major impediments for diversification of groundnut ("Arachis Hypogaea" L.) as food crop is aflatoxin contamination. The study was conducted with an objective to assess the adoption gaps in aflatoxin management practices of groundnut (AMPG) and the farmer's characteristics influencing these gaps. The study used an expost-facto research…

  9. Weed Control Systems for Peanut (Arachis hypogaea L.) Grown as a Biofuel Feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) has not been utilized as a true oilseed crop, especially for the production of fuel. However, peanut makes a superior feedstock for biodiesel, especially in on-farm or small cooperative business plans, where producers can dictate the cost of making their own fuel. Fiel...

  10. QTL analysis of disease resistance to leaf spots and TSWV in peanut (Arachis hypogaea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early leaf spot (ELS), caused by Cercospora arachidicola, late leaf spot (LLS), caused by Cercosporidium personatum, and Tomato spotted wilt virus (TSWV) result in great losses in yield in peanut (Arachis hypogaea L.). In order to identify quantitative trait loci (QTL) for resistance to these dise...

  11. The complex tale of the high oleic acid trait in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid composition of oil extracted from peanut (Arachis hypogaea L.) seed is an important quality trait. In particular, a high ratio of oleic (C18:1) relative to linoleic (C18:2) fatty acid (O/L = 10) results in a longer shelf life. Previous reports suggest that the high oleic (~80%) trait wa...

  12. Improving fatty acid composition in peanuts (Arachis hypogaea) by SNP genotyping and traditional breeding.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid composition is an important seed quality trait in cultivated peanuts (Arachis hypogaea L.). Monounsaturated fats, such as oleic acid (C18:1), an omega-9 fatty acid, has been shown to have beneficial effects on human health. In addition, peanuts bred to produce high levels of oleic acid ...

  13. Survey of Aspergillus and Aflatoxin in Groundnuts (Arachis hypogaea L.) and Groundnut Cake in Eastern Ethiopia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Groundnut (Arachis hypogaea L.) is an important cash and food crop in eastern Ethiopia. The lack of awareness and data on Aspergillus and aflatoxin contamination of groundnut and groundnut food products in the area are lacking. Therefore, this study was conducted to: i) assess major Aspergillus spec...

  14. Genotyping and fatty acid composition analysis in segregating peanut (Arachis hypogaea L.) populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid (C18:1), a monounsaturated omega-9 fatty acid is an important seed quality trait in peanuts (Arachis hypogaea L.) because it provides improved flavor, enhanced fatty acid composition, a beneficial effect on human health, and increased shelf life for stored food products. Consequently, an...

  15. Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species

    PubMed Central

    Liang, Xuanqiang; Chen, Xiaoping; Hong, Yanbin; Liu, Haiyan; Zhou, Guiyuan; Li, Shaoxiong; Guo, Baozhu

    2009-01-01

    Background Lack of sufficient molecular markers hinders current genetic research in peanuts (Arachis hypogaea L.). It is necessary to develop more molecular markers for potential use in peanut genetic research. With the development of peanut EST projects, a vast amount of available EST sequence data has been generated. These data offered an opportunity to identify SSR in ESTs by data mining. Results In this study, we investigated 24,238 ESTs for the identification and development of SSR markers. In total, 881 SSRs were identified from 780 SSR-containing unique ESTs. On an average, one SSR was found per 7.3 kb of EST sequence with tri-nucleotide motifs (63.9%) being the most abundant followed by di- (32.7%), tetra- (1.7%), hexa- (1.0%) and penta-nucleotide (0.7%) repeat types. The top six motifs included AG/TC (27.7%), AAG/TTC (17.4%), AAT/TTA (11.9%), ACC/TGG (7.72%), ACT/TGA (7.26%) and AT/TA (6.3%). Based on the 780 SSR-containing ESTs, a total of 290 primer pairs were successfully designed and used for validation of the amplification and assessment of the polymorphism among 22 genotypes of cultivated peanuts and 16 accessions of wild species. The results showed that 251 primer pairs yielded amplification products, of which 26 and 221 primer pairs exhibited polymorphism among the cultivated and wild species examined, respectively. Two to four alleles were found in cultivated peanuts, while 3–8 alleles presented in wild species. The apparent broad polymorphism was further confirmed by cloning and sequencing of amplified alleles. Sequence analysis of selected amplified alleles revealed that allelic diversity could be attributed mainly to differences in repeat type and length in the microsatellite regions. In addition, a few single base mutations were observed in the microsatellite flanking regions. Conclusion This study gives an insight into the frequency, type and distribution of peanut EST-SSRs and demonstrates successful development of EST-SSR markers in

  16. Identification and characterization of expressed resistance gene analogs (RGSs) from peanut (Arachis hypogaea L.) expressed sequence tags (ESTs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated peanut (Arachis hypogaea L.) is an important food legume grown worldwide for providing edible oil and protein. However, due to scarcity of genetic diversity, peanut is very vulnerable to a variety of pathogens, such as rust (Puccinia arachidis Speg.), early leaf spot (Cercospora arachidic...

  17. Stability of transgene expression in reduced allergen peanut (Arachis hypogaea L.) across multiple generations, and at different soil sulfur levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic peanut (Arachis hypogaea L.) containing a gene designed for RNA interference (RNAi), showed stable complete silencing of Ara h 2 and partial silencing of Ara h 6, two potent peanut allergens/proteins, along with minimal collateral changes to other allergens, Ara h 1 and Ara h 3, across th...

  18. Acclimation of peanut (Arachis hypogaea L.) to water stress through exposure to differing periods of early season drought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is able to withstand periods of water scarcity either in the early or late periods of the growing season, but suffers significant stress and yield loss during drought periods in mid-season, or the period coinciding with peak flower production and pod maturation. In fact...

  19. Identification and characterization of a multigene family encoding germin-like proteins in cultivated peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germin-like proteins (GLPs) play diversified roles in plant development and defense response. Here, we identified 36 ESTs encoding GLPs from peanut (Arachis hypogaea L.). After assembly, these ESTs were integrated into eight unigenes, named AhGLP1 to AhGLP8, of which, three (AhGLP1-3) were comprised...

  20. Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid, a monounsaturated, omega-9 fatty acid found in peanut (Arachis hypogaea L.) oil is an important seed quality trait because it provides increased shelf life, improved flavor, enhanced fatty acid composition, and has a beneficial effect on human health. Hence, a concentrated effort has be...

  1. Size-selective fractionation and visual mapping of allergen protein chemistry in Arachis hypogaea.

    PubMed

    Hebling, Christine M; Ross, Mark M; Callahan, John H; McFarland, Melinda A

    2012-11-01

    Peanuts (Arachis hypogaea) in addition to milk, eggs, fish, crustaceans, wheat, tree nuts, and soybean are commonly referred to as the "big eight" foods that contribute to the majority of food allergies worldwide. Despite the severity of allergic reactions and growing prevalence in children and adults, there is no cure for peanut allergy, leaving avoidance as the primary mode of treatment. To improve analytical methods for peanut allergen detection, researchers must overcome obstacles involved in handling complex food matrices while attempting to decipher the chemistry that underlies allergen protein interactions. To address such challenges, we conducted a global proteome characterization of raw peanuts using a sophisticated GELFrEE-PAGE-LC-MS/MS platform consisting of gel-based protein fractionation followed by mass spectrometric identification. The in-solution mass-selective protein fractionation: (1) enhances the number of unique peptide identifications, (2) provides a visual map of protein isoforms, and (3) aids in the identification of disulfide-linked protein complexes. GELFrEE-PAGE-LC-MS/MS not only overcomes many of the challenges involved in the study of plant proteomics, but enriches the understanding of peanut protein chemistry, which is typically unattainable in a traditional bottom-up proteomic analysis. A global understanding of protein chemistry in Arachis hypogaea ultimately will aid the development of improved methods for allergen detection in food. PMID:23020697

  2. Antioxidant and antimicrobial properties of water soluble polysaccharide from Arachis hypogaea seeds.

    PubMed

    Jiang, Shengjuan; Ma, Yuhan; Yan, Dazhuang

    2014-10-01

    The water soluble crude polysaccharide (AHP) was obtained from the aqueous extracts of the Arachis hypogaea seeds through hot water extraction followed by ethanol precipitation. Antioxidant activities and inhibitory activities against the bacteria of AHP were investigated. AHP at 2 mg/mL was found to inhibit the formation of superoxide anion (55.33 %) and hydroxyl radicals (30.85 %), to scavenge the DPPH radical (57.43 %) and to chelate iron ion (27.83 %) in in vitro systems. AHP also exhibited the antibacterial activities. AHP at 12.5 mg/mL could inhibit the growth of the Gram-positive bacteria, implying that the Gram-positive bacteria were more sensitive to AHP than the Gram-negative bacteria. Polysaccharide with antioxidant and antibacterial activities in the "Chang Sheng Guo" further increased the nutritive values of peanuts as well as the natural health product potential. PMID:25328235

  3. In vitro propagation of peanut (Arachis hypogaea L.) by shoot tip culture.

    PubMed

    Ozudogru, Elif Aylin; Kaya, Ergun; Lambardi, Maurizio

    2013-01-01

    Peanut (Arachis hypogaea L.), also known as groundnut, is the most important species of Arachis genus, originating from Brazil and Peru. Peanut seeds contain high seed oil, proteins, amino acids, and vitamin E, and are consumed worldwide as edible nut, peanut butter, or candy, and peanut oil extracted from the seeds. The meal remaining after oil extraction is also used for animal feed. However, its narrow germplasm base, together with susceptibility to diseases, pathogens, and weeds, decreases yield and seed quality and causes great economic losses annually. Hence, the optimization of efficient in vitro propagation procedures would be highly effective for peanut propagation, as it would raise yield and improve seed quality and flavor. Earlier reports on traditional micropropagation methods, based on axillary bud proliferation which guarantees the multiplication of true-to-type plants, are still limited. This chapter describes a micropropagation protocol to improve multiple shoot formation from shoot-tip explants by using AgNO(3) in combination with plant growth regulators. PMID:23179691

  4. Genetic and functional diversities of bacterial communities in the rhizosphere of Arachis hypogaea.

    PubMed

    Haldar, Shyamalina; Choudhury, Susanta Roy; Sengupta, Sanghamitra

    2011-06-01

    Bioinoculants are environmentally friendly, energy efficient and economically viable resources in sustainable agriculture. Knowledge of the structure and activities of microbial population in the rhizosphere of a plant is essential to formulate an effective bioinoculant. In this study, the bacterial community present in the rhizosphere of an important oilseed legume, Arachis hypogaea (L.) was described with respect to adjoining bulk soil as a baseline control using a 16S rDNA based metagenomic approach. Significantly higher abundance of Gamma-proteobacteria, a prevalence of Bacillus and the Cytophaga-Flavobacteria group of Bacteroidetes and absence of the Rhizobiaceae family of Alpha-proteobacteria were the major features observed in the matured Arachis-rhizosphere. The functional characterization of the rhizosphere-competent bacteria was performed using culture-dependent determination of phenotypes. Most bacterial isolates from the groundnut-rhizosphere exhibited multiple biochemical activities associated with plant growth and disease control. Validation of the beneficial traits in candidate bioinoculants in pot-cultures and field trials is necessary before their targeted application in the groundnut production system. PMID:21380504

  5. Cloning and characterization of SPL-family genes in the peanut (Arachis hypogaea L.).

    PubMed

    Li, M; Zhao, S Z; Zhao, C Z; Zhang, Y; Xia, H; Lopez-Baltazar, J; Wan, S B; Wang, X J

    2016-01-01

    SQUAMOSA promoter-binding protein-like (SPL) proteins play crucial roles in plant growth, development, and responses to environmental stressors. The peanut (Arachis hypogaea L.) is a globally important oil crop. In this study, we cloned the full-length cDNA of 15 SPLs in the peanut by transcriptome sequencing and rapid amplification of cDNA ends, and analyzed their genomic DNA sequences. cDNA lengths varied significantly, from 369 to 3102 bp. The SBP domain of the peanut SPL proteins was highly conserved compared to SPLs in other plant species. Based on their sequence similarity to SPLs from other plant species, the peanut SPLs could be grouped into five subgroups. In each subgroup, lengths of individual genes, conserved motif numbers, and distribution patterns were similar. Seven of the SPLs were predicted to be targets of miR156. The SPLs were ubiquitously expressed in the roots, leaves, flowers, gynophores, and seeds, with different expression levels and accumulation patterns. Significant differences in the expression of most of the SPLs were observed between juvenile and adult leaves, suggesting that they are involved in developmental regulation. Dynamic changes occurred in transcript levels at stage 1 (aerial grown green gynophores), stage 2 (gynophores buried in soil for about three days), and stage 3 (gynophores buried in soil for about nine days with enlarged pods). Possible roles that these genes play in peanut pod initiation are discussed. PMID:26909986

  6. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea)

    PubMed Central

    Rui, Mengmeng; Ma, Chuanxin; Hao, Yi; Guo, Jing; Rui, Yukui; Tang, Xinlian; Zhao, Qi; Fan, Xing; Zhang, Zetian; Hou, Tianqi; Zhu, Siyuan

    2016-01-01

    Nanomaterials are used in practically every aspect of modern life, including agriculture. The aim of this study was to evaluate the effectiveness of iron oxide nanoparticles (Fe2O3 NPs) as a fertilizer to replace traditional Fe fertilizers, which have various shortcomings. The effects of the Fe2O3 NPs and a chelated-Fe fertilizer (ethylenediaminetetraacetic acid-Fe; EDTA-Fe) fertilizer on the growth and development of peanut (Arachis hypogaea), a crop that is very sensitive to Fe deficiency, were studied in a pot experiment. The results showed that Fe2O3 NPs increased root length, plant height, biomass, and SPAD values of peanut plants. The Fe2O3 NPs promoted the growth of peanut by regulating phytohormone contents and antioxidant enzyme activity. The Fe contents in peanut plants with Fe2O3 NPs and EDTA-Fe treatments were higher than the control group. We used energy dispersive X-ray spectroscopy (EDS) to quantitatively analyze Fe in the soil. Peanut is usually cultivated in sandy soil, which is readily leached of fertilizers. However, the Fe2O3 NPs adsorbed onto sandy soil and improved the availability of Fe to the plants. Together, these results show that Fe2O3 NPs can replace traditional Fe fertilizers in the cultivation of peanut plants. To the best of our knowledge, this is the first research on the Fe2O3 NPs as the iron fertilizer. PMID:27375665

  7. Progress in genetic engineering of peanut (Arachis hypogaea L.)--a review.

    PubMed

    Krishna, Gaurav; Singh, Birendra K; Kim, Eun-Ki; Morya, Vivek K; Ramteke, Pramod W

    2015-02-01

    Peanut (Arachis hypogaea L.) is a major species of the family, Leguminosae, and economically important not only for vegetable oil but as a source of proteins, minerals and vitamins. It is widely grown in the semi-arid tropics and plays a role in the world agricultural economy. Peanut production and productivity is constrained by several biotic (insect pests and diseases) and abiotic (drought, salinity, water logging and temperature aberrations) stresses, as a result of which crop experiences serious economic losses. Genetic engineering techniques such as Agrobacterium tumefaciens and DNA-bombardment-mediated transformation are used as powerful tools to complement conventional breeding and expedite peanut improvement by the introduction of agronomically useful traits in high-yield background. Resistance to several fungal, virus and insect pest have been achieved through variety of approaches ranging from gene coding for cell wall component, pathogenesis-related proteins, oxalate oxidase, bacterial chloroperoxidase, coat proteins, RNA interference, crystal proteins etc. To develop transgenic plants withstanding major abiotic stresses, genes coding transcription factors for drought and salinity, cytokinin biosynthesis, nucleic acid processing, ion antiporter and human antiapoptotic have been used. Moreover, peanut has also been used in vaccine production for the control of several animal diseases. In addition to above, this study also presents a comprehensive account on the influence of some important factors on peanut genetic engineering. Future research thrusts not only suggest the use of different approaches for higher expression of transgene(s) but also provide a way forward for the improvement of crops. PMID:25626474

  8. Biological Activity of Peanut (Arachis hypogaea) Phytoalexins and Selected Natural and Synthetic Stilbenoids

    PubMed Central

    SOBOLEV, VICTOR S.; KHAN, SHABANA I.; TABANCA, NURHAYAT; WEDGE, DAVID E.; MANLY, SUSAN P.; CUTLER, STEPHEN J.; COY, MONIQUE R.; BECNEL, JAMES J.; NEFF, SCOTT A.; GLOER, JAMES B.

    2011-01-01

    The peanut plant (Arachis hypogaea L.), when infected by a microbial pathogen, is capable of producing stilbene-derived compounds that are considered antifungal phytoalexins. In addition, the potential health benefits of other stilbenoids from peanuts, including resveratrol and pterostilbene, have been acknowledged by several investigators. Despite considerable progress in peanut research, relatively little is known about the biological activity of the stilbenoid phytoalexins. This study investigated the activities of some of these compounds in a broad spectrum of biological assays. Since peanut stilbenoids appear to play roles in plant defense mechanisms, they were evaluated for their effects on economically important plant pathogenic fungi of the genera Colletotrichum, Botrytis, Fusarium, and Phomopsis. We further investigated these peanut phytoalexins, together with some related natural and synthetic stilbenoids (a total of 24 compounds) in a panel of bioassays to determine their anti-inflammatory, cytotoxic, and antioxidant activities in mammalian cells. Several of these compounds were also evaluated as mammalian opioid receptor competitive antagonists. Assays for adult mosquito and larvae toxicity were also performed. The results of these studies reveal that peanut stilbenoids, as well as related natural and synthetic stilbene derivatives, display a diverse range of biological activities. PMID:21314127

  9. Impact of Fungicides Chlorothalonil and Propiconazole on Microbial Activities in Groundnut (Arachis hypogaea L.) Soils

    PubMed Central

    Ramudu, A. C.; Mohiddin, G. Jaffer; Srinivasulu, M.; Madakka, M.; Rangaswamy, V.

    2011-01-01

    Introduction of agrochemicals (fungicides) into soil may have lasting effects on soil microbial activities and thus affect soil health. In order to determine the changes in microbial activity in a black clay and red sandy loam soils of groundnut (Arachis hypogaea L.) cultivated fields, a case study was conducted with propiconazole and chlorothalonil to evaluate its effects on soil enzymes (cellulase and invertase) throughout 40 days of incubation under laboratory conditions with different concentrations (1.0, 2.5, 5.0, 7.5, and 10.0 kg ha−1). Individual application of the two fungicides at 1.0, 2.5, and 5.0 kg ha−1 to the soil distinctly enhanced the activities of cellulase and invertase but at higher concentrations of 7.5 and 10 kg ha−1 was toxic or innocuous to both cellulase and invertase activities. In soil samples receiving 2.5–5.0 kg ha−1 of the fungicides, the accumulation of reducing sugar was pronounced more at 20 days, and the activity of the cellulase and invertase was drastically decreased with increasing period of incubation up to 30 and 40 days. PMID:23724306

  10. Growth rates and auxin effects in graviresponding gynophores of the peanut, Arachis hypogaea (Fabaceae).

    PubMed

    Moctezuma, E; Feldman, L J

    1998-10-01

    The gynophore of the peanut plant (Arachis hypogaea) is a specialized organ that carries and buries the fertilized ovules into the soil in order for seed and fruit development to occur underground. The rates of growth of vertically and horizontally oriented gynophores were measured using a time-lapse video imaging system. We found that the region of maximum extension growth due to elongation (termed the Central Elongation Zone) is located on average at 2-5 mm from the tip. In the first 0-4 h after horizontal reorientation (gravistimulation), new zones of growth emerge on the upper surface, while the elongation zone of the lower side decreases in size and magnitude. Four to six hours after reorientation the zones of maximum growth are almost equal in size and location on the upper and lower sides. The growth rate and the gravitropic response decreased dramatically, upon the excision of the ovule region (terminal 1.5 mm), but a gravitropic growth response could be restored by applying the auxin indole-3-acetic acid exogenously to the excised tip. The addition of napthylphthalamic acid (an auxin transport inhibitor) at the ovule region allowed some growth to occur, but the gynophores do not respond normally to gravity, upon horizontal reorientation. We discuss the role of auxin in the gravitropic response of the gynophore. PMID:11541946

  11. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea).

    PubMed

    Rui, Mengmeng; Ma, Chuanxin; Hao, Yi; Guo, Jing; Rui, Yukui; Tang, Xinlian; Zhao, Qi; Fan, Xing; Zhang, Zetian; Hou, Tianqi; Zhu, Siyuan

    2016-01-01

    Nanomaterials are used in practically every aspect of modern life, including agriculture. The aim of this study was to evaluate the effectiveness of iron oxide nanoparticles (Fe2O3 NPs) as a fertilizer to replace traditional Fe fertilizers, which have various shortcomings. The effects of the Fe2O3 NPs and a chelated-Fe fertilizer (ethylenediaminetetraacetic acid-Fe; EDTA-Fe) fertilizer on the growth and development of peanut (Arachis hypogaea), a crop that is very sensitive to Fe deficiency, were studied in a pot experiment. The results showed that Fe2O3 NPs increased root length, plant height, biomass, and SPAD values of peanut plants. The Fe2O3 NPs promoted the growth of peanut by regulating phytohormone contents and antioxidant enzyme activity. The Fe contents in peanut plants with Fe2O3 NPs and EDTA-Fe treatments were higher than the control group. We used energy dispersive X-ray spectroscopy (EDS) to quantitatively analyze Fe in the soil. Peanut is usually cultivated in sandy soil, which is readily leached of fertilizers. However, the Fe2O3 NPs adsorbed onto sandy soil and improved the availability of Fe to the plants. Together, these results show that Fe2O3 NPs can replace traditional Fe fertilizers in the cultivation of peanut plants. To the best of our knowledge, this is the first research on the Fe2O3 NPs as the iron fertilizer. PMID:27375665

  12. Cloning of Acyl-ACP Thioesterase FatA from Arachis hypogaea L. and Its Expression in Escherichia coli

    PubMed Central

    Chen, Gao; Peng, Zhen-ying; Shan, Lei; Xuan, Ning; Tang, Gui-ying; Zhang, Yan; Li, Lan; He, Qing-fang; Bi, Yu-ping

    2012-01-01

    In this study, a full-length cDNA of the acyl-ACP thioesterase, AhFatA, was cloned from developing seeds of Arachis hypogaea L. by 3′-RACE. Sequence analysis showed that the open reading frame encodes a peptide of 372 amino acids and has 50–70% identity with FatA from other plants. Real-time quantitative PCR analysis revealed that AhFatA was expressed in all tissues of A. hypogaea L., but most strongly in the immature seeds harvested at 60 days after pegging. Heterologous expression of AhFatA in Escherichia coli affected bacterial growth and changed the fatty acid profiles of the membrane lipid, resulting in directed accumulation towards palmitoleic acid and oleic acid. These results indicate that AhFatA is at least partially responsible for determining the high palmitoleic acid and oleic acid composition of E. coli. PMID:23093853

  13. Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.)

    NASA Technical Reports Server (NTRS)

    Egnin, M.; Mora, A.; Prakash, C. S.; Mortley, D. G. (Principal Investigator)

    1998-01-01

    Parameters enhancing Agrobacterium-mediated transfer of foreign genes to peanut (Arachis hypogaea L.) cells were investigated. An intron-containing beta-glucuronidase uidA (gusA) gene under the transcriptional control of CaMV 35S promoter served as a reporter. Transformation frequency was evaluated by scoring the number of sectors expressing GUS activity on leaf and epicotyl explants. The 'Valencia Select' market type cv. New Mexico was more amenable to Agrobacterium transformation than the 'runner' market type cultivars tested (Florunner, Georgia Runner, Sunrunner, or South Runner). The disarmed Agrobacterium tumefaciens strain EHA101 was superior in facilitating the transfer of uidA gene to peanut cells compared to the disarmed strain C58. Rinsing of explants in half-strength Murashige-Skoog (MS) media prior to infection by Agrobacterium significantly increased the transformation efficiency. The use of cocultivation media containing high auxin [1.0 or 2.5 mg/l (4.53 micromolar or 11.31 micromolar) 2,4-D] and low cytokinin [0.25 or 0.5 mg/l (1.0 micromolar or 2.0 micromolar) BA] promoted higher transformation than either hormone-free or thidiazuron-containing medium. The polarity of the epicotyl during cocultivation was important; explants incubated in an inverted (vertically) manner followed by a vertically upright position resulted in improved transformation and shoot regeneration frequencies. Preculture of explants in MS basal medium or with 2.5 mg thidiazuron per l prior to infection drastically decreased the number of transformed zones. The optimized protocol was used to obtain transient transformation frequencies ranging from 12% to 36% for leaf explants, 15% to 42% for epicotyls. Initial evidence of transformation was obtained by polymerase chain reaction and subsequently confirmed by Southern analysis of regenerated plants.

  14. Cadmium re-distribution from pod and root zones and accumulation by peanut (Arachis hypogaea L.).

    PubMed

    Wang, Kairong; Song, Ningning; Zhao, Qiaoqiao; van der Zee, S E A T M

    2016-01-01

    Peanut (Arachis hypogaea L.) genotypes may differ greatly with regard to cadmium (Cd) accumulation, but the underlying mechanisms remain unclear. To determine the key factors that may contribute to Cd re-distribution and accumulation in peanut genotypes with different Cd accumulating patterns, a split-pot soil experiment was conducted with three common Chinese peanut cultivars (Fenghua-6, Huayu-20, and Huayu-23). The growth medium was separated into pod and root zones with varied Cd concentrations in each zone to determine the re-distribution of Cd after it is taken up via different routes. The peanut cultivars were divided into two groups based on Cd translocation efficiency as follows: (1) high internal Cd translocation efficiency cultivar (Fenghua-6) and (2) low internal Cd translocation efficiency cultivars (Huayu-20 and Huayu-23). Compared with Fenghua-6, low Cd translocation cultivars Huayu-20 and Huayu-23 showed higher biomass production, especially in stems and leaves, leading to dilution of metal concentrations. Results also showed that Cd concentration in roots increased significantly with increasing Cd concentrations in soils when Cd was applied in the root zone. However, there were no significant differences in the root Cd concentrations between different pod zone Cd treatments and the control, suggesting that root uptake, rather than pod uptake, is responsible for Cd accumulation in the roots of peanuts. Significant differences of Cd distribution were observed between pod and root zone Cd exposure treatments. The three peanut cultivars revealed higher kernel over total Cd fractions for pod than for root zone Cd exposure if only extra applied Cd was considered. This suggests that uptake through peg and pod shell might, at least partially, be responsible for the variation in Cd re-distribution and accumulation among peanut cultivars. Cd uptake by plants via two routes (i.e., via roots and via pegs and pods, respectively) and internal Cd translocation

  15. Response of progeny bred from Bolivian and North American cultivars in integrated management systems for leaf spot of peanut (Arachis hypogaea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early leaf spot caused by the fungus Cercospora arachidicola, and late leaf spot caused by the fungus Cercosporidium personatum, are major yield-reducing diseases of peanut (Arachis hypogaea L.) in the southeastern U.S. Effective control of both leaf spots can be reached with integrated disease man...

  16. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors.

    PubMed

    Velu, Kuppan; Elumalai, Devan; Hemalatha, Periaswamy; Janaki, Arumugam; Babu, Muthu; Hemavathi, Maduraiveeran; Kaleena, Patheri Kunyil

    2015-11-01

    Silver nanoparticles (AgNPs) were successfully synthesised from aqueous silver nitrate using the extracts of Arachis hypogaea peels. The synthesised SNPs were characterized by Fourier transform-infrared spectroscopy analysis, X-ray diffraction, transmission electron microscopy analysis and high-resonance scanning electron microscopy, and energy dispersive X-ray spectroscopy. AgNPs were well defined and measured 20 to 50 nm in size. The nanoparticles were crystallized with a face-centered cubic structure. Larvicidal activity of synthesised AgNPs from A. hypogaea peels was tested for their larvicidal activity against the fourth instar larvae of Aedes aegypti (Yellow fever), Anopheles stephensi (Human malaria). The results suggest that the synthesised AgNPs have the potential to be used as an ideal eco-friendly resource for the control of A. aegypti and A. stephensi. This study provides the first report on the mosquito larvicidal activity of synthesised AgNPs from A. hypogaea peels against vectors of malaria and dengue. PMID:26154036

  17. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome

    PubMed Central

    2010-01-01

    Background The construction of genetic linkage maps for cultivated peanut (Arachis hypogaea L.) has and continues to be an important research goal to facilitate quantitative trait locus (QTL) analysis and gene tagging for use in a marker-assisted selection in breeding. Even though a few maps have been developed, they were constructed using diploid or interspecific tetraploid populations. The most recently published intra-specific map was constructed from the cross of cultivated peanuts, in which only 135 simple sequence repeat (SSR) markers were sparsely populated in 22 linkage groups. The more detailed linkage map with sufficient markers is necessary to be feasible for QTL identification and marker-assisted selection. The objective of this study was to construct a genetic linkage map of cultivated peanut using simple sequence repeat (SSR) markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs), and by "data mining" sequences released in GenBank. Results Three recombinant inbred lines (RILs) populations were constructed from three crosses with one common female parental line Yueyou 13, a high yielding Spanish market type. The four parents were screened with 1044 primer pairs designed to amplify SSRs and 901 primer pairs produced clear PCR products. Of the 901 primer pairs, 146, 124 and 64 primer pairs (markers) were polymorphic in these populations, respectively, and used in genotyping these RIL populations. Individual linkage maps were constructed from each of the three populations and a composite map based on 93 common loci were created using JoinMap. The composite linkage maps consist of 22 composite linkage groups (LG) with 175 SSR markers (including 47 SSRs on the published AA genome maps), representing the 20 chromosomes of A. hypogaea. The total composite map length is 885.4 cM, with an average marker density of 5.8 cM. Segregation distortion in the 3 populations was 23.0%, 13.5% and 7.8% of the markers, respectively. These

  18. Data in support of proteome analysis of gynophores and early swelling pods of peanut (Arachis hypogaea L.)

    PubMed Central

    Xia, Han; Jiang, Nana; Hou, Lei; Zhang, Ye; Li, Changsheng; Li, Aiqin; Zhao, Chuanzhi

    2015-01-01

    Different from most of other plants, peanut (Arachis hypogaea L.) is a typical geocarpic species which flowering and forming pegs (gynophores) above the ground. Pegs penetrate into soil for embryo and pod development. To investigate the molecular mechanism of geocarpy feature of peanut, the proteome profiles of aerial grown gynophores (S1), subterranean unswollen gynophores (S2), and gynophores that had just started to swell into pods (S3) were analyzed by combining 1 DE with nano LC–MS/MS approaches. The proteomic data provided valuable information for understanding pod development of peanut. The data described here can be found in the PRIDE Archive using the reference number PXD002579-81. A more comprehensive analysis of this data may be obtained from the article in BMC Plant Biology (Zhao et al., 2015 [1]). PMID:26793750

  19. Isolation and identification of allelochemicals produced by B. sonorensis for suppression of charcoal rot of Arachis hypogaea L.

    PubMed

    Pandya, Urja; Saraf, Meenu

    2015-05-01

    Bacillus sonorensis MBCU2 isolated from vermicompost-amended soil from Gujarat, India showed most antagonistic activity against Macrophomina phaseolina by dual culture screening. The culture supernatant of MBCU2 completely suppressed the mycelia growth of pathogen, indicating that suppression was due to the presence of allelochemicals in the culture filtrate. Results of scanning electron microscopy revealed that MBCU2 caused morphological alteration in mycelia of M. phaseolina as evident by hyphal lysis and perforation. Lipopeptides (iturin A and surfactin) produced by MBCU2 were detected and identified by MALDI-TOF-MS as well as liquid chromatography coupled with ESI-MS/MS. Pot trial studies conducted by seed bacterization with MBCU2 resulted in statistically significant increase in Arachis hypogaea L. vegetative growth parameters such as root length (91%), shoot length (252%), fresh weight (71%), dry weight (57%), number of pod (128%), and number of seed (290%) in M. phaseolina infested soil over control as well as decreased M. phaseolina disease severity. We suggest that allelochemicals production can be linked to the mechanism of protection of A. hypogaea L. from M. phaseolina by B. sonorensis MBCU2. PMID:25346523

  20. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea)

    PubMed Central

    Cuc, Luu M; Mace, Emma S; Crouch, Jonathan H; Quang, Vu D; Long, Tran D; Varshney, Rajeev K

    2008-01-01

    Background Cultivated peanut or groundnut (Arachis hypogaea L.) is the fourth most important oilseed crop in the world, grown mainly in tropical, subtropical and warm temperate climates. Due to its origin through a single and recent polyploidization event, followed by successive selection during breeding efforts, cultivated groundnut has a limited genetic background. In such species, microsatellite or simple sequence repeat (SSR) markers are very informative and useful for breeding applications. The low level of polymorphism in cultivated germplasm, however, warrants a need of larger number of polymorphic microsatellite markers for cultivated groundnut. Results A microsatellite-enriched library was constructed from the genotype TMV2. Sequencing of 720 putative SSR-positive clones from a total of 3,072 provided 490 SSRs. 71.2% of these SSRs were perfect type, 13.1% were imperfect and 15.7% were compound. Among these SSRs, the GT/CA repeat motifs were the most common (37.6%) followed by GA/CT repeat motifs (25.9%). The primer pairs could be designed for a total of 170 SSRs and were optimized initially on two genotypes. 104 (61.2%) primer pairs yielded scorable amplicon and 46 (44.2%) primers showed polymorphism among 32 cultivated groundnut genotypes. The polymorphic SSR markers detected 2 to 5 alleles with an average of 2.44 per locus. The polymorphic information content (PIC) value for these markers varied from 0.12 to 0.75 with an average of 0.46. Based on 112 alleles obtained by 46 markers, a phenogram was constructed to understand the relationships among the 32 genotypes. Majority of the genotypes representing subspecies hypogaea were grouped together in one cluster, while the genotypes belonging to subspecies fastigiata were grouped mainly under two clusters. Conclusion Newly developed set of 104 markers extends the repertoire of SSR markers for cultivated groundnut. These markers showed a good level of PIC value in cultivated germplasm and therefore would be

  1. Biomass Production of Hairy Roots of Artemisia annua and Arachis hypogaea in a Scaled-Up Mist Bioreactor

    PubMed Central

    Sivakumar, Ganapathy; Liu, Chunzhao; Towler, Melissa J.

    2014-01-01

    Hairy roots have the potential to produce a variety of valuable small and large molecules. The mist reactor is a gas phase bioreactor that has shown promise for low-cost culture of hairy roots. Using a newer, disposable culture bag, mist reactor performance was studied with two species, Artemisia annua L. and Arachis hypogaea (peanut), at scales from 1 to 20 L. Both species of hairy roots when grown at 1 L in the mist reactor showed growth rates that surpassed that in shake flasks. From the information gleaned at 1 L, Arachis was scaled further to 4 and then 20 L. Misting duty cycle, culture medium flow rate, and timing of when flow rate was increased were varied. In a mist reactor increasing the misting cycle or increasing the medium flow rate are the two alternatives for increased delivery of liquid nutrients to the root bed. Longer misting cycles beyond 2–3 min were generally deemed detrimental to growth. On the other hand, increasing the medium flow rate to the sonic nozzle especially during the exponential phase of root growth (weeks 2–3) was the most important factor for increasing growth rates and biomass yields in the 20 L reactors. A. hypogaea growth in 1 L reactors was μ = 0.173 day−1 with biomass yield of 12.75 g DWL−1. This exceeded that in shake flasks at μ = 0.166 day−1 and 11.10 g DWL−1. Best growth rate and biomass yield at 20 L was μ = 0.147 and 7.77 g DWL−1, which was mainly achieved when medium flow rate delivery was increased. The mist deposition model was further evaluated using this newer reactor design and when the apparent thickness of roots (+hairs) was taken into account, the empirical data correlated with model predictions. Together these results establish the most important conditions to explore for future optimization of the mist bioreactor for culture of hairy roots. PMID:20687140

  2. Segregation of nod-containing and nod-deficient bradyrhizobia as endosymbionts of Arachis hypogaea and as endophytes of Oryza sativa in intercropped fields of Bengal Basin, India.

    PubMed

    Guha, Sohini; Sarkar, Monolina; Ganguly, Pritha; Uddin, Md Raihan; Mandal, Sukhendu; DasGupta, Maitrayee

    2016-09-01

    Bradyrhizobial invasion in dalbergoid legumes like Arachis hypogaea and endophytic bacterial invasions in non-legumes like Oryza sativa occur through epidermal cracks. Here, we show that there is no overlap between the bradyrhizobial consortia that endosymbiotically and endophytically colonise these plants. To minimise contrast due to phylogeographic isolation, strains were collected from Arachis/Oryza intercropped fields and a total of 17 bradyrhizobia from Arachis (WBAH) and 13 from Oryza (WBOS) were investigated. 16SrRNA and concatenated dnaK-glnII-recA phylogeny clustered the nodABC-positive WBAH and nodABC-deficient WBOS strains in two distinct clades. The in-field segregation is reproducible under controlled conditions which limits the factors that influence their competitive exclusion. While WBAH renodulated Arachis successfully, WBOS nodulated in an inefficient manner. Thus, Arachis, like other Aeschynomene legumes support nod-independent symbiosis that was ineffectual in natural fields. In Oryza, WBOS recolonised endophytically and promoted its growth. WBAH however caused severe chlorosis that was completely overcome when coinfected with WBOS. This explains the exclusive recovery of WBOS in Oryza in natural fields and suggests Nod-factors to have a role in counterselection of WBAH. Finally, canonical soxY1 and thiosulphate oxidation could only be detected in WBOS indicating loss of metabolic traits in WBAH with adaptation of symbiotic lifestyle. PMID:27102878

  3. Stability of transgene expression in reduced allergen peanut (Arachis hypogaea L.) across multiple generations and at different soil sulfur levels.

    PubMed

    Chandran, Manju; Chu, Ye; Maleki, Soheila J; Ozias-Akins, Peggy

    2015-02-18

    Transgenic peanut (Arachis hypogaea L.) containing a gene designed for RNA interference (RNAi) showed stable complete silencing of Ara h 2 and partial silencing of Ara h 6, two potent peanut allergens/proteins, along with minimal collateral changes to other allergens, Ara h 1 and Ara h 3, across three generations (T3, T4, and T5) under field conditions. Different soil sulfur levels (0.012, 0.3, and 3.0 mM) differentially impacted sulfur-rich (Ara h 2, Ara h 3, and Ara h 6) versus sulfur-poor (Ara h 1) proteins in non-transgenic versus transgenic peanut. The sulfur level had no effect on Ara h 1, whereas low sulfur led to a significant reduction of Ara h 3 in transgenic and non-transgenic seeds and Ara h 2 and Ara h 6 in non-transgenic but not in transgenic peanuts because these proteins already were reduced by gene silencing. These results demonstrate stability of transgene expression and the potential utility of RNAi in allergen manipulation. PMID:25616282

  4. Effects of Switchgrass (Panicum virgatum) Rotations with Peanut (Arachis hypogaea L.) on Nematode Populations and Soil Microflora

    PubMed Central

    Kokalis-Burelle, N.; Mahaffee, W. F.; Rodríguez-Kábana, R.; Kloepper, J. W.; BOWEN, K. L.

    2002-01-01

    A 3-year field rotation study was conducted to assess the potential of switchgrass (Panicum virgatum) to suppress root-knot nematodes (Meloidogyne arenaria), southern blight (Sclerotium rolfsii), and aflatoxigenic fungi (Aspergillus sp.) in peanut (Arachis hypogaea L.) and to assess shifts in microbial populations following crop rotation. Switchgrass did not support populations of root-knot nematodes but supported high populations of nonparasitic nematodes. Peanut with no nematicide applied and following 2 years of switchgrass had the same nematode populations as continuous peanut plus nematicide. Neither previous crop nor nematicide significantly reduced the incidence of pods infected with Aspergillus. However, pod invasion by A. flavus was highest in plots previously planted with peanut and not treated with nematicide. Peanut with nematicide applied at planting following 2 years of switchgrass had significantly less incidence of southern blight than either continuous peanut without nematicide application or peanut without nematicide following 2 years of cotton. Peanut yield did not differ among rotations in either sample year. Effects of crop rotation on the microbial community structure associated with peanut were examined using indices for diversity, richness, and similarity derived from culture-based analyses. Continuous peanut supported a distinctly different rhizosphere bacterial microflora compared to peanut following 1 year of switchgrass, or continuous switchgrass. Richness and diversity indices for continuous peanut rhizosphere and geocarposphere were not consistently different from peanut following switchgrass, but always differed in the specific genera present. These shifts in community structure were associated with changes in parasitic nematode populations. PMID:19265915

  5. Synergic actions of polyphenols and cyanogens of peanut seed coat (Arachis hypogaea) on cytological, biochemical and functional changes in thyroid.

    PubMed

    Chandra, Amar K; Mondal, Chiranjit; Sinha, Sabyasachi; Chakraborty, Arijit; Pearce, Elizabeth N

    2015-03-01

    In animals, long-term feeding with peanut (Arachis hypogaea) seed coats causes hypertrophy and hyperplasia of the thyroid gland. However, to date there have been no detailed studies. Here, we explored the thyroidal effects of dietary peanut seed coats (PSC) in rats. The PSC has high levels of pro-goitrogenic substances including phenolic and other cyanogenic constituents. The PSC was mixed with a standard diet and fed to rats for 30 and 60 days, respectively. Animals fed with the PSC-supplemented diet showed a significant increase in urinary excretion of thiocyanate and iodine, thyroid enlargement, and hypertrophy and/or hyperplasia of thyroid follicles. In addition, there was inhibition of thyroid peroxidase (TPO) activity, 5'-deiodinase-I (DIO1) activity, and (Na+-K+)-ATPase activity in the experimental groups of rats as compared to controls. Furthermore, the PSC fed animals exhibited decreased serum circulating total T4 and T3 levels, severe in the group treated for longer duration. These data indicate that PSC could be a novel disruptor of thyroid function, due to synergistic actions of phenolic as well as cyanogenic constituents. PMID:25872244

  6. Bioassay-guided isolation of proanthocyanidins with antioxidant activity from peanut (Arachis hypogaea) skin by combination of chromatography techniques.

    PubMed

    Oldoni, Tatiane L C; Melo, Priscilla S; Massarioli, Adna P; Moreno, Ivani A M; Bezerra, Rosângela M N; Rosalen, Pedro L; da Silva, Gil V J; Nascimento, Andréa M; Alencar, Severino M

    2016-02-01

    Purification and bioassay-guided fractionation were employed to isolate proanthocyanidins with antioxidant activity from peanut skin (Arachis hypogaea Runner 886). The crude extract was prepared with acetone (60% v/v) and purified using chromatographic methods, including a semipreparative HPLC technique. As a result, two proanthocyanidins were isolated and identified using NMR, epicatechin-(2 β → O → 7, 4 β → 8)-catechin (proanthocyanidin A1) and epicatechin-(β → 2 O → 7, 4 β → 8)-epicatechin (proanthocyanidin A2). Despite the structural similarity, differences were observed in their antioxidant activity. Proanthocyanidin A1 proved to be more active, with EC50 value for DPPH radical scavenging of 18.25 μg/mL and reduction of Fe(3+)-TPTZ complex of 7.59 mmol/g, higher than that of synthetic antioxidant BHT. This compound evaluated by ABTS(+) was similar to that of natural quercetin. Therefore, peanut skin is an important source of bioactive compounds that may be used as a mild antioxidant for food preservation. PMID:26304352

  7. Analysis of crude protein and allergen abundance in peanuts (Arachis hypogaea cv. Walter) from three growing regions in Australia.

    PubMed

    Walczyk, Nicole E; Smith, Penelope M C; Tovey, Euan; Wright, Graeme C; Fleischfresser, Dayle B; Roberts, Thomas H

    2013-04-17

    The effects of plant growth conditions on concentrations of proteins, including allergens, in peanut ( Arachis hypogaea L.) kernels are largely unknown. Peanuts (cv. Walter) were grown at five sites (Taabinga, Redvale, Childers, Bundaberg, and Kairi) covering three commercial growing regions in Queensland, Australia. Differences in temperature, rainfall, and solar radiation during the growing season were evaluated. Kernel yield varied from 2.3 t/ha (Kairi) to 3.9 t/ha (Childers), probably due to differences in solar radiation. Crude protein appeared to vary only between Kairi and Childers, whereas Ara h 1 and 2 concentrations were similar in all locations. 2D-DIGE revealed significant differences in spot volumes for only two minor protein spots from peanuts grown in the five locations. Western blotting using peanut-allergic serum revealed no qualitative differences in recognition of antigens. It was concluded that peanuts grown in different growing regions in Queensland, Australia, had similar protein compositions and therefore were unlikely to show differences in allergenicity. PMID:23495786

  8. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers

    PubMed Central

    Moretzsohn, Márcio C.; Gouvea, Ediene G.; Inglis, Peter W.; Leal-Bertioli, Soraya C. M.; Valls, José F. M.; Bertioli, David J.

    2013-01-01

    Background and Aims The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific variability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components. Methods Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses. Key Results Although high intraspecific variability was evident, there was good support for most species. However, some problems were revealed, notably a probable polyphyletic origin for A. kuhlmannii. The validity of the genome groups was well supported. The F, K and D genomes grouped close to the A genome group. The 2n = 18 species grouped closer to the B genome group. The phylogenetic tree based on the intron data strongly indicated that A. duranensis and A. ipaënsis are the ancestors of A. hypogaea and A. monticola. Intron nucleotide substitutions allowed the ages of divergences of the main genome groups to be estimated at a relatively recent 2·3–2·9 million years ago. This age and the number of species described indicate a much higher speciation rate for section Arachis than for legumes in general. Conclusions The analyses revealed relationships between the species and genome groups and showed a generally high level of intraspecific genetic diversity. The improved knowledge of species relationships should facilitate the utilization of wild species for peanut improvement. The estimates of speciation rates in section Arachis are high, but not unprecedented. We suggest these high rates may be linked to the

  9. The Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds.

    PubMed

    Chen, Silong; Lei, Yong; Xu, Xian; Huang, Jiaquan; Jiang, Huifang; Wang, Jin; Cheng, Zengshu; Zhang, Jianan; Song, Yahui; Liao, Boshou; Li, Yurong

    2015-01-01

    Lysophosphatidic acid acyltransferase (LPAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. We recently reported the cloning and temporal-spatial expression of a peanut (Arachis hypogaea) AhLPAT2gene, showing that an increase in AhLPAT2 transcript levels was closely correlated with an increase in seed oil levels. However, the function of the enzyme encoded by the AhLPAT2 gene remains unclear. Here, we report that AhLPAT2 transcript levels were consistently higher in the seeds of a high-oil cultivar than in those of a low-oil cultivar across different seed developmental stages. Seed-specific overexpression of AhLPAT2 in Arabidopsis results in a higher percentage of oil in the seeds and greater-than-average seed weight in the transgenic plants compared with the wild-type plants, leading to a significant increase in total oil yield per plant. The total fatty acid (FA) content and the proportion of unsaturated FAs also increased. In the developing siliques of AhLPAT2-overexpressing plants, the expression levels of genes encoding crucial enzymes involved in de novo FA synthesis, acetyl-CoA subunit (AtBCCP2) and acyl carrier protein 1 (AtACP1) were elevated. AhLPAT2 overexpression also promoted the expression of several key genes related to TAG assembly, sucrose metabolism, and glycolysis. These results demonstrate that the expression of AhLPAT2 plays an important role in glycerolipid production in peanuts. PMID:26302041

  10. Chryseobacterium arachidiradicis sp. nov., isolated from the geocarposphere (soil around the peanut) of very immature peanuts (Arachis hypogaea).

    PubMed

    Kämpfer, Peter; Busse, Hans-Jürgen; McInroy, John A; Glaeser, Stefanie P

    2015-07-01

    A yellow-pigmented bacterial strain, 91A-612(T), isolated from the geocarposphere (soil around the peanut) of very immature peanuts (Arachis hypogaea) in Alabama, USA, was studied for its taxonomic position. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence with the sequences of the type strains of the most closely related species showed that the strain belongs to the genus Chryseobacterium, showing the highest sequence similarities to the type strains of Chryseobacterium molle (98.4%), C. pallidum (98.3%) and C. hominis (97.8%). The 16S rRNA gene sequence similarities to the type strains of all other species of the genus Chryseobacterium were below 97.0%. The fatty acid profile of strain 91A-612(T) consisted of the major fatty acids iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH/C16 : 1ω7c) and iso-C17 : 0 3-OH. Major compounds in the polar lipid profile were phosphatidylethanolamine and several unidentified lipids, including two lipids that did not contain a sugar moiety, an amino group or a phosphate group (L3, L8), and an aminolipid (AL1). The quinone system was composed mainly of MK-6. The polyamine pattern contained sym-homospermidine as the major compound and moderate amounts of spermidine and spermine. DNA-DNA hybridizations between strain 91A-612(T) and the type strains of C. molle, C. pallidum and C. hominis resulted in relatedness values well below 70%. These data and the differentiating biochemical and chemotaxonomic properties showed that isolate 91A-612(T) represents a novel species of the genus Chryseobacterium, for which we propose the name Chryseobacterium arachidiradicis sp. nov. (type strain 91A-612(T) = LMG 27814(T)= CCM 8490(T) = CIP 110647(T)). PMID:25858249

  11. Identification and Characterization of microRNAs from Peanut (Arachis hypogaea L.) by High-Throughput Sequencing

    PubMed Central

    Chen, Xiaoping; Wang, Jinyan; Pan, Lijuan; Chen, Mingna; Yang, Zhen; He, Yanan; Liang, Xuanqiang; Yu, Shanlin

    2011-01-01

    Background MicroRNAs (miRNAs) are noncoding RNAs of approximately 21 nt that regulate gene expression in plants post-transcriptionally by endonucleolytic cleavage or translational inhibition. miRNAs play essential roles in numerous developmental and physiological processes and many of them are conserved across species. Extensive studies of miRNAs have been done in a few model plants; however, less is known about the diversity of these regulatory RNAs in peanut (Arachis hypogaea L.), one of the most important oilseed crops cultivated worldwide. Results A library of small RNA from peanut was constructed for deep sequencing. In addition to 126 known miRNAs from 33 families, 25 novel peanut miRNAs were identified. The miRNA* sequences of four novel miRNAs were discovered, providing additional evidence for the existence of miRNAs. Twenty of the novel miRNAs were considered to be species-specific because no homolog has been found for other plant species. qRT-PCR was used to analyze the expression of seven miRNAs in different tissues and in seed at different developmental stages and some showed tissue- and/or growth stage-specific expression. Furthermore, potential targets of these putative miRNAs were predicted on the basis of the sequence homology search. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library. This study of the identification and characterization of miRNAs in peanut can initiate further study on peanut miRNA regulation mechanisms, and help toward a greater understanding of the important roles of miRNAs in peanut. PMID:22110666

  12. The Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds

    PubMed Central

    Chen, Silong; Lei, Yong; Xu, Xian; Huang, Jiaquan; Jiang, Huifang; Wang, Jin; Cheng, Zengshu; Zhang, Jianan; Song, Yahui; Liao, Boshou; Li, Yurong

    2015-01-01

    Lysophosphatidic acid acyltransferase (LPAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. We recently reported the cloning and temporal-spatial expression of a peanut (Arachis hypogaea) AhLPAT2gene, showing that an increase in AhLPAT2 transcript levels was closely correlated with an increase in seed oil levels. However, the function of the enzyme encoded by the AhLPAT2 gene remains unclear. Here, we report that AhLPAT2 transcript levels were consistently higher in the seeds of a high-oil cultivar than in those of a low-oil cultivar across different seed developmental stages. Seed-specific overexpression of AhLPAT2 in Arabidopsis results in a higher percentage of oil in the seeds and greater-than-average seed weight in the transgenic plants compared with the wild-type plants, leading to a significant increase in total oil yield per plant. The total fatty acid (FA) content and the proportion of unsaturated FAs also increased. In the developing siliques of AhLPAT2-overexpressing plants, the expression levels of genes encoding crucial enzymes involved in de novo FA synthesis, acetyl-CoA subunit (AtBCCP2) and acyl carrier protein 1 (AtACP1) were elevated. AhLPAT2 overexpression also promoted the expression of several key genes related to TAG assembly, sucrose metabolism, and glycolysis. These results demonstrate that the expression of AhLPAT2 plays an important role in glycerolipid production in peanuts. PMID:26302041

  13. Subgroups of the Cowpea Miscellany: Symbiotic Specificity within Bradyrhizobium spp. for Vigna unguiculata, Phaseolus lunatus, Arachis hypogaea, and Macroptilium atropurpureum†

    PubMed Central

    Thies, Janice E.; Bohlool, B. Ben; Singleton, Paul W.

    1991-01-01

    Rhizobia classified as Bradyrhizobium spp. comprise a highly heterogeneous group of bacteria that exhibit differential symbiotic characteristics on hosts in the cowpea miscellany cross-inoculation group. To delineate the degree of specificity exhibited by four legumes in the cowpea miscellany, we tested the symbiotic characteristics of indigenous cowpea bradyrhizobia on cowpea (Vigna unguiculata), siratro (Macroptilium atropurpureum), lima bean (Phaseolus lunatus), and peanut (Arachis hypogaea). The most-probable-number counts of indigenous bradyrhizobia at three sites on Maui, Hawaii, were substantially different on the four hosts: highest on siratro, intermediate on cowpea, and significantly lower on both lima bean and peanut. Bradyrhizobia from single cowpea nodules from the most-probable-number assays were inoculated onto the four hosts. Effectiveness patterns of these rhizobia on cowpea followed a normal distribution but were strikingly different on the other legumes. The effectiveness profiles on siratro and cowpea were similar but not identical. The indigenous cowpea-derived bradyrhizobia were of only moderate effectiveness on siratro and were in all cases lower than the inoculant-quality reference strain. Between 5 and 51% of the bradyrhizobia, depending on site, failed to nodulate peanut, whereas 0 to 32% failed to nodulate lima bean. No significant correlation was observed between the relative effectiveness of the bradyrhizobia on cowpea and their corresponding effectiveness on either lima bean or peanut. At all sites, bradyrhizobia that were ineffective on cowpea but that effectively nodulated lima bean, peanut, or both were found. Eighteen percent or fewer of the bradyrhizobia were as effective on lima bean as the reference inoculant strain; 44% or fewer were as effective on peanut as the reference strain. Only 18% of all cowpea-derived bradyrhizobia tested were able to form N2-fixing nodules on both lima bean and peanut. These results indicate the need

  14. Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing.

    PubMed

    Geng, Lili; Duan, Xiaohong; Liang, Chun; Shu, Changlong; Song, Fuping; Zhang, Jie

    2014-10-01

    Peanut (Arachis hypogaea L.), one of the most important oil legumes in the world, is heavily damaged by white grubs. Tissue-specific promoters are needed to incorporate insect resistance genes into peanut by genetic transformation to control the subterranean pests. Transcriptome sequencing is the most effective way to analyze differential gene expression in this non-model species and contribute to promoter cloning. The transcriptomes of the roots, seeds and leaves of peanut were sequenced using Illumina technology. A simple digital expression profile was established based on number of transcripts per million clean tags (TPM) from different tissues. Subsequently, 584 root-specific candidate transcript assembly contigs (TACs) and 316 seed-specific candidate TACs were identified. Among these candidate TACs, 55.3% were root-specific and 64.6% were seed-specific by semi-quantitative RT-PCR analysis. Moreover, the consistency of semi-quantitative RT-PCR with the simple digital expression profile was correlated with the length and TPM value of TACs. The results of gene ontology showed that some root-specific TACs are involved in stress resistance and respond to auxin stimulus, whereas, seed-specific candidate TACs are involved in embryo development, lipid storage and long-chain fatty acid biosynthesis. One root-specific promoter was cloned and characterized. We developed a high-yield screening system in peanut by establishing a simple digital expression profile based on Illumina sequencing. The feasible and rapid method presented by this study can be used for other non-model crops to explore tissue-specific or spatially specific promoters. PMID:25231965

  15. Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity.

    PubMed

    Paulucci, Natalia S; Gallarato, Lucas A; Reguera, Yanina B; Vicario, Julio C; Cesari, Adriana B; García de Lema, Mirta B; Dardanelli, Marta S

    2015-04-01

    The aim of this work was to clarify the mechanism related to plant growth promoting of a bacterial strain (L115) isolated from Arachis hypogaea rhizospheres and the effects of high growth temperature and salinity on phospholipids and fatty acids composition. L115 was isolated from peanut rhizospheres and identified according to the sequence analysis of the 16S rRNA gene. Phenotypic, metabolic and plant growth promoting rhizobacteria (PGPR) characteristics of L115 were tested. Inoculation test in plant growth chamber was performed. In addition, L115 was exposed to a 37 °C and 300 mM NaCl and phospholipids and fatty acid composition were evaluated. L115 strain was identified as Ochrobactrum intermedium and was able to increase the peanut shoot and root length as well as dry weight, indicating a PGPR role by being able to produce indole acetic acid and siderophores and present ACC deaminase activity. In addition, L115 showed tolerance to both high growth temperature and 300 mM NaCl. The most striking change was a decreased percentage of 18:1 fatty acid and an increase in 16:0 and 18:0 fatty acids, under high growth temperature or a combination of increased temperature and salinity. The most important change in phospholipid levels was an increase in phosphatidylcholine biosynthesis in all growth conditions. L115 can promote the growth of peanut and can tolerate high growth temperature and salinity modifying the fatty acid unsaturation degree and increasing phosphatidylcholine levels. This work is the first to report the importance of the genus Ochrobactrum as PGPR on peanut growth as well as on the metabolic behaviour against abiotic stresses that occur in soil. This knowledge will be useful for developing strategies to improve the growth of this bacterium under stress and to enhance its bioprocess for the production of inoculants. PMID:25801965

  16. Development and Utilization of InDel Markers to Identify Peanut (Arachis hypogaea) Disease Resistance

    PubMed Central

    Liu, Lifeng; Dang, Phat M.; Chen, Charles Y.

    2015-01-01

    Peanut diseases, such as leaf spot and spotted wilt caused by Tomato Spotted Wilt Virus, can significantly reduce yield and quality. Application of marker assisted plant breeding requires the development and validation of different types of DNA molecular markers. Nearly 10,000 SSR-based molecular markers have been identified by various research groups around the world, but less than 14.5% showed polymorphism in peanut and only 6.4% have been mapped. Low levels of polymorphism limit the application of marker assisted selection (MAS) in peanut breeding programs. Insertion/deletion (InDel) markers have been reported to be more polymorphic than SSRs in some crops. The goals of this study were to identify novel InDel markers and to evaluate the potential use in peanut breeding. Forty-eight InDel markers were developed from conserved sequences of functional genes and tested in a diverse panel of 118 accessions covering six botanical types of cultivated peanut, of which 104 were from the U.S. mini-core. Results showed that 16 InDel markers were polymorphic with polymorphic information content (PIC) among InDels ranged from 0.017 to 0.660. With respect to botanical types, PICs varied from 0.176 for fastigiata var., 0.181 for hypogaea var., 0.306 for vulgaris var., 0.534 for aequatoriana var., 0.556 for peruviana var., to 0.660 for hirsuta var., implying that aequatoriana var., peruviana var., and hirsuta var. have higher genetic diversity than the other types and provide a basis for gene functional studies. Single marker analysis was conducted to associate specific marker to disease resistant traits. Five InDels from functional genes were identified to be significantly correlated to tomato spotted wilt virus (TSWV) infection and leaf spot, and these novel markers will be utilized to identify disease resistant genotype in breeding populations. PMID:26617627

  17. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis

    PubMed Central

    Hong, Yanbin; Pandey, Manish K.; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K.; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut. PMID:26697032

  18. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis.

    PubMed

    Hong, Yanbin; Pandey, Manish K; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut. PMID:26697032

  19. Identification of peanut (Arachis hypogaea) chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation.

    PubMed

    Zhang, Laining; Yang, Xiaoyu; Tian, Li; Chen, Lei; Yu, Weichang

    2016-09-01

    The cultivated peanut Arachis hypogaea (AABB) is thought to have originated from the hybridization of Arachis duranensis (AA) and Arachis ipaënsis (BB) followed by spontaneous chromosome doubling. In this study, we cloned and analyzed chromosome markers from cultivated peanut and its wild relatives. A fluorescence in situ hybridization (FISH)-based karyotyping cocktail was developed with which to study the karyotypes and chromosome evolution of peanut and its wild relatives. Karyotypes were constructed in cultivated peanut and its two putative progenitors using our FISH-based karyotyping system. Comparative karyotyping analysis revealed that chromosome organization was highly conserved in cultivated peanut and its two putative progenitors, especially in the B genome chromosomes. However, variations existed between A. duranensis and the A genome chromosomes in cultivated peanut, especially for the distribution of the interstitial telomere repeats (ITRs). A search of additional A. duranensis varieties from different geographic regions revealed both numeric and positional variations of ITRs, which were similar to the variations in tetraploid peanut varieties. The results provide evidence for the origin of cultivated peanut from the two diploid ancestors, and also suggest that multiple hybridization events of A. ipaënsis with different varieties of A. duranensis may have occurred during the origination of peanut. PMID:27176118

  20. Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.).

    PubMed

    Peng, Ze; Gallo, Maria; Tillman, Barry L; Rowland, Diane; Wang, Jianping

    2016-02-01

    Molecular markers are important tools for genotyping in genetic studies and molecular breeding. The SSR and SNP are two commonly used marker systems developed from genomic or transcript sequences. The objectives of this study were to: (1) assemble and annotate the publicly available ESTs in Arachis and the in-house short reads, (2) develop and validate SSR and SNP markers, and (3) investigate the genetic diversity and population structure of the peanut breeding lines and the U.S. peanut mini core collection using developed SSR markers. An NCBI EST dataset with 252,951 sequences and an in-house 454 RNAseq dataset with 288,701 sequences were assembled separately after trimming. Transcript sequence comparison and phylogenetic analysis suggested that peanut is closer to cowpea and scarlet bean than to soybean, common bean and Medicago. From these two datasets, 6455 novel SSRs and 11,902 SNPs were identified. Of the discovered SSRs, 380 representing various SSR types were selected for PCR validation. The amplification rate was 89.2 %. Twenty-two (6.5 %) SSRs were polymorphic between at least one pair of four genotypes. Sanger sequencing of PCR products targeting 110 SNPs revealed 13 true SNPs between tetraploid genotypes and 193 homoeologous SNPs within genotypes. Eight out of the 22 polymorphic SSR markers were selected to evaluate the genetic diversity of Florida peanut breeding lines and the U.S. peanut mini core collection. This marker set demonstrated high discrimination power by displaying an average polymorphism information content value of 0.783, a combined probability of identity of 10(-11), and a combined power of exclusion of 0.99991. The structure analysis revealed four sub-populations among the peanut accessions and lines evaluated. The results of this study enriched the peanut genomic resources, provided over 6000 novel SSR markers and the credentials for true peanut SNP marker development, and demonstrated the power of newly developed SSR markers in

  1. Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid

    PubMed Central

    2014-01-01

    Background Peanut (Arachis hypogaea) is an important crop, but droughts often affect peanut production. There is a lack of genomic information available for peanut; therefore, little is known about the molecular basis of its drought stress response. Results Previously, we found that peanut stomata close rapidly during water deficit and in response to abscisic acid (ABA) treatment, and many genes show changes in their expression levels. To screen for candidate genes involved in the water deficit response, we used the Illumina HiSeq2000/MiSeq sequencing platform to conduct a global transcriptome analysis of peanut seedlings under water deficit with or without an ABA pretreatment. Three peanut tissues (leaves, roots, and stems) collected at each of three developmental stages (four-leaf, flowering, and podding stages) were used to construct sequence libraries. Then, 4.96 × 107 raw sequence reads were generated and the high quality reads were assembled into 47,842 unigenes. We analyzed these sequence libraries to identify differentially expressed genes (DEGs) under water deficit with or without ABA pretreatment. In total, 621 genes were induced rapidly (≥1.5 fold change compared with control) under water deficit, 2,665 genes were induced rapidly under water deficit + ABA pretreatment, and 279 genes overlapped between water deficit and water deficit + ABA pretreatment. Of the 279 overlapping genes, 264 showed the same expression pattern and 15 showed opposite expression patterns. Among the DEGs, 257 were highly induced (>5 fold) by water deficit + ABA pretreatment, while 19 were highly induced (>5 fold) by water deficit alone. The genes induced under water deficit + ABA pretreatment included 100 putative transcription factor (TF) genes, while those induced under water deficit alone included only 22 putative TF genes. To validate the transcriptome results, we conducted quantitative PCR (qPCR) analyses to quantify the transcript levels of nine

  2. Effect of sewage water on seed germination and vigour index of different varieties of groundnut (Arachis hypogaea L.).

    PubMed

    Girisha, S T; Raju, N S

    2008-11-01

    The study has been focused on the investigation on ground nut (Arachis hypogea) fields influenced by sewage water. Sewage water sampled in and around Mysore city and analyzed forphysicochemical parameters. Different concentrations such as 1, 5, 10, 25, 50, 70 and 100% of sewage water on seed germination and vigour index of Arachis hypogea verities such as DH - 2 - 30, ICJS - 11, JL - 24, K - 134, TMV - 2 and VRI - 2 were studied. From the recorded observation it is concluded that the sewage water diluted to 25% concentration for irrigation of groundnut enhances germination percentage and vigour index in K- 134 variety which is more susceptible than other tested varieties. PMID:19297996

  3. Antifungal activity of metabolites from the marine sponges Amphimedon sp. and Monanchora arbuscula against Aspergillus flavus strains isolated from peanuts (Arachis hypogaea).

    PubMed

    Arevabini, Cynthia; Crivelenti, Yasmin D; de Abreu, Mariana H; Bitencourt, Tamires A; Santos, Mário F C; Berlinck, Roberto G S; Hajdu, Eduardo; Beleboni, Renê O; Fachin, Ana L; Marins, Mozart

    2014-01-01

    Contamination of preharvest and stored peanuts (Arachis hypogaea L.) by aflatoxigenic strains of Aspergillus flavus is an important economical and food safety problem in many tropical and subtropical areas of the world. The present investigation reports the antifungal activity of a halitoxins/amphitoxins enriched extract obtained from the sponge Amphimedon sp. (HAEEAsp), and of batzelladine L isolated from the sponge Monanchora arbuscula on Aspergillus flavus isolated from stored peanuts. A PCR system directed against the ITS region and aflatoxin biosynthetic pathway genes of A. flavus was applied for identification of aflatoxin producing strains. The HAEEAsp extract and batzelladine L showed minimal inhibitory concentration (MIC) in the range between 1.9 to 15.6 microg/mL and between 1.9 to 7.8 microg/mL, respectively. The minimal fungicide concentration (MFC) of HAEEAsp extract and batzelladine L was in the range between 3.9 to 31.3 microg/mL and 3.9 to 15.6 microg/mL, respectively. These results indicate that these marine alkaloids may be further explored for the development of potential lead compounds active against aflatoxigenic fungi. PMID:24660456

  4. Grading dysplasia in colorectal adenomas by means of the quantitative binding pattern determination of Arachis hypogaea, Dolichos biflorus, Amaranthus caudatus, Maackia amurensis, and Sambucus nigra agglutinins.

    PubMed

    Bronckart, Y; Nagy, N; Decaestecker, C; Bouckaert, Y; Remmelink, M; Gielen, I; Hittelet, A; Darro, F; Pector, J C; Yeaton, P; Danguy, A; Kiss, R; Salmon, I

    1999-10-01

    The current study deals with the setting up of a new tool that enables the benign versus the malignant nature of colorectal adenomas to be determined accurately. The 2 objectives are to determine (1) whether adenomas should, or should not, be included in a 2- or a 3-tier grading system, and (2) whether severe dysplasias and carcinomas in situ share common or different biological characteristics. The levels of expression of different types of glycoconjugates were characterized in a series of 166 colorectal specimens, including 14 normal, 90 dysplastic, and 62 cancerous cases. The glycoconjugate expressions were demonstrated for 5 lectins, namely, Arachis hypogaea (PNA), Dolichos biflorus (DBA), Amaranthus caudatus (ACA), Maackia amurensis (MAA) and Sambucus nigra (SNA). The glycoconjugates demonstrated by these 5 lectins belong to the family of the Thomsen-Friedenreich antigens. The binding patterns of the 5 lectins were quantitatively determined by means of computer-assisted microscopy. The quantitative data were submitted to discriminant analyses. Our results show that the specific glycochemical staining patterns could be identified unambiguously and without misclassification between benign (normal and low dysplasia) and malignant (ie, either as moderate/severe dysplasia, carcinoma in situ, or cancer) cases. The data also strongly suggested that (1) dysplasias seem to be distinguishable in 2 instead of 3 groups, that is, low versus moderate/severe (high); and (2) moderate/severe dysplasias are biologically distinct from carcinomas in situ. The methodology developed can be applied directly in routine diagnosis to identify moderate/severe dysplasia specimens already exhibiting features common to carcinomas, and which therefore should be treated consistently in view of the fact that our data strongly suggest that most moderate/severe dysplasias are still benign, whereas carcinomas in situ are real carcinomatous lesions. PMID:10534165

  5. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.)

    PubMed Central

    Khedikar, Y. P.; Gowda, M. V. C.; Sarvamangala, C.; Patgar, K. V.; Upadhyaya, H. D.

    2010-01-01

    Late leaf spot (LLS) and rust are two major foliar diseases of groundnut (Arachis hypogaea L.) that often occur together leading to 50–70% yield loss in the crop. A total of 268 recombinant inbred lines of a mapping population TAG 24 × GPBD 4 segregating for LLS and rust were used to undertake quantitative trait locus (QTL) analysis. Phenotyping of the population was carried out under artificial disease epiphytotics. Positive correlations between different stages, high to very high heritability and independent nature of inheritance between both the diseases were observed. Parental genotypes were screened with 1,089 simple sequence repeat (SSR) markers, of which 67 (6.15%) were found polymorphic. Segregation data obtained for these markers facilitated development of partial linkage map (14 linkage groups) with 56 SSR loci. Composite interval mapping (CIM) undertaken on genotyping and phenotyping data yielded 11 QTLs for LLS (explaining 1.70–6.50% phenotypic variation) in three environments and 12 QTLs for rust (explaining 1.70–55.20% phenotypic variation). Interestingly a major QTL associated with rust (QTLrust01), contributing 6.90–55.20% variation, was identified by both CIM and single marker analysis (SMA). A candidate SSR marker (IPAHM 103) linked with this QTL was validated using a wide range of resistant/susceptible breeding lines as well as progeny lines of another mapping population (TG 26 × GPBD 4). Therefore, this marker should be useful for introgressing the major QTL for rust in desired lines/varieties of groundnut through marker-assisted backcrossing. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1366-x) contains supplementary material, which is available to authorized users. PMID:20526757

  6. Application of targeted metagenomics to explore abundance and diversity of CO₂-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea.

    PubMed

    Yousuf, Basit; Keshri, Jitendra; Mishra, Avinash; Jha, Bhavanath

    2012-09-10

    Sequestration of CO(2) by autotrophic bacteria is a key process of biogeochemical carbon cycling in soil ecosystem. Rhizosphere is a rich niche of microbial activity and diversity, influenced by change in atmospheric CO(2). Structural changes in rhizosphere composition influence microbial communities and the nutrient cycling. In the present study, the bacterial diversity and population dynamics were established using cbbL and 16S rRNA gene targeted metagenomics approach from the rhizosphere of Arachis hypogaea. A total of 108 cbbL clones were obtained from the rhizospheric soil which revealed predominance of cbbL sequences affiliated to Rhizobium leguminosarum, Bradyrhizobium sp., Sinorhizobium meliloti, Ochrobactrum anthropi and a variety of uncultured cbbL harboring bacteria. The 16S rRNA gene clone library exhibited the dominance of Firmicutes (34.4%), Proteobacteria (18.3%), Actinobacteria (17.2%) and Bacteroidetes (16.1%). About 43% nucleotide sequences of 16S rRNA gene clone library were novel genera which showed <95% homology with published sequences. Gene copy number of cbbL and 16S rRNA genes, determined by quantitative real-time PCR (qRT PCR), was 9.38 ± 0.75 × 10(7) and 5.43 ± 0.79 × 10(8) (per g dry soil), respectively. The results exhibited bacterial community structure with high bacterial diversity and abundance of CO(2)-fixing bacteria, which can be explored further for their role in carbon cycling, sustainable agriculture and environment management. PMID:22766402

  7. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.)

    PubMed Central

    2012-01-01

    Background Cultivated peanut (Arachis hypogaea L.) is an important crop worldwide, valued for its edible oil and digestible protein. It has a very narrow genetic base that may well derive from a relatively recent single polyploidization event. Accordingly molecular markers have low levels of polymorphism and the number of polymorphic molecular markers available for cultivated peanut is still limiting. Results Here, we report a large set of BAC-end sequences (BES), use them for developing SSR (BES-SSR) markers, and apply them in genetic linkage mapping. The majority of BESs had no detectable homology to known genes (49.5%) followed by sequences with similarity to known genes (44.3%), and miscellaneous sequences (6.2%) such as transposable element, retroelement, and organelle sequences. A total of 1,424 SSRs were identified from 36,435 BESs. Among these identified SSRs, dinucleotide (47.4%) and trinucleotide (37.1%) SSRs were predominant. The new set of 1,152 SSRs as well as about 4,000 published or unpublished SSRs were screened against two parents of a mapping population, generating 385 polymorphic loci. A genetic linkage map was constructed, consisting of 318 loci onto 21 linkage groups and covering a total of 1,674.4 cM, with an average distance of 5.3 cM between adjacent loci. Two markers related to resistance gene homologs (RGH) were mapped to two different groups, thus anchoring 1 RGH-BAC contig and 1 singleton. Conclusions The SSRs mined from BESs will be of use in further molecular analysis of the peanut genome, providing a novel set of markers, genetically anchoring BAC clones, and incorporating gene sequences into a linkage map. This will aid in the identification of markers linked to genes of interest and map-based cloning. PMID:22260238

  8. Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiate enhances salinity and drought endurance in transgenic groundnut (arachis hypogaea)and acts as a transcription factor [corrected].

    PubMed

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    The SbASR-1 gene, cloned from a halophyte Salicornia brachiata, encodes a plant-specific hydrophilic and stress responsive protein. The genome of S. brachiata has two paralogs of the SbASR-1 gene (2549 bp), which is comprised of a single intron of 1611 bp, the largest intron of the  abscisic acid stress ripening [ASR] gene family yet reported. In silico analysis of the 843-bp putative promoter revealed the presence of ABA, biotic stress, dehydration, phytohormone, salinity, and sugar responsive cis-regulatory motifs. The SbASR-1 protein belongs to Group 7 LEA protein family with different amino acid composition compared to their glycophytic homologs. Bipartite Nuclear Localization Signal (NLS) was found on the C-terminal end of protein and localization study confirmed that SbASR-1 is a nuclear protein. Furthermore, transgenic groundnut (Arachis hypogaea) plants over-expressing the SbASR-1 gene constitutively showed enhanced salinity and drought stress tolerance in the T1 generation. Leaves of transgenic lines exhibited higher chlorophyll and relative water contents and lower electrolyte leakage, malondialdehyde content, proline, sugars, and starch accumulation under stress treatments than wild-type (Wt) plants. Also, lower accumulation of H2O2 and O2.- radicals was detected in transgenic lines compared to Wt plants under stress conditions. Transcript expression of APX (ascorbate peroxidase) and CAT (catalase) genes were higher in Wt plants, whereas the SOD (superoxide dismutase) transcripts were higher in transgenic lines under stress. Electrophoretic mobility shift assay (EMSA) confirmed that the SbASR-1 protein binds at the consensus sequence (C/G/A)(G/T)CC(C/G)(C/G/A)(A/T). Based on results of the present study, it may be concluded that SbASR-1 enhances the salinity and drought stress tolerance in transgenic groundnut by functioning as a LEA (late embryogenesis abundant) protein and a transcription factor. PMID:26158616

  9. Simultaneous Expression of Abiotic Stress Responsive Transcription Factors, AtDREB2A, AtHB7 and AtABF3 Improves Salinity and Drought Tolerance in Peanut (Arachis hypogaea L.)

    PubMed Central

    Pruthvi, Vittal; Narasimhan, Rama; Nataraja, Karaba N.

    2014-01-01

    Drought, salinity and extreme temperatures are the most common abiotic stresses, adversely affecting plant growth and productivity. Exposure of plants to stress activates stress signalling pathways that induce biochemical and physiological changes essential for stress acclimation. Stress tolerance is governed by multiple traits, and importance of a few traits in imparting tolerance has been demonstrated. Under drought, traits linked to water mining and water conservation, water use efficiency and cellular tolerance (CT) to desiccation are considered to be relevant. In this study, an attempt has been made to improve CT in drought hardy crop, peanut (Arachis hypogaea L., cv. TMV2) by co-expressing stress-responsive transcription factors (TFs), AtDREB2A, AtHB7 and AtABF3, associated with downstream gene expression. Transgenic plants simultaneously expressing these TFs showed increased tolerance to drought, salinity and oxidative stresses compared to wild type, with an increase in total plant biomass. The transgenic plants exhibited improved membrane and chlorophyll stability due to enhanced reactive oxygen species scavenging and osmotic adjustment by proline synthesis under stress. The improvement in stress tolerance in transgenic lines were associated with induced expression of various CT related genes like AhGlutaredoxin, AhAldehyde reductase, AhSerine threonine kinase like protein, AhRbx1, AhProline amino peptidase, AhHSP70, AhDIP and AhLea4. Taken together the results indicate that co-expression of stress responsive TFs can activate multiple CT pathways, and this strategy can be employed to improve abiotic stress tolerance in crop plants. PMID:25474740

  10. Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.).

    PubMed

    Pruthvi, Vittal; Narasimhan, Rama; Nataraja, Karaba N

    2014-01-01

    Drought, salinity and extreme temperatures are the most common abiotic stresses, adversely affecting plant growth and productivity. Exposure of plants to stress activates stress signalling pathways that induce biochemical and physiological changes essential for stress acclimation. Stress tolerance is governed by multiple traits, and importance of a few traits in imparting tolerance has been demonstrated. Under drought, traits linked to water mining and water conservation, water use efficiency and cellular tolerance (CT) to desiccation are considered to be relevant. In this study, an attempt has been made to improve CT in drought hardy crop, peanut (Arachis hypogaea L., cv. TMV2) by co-expressing stress-responsive transcription factors (TFs), AtDREB2A, AtHB7 and AtABF3, associated with downstream gene expression. Transgenic plants simultaneously expressing these TFs showed increased tolerance to drought, salinity and oxidative stresses compared to wild type, with an increase in total plant biomass. The transgenic plants exhibited improved membrane and chlorophyll stability due to enhanced reactive oxygen species scavenging and osmotic adjustment by proline synthesis under stress. The improvement in stress tolerance in transgenic lines were associated with induced expression of various CT related genes like AhGlutaredoxin, AhAldehyde reductase, AhSerine threonine kinase like protein, AhRbx1, AhProline amino peptidase, AhHSP70, AhDIP and AhLea4. Taken together the results indicate that co-expression of stress responsive TFs can activate multiple CT pathways, and this strategy can be employed to improve abiotic stress tolerance in crop plants. PMID:25474740

  11. Introgression of the SbASR-1 Gene Cloned from a Halophyte Salicornia brachiata Enhances Salinity and Drought Endurance in Transgenic Groundnut (Arachis hypogaea) and Acts as a Transcription Factor

    PubMed Central

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    The SbASR-1 gene, cloned from a halophyte Salicornia brachiata, encodes a plant-specific hydrophilic and stress responsive protein. The genome of S. brachiata has two paralogs of the SbASR-1 gene (2549 bp), which is comprised of a single intron of 1611 bp, the largest intron of the  abscisic acid stress ripening [ASR] gene family yet reported. In silico analysis of the 843-bp putative promoter revealed the presence of ABA, biotic stress, dehydration, phytohormone, salinity, and sugar responsive cis-regulatory motifs. The SbASR-1 protein belongs to Group 7 LEA protein family with different amino acid composition compared to their glycophytic homologs. Bipartite Nuclear Localization Signal (NLS) was found on the C-terminal end of protein and localization study confirmed that SbASR-1 is a nuclear protein. Furthermore, transgenic groundnut (Arachis hypogaea) plants over-expressing the SbASR-1 gene constitutively showed enhanced salinity and drought stress tolerance in the T1 generation. Leaves of transgenic lines exhibited higher chlorophyll and relative water contents and lower electrolyte leakage, malondialdehyde content, proline, sugars, and starch accumulation under stress treatments than wild-type (Wt) plants. Also, lower accumulation of H2O2 and O2.- radicals was detected in transgenic lines compared to Wt plants under stress conditions. Transcript expression of APX (ascorbate peroxidase) and CAT (catalase) genes were higher in Wt plants, whereas the SOD (superoxide dismutase) transcripts were higher in transgenic lines under stress. Electrophoretic mobility shift assay (EMSA) confirmed that the SbASR-1 protein binds at the consensus sequence (C/G/A)(G/T)CC(C/G)(C/G/A)(A/T). Based on results of the present study, it may be concluded that SbASR-1 enhances the salinity and drought stress tolerance in transgenic groundnut by functioning as a LEA (late embryogenesis abundant) protein and a transcription factor. PMID:26158616

  12. Characterization and Transferable Utility of Microsatellite Markers in the Wild and Cultivated Arachis Species

    PubMed Central

    Huang, Li; Wu, Bei; Zhao, Jiaojiao; Li, Haitao; Chen, Weigang; Zheng, Yanli; Ren, Xiaoping; Chen, Yuning; Zhou, Xiaojing; Lei, Yong; Liao, Boshou; Jiang, Huifang

    2016-01-01

    Microsatellite or simple sequence repeat (SSR) is one of the most widely distributed molecular markers that have been widely utilized to assess genetic diversity and genetic mapping for important traits in plants. However, the understanding of microsatellite characteristics in Arachis species and the currently available amount of high-quality SSR markers remain limited. In this study, we identified 16,435 genome survey sequences SSRs (GSS-SSRs) and 40,199 expressed sequence tag SSRs (EST-SSRs) in Arachis hypogaea and its wild relative species using the publicly available sequence data. The GSS-SSRs had a density of 159.9–239.8 SSRs/Mb for wild Arachis and 1,015.8 SSR/Mb for cultivated Arachis, whereas the EST-SSRs had the density of 173.5–384.4 SSR/Mb and 250.9 SSRs/Mb for wild and cultivated Arachis, respectively. The trinucleotide SSRs were predominant across Arachis species, except that the dinucleotide accounted for most in A. hypogaea GSSs. From Arachis GSS-SSR and EST-SSR sequences, we developed 2,589 novel SSR markers that showed a high polymorphism in six diverse A. hypogaea accessions. A genetic linkage map that contained 540 novel SSR loci and 105 anchor SSR loci was constructed by case of a recombinant inbred lines F6 population. A subset of 82 randomly selected SSR markers were used to screen 39 wild and 22 cultivated Arachis accessions, which revealed a high transferability of the novel SSRs across Arachis species. Our results provided informative clues to investigate microsatellite patterns across A. hypogaea and its wild relative species and potentially facilitate the germplasm evaluation and gene mapping in Arachis species. PMID:27243460

  13. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut.

    PubMed

    Bertioli, David John; Cannon, Steven B; Froenicke, Lutz; Huang, Guodong; Farmer, Andrew D; Cannon, Ethalinda K S; Liu, Xin; Gao, Dongying; Clevenger, Josh; Dash, Sudhansu; Ren, Longhui; Moretzsohn, Márcio C; Shirasawa, Kenta; Huang, Wei; Vidigal, Bruna; Abernathy, Brian; Chu, Ye; Niederhuth, Chad E; Umale, Pooja; Araújo, Ana Cláudia G; Kozik, Alexander; Kim, Kyung Do; Burow, Mark D; Varshney, Rajeev K; Wang, Xingjun; Zhang, Xinyou; Barkley, Noelle; Guimarães, Patrícia M; Isobe, Sachiko; Guo, Baozhu; Liao, Boshou; Stalker, H Thomas; Schmitz, Robert J; Scheffler, Brian E; Leal-Bertioli, Soraya C M; Xun, Xu; Jackson, Scott A; Michelmore, Richard; Ozias-Akins, Peggy

    2016-04-01

    Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut. PMID:26901068

  14. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complex, tetraploid genome structure of peanut (Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populatio...

  15. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most agriculturally important legumes fall within the phaseoloids (containing beans) and galegoids (containing peas and clovers). A notable exception is peanut (Arachis hypogaea) which comes from a basally diverged tropical lineage. To improve our understanding of the Arachis genome, single-copy g...

  16. Marker-assisted breeding for wild species-derived traits in arachis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent evolutionary origin of tetraploid peanut, Arachis hypogaea L., imposed a genetic bottleneck on the species and limited variation for pest and disease resistance genes within the cultivated gene pool. However, considerable diversity for these resistance traits and at the molecular level ha...

  17. The use of the diploid Arachis genomes to aid introgression of wild segments into peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diseases are important reducers of peanut (Arachis hypogaea) yield. Wild species generally harbor greater levels of resistance and even apparent immunity. Genomic regions confering resistance to foliar diseases and root knot nematodes have been identified in populations involving the wild progenitor...

  18. Phylogenetic relationships of species of genus Arachis based on genic sequences.

    PubMed

    He, Guohao; Barkley, Noelle A; Zhao, Yongli; Yuan, Mei; Prakash, C S

    2014-06-01

    The genus Arachis (Fabaceae), which originated in South America, consists of 80 species. Based on morphological traits and cross-compatibility among the species, the genus is divided into nine taxonomic sections. Arachis is the largest section including the economically valuable cultivated peanut (A. hypogaea). Seven genic sequences were utilized to better understand the phylogenetic relationships between species of genus Arachis. Our study displayed four clades of species of Arachis. Arachis triseminata was genetically isolated from all other species of Arachis studied, and it formed the basal clade with A. retusa and A. dardani from the most ancient sections Extranervosae and Heteranthae, respectively. Species of section Arachis formed a separated single clade from all other species, within which species having B and D genome clustered in one subgroup and three species characterized with an A genome grouped together in another subgroup. A divergent clade including species from five sections was sister to the clade of section Arachis. Between the sister clades and the basal clade there was a clade containing species from the more advanced sections. Phylogenetic relationships of all the species of Arachis using multiple genic sequences were similar to the phylogenies produced with single-copy genes. PMID:25211395

  19. Molecular analysis of Arachis interspecific hybrids.

    PubMed

    Garcia, G M; Tallury, S P; Stalker, H T; Kochert, G

    2006-05-01

    Incorporation of genetic resistance against several biotic stresses that plague cultivated peanut, Arachis hypogaea (2n = 4x = 40), is an ideal option to develop disease resistant and ecologically safe peanut varieties. The primary gene pool of peanut contains many diploid wild species (2n = 2x = 20) of Arachis, which have high levels of disease and insect resistances. However, transfer of resistant genes from these species into A. hypogaea is difficult due to ploidy level differences and genomic incompatibilities. This study was conducted to monitor alien germplasm transmission, using Random Amplified Polymorphic DNA (RAPD) markers, from two diploid wild species, A. cardenasii and A. batizocoi, into A. hypogaea. Triploid interspecific hybrids were produced by crossing two A. hypogaea cultivars (NC 6 and Argentine) with the two species and by colchicine-treating vegetative meristems, fertility was restored at the hexaploid (C(o)) level in the four hybrids. Hexaploids were allowed to self-pollinate for four generations, each referred to as a cycle (C1, C2, C3, and C4). At each cycle, a backcross was made with the respective A. hypogaea cultivar as the maternal parent and only lineages tracing back to a single hexaploid hybrid were used for RAPD analysis. Analysis of mapped, species-specific RAPD markers in BC1F1 to BC1F3 hybrids indicated that alien germplasm retention decreased every generation of inbreeding, especially in Argentine and in A. batizocoi crosses. A similar trend was also observed for every cycle in BC1F2 and BC1F3 families, possibly, due to the loss of alien chromosomes following selfing of hexaploids. RAPD marker analysis of 40-chromosome interspecific hybrid derivatives from the four crosses supported previous reports that reciprocal recombination and/or translocations are the predominant mechanisms for exchange of chromosomal segments. No evidence was found for preferential transfer of alien chromosomal regions to specific linkage groups. The

  20. Cultivar specific changes in peanut (Arachis hypogae L.) yield, biomass, and allergenicity in response to elevated atmospheric carbon dioxide concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intraspecific variation in response to rising atmospheric carbon dioxide concentration, [CO2], could, potentially, be used as a means to begin selection for improved quantitative or qualitative characteristics for a given crop. Peanut (Arachis hypogaea L.) is a leguminous crop of global importance;...

  1. Employing microsatellite and SNP markers to track functional mutations and evaluate genetic diversity in the USDA Arachis germplasm collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts (Arachis hypogaea L.) are nutritious because their seeds typically contain high amounts of oil, protein and other phytochemicals such as folic acid, tocopherol, and antioxidants; therefore, they are an important oil seed crop worldwide. The USDA Plant Genetic Resources Conservation Unit mai...

  2. Identification of Fungus Resistant Wild Accessions and Interspecific Hybrids of the Genus Arachis

    PubMed Central

    Michelotto, Marcos Doniseti; Barioni, Waldomiro; de Resende, Marcos Deon Vilela; de Godoy, Ignácio José; Leonardecz, Eduardo; Fávero, Alessandra Pereira

    2015-01-01

    Peanut, Arachis hypogaea L., is a protein-rich species consumed worldwide. A key improvement to peanut culture involves the development of cultivars that resist fungal diseases such as rust, leaf spot and scab. Over three years, we evaluated fungal resistance under field conditions of 43 wild accessions and three interspecific hybrids of the genus Arachis, as well as six A. hypogaea genotypes. In the first year, we evaluated resistance to early and late leaf spot, rust and scab. In the second and third years, we evaluated the 18 wild species with the best resistance scores and control cultivar IAC Caiapó for resistance to leaf spot and rust. All wild accessions displayed greater resistance than A. hypogaea but differed in their degree of resistance, even within the same species. We found accessions with as good as or better resistance than A. cardenasii, including: A. stenosperma (V15076 and Sv 3712), A. kuhlmannii (V 6413), A. kempff-mercadoi (V 13250), A. hoehnei (KG 30006), and A. helodes (V 6325). Amphidiploids and hybrids of A. hypogaea behaved similarly to wild species. An additional four accessions deserve further evaluation: A. magna (V 13751 and KG 30097) and A. gregoryi (V 14767 and V 14957). Although they did not display as strong resistance as the accessions cited above, they belong to the B genome type that is crucial to resistance gene introgression and pyramidization in A. hypogaea. PMID:26090811

  3. Peanut (Arachis hypogaea) Expressed Sequence Tag Project: Progress and Application

    PubMed Central

    Feng, Suping; Wang, Xingjun; Zhang, Xinyou; Dang, Phat M.; Holbrook, C. Corley; Culbreath, Albert K.; Wu, Yaoting; Guo, Baozhu

    2012-01-01

    Many plant ESTs have been sequenced as an alternative to whole genome sequences, including peanut because of the genome size and complexity. The US peanut research community had the historic 2004 Atlanta Genomics Workshop and named the EST project as a main priority. As of August 2011, the peanut research community had deposited 252,832 ESTs in the public NCBI EST database, and this resource has been providing the community valuable tools and core foundations for various genome-scale experiments before the whole genome sequencing project. These EST resources have been used for marker development, gene cloning, microarray gene expression and genetic map construction. Certainly, the peanut EST sequence resources have been shown to have a wide range of applications and accomplished its essential role at the time of need. Then the EST project contributes to the second historic event, the Peanut Genome Project 2010 Inaugural Meeting also held in Atlanta where it was decided to sequence the entire peanut genome. After the completion of peanut whole genome sequencing, ESTs or transcriptome will continue to play an important role to fill in knowledge gaps, to identify particular genes and to explore gene function. PMID:22745594

  4. Spermidine and Flavonoid conjugates from Peanut (Arachis hypogaea) Flower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new triamide has been isolated from peanut flowers and identified as di-p-(EE)-coumaroylacetylspermidine on the basis of detailed analysis of NMR, MS, and UV data. Two other spermidine conjugates, N1, N5, N10-tri-p-(EEE)-coumaroylspermidine and di-p-(EE)-coumaroylspermidine, as well as four flavon...

  5. Genetic relationships among seven sections of genus Arachis studied by using SSR markers

    PubMed Central

    2010-01-01

    Background The genus Arachis, originated in South America, is divided into nine taxonomical sections comprising of 80 species. Most of the Arachis species are diploids (2n = 2x = 20) and the tetraploid species (2n = 2x = 40) are found in sections Arachis, Extranervosae and Rhizomatosae. Diploid species have great potential to be used as resistance sources for agronomic traits like pests and diseases, drought related traits and different life cycle spans. Understanding of genetic relationships among wild species and between wild and cultivated species will be useful for enhanced utilization of wild species in improving cultivated germplasm. The present study was undertaken to evaluate genetic relationships among species (96 accessions) belonging to seven sections of Arachis by using simple sequence repeat (SSR) markers developed from Arachis hypogaea genomic library and gene sequences from related genera of Arachis. Results The average transferability rate of 101 SSR markers tested to section Arachis and six other sections was 81% and 59% respectively. Five markers (IPAHM 164, IPAHM 165, IPAHM 407a, IPAHM 409, and IPAHM 659) showed 100% transferability. Cluster analysis of allelic data from a subset of 32 SSR markers on 85 wild and 11 cultivated accessions grouped accessions according to their genome composition, sections and species to which they belong. A total of 109 species specific alleles were detected in different wild species, Arachis pusilla exhibited largest number of species specific alleles (15). Based on genetic distance analysis, the A-genome accession ICG 8200 (A. duranensis) and the B-genome accession ICG 8206 (A. ipaënsis) were found most closely related to A. hypogaea. Conclusion A set of cross species and cross section transferable SSR markers has been identified that will be useful for genetic studies of wild species of Arachis, including comparative genome mapping, germplasm analysis, population genetic structure and phylogenetic inferences

  6. Newly identified natural high oleate mutant from Arachis hypogaea L. subsp. hypogaea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural genetic variation exists in animals and plants. Mining and utilizing this variation may provide benefits for new breed/cultivar development. From screening over 4,000 cultivated peanut germplasm accessions, we identified two natural mutant lines with 80% oleic acid by gas chromatography anal...

  7. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens.

    PubMed

    Chen, Xiaoping; Li, Hongjie; Pandey, Manish K; Yang, Qingli; Wang, Xiyin; Garg, Vanika; Li, Haifen; Chi, Xiaoyuan; Doddamani, Dadakhalandar; Hong, Yanbin; Upadhyaya, Hari; Guo, Hui; Khan, Aamir W; Zhu, Fanghe; Zhang, Xiaoyan; Pan, Lijuan; Pierce, Gary J; Zhou, Guiyuan; Krishnamohan, Katta A V S; Chen, Mingna; Zhong, Ni; Agarwal, Gaurav; Li, Shuanzhu; Chitikineni, Annapurna; Zhang, Guo-Qiang; Sharma, Shivali; Chen, Na; Liu, Haiyan; Janila, Pasupuleti; Li, Shaoxiong; Wang, Min; Wang, Tong; Sun, Jie; Li, Xingyu; Li, Chunyan; Wang, Mian; Yu, Lina; Wen, Shijie; Singh, Sube; Yang, Zhen; Zhao, Jinming; Zhang, Chushu; Yu, Yue; Bi, Jie; Zhang, Xiaojun; Liu, Zhong-Jian; Paterson, Andrew H; Wang, Shuping; Liang, Xuanqiang; Varshney, Rajeev K; Yu, Shanlin

    2016-06-14

    Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45-56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity. PMID:27247390

  8. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens

    PubMed Central

    Chen, Xiaoping; Li, Hongjie; Pandey, Manish K.; Yang, Qingli; Wang, Xiyin; Garg, Vanika; Li, Haifen; Chi, Xiaoyuan; Doddamani, Dadakhalandar; Hong, Yanbin; Upadhyaya, Hari; Guo, Hui; Khan, Aamir W.; Zhu, Fanghe; Zhang, Xiaoyan; Pan, Lijuan; Pierce, Gary J.; Zhou, Guiyuan; Krishnamohan, Katta A. V. S.; Chen, Mingna; Zhong, Ni; Agarwal, Gaurav; Li, Shuanzhu; Chitikineni, Annapurna; Zhang, Guo-Qiang; Sharma, Shivali; Chen, Na; Liu, Haiyan; Janila, Pasupuleti; Li, Shaoxiong; Wang, Min; Wang, Tong; Sun, Jie; Li, Xingyu; Li, Chunyan; Wang, Mian; Yu, Lina; Wen, Shijie; Singh, Sube; Yang, Zhen; Zhao, Jinming; Zhang, Chushu; Yu, Yue; Bi, Jie; Zhang, Xiaojun; Paterson, Andrew H.; Wang, Shuping; Liang, Xuanqiang; Varshney, Rajeev K.; Yu, Shanlin

    2016-01-01

    Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45–56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis. For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity. PMID:27247390

  9. A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut

    PubMed Central

    2012-01-01

    Background Cultivated peanut (Arachis hypogaea) is an allotetraploid species whose ancestral genomes are most likely derived from the A-genome species, A. duranensis, and the B-genome species, A. ipaensis. The very recent (several millennia) evolutionary origin of A. hypogaea has imposed a bottleneck for allelic and phenotypic diversity within the cultigen. However, wild diploid relatives are a rich source of alleles that could be used for crop improvement and their simpler genomes can be more easily analyzed while providing insight into the structure of the allotetraploid peanut genome. The objective of this research was to establish a high-density genetic map of the diploid species A. duranensis based on de novo generated EST databases. Arachis duranensis was chosen for mapping because it is the A-genome progenitor of cultivated peanut and also in order to circumvent the confounding effects of gene duplication associated with allopolyploidy in A. hypogaea. Results More than one million expressed sequence tag (EST) sequences generated from normalized cDNA libraries of A. duranensis were assembled into 81,116 unique transcripts. Mining this dataset, 1236 EST-SNP markers were developed between two A. duranensis accessions, PI 475887 and Grif 15036. An additional 300 SNP markers also were developed from genomic sequences representing conserved legume orthologs. Of the 1536 SNP markers, 1054 were placed on a genetic map. In addition, 598 EST-SSR markers identified in A. hypogaea assemblies were included in the map along with 37 disease resistance gene candidate (RGC) and 35 other previously published markers. In total, 1724 markers spanning 1081.3 cM over 10 linkage groups were mapped. Gene sequences that provided mapped markers were annotated using similarity searches in three different databases, and gene ontology descriptions were determined using the Medicago Gene Atlas and TAIR databases. Synteny analysis between A. duranensis, Medicago and Glycine revealed

  10. A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome

    PubMed Central

    Moretzsohn, Márcio C; Barbosa, Andrea VG; Alves-Freitas, Dione MT; Teixeira, Cristiane; Leal-Bertioli, Soraya CM; Guimarães, Patrícia M; Pereira, Rinaldo W; Lopes, Catalina R; Cavallari, Marcelo M; Valls, José FM; Bertioli, David J; Gimenes, Marcos A

    2009-01-01

    Background Arachis hypogaea (peanut) is an important crop worldwide, being mostly used for edible oil production, direct consumption and animal feed. Cultivated peanut is an allotetraploid species with two different genome components, A and B. Genetic linkage maps can greatly assist molecular breeding and genomic studies. However, the development of linkage maps for A. hypogaea is difficult because it has very low levels of polymorphism. This can be overcome by the utilization of wild species of Arachis, which present the A- and B-genomes in the diploid state, and show high levels of genetic variability. Results In this work, we constructed a B-genome linkage map, which will complement the previously published map for the A-genome of Arachis, and produced an entire framework for the tetraploid genome. This map is based on an F2 population of 93 individuals obtained from the cross between the diploid A. ipaënsis (K30076) and the closely related A. magna (K30097), the former species being the most probable B genome donor to cultivated peanut. In spite of being classified as different species, the parents showed high crossability and relatively low polymorphism (22.3%), compared to other interspecific crosses. The map has 10 linkage groups, with 149 loci spanning a total map distance of 1,294 cM. The microsatellite markers utilized, developed for other Arachis species, showed high transferability (81.7%). Segregation distortion was 21.5%. This B-genome map was compared to the A-genome map using 51 common markers, revealing a high degree of synteny between both genomes. Conclusion The development of genetic maps for Arachis diploid wild species with A- and B-genomes effectively provides a genetic map for the tetraploid cultivated peanut in two separate diploid components and is a significant advance towards the construction of a transferable reference map for Arachis. Additionally, we were able to identify affinities of some Arachis linkage groups with Medicago

  11. Tetrasomic Recombination Is Surprisingly Frequent in Allotetraploid Arachis

    PubMed Central

    Leal-Bertioli, Soraya; Shirasawa, Kenta; Abernathy, Brian; Moretzsohn, Marcio; Chavarro, Carolina; Clevenger, Josh; Ozias-Akins, Peggy; Jackson, Scott; Bertioli, David

    2015-01-01

    Arachis hypogaea L. (cultivated peanut) is an allotetraploid (2n = 4x = 40) with an AABB genome type. Based on cytogenetic studies it has been assumed that peanut and wild-derived induced AABB allotetraploids have classic allotetraploid genetic behavior with diploid-like disomic recombination only between homologous chromosomes, at the exclusion of recombination between homeologous chromosomes. Using this assumption, numerous linkage map and quantitative trait loci studies have been carried out. Here, with a systematic analysis of genotyping and gene expression data, we show that this assumption is not entirely valid. In fact, autotetraploid-like tetrasomic recombination is surprisingly frequent in recombinant inbred lines generated from a cross of cultivated peanut and an induced allotetraploid derived from peanut’s most probable ancestral species. We suggest that a better, more predictive genetic model for peanut is that of a “segmental allotetraploid” with partly disomic, partly tetrasomic genetic behavior. This intermediate genetic behavior has probably had a previously overseen, but significant, impact on the genome and genetics of cultivated peanut. PMID:25701284

  12. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea

    PubMed Central

    Su, Liang-Chen; Deng, Bin; Liu, Shuai; Li, Li-Mei; Hu, Bo; Zhong, Yu-Ting; Li, Ling

    2015-01-01

    Histone acetylation, which together with histone methylation regulates gene activity in response to stress, is an important epigenetic modification. There is an increasing research focus on histone acetylation in crops, but there is no information to date in peanut (Arachis hypogaea). We showed that osmotic stress and ABA affect the acetylation of histone H3 loci in peanut seedlings by immunoblotting experiments. Using RNA-seq data for peanut, we found a RPD3/HDA1-like superfamily histone deacetylase (HDAC), termed AhHDA1, whose gene is up-regulated by PEG-induced water limitation and ABA signaling. We isolated and characterized AhHDA1 from A. hypogaea, showing that AhHDA1 is very similar to an Arabidopsis HDAC (AtHDA6) and, in recombinant form, possesses HDAC activity. To understand whether and how osmotic stress and ABA mediate the peanut stress response by epigenetics, the expression of AhHDA1 and stress-responsive genes following treatment with PEG, ABA, and the specific HDAC inhibitor trichostatin A (TSA) were analyzed. AhHDA1 transcript levels were enhanced by all three treatments, as was expression of peanut transcription factor genes, indicating that AhHDA1 might be involved in the epigenetic regulation of stress resistance genes that comprise the responses to osmotic stress and ABA. PMID:26217363

  13. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut.

    PubMed

    Leal-Bertioli, Soraya C M; Moretzsohn, Márcio C; Roberts, Philip A; Ballén-Taborda, Carolina; Borba, Tereza C O; Valdisser, Paula A; Vianello, Rosana P; Araújo, Ana Cláudia G; Guimarães, Patricia M; Bertioli, David J

    2016-02-01

    Root-knot nematodes (RKN; Meloidogyne sp.) are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea) is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL) located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR) markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs. PMID:26656152

  14. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut

    PubMed Central

    Leal-Bertioli, Soraya C. M.; Moretzsohn, Márcio C.; Roberts, Philip A.; Ballén-Taborda, Carolina; Borba, Tereza C. O.; Valdisser, Paula A.; Vianello, Rosana P.; Araújo, Ana Cláudia G; Guimarães, Patricia M.; Bertioli, David J.

    2015-01-01

    Root-knot nematodes (RKN; Meloidogyne sp.) are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea) is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL) located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR) markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs. PMID:26656152

  15. A Specific Qualitative Detection Method for Peanut (Arachis Hypogaea) in Foods Using Polymerase Chain Reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a qualitative detection method for peanuts in foods using polymerase chain reaction (PCR). We designed a universal primer pair CP 03-5’/ CP 03-3’ to confirm the validity of the DNAs for PCR. The plant specific amplified fragments were detected from 13 kinds of plants using the universal...

  16. Transcriptome-wide sequencing provides insights into geocarpy in peanut (Arachis hypogaea L.).

    PubMed

    Chen, Xiaoping; Yang, Qingli; Li, Haifen; Li, Heying; Hong, Yanbin; Pan, Lijuan; Chen, Na; Zhu, Fanghe; Chi, Xiaoyuan; Zhu, Wei; Chen, Mingna; Liu, Haiyan; Yang, Zhen; Zhang, Erhua; Wang, Tong; Zhong, Ni; Wang, Mian; Liu, Hong; Wen, Shijie; Li, Xingyu; Zhou, Guiyuan; Li, Shaoxiong; Wu, Hong; Varshney, Rajeev; Liang, Xuanqiang; Yu, Shanlin

    2016-05-01

    A characteristic feature of peanut is the subterranean fructification, geocarpy, in which the gynophore ('peg'), a specialized organ that transitions from upward growth habit to downward outgrowth upon fertilization, drives the developing pod into the soil for subsequent development underground. As a step towards understanding this phenomenon, we explore the developmental dynamics of the peanut pod transcriptome at 11 successive stages. We identified 110 217 transcripts across developmental stages and quantified their abundance along a pod developmental gradient in pod wall. We found that the majority of transcripts were differentially expressed along the developmental gradient as well as identified temporal programs of gene expression, including hundreds of transcription factors. Thought to be an adaptation to particularly harsh subterranean environments, both up- and down-regulated gene sets in pod wall were enriched for response to a broad array of stimuli, like gravity, light and subterranean environmental factors. We also identified hundreds of transcripts associated with gravitropism and photomorphogenesis, which may be involved in the geocarpy. Collectively, this study forms a transcriptional baseline for geocarpy in peanut as well as provides a considerable body of evidence that transcriptional regulation in peanut aerial and subterranean fruits is complex. PMID:26502832

  17. Allergens of Arachis hypogaea and the effect of processing on their detection by ELISA.

    PubMed

    Iqbal, Amjad; Shah, Farooq; Hamayun, Muhammad; Ahmad, Ayaz; Hussain, Anwar; Waqas, Muhammad; Kang, Sang-Mo; Lee, In-Jung

    2016-01-01

    Food allergies are an emerging public health problem in industrialized areas of the world. They represent a considerable health problem in these areas because of the relatively high number of reported cases. Usually, food allergens are proteins or glycoproteins with a molecular mass ranging from 10 to 70 kDa. Among the food allergies, peanut is accounted to be responsible for more than 50% of the food allergy fatalities. Threshold doses for peanut allergenic reactions have been found to range from as low as 100 µg to 1 g of peanut protein, which equal to 400 µg to 4 g peanut meal. Allergens from peanut are mainly seed storage proteins that are composed of conglutin, vicilin, and glycinin families. Several peanut proteins have been identified to induce allergic reactions, particularly Ara h 1-11. This review is mainly focused on different classes of peanut allergens, the effect of thermal and chemical treatment of peanut allergens on the IgY binding and detectability of these allergens by enzyme linked immunosorbent assay (ELISA) to provide knowledge for food industry. PMID:26931300

  18. Allergens of Arachis hypogaea and the effect of processing on their detection by ELISA

    PubMed Central

    Iqbal, Amjad; Shah, Farooq; Hamayun, Muhammad; Ahmad, Ayaz; Hussain, Anwar; Waqas, Muhammad; Kang, Sang-Mo; Lee, In-Jung

    2016-01-01

    Food allergies are an emerging public health problem in industrialized areas of the world. They represent a considerable health problem in these areas because of the relatively high number of reported cases. Usually, food allergens are proteins or glycoproteins with a molecular mass ranging from 10 to 70 kDa. Among the food allergies, peanut is accounted to be responsible for more than 50% of the food allergy fatalities. Threshold doses for peanut allergenic reactions have been found to range from as low as 100 µg to 1 g of peanut protein, which equal to 400 µg to 4 g peanut meal. Allergens from peanut are mainly seed storage proteins that are composed of conglutin, vicilin, and glycinin families. Several peanut proteins have been identified to induce allergic reactions, particularly Ara h 1–11. This review is mainly focused on different classes of peanut allergens, the effect of thermal and chemical treatment of peanut allergens on the IgY binding and detectability of these allergens by enzyme linked immunosorbent assay (ELISA) to provide knowledge for food industry. PMID:26931300

  19. Identification of drought-induced transcription factors in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription factors play key roles in the regulation of genes involved in normal development as well as tolerance to biotic and abiotic stresses. Specific transcription factors that are induced in peanut under drought conditions have not been identified. The objectives of this study were to comp...

  20. Cloning and Functional Analysis of Three Diacylglycerol Acyltransferase Genes from Peanut (Arachis hypogaea L.)

    PubMed Central

    Zhang, Xiaowen; Chen, Mingna; Chen, Na; Pan, Lijuan; Wang, Tong; Wang, Mian; Yang, Zhen; Wang, Quanfu; Yu, Shanlin

    2014-01-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the final and only committed acylation step in the synthesis of triacylglycerols. In this study, three novel AhDGATs genes were identified and isolated from peanut. Quantitative real-time RT-PCR analysis indicated that the AhDGAT1-2 transcript was more abundant in roots, seeds, and cotyledons, whereas the transcript abundances of AhDGAT1-1 and AhDGAT3-3 were higher in flowers than in the other tissues examined. During seed development, transcript levels of AhDGAT1-1 remained relatively low during the initial developmental stage but increased gradually during later stages, peaking at 50 days after pegging (DAP). Levels of AhDGAT1-2 transcripts were higher at 10 and 60 DAPs and much lower during other stages, whereas AhDGAT3-3 showed higher expression levels at 20 and 50 DAPs. In addition, AhDGAT transcripts were differentially expressed following exposure to abiotic stresses or abscisic acid. The activity of the three AhDGAT genes was confirmed by heterologous expression in a Saccharomyces cerevisiae TAG-deficient quadruple mutant. The recombinant yeasts restored lipid body formation and TAG biosynthesis, and preferentially incorporated unsaturated C18 fatty acids into lipids. The present study provides significant information useful in modifying the oil deposition of peanut through molecular breeding. PMID:25181516

  1. Shotgun label-free quantitative proteomics of developing peanut (Arachis hypogaea L.) seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Legume seeds and peanuts, in particular, are an inexpensive source of plant proteins and edible oil. Owing to their importance in global food security, it is necessary to understand the genetic, biochemical, and physiological mechanisms controlling seed quality and nutritive attributes. A comprehens...

  2. Comparison of gene expression profiles in cultivated peanut (Arachis hypogaea) under strong artificial selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past five decades, cultivated peanut in China has been subjected to strong artificial selection in breeding programs. To investigate the impact of artificial selection on expression diversity, we compared gene expression profiles in pod and leaf of five widespread cultivars in Southern Chin...

  3. Peanut (Arachis hypogaea) expressed sequence tag (EST) project: Progress and application.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Millions of expressed sequence tag (EST) sequences from several hundred plant species have been deposited in public EST databases. Many plant ESTs have been sequenced as an alternative to whole genome sequences, including peanut because of the genome size and complexity. The US peanut research commu...

  4. ARACHIS HYPOGAEA (PEANUT) SEED STORAGE PROTEIN ISO-ARA H3 MRNA COMPLETE SEQUENCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic research can provide new tools and resources to revolutionarily enhance crop genetic improvement and production. However, genome research in peanut is far behind those in other crops, such as maize, soybean, wheat, and sorghum due to the shortage of essential genome infrastructure, tools, an...

  5. Effects of zinc oxide nano-particles on groundnut (Arachis hypogaea) seedlings

    NASA Astrophysics Data System (ADS)

    Dastjerdi, Ehsan Borzouyan; Sahid, Ismail Bin; Jusoh, Khairiah Binti

    2015-09-01

    Along with the rapid growth of nanoparticle consumption in various industries, concerns about the unknown effects caused by the presence of these materials in the natural environment and agricultural systems are being highlighted. Due to the growing trend of Nano Zinc Oxide Nanoparticle (ZnO-np) which is one of the most widely used nanoparticles being released into the environment, it has attracted the attention for more studies to be done on the effects of this nanoparticle on organisms. This study was carried out to investigate the phytotoxicity effect of ZnO-np on peanut seedlings in Murashige and Skoog medium (MS medium). The experimental treatments of this study include nine concentrations of ZnO-np (0, 10, 30, 50, 100, 200, 400, 1000, 2000 ppm) added to MS medium. Peanut seedlings were incubated for 3 weeks in optimum condition and after that, seedling characteristics such as length, wet and dry weight of root and shoot were measured and the water content of root and shoot were calculated. Results of this study showed that the root and shoot length of peanut seedlings were affected by ZnO-np exposure, in a way that root length in 50 ppm ZnO-np and higher concentrations was significantly lower than that of control treatment and the shortest shoot length was observed to be from 2000 ppm ZnO-np concentration treatment. Also, both the root and shoot wet weight decreased as the nanoparticle concentration increased. However, despite the decreasing root and shoot dry weight with increasing concentration, there was no significant difference. On the other hand, the root dry weight in 10 ppm ZnO-np was significantly higher than the peanut seedlings treated with more than 200 ppm ZnO-np.

  6. Recent advances in molecular genetic linkage maps of cultivated peanut (Arachis hypogaea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The competitiveness of peanuts in domestic and global markets has been threatened by losses in productivity and quality that are attributed to diseases, pests, environmental stresses and allergy or food safety issues. Narrow genetic diversity and deficiency of polymorphic DNA markers have severely h...

  7. Localized Production of Phytoalexins by Peanut (Arachis hypogaea) Kernels in Response to Fungal Invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts respond to fungal infection by synthesizing phytoalexins, most of which are antibiotic stilbenes. The mechanism and dynamics of phytoalexin formation in the peanut has not been studied. One of the most popular peanut cultivars in the southeastern U.S., Georgia Green, was investigated for its...

  8. Mapping FAD2 genes on peanut (arachis hypogaea L.) genome contribution to oil quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvement of oil quality traits in peanut is the second most important research goal other than yield because of high impact on market and consumers due to profitability and several health benefits. Although FAD genes are known to control some of these traits but their position on the peanut genom...

  9. Impact of crossing conditions on the success of artificial hybridization of Arachis hypogaea L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to protect peanut yield and quality under dynamic farming conditions, pyramiding desirable traits from multiple lines has been the major task for peanut breeders. In addition, dissecting genetic components of heritable traits also relies on the development of large mapping populations. Ar...

  10. Preliminary Heritability Estimates for Drought Resistance Related Traits in Cultivated Peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a major factor in reduced productivity in peanuts. Cultivars that have high water-use efficiency have the potential to enhance the yield of the crop. Studies have shown that pod yield is a function of water transpired (T), water-use efficiency (WUE), and harvest index (HI). It is logisti...

  11. New Monomeric Stilbenoids from Peanut (Arachis hypogaea) Seeds Challenged by an Aspergillus flavus Strain.

    PubMed

    Sobolev, Victor S; Krausert, Nicole M; Gloer, James B

    2016-01-27

    Two new stilbene derivatives have been isolated from peanut seeds challenged by an Aspergillus flavus strain, along with chiricanine B, which has not been previously reported from peanuts, as well as a stilbenoid reported previously only as a synthetic product. The structures of these new putative phytoalexins were determined by analysis of (1)H and (13)C NMR, HRESIMS, MS(n), and UV data. The new stilbenoids were named arahypin-13 (21), arahypin-14 (22), and arahypin-15 (23). Together with other known bioactive peanut stilbenoids that were also produced in the challenged seeds, these new compounds may play a defensive role against invasive fungi. PMID:26672388

  12. Mechanism of aflatoxin uptake in roots of intact groundnut (Arachis hypogaea L.) seedlings.

    PubMed

    Snigdha, M; Hariprasad, P; Venkateswaran, G

    2013-12-01

    Aflatoxins are one of the most potent toxic substances that occur naturally, which enter agricultural soils through the growth of aflatoxigenic fungi in rhizhosphere and nonrhizhosphere soils. Though several reports regarding the uptake of aflatoxin by plants are available, the mechanism of aflatoxin uptake remains unknown. This study characterized the aflatoxin uptake mechanism by in vitro hydroponic experiments under variable conditions. The uptake reached saturation after 48 h of incubation for AFB1 and B2 and 60 h for AFG1 and G2. A linear increase in uptake with increasing aflatoxin concentrations was observed, and it fits both linear and nonlinear regression. AFB1 uptake was directly proportional to transpiration rate, and blocking aquaporin activity using mercuric chloride revealed its involvement in the uptake. None of the metabolic inhibitors used to block active transport had any effect on aflatoxin uptake except for sodium azide. From the present study, it could be concluded that aflatoxin uptake by groundnut roots followed mainly a passive way and is facilitated through aquaporins. The involvement of active component should be studied in detail. PMID:23660803

  13. Interaction of flumioxazin with dimethenamid or metolachlor in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in various peanut growing regions of Texas and Georgia to study peanut response to flumioxazin alone or in combination with dimethenamid or metolachlor. In southern Texas during 1997, flumioxazin plus metolachlor resulted in greater than 45% peanut stunt, while flumioxaz...

  14. Identification of stress-related small RNA's in peanuts (Arachis hypogaea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several classes of small RNAs have been studied in plants with the most extensively studied class being microRNAs (miRNAs). microRNAs (miRNAs) are an endogenous class of 20-25 nucleotide noncoding RNAs that are thought to play an important role in regulating gene expression by targeting mRNAs for cl...

  15. Molecular cloning, expression, and evolution analysis of type II CHI gene from peanut (Arachis hypogaea L.).

    PubMed

    Liu, Yu; Zhao, Shuzhen; Wang, Jiangshan; Zhao, Chuanzhi; Guan, Hongshan; Hou, Lei; Li, Changsheng; Xia, Han; Wang, Xingjun

    2015-01-01

    Chalcone isomerase (CHI) plays critical roles in plant secondary metabolism, which is important for the interaction between plants and the environment. CHI genes are widely studied in various higher plants. However, little information about CHI genes is available in peanut. Based on conservation of CHI gene family, we cloned the peanut type II CHI gene (AhCHI II) cDNA and genome sequence. The amino acid sequence of peanut CHI II was highly homologous to type II CHI from other plant species. qRT-PCR results showed that peanut CHI II is mainly expressed in roots; however, peanut CHI I is mainly expressed in tissues with high content of anthocyanin. Gene duplication and gene cluster analysis indicated that CHI II was derived from CHI I 65 million years ago approximately. Our gene structure analysis results are not in agreement with the previous hypothesis that CHI II was derived from CHI I by the insertion of an intron into the first exon. Moreover, no positive selection pressure was found in CHIs, while, 32.1 % of sites were under neutral selection, which may lead to mutation accumulation and fixation during great changes of environment. PMID:25608978

  16. Development and utilization of InDel markers to identify peanut (Arachis hypogaea) disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To date, nearly 10,000 SSR-based markers have been identified by various research groups around the world, but less than 14.5% showed polymorphism in peanut and only 6.4% were mapped. Low levels of polymorphism limit the application of marker assisted selection (MAS) in peanut breeding programs. I...

  17. Development and Utilization of InDel Markers to Identify Peanut (Arachis hypogaea L.) Disease Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut diseases, such as leaf spot and spotted wilt caused by Tomato Spotted Wilt Virus, can significantly reduce yield and quality. Application of marker assisted plant breeding requires the development and validation of different types of DNA molecular markers. Nearly 10,000 SSR-based molecular ...

  18. Antifungal activity in transgenic peanut (Arachis hypogaea L.) conferred by a nonheme chloroperoxidase gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A nonheme chloroperoxidase gene (cpo-p) from Pseudomonas pyrrocinia, a growth inhibitor of mycotoxin-producing fungi, was introduced into peanut via particle bombardment. The expression of the cpo-p gene is predicted to increase pathogen defense in peanut. Embryogenic peanut tissues were bombarded...

  19. Molecular cloning and characterization of annexin genes in peanut (Arachis hypogaea L.).

    PubMed

    He, MeiJing; Yang, XinLei; Cui, ShunLi; Mu, GuoJun; Hou, MingYu; Chen, HuanYing; Liu, LiFeng

    2015-08-15

    Annexin, Ca(2+) or phospholipid binding proteins, with many family members are distributed throughout all tissues during plant growth and development. Annexins participate in a number of physiological processes, such as exocytosis, cell elongation, nodule formation in legumes, maturation and stress response. Six different full-length cDNAs and two partial-length cDNAs of peanut, (AnnAh1, AnnAh2, AnnAh3, AnnAh5, AnnAh6, AnnAh7, AnnAh4 and AnnAh8) encoding annexin proteins, were isolated and characterized using a RT-PCR/RACE-PCR based strategy. The predicted molecular masses of these annexins were 36.0kDa with acidic pIs of 5.97-8.81. ANNAh1, ANNAh2, ANNAh3, ANNAh5, ANNAh6 and ANNAh7 shared sequence similarity from 35.76 to 66.35% at amino acid level. Phylogenetic analysis revealed their evolutionary relationships with corresponding orthologous sequences in soybean and deduced proteins in various plant species. Real-time quantitative assays indicated that these genes were differentially expressed in various organs. Transcript level analysis for six annexin genes under stress conditions showed that these genes were regulated by drought, salinity, heavy metal stress, low temperature and hormone. Additionally, the prediction of cis-regulatory element suggested that different cis-responsive elements including stress- and hormone-responsive-related elements could respond to various stress conditions. These results indicated that members of AnnAhs family may play important roles in the adaptation of peanut to various environmental stresses. PMID:25958350

  20. Evaluation of yield and reproductive efficiency in peanut (Arachis hypogaea L.) under different available soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to evaluate the responses to difference in available soil water levels for yield and reproductive characters of peanut genotypes and relate these responses to pod yield under drought conditions. Eleven peanut genotypes were tested under three soil moisture levels (Field Cap...

  1. Identification of quantitative trait loci(QTL) controlling important fatty acids in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids play important role in controlling oil quality of peanut. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80%, there are several minor fatty acids accounting for about 20% in peanut oil, such as palmitic acid (PA, C16:0), stearic (S...

  2. Combining Ability of Pod Yield and Related Traits of Groundnut (Arachis hypogaea L.) under Salinity Stress

    PubMed Central

    Azad, Md. Abul Kalam; Shah-E-Alam, Md.; Hamid, Md. Abdul; Rafii, Mohd Y.; Malek, M. A.

    2014-01-01

    A study was performed using 6 × 6 F1 diallel population without reciprocals to assess the mode of inheritance of pod yield and related traits in groundnut with imposed salinity stress. Heterosis was found for pod number and yield. Data on general and specific combining ability (gca and sca) indicated additive and nonadditive gene actions. The gca: sca ratios were much less than unity suggesting predominant role of nonadditive gene effects. Cultivars “Binachinabadam-2” and “Dacca-1” and mutant M6/25/64-82 had the highest, second highest, and third highest pod number, as well as gca values, respectively. These two cultivars and another mutant M6/15/70-19 also had the highest, second highest, and third highest pod yield, as well as gca values, respectively. Therefore, “Dacca-1”, “Binachinabadam-2”, M6/25/64-82, and M6/15/70-19 could be used as source of salinity tolerance. Cross combinations showing high sca effects arising from parents with high and low gca values for any trait indicate the influence of nonadditive genes on their expression. Parents of these crosses can be used for biparental mating or reciprocal recurrent selection for developing high yielding varieties. Crosses with high sca effects having both parents with good gca effects could be exploited by pedigree breeding to get transgressive segregants. PMID:24737982

  3. Regulation of the Phenylpropanoid Pathway: A Mechanism of Selenium Tolerance in Peanut (Arachis hypogaea L.) Seedlings.

    PubMed

    Wang, Guang; Wu, Liying; Zhang, Hong; Wu, Wenjia; Zhang, Mengmeng; Li, Xiaofeng; Wu, Hui

    2016-05-11

    To clarify the mechanisms of selenium (Se) tolerance in peanut seedlings, we grew peanut seedlings with sodium selenite (0, 3, and 6 mg/L), and investigated the phenylpropanoids metabolism in seedling roots. The results showed that selenite up-regulated the expression of genes and related enzyme activities involving in the phenylpropanoids biosynthesis cascade, such as phenylalanine ammonia-lyase, trans-cinnamate-4-hydroxylase, chalcone synthase, chalcone isomerase, and cinnamyl-alcohol dehydrogenase. Selenite significantly increased phenolic acids and flavonoids, which contributed to the alleviation of selenite-induced stress. Moreover, selenite enhanced the formation of endodermis in roots, which may be attributed to the up-regulation of lignin biosynthesis mediated by the selenite-induced changes of H2O2 and NO, which probably regulated the selenite uptake from an external medium. Accumulation of polyphenolic compounds via the phenylpropanoid pathway may be one of the mechanisms of the increasing selenite tolerance in plants, by which peanut seedlings survived in seleniferous soil, accompanied by accumulation of Se. PMID:27089243

  4. Trichoderma viride induces pathogenesis related defense response against rot pathogen infection in groundnut (Arachis hypogaea L.).

    PubMed

    Gajera, H P; Savaliya, Disha D; Patel, S V; Golakiya, B A

    2015-08-01

    The study examine induction of defense enzymes involved in phenylpropanoid pathway and accumulation of pathogenesis related proteins in rot pathogen (Aspergillus niger Van Tieghem) challenged groundnut seedlings in response to Trichoderma viride JAU60. Seeds of five groundnut varieties differing in collar rot susceptibility were sown under non-infested, pathogen infested and pathogen+T. viride JAU60 seed treatment. Collar rot disease evident between 31.0% (J-11, GG-2) and 67.4% (GG-20) in different groundnut varieties under pathogen infested which was significantly reduced from 58.1% (J-11, GG-2) to 51.6% (GG-20) by Trichoderma treatment. The specific activities of polyphenol oxidase (EC 1.14.18.1) and β-1,3 glucanase (EC 3.2.1.6) elevated 3.5 and 2.3-fold, respectively, at 3 days; phenylalanine ammonia lyase (EC 4.3.1.5) evident 1.6-fold higher at 6 days; and chitinase (EC 3.2.1.14) sustained 2.3-2.8 folds up to 9 days in Trichoderma treated+pathogen infested seedlings of tolerant varieties (J-11, GG-2) compared with moderate and susceptible (GAUG-10, GG-13, GG-20). T. viride JAU60 induces defense enzymes in a different way for tolerant and susceptible varieties to combat the disease. This study indicates the synergism activation of defense enzymes under the pathogenic conditions or induced resistance by T. viride JAU60 in a different groundnut varieties susceptible to collar rot disease. PMID:26160540

  5. A SSR-based genetic linkage map of cultivated peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to construct a molecular linkage map of cultivated tetraploid peanut using simple sequence repeat (SSR) markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs), and by "data mining" sequences released in GenBank. Three recombinant inbre...

  6. New Stilbenoids from Peanut (Arachis hypogaea) Kernels Challenged by an Aspergillus caelatus Strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four new stilbene derivatives termed arahypins have been isolated from peanut kernels challenged by an Aspergillus caelatus strain, along with two known stilbenoids that have not been previously reported in peanuts. The structures of these new putative phytoalexins were determined by analysis of NMR...

  7. Nutritional composition and antioxidant activity of Spanish and Virginia groundnuts (Arachis hypogaea L.): a comparative study.

    PubMed

    Mahatma, M K; Thawait, L K; Bishi, S K; Khatediya, N; Rathnakumar, A L; Lalwani, H B; Misra, J B

    2016-05-01

    Kernels of sixty groundnut genotypes comprising thirty each of Spanish and Virginia groups were characterized and compared for the content of oil, protein, phenols and antioxidant activity along with their fatty acid and sugars profiles. The antioxidant activity for Virginia genotypes was ranged from 12.5 to 16.5 μM Trolox equivalent activity for Spanish genotypes ranged from 6.8-15.2 μM. Amongst Virginia types, the highest oleic acid/linoleic acid (O/L) ratio of 2.38 was observed for NRCG 12312 while from Spanish group the highest O/L ratio of 1.24 was observed for NRCG 12731. The sucrose content for Virginia genotypes ranged from 38.5 to 69.0 mg/g while it was 27.9 to 53.3 mg/g for Spanish genotypes. Average myo-inositol content was higher for Spanish genotypes (0.8-2.1 mg/g) compared to Virginia (0.4-1.8 mg/g) while the reverse was true for stachayose content (Spanish: 3.5-7.9 mg/g; Virginia: 4.6-10.3 mg/g). Thus, Virginia genotypes could be preferred to Spanish genotypes for better oil stability and antioxidant activity. PMID:27407194

  8. Mapping FAD2 genes on peanut (Arachis hypogaea L.) genome and contribution to oil quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvement of oil quality traits in peanut is the second most important research goal other than yield because of high impact on market and consumers due to profitability and several health benefits. Although FAD genes are known to control some of these traits but their position on the peanut genom...

  9. Genetic variation of purified U.S. Peanut (Arachis hypogaea L.) mini-core collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many accessions of the USDA peanut germplasm collection are heterogeneous. Advances in genomics technology have highlighted the need for collections of homogeneous accessions. Using homogeneous accessions is critical for many types of phenotypic and genomic evaluations. The objectives of this resea...

  10. Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants accumulate defensive phytoalexins in response to the presence of pathogens, which in turn produce phytoalexin-detoxification enzymes for successfully invading the plant host. The detoxification of a number of phytoalexins by phytopathogenic fungi has been elucidated for various host plant fam...

  11. Reduction of IgE immunoreactivity of whole peanut (Arachis hypogaea L.) after pulsed light illumination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulsed light (PL), a novel food processing and preservation technology, has been shown in literature to reduce allergen levels on peanut, soybean, almond, and shrimp protein extracts. This study investigated how PL affected the immunoreactivity of whole peanut kernels at two sample-to-lamp distance...

  12. Extraction, Purification and Primary Characterization of Polysaccharides from Defatted Peanut (Arachis hypogaea) Cakes.

    PubMed

    Liu, Hongzhi; Jiang, Nan; Liu, Li; Sheng, Xiaojing; Shi, Aimin; Hu, Hui; Yang, Ying; Wang, Qiang

    2016-01-01

    The hot-water extraction, purification and characterization of polysaccharides from defatted peanut cake (PPC) were investigated in this study. A Box-Behnken factorial design (BBD) was used to investigate the effects of three independent variables, namely extraction temperature (X₁), extraction time (X₂) and ratio of water to raw material (X₃). The optimum conditions were 85 °C, 3 h and 20:1 (mL/g) respectively. Regression analysis was done to reveal the experimental results which include 34.97% extraction rate while the value verified under these conditions was 34.49%. The crude PPC was sequentially further purified by Sephadex G-100 chromatography, and one purified fraction was obtained. The PPC purified fraction was characterized by FT-IR, HPAEC; SEC-MALLS. The average molecular weight of the PPC purified fraction was 2.383 × 10⁵ Da. The polysaccharide was mainly composed of glucose, galactose, arabinose and xylose. The PPC have the typical absorption of polysaccharide. PMID:27258246

  13. New Monomeric Stilbenoids from Peanut (Arachis hypogaea) Seeds Challenged by an Aspergillus flavus Strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two new stilbene derivatives have been isolated from peanut seeds challenged by an Aspergillus flavus strain, along with chiricanine B that has not been reported from peanuts, as well as a stilbenoid that has been known as a synthetic product. The structures of these new putative phytoalexins were d...

  14. New pterocarpenes elicited by Aspergillus caelatus in peanut (Arachis hypogaea) seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two new substituted pterocarpenes named aracarpene-1 and aracarpene-2 have been isolated from wounded peanut seeds challenged by a strain of Aspergillus caelatus. The structures of these new putative phytoalexins were determined by interpretation of NMR and MS data. Together with peanut stilbenoids ...

  15. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis.

    PubMed

    Grönemeyer, Jann Lasse; Hurek, Thomas; Bünger, Wiebke; Reinhold-Hurek, Barbara

    2016-01-01

    Twenty one strains of symbiotic bacteria from root nodules of local races of cowpea (Vigna unguiculata), Bambara groundnut (Vigna subterranea) and peanuts (Arachis hypogaea) grown on subsistence farmers' fields in the Kavango region of Namibia, were previously characterized as a novel group within the genus Bradyrhizobium. To verify their taxonomic position, the strains were further analysed using a polyphasic approach. 16S rRNA gene sequences were most similar to Bradyrhizobium manausense BR 3351T, with Bradyrhizobium ganzhouense RITF806T being the most closely related type strain in the phylogenetic analysis, and Bradyrhizobium yuanmingense CCBAU 10071T in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK placed the strains in a highly supported lineage distinct from species of the genus Bradyrhizobium with validly published names; they were most closely related to Bradyrhizobium subterraneum 58 2-1T. The status of the species was validated by results of DNA-DNA hybridization. The combination of phenotypic characteristics from several tests, including carbon source utilization and antibiotic resistance, could be used to differentiate representative strains of species of the genus Bradyrhizobium with validly published names. Novel strain 7-2T induced effective nodules on Vigna subterranea, Vigna unguiculata, Arachis hypogaea and on Lablab purpureus. The DNA G+C content of strain 7-2T was 65.4 mol% (Tm). Based on the data presented, we conclude that these strains represent a novel species for which the name Bradyrhizobium vignae sp. nov. is proposed, with strain 7-2T [LMG 28791T, DSMZ 100297T, NTCCM0018T (Windhoek)] as the type strain. PMID:26463703

  16. Advances in Arachis through genomics and biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 5th International Conference of the peanut research community met in Brasilia, Brazil from June 13 through 16, 2011 to discuss “Advances in Arachis through genomics and biotechnology”. Over 100 participated from many countries such as United States, Japan, China, India, Brazil, Argentina, with ...

  17. Characterization of a Pathogen Induced Thaumatin-Like Protein Gene AdTLP from Arachis diogoi, a Wild Peanut

    PubMed Central

    Singh, Naveen Kumar; Kumar, Koppolu Raja Rajesh; Kumar, Dilip; Shukla, Pawan; Kirti, P. B.

    2013-01-01

    Peanut (Arachis hypogaea L) is one of the widely cultivated and leading oilseed crops of the world and its yields are greatly affected by various biotic and abiotic stresses. Arachis diogoi, a wild relative of peanut, is an important source of genes for resistance against various stresses that affect peanut. In our previous study a thaumatin-like protein gene was found to be upregulated in a differential expression reverse transcription PCR (DDRT-PCR) study using the conidial spray of the late leaf spot pathogen, Phaeoisariopsis personata. In the present study, the corresponding full length cDNA was cloned using RACE-PCR and has been designated as AdTLP. It carried an open reading frame of 726 bp potentially capable of encoding a polypeptide of 241 amino acids with 16 conserved cysteine residues. The semi-quantitative RT-PCR analysis showed that the transcript level of AdTLP increased upon treatment with the late leaf spot pathogen of peanut, P. personata and various hormone treatments indicating its involvement in both, biotic and abiotic stresses. The antifungal activity of the purified recombinant protein was checked against different fungal pathogens, which showed enhanced anti-fungal activity compared to many other reported TLP proteins. The recombinant AdTLP-GFP fusion protein was found to be predominantly localized to extracellular spaces. Transgenic tobacco plants ectopically expressing AdTLP showed enhanced resistance to fungal pathogen, Rhizoctonia solani. The seedling assays showed enhanced tolerance of AdTLP transgenic plants against salt and oxidative stress. The transcript analysis of various defense related genes highlighted constitutively higher level expression of PR1a, PI-I and PI-II genes in transgenic plants. These results suggest that the AdTLP is a good candidate gene for enhancing stress resistance in crop plants. PMID:24367621

  18. Characterization of a pathogen induced thaumatin-like protein gene AdTLP from Arachis diogoi, a wild peanut.

    PubMed

    Singh, Naveen Kumar; Kumar, Koppolu Raja Rajesh; Kumar, Dilip; Shukla, Pawan; Kirti, P B

    2013-01-01

    Peanut (Arachis hypogaea L) is one of the widely cultivated and leading oilseed crops of the world and its yields are greatly affected by various biotic and abiotic stresses. Arachis diogoi, a wild relative of peanut, is an important source of genes for resistance against various stresses that affect peanut. In our previous study a thaumatin-like protein gene was found to be upregulated in a differential expression reverse transcription PCR (DDRT-PCR) study using the conidial spray of the late leaf spot pathogen, Phaeoisariopsis personata. In the present study, the corresponding full length cDNA was cloned using RACE-PCR and has been designated as AdTLP. It carried an open reading frame of 726 bp potentially capable of encoding a polypeptide of 241 amino acids with 16 conserved cysteine residues. The semi-quantitative RT-PCR analysis showed that the transcript level of AdTLP increased upon treatment with the late leaf spot pathogen of peanut, P. personata and various hormone treatments indicating its involvement in both, biotic and abiotic stresses. The antifungal activity of the purified recombinant protein was checked against different fungal pathogens, which showed enhanced anti-fungal activity compared to many other reported TLP proteins. The recombinant AdTLP-GFP fusion protein was found to be predominantly localized to extracellular spaces. Transgenic tobacco plants ectopically expressing AdTLP showed enhanced resistance to fungal pathogen, Rhizoctonia solani. The seedling assays showed enhanced tolerance of AdTLP transgenic plants against salt and oxidative stress. The transcript analysis of various defense related genes highlighted constitutively higher level expression of PR1a, PI-I and PI-II genes in transgenic plants. These results suggest that the AdTLP is a good candidate gene for enhancing stress resistance in crop plants. PMID:24367621

  19. Investigations into the agronomic and economic aspects of using peanut (Arachis hypogaea) as an on-farm biodiesel feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although farmers have benefited from the creation of transportation fuels from grain and oilseeds, little research has addressed single farm or community self-reliance on home-grown fuels. The Peanut Biodiesel Project is designed to determine if peanut is suitable for just such a concept through fi...

  20. Genetic linkage map and QTL analysis of resistance to TSWV and leaf spots in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The allotetraploid peanut genome assembly will be a valuable resource to researchers studying polyploidy species, in addition to peanut genome evolution and domestication other than facilitating QTL analysis and the tools for marker-assisted breeding. Therefore, a peanut linkage map will aid genome ...

  1. Characterization of the β-1,3-glucanase gene in peanut (Arachis hypogaea L.) by cloning and genetic transformation.

    PubMed

    Qiao, L X; Ding, X; Wang, H C; Sui, J M; Wang, J-S

    2014-01-01

    Plant β-1,3-glucanases are commonly involved in disease resistance. This report describes the cloning and genetic transformation of a β-1,3-glucanase gene from peanut. The gene was isolated from both the genomic DNA and cDNA of peanut variety Huayu20 by polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR), respectively. The DNA sequence contained 1471 bp including two exons and one intron, and the coding sequence contained 1047 bp that coded for a 348-amino acid protein with a calculated molecular weight of 38.8 kDa. The sequence was registered in NCBI (GenBank accession No. JQ801335) and was designated as Ah-Glu. As determined by BLAST analysis, the Ah-Glu protein has 42-90% homology with proteins from Oryza sativa (BAC83070.1), Zea mays (NP_001149308), Arabidopsis thaliana (NP_200470.1), Medicago sativa (ABD91577.1), and Glycine max (XP_003530515.1). The over-expression vector pCAMBIA1301-Glu containing Ah-Glu was constructed, confirmed by PCR and restriction enzyme digestion, and transformed into peanut variety Huayu22 by Agrobacterium EHA105-mediated transformation. The putative transformed plants (T0) were confirmed by PCR amplification. RT-PCR analysis and β-glucuronidase (GUS) staining showed that the transferred Ah-Glu was expressed as mRNA and protein. In a laboratory test, the transgenic plants were found to be more resistant to the fungal pathogen Cercospora personata than the non-transgenic plants were. PMID:24668677

  2. Genetic mapping of FAD2 genes and their relative contribution towards oil quality in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvement of oil quality is the major research objective in peanut because of its high economic impact on growers/traders and several health benefits to consumers. Fatty acid desaturase (FAD) genes are known to control quality traits but their position on the peanut genome and their relative contr...

  3. Screening of a peanut (Arachis hypogaea L.) cDNA library to isolate a Bowman-Birk trypsin inhibitor clone.

    PubMed

    Boateng, Judith A; Viquez, Olga M; Konan, Koffi N; Dodo, Hortense W

    2005-03-23

    Peanut crop losses due to insect and pest infestation cost peanut farmers nearly 20% of their annual yields. The conventional use of chemicals to combat this problem is costly and toxic to humans and livestock and leads to the development of resistance by target insects. Transgenic plants expressing a trypsin inhibitor gene in tobacco and cowpea have proven to be efficient for resistance against insects. Therefore, a transgenic peanut overexpressing a trypsin inhibitor gene could be an alternative solution to the use of toxic chemicals. Five Bowman-Birk trypsin inhibitor (BBTI) proteins were previously isolated from peanut. However, to date, neither cDNA nor genomic DNA sequences are available. The objective of this research was to screen a peanut cDNA library to isolate and sequence at least one full-length peanut BBTI cDNA clone. Two heterologous oligonucleotides were constructed on the basis of a garden pea (Pisum sativa) trypsin inhibitor nucleotide sequence and used as probes to screen a peanut lambda gt-11 cDNA library. Two positive and identical cDNA clones were isolated, subcloned into a pBluescript vector, and sequenced. Sequence analysis revealed a full-length BBTI cDNA of about 243 bp, with a start codon ATG at position +1 and a stop codon TGA at position +243. In the 3' end, two poly adenylation signals (AATAAA) were identified at positions +261 and +269. The isolated cDNA clone encodes a protein of 80 amino acid residues including a leader sequence of 11 amino acids. The deduced amino acid sequence is 100% identical to published sequences of peanut BBTI AI, AII, BI, and BIII and 81% identical to BII. PMID:15769131

  4. Modification of Prenylated Stilbenoids in Peanut (Arachis hypogaea) Seedlings by the Same Fungi That Elicited Them: The Fungus Strikes Back.

    PubMed

    Aisyah, Siti; Gruppen, Harry; Slager, Mathijs; Helmink, Bianca; Vincken, Jean-Paul

    2015-10-28

    Aspergillus oryzae and Rhizopus oryzae were compared for inducing the production of prenylated stilbenoids in peanut seedlings. The fungus was applied at two different time points: directly after soaking (day 1) or after 2 days of germination (day 3). Aspergillus- and Rhizopus-elicited peanut seedlings accumulated an array of prenylated stilbenoids, with overlap in compounds induced, but also with compounds specific to the fungal treatment. The differences were confirmed to be due to modification of prenylated stilbenoids by the fungus itself. Each fungus appeared to deploy different strategies for modification. The content of prenylated stilbenoids modified by fungi accounted for around 8% to 49% (w/w) of total stilbenoids. The contents of modified prenylated stilbenoids were higher when the fungus was applied on day 1 instead of day 3. Altogether, type of fungus and time point of inoculation appeared to be crucial parameters for optimizing accumulation of prenylated stilbenoids in peanut seedlings. PMID:26458982

  5. Morphological and toxigenic variability in the Aspergillus flavus isolates from peanut (Arachis hypogaea L.) production system in Gujarat (India).

    PubMed

    Singh, Diwakar; Thankappan, Radhakrishnan; Kumar, Vinod; Bagwan, Naimoddin B; Basu, Mukti S; Dobaria, Jentilal R; Mishra, Gyan P; Chanda, Sumitra

    2015-03-01

    Morphological and toxigenic variability in 187 Aspergillus flavus isolates, collected from a major Indian peanut production system, from 10 districts of Gujarat was studied. On the basis of colony characteristics, the isolates were grouped as group A (83%), B (11%) and G (6%). Of all the isolates, 21%, 47% and 32% were found to be fast-growing, moderately-fast and slow-growing respectively, and nosclerotia and sclerotia production was recorded in 32.1% and 67% isolates respectively. Large, medium and small number of sclerotia production was observed in 55, 38 and 34 isolates respectively. Toxigenic potential based on ammonia vapour test was not found reliable, while ELISA test identified 68.5%, 18.7% and 12.8% isolates as atoxigenic, moderately-toxigenic and highly-toxigenic, respectively. On clustering, the isolates were grouped into 15 distinct clusters, 'A' group of isolates was grouped distinctly in different clusters, while 'B' and 'G' groups of isolates were clustered together. No association was observed between morphological-diversity and toxigenic potential of the isolates. From the present investigation, most virulent isolates were pooled to form a consortium for sick-plot screening of germplasm, against Aspergillus flavus. In future, atoxigenic isolates may be evaluated for their potential to be used as bio-control agent against toxigenicisolates. PMID:25895268

  6. A comparison of methods used to determine the oleic/linoleic acid ratio in cultivated peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts are a cheap source of protein compared to cheese and red meat and a good source of essential vitamins and minerals and are thus a common component of many oil and food products. The fatty acid composition of peanuts has become increasingly important with the realization that the onset of ra...

  7. Cloning and Characterization of 5′ Flanking Regulatory Sequences of AhLEC1B Gene from Arachis Hypogaea L.

    PubMed Central

    Tang, Guiying; Xu, Pingli; Liu, Wei; Liu, Zhanji; Shan, Lei

    2015-01-01

    LEAFY COTYLEDON1 (LEC1) is a B subunit of Nuclear Factor Y (NF-YB) transcription factor that mainly accumulates during embryo development. We cloned the 5′ flanking regulatory sequence of AhLEC1B gene, a homolog of Arabidopsis LEC1, and analyzed its regulatory elements using online software. To identify the crucial regulatory region, we generated a series of GUS expression frameworks driven by different length promoters with 5′ terminal and/or 3′ terminal deletion. We further characterized the GUS expression patterns in the transgenic Arabidopsis lines. Our results show that both the 65bp proximal promoter region and the 52bp 5′ UTR of AhLEC1B contain the key motifs required for the essential promoting activity. Moreover, AhLEC1B is preferentially expressed in the embryo and is co-regulated by binding of its upstream genes with both positive and negative corresponding cis-regulatory elements. PMID:26426444

  8. De Novo Assembly of the Peanut (Arachis hypogaea L.) Seed Transcriptome Revealed Candidate Unigenes for Oil Accumulation Pathways

    PubMed Central

    Yin, Dongmei; Wang, Yun; Zhang, Xingguo; Li, Hemin; Lu, Xiang; Zhang, Jinsong; Zhang, Wanke; Chen, Shouyi

    2013-01-01

    Peanuts are one of the most important edible oil crops in the world. In order to survey key genes controlling peanut oil accumulation, we analyzed the seed transcriptome in different developmental stages of high- and low-oil peanut varieties. About 54 million high quality clean reads were generated, which corresponded to 4.85 Gb total nucleotides. These reads were assembled into 59,236 unique sequences. Differential mRNA processing events were detected for most of the peanut Unigenes and found that 15.8% and 18.0% of the Unigenes were differentially expressed between high- and low-oil varieties at 30 DAF and 50 DAF, respectively. Over 1,500 Unigenes involved in lipid metabolism were identified, classified, and found to participate in FA synthesis and TAG assembly. There were seven possible metabolic pathways involved in the accumulation of oil during seed development. This dataset provides more sequence resource for peanut plant and will serve as the foundation to understand the mechanisms of oil accumulation in oil crops. PMID:24040062

  9. Response of irrigated groundnuts (Arachis hypogaea L.) to urea fertilization in the central rainlands of the Sudan.

    PubMed

    Mukhtar, N O; Yousif, Y H

    1979-01-01

    The response of 3 varieties of groundnuts, i.e.: Ashford (A), Barberton (B), and Corinte (C), to different doses of urea nitrogen under irrigation was studied for three years. As a result of extensive tissue analysis, the critical needs of Barberton and Corinte for nitrogen were found to be 1500 ppm NO3-N and 3.7% total-N. Variety Ashford, which outyielded both, did not respond to urea nitrogen. A linear correlation coefficient of r = 0.85 for pod and straw yields gave a pod to straw ratio of 0.72. Kernel protein and oil content were not affected by nitrogen. Larger nodule counts and their total-N indicated better yields. PMID:473957

  10. A real-time PCR genotyping assay to detect FAD2A SNPs in peanuts (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The high oleic (C18:1) phenotype in peanuts has been previously demonstrated to result from a homozygous recessive genotype (ol1ol1ol2ol2) in two homeologous fatty acid desaturase genes (FAD2A and FAD2B) with two key SNPs. These mutant SNPs, specifically G448A in FAD2A and 442insA in FAD2B, signifi...

  11. Next-generation transcriptome sequencing, SNP discovery, and SNP validation in four market classes of peanut, arachis hypogaea L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphisms are ideally suited for making high-resolution genetic maps, investigating population evolutionary history, and discovering marker–trait linkages. With advances in sequencing technologies, it is possible to identify thousands or millions of SNPs from transcriptomes or ...

  12. Cutleafgroundcherry (physalis angulata) density, biomass and seed production in peanut (arachis hypogaea L.) following regrowth due to inadequate control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted to evaluate herbicide and application timing on cutleaf groundcherry density, biomass, seed production, and crop yield in a peanut system. Treatments included: 1) a non-treated control; 2) hand pruning; 3) diclosulam applied preemergence (PRE) alone at 0.027 kg ai h...

  13. An electrospray ionisation-mass spectrometry screening of triacylglycerols in developing cultivated and wild peanut kernels (Arachis hypogaea L.).

    PubMed

    Cherif, Aicha O; Leveque, Nathalie; Ben Messaouda, Mhamed; Kallel, Habib; Moussa, Fathi

    2013-06-01

    The accumulation of triacylglycerols during the development of three varieties of peanuts was monitored in two Tunisian cultivated peanut (Trabelsia (AraT) and Chounfakhi (AraC)) and one wild Tunisian peanut (Arbi (AraA)). The presence of TAGs composed of rare fatty acid residues such as hexacosanoic acid (C(23:0)) and heneicosanoic acid (C(21:0)) among the triacylglycerols C(23:0) LL, C(23:0) OO and C(21:0) LL was noted. The major molecular species of triacylglycerol detected in the three peanut varieties were dioleoyl linoleoyl (OOL), 1,2,3-trioleyl (OOO), 1,2-dioleyl-3-palmitoyl (POO), 1,2-dilinoleoyl-3-oleyl (OLL) and 1-oleoyl-2-linoleoyl-3-linolenoyl (OLLn). The TAG composition and content were significantly different among the three peanut varieties. The three major TAGs were OOL (20.6%), OOO (15.6%) and OLLn (13.2%) in AraA; OOL (21.4%), OOO (20.1%) and POO (17.5%) in AraC and finally OLL (20.7%), OOO (19.8%) and OLL (17.7%) in AraT. PMID:23411219

  14. Characterization of B-1, 3-glucanase gene in peanut (Arachis hypogaea L.) by cloning and genetic transformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant ß-1,3-glucanase is commonly found to be involved in the disease resistance. A ß-1,3-glucanase gene was isolated from both the genomic DNA and cDNA of peanut variety Huayu20 by PCR and RT-PCR, respectively (GenBank Accession No. JQ801335). The genomic DNA sequence was 1,471 bp including two ext...

  15. Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2.

    PubMed

    Goswami, Dweipayan; Dhandhukia, Pinakin; Patel, Pranav; Thakker, Janki N

    2014-01-20

    Rhizosphere of a halotolerant plant Suaeda fruticosa from saline desert of Little Rann of Kutch, Gujarat (India) was explored for isolation of PGPR form the rare ecological niche having4.33% salinity. Total 85 isolates from the rhizosphere belonging to different species were isolated. Out of 85 isolates, 23 could solubilize phosphate and 11 isolates produced IAA. Seven isolates showed both the traits of phosphate solubilization and IAA production. All isolates which showed either of IAA production or phosphate solubilization or both were further screened for other PGP traits like production of ammonia, siderophore, chitinase, HCN and assessment of their antifungal activity. Out of all the screened isolates, Bacillus licheniformis strain A2 showed most prominent PGP traits in vitro and it was tested in vivo for growth promotion of Groundnut (Arachis hypogaea) under saline soil condition. In presence of soil supplemented with 50 mM NaCl, B. licheniformis treated plants showed increase in fresh biomass, total length and root length by 28%, 24% and 17% and in absence of NaCl it was 43%, 31% and 39% respectively. PMID:23896166

  16. Cryopreservation of Arachis pintoi (leguminosae) somatic embryos.

    PubMed

    Rey, H Y; Faloci, M; Medina, R; Dolce, N; Engelmann, F; Mroginski, L

    2013-01-01

    In this study, we successfully cryopreserved cotyledonary somatic embryos of diploid and triploid Arachis pintoi cytotypes using the encapsulation-dehydration technique. The highest survival rates were obtained when somatic embryos were encapsulated in calcium alginate beads and precultured in agitated (80 rpm) liquid establishment medium (EM) with daily increasing sucrose concentration (0.50, 0.75, and 1.0 M). The encapsulated somatic embryos were then dehydrated with silica gel for 5 h to 20% moisture content (fresh weight basis) and cooled either rapidly (direct immersion in liquid nitrogen, LN) or slowly (1 degree C per min from 25 degree C to -30 degree C followed by immersion in LN). Beads were kept in LN for a minimum of 1 h and then were rapidly rewarmed in a 30 degree C water-bath for 2 min. Finally, encapsulated somatic embryos were post-cultured in agitated (80 rpm) liquid EM with daily decreasing sucrose concentration (0.75 and 0.5 M) and transferred to solidified EM. Using this protocol, we obtained 26% and 30% plant regeneration from cryopreserved somatic embryos of diploid and triploid cytotypes. No morphological abnormalities were observed in any of the plants regenerated from cryopreserved embryos and their genetic stability was confirmed with 10 isozyme systems and nine RAPD profiles. PMID:24441368

  17. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection.

    PubMed

    Robledo, G; Lavia, G I; Seijo, G

    2009-05-01

    Section Arachis of the homonymous genus includes 29 wild diploid species and two allotetraploids (A. monticola and the domesticated peanut, A. hypogaea L.). Although, three different genomes (A, B and D) have been proposed for diploid species with x = 10, they are still not well characterized. Moreover, neither the relationships among species within each genome group nor between diploids and tetraploids (AABB) are completely resolved. To tackle these issues, particularly within the A genome, in this study the rRNA genes (5S and 18S-26S) and heterochromatic bands were physically mapped using fluorescent in situ hybridization (FISH) in 13 species of Arachis. These molecular cytogenetic landmarks have allowed individual identification of a set of chromosomes and were used to construct detailed FISH-based karyotypes for each species. The bulk of the chromosome markers mapped revealed that, although the A genome species have a common karyotype structure, the species can be arranged in three groups (La Plata River Basin, Chiquitano, and Pantanal) on the basis of the variability observed in the heterochromatin and 18S-26S rRNA loci. Notably, these groups are consistent with the geographical co-distribution of the species. This coincidence is discussed on the basis of the particular reproductive traits of the species such as autogamy and geocarpy. Combined with geographic distribution of the taxa, the cytogenetic data provide evidence that A. duranensis is the most probable A genome ancestor of tetraploid species. It is expected that the groups of diploid species established, and their relation with the cultigen, may aid to rationally select wild species with agronomic traits desirable for peanut breeding programs. PMID:19234686

  18. First Report of Peanut Mottle Virus in Forage Peanut (Arachis glabrata) in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant material of rhizoma peanut (Arachis glabrata) of an unknown accession, obtained from the Arachis species collection nursery planted and maintained at the Coastal Plain Research Station, Tifton, GA was recently brought into the greenhouse where ring spots were identified on immature leaves. Ti...

  19. Phylogenetic relationships of species of genus Arachis based on geneic sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Arachis (Fabaceae), which originated in South America, consists of 80 species. Based on morphological traits and cross-compatibility among the species, the genus is divided into nine taxonomic sections, one of which, Arachis is the largest section including 30 wild species and the economic...

  20. Chemical composition of some wild peanut species (Arachis L.) seeds.

    PubMed

    Grosso, N R; Nepote, V; Guzmán, C A

    2000-03-01

    Oil, protein, ash, and carbohydrate contents, iodine value, and fatty acid and sterol compositions were studied in seeds of Arachis trinitensis, A. chiquitana, A. kempff-mercadoi, A. diogoi, A. benensis, A. appressipila, A. valida, A. kretschmeri, A. helodes, A. kuhlmannii, A. williamsii, A. sylvestris, A. matiensis, A. pintoi, A. hoehnei, A. villosa, and A. stenosperma. Oil content was greatest in A.stenosperma (mean value = 51.8%). The protein level was higher in A. sylvestris (30.1%) and A. villosa (29.5%). Mean value of oleic acid varied between 30.6% (A. matiensis) and 46.8% (Arachis villosa), and linoleic acid oscillated between 34.1% (A. villosa) and 47.4% (A. appressipila). The better oleic-to-linoleic (O/L) ratio was exhibited by A. villosa (1.38). Some species showed higher concentration of behenic acid. The greatest level of this fatty acid was found in A. matiensis (6.2%). Iodine value was lower in A. valida (99.2). The sterol composition in the different peanut species showed higher concentration of beta-sitosterol (mean values oscillated between 55.7 and 60.2%) followed by campesterol (12.4-16. 5%), stigmasterol (9.7-13.3%), and Delta(5)-avenasterol (9.7-13.4%). The chemical quality and stability of oils (iodine value and O/L ratio) from wild peanut studied in this work are not better than those of cultivated peanut. PMID:10725154

  1. Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress.

    PubMed

    Sarkar, Tanmoy; Thankappan, Radhakrishnan; Kumar, Abhay; Mishra, Gyan P; Dobaria, Jentilal R

    2016-01-01

    Peanut, an important oilseed crop, is gaining priority for the development of drought tolerant genotypes in recent times, since the area under drought is constantly on the rise. To achieve this, one of the important strategies is to genetically engineer the ruling peanut varieties using transcription factor regulating the expression of several downstream, abiotic-stress responsive gene(s). In this study, eight independent transgenic peanut (cv. GG20) lines were developed using AtDREB1A gene, encoding for a transcription factor, through Agrobacterium-mediated genetic transformation. The transgene insertion was confirmed in (T0) using PCR and Dot-blot analysis, while copy-number(s) was ascertained using Southern-blot analysis. The inheritance of AtDREB1A gene in individual transgenic plants (T1 and T2) was confirmed using PCR. In homozygous transgenic plants (T2), under soil-moisture deficit stress, elevated level of AtDREB1A transgene expression was observed by RT-PCR assay. The transgenic plants at 45-d or reproductive growth stage showed tolerance to severe soil-moisture deficit stress. Physio-biochemical parameters such as proline content, osmotic potential, relative water content, electrolytic leakage, and total-chlorophyll content were found positively correlated with growth-related traits without any morphological abnormality, when compared to wild-type. qPCR analysis revealed consistent increase in expression of AtDREB1A gene under progressive soil-moisture deficit stress in two homozygous transgenic plants. The transgene expression showed significant correlation with improved physio-biochemical traits. The improvement of drought-stress tolerance in combination with improved growth-related traits is very essential criterion for a premium peanut cultivar like GG20, so that marginal farmers of India can incur the economic benefits during seasonal drought and water scarcity. PMID:27446163

  2. Germinating Peanut (Arachis hypogaea L.) Seedlings Attenuated Selenite-Induced Toxicity by Activating the Antioxidant Enzymes and Mediating the Ascorbate-Glutathione Cycle.

    PubMed

    Wang, Guang; Zhang, Hong; Lai, Furao; Wu, Hui

    2016-02-17

    Selenite can enhance the selenium nutrition level of crops, but excessive selenite may be toxic to plant growth. To elucidate the mechanisms underlying the role of selenite in production and detoxification of oxidative toxicity, peanut seedlings were developed with sodium selenite (0, 3, and 6 mg/L). The effects of selenite on antioxidant capacity, transcript levels of antioxidant enzyme genes, and enzyme activities in hypocotyl were investigated. The CuZn-SOD, GSH-Px, GST, and APX gene expression levels and their enzyme activities in selenite treatments were 1.0-3.6-fold of the control. Selenite also significantly increased the glutathione and ascorbate concentrations by mediating the ascorbate-glutathione cycle, and the selenite-induced hydrogen peroxide may act as a second messenger in the signaling pathways. This work has revealed a complex antioxidative response to selenite in peanut seedling. Understanding these mechanisms may help future research in increasing selenite tolerance and selenium accumulation in peanut and other crops. PMID:26824138

  3. An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only a few genetic maps based on recombinant inbred line (RIL) and backcross (BC) populations have been developed for tetraploid groundnut. The marker density, however, is not very satisfactory especially in the context of large genome size (2800 Mb/1C) and 20 linkage groups (LGs). Therefore, using ...

  4. Influence of Light Conditions on Biology and Chemistry in the Peanut Plant: Flavonoids and Spermidines from Peanut (Arachis hypogaea) Flowers and Studies of the Photoisomerization of Spermidine Conjugates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early history and significance of the peanut crop is discussed. Annual world production of peanuts at 30 million tons makes this crop one of the most important agricultural commodities. Unusual physiology, inflorescence, and infructescence of the peanut plant make it an attractive object for scienti...

  5. Boiling and Frying Peanuts Decreases Soluble Peanut (Arachis Hypogaea) Allergens Ara h 1 and Ara h 2 But Does Not Generate Hypoallergenic Peanuts.

    PubMed

    Comstock, Sarah S; Maleki, Soheila J; Teuber, Suzanne S

    2016-01-01

    Peanut allergy continues to be a problem in most developed countries of the world. We sought a processing method that would alter allergenic peanut proteins, such that allergen recognition by IgE from allergic individuals would be significantly reduced or eliminated. Such a method would render accidental exposures to trace amounts of peanuts safer. A combination of boiling and frying decreased recovery of Ara h 1 and Ara h 2 at their expected MWs. In contrast, treatment with high pressures under varying temperatures had no effect on protein extraction profiles. Antibodies specific for Ara h 1, Ara h 2, and Ara h 6 bound proteins extracted from raw samples but not in boiled/fried samples. However, pre-incubation of serum with boiled/fried extract removed most raw peanut-reactive IgE from solution, including IgE directed to Ara h 1 and 2. Thus, this method of processing is unlikely to generate a peanut product tolerated by peanut allergic patients. Importantly, variability in individual patients' IgE repertoires may mean that some patients' IgE would bind fewer polypeptides in the sequentially processed seed. PMID:27310538

  6. Progress on genetic linkage maps, traits/QTLs, and utilization in two recombinant inbred line populations of peanuts (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut, a highly nutritional crop, is used in edible products or crushed for cooking oil, and is susceptible to a range of diseases, including Tomato spotted wilt virus (TSWV), early and late leaf spot (ELS and LLS). Losses in productivity and quality are also attributable to environmental stresses ...

  7. Genetic mapping and QTL analysis for disease resistance using F2 and F5 mapping population derived from the same cross in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Achieving a high dense genetic map in peanut is very challenging due to availability of limited genomic resources, low polymorphism and large genome. Realizing the importance of dense genetic maps in several genetic and breeding applications, a mapping population derived from Tifrunner × GT-C20 (T p...

  8. Prevention of pre-harvest aflatoxin production and the effect of different harvest times on peanut (Arachis hypogaea L.) fatty acids.

    PubMed

    Canavar, Öner; Kaynak, Mustafa Ali

    2013-01-01

    The aim of this study was to investigate the relationship between aflatoxin and fatty acids and to determine the optimum harvest time to avoid pre-harvest aflatoxin formation. It was established that harvest time had statistically significant effects on the levels of saturated fatty acids: myristic acid (C14:0), palmitic acid (C16:0), heptadecanoic acid (C17:0), stearic acid (C18:0), arachidic acid (C20:0), behenic acid (C22:0), lignoceric acid (C24:0), monounsaturated fatty acids; palmitoleic acid (C16:1), heptadecenoic acid (C17:1), oleic acid (C18:1) and gadoleic acid (C20:1); and on polyunsaturated fatty acids: linoleic acid (C18:2) and linolenic acid (C18:3). By delaying the harvest time, the ratio of saturated fatty acids decreased and unsaturated fatty acids increased. It was shown that the longer harvesting was delayed, the greater the quantity of oleic acid that was produced. Before harvest time, if the soil moisture was 5% or higher, aflatoxin was produced by fungi. It was found that the weather conditions of the region were suitable for aflatoxin production. Soil moisture appears to be more important than soil temperature for aflatoxin formation. The production of aflatoxin was not observed in the first and second harvests, both of which are at early harvest times. It was found that aflatoxin B1 during harvest time was the most significant of the four toxins. The third harvest time, which is the most widely used, was observed to have significant problems due to aflatoxin formation. Therefore, it is suggested as a result of this study that the harvest of peanuts must be done considering seed yield before the middle of September to avoid aflatoxin formation at harvest time. PMID:23889477

  9. Analysis and RT-PCR identification of viral sequences in peanut (Arachis hypogaea L.) expressed sequence tags from different peanut tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut plants grown in the field have been naturally infected with different viruses resulting in economic yield loss in the southeastern US, such as tomato spotted wilt tospovirus (TSWV) in peanuts. The objectives of this study were to investigate peanut sequences of expressed sequence tags (EST) f...

  10. Comparing genome guided assembly and phased variants based assembly approach to separate the homoeolog transcripts in tetraploid peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homoeologous copies of transcripts are abundant in many self-pollinating species including tetraploid peanut, and can impose a challenge to build a transcriptome reference without the merging of homoeologs. De novo transcriptome assembly of tetraploid OLin with single kmer and multiple kmer approach...

  11. Identification of low Ca(2+) stress-induced embryo apoptosis response genes in Arachis hypogaea by SSH-associated library lift (SSHaLL).

    PubMed

    Chen, Hua; Zhang, Chong; Cai, Tie Cheng; Deng, Ye; Zhou, Shuangbiao; Zheng, Yixiong; Ma, Shiwei; Tang, Ronghua; Varshney, Rajeev K; Zhuang, Weijian

    2016-02-01

    Calcium is a universal signal in the regulation of wide aspects in biology, but few are known about the function of calcium in the control of early embryo development. Ca(2+) deficiency in soil induces early embryo abortion in peanut, producing empty pods, which is a general problem; however, the underlying mechanism remains unclear. In this study, embryo abortion was characterized to be caused by apoptosis marked with cell wall degradation. Using a method of SSH cDNA libraries associated with library lift (SSHaLL), 62 differentially expressed genes were isolated from young peanut embryos. These genes were classified to be stress responses, catabolic process, carbohydrate and lipid metabolism, embryo morphogenesis, regulation, etc. The cell retardation with cell wall degradation was caused by up-regulated cell wall hydrolases and down-regulated cellular synthases genes. HsfA4a, which was characterized to be important to embryo development, was significantly down-regulated under Ca(2+) -deficient conditions from 15 days after pegging (DAP) to 30 DAP. Two AhCYP707A4 genes, encoding abscisic acid (ABA) 8'-hydroxylases, key enzymes for ABA catabolism, were up-regulated by 21-fold under Ca(2+) -deficient conditions upstream of HsfA4a, reducing the ABA level in early embryos. Over-expression of AhCYP707A4 in Nicotiana benthamiana showed a phenotype of low ABA content with high numbers of aborted embryos, small pods and less seeds, which confirms that AhCYP707A4 is a key player in regulation of Ca(2+) deficiency-induced embryo abortion via ABA-mediated apoptosis. The results elucidated the mechanism of low Ca(2+) -induced embryo abortion and described the method for other fields of study. PMID:26079063

  12. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C1...

  13. Improvement of peanut (Arachis hypogaea L.) transformation efficiency and determination of transgene copy number by relative quantitative real-time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biolistic method is reliable for delivering genes of interest into various species. Low transformation efficiency has been a limiting factor for its application. The DNA coating agent protamine was shown to improve transformation efficiency in rice, while a reduction of plasmid DNA in the bomb...

  14. Controlled release study on microencapsulated mixture of fipronil and chlorpyrifos for the management of white grubs (Holotrichia parallela) in peanuts (Arachis hypogaea L.).

    PubMed

    Yang, Daibin; Li, Guangxing; Yan, Xiaojing; Yuan, Huizhu

    2014-11-01

    This study was conducted to determine the release dynamics of a microencapsulated mixture of fipronil and chlorpyrifos in peanut fields and its efficacy against white grubs. The results indicated that microencapsulation significantly stabilized this mixture against degradation in the environment so that a single dose of this microencapsulated formulation applied through seed treatment effectively controlled white grubs throughout the entire growing season. During the experimental course, the concentration of chlorpyrifos in the soil with the microencapsulated formulation was 13.6 ± 9.9 (n = 6) times that of the conventional formulation, and the concentration of fipronil was at least 2.2 times that of the conventional formulation in the soil and peanut roots. However, the residue risks of chlorpyrifos and fipronil in the kernels were different. At harvest, there was a low risk that the residual chlorpyrifos in the kernels exceeded the MRLs (maximum residue limit). In contrast, the amount of residual fipronil in some kernel samples reached the statutory MRL set by the European Union, which suggested that a higher application rate or the repeated application of the microencapsulated fipronil formulation would not be acceptable. PMID:25260064

  15. Arachis hypogaea (peanut) oxalate oxidase (OxOxs)mRNA, complete sequence (accession No. EU024475), in peanut seed tissue and the relationship to White Mold (Sclerotium rolfsii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut is vulnerable to a range of diseases in the U.S., such as tomato spotted wilt virus (TSWV), early (Cercospora arachidicola) and late (Cercosporidium personatum) leaf spots, southern stem rot/white mold (Sclerotium rolfsii), and sclerotinia blight (Sclerotinia minor). Peanut is also one of the...

  16. Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea).

    PubMed

    Singh, Natwar; Mishra, Avinash; Jha, Bhavanath

    2014-08-15

    Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture. PMID:24954532

  17. Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress

    PubMed Central

    Sarkar, Tanmoy; Thankappan, Radhakrishnan; Kumar, Abhay; Mishra, Gyan P.; Dobaria, Jentilal R.

    2016-01-01

    Peanut, an important oilseed crop, is gaining priority for the development of drought tolerant genotypes in recent times, since the area under drought is constantly on the rise. To achieve this, one of the important strategies is to genetically engineer the ruling peanut varieties using transcription factor regulating the expression of several downstream, abiotic-stress responsive gene(s). In this study, eight independent transgenic peanut (cv. GG20) lines were developed using AtDREB1A gene, encoding for a transcription factor, through Agrobacterium-mediated genetic transformation. The transgene insertion was confirmed in (T0) using PCR and Dot-blot analysis, while copy-number(s) was ascertained using Southern-blot analysis. The inheritance of AtDREB1A gene in individual transgenic plants (T1 and T2) was confirmed using PCR. In homozygous transgenic plants (T2), under soil-moisture deficit stress, elevated level of AtDREB1A transgene expression was observed by RT-PCR assay. The transgenic plants at 45-d or reproductive growth stage showed tolerance to severe soil-moisture deficit stress. Physio-biochemical parameters such as proline content, osmotic potential, relative water content, electrolytic leakage, and total-chlorophyll content were found positively correlated with growth-related traits without any morphological abnormality, when compared to wild-type. qPCR analysis revealed consistent increase in expression of AtDREB1A gene under progressive soil-moisture deficit stress in two homozygous transgenic plants. The transgene expression showed significant correlation with improved physio-biochemical traits. The improvement of drought-stress tolerance in combination with improved growth-related traits is very essential criterion for a premium peanut cultivar like GG20, so that marginal farmers of India can incur the economic benefits during seasonal drought and water scarcity. PMID:27446163

  18. An International Reference Consensus Genetic Map with 897 Marker Loci Based on 11 Mapping Populations for Tetraploid Groundnut (Arachis hypogaea L.)

    PubMed Central

    Pandey, Manish K.; Moretzsohn, Márcio C.; Sujay, Venkataswamy; Qin, Hongde; Hong, Yanbin; Faye, Issa; Chen, Xiaoping; BhanuPrakash, Amindala; Shah, Trushar M.; Gowda, Makanahally V. C.; Nigam, Shyam N.; Liang, Xuanqiang; Hoisington, Dave A.; Guo, Baozhu; Bertioli, David J.; Rami, Jean-Francois; Varshney, Rajeev K.

    2012-01-01

    Only a few genetic maps based on recombinant inbred line (RIL) and backcross (BC) populations have been developed for tetraploid groundnut. The marker density, however, is not very satisfactory especially in the context of large genome size (2800 Mb/1C) and 20 linkage groups (LGs). Therefore, using marker segregation data for 10 RILs and one BC population from the international groundnut community, with the help of common markers across different populations, a reference consensus genetic map has been developed. This map is comprised of 897 marker loci including 895 simple sequence repeat (SSR) and 2 cleaved amplified polymorphic sequence (CAPS) loci distributed on 20 LGs (a01–a10 and b01–b10) spanning a map distance of 3, 863.6 cM with an average map density of 4.4 cM. The highest numbers of markers (70) were integrated on a01 and the least number of markers (21) on b09. The marker density, however, was lowest (6.4 cM) on a08 and highest (2.5 cM) on a01. The reference consensus map has been divided into 20 cM long 203 BINs. These BINs carry 1 (a10_02, a10_08 and a10_09) to 20 (a10_04) loci with an average of 4 marker loci per BIN. Although the polymorphism information content (PIC) value was available for 526 markers in 190 BINs, 36 and 111 BINs have at least one marker with >0.70 and >0.50 PIC values, respectively. This information will be useful for selecting highly informative and uniformly distributed markers for developing new genetic maps, background selection and diversity analysis. Most importantly, this reference consensus map will serve as a reliable reference for aligning new genetic and physical maps, performing QTL analysis in a multi-populations design, evaluating the genetic background effect on QTL expression, and serving other genetic and molecular breeding activities in groundnut. PMID:22815973

  19. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvement of oil quality traits in peanut is the second most important research goal other than yield because of high impact on market and consumers due to profitability and several health benefits. Although FAD genes are known to control some of these traits but their position on the peanut genom...

  20. Evaluation of insertion-deletion markers suitable for genetic diversity studies and marker-trait correlation analyses in cultivated peanut (Arachis hypogaea L.).

    PubMed

    Meng, S; Yang, X L; Dang, P M; Cui, S L; Mu, G J; Chen, C Y; Liu, L F

    2016-01-01

    Peanut is one of the most important oil crops worldwide. We used insertion-deletion (InDel) markers to assess the genetic diversity and population structure in cultivated peanut. Fifty-four accessions from North China were genotyped using 48 InDel markers. The markers amplified 61 polymorphic loci with 1 to 8 alleles and an average of 2.6 alleles per marker. The polymorphism information content values ranged from 0.0364 to 0.9030, with an average of 0.5038. Population structure and neighbor-joining (NJ) tree analyses suggested that all accessions could be divided into four clusters (A1-A4), using the NJ method. Likewise, four subpopulations (G1-G4) were identified using STRUCTURE analysis. A principal component analysis was also used and results concordant with the other analysis methods were found. A multi-linear stepwise regression analysis revealed that 13 InDel markers correlated with five measured agronomical traits. Our results will provide important information for future peanut molecular breeding and genetic research. PMID:27525935

  1. Genetic Mapping of QTLs Controlling Fatty Acids Provided Insights into the Genetic Control of Fatty Acid Synthesis Pathway in Peanut (Arachis hypogaea L.)

    PubMed Central

    Wang, Hui; Qiao, Lixian; Feng, Suping; Tonnis, Brandon; Barkley, Noelle A.; Pinnow, David; Holbrook, Corley C.; Culbreath, Albert K.; Varshney, Rajeev K.; Guo, Baozhu

    2015-01-01

    Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line ‘SunOleic 97R’ × low oleic line ‘NC94022’) and T-population (normal oleic line ‘Tifrunner’ × low oleic line ‘GT-C20’) were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition. PMID:25849082

  2. Boiling and Frying Peanuts Decreases Soluble Peanut (Arachis Hypogaea) Allergens Ara h 1 and Ara h 2 But Does Not Generate Hypoallergenic Peanuts

    PubMed Central

    Comstock, Sarah S.; Maleki, Soheila J.; Teuber, Suzanne S.

    2016-01-01

    Peanut allergy continues to be a problem in most developed countries of the world. We sought a processing method that would alter allergenic peanut proteins, such that allergen recognition by IgE from allergic individuals would be significantly reduced or eliminated. Such a method would render accidental exposures to trace amounts of peanuts safer. A combination of boiling and frying decreased recovery of Ara h 1 and Ara h 2 at their expected MWs. In contrast, treatment with high pressures under varying temperatures had no effect on protein extraction profiles. Antibodies specific for Ara h 1, Ara h 2, and Ara h 6 bound proteins extracted from raw samples but not in boiled/fried samples. However, pre-incubation of serum with boiled/fried extract removed most raw peanut-reactive IgE from solution, including IgE directed to Ara h 1 and 2. Thus, this method of processing is unlikely to generate a peanut product tolerated by peanut allergic patients. Importantly, variability in individual patients’ IgE repertoires may mean that some patients’ IgE would bind fewer polypeptides in the sequentially processed seed. PMID:27310538

  3. Characterization of IgE-binding epitopes of peanut (Arachis hypogaea) PNA lectin allergen cross-reacting with other structurally related legume lectins.

    PubMed

    Rougé, Pierre; Culerrier, Raphaël; Granier, Claude; Rancé, Fabienne; Barre, Annick

    2010-08-01

    Sera from peanut allergic patients contain IgE that specifically interact with the peanut lectin PNA and other closely related legume lectins like LcA from lentil, PsA from pea and PHA from kidney bean. The IgE-binding activity of PNA and legume lectins was assessed by immunoblotting, surface plasmon resonance (SPR) and ELISA measurements, using sera from peanut allergic patients as a IgE source. This IgE-binding cross-reactivity most probably depends on the occurrence of structurally related epitopes that have been identified on the molecular surface of PNA and other legume lectins. These epitopes definitely differ from those responsible for the allergenicity of the major allergens Ara h 1, Ara h 2 and Ara h 3, also recognized by the IgE-containing sera of peanut allergic patients. Peanut lectin PNA and other legume lectins have been characterized as potential allergens for patients allergic to edible legume seeds. However, the clinical significance of the lectin-IgE interaction has to be addressed. PMID:20541807

  4. Use of EST-SSR loci flanking regions for phylogenetic analysis of genus Arachis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All wild peanut collections in the genus Arachis were assigned to nine taxonomy sections on the bases of cross-compatibility and morphologic character clustering. These nine sections consist of 80 species from the most ancient to the most advanced, providing a diverse genetic resource for phylogenet...

  5. Thermal Oxidation Induces Lipid Peroxidation and Changes in the Physicochemical Properties and β-Carotene Content of Arachis Oil

    PubMed Central

    Falade, Ayodeji Osmund

    2015-01-01

    This study sought to investigate the effect of thermal oxidation on the physicochemical properties, malondialdehyde, and β-carotene content of arachis oil. Pure arachis oil was heated for 20 mins with a corresponding temperature of 220°C. Thereafter, changes in the physicochemical properties (acid, iodine, and peroxide values) of the oil samples were determined. Subsequently, the level of lipid peroxidation was determined using change in malondialdehyde content. Then, the total carotenoid and β-carotene contents were evaluated using spectrophotometric method and high performance liquid chromatography, respectively. The results of the study revealed a significant increase (P < 0.05) in the acid and peroxide values and malondialdehyde concentration of the heated oil when compared with the fresh arachis oil. In contrast, a significant decrease (P < 0.05) was observed in the iodine value, total carotenoid, 13-cis-, 15-cis-, trans-, and 9-cis-β-carotene, and total β-carotene content of the heated oil. Hence, thermal oxidation induced lipid peroxidation and caused changes in the physicochemical properties and carotenoid contents of arachis oil, thereby reducing its nutritive value and health benefit. Therefore, cooking and frying with arachis oil for a long period might not be appropriate as this might lead to a loss of significant amount of the insignificant β-carotene in arachis oil. PMID:26904665

  6. Genetic diversity analysis in the section Caulorrhizae (genus Arachis) using microsatellite markers

    PubMed Central

    2010-01-01

    Diversity in 26 microsatellite loci from section Caulorrhizae germplasm was evaluated by using 33 accessions of A. pintoi Krapov. & W.C. Gregory and ten accessions of Arachis repens Handro. Twenty loci proved to be polymorphic and a total of 196 alleles were detected with an average of 9.8 alleles per locus. The variability found in those loci was greater than the variability found using morphological characters, seed storage proteins and RAPD markers previously used in this germplasm. The high potential of these markers to detect species-specific alleles and discriminate among accessions was demonstrated. The set of microsatellite primer pairs developed by our group for A. pintoi are useful molecular tools for evaluating Section Caulorrhizae germplasm, as well as that of species belonging to other Arachis sections. PMID:21637613

  7. Genetic diversity analysis in the section Caulorrhizae (genus Arachis) using microsatellite markers.

    PubMed

    Palmieri, Darío A; Bechara, Marcelo D; Curi, Rogério A; Monteiro, Jomar P; Valente, Sérgio E S; Gimenes, Marcos A; Lopes, Catalina R

    2010-01-01

    Diversity in 26 microsatellite loci from section Caulorrhizae germplasm was evaluated by using 33 accessions of A. pintoi Krapov. & W.C. Gregory and ten accessions of Arachis repens Handro. Twenty loci proved to be polymorphic and a total of 196 alleles were detected with an average of 9.8 alleles per locus. The variability found in those loci was greater than the variability found using morphological characters, seed storage proteins and RAPD markers previously used in this germplasm. The high potential of these markers to detect species-specific alleles and discriminate among accessions was demonstrated. The set of microsatellite primer pairs developed by our group for A. pintoi are useful molecular tools for evaluating Section Caulorrhizae germplasm, as well as that of species belonging to other Arachis sections. PMID:21637613

  8. Phylogenetic relationships in genus Arachis based on ITS and 5.8S rDNA sequences

    PubMed Central

    2010-01-01

    Background The genus Arachis comprises 80 species and it is subdivided into nine taxonomic sections (Arachis, Caulorrhizae, Erectoides, Extranervosae, Heteranthae, Procumbentes, Rhizomatosae, Trierectoides, and Triseminatae). This genus is naturally confined to South America and most of its species are native to Brazil. In order to provide a better understanding of the evolution of the genus, we reconstructed the phylogeny of 45 species using the variation observed on nucleotide sequences in internal transcribed spacer regions (ITS1 and ITS2) and 5.8 S of nuclear ribosomal DNA. Results Intraspecific variation was detected, but in general it was not enough to place accessions of the same species in different clades. Our data support the view that Arachis is a monophyletic group and suggested Heteranthae as the most primitive section of genus Arachis. The results confirmed the circumscriptions of some sections (Caulorrhizae, Extranervosae), but raised questions about others. Sections Erectoides, Trierectoides and Procumbentes were not well defined, while sections Arachis and Rhizomatosae seem to include species that could be moved to different sections. The division of section Arachis into A and B genome species was also observed in the phylogenetic tree and these two groups of species may not have a monophyletic origin. The 2n = 2x = 18 species of section Arachis (A. praecox, A. palustris and A. decora) were all placed in the same clade, indicating they are closely related to each other, and their genomes are more related to B genome than to the A genome. Data also allowed insights on the origin of tetraploid A. glabrata, suggesting rhizome appeared twice within the genus and raising questions about the placement of that species in section Rhizomatosae. Conclusion The main clades established in this study in general agreed with many other studies that have used other types of evidences and sets of species, being some of them included in our study and some not. Thus

  9. Comparisons of de novo transcriptome assemblers in diploid and polyploid species using peanut (Arachis spp.) RNA-seq data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The narrow genetic base and limited genetic information on Arachis species have hindered the process of marker-assisted selection of peanut cultivars. However, recent developments in sequencing technologies have expanded opportunities to exploit genetic resources, and at lower cost. To use the genet...

  10. The United States Arachis germplasm collection: a valuable genetic resource for mining useful traits to improve peanut quality and production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Plant Genetic Resources Conservation Unit maintains the second largest peanut germplasm collection in the world consisting of both cultivated and wild germplasm with a total of 9,924 Arachis accessions. A cultivated core (831 accessions) and mini core (112 accessions) collections were esta...

  11. Mapping Quantitative Trait Loci of Resistance to Tomato Spotted Wilt Virus and Leaf Spots in a Recombinant Inbred Line Population of Peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022.

    PubMed

    Khera, Pawan; Pandey, Manish K; Wang, Hui; Feng, Suping; Qiao, Lixian; Culbreath, Albert K; Kale, Sandip; Wang, Jianping; Holbrook, C Corley; Zhuang, Weijian; Varshney, Rajeev K; Guo, Baozhu

    2016-01-01

    Peanut is vulnerable to a range of diseases, such as Tomato spotted wilt virus (TSWV) and leaf spots which will cause significant yield loss. The most sustainable, economical and eco-friendly solution for managing peanut diseases is development of improved cultivars with high level of resistance. We developed a recombinant inbred line population from the cross between SunOleic 97R and NC94022, named as the S-population. An improved genetic linkage map was developed for the S-population with 248 marker loci and a marker density of 5.7 cM/loci. This genetic map was also compared with the physical map of diploid progenitors of tetraploid peanut, resulting in an overall co-linearity of about 60% with the average co-linearity of 68% for the A sub-genome and 47% for the B sub-genome. The analysis using the improved genetic map and multi-season (2010-2013) phenotypic data resulted in the identification of 48 quantitative trait loci (QTLs) with phenotypic variance explained (PVE) from 3.88 to 29.14%. Of the 48 QTLs, six QTLs were identified for resistance to TSWV, 22 QTLs for early leaf spot (ELS) and 20 QTLs for late leaf spot (LLS), which included four, six, and six major QTLs (PVE larger than 10%) for each disease, respectively. A total of six major genomic regions (MGR) were found to have QTLs controlling more than one disease resistance. The identified QTLs and resistance gene-rich MGRs will facilitate further discovery of resistance genes and development of molecular markers for these important diseases. PMID:27427980

  12. QTL mapping & quantitative disease resistance to TSWV and leaf spots in a recombinant inbred line population SunOleic 97R and C94022 of peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut is susceptible to a range of diseases, such as Tomato spotted wilt virus (TSWV), early leaf spot (ELS) and late leaf spot (LLS). Breeding line NC94022 has been identified with the highest resistance to TSWV in the field. Quantitative trait loci (QTL) mapping is a highly effective approach fo...

  13. Simultaneous analysis of herbicides pendimethalin, oxyfluorfen, imazethapyr and quizalofop-p-ethyl by LC-MS/MS and safety evaluation of their harvest time residues in peanut (Arachis hypogaea L.).

    PubMed

    Saha, Ajoy; Shabeer T P, Ahammed; Banerjee, Kaushik; Hingmire, Sandip; Bhaduri, Debarati; Jain, N K; Utture, Sagar

    2015-07-01

    This paper reports a simple and rapid method for simultaneous determination of the residues of selected herbicides viz. pendimethalin, oxyfluorfen, imazethapyr and quizalofop-p-ethyl in peanut by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A modified approach of the QuEChERS methodology was used to extract the herbicides from the peanut kernel without any clean-up. The method showed excellent linearity (r(2) > 0.99) with no significant matrix effect. Accuracy of the method in terms of average recoveries of all the four herbicides ranged between 69.4 -94.4 % at spiking levels of 0.05, 0.10 and 0.25 mg kg(-1) with intra-day and inter-day precision RSD (%) between 2.6-16.6 and 8.0-11.3, respectively. Limit of quantification (LOQs) was 5.0 μg kg(-1) for pendimethalin, imazethapyr and quizalofop-p-ethyl and 10.0 μg kg(-1) for oxyfluorfen. The expanded uncertainties were <11 % for determination of these herbicides in peanut. The proposed method was successfully applied for analysis of these herbicide residues in peanut samples harvested from the experimental field and the residues were below the detection level. PMID:26139867

  14. Mapping quantitative trait loci conferring resistance to Tomato spotted wilt virus and leaf spots in a recombinant inbred line population derived from SunOleic 97R and NC94022 in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut is vulnerable to a range of diseases, such as Tomato spotted wilt virus (TSWV) and leaf spots. The most sustainable and economical solution for managing peanut diseases is development of resistance cultivars. The new breeding line NC94022, high resistance to TSWV and moderate resistance to le...

  15. Mapping Quantitative Trait Loci of Resistance to Tomato Spotted Wilt Virus and Leaf Spots in a Recombinant Inbred Line Population of Peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022

    PubMed Central

    Feng, Suping; Qiao, Lixian; Culbreath, Albert K.; Kale, Sandip; Wang, Jianping; Holbrook, C. Corley; Zhuang, Weijian; Varshney, Rajeev K.; Guo, Baozhu

    2016-01-01

    Peanut is vulnerable to a range of diseases, such as Tomato spotted wilt virus (TSWV) and leaf spots which will cause significant yield loss. The most sustainable, economical and eco-friendly solution for managing peanut diseases is development of improved cultivars with high level of resistance. We developed a recombinant inbred line population from the cross between SunOleic 97R and NC94022, named as the S-population. An improved genetic linkage map was developed for the S-population with 248 marker loci and a marker density of 5.7 cM/loci. This genetic map was also compared with the physical map of diploid progenitors of tetraploid peanut, resulting in an overall co-linearity of about 60% with the average co-linearity of 68% for the A sub-genome and 47% for the B sub-genome. The analysis using the improved genetic map and multi-season (2010–2013) phenotypic data resulted in the identification of 48 quantitative trait loci (QTLs) with phenotypic variance explained (PVE) from 3.88 to 29.14%. Of the 48 QTLs, six QTLs were identified for resistance to TSWV, 22 QTLs for early leaf spot (ELS) and 20 QTLs for late leaf spot (LLS), which included four, six, and six major QTLs (PVE larger than 10%) for each disease, respectively. A total of six major genomic regions (MGR) were found to have QTLs controlling more than one disease resistance. The identified QTLs and resistance gene-rich MGRs will facilitate further discovery of resistance genes and development of molecular markers for these important diseases. PMID:27427980

  16. Registration of ‘AU-1101’ peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AU-1101’ (Reg. No. CV-xxx, PI 661498) is a large-seeded virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) with high yield and medium maturity, uniform pod size and shape, high grade, superior shelling characters, low oil content, normal oleic acid content, and good flavor. AU-...

  17. Registration of Peanut Germplasm Line TifGP-1 with Resistance to the Root-knot Nematode and Tomato Spotted Wilt Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TifGP-1 (Reg. No. , PI ) is a runner-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) germplasm line that was released by the USDA-ARS and the Georgia Agricultural Experiment Stations in 2006. This material was released based on resistance to both tomato spotted wilt (caused b...

  18. Registration of "Sugg" Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Sugg’ (Reg. no. CV- , PI ) is a large-seeded virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) with partial resistance to four diseases that occur commonly in the Virginia-Carolina production area: early leafspot caused by Cercospora arachidicola Hori, Cylindroc...

  19. High-oleic Virginia peanuts in the Southwestern US: A summary of data supporting the release of 'VENUS'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'VENUS' is a large-seeded high-oleic Virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) that has enhanced Sclerotinia blight and pod rot tolerance when compared to the cultivar Jupiter. 'VENUS' is the first high-oleic Virginia peanut developed for and proposed for release in t...

  20. Registration of ‘Titan’ Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Titan’ (Reg. no. CV- , PI ) virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea), developed and tested as VT 9506083-3 by the Virginia Agricultural Experiment Station, was released in May 2010. In Virginia, Titan was tested from 1997 to 2005 at several locations thr...

  1. Release of Lariat Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lariat is a high-oleic runner-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) that has enhanced Sclerotinia blight and pod rot tolerance when compared to the cultivar Red River Runner. Lariat (experimental designation ARSOK-R35) is the result of a cross between cultivar Red River Ru...

  2. Registration of N96076L peanut germplasm line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    N96076L (Reg. no. GP-125, PI 641950) is a large-seeded Virginia-type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) germplasm line with resistance to multiple diseases including early leafspot (caused by Cercospora arachidicola S. Hori), Cylindrocladium black rot (CBR) {caused by Cylindr...

  3. Origin of triploid Arachis pintoi (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behaviour

    PubMed Central

    Lavia, Graciela Inés; Ortiz, Alejandra Marcela; Robledo, Germán; Fernández, Aveliano; Seijo, Guillermo

    2011-01-01

    Background and Aims Polyploidy is a dominant feature of flowering-plant genomes, including those of many important crop species. Arachis is a largely diploid genus with just four polyploid species. Two of them are economically important: the cultivated peanut and A. glabrata, a tropical forage crop. Even though it is usually accepted that polyploids within papilionoid legumes have arisen via hybridization and further chromosome doubling, it has been recently suggested that peanut arose through bilateral sexual polyploidization. In this paper, the polyploid nature of the recent, spontaneously originated triploid cytotype of the tropical lucerne, A. pintoi, was analysed, and thereby the mechanism by which polyploids may arise in the genus. Methods Chromosome morphology of 2x and 3x A. pintoi was determined by the Feulgeńs technique and the rDNA sites were mapped by FISH. To investigate whether polyploidization occurred by means of unreduced gametes, a detailed analysis of the microsporogenesis and pollen grains was made. Key Results The 2x and 3x plants presented 9m + 1sm and a satellited chromosome type 2 in each haploid genome. Physical mapping revealed a cluster of 18S–26S rDNA, proximally located on chromosome 6, and two 5S rDNA loci on chromosomes 3 and 5. Diploid plants presented 10II in meiosis while trivalents were observed in all triploids, with a maximum of 10III by cell. Diploid A. pintoi produced normal tetrads, but also triads, dyads and monads. Two types of pollen grains were detected: (1) normal-sized with a prolate shape and (2) large ones with a tetrahedral morphology. Conclusions Karyotype and meiotic analysis demonstrate that the 3x clone of A. pintoi arose by autopolyploidy. The occurrence of unreduced gametes strongly supports unilateral sexual polyploidization as the most probable mechanism that could have led to the origin of the triploid cytotype. This mechanism of polyploidization would probably be one of the most important mechanisms

  4. Impact of Elevated CO2 on Tobacco Caterpillar, Spodoptera litura on Peanut, Arachis hypogea

    PubMed Central

    Srinivasa Rao, M; Manimanjari, D; Vanaja, M; Rama Rao, CA; Srinivas, K; Rao, Vum; Venkateswarlu, B

    2012-01-01

    If the carbon dioxide (CO2) concentration in the atmosphere changes in the future, as predicted, it could influence crops and insect pests. The growth and development of the tobacco caterpillar, Spodoptera litura (Fabricius) (Noctuidae: Lepidoptera), reared on peanut (Arachis hypogea L.) foliage grown under elevated CO2 (550 ppm and 700 ppm) concentrations in open top chambers at Central Research Institute for Dryland Agriculture, Hyderabad, India, were examined in this study. Significantly lower leaf nitrogen, higher carbon, higher relative proportion of carbon to nitrogen and higher polyphenols content expressed in terms of tannic acid equivalents were observed in the peanut foliage grown under elevated CO2 levels. Substantial influence of elevated CO2 on S. litura was noticed, such as longer larval duration, higher larval weights, and increased consumption of peanut foliage by S. litura larvae under elevated CO2 compared with ambient CO2. Relative consumption rate was significantly higher for S. litura larva fed plants grown at 550 and 700 ppm than for larvae fed plants grown at ambient condition. Decreased efficiency of conversion of ingested food, decreased efficiency of conversion of digested food, and decreased relative growth rate of larvae was observed under elevated CO2. The present results indicate that elevated CO2 levels altered the quality of the peanut foliage, resulting in higher consumption, lower digestive efficiency, slower growth, and longer time to pupation (one day more than ambient). PMID:23437971

  5. Steers performance in dwarf elephant grass pastures alone or mixed with Arachis pintoi.

    PubMed

    Crestani, Steben; Ribeiro Filho, Henrique Mendonça Nunes; Miguel, Marcolino Frederico; de Almeida, Edison Xavier; Santos, Flávio Augusto Portela

    2013-08-01

    The inclusion of legumes in pasture reduces the need for mineral nitrogen applications and the pollution of groundwater; however, the agronomic and animal husbandry advantages with tropical legumes are still little known. The objective of this study was to quantify the effect of the use of forage peanut (Arachis pintoi cv. Amarillo) in dwarf elephant grass pastures (Pennisetum purpureum cv. BRS Kurumi) on forage intake and animal performance. The experimental treatments were dwarf elephant grass fertilized with 200 kg N/ha, and dwarf elephant grass mixed with forage peanut without mineral fertilizers. The animals used for the experiment were 12 Charolais steers (body weight (BW) = 288 ± 5.2 kg) divided into four lots (two per treatment). Pastures were managed under intermittent stocking with an herbage allowance of 5.4 kg dry matter of green leaves/100 kg BW. Dry matter intake (mean = 2.44% BW), the average daily gain (mean = 0.76 kg), and the stocking rate (mean = 3.8 AU/ha) were similar between the studied pastures, but decreased drastically in last grazing cycle with the same herbage allowance. The presence of peanut in dwarf elephant grass pastures was enough to sustain the stocking rate, but did not allow increasing forage intake and animal performance. PMID:23413007

  6. Cryopreservation of in vitro grown shoot tips and apical meristems of the forage legume Arachis pintoi.

    PubMed

    Rey, Hebe Y; Faloci, Mirta; Medina, Ricardo; Dolce, Natalia; Mroginski, Luis; Engelmann, Florent

    2009-01-01

    A cryopreservation protocol using the encapsulation-dehydration procedure was established for shoot tips (2-3 mm in length) and meristems (0.3-0.5 mm) sampled from in vitro plantlets of diploid and triploid cytotypes of Arachis pintoi. The optimal protocol was the following: after dissection, explants were precultured for 24 h on establishment medium (EM), encapsulated in calcium alginate beads and pretreated in liquid EM medium with daily increasing sucrose concentration (0.5, 0.75, 1.0 M) and desiccated to 22-23 percent moisture content (fresh weight basis). Explants were frozen using slow cooling (1 C per min from 25C to -30C followed by direct immersion in liquid nitrogen), thawed rapidly and post-cultured in liquid EM medium enriched with daily decreasing sucrose concentrations (0.75, 0.50, 0.1 M). Explants were then transferred to solid EM medium in order to achieve shoot regeneration, then on Murashige and Skoog medium supplemented with 0.05 microM naphthalene acetic acid to induce rooting of shoots. With this procedure, 53 percent and 56 percent of cryopreserved shoot tips of the diploid and triploid cytotypes, respectively, survived and formed plants. However, only 16 percent of cryopreserved meristems of both cytotypes regenerated plants. Using ten isozyme systems and seven RAPD profiles, no modification induced by cryopreservation could be detected in plantlets regenerated from cryopreserved material. PMID:19946657

  7. ESTs from a wild Arachis species for gene discovery and marker development

    PubMed Central

    Proite, Karina; Leal-Bertioli, Soraya CM; Bertioli, David J; Moretzsohn, Márcio C; da Silva, Felipe R; Martins, Natalia F; Guimarães, Patrícia M

    2007-01-01

    Background Due to its origin, peanut has a very narrow genetic background. Wild relatives can be a source of genetic variability for cultivated peanut. In this study, the transcriptome of the wild species Arachis stenosperma accession V10309 was analyzed. Results ESTs were produced from four cDNA libraries of RNAs extracted from leaves and roots of A. stenosperma. Randomly selected cDNA clones were sequenced to generate 8,785 ESTs, of which 6,264 (71.3%) had high quality, with 3,500 clusters: 963 contigs and 2537 singlets. Only 55.9% matched homologous sequences of known genes. ESTs were classified into 23 different categories according to putative protein functions. Numerous sequences related to disease resistance, drought tolerance and human health were identified. Two hundred and six microsatellites were found and markers have been developed for 188 of these. The microsatellite profile was analyzed and compared to other transcribed and genomic sequence data. Conclusion This is, to date, the first report on the analysis of transcriptome of a wild relative of peanut. The ESTs produced in this study are a valuable resource for gene discovery, the characterization of new wild alleles, and for marker development. The ESTs were released in the [GenBank:EH041934 to EH048197]. PMID:17302987

  8. Transcriptomic and Proteomic Analyses of Resistant Host Responses in Arachis diogoi Challenged with Late Leaf Spot Pathogen, Phaeoisariopsis personata

    PubMed Central

    Kumar, Dilip; Kirti, Pulugurtha Bharadwaja

    2015-01-01

    Late leaf spot is a serious disease of peanut caused by the imperfect fungus, Phaeoisariopsis personata. Wild diploid species, Arachis diogoi. is reported to be highly resistant to this disease and asymptomatic. The objective of this study is to investigate the molecular responses of the wild peanut challenged with the late leaf spot pathogen using cDNA-AFLP and 2D proteomic study. A total of 233 reliable, differentially expressed genes were identified in Arachis diogoi. About one third of the TDFs exhibit no significant similarity with the known sequences in the data bases. Expressed sequence tag data showed that the characterized genes are involved in conferring resistance in the wild peanut to the pathogen challenge. Several genes for proteins involved in cell wall strengthening, hypersensitive cell death and resistance related proteins have been identified. Genes identified for other proteins appear to function in metabolism, signal transduction and defence. Nineteen TDFs based on the homology analysis of genes associated with defence, signal transduction and metabolism were further validated by quantitative real time PCR (qRT-PCR) analyses in resistant wild species in comparison with a susceptible peanut genotype in time course experiments. The proteins corresponding to six TDFs were differentially expressed at protein level also. Differentially expressed TDFs and proteins in wild peanut indicate its defence mechanism upon pathogen challenge and provide initial breakthrough of genes possibly involved in recognition events and early signalling responses to combat the pathogen through subsequent development of resistivity. This is the first attempt to elucidate the molecular basis of the response of the resistant genotype to the late leaf spot pathogen, and its defence mechanism. PMID:25646800

  9. Simple sequence repeat polymorphisms in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic mapping, forward genetic analyses, and marker-assisted selection (MAS) have been intractable in intraspecific populations of cultivated peanut (Arachis hypogaea), primarily because domestication and breeding bottlenecks have narrowed genetic diversity and depleted DNA polymorphisms. The DNA...

  10. Yield response of new runner-type peanut cultivars to fungicide inputs for leaf spot control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early and late leaf spot caused by Cercospora arachidicola and Cercosporidium personatum, respectively, cause substantial economic losses in peanut (Arachis hypogaea) through direct reduction of yield and costs associated with fungicidal control. Recently, several new peanut cultivars have been rele...

  11. Aluminum-induced programmed cell death promoted by AhSAG, a senescence-associated gene in Arachis hypoganea L.

    PubMed

    Zhan, Jie; He, Hu-Yi; Wang, Tian-Ju; Wang, Ai-Qin; Li, Chuang-Zhen; He, Long-Fei

    2013-09-01

    Programmed cell death (PCD) is a foundational cellular process in plant development and elimination of damaged cells under environmental stresses. In this study, Al induced PCD in two peanut (Arachis hypoganea L.) cultivars Zhonghua 2 (Al-sensitive) and 99-1507 (Al-tolerant) using DNA ladder, TUNEL detection and electron microscopy. The concentration of Al-induced PCD was lower in Zhonghua 2 than in 99-1507. AhSAG, a senescence-associated gene was isolated from cDNA library of Al-stressed peanut with PCD. Open reading frame (ORF) of AhSAG was 474bp, encoding a SAG protein composed of 157 amino acids. Compared to the control and the antisense transgenic tobacco plants, the fast development and blossom of the sense transgenic plants happened to promote senescence. The ability of Al tolerance in sense transgenic tobacco was lower than in antisense transgenic tobacco according to root elongation and Al content analysis. The expression of AhSAG-GFP was higher in sense transgenic tobacco than in antisense transgenic tobacco. Altogether, these results indicated that there was a negative relationship between Al-induced PCD and Al-resistance in peanut, and the AhSAG could induce or promote the occurrence of PCD in plants. PMID:23849118

  12. Effect of peanut powder (Arachis hypogeae L., 1753) on zootechnic parameters and sex inversion in catfish Clarias gariepinus.

    PubMed

    Jacques, Dougnon T; Elie, Montchowui; Messanvi, Gbeassor

    2015-01-01

    Benin is currently experiencing an overexploitation of piscatorial resources; this requires the research of endogenous means to increase the biomass of fish produced thanks to fish farming activities. The present study intends to improve the zootechnic performances and inverse the sex in catfish Clarias gariepinus. Therefore, 240 larvae obtained from artificial reproduction were used for this study. Three different feed were tested. The control feed (TO) was without peanut powder; contrary, the two experimental feeds were containing the powder at the rates of 10% (T1) and 20% (T2). The best growth of 94.51±27.14 g was recorded with the treatment T2 and 71.32±25.58 g from treatment T1 and finally 54.83±22.19 g from the control group. The sex inversion rate varied from 50% in the control group to 66.13% in lot 1 then 80.13% in lot 2. However, survival rates were low and varied from 26.25% for T2, to 30% in TO then 42.5% in T1. This study permitted to get better results about the zootechnic parameters and the sex inversion in Clarias gariepinus at incorporation rates of 10% and 20% of peanut powder "Arachis hypogeae." PMID:26571988

  13. Peanuts and their nutritional aspects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut is a legume crop that belongs to the family of Fabaceae, genus Arachis, and botanically named as Arachis hypogaea. Peanuts are consumed in many forms such as boiled peanuts, peanut oil, peanut butter, roasted peanuts, and added peanut meal in snack food, energy bars and candies. Peanuts are c...

  14. Isolation and characterization of symbiotic mutants of bradyrhizobium sp. (Arachis) strain NC92: mutants with host-specific defects in nodulation and nitrogen fixation.

    PubMed Central

    Wilson, K J; Anjaiah, V; Nambiar, P T; Ausubel, F M

    1987-01-01

    Random transposon Tn5 mutagenesis of Bradyrhizobium sp. (Arachis) strain NC92, a member of the cowpea cross-inoculation group, was carried out, and kanamycin-resistant transconjugants were tested for their symbiotic phenotype on three host plants: groundnut, siratro, and pigeonpea. Two nodulation (Nod- phenotype) mutants were isolated. One is unable to nodulate all three hosts and appears to contain an insertion in one of the common nodulation genes (nodABCD); the other is a host-specific nodulation mutant that fails to nodulate pigeonpea, elicits uninvaded nodules on siratro, and elicits normal, nitrogen-fixing nodules on groundnut. In addition, nine mutants defective in nitrogen fixation (Fix- phenotype) were isolated. Three fail to supply symbiotically fixed nitrogen to all three host plants. Surprisingly, nodules elicited by one of these mutants exhibit high levels of acetylene reduction activity, demonstrating the presence of the enzyme nitrogenase. Three more mutants have partially effective phenotypes (Fix +/-) in symbiosis with all three host plants. The remaining three mutants fail to supply fixed nitrogen to one of the host plants tested while remaining partially or fully effective on the other two hosts; two of these mutants are Fix- in pigeonpea and Fix +/- on groundnut and on siratro, whereas the other one is Fix- on groundnut but Fix+ on siratro and on pigeonpea. These latter mutants also retain significant nodule acetylene reduction activity, even in the ineffective symbioses. Such bacterial host-specific fixation (Hsf) mutants have not previously been reported. Images PMID:3032910

  15. Ectopic Expression of an Atypical Hydrophobic Group 5 LEA Protein from Wild Peanut, Arachis diogoi Confers Abiotic Stress Tolerance in Tobacco.

    PubMed

    Sharma, Akanksha; Kumar, Dilip; Kumar, Sumit; Rampuria, Sakshi; Reddy, Attipalli R; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Late embryogenesis abundant (LEA) proteins are a group of hydrophilic proteins, which accumulate in plants under varied stress conditions like drought, salinity, extreme temperatures and oxidative stress suggesting their role in the protection of plants against these stresses. A transcript derived fragment (TDF) corresponding to LEA gene, which got differentially expressed in wild peanut, Arachis diogoi against the late leaf spot pathogen, Phaeoisariopsis personata was used in this study. We have cloned its full length cDNA by RACE-PCR, which was designated as AdLEA. AdLEA belongs to the atypical Group 5C of LEA protein family as confirmed by sequence analysis. Group 5C LEA protein subfamily contains Pfam LEA_2 domain and is highly hydrophobic. In native conditions, expression of AdLEA was upregulated considerably upon hormonal and abiotic stress treatments emphasizing its role in abiotic stress tolerance. Subcellular localization studies showed that AdLEA protein is distributed in both nucleus and cytosol. Ectopic expression of AdLEA in tobacco resulted in enhanced tolerance of plants to dehydration, salinity and oxidative stress with the transgenic plants showing higher chlorophyll content and reduced lipid peroxidation as compared to wild type plants. Overexpressed AdLEA tobacco plants maintained better photosynthetic efficiency under drought conditions as demonstrated by chlorophyll fluorescence measurements. These plants showed enhanced transcript accumulation of some stress-responsive genes. Our study also elucidates that ROS levels were significantly reduced in leaves and stomatal guard cells of transgenic plants upon stress treatments. These results suggest that AdLEA confers multiple stress tolerance to plants, which make it a potential gene for genetic modification in plants. PMID:26938884

  16. Ectopic Expression of an Atypical Hydrophobic Group 5 LEA Protein from Wild Peanut, Arachis diogoi Confers Abiotic Stress Tolerance in Tobacco

    PubMed Central

    Sharma, Akanksha; Kumar, Dilip; Kumar, Sumit; Rampuria, Sakshi; Reddy, Attipalli R.; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Late embryogenesis abundant (LEA) proteins are a group of hydrophilic proteins, which accumulate in plants under varied stress conditions like drought, salinity, extreme temperatures and oxidative stress suggesting their role in the protection of plants against these stresses. A transcript derived fragment (TDF) corresponding to LEA gene, which got differentially expressed in wild peanut, Arachis diogoi against the late leaf spot pathogen, Phaeoisariopsis personata was used in this study. We have cloned its full length cDNA by RACE-PCR, which was designated as AdLEA. AdLEA belongs to the atypical Group 5C of LEA protein family as confirmed by sequence analysis. Group 5C LEA protein subfamily contains Pfam LEA_2 domain and is highly hydrophobic. In native conditions, expression of AdLEA was upregulated considerably upon hormonal and abiotic stress treatments emphasizing its role in abiotic stress tolerance. Subcellular localization studies showed that AdLEA protein is distributed in both nucleus and cytosol. Ectopic expression of AdLEA in tobacco resulted in enhanced tolerance of plants to dehydration, salinity and oxidative stress with the transgenic plants showing higher chlorophyll content and reduced lipid peroxidation as compared to wild type plants. Overexpressed AdLEA tobacco plants maintained better photosynthetic efficiency under drought conditions as demonstrated by chlorophyll fluorescence measurements. These plants showed enhanced transcript accumulation of some stress-responsive genes. Our study also elucidates that ROS levels were significantly reduced in leaves and stomatal guard cells of transgenic plants upon stress treatments. These results suggest that AdLEA confers multiple stress tolerance to plants, which make it a potential gene for genetic modification in plants. PMID:26938884

  17. Registration of high-oleic peanut germplasm line ARSOK-S1 (TX996784) with enhanced resistance to Sclerotinia blight and pod rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The high oleic Spanish peanut (Arachis hypogaea L. subsp. fastigiata var. vulgaris) germplasm line ARSOK-S1 was developed cooperatively between the USDA Agricultural Research Service, Texas AgriLife Research, and Oklahoma State University, and was released in 2013. ARSOK-S1 (tested early as TX99678...

  18. Broiler litter ash and flue gas desulfurization gypsum effects on peanut yield and uptake of nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is an important crop that requires large amounts of soluble calcium and phosphorus. Flue gas desulfurization gypsum (FGDG) and super phosphate (SP) have been used for calcium and phosphorus fertilizer for peanut. Broiler litter ash (BLA), a high phosphorus byproduct pr...

  19. Effect of Feeding by a Burrower Bug, Pangaeus bilineatus (Say) (Heteroptera: Cydnidae), on Peanut Flavor and Oil Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract A burrower bug, Pangaeus bilineatus (Say) (Heteroptera: Cydnidae), is known to feed extensively on peanut, Arachis hypogaea L., pods; particularly under certain reduced tillage production conditions. These bugs produce a strong odor when infested peanuts are uprooted, and previous anecdot...

  20. An Integrated Linkage Map for Cultivated Peanut Derived from Two RILs Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparable integrated map for cultivated peanut (Arachis hypogaea L.) was constructed from the integration of two recombinant inbred line (RIL) populations in which two runner type cultivars, one Spanish type cultivar and one breeding line derived from a cross of Virginia type and hirsuta type wer...

  1. Further investigations into the suitability of peanuts for biodiesel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted during 2007 at multiple locations to continue investigations into the suitability and practicality of peanut (Arachis hypogaea L.) as a biodiesel feedstock. An evaluation was conducted at Dawson, GA, to assess 24 peanut cultivars for performance under low input growing ...

  2. First report of seedling blight caused by Sclerotium rolfsii on wheat in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum L.) is an important crop in Oklahoma and throughout the Central Plains of the United States. The soilborne fungus, Sclerotium rolfsii, is a major pathogen on peanut (Arachis hypogaea L.) but is not known to cause major damage on wheat. During September of 1998, damping-off...

  3. Comparative Proteomic Analysis of Peanut Seed and Seed Coat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is grown extensively worldwide for its edible seed and oil. In a peanut, within the hull and encasing the cotyledon is the seed coat, which is commonly referred to within the peanut industry as the skin. The seed coat is a distinct plant structure critical for seed deve...

  4. Relationships between defoliation by late leaf spot and yield in new runner-type peanut cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early and late leaf spot caused by Cercospora arachidicola and Cercosporidium personatum, respectively, can cause severe losses on susceptible peanut (Arachis hypogaea) cultivars. Losses are primarily due to loss of peg integrity and loss of mature pods when peanut plants are inverted. Losses to bo...

  5. Environmental and varietal effects on the niacin content of raw and roasted peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts (Arachis hypogaea L.) are known to be a source of several important B-vitamins, including niacin (Vitamin B3). A total of 39 Florunner and NC7 samples from the 2007 and 2008 Uniform Peanut Performance Test (UPPT) were analyzed to compare their niacin content from 10 different growing locati...

  6. ESTs are a rich source of polymorphic SSRs for genomics and molecular breeding applications in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Narrow genetic diversity and a deficiency of polymorphic DNA markers have hindered genetic mapping and the application of genomics and molecular breeding approaches in cultivated peanut (Arachis hypogaea L.). We developed and mined a peanut EST database for simple sequence repeats (SSRs), assessed t...

  7. Endophytic associations and production of mycotoxins by the Aspergillus section Nigri species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The filamentous fungi of the Aspergillus section Nigri (black aspergilli) are considered plant pathogens of maize (Zea mays) and peanuts (Arachis hypogaea) where they can cause similar disease symptoms as Fusarium verticillioides, such as seedling blight. However, the main concern with black aspergi...

  8. Molecular Characterization of the US Peanut Mini Core Collection Using Microsatellite Markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is the second-most important legume crop in the United States. A limitation to increased peanut productivity is that peanut improvement is hampered by relatively low genetic variability in the germplasm commonly used by breeding programs. To facilitate accessibility to...

  9. Physiological genomics of abiotic stress responses in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) accessions from the U.S. mini-core collection were independently evaluated for heat and water-deficit stress tolerance using a battery of physiological assays including leaf-level gas exchange, chlorophyll fluorescence yield, membrane thermostability, leaf sugar content,...

  10. Analysis of phenolic compounds extracted from peanut seed testa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts (Arachis hypogaea) contain numerous phenolic compounds with antimicrobial and antioxidant properties. These secondary metabolites may be isolated as co-products from peanut skins or testae during peanut processing and have potential use in functional food or feed formulations. Peanut skins w...

  11. Spatiotemporal patterns and dispersal of stink bugs (Heteroptera: Pentatomidae) in peanut-cotton farmscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this 4-yr on-farm study was to examine the spatiotemporal patterns and dispersal of the southern green stink bug, Nezara viridula (L.), and the brown stink bug, Euschistus servus (Say), in peanuts, Arachis hypogaea L., and cotton, Gossypium hirsutum L., in peanut-cotton farmscapes. ...

  12. Molecular genetic variation in cultivated peanuts germplasm of Henan and detection of their elite allelic variations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Groundnut or peanut (Arachis hypogaea L.) is an economically important crop worldwide as a source of protein and cooking oil, particularly in developing countries. Because of its narrow genetic background and shortage of polymorphic genetic markers, molecular characterization of cultivated peanuts i...

  13. Molecular Diversity of the peanut rust pathogen and its host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Puccinia arachidis Speg is the causal agent of peanut rust, an important foliar disease of peanut in mainly low input peanut (Arachis hypogaea) producing countries with warm, tropical climates. Management of this disease in these countries is best realized through host resistance. Knowledge on the v...

  14. Genetic polymorphism of Puccinia arachidis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Puccinia arachidis Speg is the causal agent of peanut rust, an important foliar disease of peanut (Arachis hypogaea) in mainly low input peanut producing countries with warm, tropical climates. Management of this disease in these countries is best realized through host resistance. Knowledge on the v...

  15. Tillage Requirments for integrating winter-annual grazing in peanut production: Plant water status and productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of crop rotation systems involving winter-annual grazing can help peanut (Arachis hypogaea L.) producers increase profitability, although winter-annual grazing could result in excessive soil compaction, which can severely limit yields. We conducted a 3-yr field study on a Dothan loamy sand i...

  16. Tillage systems for cotton-peanut rotations following winter-annual grazing: impact on soil carbon, nitrogen and physical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrating livestock with cotton (Gossypium hirsutum L.) and peanut (Arachis hypogaea L.) production systems by grazing winter-annuals can offer additional income for producers provided it does not result in excessive soil compaction. We conducted a 3-yr field study on a Dothan loamy sand (fine-loa...

  17. Contributions of plant introductions to the ancestry of current U.S. peanut cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant introductions (PIs) have been used in peanut (Arachis hypogaea L.) improvement in the U.S.A. since the inception of peanut breeding there in the 1930s. One might think that the era of screening collections of PIs for pest resistances or other economically important traits then crossing selecte...

  18. In-field Peanut Processing for Biodiesel Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The costs and environmental impact for using petroleum-based fuels such as diesel, has triggered considerable interest in the development of sustainable, on-farm biodiesel production systems. Field studies have demonstrated that a peanut (Arachis hypogaea L.) can produce 1138 kg/ha of peanut oil at ...

  19. Microbial community structure and functionality under peanut based cropping systems in a sandy soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is little information on soil microbial and biochemical properties, important for nutrient cycling and organic matter dynamics, as affected by different peanut (Arachis hypogaea L.) cropping systems and how they relate to soil quality and functioning and system sustainability. We studied a sa...

  20. The Effects of Roast Intensity on the Texture of Peanut Paste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Texture is central to consumer acceptability of peanut butter and peanut-based food products in general. The majority of peanuts are roasted; however, the effect of this operation on peanut texture was unclear. Accordingly, runner peanut seed (Arachis hypogaea L.) were dry roasted in a forced air co...

  1. Proteomics of water-deficit stress in US peanut mini core accesions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) accessions from the US mini core collection were analyzed for differentially expressed leaf proteins during reproductive stage under water-deficit stress. Accessions showing tolerant and susceptible responses to stress were selected based on a bioassay involving chloroph...

  2. Peanut Performance and Weed Management in a High Residue Cover crop System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research indicates conservation tillage is a viable option for successful peanut (Arachis hypogaea L.) production, but more study is needed to help understand interactions between cover crop residues and peanut production. Specifically, additional information is needed about the effects o...

  3. Registration of 'OLé' peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OLé peanut (experimental designation ARSOK-S140-1OL) is a high oleic Spanish-type peanut (Arachis hypogaea L. subsp. fastigiata var. vulgaris) that was cooperatively released by the USDA-ARS and the Oklahoma Agricultural Experiment Station in 2014. OLé is the product of a Tamspan 90 X F435, the ori...

  4. QTLs from genome to field using markers and genetic maps for peanut improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea) is widely grown in the semi-arid tropics regions of Asia, Africa and Latin America where several stress factors together adversely affect productivity. Collaborative efforts led development of large scale genomic resources setting platform for genomics-assisted breeding (GA...

  5. COMPOSITION AND DECOMPOSITION OF PEANUT RESIDUES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited information exists on the mineralizable nitrogen (N) content of peanut (Arachis hypogaea L.) residue. The objective of this study was to determine the N contribution of pre- and post harvest peanut residue on two soil types. Aboveground peanut residue (cv. Georgia Green) was collected prio...

  6. Utilization of SNP, SSR, and biochemical data to evaluate genetic and phenotypic diversity in the U.S. peanut germplasm collection.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts (Arachis hypogaea L.) are nutritious because their seeds typically contain high amounts of oil, protein, phytochemicals such as resveratrol, and antioxidants such as tocopherol and folic acid; therefore, they are an important oil seed crop worldwide. The genetic diversity and population stru...

  7. 7 CFR 996.13 - Peanuts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Peanuts. 996.13 Section 996.13 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.13 Peanuts. Peanuts means the seeds of the legume Arachis hypogaea and includes both inshell and shelled peanuts produced in...

  8. 7 CFR 996.13 - Peanuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Peanuts. 996.13 Section 996.13 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.13 Peanuts. Peanuts means the seeds of the legume Arachis hypogaea and includes both inshell and shelled peanuts produced in...

  9. 7 CFR 996.13 - Peanuts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Peanuts. 996.13 Section 996.13 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.13 Peanuts. Peanuts means the seeds of the legume Arachis hypogaea and includes both inshell and shelled peanuts produced in...

  10. 7 CFR 996.13 - Peanuts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Peanuts. 996.13 Section 996.13 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.13 Peanuts. Peanuts means the seeds of the legume Arachis hypogaea and includes both inshell and shelled peanuts produced in...

  11. 7 CFR 996.13 - Peanuts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Peanuts. 996.13 Section 996.13 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.13 Peanuts. Peanuts means the seeds of the legume Arachis hypogaea and includes both inshell and shelled peanuts produced in...

  12. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress and future perspectives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The colonization of maize (Zea mays L.) and peanut (Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus and A. parasiticus results in the contamination with carcinogenic mycotoxins known as aflatoxins leading to economic losses as well as a potential health threat to human. The interactio...

  13. Effects of seeding rate and cultivar on tomato spotted wilt of peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato spotted wilt, caused by thrips-vectored Tomato spotted wilt virus (TSWV), is a very serious problem in peanut (Arachis hypogaea L.) production in the southeastern U.S. Establishment of within row plant densities of 13 or more plants/m of row moderately resistant cultivars is recommended as p...

  14. Development and evaluation of peanut germplasm with resistance to Aspergillus flavus from core collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.), one of the main oil and cash crops in the world, is susceptible to Aspergillus flavus, resulting in loss in quality. Aspergillus flavus infection is a problem for peanut production and industry in China. Therefore, it is imperative to develop new peanut germplasm with ...

  15. Molecular genetic variation in cultivated peanut cultivars and breeding lines revealed by highly informative SSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Groundnut or peanut (Arachis hypogaea L.) is an economically important crop worldwide as a source of protein and cooking oil, particularly in developing countries. Because of its narrow genetic background and shortage of polymorphic genetic markers, molecular characterization of cultivated peanuts e...

  16. Multiple disease reistances in a medium-maturity peanut cultivar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several diseases limit peanut (Arachis hypogaea) production in the southeastern U.S. Runner-type peanut cultivars with multiple disease resistances have been developed; however, these cultivars have optimal maturity that is 2 to 3 weeks later than standard runner-type cultivars. Most growers prefer...

  17. EFFECTS OF WEED, DISEASE, AND INSECT CONTROL MEASURES ON SENSORY QUALITY OF PEANUTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensory quality of peanut (Arachis hypogaea L.) products is the main reason that consumers buy them. We previously documented a decline in the intensity of roasted peanut sensory attribute in Florunner and NC 7 peanuts over a 15-year period. Because the same two genotypes were evaluated throughout...

  18. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) accessions from the US mini core collection were analyzed for differentially expressed leaf proteins during reproductive stage under water-deficit stress. Accessions showing tolerant and susceptible responses to stress were selected based on a bioassay involving chloroph...

  19. Transcript and Proteome Response to Water-deficit and Thermal Stress in Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) genotypes from the U.S. mini-core collection were screened for contrasting responses to slow-onset water-deficit and supra-optimal temperature. Seventy accessions were initially screened for basal thermotolerance, photosynthetic response, cellular damage, and recovery f...

  20. Putative peanut TSWV resistance gene(s) and development of markers for breeding selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato spotted wilt virus, transmitted to plant via thrips, is a destructive pathogen with a worldwide distribution. TSWV has caused a very serious problem in peanut (Arachis hypogaea L.) producing areas in US. In past decades, different tactics (resistant cultivars, chemical, crop rotation and othe...

  1. Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rma, a dominant root-knot nematode resistance gene introduced into tetraploid peanut (Arachis hypogaea) from a synthetic allotetraploid donor (TxAG-6), has been widely deployed in modern cultivars. The genomic location and borders of the alien chromosome segment introgressed from TxAG-6 into NemaTAM...

  2. Chemical Interruption of Flowering to Improve Harvested Peanut Maturity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea) is a botanically indeterminate plant where flowering, fruit initiation, and pod maturity occurs over an extended time period during the growing season. As a result, the maturity and size of individual peanut pods varies considerably at harvest. Immature kernels that meet...

  3. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... flavorings that are generally recognized as safe for their intended use, within the meaning of section 409 of the Act, are as follows: Common name Botanical name of plant source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea...

  4. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... use, within the meaning of section 409 of the Act, are as follows: Common name Botanical name of plant source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince...

  5. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... use, within the meaning of section 409 of the Act, are as follows: Common name Botanical name of plant source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince...

  6. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... use, within the meaning of section 409 of the Act, are as follows: Common name Botanical name of plant source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince...

  7. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... use, within the meaning of section 409 of the Act, are as follows: Common name Botanical name of plant source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince...

  8. Peanut response to starter fertilizer, tillage, and planting date interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starter fertilizers are used in some crops for rapid early season establishment and growth. In peanut (Arachis hypogaea L.), fast growth beyond emergence may allow for earlier planting, especially in strip-till management, and the ability to quickly grow through early season thrips feeding, thus po...

  9. The U.S. breeding program to develop peanut with drought tolerance and reduced aflatoxin contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin contamination costs the U.S. peanut (Arachis hypogaea L.) industry over $20 million annually. The development of peanut cultivars with resistance to preharvest aflatoxin contamination (PAC) would reduce these costs. Screening techniques have been developed that can measure genetic differ...

  10. Peanut, Cotton, and Corn Yield and Partial Net Income with Two Surface Drip Lateral Spacings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface drip irrigation laterals were spaced next to crop rows (0.91 m) and in alternate row middles (1.83 m) to document crop yield and partial net economic returns compared with non-irrigated peanut (Arachis hypogaea), cotton (Gossypium hirsutum), and corn (Zea mays). A drip irrigation system was ...

  11. Comparative assessment of herbicide and fungicide runoff risk: a case study for peanut production in the Southern Atlantic Coastal Plain (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea) is produced intensively in the southern Atlantic Coastal Plain of the eastern USA. To effectively protect the region’s water quality data are needed which quantify runoff of pesticides used to protect these crops. Fungicides are used intensively yet there is little publishe...

  12. Developing an in vitro method to assess aflatoxin biosynthesis suppression in Aspergillus flavus through RNAi technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soil-inhabitant fungus Aspergillus flavus is consistently associated with agronomical fields, where it promptly colonizes important crops such as corn (Zea mays) and peanuts (Arachis hypogaea). The consumption of A. flavus-contaminated of food grains poses a potential threat for human and animal...

  13. Proteomic analysis of differential protein expression and processing induced modifications in peanuts and peanut skins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is grown extensively worldwide for its edible seed and oil. Proteomics has become a powerful tool in plant research; however, studies involving legumes, and especially peanuts, are in their infancy. Furthermore, protein expression in the peanut seed coat (skin), which is...

  14. Strategies to mitigate peanut allergy: production, processing, utilization, and immunotherapy considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is an important crop grown worldwide for food and edible oil. The surge of peanut allergy in the past 25 years has profoundly impacted both affected individuals and the peanut and related food industries. In response, several strategies to mitigate peanut allergy have em...

  15. REGISTRATION OF 'CHAMPS' PEANUT.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut growers in the Virginia-North Carolina area need new cultivars with enhanced grade characteristics such as brighter pod color, earlier maturity, higher value, and increased disease resistance in order to meet market demands. ‘CHAMPS’ is a large-seeded virginia-type peanut (Arachis hypogaea L....

  16. Yield and economics of shallow subsurface drip irrigation (S3DI) and furrow diking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A shallow subsurface drip irrigation (S3DI) was installed yearly in conjunction with furrow diking to document yield and economic benefit of these techniques on peanut (Arachis hypogaea L.), cotton (Gossypium hirsutum L.), and corn (Zea mays L.). This research was conducted for three years from 2005...

  17. Peanut pod, seed, and oil yield for biofuel following conventional and organic production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increase in demand for organic peanut (Arachis hypogaea L.) makes it increasingly necessary to develop organic methods in their production. Corn gluten meal (CGM) and vinegar are materials used in organic weed control. These were used alone, or in conjunction with cultivation, to evaluate their ef...

  18. Resveratrol Content in Seeds of Peanut Germlasm Quantified by HPLC.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    trans-Resveratrol (trans-3,5,4'-trihydroxystilbene), a polyphenolic compound uniquely identified in plants greatly contributes to human health. Peanut (Arachis hypogaea L.) seeds of 20 germplasm accessions were harvested from the same field and used for resveratrol analysis by high performance liqui...

  19. Chemical and flavor profiles of genetically modified peanut varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is an economically important crop throughout the world. It is susceptible to many types of fungal pathogens. Genetic engineering offers great potential for developing peanut cultivars resistant to a broad spectrum of pathogens that pose a recurring threat to peanut hea...

  20. Microbial community structure and functionality under peanut based cropping systems in a sandy soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is available on soil microbial and biochemical properties, important for understanding nutrient cycling and organic matter (OM) dynamics, as affected by different peanut (Arachis hypogaea L.) cropping systems and how they relate to soil functioning. Peanut is typically produced i...

  1. The impact of a parasitic nematode Thripinema fuscum (Tylenchida: Allantonematidae) on the feeding behavior and vector competence of Frankliniella fusca (Thysanoptera: Thripidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) is the predominant thrips species found inhabiting and reproducing in peanut (Arachis hypogaea L.) and is one of at least seven thrips species reported to transmit Tomato spotted wilt virus (TSWV). The entomogenous nematode Thripinema fuscum Tipp...

  2. Relationship between root characteristics of peanut in hydroponics and pot studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large root system can be an important character for drought tolerance. Measuring root characteristics in soil medium is tedious, time consuming, and labor intensive. The objective of this study was to determine the association between root characteristics of peanut (Arachis hypogaea L.) Grown in...

  3. Effect of gypsum application on mineral composition in peanut pod walls and seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alleviation of soil-Ca deficiency through gypsum amendment increases the yield potential and ensures high seed quality in peanut (Arachis hypogaea L.). The effects of gypsum treatment, plant life cycle stage, and the fruit development stages on the accrual of several essential minerals (Ca, S, Mg, P...

  4. Registration of 'Red River Runner' peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Red River Runner' (tested as TX 994313) is a high oleic runner peanut (Arachis hypogaea L.) cultivar cooperatively developed and released by the Agricultural Research Service (ARS) of the United States Department of Agriculture (USDA), Texas AgriLife Research and Extension, and Oklahoma Agricultura...

  5. Generating a Natural Porcine Model of Gastrointestinal Food Allergy to Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The peanut (Arachis hypogaea) is an extremely potent allergen and is one of the most life-threatening food sensitivities known. Peanuts cause the majority of food-related anaphylaxis in children, adolescents, and adults. There is no good animal model currently in place to study peanut allergies. Exp...

  6. Tomato spotted wilt and early leaf spot reactions in peanut genotypes from the U.S. and China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato spotted wilt, caused by Tomato spotted wilt virus (TSWV), and early leaf spot caused by Cercospora arachidicola are important diseases of peanut (Arachis hypogaea). As part of a study examining genotypic and phenotypic variation, disease reactions to these two diseases were evaluated in twe...

  7. Tomato spotted wilt and early leaf spot reaction in peanut genotypes from the U.S. and China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato spotted wilt, caused by Tomato spotted wilt virus (TSWV), and early leaf spot caused by Cercospora arachidicola are important diseases of peanut (Arachis hypogaea). As part of a study examining genotypic and phenotypic variation, disease reactions to these two diseases were evaluated in twe...

  8. Variability in field response of peanut genotypes from the U.S. and China to tomato spotted wilt virus and leaf spots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato spotted wilt, caused by tomato spotted wilt virus (TSWV) and transmitted by thrips, and early leaf spot (Cercospora arachidicola) and late leaf spot (Cercosporidium personatum) are among the most important diseases of peanut (Arachis hypogaea) in the southeastern United States. The objective ...

  9. Field evaluations of leaf spot resistance and yield in peanut genotypes in the United States and Bolivia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted in 2002-2006 to characterize yield potential and disease resistance to Cercospora arachidicola (early leaf spot) and Cercosporidium personatum (late leaf spot) in the Bolivian peanut (Arachis hypogaea) cultivar, Bayo Grande, and breeding lines developed from crosses ...

  10. Pilot scale production of angiotensin I-converting enzyme (ACE) inhibitory peptides from aflatoxin contaminated peanut meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut meal (PM) is the high protein (45-50%) by-product remaining after commercial extraction of peanut (Arachis hypogaea L.) oil. Applications of PM are limited to feeds and fertilizers because it typically contains a high concentration of aflatoxin. Recently, our lab has developed a process to r...

  11. SUBMITTED TO NEW JOURNAL (12/06/2002): EFFECT OF PEANUT PLANT FUNGAL INFECTION ON OVIPOSITION PREFERENCE BY SPODOPTERA EXIGUA AND ON HOST SEARCHING BEHAVIOR BY COTESIA MARGINIVENTRIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (1.) In the present study we tested the effect of peanut, Arachis hypogaea L. (Leguminosae), stem infection by the white mold fungus, Sclerotium rolfsii Saccodes (Basidiomycetes), on the oviposition preference of beet armyworms (BAW), Spodoptera exigua Hübner (Lepidoptera:Noctuidae) and on the host...

  12. EST-based Microsatellite Marker Data Mining and Characterizing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is an important crop for oil production. In the recent years, molecular marker technologies have been widely applied to genetic diversity analysis, genetic mapping, molecular marker-assisted breeding, gene tagging and QTLs analysis. However, it is expensive, labor-intens...

  13. Determining the oleic/linoleic acid ratio in a single peanut seed: A comparison of two methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato Spotted Wilt Virus (TSWV) is among the greatest yield-reducing viruses affecting peanut (Arachis hypogaea L.) in all peanut-producing states in US. Due to the lack of molecular information on TSWV-isolates that are associated with peanut in the Southwestern states, the aim of this study was ...

  14. Thripinema fuscum (Tylenchida: Allantonematidae) parasitism reduces both the feeding of Frankliniella fusca (Thysanoptera: Thripidae) on peanut and the transmission of Tomato spotted wilt virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frankliniella fusca (Hinds) is the predominant thrips species found inhabiting and reproducing in peanut (Arachis hypogaea L.) and is one of at least nine thrips species to transmit Tomato spotted wilt virus (TSWV). The entomogenous nematode Thripinema fuscum Tipping & Nguyen, a natural enemy of F....

  15. Characterization of TSWV - isloates infecting peanut in Oklahoma and Texas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato spotted wilt virus (TSWV) is among the greatest yield-reducing viruses affecting peanut (Arachis hypogaea L.) in all peanut-producing states in U.S. Due to the lack of molecular information on TSWV-isolates that are associated with peanut in the Southwestern states, the aim of this study was...

  16. Physiological Response to Drought Stress at Different Stages in Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a major factor in reducing productivity in peanut (Arachis hypogaea L.). The objectives of this study were to: 1) investigate the response patterns of relative water content (RWC), specific leaf area (SLA), and leaf dry mater content (LDMC) to drought stress at three stages of 30 60, and ...

  17. Potential nitrogen credits from peanut residue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Availability of residue nitrogen (N) to succeeding crops is dependent on N mineralization rates during decomposition. Following peanut (Arachis hypogaea L.) production, extension currently recommends 22-67 kg N ha-1 credit to subsequent crops, but these recommendations are not supported in the liter...

  18. Strategies in prevention of preharvest aflatoxin contamination in peanuts: Aflatoxin biosynthesis, genetics and genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The peanut (Arachis hypogaea L.), or groundnut, is an important crop economically and nutritionally worldwide. It is also one of the most susceptible host crops to Aspergillus flavus resulting in aflatoxin contamination. The reduction and elimination of aflatoxin contamination in pre-harvest and pos...

  19. Assessing genetic diversity in Valencia peanut germplasm using SSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Valencia peanuts (Arachis hypogaea L.ssp. fastigiata var. fastigiata) are well known for their in-shell market value. Assessment of genetic diversity of the available Valencia germplasm is key to the success of developing improved cultivars with desirable agronomic and quality traits. In the pres...

  20. Identification and cloning of TSWV resistance gene(s) in cultivated peanuts and development of markers for breeding selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato spotted wilt virus, transmitted to plant via thrips, is a destructive pathogen with a worldwide distribution. TSWV has caused a very serious problem in peanut (Arachis hypogaea L.) producing areas in US. In past decades, different tactics (resistant cultivars, chemical, crop rotation and othe...

  1. Root vs Pod Infection by Root-Knot Nematodes on Aflatoxin Contamination of Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are potent carcinogens produced by some Aspergillus spp. Infection of peanut (Arachis hypogaea) by root-knot nematodes (Meloidogyne arenaria) can lead to an increase in aflatoxin contamination of kernels when the plants are subjected to drought stress during pod maturation. It is not cle...

  2. Effects of fertilization, tillage, and phorate on thrips and TSWV incidence in early planted peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thrips feeding is usually more prevalent in early planted peanuts (Arachis hypogaea L.), which often directly results in higher incidence of tomato spotted wilt virus (TSWV). Several management tools are available to reduce thrips feeding and/or the threat of TSWV in early planted peanuts, includin...

  3. Analysis of Peanut Seed Oil by NIR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance spectra (NIRS) were collected from Arachis hypogaea seed samples and used in predictive models to rapidly identify varieties with high oleic acid. The method was developed for shelled peanut seeds with intact testa. Spectra were evaluated initially by principal component an...

  4. Quantification of Niacin and Folate Contents in Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts (Arachis hypogaea L.) are known to be sources of several important B-vitamins, including niacin and folate. Recent research has shown that therapeutic doses of niacin are beneficial for vascular health; therefore, determination of the concentrations found in current varieties in production ...

  5. Soil organic carbon dynamics in a sod-based rotation on coastal plain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A frequently used cropping system in the southeastern Coastal Plain is an annual rotation of cotton (Gossypium hirsutum L.) and peanut (Arachis hypogaea L.) under conventional tillage (CT). The traditional peanut-cotton rotation (TR) often results in erosion and loss of soil organic carbon (SOC). In...

  6. USING GROUND-BASED REFLECTANCE MEASUREMENTS AS SELECTION CRITERION FOR DROUGHT AND AFLATOXIN RESISTANT PEANUT GENOTYPES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought stress and aflatoxin contamination continue to challenge peanut (Arachis hypogaea L.) producers across the U.S. Thus, the continued development of drought and aflatoxin resistant peanut cultivars is essential to maintain productivity under less than ideal growing conditions. Remote sensing...

  7. Aflatoxin-Phytoalexin Interrelationship in Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most of the pathogens that attack peanut (Arachis hypogaea L.) are of fungal origin. Aspergillus flavus and A. parasiticus invade peanuts and subsequently lead to their contamination with carcinogenic aflatoxins. Preharvest aflatoxin contamination makes peanuts unsafe for consumption and is a major ...

  8. Transglutaminase Effects of the Rheological Characteristics of Peanut Flour Dispersions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    INTRODUCTION: Peanuts (Arachis hypogaea L.) are a stable food commodity around the world. In the last few decades, peanut flour (PF) has been used as a food ingredient. Previously, microbial transglutaminase(mTGase), an enzyme that catalyzes protein cross-linking via acyl-transfer reactions (1) was ...

  9. Divergence in drought-resistance traits among parents of recombinant peanut inbred lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is often grown in climates of intermittent drought on sandy soils. Plants expressing water-conservative traits would minimize exposure to end-of-season, severe drought. Two traits resulting in conservative transpiration rates (TR s) are limitations on TR with soil dryi...

  10. Bradyrhizobium (Arachis) sp. strain NC92 contains two nodD genes involved in the repression of nodA and a nolA gene required for the efficient nodulation of host plants.

    PubMed Central

    Gillette, W K; Elkan, G H

    1996-01-01

    The common nodulation locus and closely linked nodulation genes of Bradyrhizobium (Arachis) sp. strain NC92 have been isolated on an 11.0-kb EcoRI restriction fragment. The nucleotide sequence of a 7.0-kb EcoRV-EcoRI subclone was determined and found to contain open reading frames (ORFs) homologous to the nodA, nodB, nodD1, nodD2, and nolA genes of Bradyrhizobium japonicum and Bradyrhizobium elkanii. Nodulation assays of nodD1, nodD2, or nolA deletion mutants on the host plants Macroptilium atropurpureum (siratro) and Vigna unguiculata (cowpea) indicate that nolA is required for efficient nodulation, as nolA mutants exhibit a 6-day nodulation delay and reduced nodule numbers. The nolA phenotype was complemented by providing the nolA ORF in trans, indicating that the phenotype is due to the lack of the nolA ORF. nodD1 mutants displayed a 2-day nodulation delay, whereas nodD2 strains were indistinguishable from the wild type. Translational nodA-lacZ, nodD1-lacZ, nodD2-lacZ, and nolA-lacZ fusions were created. Expression of the nodA-lacZ fusion was induced by the addition of peanut, cowpea, and siratro seed exudates and by the addition of the isoflavonoids genistein and daidzein. In a nodD1 or nodD2 background, basal expression of the nodA-lacZ fusion increased two- to threefold. The level of expression of the nodD2-lacZ and nolA-lacZ fusions was low in the wild type but increased in nodD1, nodD2, and nodD1 nodD2 backgrounds independently of the addition of the inducer genistein. nolA was required for increased expression of the nodD2-lacZ fusion. These data suggest that a common factor is involved in the regulation of nodD2 and nolA, and they are also consistent with a model of nod gene expression in Bradyrhizobium (Arachis) sp. strain NC92 in which negative regulation is mediated by the products of the nodD1 and nodD2 genes. PMID:8631662

  11. A novel zinc-binding alcohol dehydrogenase 2 from Arachis diogoi, expressed in resistance responses against late leaf spot pathogen, induces cell death when transexpressed in tobacco.

    PubMed

    Kumar, Dilip; Rampuria, Sakshi; Singh, Naveen Kumar; Kirti, Pulugurtha B

    2016-03-01

    A novel zinc-binding alcohol dehydrogenase 2 (AdZADH2) was significantly upregulated in a wild peanut, Arachis diogoi treated with conidia of late leaf spot (LLS) pathogen, Phaeoisariopsis personata. This upregulation was not observed in a comparative analysis of cultivated peanut, which is highly susceptible to LLS. This zinc-binding alcohol dehydrogenase possessed a Rossmann fold containing NADB domain in addition to the MDR domain present in all previously characterized plant ADH genes/proteins. Transient over-expression of AdZADH2 under an estradiol inducible promoter (XVE) resulted in hypersensitive response (HR)-like cell death in tobacco leaf. However, the same level of cell death was not observed when the domains were transiently expressed individually. Cell death observed in tobacco was associated with overexpression of cell death related proteins, antioxidative enzymes such as SOD, CAT and APX and pathogenesis-related (PR) proteins. In A. diogoi, AdZADH2 expression was significantly upregulated in response to the plant signaling hormones salicylic acid, methyl jasmonate, and sodium nitroprusside. PMID:27047748

  12. Advances in Arachis genomics for peanut improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut genomics is very challenging due to its inherent problem of genetic architecture. Blockage of gene flow from diploid wild relatives to tetraploid cultivated peanut, recent polyploidization combined with self pollination and narrow genetic base of primary gene pool resulted in low genetic dive...

  13. Recognition of a CD4+ mouse medullary thymocyte subpopulation by Amaranthus leucocarpus lectin.

    PubMed

    Lascurain, R; Chávez, R; Gorocica, P; Pérez, A; Montaño, L F; Zenteno, E

    1994-11-01

    We have used the Gal beta(1-->3)GalNAc-specific Amaranthus leucocarpus lectin to isolate a thymus cell subpopulation which is different from that sorted with Arachis hypogaea lectin. The cells recognized by A. leucocarpus lectin were predominantly CD4+, whereas a minor proportion of CD8+ cells (approximately 11%) were also identified. The A. leucocarpus-positive cells were located in the thymus medulla and the cortico-medullary junction. The cortex was negative for A. leucocarpus cells. PMID:7835965

  14. Differentiation of Trypanosoma cruzi Chagas, 1909 and Trypanosoma vespertilionis Battaglia, 1904 by various lectins.

    PubMed

    Schottelius, J; Koch, O; Uhlenbruck, G

    1983-06-01

    Four-days-old culture forms of Trypanosoma cruzi (strain Téhuantépéc, Guatemala) and Trypanosoma vespertilionis (strain P-14, P-9) were tested by 19 carbohydrate-specific agglutinins. The T. cruzi strains are interspecifically distinguishable with the lectins from Euonymus europaeus, Tridacna crocea, Tridacna maxima and the human blood-group testserum anti-B from the T. vespertilionis strains. While the T. vespertilionis strains did react with anti-B and E. europaeus, the T. cruzi strains did not agglutinate. The T. cruzi strains were agglutinated by the lectins from T. crocea and T: maxima while the bat-trypanosomes showed no reactions. Using these lectins it was not possible to distinguish the bat-flagellates intraspecifically. With the lectins from Triticum vulgaris and Arachis hypogaea the T. cruzi strains could be distinguished. While the Ténuantépéc strain did agglutinate with A. hypogaea, T. cruzi strain Guatemala did react only with the lectin from T. vulgaris. The bat-trypanosomes were agglutinated only by A. hypogaea but not by T. vulgaris. The reactions of these trypanosome-species with A. papillata and T. vulgaris demonstrate that both trypanosome species have N-acetylneuraminic acid on their cell surfaces. PMID:6349060

  15. Expression of antigen tf and galectin-3 in fibroadenoma

    PubMed Central

    2012-01-01

    Background Fibroadenomas are benign human breast tumors, characterized by proliferation of epithelial and stromal components of the terminal ductal unit. They may grow, regress or remain unchanged, as the hormonal environment of the patient changes. Expression of antigen TF in mucin or mucin-type glycoproteins and of galectin-3 seems to contribute to proliferation and transformations events; their expression has been reported in ductal breast cancer and in aggressive tumors. Findings Lectin histochemistry, immunohistochemistry, and immunofluorescence were used to examine the expression and distribution of antigen TF and galectin-3. We used lectins from Arachis hypogaea, Artocarpus integrifolia, and Amaranthus lecuocarpus to evaluate TF expression and a monoclonal antibody to evaluate galectin-3 expression. We used paraffin-embedded blocks from 10 breast tissues diagnosed with fibroadenoma and as control 10 healthy tissue samples. Histochemical and immunofluorescence analysis showed positive expression of galectin-3 in fibroadenoma tissue, mainly in stroma, weak interaction in ducts was observed; whereas, in healthy tissue samples the staining was also weak in ducts. Lectins from A. leucocarpus and A. integrifolia specificaly recognized ducts in healthy breast samples, whereas the lectin from A. hypogaea recognized ducts and stroma. In fibroadenoma tissue, the lectins from A. integrifolia, A. Hypogaea, and A. leucocarpus recognized mainly ducts. Conclusions Our results suggest that expression of antigen TF and galectin-3 seems to participate in fibroadenoma development. PMID:23265237

  16. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    SciTech Connect

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  17. Host Status of Seven Weed Species and Their Effects on Ditylenchus destructor Infestation of Peanut

    PubMed Central

    De Waele, D.; Jordaan, Elizabeth M.; Basson, Selmaré

    1990-01-01

    The host suitability to Ditylenchus destructor of seven common weed species in peanut (Arachis hypogaea) fields in South Africa was determined. Based on the number of nematodes per root unit, white goosefoot (Chenopodium album), feathertop chloris (Chloris virgata), purple nutsedge (Cyperus rotundus), jimson weed (Datura stramonium), goose grass (Eleusine indica), khaki weed (Tagetes minuta), and cocklebur (Xanthium strumarium) were poor hosts. Ditylenchus destructor survived on all weed species; population densities increased in peanut hulls and caused severe damage to seeds of peanut grown after weeds. Roots of purple nutsedge left in the soil suppressed populations of D. destructor and root and pod development in peanut grown after the weed. However, nematode populations in peanut hulls and seeds were not suppressed. Some weed species, especially purple nutsedge which is common in peanut fields, can be used to indicate the presence of D. destructor in the absence of peanut. PMID:19287723

  18. Host Status of Seven Weed Species and Their Effects on Ditylenchus destructor Infestation of Peanut.

    PubMed

    De Waele, D; Jordaan, E M; Basson, S

    1990-07-01

    The host suitability to Ditylenchus destructor of seven common weed species in peanut (Arachis hypogaea) fields in South Africa was determined. Based on the number of nematodes per root unit, white goosefoot (Chenopodium album), feathertop chloris (Chloris virgata), purple nutsedge (Cyperus rotundus), jimson weed (Datura stramonium), goose grass (Eleusine indica), khaki weed (Tagetes minuta), and cocklebur (Xanthium strumarium) were poor hosts. Ditylenchus destructor survived on all weed species; population densities increased in peanut hulls and caused severe damage to seeds of peanut grown after weeds. Roots of purple nutsedge left in the soil suppressed populations of D. destructor and root and pod development in peanut grown after the weed. However, nematode populations in peanut hulls and seeds were not suppressed. Some weed species, especially purple nutsedge which is common in peanut fields, can be used to indicate the presence of D. destructor in the absence of peanut. PMID:19287723

  19. Bahiagrass for the Management of Meloidogyne arenaria in Peanut

    PubMed Central

    Rodríguez-Kábana, R.; Weaver, C. F.; Robertson, D. G.; Ivey, H.

    1988-01-01

    Bahiagrass (Paspalum notatum) cultivars Argentine, Pensacola, and Tifton-9 were non-hosts for Meloidogyne arenaria, M. incognita, and Heterodera glycines in a greenhouse experiment using field soil infested with these nematodes. The effect of Pensacola bahiagrass in rotation with peanut (Arachis hypogaea) on M. arenaria was studied in 1986 and 1987 in a field at the Wiregrass substation near Headland, Alabama. Each year soil densities of second-stage juveniles of M. arenaria, determined near peanut harvest, were 96-98% lower under bahiagrass than under peanut. In 1987 peanut yields in plots following bahiagrass were 27% higher than in plots under peanut monoculture. Juvenile population densities in bahiagrass-peanut plots were 41% lower than in plots with continuous peanut. Using bahiagrass for reducing population densities of M. arenaria and increasing peanut yield was as effective as using aldicarb at the recommended rates for peanut. PMID:19290315

  20. Soybean-Peanut Rotations for the Management of Meloidogyne arenaria

    PubMed Central

    Rodríguez-Kábana, R.; Robertson, D. G.; Backman, P. A.; Ivey, H.

    1988-01-01

    Rotating soybean (Glycine max cv. Kirby) with peanut (Arachis hypogaea cv. Florunner) for managing Meloidogyne arenaria race 1 was studied for 3 years (1985-87) in a field near Headland, Alabama. Each year soybean plots had lower soil numbers of M. arenaria second-stage juveniles (J2) at peanut harvest than did plots in peanut monocnlture. Peanut following either 1 or 2 years of soybean resulted in approximately 50% reduction in J2 soil population densities and a 14% (1-year soybean) or 20% (2-year soybean) increase in yields compared with continuous peanut. The soybean-peanut rotation increased peanut yield equal to or higher than the yield obtained with continuous peanut treated with aldicarb at 0.34 g a.i./mL. PMID:19290309

  1. Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies

    SciTech Connect

    Siddique, A.M.; Bal, A.K. )

    1991-03-01

    The peanut plant (Arachis hypogaea L.), unlike other known legumes, can sustain nitrogen fixation when prolonged periods of darkness or detopping curtail the supply of photosynthate to the nodule. This ability to withstand photosynthate stress is attributed to the presence of lipid bodies in infected nodule cells. In both dark-treated and detopped plants, the lipid bodies show a gradual decrease in numbers, suggesting their utilization as a source of energy and carbon for nitrogen fixation. Lipolytic activity can be localized in the lipid bodies, and the existence of {beta}-oxidation pathway and glyoxylate cycle is shown by the release of {sup 14}CO{sub 2} from {sup 14}C lineoleoyl coenzyme A by the nodule homogenate.

  2. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants.

    PubMed

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-09-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561

  3. Identification of galectin-3 and mucin-type O-glycans in breast cancer and its metastasis to brain.

    PubMed

    Mayoral, M A; Mayoral, C; Meneses, A; Villalvazo, L; Guzman, A; Espinosa, B; Ochoa, J L; Zenteno, E; Guevara, J

    2008-07-01

    Galectin-3 has been implicated in tumor progression. We demonstrated immunohistochemically that galectin-3 was negative in normal breast tissue, but it was highly increased in breast cancer and in metastatic tissues to brain. Similarly, histochemistry with mucin-specific lectins showed increased recognition in breast tumor and metastasis with Machaerocereus eruca agglutinin (Fualpha 1,2 (GalNAcalpha 1,3) Galss1,4 in complex mucin) but not for Amaranthus leucocarpus (Galss1,3-GalNAc-alpha 1,0-Ser/Thr) and Arachis hypogaea lectins (Galss1,3GalNAc/Galss1,4GlcNAc). Mucin-type glycans and galectin-3 colocalized in breast cancer and metastasis, but not in normal tissue, suggesting upregulated biosynthesis of complex O-glycosidically linked glycans and galectin-3 favor breast cancer progression and brain metastasis. PMID:18584353

  4. Aging and food source effects on mandibular stylets teeth wear of phytophagous stink bug (Heteroptera: Pentatomidae).

    PubMed

    Depieri, Rogério A; Siqueira, Fábio; Panizzi, Antônio R

    2010-01-01

    Studies were conducted to test the effect of age and food sources on wear of the mandibular teeth of the phytophagous pentatomid, Euschistus heros (F.). The total length (µm) of the area bearing the mandibular teeth, the length of the 1st tooth, and the height of the 2nd tooth for teneral (< 1 day-old) adults were significantly greater than that of adults fed on natural [green bean, Phaseolus vulgaris pods, raw shelled peanuts, Arachis hypogaea, and mature soybean, Glycine max seeds] for 30 or 60 days. Adults fed on artificial dry diet showed, in general, similar results to those of teneral adults. Force (Newtons) required penetrating the natural foods was significantly greater than that required penetrating the artificial diet. The greater hardness of the natural foods caused increased mandibular serration wear. PMID:21271064

  5. Effect of end of season water deficit on phenolic compounds in peanut genotypes with different levels of resistance to drought.

    PubMed

    Aninbon, C; Jogloy, S; Vorasoot, N; Patanothai, A; Nuchadomrong, S; Senawong, T

    2016-04-01

    Terminal drought reduces pod yield and affected the phenolic content of leaves, stems and seed of peanut (Arachis hypogaea L.). The aim of this study was to investigate the effects of end of season water deficit on phenolic content in drought tolerant and sensitive genotypes of peanuts. Five peanut genotypes were planted under two water regimes, field capacity and 1/3 available water. Phenolic content was analyzed in seeds, leaves, and stems. The results revealed that terminal drought decreased phenolic content in seeds of both tolerant and sensitive genotypes. Phenolic content in leaves and stems increased under terminal drought stress in both years. This study provides basic information on changes in phenolic content in several parts of peanut plants when subjected to drought stress. Future studies to define the effect of terminal drought stress on specific phenolic compounds and antioxidant properties in peanut are warranted. PMID:26593473

  6. Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge.

    PubMed

    Burks, A W; Williams, L W; Connaughton, C; Cockrell, G; O'Brien, T J; Helm, R M

    1992-12-01

    Peanuts are frequently a cause of food hypersensitivity reactions in children. Serum from nine patients with atopic dermatitis and a positive double-blind, placebo-controlled, food challenge to peanut were used in the process of identification and purification of the peanut allergens. Identification of a second major peanut allergen was accomplished with use of various biochemical and molecular techniques. Anion exchange chromatography of the crude peanut extract produced several fractions that bound IgE from the serum of the patient pool with positive challenges. By measuring antipeanut specific IgE and by IgE-specific immunoblotting we have identified an allergic component that has two closely migrating bands with a mean molecular weight of 17 kd. Two-dimensional gel electrophoresis of this fraction revealed it to have a mean isoelectric point of 5.2. According to allergen nomenclature of the IUIS Subcommittee for Allergen Nomenclature this allergen is designated, Ara h II (Arachis hypogaea). PMID:1460200

  7. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    PubMed Central

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561

  8. Evidence for the Adhesive Function of the Exopolysaccharide of Hyphomonas Strain MHS-3 in Its Attachment to Surfaces

    PubMed Central

    Quintero, E. J.; Weiner, R. M.

    1995-01-01

    Hyphomonas strain MHS-3 (MHS-3) is a marine procaryote with a biphasic life cycle and which has prosthecate stages that adhere to submerged substrata. We found that adherent forms produced an exopolysaccharide (EPS) capsule that bound Glycine max lectin, Arachis hypogaea lectin, and Bauhinia purpurea lectin (BPA), each having affinity for N-acetyl-d-galactosamine. It also bound the dye Calcofluor. BPA and Calcofluor were tested for the ability to hinder MHS-3 adhesion to glass surfaces; they reduced attachment by >50 and >85%, respectively. Periodate treatment also reduced attachment (by >80%), but pronase treatment did not. Furthermore, an EPS(sup-) variant, Hyphomonas strain MHS-3 rad, did not attach well to surfaces. These results suggest that the MHS-3 EPS capsule is an adhesin. PMID:16535028

  9. Characterization of active miniature inverted-repeat transposable elements in the peanut genome.

    PubMed

    Shirasawa, Kenta; Hirakawa, Hideki; Tabata, Satoshi; Hasegawa, Makoto; Kiyoshima, Hiroyuki; Suzuki, Sigeru; Sasamoto, Sigemi; Watanabe, Akiko; Fujishiro, Tsunakazu; Isobe, Sachiko

    2012-05-01

    Miniature inverted-repeat transposable elements (MITEs), some of which are known as active nonautonomous DNA transposons, are found in the genomes of plants and animals. In peanut (Arachis hypogaea), Ah-MITE1 has been identified in a gene for fatty-acid desaturase, and possessed excision activity. However, the AhMITE1 distribution and frequency of excision have not been determined for the peanut genome. In order to characterize AhMITE1s, their genomic diversity and transposition ability was investigated. Southern blot analysis indicated high AhMITE1 copy number in the genomes of A. hypogaea, A. magna and A. monticola, but not in A. duranensis. A total of 504 AhMITE1s were identified from the MITE-enriched genomic libraries of A. hypogaea. The representative AhMITE1s exhibited a mean length of 205.5 bp and a GC content of 30.1%, with AT-rich, 9 bp target site duplications and 25 bp terminal inverted repeats. PCR analyses were performed using primer pairs designed against both flanking sequences of each AhMITE1. These analyses detected polymorphisms at 169 out of 411 insertional loci in the four peanut lines. In subsequent analyses of 60 gamma-irradiated mutant lines, four Ah-MITE1 excisions showed footprint mutations at the 109 loci tested. This study characterizes AhMITE1s in peanut and discusses their use as DNA markers and mutagens for the genetics, genomics and breeding of peanut and its relatives. PMID:22294450

  10. Genotypic diversity among rhizospheric bacteria of three legumes assessed by cultivation-dependent and cultivation-independent techniques.

    PubMed

    Pongsilp, Neelawan; Nimnoi, Pongrawee; Lumyong, Saisamorn

    2012-02-01

    The genotypic diversity of rhizospheric bacteria of 3 legumes including Vigna radiata, Arachis hypogaea and Acacia mangium was compared by using cultivation-dependent and cultivation-independent methods. For cultivation-dependent method, Random amplified polymorphic DNA (RAPD) profiles revealed that the bacterial genetic diversity of V. radiata and A. mangium rhizospheres was higher than that of A. hypogaea rhizosphere. For cultivation-independent method, Denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA genes revealed the difference in bacterial community and diversity of rhizospheres collected from 3 legumes. The ribotype richness which indicates species diversity, was highest in V. radiata rhizosphere, followed by A. hypogaea and A. mangium rhizospheres, respectively. Three kinds of media were used to cultivate different target groups of bacteria. The result indicates that the communities of cultivable bacteria in 3 rhizospheres recovered from nutrient agar (NA) medium were mostly different from each other, while Bradyrhizobium selective medium (BJSM) and nitrogen-free medium shaped the communities of cultivable bacteria. Nine isolates grown on BJSM were identified by 16S rRNA gene sequence analysis. These isolates were very closely related (with 96% to 99% identities) to either one of the three groups including Cupriavidus-Ralstonia group, Bacillus group and Bradyrhizobium-Bosea-Afipia group. The rhizospheres were also examined for their enzymatic patterns. Of 19 enzymes tested, 3 rhizospheres were distinguishable by the presence or the absence of leucine acrylamidase and acid phosphatase. The selected cultivable bacteria recovered from NA varied in their abilities to produce indole-acetic acid and ammnonia. The resistance to 10 antibiotics was indistinguishable among bacteria isolated from different rhizospheres. PMID:22806857

  11. A gene-based map of the Nod factor-independent Aeschynomene evenia sheds new light on the evolution of nodulation and legume genomes

    PubMed Central

    Chaintreuil, Clémence; Rivallan, Ronan; Bertioli, David J.; Klopp, Christophe; Gouzy, Jérôme; Courtois, Brigitte; Leleux, Philippe; Martin, Guillaume; Rami, Jean-François; Gully, Djamel; Parrinello, Hugues; Séverac, Dany; Patrel, Delphine; Fardoux, Joël; Ribière, William; Boursot, Marc; Cartieaux, Fabienne; Czernic, Pierre; Ratet, Pascal; Mournet, Pierre; Giraud, Eric; Arrighi, Jean-François

    2016-01-01

    Aeschynomene evenia has emerged as a new model legume for the deciphering of the molecular mechanisms of an alternative symbiotic process that is independent of the Nod factors. Whereas most of the research on nitrogen-fixing symbiosis, legume genetics and genomics has so far focused on Galegoid and Phaseolid legumes, A. evenia falls in the more basal and understudied Dalbergioid clade along with peanut (Arachis hypogaea). To provide insights into the symbiotic genes content and the structure of the A. evenia genome, we established a gene-based genetic map for this species. Firstly, an RNAseq analysis was performed on the two parental lines selected to generate a F2 mapping population. The transcriptomic data were used to develop molecular markers and they allowed the identification of most symbiotic genes. The resulting map comprised 364 markers arranged in 10 linkage groups (2n = 20). A comparative analysis with the sequenced genomes of Arachis duranensis and A. ipaensis, the diploid ancestors of peanut, indicated blocks of conserved macrosynteny. Altogether, these results provided important clues regarding the evolution of symbiotic genes in a Nod factor-independent context. They provide a basis for a genome sequencing project and pave the way for forward genetic analysis of symbiosis in A. evenia. PMID:27298380

  12. A gene-based map of the Nod factor-independent Aeschynomene evenia sheds new light on the evolution of nodulation and legume genomes.

    PubMed

    Chaintreuil, Clémence; Rivallan, Ronan; Bertioli, David J; Klopp, Christophe; Gouzy, Jérôme; Courtois, Brigitte; Leleux, Philippe; Martin, Guillaume; Rami, Jean-François; Gully, Djamel; Parrinello, Hugues; Séverac, Dany; Patrel, Delphine; Fardoux, Joël; Ribière, William; Boursot, Marc; Cartieaux, Fabienne; Czernic, Pierre; Ratet, Pascal; Mournet, Pierre; Giraud, Eric; Arrighi, Jean-François

    2016-08-01

    Aeschynomene evenia has emerged as a new model legume for the deciphering of the molecular mechanisms of an alternative symbiotic process that is independent of the Nod factors. Whereas most of the research on nitrogen-fixing symbiosis, legume genetics and genomics has so far focused on Galegoid and Phaseolid legumes, A. evenia falls in the more basal and understudied Dalbergioid clade along with peanut (Arachis hypogaea). To provide insights into the symbiotic genes content and the structure of the A. evenia genome, we established a gene-based genetic map for this species. Firstly, an RNAseq analysis was performed on the two parental lines selected to generate a F2 mapping population. The transcriptomic data were used to develop molecular markers and they allowed the identification of most symbiotic genes. The resulting map comprised 364 markers arranged in 10 linkage groups (2n = 20). A comparative analysis with the sequenced genomes of Arachis duranensis and A. ipaensis, the diploid ancestors of peanut, indicated blocks of conserved macrosynteny. Altogether, these results provided important clues regarding the evolution of symbiotic genes in a Nod factor-independent context. They provide a basis for a genome sequencing project and pave the way for forward genetic analysis of symbiosis in A. evenia. PMID:27298380

  13. Reference genes for quantitative reverse transcription-polymerase chain reaction expression studies in wild and cultivated peanut

    PubMed Central

    2011-01-01

    Background Wild peanut species (Arachis spp.) are a rich source of new alleles for peanut improvement. Plant transcriptome analysis under specific experimental conditions helps the understanding of cellular processes related, for instance, to development, stress response, and crop yield. The validation of these studies has been generally accomplished by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) which requires normalization of mRNA levels among samples. This can be achieved by comparing the expression ratio between a gene of interest and a reference gene which is constitutively expressed. Nowadays there is a lack of appropriate reference genes for both wild and cultivated Arachis. The identification of such genes would allow a consistent analysis of qRT-PCR data and speed up candidate gene validation in peanut. Results A set of ten reference genes were analyzed in four Arachis species (A. magna; A. duranensis; A. stenosperma and A. hypogaea) subjected to biotic (root-knot nematode and leaf spot fungus) and abiotic (drought) stresses, in two distinct plant organs (roots and leaves). By the use of three programs (GeNorm, NormFinder and BestKeeper) and taking into account the entire dataset, five of these ten genes, ACT1 (actin depolymerizing factor-like protein), UBI1 (polyubiquitin), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), 60S (60S ribosomal protein L10) and UBI2 (ubiquitin/ribosomal protein S27a) emerged as top reference genes, with their stability varying in eight subsets. The former three genes were the most stable across all species, organs and treatments studied. Conclusions This first in-depth study of reference genes validation in wild Arachis species will allow the use of specific combinations of secure and stable reference genes in qRT-PCR assays. The use of these appropriate references characterized here should improve the accuracy and reliability of gene expression analysis in both wild and cultivated Arachis and

  14. Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection

    PubMed Central

    2012-01-01

    Background Cultivated peanut (Arachis hypogaea) is one of the most widely grown grain legumes in the world, being valued for its high protein and unsaturated oil contents. Worldwide, the major constraints to peanut production are drought and fungal diseases. Wild Arachis species, which are exclusively South American in origin, have high genetic diversity and have been selected during evolution in a range of environments and biotic stresses, constituting a rich source of allele diversity. Arachis stenosperma harbors resistances to a number of pests, including fungal diseases, whilst A. duranensis has shown improved tolerance to water limited stress. In this study, these species were used for the creation of an extensive databank of wild Arachis transcripts under stress which will constitute a rich source for gene discovery and molecular markers development. Results Transcriptome analysis of cDNA collections from A. stenosperma challenged with Cercosporidium personatum (Berk. and M.A. Curtis) Deighton, and A. duranensis submitted to gradual water limited stress was conducted using 454 GS FLX Titanium generating a total of 7.4 x 105 raw sequence reads covering 211 Mbp of both genomes. High quality reads were assembled to 7,723 contigs for A. stenosperma and 12,792 for A. duranensis and functional annotation indicated that 95% of the contigs in both species could be appointed to GO annotation categories. A number of transcription factors families and defense related genes were identified in both species. Additionally, the expression of five A. stenosperma Resistance Gene Analogs (RGAs) and four retrotransposon (FIDEL-related) sequences were analyzed by qRT-PCR. This data set was used to design a total of 2,325 EST-SSRs, of which a subset of 584 amplified in both species and 214 were shown to be polymorphic using ePCR. Conclusions This study comprises one of the largest unigene dataset for wild Arachis species and will help to elucidate genes involved in responses to

  15. A Specific Qualitative Detection Method for Peanut (Arachis Hypogagea) in Foods Using Polymerase Chain Reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A qualitative method for detection of peanuts in foods using polymerase chain reaction was developed. A universal primer pair CP 03-5 /CP 03-3 was designed to confirm the validity of the DNAs for PCR. The plant-specific amplified fragments were detected from 13 kinds of plants using the universal pr...

  16. Quality characteristics of oil extracted from gamma irradiated peanut (Arachis hypogea L.)

    NASA Astrophysics Data System (ADS)

    Al-Bachir, Mahfouz

    2015-01-01

    The effect of gamma radiation and storage on the characteristics of oil extracted from peanut seeds has been investigated in this study. Peanut seeds were undergone gamma irradiation process with the doses of 1, 2 and 3 kGy. The changes in chemical and physical attributes were observed immediately after irradiation and after 12 months of storage. The data obtained from the experiments showed that irradiation process had no effect on the chemical and physical qualities such as, fatty acid composition, peroxide value, iodine value specification number, TBA value and color of oil extracted from peanut seeds. On the contrary, the peroxide, acidity and TBA values of the peanut oil were decreased due to storage time.

  17. Annotation of trait loci on integrated genetic maps of Arachis species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From lack of availability of molecular markers to the release of genome sequence of two of its diploid wild relative, the international peanut community has come a long way in the last decade, particularly during the last five years. However there still is long way to go when genomics-assisted breed...

  18. Transcriptome and proteome response to water-deficit stress in peanut (Arachis sp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut genotypes from the U.S. mini-core collection were screened under water-deficit stress conditions and two lines, COC041 (Tolerant) and COC166 (Susceptible) were selected for gene expression and protein profiling studies. For transcript profiling, we have developed a high-density oligonucleoti...

  19. Fine phenotyping of pod and seed traits in Arachis germplasm accessions using digital image analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reliable and objective phenotyping of peanut pod and seed traits is important for cultivar selection and genetic mapping of yield components. To develop useful and efficient methods to quantitatively define peanut pod and seed traits, a group of peanut germplasm with high levels of phenotypic varia...

  20. Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A- and B-genome diploid species of peanut

    PubMed Central

    2012-01-01

    Background Cultivated peanut or groundnut (Arachis hypogaea L.) is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20), which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut. Results A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat) markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons) derived from 70,771 long-read (Sanger) and 270,957 short-read (454) sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639) and GKBSPSc 30081 (PI 468327) in the B-genome species A. batizocoi. A high degree of macrosynteny was observed when comparing the

  1. Cloning and characterization of the dehydration-responsive element-binding protein 2A gene in Eruca vesicaria subsp sativa.

    PubMed

    Huang, B L; Zhang, X K; Li, Y Y; Li, D Y; Ma, M Y; Cai, D T; Wu, W H; Huang, B Q

    2016-01-01

    Eruca vesicaria subsp sativa is one of the most tolerant Cruciferae species to drought, and dehydration-responsive element-binding protein 2A (DREB2A) is involved in responses to salinity, heat, and particularly drought. In this study, a gene encoding EvDREB2A was cloned and characterized in E. vesicaria subsp sativa. The full-length EvDREB2A cDNA sequence contained a 388-bp 5'-untranslated region (UTR), a 348-bp 3'-UTR, and a 1002-bp open reading frame that encoded 334 amino acid residues. The theoretical isoelectric point of the EvDREB2A protein was 4.80 and the molecular weight was 37.64 kDa. The genomic sequence of EvDREB2A contained no introns. Analysis using SMART indicated that EvDREB2A contains a conserved AP2 domain, similar to other plant DREBs. Phylogenetic analysis revealed that EvDREB2A and DREB2As from Brassica rapa, Eutrema salsugineum, Arabidopsis thaliana, Arabidopsis lyrata, and Arachis hypogaea formed a small subgroup, which clustered with DREB2Bs from A. lyrata, A. thaliana, Camelina sativa, and B. rapa to form a larger subgroup. EvDREB2A is most closely related to B. rapa DREB2A, followed by DREB2As from E. salsugineum, A. thaliana, A. hypogaea, and A. lyrata. A quantitative real-time polymerase chain reaction indicated that EvDREB2A expression was highest in the leaves, followed by the roots and hypocotyls, and was lowest in the flower buds. EvDREB2A could be used to improve drought tolerance in crops. PMID:27525923

  2. Bradyrhizobium subterraneum sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts.

    PubMed

    Grönemeyer, Jann Lasse; Chimwamurombe, Percy; Reinhold-Hurek, Barbara

    2015-10-01

    Seven strains of symbiotic bacteria from root nodules of local races of Bambara groundnut (Vigna subterranea) and peanuts (Arachis hypogaea) grown on subsistence farmers' fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To corroborate their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences with Bradyrhizobium yuanmingense CCBAU 10071T being the most closely related type strain in the 16S rRNA gene phylogenetic analysis, and Bradyrhizobium daqingense CCBAU 15774T in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK placed the strains in a highly supported lineage distinct from named species of the genus Bradyrhizobium, most closely related to Bradyrhizobium yuanmingense CCBAU 10071T. The species status was validated by results of DNA–DNA hybridization. Phylogenetic analysis of nifH genes placed the novel strains in a group with nifH of ‘Bradyrhizobium arachidis’ CCBAU 051107 that also nodulates peanuts. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 58 2-1T induced effective nodules on V. subterranea, Vigna unguiculata and A. hypogaea, and some strains on Lablab purpureus. Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium subterraneum sp. nov. is proposed, with 58 2-1T [ = DSM 100298T = LMG 28792T = NTCCM0016T (Windhoek)] as the type strain. The DNA G+C content of strain 58 2-1T was 64.7 mol% (T m). PMID:26198108

  3. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  4. Changes in En(a-) human red blood cell membranes during in vivo ageing.

    PubMed

    Shinozuka, T; Miyata, Y; Takei, S; Yoshida, R; Ogamo, A; Nakagawa, Y; Kuroda, N; Yanagida, J

    1996-01-01

    The human red blood cells with phenotype En(a-) were characterized by the lack of MN antigens. The red blood cells with phenotype En(a-) which were found in a Japanese family were tested to clarify the changes in membrane surfaces of the red blood cells during in vivo ageing. The contents of sialic acid, glucose, mannose, galactose, fucose, N-acetylglucosamine and N-acetylgalactosamine of the red blood cell membranes obtained from the old red blood cells with phenotype En(a-) were significantly lower than those of the young red blood cell membranes. Neither the young nor the old red blood cells with phenotype En(a-) showed the agglutination with Arachis hypogaea (PNA) which was capable of binding to T agglutinogen. It is presumed that En(a-) red blood cells are not exposed to sialidase in vivo. In comparison with the young En(a-) red blood cell membranes, the number and the distribution density of lectin receptor sites on the old ones for Limulus polyphemus (LPA), Canavalia ensiformis (Con A), Triticum vulgaris (WGA) and Bauhinia purpurea (BPA) were significantly lower. It is thought that En(a-) red blood cell ageing is accompanied by elimination of some sialoglycoconjugates which have affinity for LPA, Con A, WGA and BPA, whereas En(a-) red blood cells lack glycophorin A. PMID:8866734

  5. Overexpression of bacterial mtlD gene in peanut improves drought tolerance through accumulation of mannitol.

    PubMed

    Bhauso, Tengale Dipak; Radhakrishnan, Thankappan; Kumar, Abhay; Mishra, Gyan Prakash; Dobaria, Jentilal Ramjibhai; Patel, Kirankumar; Rajam, Manchikatla Venkat

    2014-01-01

    In the changing global environmental scenarios, water scarcity and recurrent drought impose huge reductions to the peanut (Arachis hypogaea L.) crop yield. In plants, osmotic adjustments associated with efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms. Mannitol, a compatible solute, is known to scavenge hydroxyl radicals generated during various abiotic stresses, thereby conferring tolerance to water-deficit stress in many plant species. However, peanut plant is not known to synthesize mannitol. Therefore, bacterial mtlD gene coding for mannitol 1-phosphate dehydrogenase under the control of constitutive promoter CaMV35S was introduced and overexpressed in the peanut cv. GG 20 using Agrobacterium tumefaciens-mediated transformation. A total of eight independent transgenic events were confirmed at molecular level by PCR, Southern blotting, and RT-PCR. Transgenic lines had increased amount of mannitol and exhibited enhanced tolerance in response to water-deficit stress. Improved performance of the mtlD transgenics was indicated by excised-leaf water loss assay and relative water content under water-deficit stress. Better performance of transgenics was due to the ability of the plants to synthesize mannitol. However, regulation of mtlD gene expression in transgenic plants remains to be elucidated. PMID:25436223

  6. A Stilbenoid-Specific Prenyltransferase Utilizes Dimethylallyl Pyrophosphate from the Plastidic Terpenoid Pathway1[OPEN

    PubMed Central

    2016-01-01

    Prenylated stilbenoids synthesized in some legumes exhibit plant pathogen defense properties and pharmacological activities with potential benefits to human health. Despite their importance, the biosynthetic pathways of these compounds remain to be elucidated. Peanut (Arachis hypogaea) hairy root cultures produce a diverse array of prenylated stilbenoids upon treatment with elicitors. Using metabolic inhibitors of the plastidic and cytosolic isoprenoid biosynthetic pathways, we demonstrated that the prenyl moiety on the prenylated stilbenoids derives from a plastidic pathway. We further characterized, to our knowledge for the first time, a membrane-bound stilbenoid-specific prenyltransferase activity from the microsomal fraction of peanut hairy roots. This microsomal fraction-derived resveratrol 4-dimethylallyl transferase utilizes 3,3-dimethylallyl pyrophosphate as a prenyl donor and prenylates resveratrol to form arachidin-2. It also prenylates pinosylvin to chiricanine A and piceatannol to arachidin-5, a prenylated stilbenoid identified, to our knowledge, for the first time in this study. This prenyltransferase exhibits strict substrate specificity for stilbenoids and does not prenylate flavanone, flavone, or isoflavone backbones, even though it shares several common features with flavonoid-specific prenyltransferases. PMID:27356974

  7. Differential Expression of O-Glycans in CD4(+) T Lymphocytes from Patients with Systemic Lupus Erythematosus.

    PubMed

    Ramos-Martínez, Edgar; Lascurain, Ricardo; Tenorio, Eda Patricia; Sánchez-González, Antonio; Chávez-Rueda, Karina; Chávez-Sánchez, Luis; Jara-Quezada, Luis J; Chávez-Sánchez, Raúl; Zenteno, Edgar; Blanco-Favela, Francisco

    2016-01-01

    T cells from patients with systemic lupus erythematosus (SLE) show a decreased activation threshold and increased apoptosis. These processes seem to be regulated by glycosylated molecules on the T cell surface. Here, we determined through flow cytometry the expression of mucin-type O-glycans on T helper cells in peripheral blood mononuclear cells (PBMC) from 23 SLE patients and its relation with disease activity. We used lectins specific for the disaccharide Gal-GalNAc, such as Amaranthus leucocarpus lectin (ALL), Artocarpus integrifolia lectin (jacalin) and Arachis hypogaea lectin (peanut agglutinin, PNA), as well as lectins for sialic acid such as Sambucus nigra agglutinin (SNA) and Maakia amurensis agglutinin (MAA). The results showed that ALL, but not jacalin or PNA, identified significant differences in O-glycan expression on T helper cells from active SLE patients (n = 10). Moreover, an inverse correlation was found between the frequency of T helper cells recognized by ALL and SLE Disease Activity Index (SLEDAI) score in SLE patients. In contrast, SNA and MAA lectins did not identify any differences between CD4(+) T cells from SLE patients. There was no difference in the recognition by ALL on activated T helper cells and T regulatory (Treg) cells. Our findings point out that activation of SLE disease diminishes the expression of O-glycans in T helper cells; ALL could be considered as a marker to determine activity of the disease. PMID:27600584

  8. Studies on the methods of identification of irradiated food I. Seedling growth test

    NASA Astrophysics Data System (ADS)

    Qiongying, Liu; Yanhua, Kuang; Yuemei, Zheng

    1993-07-01

    A seedling growth test for the identification of gamma irradiated edible vegetable seeds was described. The identification of gamma irradiated grape and the other seeds has been investigated. The purpose of this study was to develop an easy, rapid and practical technique for the identification of irradiated edible vegetable seeds. Seven different irradiated edible vegetable seeds as: rice ( Oryza sativa), peanut ( Arachis hypogaea), maize ( Zeamays), soybean ( Glycine max), red bean ( Phaseolus angularis), mung bean ( Phaseolus aureus) and catjang cowpea ( Vigna cylindrica) were tested by using the method of seedling growth. All of the edible vegetable seeds were exposed to gamma radiation on different doses, O(CK), 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 kGy. After treatment with above 1.0 kGy dose to the seeds, the seedling rate was less than 50% compared with the control. Although the seedling rate of rice seeds can reached 58%, the seedling growth was not normal and the seedling leaves appeared deformed. The results by this method were helpful to identify gamma treatment of the edible vegetable seeds with above 1.0 kGy dose.

  9. Crops Uncommon to Alabama for the Management of Meloidogyne arenaria in Peanut

    PubMed Central

    Rodríguez-Kábana, R.; Robertson, D. G.; Wells, L.; King, P. S.; Weaver, C. F.

    1989-01-01

    In a 1987 field study juveniles of Meloidogyne arenaria assayed at the time of peanut harvest were almost undetectable in plots planted with American jointvetch (Aeschynomene americana), castor bean (Ricinus communis), partridge pea (Cassia fasiculata), sesame (Sesamum indicum), and cotton (Gossypium hirsutum), whereas plots with peanut (Arachis hypogaea) averaged 120 juveniles/100 cm³ soil. Application of aldicarb in peanut resulted in an average of 27 juveniles/100 cm³ soil. In 1988 all plots were planted to peanut and the aldicarb treatment was repeated in plots that had the nematicide in 1987. In 1988 peanut yields from plots that had no peanut in 1987 were 51-69% higher than the yield from those with continuous peanut and no nematicide. Aldicarb resulted in a 57% increase in yield, which is comparable to 1-year rotation to a nonhost crop. In 1988 harvest-time M. arenaria juvenile population densities in soil were the lowest in plots that had castor bean in 1987; however, the partridge pea-peanut and the sesame-peanut rotations also reduced numbers of juveniles when compared with continuous peanut with no nematicide. The aldicarb treatment resulted in juvenile population densities equivalent to those found with either the partridge pea or the sesame rotations. Rotations with American joint vetch or cotton did not result in lower juvenile population densities in peanut in 1988. PMID:19287678

  10. Crop candidates for the bioregenerative life support systems in China

    NASA Astrophysics Data System (ADS)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  11. Allergen composition analysis and allergenicity assessment of Chinese peanut cultivars.

    PubMed

    Wu, Zhihua; Zhou, Ningling; Xiong, Faqian; Li, Xin; Yang, Anshu; Tong, Ping; Tang, Ronghua; Chen, Hongbing

    2016-04-01

    Peanut (Arachis hypogaea) is among the eight major food allergens in the world. Several attempts have been made to decrease or eliminate the allergenicity of peanut. Systemic screening of thousands of peanut cultivars may identify peanut with low allergenicity. In this study, the allergen compositions of 53 Chinese peanut cultivars were characterized, and their allergenicity to sera IgE of Chinese patients and in a mouse model was assessed. Contents of total protein and allergens were quantified by SDS-PAGE and densitometry analysis on gel. Although the contents of allergens broadly varied among cultivars, they were related to one another. The IgE binding capacity of cultivars was tested by ELISA, and their allergenicity was further evaluated in a mouse model by oral sensitization. Results showed that the allergenicity of peanut was affected by allergen composition rather than a single allergen. Peanut cultivars with low allergenicity may contain more Ara h 3/4 (24 kDa), Ara h 2 and less Ara h 3/4 (43, 38, and 36 kDa), Ara h 6. Screening based on allergen composition would facilitate the identification of low-allergenic peanut. PMID:26593515

  12. Ultrasensitive carbohydrate-peptide SPR imaging microarray for diagnosing IgE mediated peanut allergy

    PubMed Central

    Joshi, Amit A.; Peczuh, Mark W.; Kumar, Challa V.; Rusling, James F

    2014-01-01

    Severity of peanut allergies is linked to allergen-specific immunoglobulin E (IgE) antibodies in blood, but diagnostics from assays using glycoprotein allergen mixtures may be inaccurate. Measuring IgEs specific to individual peptide and carbohydrate epitopes of allergenic proteins is promising. We report here the first immunoarray for IgEs utilizing both peptide and carbohydrate epitopes. A surface plasmon resonance imaging (SPRi) microarray was equipped with peptide and β-xylosyl glycoside (BXG) epitopes from major peanut allergen glycoprotein Arachis hypogaea h2 (Ara-h2). A monoclonal anti-IgE antibody was included as positive control. IgEs were precaptured onto magnetic beads loaded with polyclonal anti-IgE antibodies to enhance sensitivity and minimize non-specific binding. As little as 0.1 attomole (0.5 pg/mL) IgE was detected from dilute serum in 45 min. IgEs binding to Ara-h2 peptide and BXG were quantified in 10 μL of patient serum and correlated with standard ImmunoCAP values. PMID:25259443

  13. Gene expression profiling during seed-filling process in peanut with emphasis on oil biosynthesis networks.

    PubMed

    Gupta, Kapil; Kayam, Galya; Faigenboim-Doron, Adi; Clevenger, Josh; Ozias-Akins, Peggy; Hovav, Ran

    2016-07-01

    Pod-filling is an important stage of peanut (Arachis hypogaea) seed development. It is partially controlled by genetic factors, as cultivars considerably vary in pod-filling potential. Here, a study was done to detect changes in mRNA levels that accompany pod-filling processes. Four seed developmental stages were sampled from two peanut genotypes differing in their oil content and pod-filling potential. Transcriptome data were generated by RNA-Seq and explored with respect to genic and subgenomic patterns of expression. Very dynamic transcriptomic changes occurred during seed development in both genotypes. Yet, general higher expression rates of transcripts and an enrichment in processes involved "energy generation" and "primary metabolites" were observed in the genotype with the better pod-filling ("Hanoch"). A dataset of 584 oil-related genes was assembled and analyzed, resulting in several lipid metabolic processes highly expressed in Hanoch, including oil storage and FA synthesis/elongation. Homoeolog-specific gene expression analysis revealed that both subgenomes contribute to the oil genes expression. Yet, biases were observed in particular parts of the pathway with possible biological meaning, presumably explaining the genotypic variation in oil biosynthesis and pod-filling. This study provides baseline information and a resource that may be used to understand development and oil biosynthesis in the peanut seeds. PMID:27181953

  14. Isolation of lysophosphatidic acid phosphatase from developing peanut cotyledons.

    PubMed

    Shekar, Sunil; Tumaney, Ajay W; Rao, T J V Sreenivasa; Rajasekharan, Ram

    2002-03-01

    The soluble fraction of immature peanut (Arachis hypogaea) was capable of dephosphorylating [(3)H]lysophosphatidic acid (LPA) to generate monoacylglycerol (MAG). The enzyme responsible for the generation of MAG, LPA phosphatase, has been identified in plants and purified by successive chromatography separations on octyl-Sepharose, Blue Sepharose, Superdex-75, and heparin-agarose to apparent homogeneity from developing peanuts. This enzyme was purified 5,048-fold to a final specific activity of 858 nmol min(-1) mg(-1). The enzyme has a native molecular mass of approximately 39 kD determined by gel filtration and migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a subunit molecular mass of 39 +/- 1.5 kD. The K(m) values for oleoyl-, stearoyl-, and palmitoyl-sn-glycerol-3-phosphate were determined to be 28.6, 39.3, and 47.9 microM, respectively. The LPA phosphatase was specific to LPA and did not utilize any other substrate such as glycerol-3-phosphate, phosphatidic acid, or p-nitrophenylphosphate. The enzyme activity was stimulated by the low concentrations of detergents such as Triton X-100 and octylglucoside. Cations had no effect on the enzyme activity. Fatty acids, sphingosine, and sphingomyelin at low concentrations stimulated the enzyme activity. The identification of LPA phosphatase in plants demonstrates the existence of MAG biosynthetic machinery in plants. PMID:11891254

  15. Larvicidal activity of Acacia nilotica extracts and isolation of D-pinitol--a bioactive carbohydrate.

    PubMed

    Chaubal, Rohini; Pawar, Pushpa V; Hebbalkar, Geeta D; Tungikar, Vijay B; Puranik, Vedavati G; Deshpande, Vishnu H; Deshpande, Nirmala R

    2005-05-01

    A low-molecular-weight, sugar-like compound other than glucose, fructose, sucrose, or myo-inositol showing lipophilic nature was isolated from the EtOH extract of Acacia nilotica. The structure of the compound was determined by spectral methods. This alicyclic polyalcohol was found to be D-pinitol (= 3-O-methyl-D-chiro-inositol; 1). The configuration of the compound was confirmed by single-crystal X-ray analysis. The compound 1 is known from Soybean, Australian mangroves, Fagonia indica, Arachis hypogaea, etc., but we have isolated this compound for the first time from the aerial parts of A. nilotica. Very few references have been cited for compound 1 for its entomological activity, and there are no reports on mosquitoes. Therefore, the crude extracts of A. nilotica were tested for its biological activity against mosquito larvae. Acetone extract at 500-ppm concentration showed chronic toxicity against Aedes aegypti and Culex quinquefasciatus IVth instar mosquito larvae. Such a biological activity has been observed for the first time for this plant. This study could be a stepping stone to a solution for destroying larval species as well as consumption of such a widely grown, problem weed, A. nilotica. This larvicidal agent, since it is derived from plant, is eco-friendly, cost effective, non-hazardous to non-target organisms and would be safe unlike commercially available insecticides. PMID:17192011

  16. Isoosmotic Regulation of Cotton and Peanut at Saline Concentrations of K and Na 1

    PubMed Central

    Lauter, David J.; Meiri, Avraham; Shuali, Margot

    1988-01-01

    Peanut (Arachis hypogaea L.) and cotton (Gossypium hirsutum) plants were grown for 4 weeks in saline, isoosmotic rooting substrates with different proportions of K and Na. Isoosmotic media did not affect growth (except at the highest external K concentrations) or estimates of intracellular osmotic pressure in expanding leaves (i.e. osmotic pressure of leaf sap and intracellular osmotic pressure as calculated from pressure-volume curves). In expanded leaves, an increase in the proportion of external K increased sap osmotic pressure. The sum of [K+Na+Cl] in the sap of expanding and expanded leaves accounted for the effect of isoosmotic media on the concentration of osmolytes with high electrical conductance, so the difference between sap osmotic pressure and [K+Na+Cl] accounted for the concetration of osmolytes with low conductance. In expanding leaves, an increase in the proportion of external K increased [K+Na+Cl] and decreased the concentration of osmolytes with low conductance. In expanded leaves, an increase in the proportion of external K increased [K+Na+Cl] to approximately the same extent as sap osmotic pressure. Isoosmotic regulation was apparent in expanding leaves but not evident in expanded leaves. This suggests a turgor homeostat which can influence the concentration of organic solutes in expanding leaves but cannot control the import of inorganic solutes from a rooting medium nor the total production of organic solutes in plants with a low sink:source ratio. PMID:16666244

  17. Induced plant responses to pathogen attack. Analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max L. Merr. cv. Harosoy 63).

    PubMed

    Welle, R; Schröder, G; Schiltz, E; Grisebach, H; Schröder, J

    1991-03-14

    In soybean (Glycine max L.), pathogen attack induces the formation of glyceollin-type phytoalexins. The biosynthetic key enzyme is a reductase which synthesizes 4,2', 4'-trihydroxychalcone in co-action with chalcone synthase. Screening of a soybean cDNA library from elicitor-induced RNA in lambda gt11 yielded two classes of reductase-specific clones. The deduced proteins match to 100% and 95%, respectively, with 229 amino acids sequenced in the purified plant protein. Four clones of class A were expressed in Escherichia coli, and the proteins were tested for enzyme activity in extracts supplemented with chalcone synthase. All were active in 4,2',4'-trihydroxychalcone formation, and the quantification showed that shorter lengths of the cDNAs at the 5' end correlated with progressively decreasing enzyme activities. Genomic blots with DNA from plants capable of 4,2',4'-trihydroxychalcone synthesis revealed related sequences in bean (Phaseolus vulgaris L.) and peanut (Arachis hypogaea L.), but not in pea (Pisum sativum L.). No hybridization was observed with parsley (Petroselinum crispum) and carrot (Daucus carota) which synthesize other phytoalexins. The reductase protein contains a leucine-zipper motif and reveals a marked similarity with other oxidoreductases most of which are involved in carbohydrate metabolism. PMID:1840523

  18. Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition.

    PubMed

    Xiong, Hongchun; Guo, Xiaotong; Kobayashi, Takanori; Kakei, Yusuke; Nakanishi, Hiromi; Nozoye, Tomoko; Zhang, Lixia; Shen, Hongyun; Qiu, Wei; Nishizawa, Naoko K; Zuo, Yuanmei

    2014-07-01

    Iron (Fe) limitation is a widespread agricultural problem in calcareous soils and severely limits crop production. Iron Regulated Transporter 1 (IRT1) is a key component for Fe uptake from the soil in dicot plants. In this study, the peanut (Arachis hypogaea L.) AhIRT1 was introduced into tobacco and rice plants using an Fe-deficiency-inducible artificial promoter. Induced expression of AhIRT1 in tobacco plants resulted in accumulation of Fe in young leaves under Fe deficient conditions. Even under Fe-excess conditions, the Fe concentration was also markedly enhanced, suggesting that the Fe status did not affect the uptake and translocation of Fe by AhIRT1 in the transgenic plants. Most importantly, the transgenic tobacco plants showed improved tolerance to Fe limitation in culture in two types of calcareous soils. Additionally, the induced expression of AhIRT1 in rice plants also resulted in high tolerance to low Fe availability in calcareous soils. PMID:24727792

  19. Overexpression of Bacterial mtlD Gene in Peanut Improves Drought Tolerance through Accumulation of Mannitol

    PubMed Central

    Bhauso, Tengale Dipak; Radhakrishnan, Thankappan; Kumar, Abhay; Mishra, Gyan Prakash; Dobaria, Jentilal Ramjibhai; Patel, Kirankumar; Rajam, Manchikatla Venkat

    2014-01-01

    In the changing global environmental scenarios, water scarcity and recurrent drought impose huge reductions to the peanut (Arachis hypogaea L.) crop yield. In plants, osmotic adjustments associated with efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms. Mannitol, a compatible solute, is known to scavenge hydroxyl radicals generated during various abiotic stresses, thereby conferring tolerance to water-deficit stress in many plant species. However, peanut plant is not known to synthesize mannitol. Therefore, bacterial mtlD gene coding for mannitol 1-phosphate dehydrogenase under the control of constitutive promoter CaMV35S was introduced and overexpressed in the peanut cv. GG 20 using Agrobacterium tumefaciens-mediated transformation. A total of eight independent transgenic events were confirmed at molecular level by PCR, Southern blotting, and RT-PCR. Transgenic lines had increased amount of mannitol and exhibited enhanced tolerance in response to water-deficit stress. Improved performance of the mtlD transgenics was indicated by excised-leaf water loss assay and relative water content under water-deficit stress. Better performance of transgenics was due to the ability of the plants to synthesize mannitol. However, regulation of mtlD gene expression in transgenic plants remains to be elucidated. PMID:25436223

  20. Seed Oil from Ten Algerian Peanut Landraces for Edible Use and Biodiesel Production.

    PubMed

    Giuffrè, Angelo Maria; Tellah, Sihem; Capocasale, Marco; Zappia, Clotilde; Latati, Mourad; Badiani, Maurizio; Ounane, Sidi Mohamed

    2016-01-01

    As a result of a recent ad hoc prospection of the Algerian territory, a collection of peanut (groundnut; Arachis hypogaea L.) landraces was established, covering a remarkable array of diversity in terms of morphological and physiological features, as well as of adaptation to local bioclimatic conditions. In the present work, the oils extracted from the seeds of these landraces were evaluated in terms of edible properties and suitability for biodiesel production. As for edible use, a low free acidity (ranging from 0.62 to 1.21%) and a high oleic acid content (44.61-50.94%) were common features, although a poor stability to oxidation [high peroxide values, high spectrophotometric indices, and low % of inhibition in the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH)· test] was observed in a few cases. As for biodiesel production, low values of acidity [1.23-2.40 mg KOH (g oil)(-1)], low iodine values [90.70-101.54 g I2 (g oil)(-1)], high cetane numbers (56.95-58.88) and high calorific values (higher heating value 37.34-39.27 MJ kg(-1)) were measured. Edible properties and suitability for biodiesel production were discussed with respect to the German standard DIN 51605 for rapeseed oil and to the EN 14214 standard, respectively. One way ANOVA and Hierarchical Cluster Analysis showed significant differences among the oils from the Algerian peanut landraces. PMID:26743667

  1. Rotations of Bahiagrass and Castorbean with Peanut for the Management of Meloidogyne arenaria

    PubMed Central

    Rodríguez-Kábana, R.; Robertson, D. G.; Weaver, C. F.; Wells, L.

    1991-01-01

    The relative value of 'Hale' castorbean (Ricinus communis) and 'Pensacola' bahiagrass (Paspalum notatum) as rotational crops for the management of Meloidogyne arenaria and southern blight (Sclerotium rolfsii) in 'Florunner' peanut (Arachis hypogaea) production was studied for 3 years in a field experiment in southeast Alabama. Peanut following 2 years of castorbean (C-C-P) yielded 43% higher than monocultured peanut without nematicide. At-plant application of aldicarb (30.5 g a.i./100 m row in a 20-cm-wide band) to monocultured peanut resulted in an average 38.9% increase in yield over the 3 years of the experiment. Peanut yield following 2 years of bahiagrass (B-B-P) was 36% higher than monocultured peanut without nematicide. Aldicarb application had no effect on southern blight, but both C-C-P and B-B-P rotations reduced the incidence of the disease in peanut. Juvenile populations of M. arenaria in soil at peanut harvest time were lower in plots with C-C-P than in those with the B-B-P rotation, and both rotations resulted in lower numbers of juveniles in soil than in the untreated monocultured peanut. PMID:19283180

  2. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    NASA Astrophysics Data System (ADS)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  3. A Peanut Nodule Lectin in Infected Cells and in Vacuoles and the Extracellular Matrix of Nodule Parenchyma.

    PubMed Central

    VandenBosch, K. A.; Rodgers, L. R.; Sherrier, D. J.; Kishinevsky, B. D.

    1994-01-01

    Root nodules on peanut (Arachis hypogaea L.) accumulate a galactose/lactose-binding lectin that is similar, but not identical, to the major seed lectin in peanut. The function of the peanut nodule lectin (PNL) is not known. In the current study, we have investigated the location of lectin in the nodule using immunogold labeling and enzyme-linked immunosorbant assays (ELISA). Lectin was most abundant in the nodule parenchyma, where it accumulated in vacuoles, suggesting a possible role as a vegetative storage protein. Lectin was also detected in the extracellular matrix in the nodule parenchyma, a location that corresponds to the tissue layer forming a barrier to oxygen diffusion. The potential for interactions between PNL and other cell wall components, including a previously described high-molecular weight glycoprotein that co-localizes with PNL, is discussed. Within infected cells, lectin was not detectable by immunogold labeling within the cytoplasm, but light labeling was suggestive of lectin localization within the symbiosome lumen. Analysis of fractionated symbiosomes by the more sensitive ELISA technique confirmed that lectin was present within the symbiosome, but was not bound to bacteroids. Our results indicate that PNL probably plays several roles in this nitrogen-fixing symbiosis. PMID:12232084

  4. Differential Induction of Flavonoids in Groundnut in Response to Helicoverpa armigera and Aphis craccivora Infestation.

    PubMed

    War, Abdul Rashid; Sharma, Suraj Prasad; Sharma, Hari Chand

    2016-01-01

    Flavonoids are important plant secondary metabolites, which protect plants from various stresses, including herbivory. Plants differentially respond to insects with different modes of action. High performance liquid chromatography (HPLC) fingerprinting of phenols of groundnut (Arachis hypogaea) plants with differential levels of resistance was carried out in response to Helicoverpa armigera (chewing insect) and Aphis craccivora (sucking pest) infestation. The genotypes used were ICGV 86699, ICGV 86031, ICG 2271 (NCAc 343), ICG 1697 (NCAc 17090), and JL 24. Most of the identified compounds were present in H. armigera- and A. craccivora-infested plants of ICGV 86699. Syringic acid was observed in all the genotypes across the treatments, except in the uninfested control plants of ICG 2271 and aphid-infested plants of ICG 1697. Caffeic acid and umbelliferone were observed only in the H. armigera-infested plants of ICGV 86699. Similarly, dihydroxybenzoic acid and vanillic acid were observed in H. armigera- and aphid-infested plants of ICG 2271 and JL 24, respectively. The peak areas were transformed into the amounts of compounds by using internal standard peak areas and were expressed in nanograms. Quantities of the identified compounds varied across genotypes and treatments. The common compounds observed were chlorogenic, syringic, quercetin, and ferulic acids. These results suggest that depending on the mode of feeding, flavonoids are induced differentially in groundnut plants. PMID:27398031

  5. A Stilbenoid-Specific Prenyltransferase Utilizes Dimethylallyl Pyrophosphate from the Plastidic Terpenoid Pathway.

    PubMed

    Yang, Tianhong; Fang, Lingling; Rimando, Agnes M; Sobolev, Victor; Mockaitis, Keithanne; Medina-Bolivar, Fabricio

    2016-08-01

    Prenylated stilbenoids synthesized in some legumes exhibit plant pathogen defense properties and pharmacological activities with potential benefits to human health. Despite their importance, the biosynthetic pathways of these compounds remain to be elucidated. Peanut (Arachis hypogaea) hairy root cultures produce a diverse array of prenylated stilbenoids upon treatment with elicitors. Using metabolic inhibitors of the plastidic and cytosolic isoprenoid biosynthetic pathways, we demonstrated that the prenyl moiety on the prenylated stilbenoids derives from a plastidic pathway. We further characterized, to our knowledge for the first time, a membrane-bound stilbenoid-specific prenyltransferase activity from the microsomal fraction of peanut hairy roots. This microsomal fraction-derived resveratrol 4-dimethylallyl transferase utilizes 3,3-dimethylallyl pyrophosphate as a prenyl donor and prenylates resveratrol to form arachidin-2. It also prenylates pinosylvin to chiricanine A and piceatannol to arachidin-5, a prenylated stilbenoid identified, to our knowledge, for the first time in this study. This prenyltransferase exhibits strict substrate specificity for stilbenoids and does not prenylate flavanone, flavone, or isoflavone backbones, even though it shares several common features with flavonoid-specific prenyltransferases. PMID:27356974

  6. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment

    NASA Technical Reports Server (NTRS)

    Stanciel, K.; Mortley, D. G.; Hileman, D. R.; Loretan, P. A.; Bonsi, C. K.; Hill, W. A.

    2000-01-01

    The effects of elevated CO2 on growth, pod, and seed yield, and gas exchange of 'Georgia Red' peanut (Arachis hypogaea L.) were evaluated under controlled environmental conditions. Plants were exposed to concentrations of 400 (ambient), 800, and 1200 micromoles mol-1 CO2 in reach-in growth chambers. Foliage fresh and dry weights increased with increased CO2 up to 800 micromoles mol-1, but declined at 1200 micromoles mol-1. The number and the fresh and dry weights of pods also increased with increasing CO2 concentration. However, the yield of immature pods was not significantly influenced by increased CO2. Total seed yield increased 33% from ambient to 800 micromoles mol-1 CO2, and 4% from 800 to 1200 micromoles mol-1 CO2. Harvest index increased with increasing CO2. Branch length increased while specific leaf area decreased linearly as CO2 increased from ambient to 1200 micromoles mol-1. Net photosynthetic rate was highest among plants grown at 800 micromoles mol-1. Stomatal conductance decreased with increased CO2. Carboxylation efficiency was similar among plants grown at 400 and 800 micromoles mol-1 and decreased at 1200 micromoles mol-1 CO2. These results suggest that CO2 enrichment from 400 to 800 micromoles mol-1 had positive effects on peanut growth and yield, but above 800 micromoles mol-1 enrichment seed yield increased only marginally.

  7. Study of surface carbohydrates in Galba truncatula tissues before and after infection with Fasciola hepatica.

    PubMed

    Georgieva, Katya; Georgieva, Liliya; Mizinska-Boevska, Yana; Stoitsova, Stoyanka R

    2016-07-01

    The presence and distribution of surface carbohydrates in the tissues of Galba truncatula snails uninfected or after infection with Fasciola hepatica as well as on the surface of the snail-pathogenic larval stages of the parasite were studied by lectin labelling assay. This is an attempt to find similarities that indicate possible mimicry, utilised by the parasite as an evasion strategy in this snail-trematode system. Different binding patterns were identified on head-foot-mantle, hepatopancreas, genital glands, renopericardial complex of the host as well as of the snail-pathogenic larval stages of F. hepatica. The infection with F. hepatica leads to changes of labelling with Glycine max in the head-mantle cells and Arachis hypogaea in the tubular epithelium of the hepatopancreas. The lectin binding on the other snail tissues is not changed by the development of the larvae. Our data clearly demonstrated the similarity in labelling of G. truncatula tissues and the surface of the snail-pathogenic larval stages of F. hepatica. The role of glycosylation of the contact surfaces of both organisms in relation to the host-parasite interactions is also discussed. PMID:27384082

  8. Cloning and characterization of peanut allene oxide cyclase gene involved in salt-stressed responses.

    PubMed

    Liu, H H; Wang, Y G; Wang, S P; Li, H J

    2015-01-01

    In this study, the full-length cDNA encoding allene oxide cyclase (AhAOC) was isolated from peanut (Arachis hypogaea L.). The deduced amino acid sequence of AhAOC showed high homology with other plant AOCs. The transcript of AhAOC was found to be abundantly expressed in roots. Expression analysis demonstrated that AhAOC was induced by abscisic acid, methyl-jasmonic acid, salicylic acid, salinity, polyethylene glycol, and cold stresses, particularly by high salinity. Overexpression of AhAOC in rice increased root elongation and plant height compared with expression in control plants and conferred tolerance against salinity. Thus, the AhAOC gene may play an important role in increasing the expression of transcription factors (MYB2 and OsONAC045) and functional genes (DREB1F and LEA3) in transgenic rice under salt stress as well as improve stress tolerance through the accumulation of compatible solutes (proline and soluble sugar). The AhAOC gene is a potential resource for enhancing salt tolerance in crop species. PMID:25867379

  9. Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum.

    PubMed

    Zhang, Yu Jing; Zheng, Wen Tao; Everall, Isobel; Young, J Peter W; Zhang, Xiao Xia; Tian, Chang Fu; Sui, Xin Hua; Wang, En Tao; Chen, Wen Xin

    2015-09-01

    Four rhizobia-like strains, isolated from root nodules of Pisum sativum and Vicia faba grown in Anhui and Jiangxi Provinces of China, were grouped into the genus Rhizobium but were distinct from all recognized species of the genus Rhizobium by phylogenetic analysis of 16S rRNA and housekeeping genes. The combined sequences of the housekeeping genes atpD, recA and glnII for strain CCBAU 23252(T) showed 86.9 to 95% similarity to those of known species of the genus Rhizobium. All four strains had nodC and nifH genes and could form effective nodules with Pisum sativum and Vicia faba, and ineffective nodules with Phaseolus vulgaris, but did not nodulate Glycine max, Arachis hypogaea, Medicago sativa, Trifolium repens or Lablab purpureus in cross-nodulation tests. Fatty acid composition, DNA-DNA relatedness and a series of phenotypic tests also separated these strains from members of closely related species. Based on all the evidence, we propose a novel species, Rhizobium anhuiense sp. nov., and designate CCBAU 23252(T) ( = CGMCC 1.12621(T) = LMG 27729(T)) as the type strain. This strain was isolated from a root nodule of Vicia faba and has a DNA G+C content of 61.1 mol% (Tm). PMID:26025940

  10. Analysis of expression and glycosylation of avian metapneumovirus attachment glycoprotein from recombinant baculoviruses.

    PubMed

    Luo, Lizhong; Nishi, Krista; MacLeod, Erin; Sabara, Marta I; Li, Yan

    2010-11-01

    Recently, we reported the expression and glycosylation of avian metapneumovirus attachment glycoprotein (AMPV/C G protein) in eukaryotic cell lines by a transient-expression method. In the present study, we investigated the biosynthesis and O-linked glycosylation of the AMPV/C G protein in a baculovirus expression system. The results showed that the insect cell-produced G protein migrated more rapidly in SDS-PAGE as compared to LLC-MK2 cell-derived G proteins owing to glycosylation differences. The fully processed, mature form of G protein migrated between 78 and 86 kDa, which is smaller than the 110 kDa mature form of G expressed in LLC-MK2 cells. In addition, several immature G gene products migrating at 40-48 and 60-70 kDa were also detected by SDS-PAGE and represented glycosylated intermediates. The addition of the antibiotic tunicamycin, which blocks early steps of glycosylation, to insect cell culture resulted in the disappearance of two glycosylated forms of the G protein and identified a 38 kDa unglycosylated precursor. The maturation of the G protein was completely blocked by monensin, suggesting that the O-linked glycosylation of G initiated in the trans-Golgi compartment. The presence of O-linked sugars on the mature protein was further confirmed by lectin Arachis hypogaea binding assay. Furthermore, antigenic features of the G protein expressed in insect cells were evaluated by ELISA. PMID:20713098

  11. Mycological and aflatoxin contamination of peanuts sold at markets in Kinshasa, Democratic Republic of Congo, and Pretoria, South Africa.

    PubMed

    Kamika, Ilunga; Mngqawa, Pamella; Rheeder, John P; Teffo, Snow L; Katerere, David R

    2014-01-01

    Peanut (Arachis hypogaea L.) is an important food crop in sub-Saharan Africa. In this survey, the mycological and aflatoxin contamination of peanuts collected from Kinshasa, Democratic Republic of Congo, and Pretoria, South Africa, was assessed. Twenty peanut samples were purchased randomly at informal markets in the two cities and analysed for mycoflora and aflatoxins (AFB1, AFB2, AFG1 and AFG2) using standard methods. The results indicated that 95% of the Kinshasa samples and 100% of the Pretoria samples were contaminated with aflatoxigenic fungi in the ranges 20-49,000 and 40-21,000 CFU/g, respectively. Seventy-five per cent of the Kinshasa samples and 35% of the Pretoria samples exceeded the maximum limits of AFB1 as set by The Joint FAO/WHO Expert Committee on Food Additives. Residents of both cities are at a high risk of aflatoxin exposure despite their apparent cultural, socio-economic, geographic and climatic differences. Further work needs to be done to understand the supply chains of peanut trade in informal markets of the two countries so that interventions are well targeted on a regional rather than a national level. PMID:24914597

  12. Effects of drought on cadmium accumulation in peanuts grown in a contaminated calcareous soil.

    PubMed

    Xia, Shenglan; Wang, Xvming; Su, Genqiang; Shi, Gangrong

    2015-12-01

    This study aimed to investigate the effects of drought stress on cadmium (Cd) accumulation in peanut (Arachis hypogaea L.) grown in contaminated calcareous soils. Five peanut cultivars were grown in a calcareous soil spiked with 4 mg Cd kg(-1) soil (dry weight) under well-watered, mild drought, and severe drought conditions. The biomass production, gas exchange, spectral reflectance, and Cd accumulation in plant tissues were determined. The five cultivars significantly differed from each other in biomass production, gas exchange, spectral reflectance, and Cd accumulation. The effect of drought on Cd accumulation in peanuts varies with plant tissues, cultivars, and developmental stages. Drought decreased root Cd concentrations in seedlings of the two high Cd-accumulating cultivars (Haihua 1 and Zhenghong 3), which is associated with increasing leaf active Fe content. However, for the mature plants, drought stress caused an increase in Cd accumulation in roots, pod walls, and seeds depending on peanut cultivars. Negative correlations were found between seed Cd concentration and biomasses in both preflowering seedlings and mature plants. The seed Cd concentration in mature plants was also observed to be positively correlated with the shoot Cd concentration in preflowering seedlings. The increased Cd concentration in seeds of drought-stressed peanut plants grown in Cd-contaminated calcareous soils might be attributed to the drought-induced decrease of biomass production. PMID:26194243

  13. Sialylated and O-glycosidically linked glycans in prion protein deposits in a case of Gerstmann-Sträussler-Scheinker disease.

    PubMed

    Zomosa-Signoret, Viviana; Mayoral, Miguel; Limón, Daniel; Espinosa, Blanca; Calvillo, Minerva; Zenteno, Edgar; Martínez, Victor; Guevara, Jorge

    2011-04-01

    Prion diseases are caused by an abnormal form of the prion protein (PrP(Sc)). We identified, with lectins, post-translational modifications of brain proteins due to glycosylation in a Gerstmann-Sträussler-Scheinker (GSS) patient. The lectin Amaranthus leucocarpus (ALL), specific for mucin type O-glycosylated structures (Galß1,3 GalNAcα1,0 Ser/Thr or GalNAcα1,0 Ser/Thr), and Sambucus nigra agglutinin (SNA), specific for Neu5Acα2,6 Gal/GalNAc, showed positive labeling in all the prion deposits and in the core of the PrP(Sc) deposits, respectively, indicating specific distribution of O-glycosylated and sialylated structures. Lectins from Maackia amurensis (MAA, Neu5Acα2,3), Macrobrachium rosenbergii (MrL, Neu5,9Ac2-specific) and Arachis hypogaea (PNA, Gal-specific) showed low staining of prion deposits. Immunohistochemistry colocalization with prion antibody indicated that all lectins stained prion protein deposits. These results show that specific modifications in the glycosylation pattern are closely related to the hallmark lesions and might be an early event in neuronal degeneration in GSS disease. PMID:20667006

  14. O-Glycosylation in sprouting neurons in Alzheimer disease, indicating reactive plasticity.

    PubMed

    Espinosa, B; Zenteno, R; Mena, R; Robitaille, Y; Zenteno, E; Guevara, J

    2001-05-01

    Reactive plasticity, including axonal and dendritic sprouting and reactive synaptogenesis, has been proposed to contribute to the pathogenesis of several neurological disorders. This work was aimed at identifying the possible role of protein glycosylation in the brain from patients with Alzheimer disease (AD), using lectin histochemistry, as determinants of reactive plasticity. Results indicate an increase in the production of cryptic O-glycosidically linked proteins (NeuAcalpha2,6 Galbeta1,3GalNAcalpha1,0 Ser/Thr or sialyl-T-antigen) in neuritic sprouting in AD brains as determined by positive labeling with Amaranthus leucocarpus (ALL, T-antigen-specific) and Macrobrachium rosenbergii (MRL, specific for NeuAc5,9Ac2) lectins. Immunohistochemistry indicated that lectin staining was specific for the synaptic sprouting process (meganeurites) in AD. These results were confirmed using anti-synaptophysin and anti-GAP 43 antibodies, which recognized meganeurites and dystrophic neurites around amyloid-beta deposits. In normal control brains, labeling with the aforementioned lectins was restricted to microvessels. Control experiments with neuraminidase-treated brain samples revealed positivity to the lectin from Arachis hypogaea (PNA), which is specific for galactose. Our results suggest specific O-glycosylation patterns of proteins closely related to neuronal plasticity in AD. PMID:11379819

  15. Determination of the phytoalexin resveratrol (3,5,4'-trihydroxystilbene) in peanuts and pistachios by high-performance liquid chromatographic diode array (HPLC-DAD) and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Tokuşoglu, Ozlem; Unal, Mustafa Kemal; Yemiş, Fadim

    2005-06-15

    The phytoalexin resveratrol (3,5,4'-trihydroxystilbene) in edible peanut (Arachis hypogaea L.) and pistachio (Pistacia vera L.) varieties grown in Turkey was analyzed by high-performance liquid chromatographic diode array and gas chromatography-mass spectrometric detection. trans-Resveratrol in six peanut varieties, five pistachio varieties, and four market samples ranged between 0.03 and 1.92 microg/g. The Cerezlik 5025 peanut (1.92 +/- 0.01 microg/g) and Ohadi pistachio genotype (1.67 +/- 0.01 microg/g) had significantly higher trans-resveratrol contents. Peanuts contained 0.03-1.92 microg/g (av = 0.84 microg/g) of trans-resveratrol, whereas pistachio contained 0.09-1.67 microg/g (av = 1.15 microg/g). With exposure to UV light for 1 min, trans-resveratrol concentrations of samples ranged from 0.02 to 1.47 microg/g and those of cis-resveratrol from 0.008 to 0.32 microg/g. The occurrence of resveratrol in peanut and pistachio was confirmed by total ion chromatograms (TIC) of bis[trimethylsilyl]trifluoroacetamide derivatives of resveratrol isomers and comparison of the mass spectral fragmentation data with those of a resveratrol standard. Formation of the cis-isomer in pistachios was higher than in peanuts. PMID:15941348

  16. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    PubMed

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil. PMID:25867954

  17. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.

    PubMed

    Sulochana, M B; Jayachandra, S Y; Kumar, S Anil; Parameshwar, A B; Reddy, K Mohan; Dayanand, A

    2014-09-01

    Siderophores scavenges Fe(+3) from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones. PMID:25062779

  18. The peanut allergy epidemic: allergen molecular characterisation and prospects for specific therapy.

    PubMed

    de Leon, Maria P; Rolland, Jennifer M; O'Hehir, Robyn E

    2007-01-01

    Peanut (Arachis hypogaea) allergy is a major cause of food-induced anaphylaxis, with increasing prevalence worldwide. To date, there is no cure for peanut allergy, and, unlike many other food allergies, it usually persists through to adulthood. Prevention of exposure to peanuts is managed through strict avoidance, which can be compromised by the frequent use of peanuts and peanut products in food preparations. Conventional subcutaneous-injection allergen immunotherapy using crude peanut extract is not a recommended treatment because of the risk of severe side effects, largely as a result of specific IgE antibodies. Consequently, there is an urgent need to develop a suitable peanut allergen preparation that can induce specific clinical and immunological tolerance to peanuts in allergic individuals without adverse side effects. This requires detailed molecular and immunological characterisation of the allergenic components of peanut. This article reviews current knowledge on clinically relevant peanut allergens, in particular Ara h 1, Ara h 2 and Ara h 3, together with options for T-cell-reactive but non-IgE-binding allergen variants for specific immunotherapeutic strategies. These include T-cell-epitope peptide and hypoallergenic mutant vaccines. Alternative routes of administration such as sublingual are also considered, and appropriate adjuvants for delivering effective treatments at these sites examined. PMID:17210088

  19. The potential for controlling Pangaeus bilineatus (Heteroptera: Cydnidae) using a combination of entomopathogens and an insecticide.

    PubMed

    Mbata, George N; Shapiro-Ilan, David

    2013-10-01

    The peanut burrower bug, Pangaeus bilineatus (Say), is an important pest of peanut (Arachis hypogaea L.) in the southern United States. Current control methods for this pest, which are based on the use of chemical insecticides, have not been successful. Our objective was to determine if entomopathogens applied alone or in combination with a standard chemical insecticide would provide superior levels of P. bilineatus mortality compared with the standard chemical applied alone. Specifically, we investigated the efficacy of an entomopathogenic nematode, Heterorhabditis bacteriophora Poinar (Oswego strain), and a fungus, Beauveria bassiana (Balsamo) Vuillemin (GHA strain), applied alone or in combination with chlorpyrifos. When applied as single treatments, the two entomopathogens were not pathogenic, that is, they did not cause mortality in P. bilineatus adults that was different from the nontreated control. However, 3 and 7 d posttreatment, the combination of the H. bacteriophora and chlorpyrifos caused higher mortality than the nematode, fungus, or insecticide alone, or the combination of chlorpyrifos and B. bassiana. The nature of the interaction between H. bacteriophora and chlorpyrifos was synergistic, which is of particular interest, given that this is the first time a synergy is being reported between a nematode that was not pathogenic when applied alone and a chemical insecticide. B. bassiana and its combination with the chlorpyrifos did not significantly increase insect mortality compared with chlorpyrifos alone or the control. Based on the observation of synergy, the combination of H. bacteriophora and chlorpyrifos should be investigated further for potential adoption in the management of P. bilineatus. PMID:24224248

  20. Serine/Threonine/Tyrosine Protein Kinase Phosphorylates Oleosin, a Regulator of Lipid Metabolic Functions1[OA

    PubMed Central

    Parthibane, Velayoudame; Iyappan, Ramachandiran; Vijayakumar, Anitha; Venkateshwari, Varadarajan; Rajasekharan, Ram

    2012-01-01

    Plant oils are stored in oleosomes or oil bodies, which are surrounded by a monolayer of phospholipids embedded with oleosin proteins that stabilize the structure. Recently, a structural protein, Oleosin3 (OLE3), was shown to exhibit both monoacylglycerol acyltransferase and phospholipase A2 activities. The regulation of these distinct dual activities in a single protein is unclear. Here, we report that a serine/threonine/tyrosine protein kinase phosphorylates oleosin. Using bimolecular fluorescence complementation analysis, we demonstrate that this kinase interacts with OLE3 and that the fluorescence was associated with chloroplasts. Oleosin-green fluorescent protein fusion protein was exclusively associated with the chloroplasts. Phosphorylated OLE3 exhibited reduced monoacylglycerol acyltransferase and increased phospholipase A2 activities. Moreover, phosphatidylcholine and diacylglycerol activated oleosin phosphorylation, whereas lysophosphatidylcholine, oleic acid, and Ca2+ inhibited phosphorylation. In addition, recombinant peanut (Arachis hypogaea) kinase was determined to predominantly phosphorylate serine residues, specifically serine-18 in OLE3. Phosphorylation levels of OLE3 during seed germination were determined to be higher than in developing peanut seeds. These findings provide direct evidence for the in vivo substrate selectivity of the dual-specificity kinase and demonstrate that the bifunctional activities of oleosin are regulated by phosphorylation. PMID:22434039

  1. Specificity of Aspartate Aminotransferases from Leguminous Plants for 4-Substituted Glutamic Acids 1

    PubMed Central

    Winter, Harry C.; Dekker, Eugene E.

    1989-01-01

    Aspartate aminotransferase (glutamate-oxalacetate transaminase) was partially purified from extracts of germinating seeds of peanut (Arachis hypogaea), honey locust (Gleditsia triacanthos), soybean (Glycine max), and Sophora japonica. The ability of these enzyme preparations, as well as aspartate aminotransferase purified from pig heart cytosol, to use 4-substituted glutamic acids as amino group donors and their corresponding 2-oxo acids as amino group acceptors in the aminotransferase reaction was measured. All 4-substituted glutamic acid analogs tested were poorer substrates than was glutamate or 2-oxoglutarate. 2-Oxo-4-methyleneglutarate was least effective (lowest relative Vm/Km) as a substrate for the enzyme from peanuts and honey locust, which are the two species studied that accumulate 4-methyleneglutamic acid and 4-methyleneglutamine. Of the different aminotransferases tested, the enzyme from honey locust was the least active with 2-oxo-4-hydroxy-4-methylglutarate, the corresponding amino acid of which also accumulates in that species. These results suggest that transamination of 2-oxo-4-substituted glutaric acids is not involved in the biosynthesis of the corresponding 4-substituted glutamic acids in these species. Rather, accumulation of certain 4-substituted glutamic acids in these instances may be, in part, the result of the inefficacy of their transamination by aspartate aminotransferase. PMID:16666674

  2. Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation.

    PubMed

    Lu, Ziwei; Zhang, Zheng; Su, Ying; Liu, Caifeng; Shi, Gangrong

    2013-05-01

    This study aimed to test the hypothesis that root morphology may play a crucial role in the variation in Cd accumulation among peanut (Arachis hypogaea L.) cultivars. The biomass, Cd accumulation and root morphology of five peanut cultivars were determined under 2 and 20μM CdCl2 in a hydroponic experiment. Excess Cd considerably decreased the root lengths (RL), surface area (SA), specific root length (SRL) and number of root tips, but increased the root diameters (RD). Cd-induced decreases in RL and SA were significant in the 0-0.2 and 0.2-0.4mm diameter classes. Peanut cultivars differ in Cd accumulation and root morphological parameters. A positive correlation was observed between RL and Cd amount in shoots. RD negatively correlated to Cd concentrations in roots and shoots. Positive correlations were also found between RL vs. shoot Cd concentration, SA vs. Cd amount in shoots, SRL vs. root Cd concentration, SRL vs. shoot Cd concentration, and SRL vs. Cd amount in shoots. The fine roots play a crucial role in determining Cd accumulation in peanut plants. Cultivars with more fine roots in their root system (i.e. Haihua 1 and Zhenghong 3) have high capability of Cd accumulation. PMID:23410837

  3. Leaf aquaporin transcript abundance in peanut genotypes diverging in expression of the limited-transpiration trait when subjected to differing vapor pressure deficits and aquaporin inhibitors.

    PubMed

    Devi, M Jyostna; Sinclair, Thomas R; Jain, Mukesh; Gallo, Maria

    2016-04-01

    A plant trait currently being exploited to decrease crop yield loss under water-deficit conditions is limited-transpiration rate (TRlim ) under high atmospheric vapor pressure deficit (VPD) conditions. Although limited genotype comparisons for the TRlim trait have been performed in peanut (Arachis hypogaea), no detailed study to describe the basis for this trait in peanut has been reported. Since it has been hypothesized that the TRlim trait may be a result of low leaf hydraulic conductance associated with aquaporins (AQPs), the first objective of this study was to examine a possible correlation of TRlim to leaf AQP transcriptional profiles in six peanut cultivars. Five of the studied cultivars were selected because they expressed TRlim while the cultivar York did not. Transcripts of six AQPs were measured. Under exposure to high vapor pressure deficit, cultivar C 76-16 had decreased AQP transcript abundance for four of the six AQPs but in York only one AQP had decreased abundance. The second objective was to explore the influence of AQP inhibitors mercury and silver on expression of TRlim and AQP transcription profiles. Quantitative RT-PCR data were compared in cultivars York and C 76-16, which had the extreme response in TR to VPD. Inhibitor treatment resulted in increased abundance of AQP transcripts in both. The results of these experiments indicate that AQP transcript abundance itself may not be useful in identifying genotypes expressing the TRlim trait under high VPD conditions. PMID:26303261

  4. Mining the “glycocode”—exploring the spatial distribution of glycans in gastrointestinal mucin using force spectroscopy

    PubMed Central

    Gunning, A. Patrick; Kirby, Andrew R.; Fuell, Christine; Pin, Carmen; Tailford, Louise E.; Juge, Nathalie

    2013-01-01

    Mucins are the main components of the gastrointestinal mucus layer. Mucin glycosylation is critical to most intermolecular and intercellular interactions. However, due to the highly complex and heterogeneous mucin glycan structures, the encoded biological information remains largely encrypted. Here we have developed a methodology based on force spectroscopy to identify biologically accessible glycoepitopes in purified porcine gastric mucin (pPGM) and purified porcine jejunal mucin (pPJM). The binding specificity of lectins Ricinus communis agglutinin I (RCA), peanut (Arachis hypogaea) agglutinin (PNA), Maackia amurensis lectin II (MALII), and Ulex europaeus agglutinin I (UEA) was utilized in force spectroscopy measurements to quantify the affinity and spatial distribution of their cognate sugars at the molecular scale. Binding energy of 4, 1.6, and 26 aJ was determined on pPGM for RCA, PNA, and UEA. Binding was abolished by competition with free ligands, demonstrating the validity of the affinity data. The distributions of the nearest binding site separations estimated the number of binding sites in a 200-nm mucin segment to be 4 for RCA, PNA, and UEA, and 1.8 for MALII. Binding site separations were affected by partial defucosylation of pPGM. Furthermore, we showed that this new approach can resolve differences between gastric and jejunum mucins.—Gunning, A. P., Kirby, A. R., Fuell, C., Pin, C., Tailford L. E., Juge, N. Mining the “glycocode”—exploring the spatial distribution of glycans in gastrointestinal mucin using force spectroscopy. PMID:23493619

  5. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil.

    PubMed

    Sayyed, R Z; Patel, P R; Shaikh, S S

    2015-02-01

    The heavy metal resistant bacterium isolated from field soil and identified as Enterobacter sp. RZS5 tolerates a high concentration (100-2000 μM) of various heavy metal ions such as Mn2+, Ni2+, Zn2+, Cu2+, CO2+ and Fe2+ when grown in such environment and produces exopolysaccharides (EPS). Here, we have demonstrated EPS production by Enterobacter sp. RZS5 during 60 h of growth in yeast extract mannitol broth (YEMB). The yield increased by two fold after the addition of 60 μM of Ca2+; 50 μM of Fe2+ and 60 μM of Mg2+ ions in YEMB, and the optimization of physico-chemical parameters. EPS was extracted with 30% (v/v) of isopropanol as against the commonly used 50% (v/v) isopropanol method. EPS-rich broth promoted seed germination, shoot height, root length, number of leaves and chlorophyll content of wheat (Triticum aestivum) seed and peanut (Arachis hypogaea) seed. The higher colony-forming unit of Enterobacter sp. in soil inoculated with EPS rich broth of Enterobacter sp. indicated the root colonizing potential and rhizosphere competence of the isolate. The FTIR spectra of the EPS extract confirmed the presence of the functional group characteristics of EPS known to exhibit a high binding affinity towards certain metal ions. This overall growth and vigour in plants along with the effective root colonization, reflected the potential of the isolate as an efficient bio-inoculant in bioremediation. PMID:25757243

  6. Glutathione S-transferase SlGSTE1 in Spodoptera litura may be associated with feeding adaptation of host plants.

    PubMed

    Zou, Xiaopeng; Xu, Zhibin; Zou, Haiwang; Liu, Jisheng; Chen, Shuna; Feng, Qili; Zheng, Sichun

    2016-03-01

    Spodoptera litura is polyphagous pest insect and feeds on plants of more than 90 families. In this study the role of glutathione S-transferase epilson 1 (slgste1) in S. litura in detoxification was examined. This gene was up-regulated in the midgut of S. litura at the transcriptional and protein levels when the insect fed on Brassica juncea or diet containing phytochemicals such as indole-3-carbinol and allyl-isothiocyanate that are metabolic products of sinigrin and glucobrassicin in B. juncea. The SlGSTE1 could catalyze the conjugation of reduced glutathione and indole-3-carbinol and allyl-isothiocyanate, as well as xanthotoxin, which is a furanocoumarin, under in vitro condition. When the expression of Slgste1 in the larvae was suppressed with RNAi, the larval growth and feeding rate were decreased. Furthermore, the up-regulated expression of the SlGSTE1 protein in the midgut of larvae that fed on different host plants was detected by 2-DE and ESI/MS analysis. The feeding adaptation from the most to the least of the larvae for the various host plants was Brassica alboglabra, Brassica linn. Pekinensis, Cucumis sativus, Ipomoea batatas, Arachis hypogaea and Capsicum frutescens. All the results together suggest that Slgste1 is a critical detoxifying enzyme that is induced by phytochmicals in the host plants and, inter alia, may be related to host plant adaptation of S. litura. PMID:26631599

  7. Differential Induction of Flavonoids in Groundnut in Response to Helicoverpa armigera and Aphis craccivora Infestation

    PubMed Central

    War, Abdul Rashid; Sharma, Suraj Prasad; Sharma, Hari Chand

    2016-01-01

    Flavonoids are important plant secondary metabolites, which protect plants from various stresses, including herbivory. Plants differentially respond to insects with different modes of action. High performance liquid chromatography (HPLC) fingerprinting of phenols of groundnut (Arachis hypogaea) plants with differential levels of resistance was carried out in response to Helicoverpa armigera (chewing insect) and Aphis craccivora (sucking pest) infestation. The genotypes used were ICGV 86699, ICGV 86031, ICG 2271 (NCAc 343), ICG 1697 (NCAc 17090), and JL 24. Most of the identified compounds were present in H. armigera- and A. craccivora-infested plants of ICGV 86699. Syringic acid was observed in all the genotypes across the treatments, except in the uninfested control plants of ICG 2271 and aphid-infested plants of ICG 1697. Caffeic acid and umbelliferone were observed only in the H. armigera-infested plants of ICGV 86699. Similarly, dihydroxybenzoic acid and vanillic acid were observed in H. armigera- and aphid-infested plants of ICG 2271 and JL 24, respectively. The peak areas were transformed into the amounts of compounds by using internal standard peak areas and were expressed in nanograms. Quantities of the identified compounds varied across genotypes and treatments. The common compounds observed were chlorogenic, syringic, quercetin, and ferulic acids. These results suggest that depending on the mode of feeding, flavonoids are induced differentially in groundnut plants. PMID:27398031

  8. Multilocus sequences confirm the close genetic relationship of four phytoplasmas of peanut witches'-broom group 16SrII-A.

    PubMed

    Li, Yong; Piao, Chun-gen; Tian, Guo-zhong; Liu, Zhi-xin; Guo, Min-wei; Lin, Cai-li; Wang, Xi-zhuo

    2014-08-01

    Four witches'-broom diseases associated with Arachis hypogaea (peanut), Crotalaria pallida, Tephrosia purpurea, and Cleome viscosa were observed in Hainan Province, China during field surveys in 2004, 2005, and 2007. In previously reported studies, we identified these four phytoplasmas as members of subgroup 16SrII-A, and discovered that their 16S rRNA gene sequences were 99.9-100% identical to one another. In this study, we performed extensive phylogenetic analyses to elucidate relationships among them. We analyzed sequences of the 16S rRNA gene and rplV-rpsC, rpoB, gyrB, dnaK, dnaJ, recA, and secY combined sequence data from two strains each of the four phytoplasmas from Hainan province, as well as strains of peanut witches'-broom from Taiwan (PnWB-TW), "Candidatus Phytoplasma australiense", "Ca. Phytoplasma mali AT", aster yellows witches'-broom phytoplasma AYWB, and onion yellows phytoplasma OY-M. In the 16S rRNA phylogenetic tree, the eight Hainan strains form a clade with PnWB-TW. Analysis of the seven concatenated gene regions indicated that the four phytoplasmas collected from Hainan province cluster most closely with one another, but are closely related to PnWB-TW. The results of field survey and phylogenetic analysis indicated that Cr. pallida, T. purpurea, and Cl. viscosa may be natural plant hosts of peanut witches'-broom phytoplasma. PMID:23686459

  9. Crop Rotation Studies with Velvetbean (Mucuna deeringiana) for the Management of Meloidogyne spp.

    PubMed

    Rodríguez-Kábana, R; Pinochet, J; Robertson, D G; Wells, L

    1992-12-01

    Results from a greenhouse experiment at Cabrils, Spain, with two velvetbean (Mucuna deeringiana) accessions (Florida and Mozambique) growing in sterilized sandy loam and inoculated with Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica revealed that the legume was not a host for these nematodes. In contrast, roots of 'Clemson Spineless' okra (Hibiscus esculentum), 'Summer Crookneck' squash (Cucurbita pepo), and 'Davis' soybean (Glycine max) were galled by all three root-knot nematodes. Greenhouse experiments at Auburn, Alabama, using soils infested with Heterodera glycines (race 14) + M. incognita or with H. glycines + M. arenaria (race 2) showed that, in contrast to Davis soybean, a Mexican and the Florida velvetbean accessions were not hosts for the nematodes. An experiment with 'Florunner' peanut (Arachis hypogaea) and the Florida velvetbean in a field infested with M. arenaria (race 1), near Headland, Alabama, showed that significant juvenile populations of the nematode at peanut harvest time were present only in plots with peanut. A microplot rotation experiment demonstrated that 'Black Beauty' eggplant (Solanum melongena) following the Florida velvetbean had heavier shoots and lower numbers of M. arenaria juveniles in the roots and in the soil than eggplant after Summer Crookneck squash or Davis soybean. PMID:19283043

  10. Study of surface carbohydrates in Galba truncatula tissues before and after infection with Fasciola hepatica

    PubMed Central

    Georgieva, Katya; Georgieva, Liliya; Mizinska-Boevska, Yana; Stoitsova, Stoyanka R

    2016-01-01

    The presence and distribution of surface carbohydrates in the tissues of Galba truncatula snails uninfected or after infection with Fasciola hepatica as well as on the surface of the snail-pathogenic larval stages of the parasite were studied by lectin labelling assay. This is an attempt to find similarities that indicate possible mimicry, utilised by the parasite as an evasion strategy in this snail-trematode system. Different binding patterns were identified on head-foot-mantle, hepatopancreas, genital glands, renopericardial complex of the host as well as of the snail-pathogenic larval stages of F. hepatica. The infection with F. hepatica leads to changes of labelling with Glycine max in the head-mantle cells and Arachis hypogaea in the tubular epithelium of the hepatopancreas. The lectin binding on the other snail tissues is not changed by the development of the larvae. Our data clearly demonstrated the similarity in labelling of G. truncatula tissues and the surface of the snail-pathogenic larval stages of F. hepatica. The role of glycosylation of the contact surfaces of both organisms in relation to the host-parasite interactions is also discussed. PMID:27384082

  11. Influence of the insecticides acetamiprid and carbofuran on arylamidase and myrosinase activities in the tropical black and red clay soils.

    PubMed

    Mohiddin, G Jaffer; Srinivasulu, M; Maddela, N R; Manjunatha, B; Rangaswamy, V; Koch Kaiser, Alma Rosel; Maisincho Asqui, Jessica Cristina; Darwin Rueda, O

    2015-06-01

    The objective of this study was to determine the effects of two insecticides, namely, acetamiprid and carbofuran on the enzymatic activities of arylamidase (as glucose formed from sinigrin) and myrosinase (as β-naphthylamine formed from L-leucine β-naphthylamide) in the black and red clay soils collected from a fallow groundnut (Arachis hypogaea L.) fields in the Anantapur District, Andhra Pradesh, India. The study was realized within the framework of the laboratory experiments in which the acetamiprid and carbofuran were applied to the soils at different doses (1.0, 2.5, 5.0, 7.5, 10.0 kg ha(-1)). Initially, the physicochechemical properties of the soil samples were analyzed. After 10 days of pesticide application, the soil samples were analyzed for the enzyme activities. Acetamiprid and carbofuran stimulated the arylamidase and myrosinase activities at lower concentrations after 10 days incubation. Striking stimulation in soil enzyme activities was noticed at 2.5 kg ha(-1), persists for 20 days in both the soils. Overall, higher concentrations (5.0-10.0 kg ha(-1)) of acetamiprid and carbofuran were toxic or innocuous to the arylamidase and myrosinase activities. Nevertheless, the outcomes of the present study clearly indicate that the use of these insecticides (at field application rates) in the groundnut fields (black and red clay soils) stimulated the enzyme (arylamidase and myrosinase) activities. PMID:26024750

  12. Light microscopic characterization of glycoconjugates in secretory cells of the carp (Cyprinus carpio) gill epithelium.

    PubMed

    Hidalgo, J; Velasco, A; Sánchez Aguayo, I; Amores, P

    1987-01-01

    Secretory products of granular and mucous cells in the gill epithelium of the carp, Cyprinus carpio, were distinguished by their cytochemical reactions with peroxidase-labelled lectins and with the galactose oxidase (GO)-Schiff reagents. Secretory products of granular cells reacted with lectins from Triticum vulgaris (WGA), Arachis hypogaea (PNA), Dolichos biflorus (DBA), Glycine max (SAB), and Lotus tetragonolobus (LTA). They also reacted with GO-Schiff reagents. After sialic acid cleavage with HCl, new binding sites for DBA and SBA appeared, suggesting the terminal sequence sialic acid-N-acetylgalactosamine (SA-GalNAc) for the secretion of this cell type. In mucous cells, binding sites for WGA, DBA, and SBA and, after acid hydrolysis, binding sites for PNA and a positive GO-Schiff reaction were detected. The terminal trisaccharide sialic acid-galactose (beta 1-3)-N-acetylgalactosamine (SA-Gal-GalNAc) is proposed for the secretion of mucous cells. These cytochemical differences are discussed in light of the involvement of both cell types in fish mucus elaboration. PMID:2449406

  13. A rapid and efficient inoculation method for Tomato spotted wilt tospovirus.

    PubMed

    Mandal, B; Csinos, A S; Martinez-Ochoa, N; Pappu, H R

    2008-04-01

    A rapid and efficient method of inoculation for Tomato spotted wilt tospovirus (TSWV) was achieved by applying the inoculum with a device consisting of a spray gun, an atomizer and a CO2-powered sprayer. The inoculum contained infected leaf sap prepared in 0.1M phosphate buffer, pH 7.0, 0.2% sodium sulfite and 0.01 M 2-mercaptoethanol (1g: 10 ml) and 1% each of Celite 545 and Carborundum 320 grit. The spray application of chilled inoculum at the rate of 1.1 ml/plant and at an air pressure of 4.1 bar resulted in systemic infection nearly to a 100% of the tobacco (Nicotiana tabacum) plants inoculated. The inoculation procedure was successfully applied to two other important host species of TSWV, peanut (Arachis hypogaea) and tomato (Lycopersicon esculentum), where 75.0-100% and 72.2-91.6% plants developed systemic infection, respectively. The approach facilitated a much faster inoculation of test plants with TSWV as it was estimated to be about 50 times quicker (depending on the plant species) than the hand inoculation. The procedure is suitable for rapid and simultaneous inoculation of a large number of test plants with TSWV and should facilitate screening of germplasm and breeding lines for virus resistance. PMID:18272238

  14. Isolation of Lysophosphatidic Acid Phosphatase from Developing Peanut Cotyledons1

    PubMed Central

    Shekar, Sunil; Tumaney, Ajay W.; Rao, T.J.V. Sreenivasa; Rajasekharan, Ram

    2002-01-01

    The soluble fraction of immature peanut (Arachis hypogaea) was capable of dephosphorylating [3H]lysophosphatidic acid (LPA) to generate monoacylglycerol (MAG). The enzyme responsible for the generation of MAG, LPA phosphatase, has been identified in plants and purified by successive chromatography separations on octyl-Sepharose, Blue Sepharose, Superdex-75, and heparin-agarose to apparent homogeneity from developing peanuts. This enzyme was purified 5,048-fold to a final specific activity of 858 nmol min−1 mg−1. The enzyme has a native molecular mass of approximately 39 kD determined by gel filtration and migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a subunit molecular mass of 39 ± 1.5 kD. The Km values for oleoyl-, stearoyl-, and palmitoyl-sn-glycerol-3-phosphate were determined to be 28.6, 39.3, and 47.9 μm, respectively. The LPA phosphatase was specific to LPA and did not utilize any other substrate such as glycerol-3-phosphate, phosphatidic acid, or p-nitrophenylphosphate. The enzyme activity was stimulated by the low concentrations of detergents such as Triton X-100 and octylglucoside. Cations had no effect on the enzyme activity. Fatty acids, sphingosine, and sphingomyelin at low concentrations stimulated the enzyme activity. The identification of LPA phosphatase in plants demonstrates the existence of MAG biosynthetic machinery in plants. PMID:11891254

  15. Effects of Interactions of Auxin-Producing Bacteria and Bacterial-Feeding Nematodes on Regulation of Peanut Growths

    PubMed Central

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil. PMID:25867954

  16. Lectin histochemistry of normal and neoplastic peripheral nerve sheath. 2. Lectin binding patterns of schwannoma and neurofibroma.

    PubMed

    Matsumura, K; Nakasu, S; Nioka, H; Handa, J

    1993-01-01

    Lectin binding patterns of 31 schwannomas and 6 neurofibromas were examined using 12 lectins, and the results were compared with those of normal peripheral nerves. Tumors obtained from 10 cases of neurofibromatosis and 4 recurrent schwannomas were included. Changes of glycoconjugates were observed in association with a neoplastic transformation of Schwann cells; Arachis hypogaea (PNA) staining after neuraminidase treatment seen in normal Schwann cells was reduced in schwannoma of Antoni type A, and bindings with Glycine max (SBA) and Helix pomatia (HPA) after sialic acid removal, which were not seen in normal Schwann cells, appeared in schwannoma cells. Intensities of staining of tumor cells with each lectin were higher in Antoni type B than those in Antoni type A. No differences in lectin binding patterns were observed between schwannomas in patients with neurofibromatosis or recurrent schwannomas and ordinary, primary schwannomas in patients without stigmata of neurofibromatosis. Lectin binding patterns of Schwann cells and perineurial cells in neurofibroma were almost similar to those in normal peripheral nerves with an exception of faint stain of Schwann cells with HPA after neuraminidase pretreatment. This result suggests differences in extent of differentiation between schwannoma cells and neoplastic Schwann cells in neurofibroma. Specific PNA binding to perineurial cells in neurofibroma indicates the significance of this lectin as a marker of these cells. PMID:8310811

  17. Lectin histochemistry of normal and neoplastic peripheral nerve sheath. 1. Lectin binding pattern of normal peripheral nerve in man.

    PubMed

    Matsumura, K; Nakasu, S; Nioka, H; Handa, J

    1993-01-01

    The binding patterns of lectins to normal peripheral nerves were examined. Twelve biotinylated lectins were used in this study; Canavalia ensiformis (Con A), Pisum sativum (PSA), Lens culinaris (LCA), Ricinus communis 1 (RCA-1), Arachis hypogaea (PNA), Glycine max (SBA), Sophora japonica (SJA), Bandeiraea simplicifolia 1 (BSL-1), Triticum vulgaris (WGA), succinylated WGA (s-WGA), Ulex europaeus 1 (UEA-1) and Helix pomatia (HPA). Cytoplasm of Schwann cells and perineurial cells was stained by Con A, PSA, LCA, s-WGA and WGA. PNA showed specific binding to perineurial cells, while after neuraminidase treatment stain with this lectin was demonstrated also in Schwann cells. Myelin sheaths were stained with fewer lectins. SBA and HPA with sialic acid removal rarely showed reactivity to the peripheral nerve structure in surgical specimens, in contrast to clear staining of Schwann cells, perineurial cells and myelin sheaths in autopsy specimens. The present study shows distinct lectin stainings of specific structures of the normal human peripheral nerves, and provides important basic information on the alterations of lectin binding patterns during pathological processes in the peripheral nerves. PMID:8310810

  18. Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database

    PubMed Central

    2012-01-01

    Background There are several reports describing thousands of SSR markers in the peanut (Arachis hypogaea L.) genome. There is a need to integrate various research reports of peanut DNA polymorphism into a single platform. Further, because of lack of uniformity in the labeling of these markers across the publications, there is some confusion on the identities of many markers. We describe below an effort to develop a central comprehensive database of polymorphic SSR markers in peanut. Findings We compiled 1,343 SSR markers as detecting polymorphism (14.5%) within a total of 9,274 markers. Amongst all polymorphic SSRs examined, we found that AG motif (36.5%) was the most abundant followed by AAG (12.1%), AAT (10.9%), and AT (10.3%).The mean length of SSR repeats in dinucleotide SSRs was significantly longer than that in trinucleotide SSRs. Dinucleotide SSRs showed higher polymorphism frequency for genomic SSRs when compared to trinucleotide SSRs, while for EST-SSRs, the frequency of polymorphic SSRs was higher in trinucleotide SSRs than in dinucleotide SSRs. The correlation of the length of SSR and the frequency of polymorphism revealed that the frequency of polymorphism was decreased as motif repeat number increased. Conclusions The assembled polymorphic SSRs would enhance the density of the existing genetic maps of peanut, which could also be a useful source of DNA markers suitable for high-throughput QTL mapping and marker-assisted selection in peanut improvement and thus would be of value to breeders. PMID:22818284

  19. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  20. A Bifunctional Enzyme That Has Both Monoacylglycerol Acyltransferase and Acyl Hydrolase Activities1[W][OA

    PubMed Central

    Vijayaraj, Panneerselvam; Jashal, Charnitkaur B.; Vijayakumar, Anitha; Rani, Sapa Hima; Venkata Rao, D.K.; Rajasekharan, Ram

    2012-01-01

    Monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, the precursor of triacylglycerol biosynthesis and an important signaling molecule. Here, we describe the isolation and characterization of the peanut (Arachis hypogaea) MGAT gene. The soluble enzyme utilizes invariant histidine-62 and aspartate-67 residues of the acyltransferase motif for its MGAT activity. A sequence analysis revealed the presence of a hydrolase (GXSXG) motif, and enzyme assays revealed the presence of monoacylglycerol (MAG) and lysophosphatidylcholine (LPC) hydrolytic activities, indicating the bifunctional nature of the enzyme. The overexpression of the MGAT gene in yeast (Saccharomyces cerevisiae) caused an increase in triacylglycerol accumulation. Similar to the peanut MGAT, the Arabidopsis (Arabidopsis thaliana) homolog (At1g52760) also exhibited both acyltransferase and hydrolase activities. Interestingly, the yeast homolog lacks the conserved HX4D motif, and it is deficient in the acyltransferase function but exhibits MAG and LPC hydrolase activities. This study demonstrates the presence of a soluble MGAT/hydrolase in plants. The predicted three-dimensional homology modeling and substrate docking suggested the presence of two separate substrate (MAG and LPC)-binding sites in a single polypeptide. Our study describes a soluble bifunctional enzyme that has both MGAT and hydrolase functions. PMID:22915575

  1. Divergent Nod-Containing Bradyrhizobium sp. DOA9 with a Megaplasmid and its Host Range

    PubMed Central

    Teamtisong, Kamonluck; Songwattana, Pongpan; Noisangiam, Rujirek; Piromyou, Pongdet; Boonkerd, Nantakorn; Tittabutr, Panlada; Minamisawa, Kiwamu; Nantagij, Achara; Okazaki, Shin; Abe, Mikiko; Uchiumi, Toshiki; Teaumroong, Neung

    2014-01-01

    Bradyrhizobium sp. DOA9, a non-photosynthetic bacterial strain originally isolated from the root nodules of the legume Aeschynomene americana, is a divergent nod-containing strain. It exhibits a broad host range, being able to colonize and efficiently nodulate the roots of most plants from the Dalbergioid, Millettioid, and Robinioid tribes (7 species of Papilionoideae). In all cases, nodulation was determinate. The morphology and size of DOA9 bacteroids isolated from the nodules of various species of Papilionoideae were indistinguishable from the free-living form. However, they were spherical in Arachis hypogaea nodules. GusA-tagged DOA9 also colonized rice roots as endophytes. Since broad-host-range legume symbionts often carry multiple replicons in their genome, we analyzed the replicons for symbiosis genes by electrophoresis. DOA9 carried two replicons, a chromosome (cDOA9) and single megaplasmid (pDOA9) larger than 352 kb. The genes for nodulation (nodA, B, C) and nitrogen fixation (nifH) were localized on the megaplasmid. Southern blot hybridization revealed two copies of nodA on the megaplasmid, single copies of nodB and C on the megaplasmid, and one copy each of nifH on the chromosome and megaplasmid. These results suggested that Bradyrhizobium sp. DOA9 may have the unusual combination of a broad host range, bacteroid differentiation, and symbiosis-mediating replicons. PMID:25283477

  2. High relative humidity increases yield, harvest index, flowering, and gynophore growth of hydroponically grown peanut plants

    NASA Technical Reports Server (NTRS)

    Mortley, D. G.; Bonsi, C. K.; Loretan, P. A.; Hill, W. A.; Morris, C. E.

    2000-01-01

    Growth chamber experiments were conducted to study the physiological and growth response of peanut (Arachis hypogaea L.) to 50% and 85% relative humidity (RH). The objective was to determine the effects of RH on pod and seed yield, harvest index, and flowering of peanut grown by the nutrient film technique (NFT). 'Georgia Red' peanut plants (14 days old) were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart with 15 cm between channels. A modified half-Hoagland solution with an additional 2 mM Ca was used. Solution pH was maintained between 6.4 and 6.7, and electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. Temperature regimes of 28/22 degrees C were maintained during the light/dark periods (12 hours each) with photosynthetic photon flux (PPF) at canopy level of 500 micromoles-m-2s-1. Foliage and pod fresh and dry weights, total seed yield, harvest index (HI), and seed maturity were greater at high than at low RH. Plants grown at 85% RH had greater total and individual leaflet area and stomatal conductance, flowered 3 days earlier and had a greater number of flowers reaching anthesis. Gynophores grew more rapidly at 85% than at 50% RH.

  3. [Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca)].

    PubMed

    Liang, Xiao-yan; Guo, Feng; Zhang, Jia-lei; Meng, Jing-jing; Li, Lin; Wan, Shu-bo; Li, Xin-guo

    2015-12-01

    The large-seed peanut cultivar of Huayu 22 was used to study the differences of canopy microenvironment, photosynthetic characteristics, and pod yield at three single-seed sowing densities, i.e., 225000 (S₁), 195000 (S₂) and 165000 (S₃) holes per hectare, in field experiments. The results showed that the canopy light transmittance, canopy air temperature and canopy CO₂concentration all increased at these three single-seed sowing densities compared with those of double-seed sowing pattern (150000 holes per hectare), while the canopy humidity decreased. It seemed that single-seed sowing was helpful to improve microenvironment and the growth of peanut, especially at late growth stage. Meanwhile, the photosynthetic pigment contents and the net photosynthetic rate of peanut under single-seed sowing, especially in S₂ and S₃, were remarkably higher than those under traditional double-seed sowing. S₂ had the optimum population size with an equal distribution of individuals, which reduced the contradiction between individuals and population, optimized the canopy microenvironment, enhanced the photosynthetic characteristics, and increased the synthesis and accumulation of photosynthetic products to maximize the yield production of peanut. PMID:27112008

  4. Can high quality DNA be extracted and utilized from Arachis seeds in long term storage with zero percent germination?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant germplasm collections are useful resources for both researchers and breeders. These collections provide a source of new gene combinations that can be used in breeding and molecular studies to thwart disease, introduce novel traits, and enhance nutritional benefits of a crop. The USDA maintai...

  5. Construction of a Genetic Linkage Map and Identification of QTLs for Resistance to TSWV in Cultivated Peanut (Arachis hypagea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genetic linkage map is critical for identifying the QTL (quantitative trait loci) underling targeted traits. Over the last few years, progress has been made in marker development from multiple sources enabling the expansion of quality resources needed for genotyping applications in cultivated x cu...

  6. Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.).

    PubMed

    Shweta, Bhatia; Maheshwari, Dinesh Kumar; Dubey, Ramesh Chand; Arora, Daljit Singh; Bajpai, Vivek K; Kang, Sun Chul

    2008-09-01

    Rhizobacteria are used as inoculants to enhance crop yield and for biological control of fungal pathogens. Fluorescent pseudomonads isolated from the rhizosphere of groundnut showed suppression of the phytopathogen Macrophomina phaseolina that causes charcoal rot of groundnut, an economically important agroproduct. Two strains of fluorescent pseudomonads, designated as PS1 and PS2, were selected as a result of in vitro antifungal activity. After 5 days of incubation at 28+/-1 degrees , both PS1 and PS2 caused clear inhibition zones in dual cultures, restricting the growth of M. phaseolina by 71% and 74%, respectively. Both the strains were capable of producing siderophores, indole acetic acid, and hydrocyanic acid, and causing phosphate solubilization under normal growth conditions. These strains, when used as inoculants in groundnut, enhanced germination up to 15% and 30% with subsequent increase in grain yield by 66% and 77%, respectively. Conversely, when the pathogen alone was testeds 57% decrease in yield was recorded. Thus the studies revealed the potential of the two pseudomonads not only as biocontrol agents against M. phaseolina, but also as a good growth promoter for groundnut. PMID:18852515

  7. Insights into the Indian Peanut Genotypes for ahFAD2 Gene Polymorphism Regulating Its Oleic and Linoleic Acid Fluxes.

    PubMed

    Nawade, Bhagwat; Bosamia, Tejas C; Thankappan, Radhakrishnan; Rathnakumar, Arulthambi L; Kumar, Abhay; Dobaria, Jentilal R; Kundu, Rahul; Mishra, Gyan P

    2016-01-01

    In peanut (Arachis hypogaea L.), the customization of fatty acid profile is an evolving area to fulfill the nutritional needs in the modern market. A total of 174 peanut genotypes, including 167 Indian cultivars, 6 advanced breeding lines and "SunOleic95R"-a double mutant line, were investigated using AS-PCRs, CAPS and gene sequencing for the ahFAD2 allele polymorphism, along with its fatty acid compositions. Of these, 80 genotypes were found having substitution (448G>A) mutation only in ahFAD2A gene, while none recorded 1-bp insertion (441_442insA) mutation in ahFAD2B gene. Moreover, 22 wild peanut accessions found lacking both the mutations. Among botanical types, the ahFAD2A mutation was more frequent in ssp. hypogaea (89%) than in ssp. fastigiata (17%). This single allele mutation, found affecting not only oleic to linoleic acid fluxes, but also the composition of other fatty acids in the genotypes studied. Repeated use of a few selected genotypes in the Indian varietal development programs were also eminently reflected in its ahFAD2 allele polymorphism. Absence of known mutations in the wild-relatives indicated the possible origin of these mutations, after the allotetraploidization of cultivated peanut. The SNP analysis of both ahFAD2A and ahFAD2B genes, revealed haplotype diversity of 1.05% and 0.95%, while Ka/Ks ratio of 0.36 and 0.39, respectively, indicating strong purifying selection pressure on these genes. Cluster analysis, using ahFAD2 gene SNPs, showed presence of both mutant and non-mutant genotypes in the same cluster, which might be due the presence of ahFAD2 gene families. This investigation provided insights into the large number of Indian peanut genotypes, covering various aspects related to O/L flux regulation and ahFAD2 gene polymorphism. PMID:27610115

  8. Insights into the Indian Peanut Genotypes for ahFAD2 Gene Polymorphism Regulating Its Oleic and Linoleic Acid Fluxes

    PubMed Central

    Nawade, Bhagwat; Bosamia, Tejas C.; Thankappan, Radhakrishnan; Rathnakumar, Arulthambi L.; Kumar, Abhay; Dobaria, Jentilal R.; Kundu, Rahul; Mishra, Gyan P.

    2016-01-01

    In peanut (Arachis hypogaea L.), the customization of fatty acid profile is an evolving area to fulfill the nutritional needs in the modern market. A total of 174 peanut genotypes, including 167 Indian cultivars, 6 advanced breeding lines and “SunOleic95R”—a double mutant line, were investigated using AS-PCRs, CAPS and gene sequencing for the ahFAD2 allele polymorphism, along with its fatty acid compositions. Of these, 80 genotypes were found having substitution (448G>A) mutation only in ahFAD2A gene, while none recorded 1-bp insertion (441_442insA) mutation in ahFAD2B gene. Moreover, 22 wild peanut accessions found lacking both the mutations. Among botanical types, the ahFAD2A mutation was more frequent in ssp. hypogaea (89%) than in ssp. fastigiata (17%). This single allele mutation, found affecting not only oleic to linoleic acid fluxes, but also the composition of other fatty acids in the genotypes studied. Repeated use of a few selected genotypes in the Indian varietal development programs were also eminently reflected in its ahFAD2 allele polymorphism. Absence of known mutations in the wild-relatives indicated the possible origin of these mutations, after the allotetraploidization of cultivated peanut. The SNP analysis of both ahFAD2A and ahFAD2B genes, revealed haplotype diversity of 1.05% and 0.95%, while Ka/Ks ratio of 0.36 and 0.39, respectively, indicating strong purifying selection pressure on these genes. Cluster analysis, using ahFAD2 gene SNPs, showed presence of both mutant and non-mutant genotypes in the same cluster, which might be due the presence of ahFAD2 gene families. This investigation provided insights into the large number of Indian peanut genotypes, covering various aspects related to O/L flux regulation and ahFAD2 gene polymorphism. PMID:27610115

  9. Groundnut improvement: use of genetic and genomic tools

    PubMed Central

    Janila, Pasupuleti; Nigam, S. N.; Pandey, Manish K.; Nagesh, P.; Varshney, Rajeev K.

    2013-01-01

    Groundnut (Arachis hypogaea L.), a self-pollinated legume is an important crop cultivated in 24 million ha world over for extraction of edible oil and food uses. The kernels are rich in oil (48–50%) and protein (25–28%), and are source of several vitamins, minerals, antioxidants, biologically active polyphenols, flavonoids, and isoflavones. Improved varieties of groundnut with high yield potential were developed and released for cultivation world over. The improved varieties belong to different maturity durations and possess resistance to diseases, tolerance to drought, enhanced oil content, and improved quality traits for food uses. Conventional breeding procedures along with the tools for phenotyping were largely used in groundnut improvement programs. Mutations were used to induce variability and wide hybridization was attempted to tap variability from wild species. Low genetic variability has been a bottleneck for groundnut improvement. The vast potential of wild species, reservoir of new alleles remains under-utilized. Development of linkage maps of groundnut during the last decade was followed by identification of markers and quantitative trait loci for the target traits. Consequently, the last decade has witnessed the deployment of molecular breeding approaches to complement the ongoing groundnut improvement programs in USA, China, India, and Japan. The other potential advantages of molecular breeding are the feasibility to target multiple traits for improvement and provide tools to tap new alleles from wild species. The first groundnut variety developed through marker-assisted back-crossing is a root-knot nematode-resistant variety, NemaTAM in USA. The uptake of molecular breeding approaches in groundnut improvement programs by NARS partners in India and many African countries is slow or needs to be initiated in part due to inadequate infrastructure, high genotyping costs, and human capacities. Availability of draft genome sequence for diploid (AA and

  10. Groundnut improvement: use of genetic and genomic tools.

    PubMed

    Janila, Pasupuleti; Nigam, S N; Pandey, Manish K; Nagesh, P; Varshney, Rajeev K

    2013-01-01

    Groundnut (Arachis hypogaea L.), a self-pollinated legume is an important crop cultivated in 24 million ha world over for extraction of edible oil and food uses. The kernels are rich in oil (48-50%) and protein (25-28%), and are source of several vitamins, minerals, antioxidants, biologically active polyphenols, flavonoids, and isoflavones. Improved varieties of groundnut with high yield potential were developed and released for cultivation world over. The improved varieties belong to different maturity durations and possess resistance to diseases, tolerance to drought, enhanced oil content, and improved quality traits for food uses. Conventional breeding procedures along with the tools for phenotyping were largely used in groundnut improvement programs. Mutations were used to induce variability and wide hybridization was attempted to tap variability from wild species. Low genetic variability has been a bottleneck for groundnut improvement. The vast potential of wild species, reservoir of new alleles remains under-utilized. Development of linkage maps of groundnut during the last decade was followed by identification of markers and quantitative trait loci for the target traits. Consequently, the last decade has witnessed the deployment of molecular breeding approaches to complement the ongoing groundnut improvement programs in USA, China, India, and Japan. The other potential advantages of molecular breeding are the feasibility to target multiple traits for improvement and provide tools to tap new alleles from wild species. The first groundnut variety developed through marker-assisted back-crossing is a root-knot nematode-resistant variety, NemaTAM in USA. The uptake of molecular breeding approaches in groundnut improvement programs by NARS partners in India and many African countries is slow or needs to be initiated in part due to inadequate infrastructure, high genotyping costs, and human capacities. Availability of draft genome sequence for diploid (AA and BB

  11. O-Glycosylation of α-1-Acid Glycoprotein of Human Milk Is Lactation Stage Related

    PubMed Central

    Berghausen-Mazur, Marta; Hirnle, Lidia; Kątnik-Prastowska, Iwona

    2015-01-01

    Abstract Background: Human milk provides a multitude of glycoproteins, including highly glycosylated α-1-acid glycoprotein (AGP), which elicits anti-inflammatory and immunomodulatory properties. The milk AGP glycoforms may provide the breastfed infant with a wide range of biological benefits. Here, we analyzed the reactivity of O-linked sugar-specific lectins with human milk AGP over the process of lactation and compared the results with those of the lactating mother's plasma. Materials and Methods: Relative amounts of human skim milk AGP O-glycans were analyzed in early colostrum, colostrum, and transitional and mature milk samples of 127 healthy mothers by lectin–AGP enzyme-linked immunosorbent assay using sialyl T (sialyl-α2,3/α2,6 Galβ1,3GalNAc-), asialyl T (Galβ1,3GalNAc-), and Tn (GalNAc-) antigen-specific biotinylated Artocarpus integrifolia (Jacalin), Arachis hypogaea (PNA), and Vicia villosa (VVA) lectins, respectively. Results: Milk AGP elicited high expression of Jacalin- and PNA-reactive glycotopes and low expression of VVA-reactive glycotopes, which were absent on plasma AGP of lactating mothers and healthy individuals. The expression of sialyl, asialyl T, and Tn glycotopes of human milk AGP was lactation stage related. The relative amount of Jacalin-reactive AGP glycotope was highest in the colostrum samples and then decreased starting from Day 8 of lactation. In contrast, an increase of the relative amount of PNA-reactive glycotope with milk maturation was observed. The relative amount of VVA-reactive glycotope remained almost constant over the development of lactation. Conclusions: Milk AGP differs from mother's plasma AGP by the presence of O-linked sialylated and asialylated T as well as Tn antigens. The variation of the expression of sialylated and asialylated T and Tn antigens on AGP is associated with milk maturation. PMID:26057552

  12. Lipids, Proteins, and Structure of Seed Oil Bodies from Diverse Species.

    PubMed Central

    Tzen, JTC.; Cao, Yz.; Laurent, P.; Ratnayake, C.; Huang, AHC.

    1993-01-01

    Oil bodies isolated from the mature seeds of rape (Brassica napus L.), mustard (Brassica juncea L.), cotton (Gossypium hirsutum L.), flax (Linus usitatis simum), maize (Zea mays L.), peanut (Arachis hypogaea L.), and sesame (Sesamum indicum L.) had average diameters that were different but within a narrow range (0.6-2.0 [mu]m), as measured from electron micrographs of serial sections. Their contents of triacylglycerols (TAG), phospholipids, and proteins (oleosins) were correlated with their sizes. The correlation fits a formula that describes a spherical particle surrounded by a shell of a monolayer of phospholipids embedded with oleosins. Oil bodies from the various species contained substantial amounts of the uncommon negatively charged phosphatidylserine and phosphatidylinositol, as well as small amounts of free fatty acids. These acidic lipids are assumed to interact with the basic amino acid residues of the oleosins on the surface of the phospholipid layer. Isoelectrofocusing revealed that the oil bodies from the various species had an isoelectric point of 5.7 to 6.6 and thus possessed a negatively charged surface at neutral pH. We conclude that seed oil bodies from diverse species are very similar in structure. In rapeseed during maturation, TAG and oleosins accumulated concomitantly. TAG-synthesizing acyltransferase activities appeared at an earlier stage and peaked during the active period of TAG accumulation. The concomitant accumulation of TAG and oleosins is similar to that reported earlier for maize and soybean, and the finding has an implication for the mode of oil body synthesis during seed maturation. PMID:12231682

  13. Response of Photosynthesis and Yield of Sweetpotato and Peanut to Super-optimal CO2 levels

    NASA Astrophysics Data System (ADS)

    Bonsi, C.; Bullard, J.; Hileman, D.; Mortley, D.; Hill, J.; Hill, W.; Morrris, C.

    The fate of persons involved in long-term space travel and habitation will depend greatly on the ability to provide food and a livable environment for them In the National Aeronautics and Space Administration NASA Advanced Life Support ALS program photosynthesis of higher plants will be utilized to provide food and oxygen while removing carbon dioxide produced by humans and other heterotrophs as well as transpiring water that can be recycled for drinking This plant-mediated process is collectively referred to as Bioregenerative Life Support Carbon dioxide concentrations on board a space shuttle cabin atmosphere range between 4000 and 6000 mu mol mol -1 CO 2 but with large crews may exceed 10 000- mu mol mol -1 CO 2 Thus it is critical to evaluate the responses of candidate crops to super optimal levels of CO 2 Soybean and potato have been exposed to CO 2 concentrations up to 5000 and 10 000- mu mol mol -1 Very little research has been published about the effects of super-optimal CO 2 levels on sweetpotato and peanut growth and physiology thus indicating a need for extensive research on these plants The aim of this study was to evaluate the effects of super-optimal CO 2 enrichment on growth of TU-82-155 sweetpotato and Georgia Red peanut in a Microporous Tube Membrane MPT using Turface Media and Nutrient Film Technique NFT nutrient delivery systems Sweetpotato Ipomoea batatas L Lam and peanut Arachis hypogaea L were exposed to three CO 2 levels of 400

  14. Plants with potential use on obesity and its complications.

    PubMed

    Gamboa-Gómez, Claudia I; Rocha-Guzmán, Nuria E; Gallegos-Infante, J Alberto; Moreno-Jiménez, Martha R; Vázquez-Cabral, Blanca D; González-Laredo, Rubén F

    2015-01-01

    Obesity is the most prevalent nutritional disease and a growing public health problem worldwide. This disease is a causal component of the metabolic syndrome related with abnormalities, including hyperglycemia, dyslipidemia, hypertension, inflammation, among others. There are anti-obesity drugs, affecting the fundamental processes of the weight regulation; however they have shown serious side effects, which outweigh their beneficial effects. Most recent studies on the treatment of obesity and its complications have focused on the potential role of different plants preparation that can exert a positive effect on the mechanisms involved in this pathology. For instance, anti-obesity effects of green tea and its isolated active principles have been reported in both in vitro (cell cultures) and in vivo (animal models) that possess healthy effects, decreasing adipose tissue through reduction of adipocytes differentiation and proliferation. A positive effect in lipid profile, and lipid and carbohydrates metabolisms were demonstrated as well. In addition, anti-inflammatory and antioxidant activities were studied. However, the consumption of green tea and its products is not that common in Western countries, where other plants with similar bioactivity predominate; nevertheless, the effect extension has not been analyzed in depth, despite of their potential as alternative treatment for obesity. In this review the anti-obesity potential and reported mechanisms of action of diverse plants such as: Camellia sinensis, Hibiscus sabdariffa, Hypericum perforatum, Persea americana, Phaseolus vulgaris, Capsicum annuum, Rosmarinus officinalis, Ilex paraguariensis, Citrus paradisi, Citrus limon, Punica granatum, Aloe vera, Taraxacum officinale and Arachis hypogaea is summarized. We consider the potential of these plants as natural alternative treatments of some metabolic alterations associated with obesity. PMID:26869866

  15. Chlorophyll fluorescence induction kinetics and yield responses in rainfed crops with variable potassium nutrition in K deficient semi-arid alfisols.

    PubMed

    Srinivasarao, Ch; Shanker, Arun K; Kundu, Sumanta; Reddy, Sharanbhoopal

    2016-07-01

    Optimum potassium (K) nutrition in semi-arid regions may help crop plants to overcome constraints in their growth and development such as moisture stress, leading to higher productivity of rainfed crops, thus judicious K management is essential. A study was conducted to evaluate the importance of K nutrition on physiological processes like photosynthesis through chlorophyll a fluorescence and chlorophyll fluorescence induction kinetics (OJIP) of rainfed crops viz., maize (Zea mays L.), pearl millet (Pennisetum glaucum), groundnut (Arachis hypogaea), sunflower (Helianthus annuus), castor (Ricinus communis L.) and cotton (Gossypium hirsutum) under water stress conditions by studying their growth attributes, water relations, yield, K uptake and use efficiency under varied K levels. Highest chlorophyll content was observed under K60 in maize and pearl millet. Narrow and wide Chl a:b ratio was observed in castor and groundnut respectively. The fluorescence yield decreased in the crops as K dosage increased, evidenced by increasing of all points (O, J, I and P) of the OJIP curves. The fluorescence transient curve for K60 was lower than K0 and K40 for all the crops. Potassium levels altered the fluorescence induction and impaired photosynthetic systems in all the crops studied. There was no distinct trend observed in leaf water potential of crops under study. Uptake of K was high in sunflower with increased rate of K application. Quantitatively, K uptake by castor crop was lesser compared to all other crops. Our results indicate that the yield reduction under low K was due to the low capacity of the crops to translocate K from non-photosynthetic organs such as stems and petioles to upper leaves and harvested organs and this in turn influenced the capacity of the crops to produce a high economic yield per unit of K taken up thus reducing utilization efficiency of K. PMID:27101276

  16. Plants with potential use on obesity and its complications

    PubMed Central

    Gamboa-Gómez, Claudia I.; Rocha-Guzmán, Nuria E.; Gallegos-Infante, J. Alberto; Moreno-Jiménez, Martha R.; Vázquez-Cabral, Blanca D.; González-Laredo, Rubén F.

    2015-01-01

    Obesity is the most prevalent nutritional disease and a growing public health problem worldwide. This disease is a causal component of the metabolic syndrome related with abnormalities, including hyperglycemia, dyslipidemia, hypertension, inflammation, among others. There are anti-obesity drugs, affecting the fundamental processes of the weight regulation; however they have shown serious side effects, which outweigh their beneficial effects. Most recent studies on the treatment of obesity and its complications have focused on the potential role of different plants preparation that can exert a positive effect on the mechanisms involved in this pathology. For instance, anti-obesity effects of green tea and its isolated active principles have been reported in both in vitro (cell cultures) and in vivo (animal models) that possess healthy effects, decreasing adipose tissue through reduction of adipocytes differentiation and proliferation. A positive effect in lipid profile, and lipid and carbohydrates metabolisms were demonstrated as well. In addition, anti-inflammatory and antioxidant activities were studied. However, the consumption of green tea and its products is not that common in Western countries, where other plants with similar bioactivity predominate; nevertheless, the effect extension has not been analyzed in depth, despite of their potential as alternative treatment for obesity. In this review the anti-obesity potential and reported mechanisms of action of diverse plants such as: Camellia sinensis, Hibiscus sabdariffa, Hypericum perforatum, Persea americana, Phaseolus vulgaris, Capsicum annuum, Rosmarinus officinalis, Ilex paraguariensis, Citrus paradisi, Citrus limon, Punica granatum, Aloe vera, Taraxacum officinale and Arachis hypogaea is summarized. We consider the potential of these plants as natural alternative treatments of some metabolic alterations associated with obesity. PMID:26869866

  17. Negative biomarker-based male fertility evaluation: sperm phenotypes associated with molecular-level anomalies

    PubMed Central

    Sutovsky, Peter; Aarabi, Mahmoud; Miranda-Vizuete, Antonio; Oko, Richard

    2015-01-01

    Biomarker-based sperm analysis elevates the treatment of human infertility and ameliorates reproductive performance in livestock. The negative biomarker-based approach focuses on proteins and ligands unique to defective spermatozoa, regardless of their morphological phenotype, lending itself to analysis by flow cytometry (FC). A prime example is the spermatid specific thioredoxin SPTRX3/TXNDC8, retained in the nuclear vacuoles and superfluous cytoplasm of defective human spermatozoa. Infertile couples with high semen SPTRX3 are less likely to conceive by assisted reproductive therapies (ART) and more prone to recurrent miscarriage while low SPTRX3 has been associated with multiple ART births. Ubiquitin, a small, proteolysis-promoting covalent posttranslational protein modifier is found on the surface of defective posttesticular spermatozoa and in the damaged protein aggregates, the aggresomes of spermiogenic origin. Semen ubiquitin content correlates negatively with fertility and conventional semen parameters, and with sperm binding of lectins LCA (Lens culinaris agglutinin; reveals altered sperm surface) and PNA (Arachis hypogaea/peanut agglutinin; reveals acrosomal malformation or damage). The Postacrosomal Sheath WWI Domain Binding Protein (PAWP), implicated in oocyte activation during fertilization, is ectopic or absent from defective human and animal spermatozoa. Consequently, FC-parameters of PAWP correlate with ART outcomes in infertile couples and with fertility in bulls. Assays based on the above biomarkers have been combined into multiplex FC semen screening protocols, and the surface expression of lectins and ubiquitin has been utilized to develop nanoparticle-based bull semen purification method validated by field artificial insemination trials. These advances go hand-in-hand with the innovation of FC-technology and genomics/proteomics-based biomarker discovery. PMID:25999356

  18. Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions

    PubMed Central

    Lehmann, Katrin; Schweimer, Kristian; Reese, Gerald; Randow, Stefanie; Suhr, Martin; Becker, Wolf-Meinhard; Vieths, Stefan; Rösch, Paul

    2005-01-01

    Resistance to proteolytic enzymes and heat is thought to be a prerequisite property of food allergens. Allergens from peanut (Arachis hypogaea) are the most frequent cause of fatal food allergic reactions. The allergenic 2S albumin Ara h 2 and the homologous minor allergen Ara h 6 were studied at the molecular level with regard to allergenic potency of native and protease-treated allergen. A high-resolution solution structure of the protease-resistant core of Ara h 6 was determined by NMR spectroscopy, and homology modelling was applied to generate an Ara h 2 structure. Ara h 2 appeared to be the more potent allergen, even though the two peanut allergens share substantial cross-reactivity. Both allergens contain cores that are highly resistant to proteolytic digestion and to temperatures of up to 100 °C. Even though IgE antibody-binding capacity was reduced by protease treatment, the mediator release from a functional equivalent of a mast cell or basophil, the humanized RBL (rat basophilic leukaemia) cell, demonstrated that this reduction in IgE antibody-binding capacity does not necessarily translate into reduced allergenic potency. Native Ara h 2 and Ara h 6 have virtually identical allergenic potency as compared with the allergens that were treated with digestive enzymes. The folds of the allergenic cores are virtually identical with each other and with the fold of the corresponding regions in the undigested proteins. The extreme immunological stability of the core structures of Ara h 2 and Ara h 6 provides an explanation for the persistence of the allergenic potency even after food processing. PMID:16372900

  19. Comparative and evolutionary analysis of major peanut allergen gene families.

    PubMed

    Ratnaparkhe, Milind B; Lee, Tae-Ho; Tan, Xu; Wang, Xiyin; Li, Jingping; Kim, Changsoo; Rainville, Lisa K; Lemke, Cornelia; Compton, Rosana O; Robertson, Jon; Gallo, Maria; Bertioli, David J; Paterson, Andrew H

    2014-09-01

    Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild relative were sequenced including three Arah1, one Arah2, eight Arah3, and two Arah6 gene family members. To assign polarity to differences between homoeologous regions in peanut, we used as outgroups the single orthologous regions in Medicago, Lotus, common bean, chickpea, and pigeonpea, which diverged from peanut about 50 Ma and have not undergone subsequent polyploidy. These regions were also compared with orthologs in many additional dicot plant species to help clarify the timing of evolutionary events. The lack of conservation of allergenic epitopes between species, and the fact that many different proteins can be allergenic, makes the identification of allergens across species by comparative studies difficult. The peanut allergen genes are interspersed with low-copy genes and transposable elements. Phylogenetic analyses revealed lineage-specific expansion and loss of low-copy genes between species and homoeologs. Arah1 syntenic regions are conserved in soybean, pigeonpea, tomato, grape, Lotus, and Arabidopsis, whereas Arah3 syntenic regions show genome rearrangements. We infer that tandem and segmental duplications led to the establishment of the Arah3 gene family. Our analysis indicates differences in conserved motifs in allergen proteins and in the promoter regions of the allergen-encoding genes. Phylogenetic analysis and genomic organization studies provide new insights into the evolution of the major peanut allergen-encoding genes. PMID:25193311

  20. Cotton as a Rotation Crop for the Management of Meloidogyne arenaria and Sclerotium rolfsii in Peanut

    PubMed Central

    Rodríguez-Kábana, R.; Robertson, D. G.; Wells, L.; Weaver, C. F.; King, P. S.

    1991-01-01

    The value of cotton (Gossypium hirsutum cv. Deltapine 90) in rotation with peanut (Arachis hypogaea cv. Florunner) for the management of root-knot nematode (Meloidogyne arenaria) and southern blight (Sclerotium rolfsii) was studied for 6 years in a field at the Wiregrass Substation in southeast Alabama. Peanut yields following either 1 or 2 years of cotton (C-P and C-C-P, respectively) were higher than those of peanut monoculture without nematicide [P(-)]. At-plant application of aldicarb to continuous peanut [P(+)] averaged 22.1% higher yields than those for P(-) over the 6 years of the study. The use of aldicarb in cotton and peanut in the C-C-P rotations increased yields of both crops over the same rotations without the nematicide. When the nematicide was applied to both crops in the C-P rotation, peanut yields were increased in only two of the possible three years when peanut was planted. Application of aldicarb to cotton only in the C-P rotation did not improve peanut yields over those obtained with the rotation without nematicide. Juvenile populations of M. arenaria determined at peanut-harvest time were lowest in plots with cotton. Plots with C-P or C-C-P had lower populations of the nematode than those with either P(-) or P(+). The incidence of southern blight (Sclerotium rolfsii) in peanut was lower in plots with the rotations than in those with peanut monoculture. Aldicarb application had no effect on the occurrence of southern blight. PMID:19283179

  1. A Cytosolic Acyltransferase Contributes to Triacylglycerol Synthesis in Sucrose-Rescued Arabidopsis Seed Oil Catabolism Mutants1[W][OA

    PubMed Central

    Hernández, M. Luisa; Whitehead, Lynne; He, Zhesi; Gazda, Valeria; Gilday, Alison; Kozhevnikova, Ekaterina; Vaistij, Fabián E.; Larson, Tony R.; Graham, Ian A.

    2012-01-01

    Triacylglycerol (TAG) levels and oil bodies persist in sucrose (Suc)-rescued Arabidopsis (Arabidopsis thaliana) seedlings disrupted in seed oil catabolism. This study set out to establish if TAG levels persist as a metabolically inert pool when downstream catabolism is disrupted, or if other mechanisms, such as fatty acid (FA) recycling into TAG are operating. We show that TAG composition changes significantly in Suc-rescued seedlings compared with that found in dry seeds, with 18:2 and 18:3 accumulating. However, 20:1 FA is not efficiently recycled back into TAG in young seedlings, instead partitioning into the membrane lipid fraction and diacylglycerol. In the lipolysis mutant sugar dependent1and the β-oxidation double mutant acx1acx2 (for acyl-Coenzyme A oxidase), levels of TAG actually increased in seedlings growing on Suc. We performed a transcriptomic study and identified up-regulation of an acyltransferase gene, DIACYLGLYCEROL ACYLTRANSFERASE3 (DGAT3), with homology to a peanut (Arachis hypogaea) cytosolic acyltransferase. The acyl-Coenzyme A substrate for this acyltransferase accumulates in mutants that are blocked in oil breakdown postlipolysis. Transient expression in Nicotiana benthamiana confirmed involvement in TAG synthesis and specificity toward 18:3 and 18:2 FAs. Double-mutant analysis with the peroxisomal ATP-binding cassette transporter mutant peroxisomal ABC transporter1 indicated involvement of DGAT3 in the partitioning of 18:3 into TAG in mutant seedlings growing on Suc. Fusion of the DGAT3 protein with green fluorescent protein confirmed localization to the cytosol of N. benthamiana. This work has demonstrated active recycling of 18:2 and 18:3 FAs into TAG when seed oil breakdown is blocked in a process involving a soluble cytosolic acyltransferase. PMID:22760209

  2. Dietary Plant Lectins Appear to Be Transported from the Gut to Gain Access to and Alter Dopaminergic Neurons of Caenorhabditis elegans, a Potential Etiology of Parkinson’s Disease

    PubMed Central

    Zheng, Jolene; Wang, Mingming; Wei, Wenqian; Keller, Jeffrey N.; Adhikari, Binita; King, Jason F.; King, Michael L.; Peng, Nan; Laine, Roger A.

    2016-01-01

    Lectins from dietary plants have been shown to enhance drug absorption in the gastrointestinal tract of rats, be transported trans-synaptically as shown by tracing of axonal and dendritic paths, and enhance gene delivery. Other carbohydrate-binding protein toxins are known to traverse the gut intact in dogs. Post-feeding rhodamine- or TRITC-tagged dietary lectins, the lectins were tracked from gut to dopaminergic neurons (DAergic-N) in transgenic Caenorhabditis elegans (C. elegans) [egIs1(Pdat-1:GFP)] where the mutant has the green fluorescent protein (GFP) gene fused to a dopamine transport protein gene labeling DAergic-N. The lectins were supplemented along with the food organism Escherichia coli (OP50). Among nine tested rhodamine/TRITC-tagged lectins, four, including Phaseolus vulgaris erythroagglutinin (PHA-E), Bandeiraea simplicifolia (BS-I), Dolichos biflorus agglutinin (DBA), and Arachis hypogaea agglutinin (PNA), appeared to be transported from gut to the GFP-DAergic-N. Griffonia Simplicifolia and PHA-E, reduced the number of GFP-DAergic-N, suggesting a toxic activity. PHA-E, BS-I, Pisum sativum (PSA), and Triticum vulgaris agglutinin (Succinylated) reduced fluorescent intensity of GFP-DAergic-N. PHA-E, PSA, Concanavalin A, and Triticum vulgaris agglutinin decreased the size of GFP-DAergic-N, while BS-I increased neuron size. These observations suggest that dietary plant lectins are transported to and affect DAergic-N in C. elegans, which support Braak and Hawkes’ hypothesis, suggesting one alternate potential dietary etiology of Parkinson’s disease (PD). A recent Danish study showed that vagotomy resulted in 40% lower incidence of PD over 20 years. Differences in inherited sugar structures of gut and neuronal cell surfaces may make some individuals more susceptible in this conceptual disease etiology model. PMID:27014695

  3. An Apparent Anomaly in Peanut Leaf Conductance

    PubMed Central

    Pallas, James E.

    1980-01-01

    Conductance to gaseous transfer is normally considered to be greater from the abaxial than from the adaxial side of a leaf. Measurements of the conductance to water vapor of peanut leaves (Arachis hypogaea L.) under well watered and stress conditions in a controlled environment, however, indicated a 2-fold higher conductance from the adaxial side of the leaf than from the abaxial. Studies of conductance as light level was varied showed an increase in conductance from either surface with increasing light level, but conductance was always greater from the adaxial surface at any given light level. In contrast, measurements of soybean (Glycine max [L.] Merr.) and snapbean (Phaseolus vulgaris L.) leaf conductance showed an approximate 2-fold greater conductance from the abaxial surface than from the adaxial. Approximately the same number of stomata were present on both peanut leaf surfaces and stomatal size was similar. Electron microscopic examination of peanut leaves did not reveal any major structural differences between stomata on the two surfaces that would account for the differences in conductance. Light microscope studies of leaf sections revealed an extensive network of bundle sheaths with achloraplastic bundle sheath extensions; the lower epidermis was lined with a single layer of large achloraplastic parenchyma cells. Measurements of net photosynthesis made on upper and lower leaf surfaces collectively and individually indicated that two-thirds of the peanut leaf's total net photosynthesis can be attributed to diffusion of CO2 through the adaxial leaf surface. Possibly the high photosynthetic efficiency of peanut cultivars as compared with certain other C3 species is associated with the greater conductance of CO2 through their upper leaf surfaces. Images PMID:16661294

  4. Novel and Stress Relevant EST Derived SSR Markers Developed and Validated in Peanut

    PubMed Central

    Bosamia, Tejas C.; Mishra, Gyan P.; Thankappan, Radhakrishnan; Dobaria, Jentilal R.

    2015-01-01

    With the aim to increase the number of functional markers in resource poor crop like cultivated peanut (Arachis hypogaea), large numbers of available expressed sequence tags (ESTs) in the public databases, were employed for the development of novel EST derived simple sequence repeat (SSR) markers. From 16424 unigenes, 2784 (16.95%) SSRs containing unigenes having 3373 SSR motifs were identified. Of these, 2027 (72.81%) sequences were annotated and 4124 gene ontology terms were assigned. Among different SSR motif-classes, tri-nucleotide repeats (33.86%) were the most abundant followed by di-nucleotide repeats (27.51%) while AG/CT (20.7%) and AAG/CTT (13.25%) were the most abundant repeat-motifs. A total of 2456 EST-SSR novel primer pairs were designed, of which 366 unigenes having relevance to various stresses and other functions, were PCR validated using a set of 11 diverse peanut genotypes. Of these, 340 (92.62%) primer pairs yielded clear and scorable PCR products and 39 (10.66%) primer pairs exhibited polymorphisms. Overall, the number of alleles per marker ranged from 1-12 with an average of 3.77 and the PIC ranged from 0.028 to 0.375 with an average of 0.325. The identified EST-SSRs not only enriched the existing molecular markers kitty, but would also facilitate the targeted research in marker-trait association for various stresses, inter-specific studies and genetic diversity analysis in peanut. PMID:26046991

  5. Specificity analysis of lectins and antibodies using remodeled glycoproteins.

    PubMed

    Iskratsch, Thomas; Braun, Andreas; Paschinger, Katharina; Wilson, Iain B H

    2009-03-15

    Due to their ability to bind specifically to certain carbohydrate sequences, lectins are a frequently used tool in cytology, histology, and glycan analysis but also offer new options for drug targeting and drug delivery systems. For these and other potential applications, it is necessary to be certain as to the carbohydrate structures interacting with the lectin. Therefore, we used glycoproteins remodeled with glycosyltransferases and glycosidases for testing specificities of lectins from Aleuria aurantia (AAL), Erythrina cristagalli (ECL), Griffonia simplicifolia (GSL I-B(4)), Helix pomatia agglutinin (HPA), Lens culinaris (LCA), Lotus tetragonolobus (LTA), peanut (Arachis hypogaeae) (PNA), Ricinus communis (RCA I), Sambucus nigra (SNA), Vicia villosa (VVA), and wheat germ (Triticum vulgaris) (WGA) as well as reactivities of anti-carbohydrate antibodies (anti-bee venom, anti-horseradish peroxidase [anti-HRP], and anti-Lewis(x)). After enzymatic remodeling, the resulting neoglycoforms display defined carbohydrate sequences and can be used, when spotted on nitrocellulose or in enzyme-linked lectinosorbent assays, to identify the sugar moieties bound by the lectins. Transferrin with its two biantennary complex N-glycans was used as scaffold for gaining diverse N-glycosidic structures, whereas fetuin was modified using glycosidases to test the specificities of lectins toward both N- and O-glycans. In addition, alpha(1)-acid glycoprotein and Schistosoma mansoni egg extract were chosen as controls for lectin interactions with fucosylated glycans (Lewis(x) and core alpha1,3-fucose). Our data complement and expand the existing knowledge about the binding specificity of a range of commercially available lectins. PMID:19123999

  6. An Antibody to the Castor Bean Glyoxysomal Lipase (62 kD) also Binds to a 62 kD Protein in Extracts from Many Young Oilseed Plants.

    PubMed

    Hills, M J; Beevers, H

    1987-12-01

    An antibody raised against purified glyoxysomal lipase (triacylglycerol hydrolase EC 3.1.1.3.) from castor bean (relative molecular weight of 62,000) also binds to a protein with a relative molecular weight of 62,000 in extracts of food reserve tissues from many young oilseed plants. These plants include Brassica napus L., Zea mays L., Arachis hypogaea L., Glycine max L., Gossipium hirsutum L., Cucurbita pepo L., Helianthus annuus L., Pisum sativum L., and Cicer arietinum L. The antibody caused inhibition of triacylglycerol hydrolysis by the lipases in extracts from seedlings of corn, oilseed rape, castor bean, soybean, and peanut. The pattern of antilipase binding to the 62 kilodalton protein in subcellular fractions from these other seedlings was consistent with the patterns of lipase activity reported in the literature and it is suggested that lipases from these oil seeds all have a subunit with a molecular weight of 62,000. The protein was only found in the food reserve tissues and was not present in extracts of roots and leaves of mature plants. In addition, the immunoreactive 62 kilodalton polypeptide was not detectable in lima beans and only at very low levels in kidney beans. Both these seeds are known to contain very little storage lipid and would not be expected to contain lipase. With the exception of the acid lipase of castor bean, ungerminated seeds do not generally contain active lipases. The immunoreactive 62 kilodalton protein could not be detected in the ungerminated seeds of most plants and only at very low low levels in others. PMID:16665808

  7. Comparative and Evolutionary Analysis of Major Peanut Allergen Gene Families

    PubMed Central

    Ratnaparkhe, Milind B.; Lee, Tae-Ho; Tan, Xu; Wang, Xiyin; Li, Jingping; Kim, Changsoo; Rainville, Lisa K.; Lemke, Cornelia; Compton, Rosana O.; Robertson, Jon; Gallo, Maria; Bertioli, David J.; Paterson, Andrew H.

    2014-01-01

    Peanut (Arachis hypogaea L.) causes one of the most serious food allergies. Peanut seed proteins, Arah1, Arah2, and Arah3, are considered to be among the most important peanut allergens. To gain insights into genome organization and evolution of allergen-encoding genes, approximately 617 kb from the genome of cultivated peanut and 215 kb from a wild relative were sequenced including three Arah1, one Arah2, eight Arah3, and two Arah6 gene family members. To assign polarity to differences between homoeologous regions in peanut, we used as outgroups the single orthologous regions in Medicago, Lotus, common bean, chickpea, and pigeonpea, which diverged from peanut about 50 Ma and have not undergone subsequent polyploidy. These regions were also compared with orthologs in many additional dicot plant species to help clarify the timing of evolutionary events. The lack of conservation of allergenic epitopes between species, and the fact that many different proteins can be allergenic, makes the identification of allergens across species by comparative studies difficult. The peanut allergen genes are interspersed with low-copy genes and transposable elements. Phylogenetic analyses revealed lineage-specific expansion and loss of low-copy genes between species and homoeologs. Arah1 syntenic regions are conserved in soybean, pigeonpea, tomato, grape, Lotus, and Arabidopsis, whereas Arah3 syntenic regions show genome rearrangements. We infer that tandem and segmental duplications led to the establishment of the Arah3 gene family. Our analysis indicates differences in conserved motifs in allergen proteins and in the promoter regions of the allergen-encoding genes. Phylogenetic analysis and genomic organization studies provide new insights into the evolution of the major peanut allergen-encoding genes. PMID:25193311

  8. Reproduction of Belonolaimus longicaudatus, Meloidogyne javanica, Paratrichodorus minor, and Pratylenchus brachyurus on Pearl Millet (Pennisetum glaucum)

    PubMed Central

    Timper, P.; Hanna, W. W.

    2005-01-01

    Pearl millet (Pennisetum glaucum) has potential as a grain crop for dryland crop production in the southeastern United States. Whether or not pearl millet will be compatible in rotation with cotton (Gossypium hirsutum), corn (Zea mays), and peanut (Arachis hypogaea) will depend, in part, on its host status for important plant-parasitic nematodes of these crops. The pearl millet hybrid 'TifGrain 102' is resistant to both Meloidogyne incognita race 3 and M. arenaria race 1; however, its host status for other plant-parasitic nematodes was unknown. In this study, the reproduction of Belonolaimus longicaudatus, Paratrichodorus minor, Pratylenchus brachyurus, and Meloidogyne javanica race 3 on pearl millet ('HGM-100' and TifGrain 102) was compared relative to cotton, corn, and peanut. Separate greenhouse experiments were conducted for each nematode species. Reproduction of B. longicaudatus was lower on peanut and the two millet hybrids than on cotton and corn. Reproduction of P. minor was lower on peanut and TifGrain 102 than on cotton, corn, and HGM-100. Reproduction of P. brachyurus was lower on both millet hybrids than on cotton, corn, and peanut. Reproduction of M. javanica race 3 was greater on peanut than on the two millet hybrids and corn. Cotton was a nonhost. TifGrain 102 was more resistant than HGM-100 to reproduction of B. longicaudatus, P. minor, and M. javanica. Our results demonstrated that TifGrain 102 was a poor host for B. longicaudatus and P. brachyurus (Rf < 1) and, relative to other crops tested, was less likely to increase densities of P. minor and M. javanica. PMID:19262863

  9. Spatiotemporal patterns and dispersal of stink bugs (Heteroptera: Pentatomidae) in peanut-cotton farmscapes.

    PubMed

    Tillman, P G; Northfield, T D; Mizell, R F; Riddle, T C

    2009-08-01

    In the southeast United States, a field of peanuts, Arachis hypogaea L., is often closely associated with a field of cotton, Gossypium hirsutum L. The objective of this 4-yr on-farm study was to examine and compare the spatiotemporal patterns and dispersal of the southern green stink bug, Nezara viridula L., and the brown stink bug, Euschistus servus (Say), in six of these peanut-cotton farmscapes. GS(+) Version 9 was used to generate interpolated estimates of stink bug density by inverse distance weighting. Interpolated stink bug population raster maps were constructed using ArcMap Version 9.2. This technique was used to show any change in distribution of stink bugs in the farmscape over time. SADIE (spatial analysis by distance indices) methodology was used to examine spatial aggregation of individual stink bug species and spatial association of the two stink bug species in the individual crops. Altogether, the spatiotemporal analyses for the farmscapes showed that some N. viridula and E. servus nymphs and adults that develop in peanuts disperse into cotton. When these stink bugs disperse from peanuts into cotton, they aggregate in cotton at the interface, or common boundary, of the two crops while feeding on cotton bolls. Therefore, there is a pronounced edge effect observed in the distribution of stink bugs as they colonize the new crop, cotton. The driving force for the spatiotemporal distribution and dispersal of both stink bug species in peanut-cotton farmscapes seems to be availability of food in time and space mitigated by landscape structure. Thus, an understanding of farmscape ecology of stink bugs and their natural enemies is necessary to strategically place, in time and space, biologically based management strategies that control stink bug populations while conserving natural enemies and the environment and reducing off-farm inputs. PMID:19689882

  10. Lectin binding and effects in culture on human cancer and non-cancer cell lines: examination of issues of interest in drug design strategies.

    PubMed

    Petrossian, Karineh; Banner, Lisa R; Oppenheimer, Steven B

    2007-01-01

    By using a non-cancer and a cancer cell line originally from the same tissue (colon), coupled with testing lectins for cell binding and for their effects on these cell lines in culture, this study describes a simple multi-parameter approach that has revealed some interesting results that could be useful in drug development strategies. Two human cell lines, CCL-220/Colo320DM (human colon cancer cells, tumorigenic in nude mice) and CRL-1459/CCD-18Co (non-malignant human colon cells) were tested for their ability to bind to agarose microbeads derivatized with two lectins, peanut agglutinin (Arachis hypogaea agglutinin, PNA) and Dolichos biflorus agglutinin (DBA), and the effects of these lectins were assessed in culture using the MTT assay. Both cell lines bound to DBA-derivatized microbeads, and binding was inhibited by N-acetyl-D-galactosamine, but not by L-fucose. Neither cell line bound to PNA-derivatized microbeads. Despite the lack of lectin binding using the rapid microbead method, PNA was mitogenic in culture at some time points and its mitogenic effect displayed a reverse-dose response. This was also seen with effects of DBA on cells in culture. While this is a simple study, the results were statistically highly significant and suggest that: (1) agents may not need to bind strongly to cells to exert biological effects, (2) cell line pairs derived from diseased and non-diseased tissue can provide useful comparative data on potential drug effects and (3) very low concentrations of potential drugs might be initially tested experimentally because reverse-dose responses should be considered. PMID:17706752

  11. Relationship between Meloidogyne arenaria and Aflatoxin Contamination in Peanut

    PubMed Central

    Timper, P.; Wilson, D. M.; Holbrook, C. C.; Maw, B. W.

    2004-01-01

    Damaged and developing kernels of peanut (Arachis hypogaea) are susceptible to colonization by fungi in the Aspergillus flavus group which, under certain conditions, produces aflatoxins prior to harvest. Our objective was to determine whether infection of peanut roots and pods by Meloidogyne arenaria increases aflatoxin contamination of the kernels when peanut is subjected to drought stress. The experiment was a completely randomized 2-x-2 factorial with 6 replicates/treatment. The treatment factors were nematodes (plus and minus M. arenaria) and fungus (plus and minus A. flavus inoculum). The experiment was conducted in 2001 and 2002 in microplots under an automatic rain-out shelter. In treatments where A. flavus inoculum was added, aflatoxin concentrations were high (> 1,000 ppb) and not affected by nematode infection; in treatments without added fungal inoculum, aflatoxin concentrations were greater (P ≤ 0.05) in kernels from nematode-infected plants (1,190 ppb) than in kernels from uninfected plants (79 ppb). There was also an increase in aflatoxin contamination of kernels with increasing pod galling (r² = 0.83 in 2001, r² = 0.43 in 2002; P ≤ 0.04). Colonization of kernels by A. flavus increased with increasing pod galling (r² = 0.18; P = 0.04) in 2001 but not in 2002. Root-knot nematodes may have a greater role in enhancing aflatoxin contamination of peanut when conditions are not optimal for growth and aflatoxin production by fungi in the A. flavus group. PMID:19262803

  12. Burrower bugs (Heteroptera: Cydnidae) in peanut: seasonal species abundance, tillage effects, grade reduction effects, insecticide efficacy, and management.

    PubMed

    Chapin, Jay W; Thomas, James S

    2003-08-01

    Pitfall traps placed in South Carolina peanut, Arachis hypogaea (L.), fields collected three species of burrower bugs (Cydnidae): Cyrtomenus ciliatus (Palisot de Beauvois), Sehirus cinctus cinctus (Palisot de Beauvois), and Pangaeus bilineatus (Say). Cyrtomenus ciliatus was rarely collected. Sehirus cinctus produced a nymphal cohort in peanut during May and June, probably because of abundant henbit seeds, Lamium amplexicaule L., in strip-till production systems. No S. cinctus were present during peanut pod formation. Pangaeus bilineatus was the most abundant species collected and the only species associated with peanut kernel feeding injury. Overwintering P. bilineatus adults were present in a conservation tillage peanut field before planting and two to three subsequent generations were observed. Few nymphs were collected until the R6 (full seed) growth stage. Tillage and choice of cover crop affected P. bilineatus populations. Peanuts strip-tilled into corn or wheat residue had greater P. bilineatus populations and kernel-feeding than conventional tillage or strip-tillage into rye residue. Fall tillage before planting a wheat cover crop also reduced burrower bug feeding on peanut. At-pegging (early July) granular chlorpyrifos treatments were most consistent in suppressing kernel feeding. Kernels fed on by P. bilineatus were on average 10% lighter than unfed on kernels. Pangaeus bilineatus feeding reduced peanut grade by reducing individual kernel weight, and increasing the percentage damaged kernels. Each 10% increase in kernels fed on by P. bilineatus was associated with a 1.7% decrease in total sound mature kernels, and kernel feeding levels above 30% increase the risk of damaged kernel grade penalties. PMID:14503585

  13. 4-Methyleneglutamine Amidohydrolase from Peanut Leaves 1

    PubMed Central

    Winter, Harry C.; Dekker, Eugene E.

    1991-01-01

    4-Methyleneglutamine amidohydrolase has been extracted and purified over 1000-fold from 14-day-old peanut (Arachis hypogaea) leaves by modification of methods described previously. The purified enzyme shows two bands of activity and three to four bands of protein after electrophoresis on nondenaturing gels. Each of the active bands is readily eluted from gel slices and migrates to its original position on subsequent electrophoresis. Although they are electrophoretically distinct, the two forms of the enzyme are immunologically identical by Ouchterlony double-diffusion techniques and have similar catalytic properties. Activity toward glutamine that has a threefold lower Vmax and a four-fold higher Km value copurifies with MeGln aminohydrolase activity. 4-Methyleneglutamine and 4-methyleneglutamic acid inhibit the hydrolysis of glutamine while glutamine inhibits 4-methyleneglutamine hydrolysis, further indicating the identity of the activity toward both substrates. Amidohydrolase activity is stimulated up to threefold by preincubation with either ionic or non-ionic detergents (0.1%) and also by added proteins (0.5% bovine serum albumin or whole rabbit serum); it is inhibited 50% by 1 millimolar borate or the glutamine analog, albizziin (10 millimolar). Rabbit antiserum to the purified peanut enzyme cross-reacts with one or more proteins in extracts of some plants but not others; in no instance, however, was 4-methyleneglutamine amidohydrolase activity detected in other species. Overall, the results support the hypothesis that 4-methyleneglutamine supplies N, via its hydrolysis by the amidohydrolase, to the growing shoots of peanut plants, whereas glutamine hydrolysis is prevented by the prepon-derance of the preferred substrate. Some results also suggest that this amidohydrolase activity may be regulated by metabolites and/or by association with other cellular components. Images Figure 2 PMID:16667952

  14. Electrogenerated poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) interfaces: toward the impedimetric detection of lectins

    PubMed Central

    Gondran, Chantal; Dubois, Marie-Pierre; Fort, Sébastien; Cosnier, Serge

    2013-01-01

    This paper reports on the impedimetric transduction of binding reaction between polymerized saccharides and target lectins. The controlled potential electro-oxidation of pyrrole-lactosyl and pyrrole-3′-sialyllactosyl at 0.95 V vs. Ag/AgCl, provides thin and reproducible poly(pyrrole-saccharide) films. The affinity binding of two lectins: Arachis hypogaea, (PNA) and Maackia amurensis (MAA) onto poly(pyrrole-lactosyl) and poly(pyrrole-3′-sialyllactosyl) electrodes, was demonstrated by cyclic voltammetry in presence of ruthenium hexamine and hydroquinone. In addition, rotating disk experiments were carried out to determine the permeability of both polypyrrole films and its evolution after incubating with lectin target. Finally, the possibility of using the poly(pyrrole-lactosyl) or poly(pyrrole-3′-siallyllactosyl) films for the impedimetric transduction of the lectin binding reaction, was investigated with hydroquinone (2 × 10−3 mol L−1) as a redox probe in phosphate buffer. The resulting impedance spectra were interpreted and modeled as an equivalent circuit indicating that charge transfer resistance (Rct) and relaxation frequency (f°) parameters are sensitive to the lectin binding. Rct increases from 77 to 97 Ω cm2 for PNA binding and from 93 to 131 Ω cm2 for MAA binding. In parallel, f° decreases from 276 to 222 Hz for PNA binding and from 223 to 131 Hz for MAA binding. This evolution of both parameters reflects the steric hindrances generated by the immobilized lectins towards the permeation of the redox probe. PMID:24790939

  15. Effect of dilution rate on feline urethral sperm motility, viability, and DNA integrity.

    PubMed

    Prochowska, Sylwia; Niżański, Wojciech; Ochota, Małgorzata; Partyka, Agnieszka

    2014-12-01

    This study was designed to investigate if the characteristics of feline urethral sperm can be affected by high dilution in an artificial medium. The semen collected by urethral catheterization from eight male cats was evaluated for sperm concentration and motility and subsequently diluted with a TRIS-based extender to the concentration of spermatozoa 10 × 10(6)/mL, 5 × 10(6)/mL, and 1 × 10(6)/mL. Immediately after the extension samples were assessed for motility, cell viability using SYBR-14 and propidium iodide, acrosome integrity using lectin from Arachis hypogaea Alexa Fluor 488 Conjugate, and propidium iodide and chromatin status by acridine orange. Compared with 10 × 10(6)/mL dilution rate, spermatozoa diluted to 1 × 10(6) sperm/mL had a significantly lower proportion of motile (31.1% ± 19.8 and 0.7% ± 1.6, respectively, P < 0.05) and viable spermatozoa (88.3% ± 3.1 and 69.1% ± 12.8, respectively, P < 0.01). There was no dilution-related difference in the acrosome integrity (76.7% ± 11.9 vs. 75.9% ± 10.6) and chromatin status (defragmentation index, 3.3% ± 0.97 vs. 3.4% ± 1.7). These results indicate that feline urethral semen is susceptible to high dilution rate, and some sperm characteristics can be artifactually changed by semen dilution. It also suggests the potential role of seminal plasma in maintaining sperm motility and viability in high dilution rates. PMID:25262548

  16. Characterization of the N-glycans of female Angiostrongylus cantonensis worms.

    PubMed

    Veríssimo, Carolina M; Morassutti, Alessandra L; von Itzstein, Mark; Sutov, Grigorij; Hartley-Tassell, Lauren; McAtamney, Sarah; Dell, Anne; Haslam, Stuart M; Graeff-Teixeira, Carlos

    2016-07-01

    Glycoconjugates play a crucial role in the host-parasite relationships of helminthic infections, including angiostrongyliasis. It has previously been shown that the antigenicity of proteins from female Angiostrongylus cantonensis worms may depend on their associated glycan moieties. Here, an N-glycan profile of A. cantonensis is reported. A total soluble extract (TE) was prepared from female A. cantonensis worms and was tested by western blot before and after glycan oxidation or N- and O-glycosidase treatment. The importance of N-glycans for the immunogenicity of A. cantonensis was demonstrated when deglycosylation of the TE with PNGase F completely abrogated IgG recognition. The TE was also fractionated using various lectin columns [Ulex europaeus (UEA), concanavalin A (Con A), Arachis hypogaea (PNA), Triticum vulgaris (WGA) and Lycopersicon esculentum (LEA)], and then each fraction was digested with PNGase F. Released N-glycans were analyzed with matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF)-mass spectrometry (MS) and MALDI-TOF/TOF-MS/MS. Complex-type, high mannose, and truncated glycan structures were identified in all five fractions. Sequential MALDI-TOF-TOF analysis of the major MS peaks identified complex-type structures, with a α1-6 fucosylated core and truncated antennas. Glycoproteins in the TE were labeled with BodipyAF558-SE dye for a lectin microarray analysis. Fluorescent images were analyzed with ProScanArray imaging software followed by statistical analysis. A total of 29 lectins showed positive binding to the TE. Of these, Bandeiraea simplicifolia (BS-I), PNA, and Wisteria floribunda (WFA), which recognize galactose (Gal) and N-acetylgalactosamine (GalNAc), exhibited high affinity binding. Taken together, our findings demonstrate that female A. cantonensis worms have characteristic helminth N-glycans. PMID:27107931

  17. Expression pattern of glycoconjugates in the Bidderian and ovarian follicles of the Brazilian toad Bufo ictericus analyzed by lectin histochemistry.

    PubMed

    Farias, C F; Azevedo, R A; Brito-Gitirana, L

    2006-02-01

    The Bidder's organ and ovary of the Brazilian toad Bufo ictericus were studied by light microscopy, using hematoxylin-eosin (HE) and periodic acid Schiff (PAS) staining. The expression and distribution of carbohydrate moieties was analyzed by lectin histochemistry, using 8 lectins with different carbohydrate specificities: Ulex europaeus (UEA I), Lens culinaris (LCA), Erythrina cristagalli (ECA), Arachis hypogaea (PNA), Ricinus communis (RCA I), Aleuria aurantia (AAA), Triticum vulgaris (WGA), and Glycine maximum (SBA). The results showed that the Bidderian zona pellucida presented alpha-mannose, alpha-L-fucose, beta-D-galactose, N-acetyl-D-glucosamine, and alpha/beta-N-acetyl-galactosamine residues. The Bidderian follicular cells showed the presence of beta-D-galactose and N-acetyl-D-glucosamine. In the extracellular matrix, alpha-mannose and alpha/beta-N-acetyl-galactosamine residues were detected. The ovarian zona pellucida showed alpha-L-fucose, N-acetyl-D-glucosamine, alpha/beta-N-acetyl-galactosamine residues, and alpha-mannose and N-acetyl-D-glucosamine residues were detected in the follicular cells. Thus, the zona pellucida in both organs contains N-acetyl-D-glucosamine, and alpha/beta-N-acetyl-galactosamine residues. alpha-L-fucose residues were detected in the zona pellucida of both organs, using different lectins. Considering that beta-D-galactose residue was absent from ovary but present in the Bidder's organ, this sugar residue may play an important role in follicle development, blocking the Bidderian follicles and preventing further development of the Bidder's organ into a functional ovary. PMID:16680305

  18. POMGNT1 Is Glycosylated by Mucin-Type O-Glycans.

    PubMed

    Xin, Xin; Akasaka-Manya, Keiko; Manya, Hiroshi; Furukawa, Jun-ichi; Kuwahara, Naoyuki; Okada, Kazue; Tsumoto, Hiroki; Higashi, Nobuaki; Kato, Ryuichi; Shinohara, Yasuro; Irimura, Tatsuro; Endo, Tamao

    2015-01-01

    Protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) is a Golgi glycosyltransferase that catalyzes the formation of the N-acetylglucosamine (GlcNAc) β1→2Man linkage of O-mannosyl glycan. POMGNT1 is not modified by N-glycans because there are no potential N-glycosylation sites; however, it is not clear whether POMGNT1 is modified by O-glycans. To determine whether POMGNT1 is O-glycosylated, we prepared recombinant human POMGNT1 from HEK293T cells. The recombinant POMGNT1 was recognized by Sambucus sieboldiana lectin (SSA), and sialidase digestion of POMGNT1 decreased SSA reactivity and enhanced the reactivity of Arachis hypogaea lectin (PNA). These results suggest that POMGNT1 is modified by a sialylated core-1 O-glycan. Next, we analyzed the structures of the O-glycans on POMGNT1 by β-elimination and pyrazolone-labeling methods in combination with mass spectrometry. We identified several mucin-type O-glycans containing (NeuAc)1(Hex)1(HexNAc)1, (NeuAc)2(Hex)1(HexNAc)1, and (NeuAc)2(Hex)2(HexNAc)2. To examine whether the O-glycans affect the functions and properties of POMGNT1, we compared glycosylated and non-glycosylated forms of recombinant sPOMGNT1 for their activity and surface hydrophobicity using the hydrophobic probe 1-anilino-8-naphthalene sulfonate (ANS). POMGNT1 activity and surface hydrophobicity were not affected by the presence or absence of O-glycans. PMID:26328495

  19. Generation of peanut mutants by fast neutron irradiation combined with in vitro culture

    PubMed Central

    Wang, Jing-Shan; Sui, Jiong-Ming; Xie, Yong-Dun; Guo, Hui-Jun; Qiao, Li-Xian; Zhao, Li-Lan; Yu, Shan-Lin; Liu, Lu-Xiang

    2015-01-01

    Induced mutations have played an important role in the development of new plant varieties. In this study, we investigated the effects of fast neutron irradiation on somatic embryogenesis combined with plant regeneration in embryonic leaflet culture to develop new peanut (Arachis hypogaea L.) germplasm for breeding. The dry seeds of the elite cultivar Luhua 11 were irradiated with fast neutrons at dosages of 9.7, 14.0 and 18.0 Gy. The embryonic leaflets were separated and incubated in a medium with 10.0-mg/l 2,4-D to induce somatic embryogenesis. Next, they were incubated in a medium with 4.0-mg/l BAP for plant regeneration. As the irradiation dosage increased, the frequency of both somatic embryo formation and plantlet regeneration decreased. The regenerated plantlets were grafted onto rootstocks and were transplanted into the field. Later, the mature seeds of the regenerated plants were harvested. The M2 generation plants from most of the regenerated cultivars exhibited variations and segregation in vigor, plant height, branch and pod number, pod size, and pod shape. To determine whether the phenotypes were associated with genomic modification, we compared the DNA polymorphisms between the wild-type plants and 19 M3-generation individuals from different regenerated plants. We used 20 pairs of simple sequence repeat (SSR) primers and detected polymorphisms between most of the mutants and the wild-type plants (Luhua 11). Our results indicate that using a combination of fast neutron irradiation and tissue culture is an effective approach for creating new peanut germplasm. PMID:25653418

  20. Global Synthesis of Drought Effects on Food Legume Production.

    PubMed

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world. PMID:26061704

  1. Dietary Plant Lectins Appear to Be Transported from the Gut to Gain Access to and Alter Dopaminergic Neurons of Caenorhabditis elegans, a Potential Etiology of Parkinson's Disease.

    PubMed

    Zheng, Jolene; Wang, Mingming; Wei, Wenqian; Keller, Jeffrey N; Adhikari, Binita; King, Jason F; King, Michael L; Peng, Nan; Laine, Roger A

    2016-01-01

    Lectins from dietary plants have been shown to enhance drug absorption in the gastrointestinal tract of rats, be transported trans-synaptically as shown by tracing of axonal and dendritic paths, and enhance gene delivery. Other carbohydrate-binding protein toxins are known to traverse the gut intact in dogs. Post-feeding rhodamine- or TRITC-tagged dietary lectins, the lectins were tracked from gut to dopaminergic neurons (DAergic-N) in transgenic Caenorhabditis elegans (C. elegans) [egIs1(Pdat-1:GFP)] where the mutant has the green fluorescent protein (GFP) gene fused to a dopamine transport protein gene labeling DAergic-N. The lectins were supplemented along with the food organism Escherichia coli (OP50). Among nine tested rhodamine/TRITC-tagged lectins, four, including Phaseolus vulgaris erythroagglutinin (PHA-E), Bandeiraea simplicifolia (BS-I), Dolichos biflorus agglutinin (DBA), and Arachis hypogaea agglutinin (PNA), appeared to be transported from gut to the GFP-DAergic-N. Griffonia Simplicifolia and PHA-E, reduced the number of GFP-DAergic-N, suggesting a toxic activity. PHA-E, BS-I, Pisum sativum (PSA), and Triticum vulgaris agglutinin (Succinylated) reduced fluorescent intensity of GFP-DAergic-N. PHA-E, PSA, Concanavalin A, and Triticum vulgaris agglutinin decreased the size of GFP-DAergic-N, while BS-I increased neuron size. These observations suggest that dietary plant lectins are transported to and affect DAergic-N in C. elegans, which support Braak and Hawkes' hypothesis, suggesting one alternate potential dietary etiology of Parkinson's disease (PD). A recent Danish study showed that vagotomy resulted in 40% lower incidence of PD over 20 years. Differences in inherited sugar structures of gut and neuronal cell surfaces may make some individuals more susceptible in this conceptual disease etiology model. PMID:27014695

  2. Lectin-dependent attachment of Actinomyces naeslundii to receptors on epithelial cells.

    PubMed Central

    Brennan, M J; Cisar, J O; Vatter, A E; Sandberg, A L

    1984-01-01

    The adherence of Actinomyces naeslundii WVU45 to monolayer cultures of human epithelial cell lines was mediated by the lactose-sensitive fimbriae (type 2) of strain WVU45. The attachment of Actinomyces viscosus T14V, which has both types 1 and 2 fimbriae, was approximately half that of A. naeslundii, and only minimal attachment of A. naeslundii and A. viscosus mutants lacking type 2 fimbriae was detected. The adherence of strain WVU45 was enhanced two- to threefold by neuraminidase treatment of the epithelial cells. The Fab fragments of antibodies which recognize the type 2 fimbriae inhibited the adherence of A. naeslundii WVU45 to the epithelial cells. The bacterial interaction with epithelial cells was inhibited by lactose, methyl-beta-D-galactoside, and N-acetyl-D-galactosamine, but not by methyl-alpha-D-galactoside, cellobiose, N-acetyl-D-glucosamine, L-fucose, or D-mannose. To further characterize the epithelial cell receptors for the bacterial lectin, we utilized several plant and invertebrate lectins as potential inhibitors of bacterial adherence. Lectins from Bauhinia purpurea and Arachis hypogaea which recognize N-acetyl-D-galactosamine, D-galactose, and D-galactose-beta-(1----3)-N-acetyl-D-galactosamine inhibited bacterial attachment, and binding of these lectins to epithelial cells was enhanced by the addition of neuraminidase. Lectins reacting with alpha-linked D-galactose, alpha-linked N-acetyl-D-galactosamine, D-mannose, or sialic acid were not inhibitory. Under similar assay conditions, adherence of a mannose-sensitive strain of Escherichia coli was inhibited by concanavalin A but not by the lectin from Bauhinia purpurea. These results indicate that certain plant lectins have specificities similar to that of the actinomyces fimbrial lectin and are, therefore, useful probes for identifying receptors on epithelial cells for certain bacteria. Images PMID:6150008

  3. Global Synthesis of Drought Effects on Food Legume Production

    PubMed Central

    Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André

    2015-01-01

    Food legume crops play important roles in conservation farming systems and contribute to food security in the developing world. However, in many regions of the world, their production has been adversely affected by drought. Although water scarcity is a severe abiotic constraint of legume crops productivity, it remains unclear how the effects of drought co-vary with legume species, soil texture, agroclimatic region, and drought timing. To address these uncertainties, we collected literature data between 1980 and 2014 that reported monoculture legume yield responses to drought under field conditions, and analyzed this data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with legume species and the phenological state during which drought occurred. Overall, lentil (Lens culinaris), groundnut (Arachis hypogaea), and pigeon pea (Cajanus cajan) were found to experience lower drought-induced yield reduction compared to legumes such as cowpea (Vigna unguiculata) and green gram (Vigna radiate). Yield reduction was generally greater when legumes experienced drought during their reproductive stage compared to during their vegetative stage. Legumes grown in soil with medium texture also exhibited greater yield reduction compared to those planted on soil of either coarse or fine texture. In contrast, regions and their associated climatic factors did not significantly affect legume yield reduction. In the face of changing climate, our study provides useful information for agricultural planning and research directions for development of drought-resistant legume species to improve adaptation and resilience of agricultural systems in the drought-prone regions of the world. PMID:26061704

  4. Generation of peanut mutants by fast neutron irradiation combined with in vitro culture.

    PubMed

    Wang, Jing-Shan; Sui, Jiong-Ming; Xie, Yong-Dun; Guo, Hui-Jun; Qiao, Li-Xian; Zhao, Li-Lan; Yu, Shan-Lin; Liu, Lu-Xiang

    2015-05-01

    Induced mutations have played an important role in the development of new plant varieties. In this study, we investigated the effects of fast neutron irradiation on somatic embryogenesis combined with plant regeneration in embryonic leaflet culture to develop new peanut (Arachis hypogaea L.) germplasm for breeding. The dry seeds of the elite cultivar Luhua 11 were irradiated with fast neutrons at dosages of 9.7, 14.0 and 18.0 Gy. The embryonic leaflets were separated and incubated in a medium with 10.0-mg/l 2,4-D to induce somatic embryogenesis. Next, they were incubated in a medium with 4.0-mg/l BAP for plant regeneration. As the irradiation dosage increased, the frequency of both somatic embryo formation and plantlet regeneration decreased. The regenerated plantlets were grafted onto rootstocks and were transplanted into the field. Later, the mature seeds of the regenerated plants were harvested. The M2 generation plants from most of the regenerated cultivars exhibited variations and segregation in vigor, plant height, branch and pod number, pod size, and pod shape. To determine whether the phenotypes were associated with genomic modification, we compared the DNA polymorphisms between the wild-type plants and 19 M3-generation individuals from different regenerated plants. We used 20 pairs of simple sequence repeat (SSR) primers and detected polymorphisms between most of the mutants and the wild-type plants (Luhua 11). Our results indicate that using a combination of fast neutron irradiation and tissue culture is an effective approach for creating new peanut germplasm. PMID:25653418

  5. Serine-rich protein is a novel positive regulator for silicon accumulation in mangrove.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; Siti Nor Akmar, A; Rafii, Mohd Y; Azizi, Parisa; Idris, A S

    2015-02-10

    Silicon (Si) plays an important role in reducing plant susceptibility against a variety of different biotic and abiotic stresses; and also has an important regulatory role in soil to avoid heavy metal toxicity and providing suitable growing conditions for plants. A full-length cDNAs of 696bp of serine-rich protein was cloned from mangrove plant (Rhizophora apiculata) by amplification of cDNA ends from an expressed sequence tag homologous to groundnut (Arachis hypogaea), submitted to NCBI (KF211374). This serine-rich protein gene encodes a deduced protein of 223 amino acids. The transcript titre of the serine-rich protein was found to be strongly enriched in roots compared with the leaves of two month old mangrove plants and expression level of this serine-rich protein was found to be strongly induced when the mangrove seedlings were exposed to SiO2. Expression of the serine-rich protein transgenic was detected in transgenic Arabidopsis thaliana, where the amount of serine increased from 1.02 to 37.8mg/g. The same trend was also seen in Si content in the roots (14.3%) and leaves (7.4%) of the transgenic A. thaliana compared to the wild-type plants under Si treatment. The biological results demonstrated that the accumulation of the serine amino acid in the vegetative tissues of the transgenic plants enhanced their ability to absorb and accumulate more Si in the roots and leaves and suggests that the serine-rich protein gene has potential for use in genetic engineering of different stress tolerance characteristics. PMID:25479011

  6. Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin.

    PubMed Central

    Sandberg, A L; Ruhl, S; Joralmon, R A; Brennan, M J; Sutphin, M J; Cisar, J O

    1995-01-01

    Recognition of receptors on sialidase-treated polymorphonuclear leukocytes (PMNs) by the Gal/GalNAc lectin associated with the type 2 fimbriae of certain strains of actinomyces results in activation of the PMNs, phagocytosis, and destruction of the bacteria. In the present study, plant lectins were utilized as probes to identify putative PMN receptors for the actinomyces lectin. The Gal-reactive lectin from Ricinus communis (RCAI), the Gal/GalNAc-reactive lectins from R. communis (RCAII) and Bauhinia purpurea (BPA), as well as the Gal beta 1-3GalNAc-specific lectins from Arachis hypogaea (PNA) and Agaricus bisporus (ABA) inhibited killing of Actinomyces naeslundii WVU45 by sialidase-treated PMNs. These five lectins detected a 130-kDa surface-labeled glycoprotein on nitrocellulose transfers of PMN extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This glycoprotein was revealed only after treatment of the transfers with sialidase, a condition analogous to the sialidase dependence of the lectin-mediated biological responses of the PMNs to the actinomyces. The mannose-reactive lectin concanavalin A did not inhibit killing of the actinomyces and failed to detect the 130-kDa glycoprotein but did block PMN-dependent killing of Escherichia coli B, a bacterium that possesses mannose-sensitive fimbriae. Therefore, the PMN glycoprotein receptor for A. naeslundii is clearly distinct from those recognized by E. coli. Two major putative glycolipid receptors were also identified by actinomyces and RCAI overlays on sialidase-treated thin-layer chromatograms of PMN gangliosides. Thus, both a 130-kDa glycoprotein and certain gangliosides are implicated in the attachment of the actinomyces to PMNs. PMID:7790078

  7. Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses.

    PubMed

    Lasse Grönemeyer, Jann; Hurek, T; Reinhold-Hurek, Barbara

    2015-12-01

    Eight strains of symbiotic bacteria from root nodules of local races of cowpea (Vigna unguiculata) and Bambara groundnut (Vigna subterranea) grown on subsistence farmers' fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To clarify their taxonomic status, these strains were further characterized using a polyphasic approach. In phylogenetic analysis of the 16S rRNA gene sequence the novel group was most closely related to Bradyrhizobium iriomotense EK05T and Bradyrhizobium ingae BR 10250T, and to 'Bradyrhizobium arachidis' CCBAU 051107 in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK sequences placed the strains in a lineage distinct from named species of the genus Bradyrhizobium. The species status was validated by results of DNA-DNA hybridization. Phylogenetic analysis of nifH and nodC genes placed the novel strains in a group with 'B. arachidis' CCBAU 051107. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 14-3T induces effective nodules on Vigna subterranea, Vigna unguiculata, Arachis hypogaea and Lablab purpureus. Based on the data presented, it is concluded that the strains represent a novel species of the genus Bradyrhizobium, for which the name Bradyrhizobium kavangense sp. nov. is proposed. The type strain is 14-3T [ = DSM 100299T = LMG 28790T = NTCCM 0012T (Windhoek)]. The DNA G+C content of strain 14-3T is 63.8 mol% (Tm). PMID:26446190

  8. Exploratory use of a UAV platform for variety selection in peanut

    NASA Astrophysics Data System (ADS)

    Balota, Maria; Oakes, Joseph

    2016-05-01

    Variety choice is the most important production decision farmers make because high yielding varieties can increase profit with no additional production costs. Therefore, yield improvement has been the major objective for peanut (Arachis hypogaea L.) breeding programs worldwide, but the current breeding approach (selecting for yield under optimal production conditions) is slow and inconsistent with the needs derived from population demand and climate change. To improve the rate of genetic gain, breeders have used target physiological traits such as leaf chlorophyll content using SPAD chlorophyll meter, Normalized Difference Vegetation Index (NDVI) from canopy reflectance in visible and near infra-red (NIR) wavelength bands, and canopy temperature (CT) manually measured with infra-red (IR) thermometers at the canopy level; but its use for routine selection was hampered by the time required to walk hundreds of plots. Recent developments in remote sensing-based high throughput phenotyping platforms using unmanned aerial vehicles (UAV) have shown good potential for future breeding advancements. Recently, we initiated a study for the evaluation of suitability of digital imagery, NDVI, and CT taken from an UAV platform for peanut variety differentiation. Peanut is unique for setting its yield underground and resilience to drought and heat, for which yield is difficult to pre-harvest estimate; although the need for early yield estimation within the breeding programs exists. Twenty-six peanut cultivars and breeding lines were grown in replicated plots either optimally or deficiently irrigated under rain exclusion shelters at Suffolk, Virginia. At the beginning maturity growth stage, approximately a month before digging, NDVI and CT were taken with ground-based sensors at the same time with red, blue, green (RGB) images from a Sony camera mounted on an UAV platform. Disease ratings were also taken pre-harvest. Ground and UAV derived vegetation indices were analyzed for

  9. Characterization of a Pinus pinaster cDNA encoding an auxin up-regulated putative peroxidase in roots.

    PubMed

    Charvet-Candela, V; Hitchin, S; Reddy, M S; Cournoyer, B; Marmeisse, R; Gay, G

    2002-03-01

    As part of a study to identify host plant genes regulated by fungal auxin during ectomycorrhiza formation, we differentially screened a cDNA library constructed from roots of auxin-treated Pinus pinaster (Ait.) Sol. seedlings. We identified three cDNAs up-regulated by auxin. Sequence analysis of one of these cDNAs, PpPrx75, revealed the presence of an open reading frame of 216 amino acids with the characteristic consensus sequences of plant peroxidases. The deduced amino acid sequence showed homology with Arabidopsis thaliana (L.) Heynh., Arachis hypogaea L. and Stylosanthes humilis HBK cationic peroxidases. Amino acid sequence identities in the conserved domains of plant peroxidases ranged from 60 to 100%. In PpPrx75, there are five cysteine residues and one histidine residue that are found at conserved positions among other peroxidases. A potential glycosylation site (NTS) is present in the deduced sequence. Phylogenetic analysis showed that PpPrx75 is closely related to two A. thaliana peroxidases. The PpPrx75 cDNA was induced by active auxins, ethylene, abscisic acid and quercetin, a flavonoid possibly involved in plant-microorganism interactions. Transcript accumulation was detected within 3 h following root induction by auxin, and the amount of mRNA increased over the following 24 h. The protein synthesis inhibitor cycloheximide did not inhibit indole-3-acetic acid-induced transcript accumulation, suggesting that PpPrx75 induction is a primary (direct) response to auxin. This cDNA can be used to study expression of an auxin-regulated peroxidase during ectomycorrhiza formation. PMID:11874719

  10. Influence of preceding crop on wireworm (Coleoptera: Elateridae) abundance in the coastal plain of North Carolina.

    PubMed

    Willis, Rebecca B; Abney, Mark R; Holmes, Gerald J; Schultheis, Jonathan R; Kennedy, George G

    2010-12-01

    Three studies were conducted to determine the effect of preceding crop on wireworm (Coleoptera: Elateridae) abundance in the coastal plain of North Carolina. In all three studies, samples of wireworm populations were taken from the soil by using oat, Avena sativa L., baits. Treatments were defined by the previous year's crop and were chosen to reflect common crop rotations in the region. Across all three studies, eight wireworm species were recovered from the baits: Conoderus amplicollis (Gyllenhal), Conoderus bellus (Say), Conoderus falli (Lane), Conoderus lividus (Degeer), Conoderus scissus (Schaeffer), Conoderus vespertinus (F.), Glyphonyx bimarginatus (Schaeffer), and Melanotus communis (Gyllenhal). The effect of corn, Zea mays L.; cotton, Gossypium hirsutum L.; fallow; soybean, Clycine max (L.) Merr.; sweet potato, Ipomoea batatas (L.) Lam.; and tobacco (Nicotiana spp.) was evaluated in a small-plot replicated study. M. communis was the most frequently collected species in the small-plot study and was found in significantly higher numbers following soybean and corn. The mean total number of wireworms per bait (all species) was highest following soybean. A second study conducted in late fall and early spring assessed the abundance of overwintering wireworm populations in commercial fields planted to corn, cotton, peanut (Arachis hypogaea L.), soybean, sweet potato, and tobacco in the most recent previous growing season. C. lividus was the most abundant species, and the mean total number of wireworms was highest following corn and soybean. A survey was conducted in commercial sweet potato in late spring and early summer in fields that had been planted to corn, cotton, cucurbit (Cucurbita pepo L.), peanut, soybean, sweet potato, or tobacco in the most recent previous growing season. C. vespertinus was the most abundant species, and the mean total number of wireworms per bait was highest following corn. PMID:21309229

  11. AhDMT1, a Fe(2+) transporter, is involved in improving iron nutrition and N2 fixation in nodules of peanut intercropped with maize in calcareous soils.

    PubMed

    Shen, Hongyun; Xiong, Hongchun; Guo, Xiaotong; Wang, Pengfei; Duan, Penggen; Zhang, Lixia; Zhang, Fusuo; Zuo, Yuanmei

    2014-05-01

    Peanut (Arachis hypogaea L.) is an important legume providing edible proteins and N2 fixation. However, iron deficiency severely reduces peanut growth in calcareous soils. The maize/peanut intercropping effectively improves iron nutrition and N2 fixation of peanut under pot and field conditions on calcareous soils. However, little was known of how intercropping regulates iron transporters in peanut. We identified AhDMT1 as a Fe(2+) transporter which was highly expressed in mature nodules with stronger N2 fixation capacity. Promoter expression analysis indicated that AhDMT1 was localized in the vascular tissues of both roots and nodules in peanut. Short-term Fe-deficiency temporarily induced an AhDmt1 expression in mature nodules in contrast to roots. However, analysis of the correlation between the complex regulation pattern of AhDmt1 expression and iron nutrition status indicated that sufficient iron supply for long term was a prerequisite for keeping AhDmt1 at a high expression level in both, peanut roots and mature nodules. The AhDmt1 expression in peanut intercropped with maize under 3 years greenhouse experiments was similar to that of peanut supplied with sufficient iron in laboratory experiments. Thus, the positive interspecific effect of intercropping may supply sufficient iron to enhance the expression of AhDmt1 in peanut roots and mature nodules to improve the iron nutrition and N2 fixation in nodules. This study may also serve as a paradigm in which functionally important genes and their ecological significance in intercropping were characterized using a candidate gene approach. PMID:24519544

  12. Characterization of Peanut Germin-Like Proteins, AhGLPs in Plant Development and Defense

    PubMed Central

    Wang, Tong; Chen, Xiaoping; Zhu, Fanghe; Li, Haifen; Li, Ling; Yang, Qingli; Chi, Xiaoyuan; Yu, Shanlin; Liang, Xuanqiang

    2013-01-01

    Background Germin-like superfamily members are ubiquitously expressed in various plant species and play important roles in plant development and defense. Although several GLPs have been identified in peanut (Arachis hypogaea L.), their roles in development and defense remain unknown. In this research, we study the spatiotemporal expression of AhGLPs in peanut and their functions in plant defense. Results We have identified three new AhGLP members (AhGLP3b, AhGLP5b and AhGLP7b) that have distinct but very closely related DNA sequences. The spatial and temporal expression profiles revealed that each peanut GLP gene has its distinct expression pattern in various tissues and developmental stages. This suggests that these genes all have their distinct roles in peanut development. Subcellular location analysis demonstrated that AhGLP2 and 5 undergo a protein transport process after synthesis. The expression of all AhGLPs increased in responding to Aspergillus flavus infection, suggesting AhGLPs' ubiquitous roles in defense to A. flavus. Each AhGLP gene had its unique response to various abiotic stresses (including salt, H2O2 stress and wound), biotic stresses (including leaf spot, mosaic and rust) and plant hormone stimulations (including SA and ABA treatments). These results indicate that AhGLPs have their distinct roles in plant defense. Moreover, in vivo study of AhGLP transgenic Arabidopsis showed that both AhGLP2 and 3 had salt tolerance, which made transgenic Arabidopsis grow well under 100 mM NaCl stress. Conclusions For the first time, our study analyzes the AhGLP gene expression profiles in peanut and reveals their roles under various stresses. These results provide an insight into the developmental and defensive roles of GLP gene family in peanut. PMID:23626720

  13. Measurement and modeling of diclosulam runoff under the influence of simulated severe rainfall.

    PubMed

    van Wesenbeeck, I J; Peacock, A L; Havens, P L

    2001-01-01

    A runoff study was conducted near Tifton, GA to measure the losses of water, sediment, and diclosulam (N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro-[1,2,4]triazolo-[1,5c]-pyrimidine- 2-sulfonamide), a new broadleaf herbicide, under a 50-mm-in-3-h simulated rainfall event on three separate 0.05-ha plots. Results of a runoff study were used to validate the Pesticide Root Zone Model (PRZM, v. 3.12) using field-measured soil, chemical, and weather inputs. The model-predicted edge-of-field diclosulam loading was within 1% of the average observed diclosulam runoff from the field study; however, partitioning between phases was not as well predicted. The model was subsequently used with worst-case agricultural practice inputs and a 41-yr weather record from Dublin, GA to simulate edge-of-field runoff losses for the two most prevalent soils (Tifton and Bibb) in the southeastern U.S. peanut (Arachis hypogaea L.) market for 328 simulation years, and showed that the 90th percentile runoff amounts, expressed as percent of applied diclosulam, were 1.8, 0.6, and 5.2% for the runoff study plots and Tifton and Bibb soils, respectively. The runoff study and modeling indicated that more than 97% of the total diclosulam runoff was transported off the field by water, with < 3% associated with the sediment. Diclosulam losses due to runoff can be further reduced by lower application rates, tillage and crop residue management practices that reduce edge-of-field runoff, and conservation practices such as vegetated filter strips. PMID:11285917

  14. High efficiency transformation of banana [Musa acuminata L. cv. Matti (AA)] for enhanced tolerance to salt and drought stress through overexpression of a peanut salinity-induced pathogenesis-related class 10 protein.

    PubMed

    Rustagi, Anjana; Jain, Shalu; Kumar, Deepak; Shekhar, Shashi; Jain, Mukesh; Bhat, Vishnu; Sarin, Neera Bhalla

    2015-01-01

    Bananas and plantains (Musa spp. L.) are important subsistence crops and premium export commodity in several countries, and susceptible to a wide range of environmental and biotic stress conditions. Here, we report efficient, rapid, and reproducible Agrobacterium-mediated transformation and regeneration of an Indian niche cultivar of banana [M. acuminata cv. Matti (AA)]. Apical meristem-derived highly proliferative multiple shoot clump (MSC) explants were transformed with the Agrobacterium strain EHA105 harboring a binary vector pCAMBIA-1301 carrying hptII and uidA. Sequential agro-infiltration (10 min, 400 mmHg), infection (additional 35 min, Agrobacterium density A 600 = 0.8) and co-cultivation (18 h) regimen in 100 µM acetosyringone containing liquid medium were critical factors yielding high transformation efficiency (~81 %) corroborated by transient GUS expression assay. Stable transgenic events were recovered following two cycles of meristem initiation and selection on hygromycin containing medium. Histochemical GUS assay in several tissues of transgenic plants and molecular analyses confirmed stable integration and expression of transgene. The protocol described here allowed recovery of well-established putative transgenic plantlets in as little as 5 months. The transgenic banana plants could be readily acclimatized under greenhouse conditions, and were phenotypically similar to the wild-type untransformed control plants (WT). Transgenic plants overexpressing Salinity-Induced Pathogenesis-Related class 10 protein gene from Arachis hypogaea (AhSIPR10) in banana cv. Matti (AA) showed better photosynthetic efficiency and less membrane damage (P < 0.05) in the presence of NaCl and mannitol in comparison to WT plants suggesting the role of AhSIPR10 in better tolerance of salt stress and drought conditions. PMID:25173686

  15. Threecornered alfalfa hopper (Hemiptera: Membracidae): seasonal occurrence, girdle distribution, and response to insecticide treatment on peanut in South Carolina.

    PubMed

    Rahman, Khalidur; Bridges, William C; Chapin, Jay W; Thomas, James S

    2007-08-01

    A survey of threecornered alfalfa hopper, Spissistilus festinus (Say) (Hemiptera: Membracidae), damage in 60 South Carolina peanut, Arachis hypogaea L., fields showed that 89 and 58% of plants had feeding girdles during 2003 and 2004, respectively. Use of a foliar insecticide for other target pests reduced hopper damage. Hopper damage was not affected by sampling distance from the field edge; therefore, injury was adequately assessed at 10 m from field borders. In-furrow insecticide choice, planting date, soil texture, previous crop, or tillage did not measurably affect girdling. Subsequent field experiments demonstrated a cultivar effect on threecornered alfalfa hopper injury, with the standard runner-type cultivar ('Georgia Green') more susceptible than the standard Virginia-type ('NC-V11'). More than 50% of stem girdling occurred on the basal quarter (first five internodes) of the plant. Most feeding occurred on secondary branches of main and lateral stems. Weekly sampling of seven grower fields showed that adult hoppers colonize peanut during June and produce two generations on peanut. Only low levels of plant girding were observed in June, but plant girdling increased gradually through late July, when girdling markedly increased contemporary with peak populations of first generation nymphs and adults. A second increase in plant girdling, observed in early September, coincided with the second generation of nymphs on peanut. Foliar treatments at 45- 60 d after planting (DAP) were most effective in suppressing injury. Granular chlorpyrifos treatment also suppressed hopper injury. There was no yield response to insecticide treatments at the hopper injury levels in these tests (up to six girdles per plant). Although the economic injury level (EIL) for this pest has not been defined, our data indicate that a critical interval for monitoring hopper activity is the first 3 wk of July, before the occurrence of significant injury. Where growers have a consistent risk of

  16. Electrogenerated poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) interfaces: towards the impedimetric detection of lectins

    NASA Astrophysics Data System (ADS)

    Gondran, Chantal; Dubois, Marie-Pierre; Fort, Sebastien; Cosnier, Serge

    2013-07-01

    This paper reports on the impedimetric transduction of binding reaction between polymerized saccharides and target lectins. The controlled potential electro-oxidation of pyrrole-lactosyl and pyrrole-3’-sialyllactosyl at 0.95 V vs Ag/AgCl, provides thin and reproducible poly(pyrrole-saccharide) films. The affinity binding of two lectins: Arachis hypogaea, (PNA) and Maackia amurensis (MAA) onto poly(pyrrole-lactosyl) and poly(pyrrole-3’-sialyllactosyl) electrodes, was demonstrated by cyclic voltammetry in presence of ruthenium hexamine and hydroquinone. In addition, rotating disk experiments were carried out to determine the permeability of both polypyrrole films and its evolution after incubating with lectin target. Finally, the possibility of using the poly(pyrrole-lactosyl) or poly(pyrrole-3’-siallyllactosyl) films for the impedimetric transduction of the lectin binding reaction, was investigated with hydroquinone (2×10-3 mol L-1) as a redox probe in phosphate buffer. The resuting impedance spectra were interpreted and modeled as an equivalent circuit indicating that charge transfer resistance (Rct) and relaxation frequency (f°) parameters are sensitive to the lectin binding. Rct increases from 77 to 97 Ω cm2 for PNA binding and from 93 to 131 Ω cm2 for MAA binding. In parallel, f° decreases from 276 to 222 Hz for PNA binding and from 223 to 131 Hz for MAA binding. This evolution of both parameters reflects the steric hindrances generated by the immobilised lectins towards the permeation of the redox probe.

  17. The glycosylation pattern of common allergens: the recognition and uptake of Der p 1 by epithelial and dendritic cells is carbohydrate dependent.

    PubMed

    Al-Ghouleh, Abeer; Johal, Ramneek; Sharquie, Inas K; Emara, Mohammed; Harrington, Helen; Shakib, Farouk; Ghaemmaghami, Amir M

    2012-01-01

    Allergens are initiators of both innate and adaptive immune responses. They are recognised at the site of entry by epithelial and dendritic cells (DCs), both of which activate innate inflammatory circuits that can collectively induce Th2 immune responses. In an attempt to have a better understanding of the role of carbohydrates in the recognition and uptake of allergens by the innate immune system, we defined common glycosylation patterns in major allergens. This was done using labelled lectins and showed that allergens like Der p 1 (Dermatophagoides pteronyssinus group 1), Fel d 1 (Felis domisticus), Ara h 1 (Arachis hypogaea), Der p 2 (Dermatophagoides pteronyssinus group 2), Bla g 2 (Blattella germanica) and Can f 1 (Canis familiaris) are glycosylated and that the main dominant sugars on these allergens are 1-2, 1-3 and 1-6 mannose. These observations are in line with recent reports implicating the mannose receptor (MR) in allergen recognition and uptake by DCs and suggesting a major link between glycosylation and allergen recognition. We then looked at TSLP (Thymic Stromal Lymphopoietin) cytokine secretion by lung epithelia upon encountering natural Der p 1 allergen. TSLP is suggested to drive DC maturation in support of allergic hypersensitivity reactions. Our data showed an increase in TSLP secretion by lung epithelia upon stimulation with natural Der p 1 which was carbohydrate dependent. The deglycosylated preparation of Der p 1 exhibited minimal uptake by DCs compared to the natural and hyperglycosylated recombinant counterparts, with the latter being taken up more readily than the other preparations. Collectively, our data indicate that carbohydrate moieties on allergens play a vital role in their recognition by innate immune cells, implicating them in downstream deleterious Th2 cell activation and IgE production. PMID:22479478

  18. The Glycosylation Pattern of Common Allergens: The Recognition and Uptake of Der p 1 by Epithelial and Dendritic Cells Is Carbohydrate Dependent

    PubMed Central

    Al-Ghouleh, Abeer; Johal, Ramneek; Sharquie, Inas K.; Emara, Mohammed; Harrington, Helen; Shakib, Farouk; Ghaemmaghami, Amir M.

    2012-01-01

    Allergens are initiators of both innate and adaptive immune responses. They are recognised at the site of entry by epithelial and dendritic cells (DCs), both of which activate innate inflammatory circuits that can collectively induce Th2 immune responses. In an attempt to have a better understanding of the role of carbohydrates in the recognition and uptake of allergens by the innate immune system, we defined common glycosylation patterns in major allergens. This was done using labelled lectins and showed that allergens like Der p 1 (Dermatophagoides pteronyssinus group 1), Fel d 1 (Felis domisticus), Ara h 1 (Arachis hypogaea), Der p 2 (Dermatophagoides pteronyssinus group 2), Bla g 2 (Blattella germanica) and Can f 1 (Canis familiaris) are glycosylated and that the main dominant sugars on these allergens are 1–2, 1–3 and 1–6 mannose. These observations are in line with recent reports implicating the mannose receptor (MR) in allergen recognition and uptake by DCs and suggesting a major link between glycosylation and allergen recognition. We then looked at TSLP (Thymic Stromal Lymphopoietin) cytokine secretion by lung epithelia upon encountering natural Der p 1 allergen. TSLP is suggested to drive DC maturation in support of allergic hypersensitivity reactions. Our data showed an increase in TSLP secretion by lung epithelia upon stimulation with natural Der p 1 which was carbohydrate dependent. The deglycosylated preparation of Der p 1 exhibited minimal uptake by DCs compared to the natural and hyperglycosylated recombinant counterparts, with the latter being taken up more readily than the other preparations. Collectively, our data indicate that carbohydrate moieties on allergens play a vital role in their recognition by innate immune cells, implicating them in downstream deleterious Th2 cell activation and IgE production. PMID:22479478

  19. The manufacture of particleboards using mixture of peanut hull (Arachis hypoqaea L.) and European Black pine (Pinus nigra Arnold) wood chips.

    PubMed

    Guler, Cengiz; Copur, Yalcin; Tascioglu, Cihat

    2008-05-01

    This research was conducted to investigate the suitability of peanut hull to produce general purpose particleboards. A series of panels were produced using peanut hull and mixture of peanut hull and European Black pine wood chips. Particleboards were manufactured using various hull ratios in the mixture (0%, 25%, 50%, 75% and 100%). Urea formaldehyde adhesive was utilized in board production and boards were produced to target panel's density of 0.7 g/cm3. Panels were tested for some physical (water absorption and thickness swelling), chemical (holocellulose content, lignin content, alcohol-benzene solubility, 1% NaOH solubility, hot water solubility and cold water solubility) and mechanical (modulus of rupture, modulus of elasticity and internal bond) properties. The main observation was that increase in peanut hull in the mixture resulted in a decrease in mechanical and physical properties of produced panels and panel including 25% hull in the mixture solely met the standard required by TS-EN 312 standard. Conclusively, a valuable renewable natural resource, peanut hull could be utilized in panel production while it has been mixed to the wood chips. PMID:17689074

  20. Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies.

    PubMed

    Varshney, Rajeev K; Kudapa, Himabindu; Roorkiwal, Manish; Thudi, Mahendar; Pandey, Manish K; Saxena, Rachit K; Chamarthi, Siva K; Mohan, S Murali; Mallikarjuna, Nalini; Upadhyaya, Hari; Gaur, Pooran M; Krishnamurthy, L; Saxena, K B; Nigam, Shyam N; Pande, Suresh

    2012-11-01

    Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea), as compared to other crop species like cereals, has been very slow. With the advances in next-generation sequencing (NGS) and high-throughput (HTP) genotyping methods, there is a shift in development of genomic resources including molecular markers in these crops. For instance, 2,000 to 3,000 novel simple sequence repeats (SSR) markers have been developed each for chickpea, pigeonpea and groundnut. Based on Sanger, 454/FLX and Illumina transcript reads, transcriptome assemblies have been developed for chickpea (44,845 transcript assembly contigs, or TACs) and pigeonpea (21,434 TACs). Illumina sequencing of some parental genotypes of mapping populations has resulted in the development of 120 million reads for chickpea and 128.9 million reads for pigeonpea. Alignment of these Illumina reads with respective transcriptome assemblies have provided more than 10,000 SNPs each in chickpea and pigeonpea. A variety of SNP genotyping platforms including GoldenGate, VeraCode and Competitive Allele Specific PCR (KASPar) assays have been developed in chickpea and pigeonpea. By using above resources, the first-generation or comprehensive genetic maps have been developed in the three legume speciesmentioned above. Analysis of phenotyping data together with genotyping data has provided candidate markers for drought-tolerance-related root traits in chickpea, resistance to foliar diseases in groundnut and sterility mosaic disease (SMD) and fertility restoration in pigeonpea. Together with these traitassociated markers along with those already available, molecular breeding programmes have been initiated for enhancing drought tolerance, resistance

  1. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: regulatory roles of cell surface glycans.

    PubMed

    Suzuki, Osamu; Abe, Masafumi

    2014-05-01

    Galectin-1 is known to be one of the extracellular matrix proteins. To elucidate the biological roles of galectin-1 in cell adhesion and invasion of human anaplastic large cell lymphoma, we performed cell adhesion and invasion assays using the anaplastic large cell lymphoma cell line H-ALCL, which was previously established in our laboratory. From the cell surface lectin array, treatment with neuraminidase from Arthrobacter ureafaciens which cleaves all linkage types of cell surface sialic acid enhanced Arachis hypogaea (PNA), Helix pomatia (HPA) and Phaseolus vulgaris-L (L-PHA) lectin binding reactivity to cell surface of lymphoma cells suggesting that neuraminidase removes cell surface sialic acid. In cell adhesion and invasion assays treatment with neuraminidase markedly enhanced cell adhesion to galectin-1 and decreased cell invasive capacity through galectin-1. α2,6-linked sialic acid may be involved in masking the effect of the interaction between galectin-1 and cell surface glycans. H-ALCL cells expressed the β-galactoside-α2,6-sialyltransferase ST6Gal1. On resialylation assay by recombinant ST6Gal1 with CMP-Neu5Ac, α2,6-resialylation of L-PHA reactive oligosaccharide by ST6Gal1 resulted in inhibition of H-ALCL cell adhesion to galectin-1 compared to the desialylated H-ALCL cells. On knockdown experiments, knockdown of ST6Gal1 dramatically enhanced cell adhesion to galectin-1. N-glycosylation inhibitor swainsonine treatment resulted in enhancement of cell adhesion to galectin-1. In glycomic analysis using the lectin blocking assay treatment with PNA, Artocarpus integrifolia (Jacalin), Glycine max (SBA), Helix pomatia (HPA), Vicia villosa (VVA), Ulex europaeus (UEA-1), Triticum vulgaris (WGA), Canavalia ensiformis (ConA), Phaseolus vulgaris-L (L-PHA), Phaseolus vulgaris-E4 (E-PHA), Datura stramonium (DSA) lectins resulted in modulation of lymphoma cell to galectin-1 suggesting that several types of glycans may regulate cell adhesion to galectin-1 by

  2. Insights into the novel members of the FAD2 gene family involved in high-oleate fluxes in peanut.

    PubMed

    Wang, Yun; Zhang, Xingguo; Zhao, Yongli; Prakash, C S; He, Guohao; Yin, Dongmei

    2015-08-01

    The FAD2 gene family is functionally responsible for the conversion of oleic acid to linoleic acid in oilseed plants. Multiple members of the FAD gene are known to occur in several oilseed species. In this study, six novel full-length cDNA sequences (named as AhFAD2-1, -2, -3, -4, -5, and -6) were identified in peanut (Arachis hypogaea L.), an analysis of which revealed open reading frames of 379, 383, 394, or 442 amino acids. Sequence comparisons showed that AhFAD2-1 and AhFAD2-2 shared 76% identity, while AhFAD2-2, -3, and -4 displayed highly significant homology. There was only 27% identity overlap between the microsomal ω-6 fatty acid desaturase and the chloroplast ω-6 fatty acid desaturase encoded by AhFAD2-1, -2, -3, -4, and AhFAD2-5, -6, respectively. The phylogeny tree of FAD2 transcripts showed five major groups, and AhFAD2-1 was clearly separated from other groups. Analysis of AhFAD2-1 and AhFAD2-2 transcript distribution in different peanut tissues showed that the AhFAD2-1 gene showed upward of a 70-fold increase in expression of fatty acid than the AhFAD2-2 gene in peanut developing seeds, while the AhFAD2-2 gene expressed most abundantly in peanut flowers. Because the AhFAD2-1 gene played a major role in the conversion of oleic to linoleic acid during seed development, the identification of this novel member in this study would facilitate the further genetic manipulation of peanut oil quality. The implications of overall results also suggest that there may be more candidate genes controlling levels of oleate acid in developing seeds. Results also may be due to the presence of complex gene networks controlling the fluxes between the endoplasmic reticulum and the chloroplast within the peanut cells. PMID:26332746

  3. Overexpression of Peanut Diacylglycerol Acyltransferase 2 in Escherichia coli

    PubMed Central

    Yang, Lianqun; Zhang, Bin; Chen, Gao; Bi, Yuping

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar ‘Luhua 14’ using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide sequences that differed by three amino acids were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli Rosetta (DE3). Following IPTG induction, the isozymes (AhDGAT2a and AhDGAT2b) were expressed as 64.5 kDa GST fusion proteins. Both AhDGAT2a and AhDGAT2b occurred in the host cell cytoplasm and inclusion bodies, with larger amounts in the inclusion bodies. Overexpression of AhDGATs depressed the host cell growth rates relative to non-transformed cells, but cells harboring empty-vector, AhDGAT2a–GST, or AhDGAT2b–GST exhibited no obvious growth rate differences. Interestingly, induction of AhDGAT2a–GST and AhDGAT2b–GST proteins increased the sizes of the host cells by 2.4–2.5 times that of the controls (post-IPTG induction). The total fatty acid (FA) levels of the AhDGAT2a–GST and AhDGAT2a–GST transformants, as well as levels of C12:0, C14:0, C16:0, C16:1, C18:1n9c and C18:3n3 FAs, increased markedly, whereas C15:0 and C21:0 levels were lower than in non-transformed cells or those containing empty-vectors. In addition, the levels of some FAs differed between the two transformant strains, indicating that the two isozymes might have different functions in peanuts. This is the first time that a full-length recombinant peanut DGAT2 has been produced in a bacterial expression system and the first analysis of its effects on the content and composition of fatty acids in E. coli. Our results indicate that AhDGAT2 is a strong candidate gene for

  4. Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid

    PubMed Central

    2009-01-01

    Background Peanut (Arachis hypogaea L.) is widely used as a food and cash crop around the world. It is considered to be an allotetraploid (2n = 4x = 40) originated from a single hybridization event between two wild diploids. The most probable hypothesis gave A. duranensis as the wild donor of the A genome and A. ipaënsis as the wild donor of the B genome. A low level of molecular polymorphism is found in cultivated germplasm and up to date few genetic linkage maps have been published. The utilization of wild germplasm in breeding programs has received little attention due to the reproductive barriers between wild and cultivated species and to the technical difficulties encountered in making large number of crosses. We report here the development of a SSR based genetic map and the analysis of genome-wide segment introgressions into the background of a cultivated variety through the utilization of a synthetic amphidiploid between A. duranensis and A. ipaënsis. Results Two hundred ninety eight (298) loci were mapped in 21 linkage groups (LGs), spanning a total map distance of 1843.7 cM with an average distance of 6.1 cM between adjacent markers. The level of polymorphism observed between the parent of the amphidiploid and the cultivated variety is consistent with A. duranensis and A. ipaënsis being the most probable donor of the A and B genomes respectively. The synteny analysis between the A and B genomes revealed an overall good collinearity of the homeologous LGs. The comparison with the diploid and tetraploid maps shed new light on the evolutionary forces that contributed to the divergence of the A and B genome species and raised the question of the classification of the B genome species. Structural modifications such as chromosomal segment inversions and a major translocation event prior to the tetraploidisation of the cultivated species were revealed. Marker assisted selection of BC1F1 and then BC2F1 lines carrying the desirable donor segment with the best

  5. Epidemiology of spotted wilt disease of peanut caused by Tomato spotted wilt virus in the southeastern U.S.

    PubMed

    Culbreath, A K; Srinivasan, R

    2011-08-01

    Spotted wilt disease of peanut (Arachis hypogaea) (SWP), caused by Tomato spotted wilt virus (TSWV) (genus Tospovirus, family Bunyaviridae), was first observed in Alabama, Florida, and Georgia in the late 1980s and rapidly became a major limiting factor for peanut production in the region. Tobacco thrips (Frankliniella fusca) and western flower thrips (Frankliniella occidentalis) both occur on peanut throughout the southeastern U.S., but F. fusca is the predominant species that reproduces on peanut, and is considered to be the more important vector. Several non-crop sources of potential primary vectors and TSWV inoculum have been identified, but their relative importance has not been determined. The peanut growing season in Alabama, Florida, and Georgia is from April through November, and 'volunteer' peanut plants can be present for much of the remainder of the year. Therefore peanut itself has huge potential for perpetuating both vector and virus. Symptoms are often evident within a few days of seedling emergence, and disease progress is often rapid within the first 50-60 days after planting. Based on destructive sampling and assays for TSWV, there is often a high incidence of asymptomatic infections even in peanut genotypes that produce few and mild symptoms of infection in the field. Severity of SWP epidemics fluctuates significantly from year to year. The variability has not been fully explained, but lower incidences have been associated with years categorized as "La Niña" in the El Niño-Southern Oscillation. Planting date can have a large effect on disease incidence within a location. This may be linked to the thrips reproductive cycle and environmental effects on the plant and plant-thrips-virus interactions. Row pattern, plant population, and in-furrow applications of phorate insecticide can also affect epidemics of SWP. Considerable progress has been made in developing cultivars with natural field resistance to TSWV. Use of cultivars with moderate field

  6. Lectin-binding sites on ejaculated stallion sperm during breeding and non-breeding periods.

    PubMed

    Desantis, S; Ventriglia, G; Zizza, S; Nicassio, M; Valentini, L; Di Summa, A; Lacalandra, G M

    2010-05-01

    Stallion sperm from semen collected in Southern Italy during the breeding (June-July) and non-breeding (December-January) periods were analyzed by means of twelve lectins to evaluate the glycoconjugate pattern and to verify whether there are any seasonal differences in the glycosylation pattern of the sperm glycocalyx. The acrosomal cap showed reactivity for Maackia amurensis (MAL II), Sambucus nigra (SNA), Arachis hypogaea (PNA), Glycine max (SBA), Helix pomatia (HPA), Canavalia ensiformis (Con A) Triticum vulgaris (WGA), and Griffonia simplicifolia isolectin II (GSA II) in breeding and non-breeding ejaculated sperm, suggesting the presence of oligosaccharides terminating with Neu5Ac alpha 2,3Gal beta 1,4GlcNAc, Neu5Ac alpha 2,6Gal/GalNAc, with Gal beta 1,3GalNAc, alpha/beta GalNAc and glycans with terminal/internal alpha Man and GlcNAc. During the non-breeding period, the acrosomal cap expressed oligosaccharides terminating with Gal beta 1,4GlcNAc (Ricinus communis(120) affinity) (RCA(120)) and L-Fuc alpha 1,2Gal beta 1,4GlcNAc beta (Ulex europaeus affinity) (UEA I). The equatorial segment placed between the acrosomal cap and post-acrosomal region did not display glycans terminating with GalNAc, GlcNAc, and alpha L-Fuc. The post-acrosomal region of sperm collected in the breeding and non-breeding periods bound Con A, MAL II, SNA, and SBA, thus showing the presence of N-linked oligosaccharides from high-Man content, terminating with Neu5Ac alpha 2,3Gal beta 1,4GlcNAc, Neu5Ac alpha 2,6Gal/GalNAc and GalNAc. In winter, the post-acrosomal region also expressed oligosaccharides terminating with alpha GalNAc, GlcNAc, and L-Fuc alpha 1,2Gal beta 1,4GlcNAc beta (HPA, GSA II, and UEA I staining). The tail of sperm from semen collected during the breeding and non-breeding periods showed a lectin binding pattern similar to the post-acrosomal region, except for the absence of HPA staining in sperm collected during the winter season. These results indicate that the surface of

  7. DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut.

    PubMed

    Vadez, V; Rao, J S; Bhatnagar-Mathur, P; Sharma, K K

    2013-01-01

    Water deficit is a major yield-limiting factor for many crops, and improving the root system has been proposed as a promising breeding strategy, although not in groundnut (Arachis hypogaea L.). The present work was carried out mainly to assess how root traits are influenced under water stress in groundnut, whether transgenics can alter root traits, and whether putative changes lead to water extraction differences. Several transgenic events, transformed with DREB1A driven by the rd29 promoter, along with wild-type JL24, were tested in a lysimeter system that mimics field conditions under both water stress (WS) and well-watered (WW) conditions. The WS treatment increased the maximum rooting depth, although the increase was limited to about 20% in JL24, compared to 50% in RD11. The root dry weight followed a similar trend. Consequently, the root dry weight and length density of transgenics was higher in layers below 100-cm depth (Exp. 1) and below 30 cm (Exp. 2). The root diameter was unchanged under WS treatment, except a slight increase in the 60-90-cm layer. The root diameter increased below 60 cm in both treatments. In the WW treatment, total water extraction of RD33 was higher than in JL24 and other transgenic events, and somewhat lower in RD11 than in JL24. In the WS treatment, water extraction of RD2, RD11 and RD33 was higher than in JL24. These water extraction differences were mostly apparent in the initial 21 days after treatment imposition and were well related to root length density in the 30-60-cm layer (R(2) = 0.68), but not to average root length density. In conclusion, water stress promotes rooting growth more strongly in transgenic events than in the wild type, especially in deep soil layers, and this leads to increased water extraction. This opens an avenue for tapping these characteristics toward the improvement of drought adaptation in deep soil conditions, and toward a better understanding of genes involved in rooting in groundnut. PMID:22672619

  8. A comparative study on the decomposition of edible and non-edible oil cakes in the Gangetic alluvial soil of West Bengal.

    PubMed

    Mondal, Sudeshna; Das, Ritwika; Das, Amal Chandra

    2014-08-01

    An experiment has been conducted under laboratory conditions to investigate the effect of decomposition of two edible oil cakes, viz. mustard cake (Brassica juncea L) and groundnut cake (Arachis hypogaea L), and two non-edible oil cakes, viz. mahua cake (Madhuca indica Gmel) and neem cake (Azadirachta indica Juss), at the rate of 5.0 t ha(-1) on the changes of microbial growth and activities in relation to transformations and availability of some plant nutrients in the Gangetic alluvial (Typic Haplustept) soil of West Bengal, India. Incorporation of oil cakes, in general, highly induced the proliferation of total bacteria, actinomycetes, and fungi, resulting in greater retention and availability of oxidizable C, N, and P in soil. As compared to untreated control, the highest stimulation of total bacteria and actinomycetes was recorded with mustard cake (111.9 and 84.3 %, respectively) followed by groundnut cake (50.5 and 52.4 %, respectively), while the fungal colonies were highly accentuated due to the incorporation of neem cake (102.8 %) in soil. The retention of oxidizable organic C was highly increased due to decomposition of non-edible oil cakes, more so under mahua cake (14.5 %), whereas edible oil cakes and groundnut cake in particular exerted maximum stimulation (16.7 %) towards the retention of total N in soil. A similar trend was recorded towards the accumulation of available mineral N in soil and this was more pronounced with mustard cake (45.6 %) for exchangeable NH4 (+) and with groundnut cake (63.9 %) for soluble NO3 (-). The highest retention of total P (46.9 %) was manifested by the soil when it was incorporated with neem cake followed by the edible oil cakes; while the available P was highly induced due to the addition of edible oil cakes, the highest being under groundnut cake (23.5 %) followed by mustard cake (19.6 %). PMID:24733437

  9. Biocompatibility of sweetpotato and peanut in a hydroponic system

    NASA Technical Reports Server (NTRS)

    Mortley, D. G.; Loretan, P. A.; Hill, W. A.; Bonsi, C. K.; Morris, C. E.; Hall, R.; Sullen, D.

    1998-01-01

    'Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 degrees C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 micromoles m-2 s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N: 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.

  10. Arbuscular mycorrhizal fungal communities in sub-Saharan savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone.

    PubMed

    Tchabi, Atti; Coyne, Danny; Hountondji, Fabien; Lawouin, Louis; Wiemken, Andres; Oehl, Fritz

    2008-04-01

    The rapid decline of soil fertility of cultivated lands in the sub-Saharan savannas of West Africa is considered to be the main cause of the increasingly severe constraints of food production. The soils in this tropical area are highly fragile, and crop yields are limited by characteristically low levels of available phosphorus. Under such preconditions, the multiple benefits of the arbuscular mycorrhizal (AM) symbiosis are likely to play a pivotal role for maintaining natural soil fertility by enhancing plant nutrient use efficiency, plant health, and stabilization of a favorable soil structure. Thus, it is important to explore the impact of the commonly applied farming practices on the native AM fungal community. In the present study, we determined the AM fungal species composition in three ecological zones differing by an increasingly prolonged dry season from South to North, from the Southern Guinea Savanna (SG), to the Northern Guinea Savanna (NG), to the Sudan Savanna (SU). In each zone, four "natural" and four "cultivated" sites were selected. "Natural" sites were three natural forest savannas (at least 25-30 years old) and a long-term fallow (6-7 years old). "Cultivated" sites comprised a field with yam (Dioscorea spp.) established during the first year after forest clearance, a field under mixed cropping with maize (Zea mays) and peanut (Arachis hypogaea), a field under peanut, and a field under cotton (Gossypium hirsutum) which was the most intensively managed crop. Soil samples were collected towards the end of the wet season in each zone. AM fungal spores were extracted and morphologically identified. Soil subsamples were used to inoculate AM fungal trap cultures using Stylosanthes guianensis and Brachiaria humidicola as host plants to monitor AM root colonization and spore formation over 10 and 24 months, respectively. A total of 60 AM fungal species were detected, with only seven species sporulating in the trap cultures. Spore density and species

  11. Transcriptome analysis of SNPs in an array of peanut cultivated and wild species accession using illumina sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequences of four previously-sequenced A. hypogaea cultivars representing all four U.S. market types (approx. 40 million reads each) were aligned to a reference of 46,813 contigs, generated by combining of ESTs and Transcriptome Shotgun Assembly of A. hypogaea, and 36,102 contigs were identified. An...

  12. Development of introgression lines and advanced backcross QTL analysis for disease resistance, oil quality and yield component traits in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ploidy difference between wild Arachis species and cultivated genotypes hinder transfer of useful alleles for agronomically important traits. To overcome this genetic barrier, several synthetics have been developed at ICRISAT. Furthermore, two synthetic amphidiploids viz., ISATGR 1212 (A. duranensis...

  13. Formulation and evaluation of indomethacin biomicroparticles.

    PubMed

    Gupta, Sudeep; Gaur, Pawan; Soam, Kulwant; Suyal, Ruchi; Rana, Vinod; Dabral, Prashant

    2012-03-01

    Indomethacin microparticles prepared by extraction of bio polymer from arachis hypogen. in vitro drug release study was carried out through egg shell membrane for 3 hrs and analyzed sample by UV spectroscopy at 320 nm. A novel bio membrane from arachis hypogen was isolated by simplify economical process. The % yield was found to be 80% and particle range was 32-65 μm. PMID:23066194

  14. In situ degradability and selected ruminal constituents of sheep fed with peanut forage hay.

    PubMed

    Fernandes, Gisele Machado; Possenti, Rosana Aparecida; Teixeira de Mattos, Waldssimiler; Schammass, Eliana Aparecida; Junior, Evaldo Ferrari

    2013-01-01

    Because legumes are a very important feed source for ruminants, the aim of this study was to evaluate the ideal inclusion level of hay Arachis pintoi cv. Belmonte in sheep diets by measuring the dry matter intake (DMI), concentration of volatile fatty acids, ammonia-nitrogen concentration, ruminal pH and the in situ degradability of dry matter (DM) and crude protein (CP). In the experiment with four sheep, a 4 × 4 Latin Square design was used with four periods and four treatments (0%, 30%, 60% and 100% Arachis replacing grass hay). Significant interactions were observed between treatments and sampling times for ammonia-nitrogen and acetate, propionate and butyrate concentration and the acetate:propionate ratio. The ruminal pH and total volatile fatty acids concentration were not affected by interaction between treatments and sampling time. The degradation of DM and CP was similar, rising with the increasing content of Arachis, showing a linear effect. The treatment containing 60% of Arachis showed best results, with good levels of daily weight gain and higher ruminal concentrations of volatile fatty acids. The legume showed high levels of CP, high digestibility and appropriate levels of fibre, with excellent standards of degradation and ruminal characteristics. The use of the legume  Arachis for ruminants is a promising option of nutrient supply to meet production demands of these animals. PMID:24016145

  15. Establishment, agronomic characteristics, and dry matter yield of rhizoma peanut genotypes in cool environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoma peanut (Arachis glabrata Benth) has potential to provide high quality forage during summer months; however establishment of the stand is slow and cold tolerance is limited. During the three growing seasons from 2006 to 2008, a randomized complete block design experiment was conducted at fo...

  16. Establishment of five cover crops and total soil nutrient extraction in a humid tropical soil in the Peruvian Amazon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to evaluate the establishment of five cover crops and their potential to increase soil fertility through nutrient extraction, an experiment was installed in the Research Station of Choclino, San Martin, Peru. Five cover crops were planted: Arachis pintoi Krapov. & W.C. Greg, Calopogonium m...

  17. Germplasm evaluation of Rhizoma peanut for growth and forage potential.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoma peanut (Arachis glabrata Benth.) is a warm-season perennial forage legume, adapted to southern USA. It has similar dry matter (DM) and nutritive value to alfalfa (Medicago sativa L.). Recent studies indicated that rhizoma peanut can be grown further north (zone '8b) than previously suggest...

  18. Evaluation of agronomic and economic benefits of using RTK-GPS-based auto-steer guidance systems for peanut digging operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the peanut (Arachis hypogea L.) digger efficiency by accurate placement over the target rows could minimize damaged pods and yield losses. Producers have traditionally relied solely on tractor operator skills to harvest peanuts. However, as peanut production has shifted to new growing reg...

  19. MICROBIAL COMMUNITY STRUCTURE AND ENZYME ACTIVITIES IN SEMIARID AGRICULTURAL SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of management on the microbial community structure and enzyme activities of three semiarid soils from Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in cotton -peanut (Arachis h...

  20. Temporal and spatial distribution of an invasive thrips species Scirtothrips dorsalis (Thysanoptera: Thripidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispersion of a new invasive thrips species, chilli thrips Scirtothrips dorsalis Hood, was studied on three hosts, i.e., cotton (Gossypium hirsutum L.), peanut (Arachis hypogeal L.) and pepper (Capsicum annum L.) in the greenhouse and under field conditions in Homestead, Florida. The study of horizo...

  1. Biology, speciation, and utilization of peanut species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Arachis has a large number of highly diverse species. Large collections of cultivated peanut exist at multiple locations and several hundreds of wild species are maintained in germplasm banks. Many of the species have been characterized for agronomic traits, but much of the germplasm colle...

  2. GROUNDNUT STORAGE IN THE USA (LATE ENTRY DUE TO SY OVERSIGHT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States produces approximately 1.6 million t of in-shell groundnut (peanut, Arachis hypogea L.) annually with an estimated value of US$1.03 billion. This chapter discusses the storage and handling of peanuts when first purchased from the grower (farmer stock peanuts). Historical perspecti...

  3. Roadmap of the USDA peanut germplasm collection: past, present and future direction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA ARS PGRCU maintains the second largest Arachis germplasm collection in the world with 9,321 cultivated and 655 wild entries. In the last twenty years, USA germplasm has been provided to over 52 countries around the world for research and breeding purposes. This collection has proven to be...

  4. Comparison of peanut gentics and physical maps provided insights on collinearity, reversions and translocations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and physical maps are the valuable resources for peanut research community in understanding genome organization and serving as the basis for map-based cloning and marker-assisted selection. Physical maps of two diploid wild peanut progenitor species, Arachis duranensis (A genome) and A. ipae...

  5. PROPAGATION AND ESTABLISHMENT OF PERENNIAL PEANUTS FOR GROUND COVERS ALONG ROADSIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some Arachis pintoi cultivars and accessions have the potential for use as ground covers along roadsides and highway ramps. They tolerate drought conditions, grow well in both sandy and calcareous soils of low fertility, fix N, recycle nutrients, prevent soil erosion through a thick above-ground co...

  6. Improved growth and nutrient status of an oat cover crop in sod-based versus conventional peanut-cotton rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) leaching from agricultural soils is a major concern in the southeastern USA. A winter cover crop following the summer crop rotation is essential for controlling N leaching and soil run-off, thereby improving sustainable development. Rotation of peanut (Arachis hypogea L.) and cotton (Go...

  7. Effect of broiler litter ash and flue gas desulfurization gypsum on yield, calcium and phosphorus uptake by peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of Calcium (Ca) and Phosphorus (P). In 2010, over 10 milli...

  8. Population structure and genetic diversity of Sclerotinia minor from peanut research plots in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia minor is the causal agent of Sclerotinia blight, a disease that significantly reduces peanut (Arachis hypogea) productivity. This study analyzed the diversity and population structure of 164 S. minor isolates from Oklahoma. Isolates were obtained from infected stems of peanut plants fr...

  9. Effect of broiler litter ash and flue gas desulfurization gypsum on yield, calcium, phosphorus, copper, iron, manganese and zinc uptake by peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hyogaea) is an important oil seed crop that is grown as a principle source of edible oil and vegetable protein. Over 1.6 million acres of peanuts were planted in the United States during 2012. Peanuts require large amounts of calcium (Ca) and phosphorus (P). In 2010, over 10 milli...

  10. Shallow subsurface drip irrigation (S3DI) for small irregular-shaped fields in the southeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field tests were conducted using S3DI on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) rotations to investigate yield potential and economic sustainability of this irrigation system. Drip tubing was installed in alternate row middles, strip tillage was used ...

  11. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut

    PubMed Central

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement. PMID:27200012

  12. Improved stability of w/o/w multiple emulsions by addition of hydrophilic colloid components in the aqueous phases.

    PubMed

    Vaziri, A; Warburton, B

    1995-01-01

    To improve the stability of w/o/w multiple emulsions of arachis and olive oil the stabilizing effect of cherry gum, in combination with acacia and gelatin, was examined. The outstanding film-forming properties of this gum having already been noted; the effect of its addition to the aqueous phases was measured by the coalescence of emulsion globules. The enhanced stability, as compared to controls, was achieved at a minimum concentration which liquid crystal-bearing interfacial films seem to appear. Creation of more coherent interfaces, inhibiting transfer of phases, could be the basis of the improved stability of the emulsion. PMID:7730952

  13. Synthesis and non-covalent functionalization of carbon nanotubes rings: new nanomaterials with lectin affinity

    NASA Astrophysics Data System (ADS)

    Assali, Mohyeddin; Pernía Leal, Manuel; Fernández, Inmaculada; Khiar, Noureddine

    2013-03-01

    We present a mild and practical carbon nanotubes rings (CNRs) synthesis from non-covalent functionalized and water-soluble linear single-wall carbon nanotubes. The hemi-micellar-supramolecular self-organization of lactose-based glycolipid 1 on the ring surface, followed by photo-polymerization of the diacetylenic function triggered by UV light afforded the first water-soluble and biocompatible CNRs. The obtained donut-like nanoconstructs expose a high density of lactose moieties on their surface, and are able to engage specific interactions with Arachis hypogea lectin similar to glycoconjugates on the cell membrane.

  14. Starch grains on human teeth reveal early broad crop diet in northern Peru

    PubMed Central

    Piperno, Dolores R.; Dillehay, Tom D.

    2008-01-01

    Previous research indicates that the Ñanchoc Valley in northern Peru was an important locus of early and middle Holocene human settlement, and that between 9200 and 5500 14C yr B.P. the valley inhabitants adopted major crop plants such as squash (Cucurbita moschata), peanuts (Arachis sp.), and cotton (Gossypium barbadense). We report here an examination of starch grains preserved in the calculus of human teeth from these sites that provides direct evidence for the early consumption of cultivated squash and peanuts along with two other major food plants not previously detected. Starch from the seeds of Phaseolus and Inga feuillei, the flesh of Cucurbita moschata fruits, and the nuts of Arachis was routinely present on numerous teeth that date to between 8210 and 6970 14C yr B.P. Early plant diets appear to have been diverse and stable through time and were rich in cultivated foods typical of later Andean agriculture. Our data provide early archaeological evidence for Phaseolus beans and I. feuillei, an important tree crop, and indicate that effective food production systems that contributed significant dietary inputs were present in the Ñanchoc region by 8000 14C yr B.P. Starch grain studies of dental remains document plants and edible parts of them not normally preserved in archaeological records and can assume primary roles as direct indicators of ancient human diets and agriculture. PMID:19066222

  15. Starch grains on human teeth reveal early broad crop diet in northern Peru.

    PubMed

    Piperno, Dolores R; Dillehay, Tom D

    2008-12-16

    Previous research indicates that the Nanchoc Valley in northern Peru was an important locus of early and middle Holocene human settlement, and that between 9200 and 5500 (14)C yr B.P. the valley inhabitants adopted major crop plants such as squash (Cucurbita moschata), peanuts (Arachis sp.), and cotton (Gossypium barbadense). We report here an examination of starch grains preserved in the calculus of human teeth from these sites that provides direct evidence for the early consumption of cultivated squash and peanuts along with two other major food plants not previously detected. Starch from the seeds of Phaseolus and Inga feuillei, the flesh of Cucurbita moschata fruits, and the nuts of Arachis was routinely present on numerous teeth that date to between 8210 and 6970 (14)C yr B.P. Early plant diets appear to have been diverse and stable through time and were rich in cultivated foods typical of later Andean agriculture. Our data provide early archaeological evidence for Phaseolus beans and I. feuillei, an important tree crop, and indicate that effective food production systems that contributed significant dietary inputs were present in the Nanchoc region by 8000 (14)C yr B.P. Starch grain studies of dental remains document plants and edible parts of them not normally preserved in archaeological records and can assume primary roles as direct indicators of ancient human diets and agriculture. PMID:19066222

  16. Effect of Meloidogyne arenaria and Mulch Type on Okra in Microplot Experiments.

    PubMed

    Ritzinger, C H; McSorley, R; Gallaher, R N

    1998-12-01

    The effects of perennial peanut (Arachis glabrata) hay, an aged yard-waste compost (mainly woodchips), and a control treatment without amendment were determined on two population levels of root-knot (Melaidogyne arenaria) nematode over three consecutive years in field microplots. Okra (Hibiscus esculentus, susceptible to the root-knot nematode) and a rye (Secale cereale) cover crop (poor nematode host) were used in the summer and winter seasons, respectively. The organic amendment treatments affected plant growth parameters. In the first year, okra yields were greatest in peanut-amended plots. Yield differences with amendment treatment diminished in the second and third years. Okra plant height, total fruit weight, and fruit number were greater with the lower population level of the root-knot nematode. Residual levels of nutrients in soil were greater where root-knot nematode levels and damage were higher and plant growth was poor. Nutrient levels affected the growth of a subsequent rye cover crop. PMID:19274256

  17. Antimicrobial and antioxidant activities of Cortex Magnoliae Officinalis and some other medicinal plants commonly used in South-East Asia

    PubMed Central

    Chan, Lai Wah; Cheah, Emily LC; Saw, Constance LL; Weng, Wanyu; Heng, Paul WS

    2008-01-01

    Background Eight medicinal plants were tested for their antimicrobial and antioxidant activities. Different extraction methods were also tested for their effects on the bioactivities of the medicinal plants. Methods Eight plants, namely Herba Polygonis Hydropiperis (Laliaocao), Folium Murraya Koenigii (Jialiye), Rhizoma Arachis Hypogea (Huashenggen), Herba Houttuyniae (Yuxingcao), Epipremnum pinnatum (Pashulong), Rhizoma Typhonium Flagelliforme (Laoshuyu), Cortex Magnoliae Officinalis (Houpo) and Rhizoma Imperatae (Baimaogen) were investigated for their potential antimicrobial and antioxidant properties. Results Extracts of Cortex Magnoliae Officinalis had the strongest activities against M. Smegmatis, C. albicans, B. subtilis and S. aureus. Boiled extracts of Cortex Magnoliae Officinalis, Folium Murraya Koenigii, Herba Polygonis Hydropiperis and Herba Houttuyniae demonstrated greater antioxidant activities than other tested medicinal plants. Conclusion Among the eight tested medicinal plants, Cortex Magnoliae Officinalis showed the highest antimicrobial and antioxidant activities. Different methods of extraction yield different spectra of bioactivities. PMID:19038060

  18. Effect of Meloidogyne arenaria and Mulch Type on Okra in Microplot Experiments

    PubMed Central

    Ritzinger, C. H. S. P.; McSorley, R.; Gallaher, R. N.

    1998-01-01

    The effects of perennial peanut (Arachis glabrata) hay, an aged yard-waste compost (mainly woodchips), and a control treatment without amendment were determined on two population levels of root-knot (Melaidogyne arenaria) nematode over three consecutive years in field microplots. Okra (Hibiscus esculentus, susceptible to the root-knot nematode) and a rye (Secale cereale) cover crop (poor nematode host) were used in the summer and winter seasons, respectively. The organic amendment treatments affected plant growth parameters. In the first year, okra yields were greatest in peanut-amended plots. Yield differences with amendment treatment diminished in the second and third years. Okra plant height, total fruit weight, and fruit number were greater with the lower population level of the root-knot nematode. Residual levels of nutrients in soil were greater where root-knot nematode levels and damage were higher and plant growth was poor. Nutrient levels affected the growth of a subsequent rye cover crop. PMID:19274256

  19. Effects of Arbuscular Mycorrhization in Sterile and Non-sterile Soils

    PubMed Central

    Al-Khaliel, Abdulla Saleh

    2010-01-01

    Mycorrhiza, a mutualistic association between fungi and higher plants, has been documented extensively, but much less is known about the development of arbuscular mycorrhizal (AM) fungi and their effects on the growth of peanuts (Arachis hypogea L.). Therefore, the mycorrhizal status of Glomus spp. was investigated in the following diverse substrate soil conditions: non-autoclaved soil, autoclaved soil and autoclaved soil plus soil microbiota. The results indicated that both the arbuscular mycorrhizae, Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe, and Glomus fasciculatum (Thaxter) Gerd. & Trappe emend. Walker & Koske were infective to peanut, but displayed a differential impact on peanut growth depending on the microbial biomass content of the substrate soils. G. mosseae proved to be the most effective at improving peanut growth. PMID:24575190

  20. Concentration Dependencies of Some Effects of Ethylene on Etiolated Pea, Peanut, Bean, and Cotton Seedlings 1

    PubMed Central

    Goeschl, John D.; Kays, Stanley J.

    1975-01-01

    The effects of a series of concentrations of ethylene (10, 20, 40, to 10,240 nl/l) on elongation, diameter, and geotropism of the stems and roots of etiolated seedlings of Pisum sativum L., Arachis hypogea L., Phaseolus vulgaris L., and Gossypium hirsutum L. were measured or observed. Of the 24 possible responses, 4 were unaffected at the concentrations used, 5 were affected slightly, and the remaining responses exhibited a 14-fold range of apparent half-maximum concentration dependencies (i.e. 95 nl/l for the effect on pea epicotyl geotropism to 1350 nl/l for the promotion of cotton hypocotyl diameter). Six or possibly eight of these responses appear to have the same concentration dependencies while the others fell in pairs or as individual responses. The data, if interpreted in a manner analogous to enzyme kinetics, are indicative of more than one primary mechanism for ethylene action in plants. PMID:16659145