Sample records for amino acid n-terminal

  1. Studies on Aculeines: Synthetic Strategy to the Fully Protected Protoaculeine B, the N-Terminal Amino Acid of Aculeine B.

    PubMed

    Shiozaki, Hiroki; Miyahara, Masayoshi; Otsuka, Kazunori; Miyako, Kei; Honda, Akito; Takasaki, Yuichi; Takamizawa, Satoshi; Tukada, Hideyuki; Ishikawa, Yuichi; Sakai, Ryuichi; Oikawa, Masato

    2018-05-23

    A synthetic strategy for accessing protoaculeine B (1), the N-terminal amino acid of the highly modified peptide toxin aculeine, was developed via the synthesis of the fully protected natural homologue of 1 with a 12-mer poly(propanediamine). The synthesis of mono(propanediamine) analog 2, as well as core amino acid 3, was demonstrated by this strategy. New amino acid 3 induced convulsions in mice; however, compound 2 showed no such activity.

  2. Sialogogic activity in the rat of peptides analogous to [Tyr8]-substance P in which substitutions have been made in the N-terminal amino acids.

    PubMed

    Higa, K; Gao, C; Motokawa, W; Abe, K

    2001-04-01

    In order to elucidate the regulatory roles for salivation of amino acids in positions 1-4 of the N-terminal region of [Tyr8]-substance P (SP), the structure-sialogogic activity correlations of various synthetic octa- to undecapeptides replaced in positions 1-4 of [Tyr8]-SP with each of 19 common amino acids, one by one, and with the same sequence of the C-terminal hepatapeptide as that of [Tyr8]-SP, were studied in the submandibular glands of rats after intraperitoneal injection. Each of 19 octa-, nona-, deca- and undecapeptides with replaced amino acids and a penta- to decapeptide with the progressive elimination of the N-terminal portion were newly synthesized by the multipin peptide method. All octa- to undecapeptides replaced with each of 19 common amino acids in positions 1-4 had sialogogic activities. In 19 octa- and decapeptides in which P4 and P2 had been replaced, four and three replacements, respectively, had significantly increased secretory activities. In contrast, in 19 nonapeptides in which K3 had been replaced, none had significantly increased secretory activities. Furthermore, in 19 undecapeptides in which R1 had been replaced, most replacements had significantly increased or equipotent activities for fluid secretion. It is concluded that amino acids in the N-terminal region of various tachykinins may not need to be strictly conserved and that amino acid residues in the N-terminal portion, R1 in particular and P2, may strongly inhibit secretory activity.

  3. Left-handed helical preference in an achiral peptide chain is induced by an L-amino acid in an N-terminal type II β-turn.

    PubMed

    De Poli, Matteo; De Zotti, Marta; Raftery, James; Aguilar, Juan A; Morris, Gareth A; Clayden, Jonathan

    2013-03-15

    Oligomers of the achiral amino acid Aib adopt helical conformations in which the screw-sense may be controlled by a single N-terminal residue. Using crystallographic and NMR techniques, we show that the left- or right-handed sense of helical induction arises from the nature of the β-turn at the N terminus: the tertiary amino acid L-Val induces a left-handed type II β-turn in both the solid state and in solution, while the corresponding quaternary amino acid L-α-methylvaline induces a right-handed type III β-turn.

  4. Effects of alkali or acid treatment on the isomerization of amino acids.

    PubMed

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue. Copyright © 2012. Published by Elsevier B.V.

  5. A Propensity for n-omega-Amino Acids in Thermally-Altered Antarctic Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Elsila, Jamie E.; Callahan, Michael P.; Martin, Mildred G.; Glavin, Daniel P.; Johnson, Natasha M.; Dworkin, Jason P.

    2012-01-01

    Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally-altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites were generally less abundant than in more amino acid-rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low-temperature aqueously-altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker-cyanohydrin synthesis, the thermally-altered meteorites studied here are dominated by small, straight-chain, amine terminal (n-omega-amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n-omega-amino acids measured in one of the CV chondrites are consistent with C-13-depletions observed previously in hydrocarbons produced by Fischer-Tropsch type reactions. The predominance of n-omega-amino acid isomers in thermally-altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.

  6. The amino-terminal hydrophilic region of the vacuolar transporter Avt3p is dispensable for the vacuolar amino acid compartmentalization of Schizosaccharomyces pombe.

    PubMed

    Kawano-Kawada, Miyuki; Chardwiriyapreecha, Soracom; Manabe, Kunio; Sekito, Takayuki; Akiyama, Koichi; Takegawa, Kaoru; Kakinuma, Yoshimi

    2016-12-01

    Avt3p, a vacuolar amino acid exporter (656 amino acid residues) that is important for vacuolar amino acid compartmentalization as well as spore formation in Schizosaccharomyces pombe, has an extremely long hydrophilic region (approximately 290 amino acid residues) at its N-terminus. Because known functional domains have not been found in this region, its functional role was examined with a deletion mutant avt3 (∆1-270) expressed in S. pombe avt3∆ cells. The deletion of this region did not affect its intracellular localization or vacuolar contents of basic amino acids as well as neutral ones. The defect of avt3Δ cells in spore formation was rescued by the expression of avt3 + but was not completely rescued by the expression of avt3 (∆1-270) . The N-terminal region is thus dispensable for the function of Avt3p as an amino acid exporter, but it is likely to be involved in the role of Avt3p under nutritional starvation conditions.

  7. Amino- and carboxyl-terminal amino acid sequences of proteins coded by gag gene of murine leukemia virus

    PubMed Central

    Oroszlan, Stephen; Henderson, Louis E.; Stephenson, John R.; Copeland, Terry D.; Long, Cedric W.; Ihle, James N.; Gilden, Raymond V.

    1978-01-01

    The amino- and carboxyl-terminal amino acid sequences of proteins (p10, p12, p15, and p30) coded by the gag gene of Rauscher and AKR murine leukemia viruses were determined. Among these proteins, p15 from both viruses appears to have a blocked amino end. Proline was found to be the common NH2 terminus of both p30s and both p12s, and alanine of both p10s. The amino-terminal sequences of p30s are identical, as are those of p10s, while the p12 sequences are clearly distinctive but also show substantial homology. The carboxyl-terminal amino acids of both viral p30s and p12s are leucine and phenylalanine, respectively. Rauscher leukemia virus p15 has tyrosine as the carboxyl terminus while AKR virus p15 has phenylalanine in this position. The compositional and sequence data provide definite chemical criteria for the identification of analogous gag gene products and for the comparison of viral proteins isolated in different laboratories. On the basis of amino acid sequences and the previously proposed H-p15-p12-p30-p10-COOH peptide sequence in the precursor polyprotein, a model for cleavage sites involved in the post-translational processing of the precursor coded for by the gag gene is proposed. PMID:206897

  8. Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme.

    PubMed

    Mukherjee, J J; Dekker, E E

    1987-10-25

    Starting with 100 g (wet weight) of a mutant of Escherichia coli K-12 forced to grow on L-threonine as sole carbon source, we developed a 6-step procedure that provides 30-40 mg of homogeneous 2-amino-3-ketobutyrate CoA ligase (also called aminoacetone synthetase or synthase). This ligase, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, has an apparent molecular weight approximately equal to 85,000 and consists of two identical (or nearly identical) subunits with Mr = 42,000. Computer analysis of amino acid composition data, which gives the best fit nearest integer ratio for each residue, indicates a total of 387 amino acids/subunit with a calculated Mr = 42,093. Stepwise Edman degradation provided the N-terminal sequence of the first 21 amino acids. It is a pyridoxal phosphate-dependent enzyme since (a) several carbonyl reagents caused greater than 90% loss of activity, (b) dialysis against buffer containing hydroxylamine resulted in 89% loss of activity coincident with an 86% decrease in absorptivity at 428 nm, (c) incubation of the apoenzyme with 20 microM pyridoxal phosphate showed a parallel recovery (greater than 90%) of activity and 428-nm absorptivity, and (d) reduction of the holoenzyme with NaBH4 resulted in complete inactivation, disappearance of a new absorption maximum at 333 nm. Strict specificity for glycine is shown but acetyl-CoA (100%), n-propionyl-CoA (127%), or n-butyryl-CoA (16%) is utilized in the condensation reaction. Apparent Km values for acetyl-CoA, n-propionyl-CoA, and glycine are 59 microM, 80 microM, and 12 mM, respectively; the pH optimum = 7.5. Added divalent metal ions or sulfhydryl compounds inhibited catalysis of the condensation reaction.

  9. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization.

    PubMed

    Shiheido, Hirokazu; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND356-58, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Amino acid residue Y196E substitution and C-terminal peptide synergistically alleviate the toxicity of Clostridium perfringens epsilon toxin.

    PubMed

    Yao, Wenwu; Kang, Lin; Gao, Shan; Zhuang, Xiangjin; Zhang, Tao; Yang, Hao; Ji, Bin; Xin, Wenwen; Wang, Jinglin

    2015-06-15

    Epsilon toxin (ETX) is produced by Clostridium perfringens type B and D strains, and is the causative agent of a lethal enterotoxemia in livestock animals and possibly in humans. However, many details of ETX structure and activity are not known. Therefore, it is important to clarify the relationship between ETX structure and activity. To explore the effect and mechanism of ETX amino acid residue Y196E substitution and C-terminal peptide on toxicity, four recombinant proteins, rETX (without 13 N-terminal peptides and 23 C-terminal peptides), rETX-C (rETX with 23 C-terminal peptides), rETX(Y196E) (rETX with an amino acid residue substitution at Y196) and rETX(Y196E)-C (rETX-C with a Y196E mutation), were constructed in this study. Both the amino acid residue Y196E substitution and the C-terminal peptide reduce ETX toxicity to a similar extent, and the two factors synergistically alleviate ETX toxicity. In addition, we demonstrated that the C-terminal peptides and Y196E amino acid mutation reduce the toxin toxicity in two different pathways: the C-terminal peptides inhibit the binding activity of toxins to target cells, and the Y196E amino acid mutation slightly inhibits the pore-forming or heptamer-forming process. Interaction between the two factors was not observed in pore-forming or binding assays but toxicity assays, which demonstrated that the relationship between domains of the toxin is more complicated than previously appreciated. However, the exact mechanism of synergistic action is not yet clarified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Differential effects of C- and N-terminal substance P metabolites on the release of amino acid neurotransmitters from the spinal cord: potential role in nociception.

    PubMed

    Skilling, S R; Smullin, D H; Larson, A A

    1990-04-01

    Extensive evidence implicates Substance P [SP(1-11)] as a primary afferent neurotransmitter or modulator of nociceptive information, and there is increasing evidence that the excitatory amino acids aspartate (Asp) and glutamate (Glu) may also act as nociceptive neurotransmitters. We have previously demonstrated that nociceptive stimulation (metatarsal injection of formalin) caused a tetrodotoxin (TTX)-sensitive release of Asp and a TTX-insensitive release of Glu from the dorsal spinal cord. We have also shown release of Asp and Glu following the direct infusion of SP(1-11), suggesting that formalin-induced Asp or Glu changes could be secondary to an initial release of SP(1-11). In contrast to nociception, pretreatment with TTX, reported here, had no effect on the SP(1-11)-induced release of Asp, suggesting a presynaptic mechanism. Behavioral experiments, in both our laboratory, and others, now suggest that the N-terminal products of SP metabolism play a distinct role in the modulation of SP(1-11) nociception, possibly through an interaction with an opiate receptor. To test the hypothesis that N- and C-terminal fragments of SP produce opposite effects on biochemical events potentially involved in nociception, we compared the effects of infusion of the N-terminal metabolite SP(1-7) and the C-terminal metabolite SP(5-11) on changes in the ECF concentration of amino acids in the spinal cord as a measure of their apparent release, using microdialysis. Intradiaylsate infusion of SP(5-11) increased the release of Asp, Glu, asparagine (Asn), glycine (Gly), and taurine (Tau). The changes in Asp, Glu, and Tau were similar in direction and magnitude to changes produced by SP(1-11) or formalin injection, further supporting the hypothesis that the C-terminal is responsible for the nociceptive effects of SP(1-11). In contrast, infusion of SP(1-7) significantly decreased the release of Asn, Tau, Glu, and Gly. This inhibition of amino acid release is consistent with the hypothesis

  12. Detection of diastereomer peptides as the intermediates generating D-amino acids during acid hydrolysis of peptides.

    PubMed

    Miyamoto, Tetsuya; Sekine, Masae; Ogawa, Tetsuhiro; Hidaka, Makoto; Watanabe, Hidenori; Homma, Hiroshi; Masaki, Haruhiko

    2016-11-01

    In this study, we investigated whether the amino acid residues within peptides were isomerized (and the peptides converted to diastereomers) during the early stages of acid hydrolysis. We demonstrate that the model dipeptides L-Ala-L-Phe and L-Phe-L-Ala are epimerized to produce the corresponding diastereomers at a very early stage, prior to their acid hydrolytic cleavage to amino acids. Furthermore, the sequence-inverted dipeptides were generated via formation of a diketopiperazine during hydrolytic incubation, and these dipeptides were also epimerized. The proportion of diastereomers increased rapidly during incubation for 0.5-2 h. During acid hydrolysis, C-terminal residues of the model dipeptides were isomerized faster than N-terminal residues, consistent with the observation that the D-amino acid values of the C-terminal residues determined by the 0 h-extrapolating method were larger than those of the N-terminal residues. Thus, the artificial D-amino acid contents determined by the 0 h-extrapolating method appear to be products of the isomerization of amino acid residues during acid hydrolysis.

  13. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies.

    PubMed

    Chelius, Dirk; Jing, Kay; Lueras, Alexis; Rehder, Douglas S; Dillon, Thomas M; Vizel, Alona; Rajan, Rahul S; Li, Tiansheng; Treuheit, Michael J; Bondarenko, Pavel V

    2006-04-01

    The status of the N-terminus of proteins is important for amino acid sequencing by Edman degradation, protein identification by shotgun and top-down techniques, and to uncover biological functions, which may be associated with modifications. In this study, we investigated the pyroglutamic acid formation from N-terminal glutamic acid residues in recombinant monoclonal antibodies. Almost half the antibodies reported in the literature contain a glutamic acid residue at the N-terminus of the light or the heavy chain. Our reversed-phase high-performance liquid chromatography-mass spectrometry method could separate the pyroglutamic acid-containing light chains from the native light chains of reduced and alkylated recombinant monoclonal antibodies. Tryptic peptide mapping and tandem mass spectrometry of the reduced and alkylated proteins was used for the identification of the pyroglutamic acid. We identified the formation of pyroglutamic acid from N-terminal glutamic acid in the heavy chains and light chains of several antibodies, indicating that this nonenzymatic reaction does occur very commonly and can be detected after a few weeks of incubation at 37 and 45 degrees C. The rate of this reaction was measured in several aqueous buffers with different pH values, showing minimal formation of pyroglutamic acid at pH 6.2 and increased formation of pyroglutamic acid at pH 4 and pH 8. The half-life of the N-terminal glutamic acid was approximately 9 months in a pH 4.1 buffer at 45 degrees C. To our knowledge, we showed for the first time that glutamic acid residues located at the N-terminus of proteins undergo pyroglutamic acid formation in vitro.

  14. Involvement of arginine 878 together with Ca2+ in mouse aminopeptidase A substrate specificity for N-terminal acidic amino-acid residues

    PubMed Central

    Couvineau, Pierre; de Almeida, Hugo; Maigret, Bernard; Llorens-Cortes, Catherine

    2017-01-01

    Aminopeptidase A (APA) is a membrane-bound zinc metalloprotease cleaving, in the brain, the N-terminal aspartyl residue of angiotensin II to generate angiotensin III, which exerts a tonic stimulatory effect on the control of blood pressure in hypertensive animals. Using a refined APA structure derived from the human APA crystal structure, we docked the specific and selective APA inhibitor, EC33 in the presence of Ca2+. We report the presence in the S1 subsite of Arg-887 (Arg-878 in mouse APA), the guanidinium moiety of which established an interaction with the electronegative sulfonate group of EC33. Mutagenic replacement of Arg-878 with an alanine or a lysine residue decreased the affinity of the recombinant enzymes for the acidic substrate, α-L-glutamyl-β-naphthylamide, with a slight decrease in substrate hydrolysis velocity either with or without Ca2+. In the absence of Ca2+, the mutations modified the substrate specificity of APA for the acidic substrate, the mutated enzymes hydrolyzing more efficiently basic and neutral substrates, although the addition of Ca2+ partially restored the acidic substrate specificity. The analysis of the 3D models of the Arg-878 mutated APAs revealed a change in the volume of the S1 subsite, which may impair the binding and/or the optimal positioning of the substrate in the active site as well as its hydrolysis. These findings demonstrate the key role of Arg-878 together with Ca2 + in APA substrate specificity for N-terminal acidic amino acid residues by ensuring the optimal positioning of acidic substrates during catalysis. PMID:28877217

  15. N-Terminal Amino Acid Sequence Determination of Proteins by N-Terminal Dimethyl Labeling: Pitfalls and Advantages When Compared with Edman Degradation Sequence Analysis.

    PubMed

    Chang, Elizabeth; Pourmal, Sergei; Zhou, Chun; Kumar, Rupesh; Teplova, Marianna; Pavletich, Nikola P; Marians, Kenneth J; Erdjument-Bromage, Hediye

    2016-07-01

    In recent history, alternative approaches to Edman sequencing have been investigated, and to this end, the Association of Biomolecular Resource Facilities (ABRF) Protein Sequencing Research Group (PSRG) initiated studies in 2014 and 2015, looking into bottom-up and top-down N-terminal (Nt) dimethyl derivatization of standard quantities of intact proteins with the aim to determine Nt sequence information. We have expanded this initiative and used low picomole amounts of myoglobin to determine the efficiency of Nt-dimethylation. Application of this approach on protein domains, generated by limited proteolysis of overexpressed proteins, confirms that it is a universal labeling technique and is very sensitive when compared with Edman sequencing. Finally, we compared Edman sequencing and Nt-dimethylation of the same polypeptide fragments; results confirm that there is agreement in the identity of the Nt amino acid sequence between these 2 methods.

  16. Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation.

    PubMed

    Kang, H; Sayner, S L; Gross, K L; Russell, L C; Chinkers, M

    2001-09-04

    Protein phosphatase 5 (PP5) exhibits low basal activity due to the autoinhibitory properties of its N-terminal and C-terminal domains but can be activated approximately 40-fold in vitro by polyunsaturated fatty acids. To identify residues involved in regulating PP5 activity, we performed scanning mutagenesis of its N-terminal tetratricopeptide repeat (TPR) domain and deletion mutagenesis of its C-terminal domain. Mutating residues in a groove of the TPR domain that binds to heat shock protein 90 had no effect on basal phosphatase activity. Mutation of Glu-76, however, whose side chain projects away from this groove, resulted in a 10-fold elevation of basal activity without affecting arachidonic acid-stimulated activity. Thus, the interface of the TPR domain involved in PP5 autoinhibition appears to be different from that involved in heat shock protein 90 binding. We also observed a 10-fold elevation of basal phosphatase activity upon removing the C-terminal 13 amino acids of PP5, with a concomitant 50% decrease in arachidonic acid-stimulated activity. These two effects were accounted for by two distinct amino acid deletions: deleting the four C-terminal residues (496-499) of PP5 had no effect on its activity, but removing Gln-495 elevated basal activity 10-fold. Removal of a further three amino acids had no additional effect, but deleting Asn-491 resulted in a 50% reduction in arachidonic acid-stimulated activity. Thus, Glu-76 in the TPR domain and Gln-495 at the C-terminus were implicated in maintaining the low basal activity of PP5. While the TPR domain alone has been thought to mediate fatty acid activation of PP5, our data suggest that Asn-491, near its C-terminus, may also be involved in this process.

  17. The catalytic chain of human complement subcomponent C1r. Purification and N-terminal amino acid sequences of the major cyanogen bromide-cleavage fragments.

    PubMed

    Arlaud, G J; Gagnon, J; Porter, R R

    1982-01-01

    1. The a- and b-chains of reduced and alkylated human complement subcomponent C1r were separated by high-pressure gel-permeation chromatography and isolated in good yield and in pure form. 2. CNBr cleavage of C1r b-chain yielded eight major peptides, which were purified by gel filtration and high-pressure reversed-phase chromatography. As determined from the sum of their amino acid compositions, these peptides accounted for a minimum molecular weight of 28 000, close to the value 29 100 calculated from the whole b-chain. 3. N-Terminal sequence determinations of C1r b-chain and its CNBr-cleavage peptides allowed the identification of about two-thirds of the amino acids of C1r b-chain. From our results, and on the basis of homology with other serine proteinases, an alignment of the eight CNBr-cleavage peptides from C1r b-chain is proposed. 4. The residues forming the 'charge-relay' system of the active site of serine proteinases (His-57, Asp-102 and Ser-195 in the chymotrypsinogen numbering) are found in the corresponding regions of C1r b-chain, and the amino acid sequence around these residues has been determined. 5. The N-terminal sequence of C1r b-chain has been extended to residue 60 and reveals that C1r b-chain lacks the 'histidine loop', a disulphide bond that is present in all other known serine proteinases.

  18. Physiological role of D-amino acid-N-acetyltransferase of Saccharomyces cerevisiae: detoxification of D-amino acids.

    PubMed

    Yow, Geok-Yong; Uo, Takuma; Yoshimura, Tohru; Esaki, Nobuyoshi

    2006-03-01

    Saccharomyces cerevisiae is sensitive to D-amino acids: those corresponding to almost all proteinous L-amino acids inhibit the growth of yeast even at low concentrations (e.g. 0.1 mM). We have determined that D-amino acid-N-acetyltransferase (DNT) of the yeast is involved in the detoxification of D-amino acids on the basis of the following findings. When the DNT gene was disrupted, the resulting mutant was far less tolerant to D-amino acids than the wild type. However, when the gene was overexpressed with a vector plasmid p426Gal1 in the wild type or the mutant S. cerevisiae as a host, the recombinant yeast, which was found to show more than 100 times higher DNT activity than the wild type, was much more tolerant to D-amino acids than the wild type. We further confirmed that, upon cultivation with D-phenylalanine, N-acetyl-D-phenylalanine was accumulated in the culture but not in the wild type and hpa3Delta cells overproducing DNT cells. Thus, D-amino acids are toxic to S. cerevisiae but are detoxified with DNT by N-acetylation preceding removal from yeast cells.

  19. Unexpected Hydrolytic Instability of N-Acylated Amino Acid Amides and Peptides

    PubMed Central

    2015-01-01

    Remote amide bonds in simple N-acyl amino acid amide or peptide derivatives 1 can be surprisingly unstable hydrolytically, affording, in solution, variable amounts of 3 under mild acidic conditions, such as trifluoroacetic acid/water mixtures at room temperature. This observation has important implications for the synthesis of this class of compounds, which includes N-terminal-acylated peptides. We describe the factors contributing to this instability and how to predict and control it. The instability is a function of the remote acyl group, R2CO, four bonds away from the site of hydrolysis. Electron-rich acyl R2 groups accelerate this reaction. In the case of acyl groups derived from substituted aromatic carboxylic acids, the acceleration is predictable from the substituent’s Hammett σ value. N-Acyl dipeptides are also hydrolyzed under typical cleavage conditions. This suggests that unwanted peptide truncation may occur during synthesis or prolonged standing in solution when dipeptides or longer peptides are acylated on the N-terminus with electron-rich aromatic groups. When amide hydrolysis is an undesired secondary reaction, as can be the case in the trifluoroacetic acid-catalyzed cleavage of amino acid amide or peptide derivatives 1 from solid-phase resins, conditions are provided to minimize that hydrolysis. PMID:24617596

  20. PCI-GC-MS-MS approach for identification of non-amino organic acid and amino acid profiles.

    PubMed

    Luan, Hemi; Yang, Lin; Ji, Fenfen; Cai, Zongwei

    2017-03-15

    Alkyl chloroformate have been wildly used for the fast derivatization of metabolites with amino and/or carboxyl groups, coupling of powerful separation and detection systems, such as GC-MS, which allows the comprehensive analysis of non-amino organic acids and amino acids. The reagents involving n-alkyl chloroformate and n-alcohol are generally employed for providing symmetric labeling terminal alkyl chain with the same length. Here, we developed an asymmetric labeling strategy and positive chemical ionization gas chromatography-tandem mass spectrometry (PCI-GC-MS-MS) approach for determination of non-amino organic acids and amino acids, as well as the short chain fatty acids. Carboxylic and amino groups could be selectively labelled by propyl and ethyl groups, respectively. The specific neutral loss of C 3 H 8 O (60Da), C 3 H 5 O 2 (74Da) and C 4 H 8 O 2 (88Da) were useful in the selective identification for qualitative analysis of organic acids and amino acid derivatives. PCI-GC-MS-MS using multiple reaction monitoring (MRM) was applied for semi-quantification of typical non-amino organic acids and amino acids. This method exhibited a wide range of linear range, good regression coefficient (R 2 ) and repeatability. The relative standard deviation (RSD) of targeted metabolites showed excellent intra- and inter-day precision (<5%). Our method provided a qualitative and semi-quantitative PCI-GC-MS-MS, coupled with alkyl chloroformate derivatization. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Role of N-terminal 28-amino-acid region of Rhizopus oryzae lipase in directing proteins to secretory pathway of Aspergillus oryzae.

    PubMed

    Hama, Shinji; Tamalampudi, Sriappareddy; Shindo, Naoki; Numata, Takao; Yamaji, Hideki; Fukuda, Hideki; Kondo, Akihiko

    2008-07-01

    To develop a new approach for improving heterologous protein production in Aspergillus oryzae, we focused on the functional role of the N-terminal region of Rhizopus oryzae lipase (ROL). Several N-terminal deletion variants of ROL were expressed in A. oryzae. Interestingly, a segment of 28 amino acids from the C-terminal region of the propeptide (N28) was found to be critical for secretion of ROL into the culture medium. To further investigate the role of N28, the ROL secretory process was visualized in vivo using ROL-green fluorescent protein (GFP) fusion proteins. In cells producing ROL with N28, fluorescence observations showed that the fusion proteins are transported through endoplasmic reticulum (ER), Golgi, and cell wall, which is one of the typical secretory processes in a eukaryotic cell. Because the expression of the mature ROL-GFP fusion protein induced fluorescence accumulation without its translocation into the ER, N28 is considered to play a crucial role in protein transport. When N28 was inserted between the secretion signal and GFP, fluorescence observations showed that GFP, which is originally a cytoplasmic protein, was efficiently translocated into the ER of A. oryzae, resulting in an enhanced secretion of mature GFP after proteolytic cleavage of N28. These findings suggest that N28 facilitates protein translocation into ER and can be a promising candidate for improving heterologous protein production in A. oryzae.

  2. Age-dependent loss of the C-terminal amino acid from alpha crystallin

    NASA Technical Reports Server (NTRS)

    Emmons, T.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Antiserum made against the C-terminal region of alpha-A crystallin was used to monitor the purification of a tryptic peptide containing the C-terminus of the molecule from fetal versus adult bovine lenses. Mass spectral analysis of the peptide preparations obtained from these lenses demonstrated the presence of a peptide (T20) containing an intact C-terminus from fetal lenses and the presence of an additional peptide (T20') from older lenses that contained a cleaved C-terminal serine. These results demonstrate an age-dependent processing of alpha-A crystallin in the bovine lens, resulting in removal of the C-terminal amino acid residue.

  3. Functional evidence for the critical amino-terminal conserved domain and key amino acids of Arabidopsis 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE.

    PubMed

    Hsieh, Wei-Yu; Sung, Tzu-Ying; Wang, Hsin-Tzu; Hsieh, Ming-Hsiun

    2014-09-01

    The plant 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR) catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which are common precursors for the synthesis of plastid isoprenoids. The Arabidopsis (Arabidopsis thaliana) genomic HDR transgene-induced gene-silencing lines are albino, variegated, or pale green, confirming that HDR is essential for plants. We used Escherichia coli isoprenoid synthesis H (Protein Data Bank code 3F7T) as a template for homology modeling to identify key amino acids of Arabidopsis HDR. The predicted model reveals that cysteine (Cys)-122, Cys-213, and Cys-350 are involved in iron-sulfur cluster formation and that histidine (His)-152, His-241, glutamate (Glu)-242, Glu-243, threonine (Thr)-244, Thr-312, serine-379, and asparagine-381 are related to substrate binding or catalysis. Glu-242 and Thr-244 are conserved only in cyanobacteria, green algae, and land plants, whereas the other key amino acids are absolutely conserved from bacteria to plants. We used site-directed mutagenesis and complementation assay to confirm that these amino acids, except His-152 and His-241, were critical for Arabidopsis HDR function. Furthermore, the Arabidopsis HDR contains an extra amino-terminal domain following the transit peptide that is highly conserved from cyanobacteria, and green algae to land plants but not existing in the other bacteria. We demonstrated that the amino-terminal conserved domain was essential for Arabidopsis and cyanobacterial HDR function. Further analysis of conserved amino acids in the amino-terminal conserved domain revealed that the tyrosine-72 residue was critical for Arabidopsis HDR. These results suggest that the structure and reaction mechanism of HDR evolution have become specific for oxygen-evolving photosynthesis organisms and that HDR probably evolved independently in cyanobacteria versus other prokaryotes. © 2014

  4. An improved procedure, involving mass spectrometry, for N-terminal amino acid sequence determination of proteins which are N alpha-blocked.

    PubMed Central

    Rose, K; Kocher, H P; Blumberg, B M; Kolakofsky, D

    1984-01-01

    A modification to a previously described procedure [Gray & del Valle (1970) Biochemistry 9, 2134-2137; Rose, Simona & Offord (1983) Biochem. J. 215, 261-272] for mass-spectral identification of the N-terminal regions of proteins is shown to be useful in cases where the N-terminus is blocked. Three proteins were studied: vesicular-stomatitis-virus N protein, Sendai-virus NP protein, and a rabbit immunoglobulin lambda-light chain. These proteins, found to be blocked at the N-terminus with either the acetyl group or a pyroglutamic acid residue, had all failed to yield to attempted Edman degradation, in one case even after attempted enzymic removal of the pyroglutamic acid residue. The N-terminal regions of all three proteins were sequenced by using the new procedure. PMID:6421284

  5. Direct N-alkylation of unprotected amino acids with alcohols

    PubMed Central

    Yan, Tao; Feringa, Ben L.; Barta, Katalin

    2017-01-01

    N-alkyl amino acids find widespread application as highly valuable, renewable building blocks. However, traditional synthesis methodologies to obtain these suffer from serious limitations, providing a major challenge to develop sustainable alternatives. We report the first powerful catalytic strategy for the direct N-alkylation of unprotected α-amino acids with alcohols. This method is highly selective, produces water as the only side product leading to a simple purification procedure, and a variety of α-amino acids are mono- or di-N-alkylated, in most cases with excellent retention of optical purity. The hydrophobicity of the products is tunable, and even simple peptides are selectively alkylated. An iron-catalyzed route to mono-N-alkyl amino acids using renewable fatty alcohols is also described that represents an ideal green transformation for obtaining fully bio-based surfactants. PMID:29226249

  6. Determination of the pKa of the N-terminal amino group of ubiquitin by NMR

    PubMed Central

    Oregioni, Alain; Stieglitz, Benjamin; Kelly, Geoffrey; Rittinger, Katrin; Frenkiel, Tom

    2017-01-01

    Ubiquitination regulates nearly every aspect of cellular life. It is catalysed by a cascade of three enzymes and results in the attachment of the C-terminal carboxylate of ubiquitin to a lysine side chain in the protein substrate. Chain extension occurs via addition of subsequent ubiquitin molecules to either one of the seven lysine residues of ubiquitin, or via its N-terminal α-amino group to build linear ubiquitin chains. The pKa of lysine side chains is around 10.5 and hence E3 ligases require a mechanism to deprotonate the amino group at physiological pH to produce an effective nucleophile. In contrast, the pKa of N-terminal α-amino groups of proteins can vary significantly, with reported values between 6.8 and 9.1, raising the possibility that linear chain synthesis may not require a general base. In this study we use NMR spectroscopy to determine the pKa for the N-terminal α-amino group of methionine1 of ubiquitin for the first time. We show that it is 9.14, one of the highest pKa values ever reported for this amino group, providing a rational for the observed need for a general base in the E3 ligase HOIP, which synthesizes linear ubiquitin chains. PMID:28252051

  7. A Simple Procedure for Constructing 5'-Amino-Terminated Oligodeoxynucleotides in Aqueous Solution

    NASA Technical Reports Server (NTRS)

    Bruick, Richard K.; Koppitz, Marcus; Joyce, Gerald F.; Orgel, Leslie E.

    1997-01-01

    A rapid method for the synthesis of oligodeoxynucleotides (ODNs) terminated by 5'-amino-5'-deoxythymidine is described. A 3'-phosphorylated ODN (the donor) is incubated in aqueous solution with 5'-amino- 5'-deoxythymidine in the presence of N-(3-dimethylaminopropyl)-)N'-ethylcarbodiimide hydrochloride (EDC), extending the donor by one residue via a phosphoramidate bond. Template- directed ligation of the extended donor and an acceptor ODN, followed by acid hydrolysis, yields the acceptor ODN extended by a single 5'-amino-5'-deoxythymidine residue at its 5'terminus.

  8. Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives.

    PubMed

    Vijeetha, Tadla; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Surya Koppeswara Rao, Bhamidipati Venkata; Prasad, Rachapudi Badari Narayana; Kumar, Koochana Pranay; Surya Narayana Murthy, Upadyaula

    2015-01-01

    The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.

  9. Dipeptide Sequence Determination: Analyzing Phenylthiohydantoin Amino Acids by HPLC

    NASA Astrophysics Data System (ADS)

    Barton, Janice S.; Tang, Chung-Fei; Reed, Steven S.

    2000-02-01

    Amino acid composition and sequence determination, important techniques for characterizing peptides and proteins, are essential for predicting conformation and studying sequence alignment. This experiment presents improved, fundamental methods of sequence analysis for an upper-division biochemistry laboratory. Working in pairs, students use the Edman reagent to prepare phenylthiohydantoin derivatives of amino acids for determination of the sequence of an unknown dipeptide. With a single HPLC technique, students identify both the N-terminal amino acid and the composition of the dipeptide. This method yields good precision of retention times and allows use of a broad range of amino acids as components of the dipeptide. Students learn fundamental principles and techniques of sequence analysis and HPLC.

  10. Biochemical Changes in Terminal Root Galls Caused by an Ectoparasitic Nematode, Longidorus africanus: Amino Acids.

    PubMed

    Epstein, E; Cohn, E

    1971-10-01

    The amino acids of terminal root galls caused by Longidorus africanus on bur marigold (Bidens tripartita L.) and grapevine (Vitis vinifera L.) were studied. The galled roots of bur marigold contained 73% more cell-wall protein and 184% more free amino acids. The main changes among the free amino acids of the galled tissue were a large increase (1900%) in proline and a decrease in aspartic acid (56%) compared with the respective check tissue. Hydroxyproline decreased in the wall protein fraction from 5.6% in the healthy tissue to 3.6% in the infected tissue.Percent of hydroxyproline in total amino acids of the wall protein fraction of grapevine roots decreased from 0.7% in the healthy tissue to 0.3% in the galled tissue, and total proteins of this fraction decreased from 9.5 mg to 4.5 rag, respectively. Total protein in the protoplasmic fraction also decreased from 3.0 mg in healthy to 1.0 mg in infected roots. No change was noticed in total proteins in the free amino acids fraction but free proline decreased 40% in the infected roots.The relationship of these differences to the specific reactions of the hosts to nematode feeding is discussed.

  11. Installing amino acids and peptides on N-heterocycles under visible-light assistance

    PubMed Central

    Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua

    2016-01-01

    Readily available natural α-amino acids are one of nature’s most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments. PMID:26830014

  12. Synthesis of N-peptide-6-amino-D-luciferin Conjugates.

    PubMed

    Kovács, Anita K; Hegyes, Péter; Szebeni, Gábor J; Nagy, Lajos I; Puskás, László G; Tóth, Gábor K

    2018-01-01

    A general strategy for the synthesis of N -peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N -Z-Asp-Glu-Val-Asp-6-amino-D-luciferin ( N -Z-DEVD-aLuc). N -Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N -peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system.

  13. Synthesis of N-peptide-6-amino-D-luciferin Conjugates

    PubMed Central

    Kovács, Anita K.; Hegyes, Péter; Szebeni, Gábor J.; Nagy, Lajos I.; Puskás, László G.; Tóth, Gábor K.

    2018-01-01

    A general strategy for the synthesis of N-peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N-Z-Asp-Glu-Val-Asp-6-amino-D-luciferin (N-Z-DEVD-aLuc). N-Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N-peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system. PMID:29725588

  14. "De-novo" amino acid sequence elucidation of protein G'e by combined "top-down" and "bottom-up" mass spectrometry.

    PubMed

    Yefremova, Yelena; Al-Majdoub, Mahmoud; Opuni, Kwabena F M; Koy, Cornelia; Cui, Weidong; Yan, Yuetian; Gross, Michael L; Glocker, Michael O

    2015-03-01

    Mass spectrometric de-novo sequencing was applied to review the amino acid sequence of a commercially available recombinant protein G´ with great scientific and economic importance. Substantial deviations to the published amino acid sequence (Uniprot Q54181) were found by the presence of 46 additional amino acids at the N-terminus, including a so-called "His-tag" as well as an N-terminal partial α-N-gluconoylation and α-N-phosphogluconoylation, respectively. The unexpected amino acid sequence of the commercial protein G' comprised 241 amino acids and resulted in a molecular mass of 25,998.9 ± 0.2 Da for the unmodified protein. Due to the higher mass that is caused by its extended amino acid sequence compared with the original protein G' (185 amino acids), we named this protein "protein G'e." By means of mass spectrometric peptide mapping, the suggested amino acid sequence, as well as the N-terminal partial α-N-gluconoylations, was confirmed with 100% sequence coverage. After the protein G'e sequence was determined, we were able to determine the expression vector pET-28b from Novagen with the Xho I restriction enzyme cleavage site as the best option that was used for cloning and expressing the recombinant protein G'e in E. coli. A dissociation constant (K(d)) value of 9.4 nM for protein G'e was determined thermophoretically, showing that the N-terminal flanking sequence extension did not cause significant changes in the binding affinity to immunoglobulins.

  15. Involvement of tyrosine residues, N-terminal amino acids, and beta-alanine in insect cuticular sclerotization.

    PubMed

    Andersen, Svend Olav

    2007-09-01

    During sclerotization of insect cuticle the acyldopamines, N-acetyldopamine (NADA) and N-beta-alanyldopamine (NBAD), are oxidatively incorporated into the cuticular matrix, thereby hardening and stabilizing the material by forming crosslinks between the proteins in the cuticular matrix and by forming polymers filling the intermolecular spaces in the cuticle. Sclerotized cuticle from the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor, was hydrolyzed in dilute hydrochloric acid, and from the hydrolysates some components presumably degradation products of cuticular crosslinks were isolated. In two of the components, the sidechain of 3,4-dihydroxyacetophenone was linked to the amino groups of glycine and beta-alanine, respectively, and in the third component to the phenolic group of tyrosine. These three compounds, glycino-dihydroxyacetophenone, beta-alanino-dihydroxyacetophenone, and O-tyrosino-dihydroxyacetophenone, as well as the previously reported compound, lysino-dihydroxyacetophenone [Andersen, S.O., Roepstorff, P., 2007. Aspects of cuticular sclerotization in the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor. Insect Biochem. Mol. Biol. 37, 223-234], are suggested to be degradation products of cuticular crosslinks, in which amino acid residues formed linkages to both the alpha- and beta-positions of the sidechain of acyldopamines.

  16. Regulation of amino acid transport in Escherichia coli by transcription termination factor rho.

    PubMed

    Quay, S C; Oxender, D L

    1977-06-01

    Amino acid transport rates and amino acid binding proteins were examined in a strain containing the rho-120 mutation (formerly SuA), which has been shown to lower the rho-dependent, ribonucleic acid-activated adenosine triphosphatase activity to 9% of the rho activity in the isogenic wild-type strain. Tryptophan and proline transport, which occur by membrane-bound systems, were not altered. On the other hand, arginine, histidine, leucine, isoleucine, and valine transport were variably increased by a factor of 1.4 to 5.0. Kinetics of leucine transport showed that the LIV (leucine, isoleucine, and valine)-I (binding protein-associated) transport system is increased 8.5-fold, whereas the LIV-II (membrane-bound) system is increased 1.5-fold in the rho mutant under leucine-limited growth conditions. The leucine binding protein is increased fourfold under the same growth conditions. The difference in leucine transport in these strains was greatest during leucine-limited growth; growth on complex media repressed both strains to the same transport activity. We propose that rho-dependent transcriptional termination is important for leucine-specific repression of branched-chain amino acid transport, although rho-independent regulation, presumably by a corepressor-aporepressor-type mechanism, must also occur.

  17. Modulation of procaspase-7 self-activation by PEST amino acid residues of the N-terminal prodomain and intersubunit linker.

    PubMed

    Alves, Juliano; Garay-Malpartida, Miguel; Occhiucci, João M; Belizário, José E

    2017-12-01

    Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD 198 ↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (k cat /K M ) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.

  18. Polypeptide having an amino acid replaced with N-benzylglycine

    DOEpatents

    Mitchell, Alexander R.; Young, Janis D.

    1996-01-01

    The present invention relates to one or more polypeptides having useful biological activity in a mammal, which comprise: a polypeptide related to bradykinin of four to ten amino acid residues wherein one or more specific amino acids in the polypeptide chain are replaced with achiral N-benzylglycine. These polypeptide analogues have useful potent agonist or antagonist pharmacological properties depending upon the structure. A preferred polypeptide is (N-benzylglycine.sup.7)-bradykinin.

  19. Mapping and mutagenesis of the amino-terminal transcriptional repression domain of the Drosophila Krüppel protein.

    PubMed Central

    Licht, J D; Hanna-Rose, W; Reddy, J C; English, M A; Ro, M; Grossel, M; Shaknovich, R; Hansen, U

    1994-01-01

    We previously demonstrated that the Drosophila Krüppel protein is a transcriptional repressor with separable DNA-binding and transcriptional repression activities. In this study, the minimal amino (N)-terminal repression region of the Krüppel protein was defined by transferring regions of the Krüppel protein to a heterologous DNA-binding protein, the lacI protein. Fusion of a predicted alpha-helical region from amino acids 62 to 92 in the N terminus of the Krüppel protein was sufficient to transfer repression activity. This putative alpha-helix has several hydrophobic surfaces, as well as a glutamine-rich surface. Mutants containing multiple amino acid substitutions of the glutamine residues demonstrated that this putative alpha-helical region is essential for repression activity of a Krüppel protein containing the entire N-terminal and DNA-binding regions. Furthermore, one point mutant with only a single glutamine on this surface altered to lysine abolished the ability of the Krüppel protein to repress, indicating the importance of the amino acid at residue 86 for repression. The N terminus also contained an adjacent activation region localized between amino acids 86 and 117. Finally, in accordance with predictions from primary amino acid sequence similarity, a repression region from the Drosophila even-skipped protein, which was six times more potent than that of the Krüppel protein in the mammalian cells, was characterized. This segment included a hydrophobic stretch of 11 consecutive alanine residues and a proline-rich region. Images PMID:8196644

  20. α-Amidoalkylating agents from N-acyl-α-amino acids: 1-(N-acylamino)alkyltriphenylphosphonium salts.

    PubMed

    Mazurkiewicz, Roman; Adamek, Jakub; Październiok-Holewa, Agnieszka; Zielińska, Katarzyna; Simka, Wojciech; Gajos, Anna; Szymura, Karol

    2012-02-17

    N-Acyl-α-amino acids were efficiently transformed in a two-step procedure into 1-N-(acylamino)alkyltriphenylphosphonium salts, new powerful α-amidoalkylating agents. The effect of the α-amino acid structure, the base used [MeONa or a silica gel-supported piperidine (SiO(2)-Pip)], and the main electrolysis parameters (current density, charge consumption) on the yield and selectivity of the electrochemical decarboxylative α-methoxylation of N-acyl-α-amino acids (Hofer-Moest reaction) was investigated. For most proteinogenic and all studied unproteinogenic α-amino acids, very good results were obtained using a substoichiometric amount of SiO(2)-Pip as the base. Only in the cases of N-acylated cysteine, methionine, and tryptophan, attempts to carry out the Hofer-Moest reaction in the applied conditions failed, probably because of the susceptibility of these α-amino acids to an electrochemical oxidation on the side chain. The methoxy group of N-(1-methoxyalkyl)amides was effectively displaced with the triphenylphosphonium group by dissolving an equimolar amount of N-(1-methoxyalkyl)amide and triphenylphosphonium tetrafluoroborate in CH(2)Cl(2) at room temperature for 30 min, followed by the precipitation of 1-N-(acylamino)alkyltriphenylphosphonium salt with Et(2)O.

  1. Identification of novel amino acid residues of influenza virus PA-X that are important for PA-X shutoff activity by using yeast.

    PubMed

    Oishi, Kohei; Yamayoshi, Seiya; Kawaoka, Yoshihiro

    2018-03-01

    The influenza A virus protein PA-X comprises an N-terminal PA region and a C-terminal PA-X-specific region. PA-X suppresses host gene expression, termed shutoff, via mRNA cleavage. Although the endonuclease active site in the N-terminal PA region of PA-X and basic amino acids in the C-terminal PA-X-specific region are known to be important for PA-X shutoff activity, other amino acids may also play a role. Here, we used yeast to identify novel amino acids of PA-X that are important for PA-X shutoff activity. Unlike wild-type PA-X, most PA-X mutants predominantly localized in the cytoplasm, indicating that these mutations decreased the shutoff activity of PA-X by affecting PA-X translocation to the nucleus. Mapping of the identified amino acids onto the N-terminal structure of PA revealed that some of them likely contribute to the formation of the endonuclease active site of PA. Copyright © 2018. Published by Elsevier Inc.

  2. A selective optical sensor for picric acid assay based on photopolymerization of 3-(N-methacryloyl) amino-9-ethylcarbazole.

    PubMed

    Hu, Yan-Jun; Tan, Shu-Zhen; Shen, Guo-Li; Yu, Ru-Qin

    2006-06-16

    A novel optical sensor based on covalent immobilization for picric acid assay has been described. To improve the stability of the sensor, a terminal double bond was attached to the fluorescent compound, 3-amino-9-ethylcarbazole (AEC), via methacryloyl chloride. The resultant compound, 3-(N-methacryloyl) amino-9-ethylcarbazole (MAEC) was copolymerized with 2-hydroxypropyl methacrylate on surface-modified quartz glass plates by UV irradiation. The resulting optical sensor (optode membrane) was used to determine picric acid based on fluorescence quenching. It shows a linear response toward picric acid in the concentration range of 9.33 x 10(-8) to 9.33 x 10(-5) mol l(-1), with rapid response, high stability and good selectivity to picric acid.

  3. Identification of amino acids in the N-terminal SH2 domain of phospholipase C gamma 1 important in the interaction with epidermal growth factor receptor.

    PubMed

    Gergel, J R; McNamara, D J; Dobrusin, E M; Zhu, G; Saltiel, A R; Miller, W T

    1994-12-13

    Photoaffinity labeling and site-directed mutagenesis have been used to identify amino acid residues of the phospholipase C gamma 1 (PLC gamma 1) N-terminal SH2 domain involved in recognition of the activated epidermal growth factor receptor (EGFR). The photoactive amino acid p-benzoylphenylalanine (Bpa) was incorporated into phosphotyrosine-containing peptides derived from EGFR autophosphorylation sites Tyr992 and Tyr1068. Irradiation of these labels in the presence of SH2 domains showed cross-linking which was time-dependent and specific; labeling was inhibited with non-Bpa-containing peptides from EGFR in molar excess. The phosphotyrosine residue on the peptides was important for SH2 recognition, as dephosphorylated peptides did not cross-link. Radiolabeled peptides were used to identify sites of cross-linking to the N-terminal SH2 of PLC gamma 1. Bpa peptide-SH2 complexes were digested with trypsin, and radioactive fragments were purified by HPLC and analyzed by Edman sequencing. These experiments showed Arg562 and an additional site in the alpha A-beta B region of the SH2 domain, most likely Glu587, to be labeled by the Tyr992-derived peptide. Similar analysis of the reaction with the Tyr1068-derived photoaffinity label identified Leu653 as the cross-linked site. Mutation of the neighboring residues of Glu587 decreased photo-cross-linking, emphasizing the importance of this region of the molecule for recognition. These results are consistent with evidence from the v-Src crystal structure and implicate the loop spanning residues Gln640-Ser654 of PLC gamma 1 in specific recognition of phosphopeptides.

  4. Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors

    NASA Astrophysics Data System (ADS)

    Li, Yao-Wang; Li, Bo; He, Jiguo; Qian, Ping

    2011-07-01

    A database consisting of 214 tripeptides which contain either His or Tyr residue was applied to study quantitative structure-activity relationships (QSAR) of antioxidative tripeptides. Partial Least-Squares Regression analysis (PLSR) was conducted using parameters individually of each amino acid descriptor, including Divided Physico-chemical Property Scores (DPPS), Hydrophobic, Electronic, Steric, and Hydrogen (HESH), Vectors of Hydrophobic, Steric, and Electronic properties (VHSE), Molecular Surface-Weighted Holistic Invariant Molecular (MS-WHIM), isotropic surface area-electronic charge index (ISA-ECI) and Z-scale, to describe antioxidative tripeptides as X-variables and antioxidant activities measured with ferric thiocyanate methods were as Y-variable. After elimination of outliers by Hotelling's T 2 method and residual analysis, six significant models were obtained describing the entire data set. According to cumulative squared multiple correlation coefficients ( R2), cumulative cross-validation coefficients ( Q2) and relative standard deviation for calibration set (RSD c), the qualities of models using DPPS, HESH, ISA-ECI, and VHSE descriptors are better ( R2 > 0.6, Q2 > 0.5, RSD c < 0.39) than that of models using MS-WHIM and Z-scale descriptors ( R2 < 0.6, Q2 < 0.5, RSD c > 0.44). Furthermore, the predictive ability of models using DPPS descriptor is best among the six descriptors systems (cumulative multiple correlation coefficient for predict set ( Rext2) > 0.7). It was concluded that the DPPS is better to describe the amino acid of antioxidative tripeptides. The results of DPPS descriptor reveal that the importance of the center amino acid and the N-terminal amino acid are far more than the importance of the C-terminal amino acid for antioxidative tripeptides. The hydrophobic (positively to activity) and electronic (negatively to activity) properties of the N-terminal amino acid are suggested to play the most important significance to activity, followed

  5. Plasma free amino acid kinetics in rainbow trout (Oncorhynchus mykiss) using a bolus injection of 15N-labeled amino acids.

    PubMed

    Robinson, Jacob William; Yanke, Dan; Mirza, Jeff; Ballantyne, James Stuart

    2011-02-01

    To gain insight into the metabolic design of the amino acid carrier systems in fish, we injected a bolus of (15)N amino acids into the dorsal aorta in mature rainbow trout (Oncorhynchus mykiss). The plasma kinetic parameters including concentration, pool size, rate of disappearance (R(d)), half-life and turnover rate were determined for 15 amino acids. When corrected for metabolic rate, the R(d) values obtained for trout for most amino acids were largely comparable to human values, with the exception of glutamine (which was lower) and threonine (which was higher). R(d) values ranged from 0.9 μmol 100 g(-1) h(-1) (lysine) to 22.1 μmol 100 g(-1) h(-1) (threonine) with most values falling between 2 and 6 μmol 100 g(-1) h(-1). There was a significant correlation between R(d) and the molar proportion of amino acids in rainbow trout whole body protein hydrolysate. Other kinetic parameters did not correlate significantly with whole body amino acid composition. This indicates that an important design feature of the plasma-free amino acids system involves proportional delivery of amino acids to tissues for protein synthesis.

  6. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product

    NASA Astrophysics Data System (ADS)

    Rustgi, Anil K.; Dyson, Nicholas; Bernards, Rene

    1991-08-01

    THE proteins encoded by the myc gene family are involved in the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms1. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/helix-loop-helix and a leucine zipper motif, respectively. These motifs are involved both in DNA binding and in protein dimerization2-5. In addition, myc protein family members share several regions of highly conserved amino acids in their amino termini that are essential for transformation6,7. We report here that an N-terminal domain present in both the c-myc and N-myc proteins mediates binding to the retinoblastoma gene product, pRb. We show that the human papilloma virus E7 protein competes with c-myc for binding to pRb, indicating that these proteins share overlapping binding sites on pRb. Furthermore, a mutant Rb protein from a human tumour cell line that carried a 35-amino-acid deletion in its C terminus failed to bind to c-myc. Our results suggest that c-myc and pRb cooperate through direct binding to control cell proliferation.

  7. Complete nucleotide and derived amino acid sequence of cDNA encoding the mitochondrial uncoupling protein of rat brown adipose tissue: lack of a mitochondrial targeting presequence.

    PubMed Central

    Ridley, R G; Patel, H V; Gerber, G E; Morton, R C; Freeman, K B

    1986-01-01

    A cDNA clone spanning the entire amino acid sequence of the nuclear-encoded uncoupling protein of rat brown adipose tissue mitochondria has been isolated and sequenced. With the exception of the N-terminal methionine the deduced N-terminus of the newly synthesized uncoupling protein is identical to the N-terminal 30 amino acids of the native uncoupling protein as determined by protein sequencing. This proves that the protein contains no N-terminal mitochondrial targeting prepiece and that a targeting region must reside within the amino acid sequence of the mature protein. Images PMID:3012461

  8. Glutamic Acid as a Precursor to N-Terminal Pyroglutamic Acid in Mouse Plasmacytoma Protein

    PubMed Central

    Twardzik, Daniel R.; Peterkofsky, Alan

    1972-01-01

    Cell suspensions derived from a mouse plasmacytoma (RPC-20) that secretes an immunoglobulin light chain containing N-terminal pyroglutamic acid can synthesize protein in vitro. Chromatographic examination of an enzymatic digest of protein labeled with glutamic acid shows only labeled glutamic acid and pyroglutamic acid; hydrolysis of protein from cells labeled with glutamine, however, yields substantial amounts of glutamic acid in addition to glutamine and pyroglutamic acid. The absence of glutamine synthetase and presence of glutaminase in plasmacytoma homogenates is consistent with these findings. These data indicate that N-terminal pyroglutamic acid can be derived from glutamic acid without prior conversion of glutamic acid to glutamine. Since free or bound forms of glutamine cyclize nonezymatically to pyroglutamate with ease, while glutamic acid does not, the data suggest that N-terminal pyroglutamic acid formation from glutamic acid is enzymatic rather than spontaneous. Images PMID:4400295

  9. The Aquaporin Splice Variant NbXIP1;1α Is Permeable to Boric Acid and Is Phosphorylated in the N-terminal Domain

    PubMed Central

    Ampah-Korsah, Henry; Anderberg, Hanna I.; Engfors, Angelica; Kirscht, Andreas; Norden, Kristina; Kjellstrom, Sven; Kjellbom, Per; Johanson, Urban

    2016-01-01

    Aquaporins (AQPs) are membrane channel proteins that transport water and uncharged solutes across different membranes in organisms in all kingdoms of life. In plants, the AQPs can be divided into seven different subfamilies and five of these are present in higher plants. The most recently characterized of these subfamilies is the XIP subfamily, which is found in most dicots but not in monocots. In this article, we present data on two different splice variants (α and β) of NbXIP1;1 from Nicotiana benthamiana. We describe the heterologous expression of NbXIP1;1α and β in the yeast Pichia pastoris, the subcellular localization of the protein in this system and the purification of the NbXIP1;1α protein. Furthermore, we investigated the functionality and the substrate specificity of the protein by stopped-flow spectrometry in P. pastoris spheroplasts and with the protein reconstituted in proteoliposomes. The phosphorylation status of the protein and localization of the phosphorylated amino acids were verified by mass spectrometry. Our results show that NbXIP1;1α is located in the plasma membrane when expressed in P. pastoris, that it is not permeable to water but to boric acid and that the protein is phosphorylated at several amino acids in the N-terminal cytoplasmic domain of the protein. A growth assay showed that the yeast cells expressing the N-terminally His-tagged NbXIP1;1α were more sensitive to boric acid as compared to the cells expressing the C-terminally His-tagged isoform. This might suggest that the N-terminal His-tag functionally mimics the phosphorylation of the N-terminal domain and that the N-terminal domain is involved in gating of the channel. PMID:27379142

  10. Functional Role of N- and C-Terminal Amino Acids in the Structural Subunits of Colonization Factor CS6 Expressed by Enterotoxigenic Escherichia coli

    PubMed Central

    Debnath, Anusuya; Sabui, Subrata; Wajima, Takeaki; Hamabata, Takashi; Banerjee, Rajat

    2016-01-01

    ABSTRACT CS6 is a common colonization factor expressed by enterotoxigenic Escherichia coli. It is a two-subunit protein consisting of CssA and CssB in an equal stoichiometry, assembled via the chaperone-usher pathway into an afimbrial, oligomeric assembly on the bacterial cell surface. A recent structural study has predicted the involvement of the N- and C-terminal regions of the CS6 subunits in its assembly. Here, we identified the functionally important residues in the N- and C-terminal regions of the CssA and CssB subunits during CS6 assembly by alanine scanning mutagenesis. Bacteria expressing mutant proteins were tested for binding with Caco-2 cells, and the results were analyzed with respect to the surface expression of mutant CS6. In this assay, many mutant proteins were not expressed on the surface while some showed reduced expression. It appeared that some, but not all, of the residues in both the N and C termini of CssA and CssB played an important role in the intermolecular interactions between these two structural subunits, as well as chaperone protein CssC. Our results demonstrated that T20, K25, F27, S36, Y143, and V147 were important for the stability of CssA, probably through interaction of CssC. We also found that I22, V29, and I33 of CssA and G154, Y156, L160, V162, F164, and Y165 of CssB were responsible for CssA-CssB intermolecular interactions. In addition, some of the hydrophobic residues in the C terminus of CssA and the N terminus of CssB were involved in the stabilization of higher-order complex formation. Overall, the results presented here might help in understanding the pathway used to assemble CS6 and predict its structure. IMPORTANCE Unlike most other colonization factors, CS6 is nonfimbrial, and in a sense, its subunit composition and assembly are also unique. Here we report that both the N- and C-terminal amino acid residues of CssA and CssB play a critical role in the intermolecular interactions between them and assembly proteins

  11. Activation of c-jun N-terminal kinase upon influenza A virus (IAV) infection is independent of pathogen-related receptors but dependent on amino acid sequence variations of IAV NS1.

    PubMed

    Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina; Ludwig, Stephan

    2014-08-01

    A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that result in the activation

  12. Activation of c-jun N-Terminal Kinase upon Influenza A Virus (IAV) Infection Is Independent of Pathogen-Related Receptors but Dependent on Amino Acid Sequence Variations of IAV NS1

    PubMed Central

    Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R.; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina

    2014-01-01

    ABSTRACT A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. IMPORTANCE Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that

  13. Biomonitoring of carcinogenic substances: enzymatic digestion of globin for detecting alkylated amino acids

    NASA Astrophysics Data System (ADS)

    Bader, Michael; Rauscher, Dankwart; Geibel, Kurt; Angerer, Juergen

    1993-03-01

    We report the application of proteases for the total hydrolysis of globin with subsequent determination of amino acids. Optimization of the proteolysis was made with respect to enzyme concentration, time of incubation and type of protease. Ethylene oxide modified globin was used to compare the results of the analysis of the N-terminal amino acid valine after enzymatic cleavage to those obtained from the widely used modified Edman procedure. It is shown that the cleavage is of good reproducibility and yields more alkylated amino acid than the Edman procedure.

  14. Nonprotein Amino Acids in the Murchison Meteorite

    PubMed Central

    Kvenvolden, Keith A.; Lawless, James G.; Ponnamperuma, Cyril

    1971-01-01

    Twelve nonprotein amino acids appear to be present in the Murchison meteorite. The identity of eight of them has been conclusively established as N-methylglycine, β-alanine, 2-methylalanine, α-amino-n-butyric acid, β-amino-n-butyric acid, γ-amino-n-butyric acid, isovaline, and pipecolic acid. Tentative evidence is presented for the presence of N-methylalanine, N-ethylglycine, β-aminoisobutyric acid, and norvaline. These amino acids appear to be extraterrestrial in origin and may provide new evidence for the hypothesis of chemical evolution. PMID:16591908

  15. Synthetic procedure for N-Fmoc amino acyl-N-sulfanylethylaniline linker as crypto-peptide thioester precursor with application to native chemical ligation.

    PubMed

    Sakamoto, Ken; Sato, Kohei; Shigenaga, Akira; Tsuji, Kohei; Tsuda, Shugo; Hibino, Hajime; Nishiuchi, Yuji; Otaka, Akira

    2012-08-17

    N-sulfanylethylanilide (SEAlide) peptides 1, obtainable using Fmoc-based solid-phase peptide synthesis (Fmoc SPPS), function as crypto-thioesters in native chemical ligation (NCL), yielding a wide variety of peptides/proteins. Their acylating potential with N-terminal cysteinyl peptides 2 can be tuned by the presence or absence of phosphate salts, leading to one-pot/multifragment ligation, operating under kinetically controlled conditions. SEAlide peptides have already been shown to be promising for use in protein synthesis; however, a widely applicable method for the synthesis of N-Fmoc amino acyl-N-sulfanylethylaniline linkers 4, required for the preparation of SEAlide peptides, is unavailable. The present study addresses the development of efficient condensation protocols of 20 naturally occurring amino acid derivatives to the N-sulfanylethylaniline linker 5. N-Fmoc amino acyl aniline linkers 4 of practical use in NCL chemistry, except in the case of the proline- or aspartic acid-containing linker, were successfully synthesized by coupling of POCl(3)- or SOCl(2)-activated Fmoc amino acid derivatives with sodium anilide species 6, without accompanying racemization and loss of side-chain protection. Furthermore, SEAlide peptides 7 possessing various C-terminal amino acids (Gly, His, Phe, Ala, Asn, Ser, Glu, and Val) were shown to be of practical use in NCL chemistry.

  16. N-nitrosations of basic amino acid residues in polypeptide.

    PubMed

    Kuo, Wu-Nan; Ivy, Dynisha; Guruvadoo, Luvina; White, Atavia; Graham, Latia

    2004-09-01

    Changes in the electrophoretic pattern were noted in the products of polypeptides of identical basic amino acids preincubated with reactive or degraded PN, suggesting the occurrence of N-nitrosation of the epsilon-amino group of lysine, the guanido group of arginine and the imidazole group of histidine. Additionally, increase in the N-nitroso immunoreactivity of preincubated histones H2A and H2B was detected by Western blot analysis.

  17. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    PubMed Central

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  18. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.

    PubMed

    Sonsalla, P K; Nicklas, W J; Heikkila, R E

    1989-01-20

    The systemic administration of either methamphetamine or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to experimental animals produces degenerative changes in nigrostriatal dopaminergic neurons or their axon terminals. This study was conducted to determine if excitatory amino acids, which appear to be involved in various neurodegenerative disorders, might also contribute to the dopaminergic neurotoxicity produced in mice by either methamphetamine or MPTP. MK-801, phencyclidine, and ketamine, noncompetitive antagonists of one subtype of excitatory amino acid receptor, the N-methyl-D-aspartate receptor, provided substantial protection against neurotoxicity produced by methamphetamine but not that produced by MPTP. These findings indicate that excitatory amino acids play an important role in the nigrostriatal dopaminergic damage induced by methamphetamine.

  19. NMR assignment of a PDZ domain in complex with a HPV51 E6 derived N-terminally pyroglutamic acid modified peptide.

    PubMed

    Mischo, André; Ohlenschläger, Oliver; Ramachandran, Ramadurai; Görlach, Matthias

    2013-04-01

    The resonance assignment of an amino-terminal pyroglutamic acid containing peptide derived from the E6 protein of human papillomavirus (HPV) type 51 in complex with PDZ domain 2 of hDlg/SAP-97 is reported. The assignments include (1)H, (13)C and (15)N resonances for the protein and peptide in the complex and all of the peptide's pyroglutamic acid nuclei.

  20. The electroneutral sodium/bicarbonate cotransporter containing an amino terminal 123-amino-acid cassette is expressed predominantly in the heart

    PubMed Central

    Cooper, Deborah S.; Lee, Hye Jeong; Yang, Han Soo; Kippen, Joseph; Yun, C. Chris; Choi, Inyeong

    2006-01-01

    Summary In this study, we examined the tissue-specific expression of two electroneutral Na/HCO3 cotransporter (NBCn1) variants that differ from each other by the presence of the N-terminal 123 amino acids (cassette II). A rat Northern blot with the probe to nucleotides encoding cassette II detected a 9 kb NBCn1 mRNA strongly in the heart and weakly in skeletal muscles, but absent from most of the tissues including kidney, brain, and pancreas. In the rat heart, PCR with primers flanking cassette II preferentially amplified a DNA fragment that lacked cassette II. However, in the human heart, PCR preferentially amplified a fragment that contained cassette II. This larger PCR product was found virtually in all regions of the human cardiovascular system with strong amplification in the apex, atrium, and atrioventricular nodes. These findings indicate that the variant containing cassette II is almost absent in tissues including brain, kidney, and pancreas, where NBCn1 has been extensively examined. PMID:16547769

  1. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.

    PubMed

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J

    2017-03-01

    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  2. Human baby hair amino acid natural abundance 15N-isotope values are not related to the 15N-isotope values of amino acids in mother's breast milk protein.

    PubMed

    Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J

    2013-12-01

    Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P < 0.001; δ(13)C, P < 0.001). Furthermore, the δ(15)N (‰) of individual amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.

  3. Stereoconversion of amino acids and peptides in uryl-pendant binol schiff bases.

    PubMed

    Park, Hyunjung; Nandhakumar, Raju; Hong, Jooyeon; Ham, Sihyun; Chin, Jik; Kim, Kwan Mook

    2008-01-01

    (S)-2-Hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde (1) forms Schiff bases with a wide range of nonderivatized amino acids, including unnatural ones. Multiple hydrogen bonds, including resonance-assisted ones, fix the whole orientation of the imine and provoke structural rigidity around the imine C==N bond. Due to the structural difference and the increase in acidity of the alpha proton of the amino acid, the imine formed with an L-amino acid (1-l-aa) is converted into the imine of the D-amino acid (1-D-aa), with a D/L ratio of more than 10 for most amino acids at equilibrium. N-terminal amino acids in dipeptides are also predominantly epimerized to the D form upon imine formation with 1. Density functional theory calculations show that 1-D-Ala is more stable than 1-L-Ala by 1.64 kcal mol(-1), a value that is in qualitative agreement with the experimental result. Deuterium exchange of the alpha proton of alanine in the imine form was studied by (1)H NMR spectroscopy and the results support a stepwise mechanism in the L-into-D conversion rather than a concerted one; that is, deprotonation and protonation take place in a sequential manner. The deprotonation rate of L-Ala is approximately 16 times faster than that of D-Ala. The protonation step, however, appears to favor L-amino acid production, which prevents a much higher predominance of the D form in the imine. Receptor 1 and the predominantly D-form amino acid can be recovered from the imine by simple extraction under acidic conditions. Hence, 1 is a useful auxiliary to produce D-amino acids of industrial interest by the conversion of naturally occurring L-amino acids or relatively easily obtainable racemic amino acids.

  4. Pyrazole amino acids: hydrogen bonding directed conformations of 3-amino-1H-pyrazole-5-carboxylic acid residue.

    PubMed

    Kusakiewicz-Dawid, Anna; Porada, Monika; Ochędzan-Siodłak, Wioletta; Broda, Małgorzata A; Bujak, Maciej; Siodłak, Dawid

    2017-09-01

    A series of model compounds containing 3-amino-1H-pyrazole-5-carboxylic acid residue with N-terminal amide/urethane and C-terminal amide/hydrazide/ester groups were investigated by using NMR, Fourier transform infrared, and single-crystal X-ray diffraction methods, additionally supported by theoretical calculations. The studies demonstrate that the most preferred is the extended conformation with torsion angles ϕ and ψ close to ±180°. The studied 1H-pyrazole with N-terminal amide/urethane and C-terminal amide/hydrazide groups solely adopts this energetically favored conformation confirming rigidity of that structural motif. However, when the C-terminal ester group is present, the second conformation with torsion angles ϕ and ψ close to ±180° and 0°, respectively, is accessible. The conformational equilibrium is observed in NMR and Fourier transform infrared studies in solution in polar environment as well as in the crystal structures of other related compounds. The observed conformational preferences are clearly related to the presence of intramolecular interactions formed within the studied residue. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  5. Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity.

    PubMed

    Almahboub, Sarah A; Narancic, Tanja; Devocelle, Marc; Kenny, Shane T; Palmer-Brown, William; Murphy, Cormac; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E

    2018-01-01

    Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess > 98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 μg/ml for Escherichia coli, 50 μg/ml for Bacillus subtilis, 100 μg/ml for Salmonella typhimurium, 200 μg/ml for Pseudomonas aeruginosa and 400 μg/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.

  6. The NEXT-A (N-terminal EXtension with Transferase and ARS) reaction.

    PubMed

    Taki, Masumi; Kuroiwa, Hiroyuki; Sisido, Masahiko

    2009-01-01

    L/F-transferase is known to catalyze transfer of hydrophobic amino acids from aminoacyl tRNA to the N-terminus of a protein possessing lysine or arginine as the N-terminus. Combining L/F-transferase with E. coli phenylalanyl-tRNA synthetase (ARS), we achieved non-ribosomal N-terminal-specific introduction of various kinds of nonnatural amino acids to a protein. A nonnatural amino acid is once charged onto an E. coli tRNA(Phe) by a mutant ARS in situ, and successively transferred from the tRNA to a target protein, namely the NEXT-A reaction. Besides alphaA294G mutation on the ARS, alphaT251A, betaG318W, or betaA356W double-mutation were effective to increase the introduction efficiency through the NEXT-A reaction. Protein specific fluorescence labelling via the NEXT-A reaction followed by Huisgen cycloaddition was also demonstrated.

  7. Amino acid composition of some Mexican foods.

    PubMed

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  8. Two non-redundant fragments in the N-terminal peptide of human cytosolic methionyl-tRNA synthetase were indispensable for the multi-synthetase complex incorporation and enzyme activity.

    PubMed

    He, Ran; Zu, Li-Dong; Yao, Peng; Chen, Xin; Wang, En-Duo

    2009-02-01

    In human cytoplasm, nine aminoacyl-tRNA synthetases (aaRSs) and three protein factors form a multi-synthetase complex (MSC). Human cytosolic methionyl-tRNA synthetase (hcMetRS) is a component of the MSC. Sequence alignment revealed that hcMetRS has an N-terminal extension of 267 amino acid residues. This extension can be divided into three sub-domains: GST-like, GN, and GC sub-domains. The effect of each sub-domain in the N-terminal extension of hcMetRS on enzymatic activity and incorporation into the MSC was studied. The results of cellular assay showed that the GST-like sub-domain was responsible for the incorporation of hcMetRS into the MSC. The entire N-terminal extension of hcMetRS is indispensable for the enzymatic activity. Deletion mutagenesis revealed that a seven-amino acid motif within the sub-domain GC was important for the activity of amino acid activation. A conserved proline residue within the seven-amino acid motif was crucial, while the other six residues were moderately important for the amino acid activation activity. Thus, the last 15 residues of previously defined N-terminal extension of hcMetRS was a part of the catalytic domain; whereas the first 252 residues of hcMetRS constitute the N-terminal extended domain of hcMetRS. The formerly defined N-terminal extension of hcMetRS possesses two functions of two different domains.

  9. Enantiomeric excesses in meteoritic amino acids

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.

    1997-01-01

    Gas chromatographic-mass spectral analyses of the four stereoisomers of 2-amino-2,3-dimethylpentanoic acid (dl-alpha-methylisoleucine and dl-alpha-methylalloisoleucine) obtained from the Murchison meteorite show that the L enantiomer occurs in excess (7.0 and 9.1%, respectively) in both of the enantiomeric pairs. Similar results were obtained for two other alpha-methyl amino acids, isovaline and alpha-methylnorvaline, although the alpha hydrogen analogs of these amino acids, alpha-amino-n-butyric acid and norvaline, were found to be racemates. With the exception of alpha-amino-n-butyric acid, these amino acids are either unknown or of limited occurrence in the biosphere. Because carbonaceous chondrites formed 4.5 billion years ago, the results are indicative of an asymmetric influence on organic chemical evolution before the origin of life.

  10. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar.more » For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells.« less

  11. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  12. Synthesis of P,N-Heterocycles from ω-Amino-H-Phosphinates: Conformationally Restricted α-Amino Acid Analogs

    PubMed Central

    Queffelec, Clémence; Ribière, Patrice; Montchamp, Jean-Luc

    2009-01-01

    P,N-Heterocycles (3-hydroxy-1,3-azaphospholane and 3-hydroxy-1,3-azaphosphorinane-3-oxide) are synthesized in moderate yield from readily available ω-amino-H-phosphinates and aldehydes or ketones via an intramolecular Kabachnik-Fields reaction. The products are conformationally restricted phosphinic analogs of α-amino acids. The multi-gram scale syntheses of the H2N(CH2)nPO2H2 phosphinic precursors (n = 1, 2, 3) and some derivatives are also described. PMID:18855477

  13. Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions.

    PubMed

    Murison, David A; Ollivierre, Jaylene N; Huang, Qiuying; Budil, David E; Beuning, Penny J

    2017-01-01

    Escherichia coli cells that are exposed to DNA damaging agents invoke the SOS response that involves expression of the umuD gene products, along with more than 50 other genes. Full-length UmuD is expressed as a 139-amino-acid protein, which eventually cleaves its N-terminal 24 amino acids to form UmuD'. The N-terminal arms of UmuD are dynamic and contain recognition sites for multiple partner proteins. Cleavage of UmuD to UmuD' dramatically affects the function of the protein and activates UmuC for translesion synthesis (TLS) by forming DNA Polymerase V. To probe the roles of the N-terminal arms in the cellular functions of the umuD gene products, we constructed additional N-terminal truncated versions of UmuD: UmuD 8 (UmuD Δ1-7) and UmuD 18 (UmuD Δ1-17). We found that the loss of just the N-terminal seven (7) amino acids of UmuD results in changes in conformation of the N-terminal arms, as determined by electron paramagnetic resonance spectroscopy with site-directed spin labeling. UmuD 8 is cleaved as efficiently as full-length UmuD in vitro and in vivo, but expression of a plasmid-borne non-cleavable variant of UmuD 8 causes hypersensitivity to UV irradiation, which we determined is the result of a copy-number effect. UmuD 18 does not cleave to form UmuD', but confers resistance to UV radiation. Moreover, removal of the N-terminal seven residues of UmuD maintained its interactions with the alpha polymerase subunit of DNA polymerase III as well as its ability to disrupt interactions between alpha and the beta processivity clamp, whereas deletion of the N-terminal 17 residues resulted in decreases in binding to alpha and in the ability to disrupt the alpha-beta interaction. We find that UmuD 8 mimics full-length UmuD in many respects, whereas UmuD 18 lacks a number of functions characteristic of UmuD.

  14. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  15. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  16. Inhibitory activity and mechanism of inhibition of the N-[[(4-benzoylamino)phenyl]sulfonyl]amino acid aldose reductase inhibitors.

    PubMed

    DeRuiter, J; Mayfield, C A

    1990-11-15

    A series of substituted N-[[(4-benzoylamino)phenyl]sulfonyl]amino acids (BAPS-amino acids) were synthesized by established methods, and the stereochemistry of the products was confirmed by HPLC analysis after chiral derivatization. When tested against aldose reductase (alditol:NADP+ oxidoreductase; EC 1.1.1.21; ALR2) isolated from rat lens, all of the BAPS-amino acids were determined to be significantly more inhibitory than the corresponding N-(phenylsulfonyl)amino acids. Structure-inhibition and enzyme kinetic analyses suggest that the BAPS-amino acids inhibit ALR2 by a mechanism similar to the N-(phenylsulfonyl)amino acids. However, multiple inhibition analyses indicate that the increased inhibitory activity of the BAPS-amino acids is a result of interaction with multiple sites present on ALR2. Enzyme specificity studies with several of the BAPS-amino acids demonstrated that these compounds do not produce significant inhibition of other nucleotide-requiring enzymes including aldehyde reductase (alcohol: NADP+ oxidoreductase; EC 1.1.1.2; ALR1).

  17. Cyclic mu-opioid receptor ligands containing multiple N-methylated amino acid residues.

    PubMed

    Adamska-Bartłomiejczyk, Anna; Janecka, Anna; Szabó, Márton Richárd; Cerlesi, Maria Camilla; Calo, Girolamo; Kluczyk, Alicja; Tömböly, Csaba; Borics, Attila

    2017-04-15

    In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evidence for the absence of the terminal adenine nucleotide at the amino acid-acceptor end of transfer ribonucleic acid in non-lactating bovine mammary gland and its inhibitory effect on the aminoacylation of rat liver transfer ribonucleic acid

    PubMed Central

    Herrington, M. D.; Hawtrey, A. O.

    1970-01-01

    1. tRNA isolated from non-lactating bovine mammary gland competitively inhibits the formation of aminoacyl-tRNA in the rat liver system. 2. Non-lactating bovine mammary gland tRNA and twice-pyrophosphorolysed rat liver tRNA are unable to accept amino acids in a reaction catalysed by aminoacyl-tRNA synthetases from either rat liver or bovine mammary gland. Deacylated rat liver tRNA can however be aminoacylated in the presence of either enzyme. 3. Bovine mammary gland tRNA lacks the terminal adenine nucleotide at the 3′-terminus amino acid acceptor end, which can be replaced by incubation in the presence of rat liver nucleotide-incorporating enzyme, ATP and CTP. 4. The enzymically modified bovine tRNA (tRNApCpCpA) can bind labelled amino acids to form aminoacyl-tRNA, which can then transfer its labelled amino acids to growing polypeptide chains on ribosomes. 5. Molecules of rat liver tRNA or bovine mammary gland tRNA that lack the terminal adenine nucleotide or the terminal cytosine and adenine nucleotides inhibit the aminoacylation of normal rat liver tRNA to varying degrees. tRNA molecules lacking the terminal −pCpCpA nucleotide sequence exhibit the major inhibitory effect. 6. The enzyme fraction from bovine mammary gland corresponding to that containing the nucleotide-incorporating enzyme in rat liver is unable to catalyse the incorporation of cytosine and adenine nucleotides in pyrophosphorolysed rat liver tRNA and deacylated bovine tRNA. This fraction also markedly inhibits the action of the rat liver nucleotide-incorporating enzyme. PMID:5435687

  19. Posttranslational modification of Ha-ras p21 by farnesyl versus geranylgeranyl isoprenoids is determined by the COOH-terminal amino acid.

    PubMed Central

    Kinsella, B T; Erdman, R A; Maltese, W A

    1991-01-01

    ras proteins undergo posttranslational modification by a 15-carbon farnesyl isoprenoid at a cysteine within a defined COOH-terminal amino acid motif; i.e., Cys-Ali-Ali-Ser/Met (where Ali represents an aliphatic residue). In other low molecular mass GTP-binding proteins, cysteines are modified by 20-carbon geranylgeranyl groups within a Cys-Ali-Ali-Leu motif. We changed the terminal Ser-189 of Ha-ras p21 to Leu-189 by site-directed mutagenesis and found that the protein was modified by [3H]geranylgeranyl instead of [3H]farnesyl in an in vitro assay. Gel-permeation chromatography of [3H]mevalonate-labeled hydrocarbons released from immunoprecipitated ras proteins overexpressed in COS cells indicated that Ha-ras p21(Leu-189) was also a substrate for 20-carbon isoprenyl modification in vivo. Additional steps in Ha-ras p21 processing, normally initiated by farnesylation, appear to be supported by geranylgeranylation, based on metabolic labeling of Ha-ras p21(Leu-189) with [3H]palmitate and its subcellular localization in a particulate fraction from COS cells. These observations indicate that the amino acid occupying the terminal position (Xaa) in the Cys-Ali-Ali-Xaa motif constitutes a key structural feature by which Ha-ras p21 and other proteins with ras-like COOH-terminal isoprenylation sites are distinguished as substrates for farnesyl- or geranylgeranyltransferases. Images PMID:1924354

  20. Incorporation of Amino Acids with Long-Chain Terminal Olefins into Proteins.

    PubMed

    Exner, Matthias P; Köhling, Sebastian; Rivollier, Julie; Gosling, Sandrine; Srivastava, Puneet; Palyancheva, Zheni I; Herdewijn, Piet; Heck, Marie-Pierre; Rademann, Jörg; Budisa, Nediljko

    2016-02-29

    The increasing need for site-specific protein decorations that mimic natural posttranslational modifications requires access to a variety of noncanonical amino acids with moieties enabling bioorthogonal conjugation chemistry. Here we present the incorporation of long-chain olefinic amino acids into model proteins with rational variants of pyrrolysyl-tRNA synthetase (PylRS). Nε-heptenoyl lysine was incorporated for the first time using the known promiscuous variant PylRS(Y306A/Y384F), and Nε-pentenoyl lysine was incorporated in significant yields with the novel variant PylRS(C348A/Y384F). This is the only example of rational modification at position C348 to enlarge the enzyme's binding pocket. Furthermore, we demonstrate the feasibility of our chosen amino acids in the thiol-ene conjugation reaction with a thiolated polysaccharide.

  1. Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin.

    PubMed Central

    Lobreaux, S; Yewdall, S J; Briat, J F; Harrison, P M

    1992-01-01

    The iron storage protein, ferritin, is widely distributed in the living kingdom. Here the complete cDNA and derived amino-acid sequence of pea seed ferritin are described, together with its predicted secondary structure, namely a four-helix-bundle fold similar to those of mammalian ferritins, with a fifth short helix at the C-terminus. An N-terminal extension of 71 residues contains a transit peptide (first 47 residues) responsible for plastid targetting as in other plant ferritins, and this is cleaved before assembly. The second part of the extension (24 residues) belongs to the mature subunit; it is cleaved during germination. The amino-acid sequence of pea seed ferritin is aligned with those of other ferritins (49% amino-acid identity with H-chains and 40% with L-chains of human liver ferritin in the aligned region). A three-dimensional model has been constructed by fitting the aligned sequence to the coordinates of human H-chains, with appropriate modifications. A folded conformation with an 11-residue helix is predicted for the N-terminal extension. As in mammalian ferritins, 24 subunits assemble into a hollow shell. In pea seed ferritin, its N-terminal extension is exposed on the outside surface of the shell. Within each pea subunit is a ferroxidase centre resembling those of human ferritin H-chains except for a replacement of Glu-62 by His. The channel at the 4-fold-symmetry axes defined by E-helices, is predicted to be hydrophilic in plant ferritins, whereas it is hydrophobic in mammalian ferritins. Images Fig. 3. Fig. 5. Fig. 6. PMID:1472006

  2. Protein-bound D-amino acids, and to a lesser extent lysinoalanine, decrease true ileal protein digestibility in minipigs as determined with (15)N-labeling.

    PubMed

    de Vrese, M; Frik, R; Roos, N; Hagemeister, H

    2000-08-01

    Heat and alkali treatment of food may increase the concentrations of protein-bound D-amino acids and cross-links such as lysinoalanine (LAL). To examine how protein treatment affects digestibility, purified test meals [total protein 150 g/kg dry matter (DM), 0.44 MJ/(kg BW(0.75). d)] were prepared, containing (g/kg DM) casein, 75; beta-lactoglobulin, 50; or wheat protein, 40. Each was (15)N-labeled. Test proteins were used either in their native form or after treatment for 6 or 24 h at 65 degrees C, pH 10.5-11.5. Each meal was fed to nine adult miniature pigs (twofold complete cross-classification). Chyme was collected continuously over 33 h postprandially via T-fistulas in the terminal ileum, and digestibilities of test proteins and individual L- and D-amino acids were calculated on the basis of recovery of (15)N and the respective amino acids in the chyme. Treatment of casein, beta-lactoglobulin or wheat protein for 24 h increased levels of D-amino acid residues. L-Asparagine and aspartate (L-Asx) were particularly susceptible; 14. 7 +/- 0.4, 11.7 +/- 0.2 and 11.0 +/- 0.9%, respectively, underwent racemization. LAL levels increased in parallel; 11.7 +/- 0.3, 13.6 +/- 0 and 14.8 +/- 0.0%, respectively, of total lysine was converted to LAL. At the same time, prececal protein digestibility was decreased by 13.4 +/- 2.3, 15.3 +/- 1.4 and 17.8 +/- 1.2% units, respectively (P < 0.05; mean +/- SEM, n = 9). Digestibility of individual L-amino acids decreased by 10-15%, but L-amino acids prone to peptic cleavage, such as L-phenylalanine and L-tyrosine, were not affected. Digestibilities of D-amino acids and LAL were approximately 35%. It seems that mainly D-amino acids, and to a lesser extent LAL, were responsible for lower digestibility by interfering with peptic cleavage.

  3. Amino acid analyses of Apollo 14 samples.

    NASA Technical Reports Server (NTRS)

    Gehrke, C. W.; Zumwalt, R. W.; Kuo, K.; Aue, W. A.; Stalling, D. L.; Kvenvolden, K. A.; Ponnamperuma, C.

    1972-01-01

    Detection limits were between 300 pg and 1 ng for different amino acids, in an analysis by gas-liquid chromatography of water extracts from Apollo 14 lunar fines in which amino acids were converted to their N-trifluoro-acetyl-n-butyl esters. Initial analyses of water and HCl extracts of sample 14240 and 14298 samples showed no amino acids above background levels.

  4. Effects of Single Amino Acid Substitution on the Collision-Induced Dissociation of Intact Protein Ions: Turkey Ovomucoid Third Domain

    PubMed Central

    Newton, Kelly A.; Pitteri, Sharon J.; Laskowski, Michael; McLuckey, Scott A.

    2005-01-01

    Expanded understanding of the factors that direct polypeptide ion fragmentation can lead to improved specificity in the use of tandem mass spectrometry for the identification and characterization of proteins. Like the fragmentation of peptide cations, the dissociation of whole protein cations shows several preferred cleavages, the likelihood for which is parent ion charge dependent. While such cleavages are often observed, they are far from universally observed, despite the presence of the residues known to promote them. Furthermore, cleavages at residues not noted to be common in a variety of proteins can be dominant for a particular protein or protein ion charge state. Motivated by the ability to study a small protein, turkey ovomucoid third domain, for which a variety of single amino acid variants are available, the effects of changing the identity of one amino acid in the protein sequence on its dissociation behavior were examined. In particular, changes in amino acids associated with C-terminal aspartic acid cleavage and N-terminal proline cleavage were emphasized. Consistent with previous studies, the product ion spectra were found to be dependent upon the parent ion charge state. Furthermore, the fraction of possible C-terminal aspartic acid cleavages observed to occur for this protein was significantly larger than the fraction of possible N-terminal proline cleavages. In fact, very little N-terminal proline cleavage was noted for the wild-type protein despite the presence of three proline residues in the protein. The addition/removal of proline and aspartic acids was studied along with changes in selected residues adjacent to proline residues. Evidence for inhibition of proline cleavage by the presence of nearby basic residues was noted, particularly if the basic residue was likely to be protonated. PMID:15473693

  5. Straightforward synthesis of non-natural L-chalcogen and L-diselenide N-Boc-protected-γ-amino acid derivatives.

    PubMed

    Kawasoko, Cristiane Y; Foletto, Patricia; Rodrigues, Oscar E D; Dornelles, Luciano; Schwab, Ricardo S; Braga, Antonio L

    2013-08-21

    The synthesis of new chiral seleno-, telluro-, and thio-N-Boc-γ-amino acids is described herein. These new compounds were prepared through a simple and short synthetic route, from the inexpensive and commercially-available amino acid L-glutamic acid. The products, with a highly modular character, were obtained in good to excellent yields, via hydrolysis of chalcogen pyroglutamic derivatives with overall retention of the L-glutamic acid stereochemistry. Also, an L-diselenide-N-Boc-γ-amino acid was prepared in good yield. This new synthetic route represents an efficient method for preparing new L-chalcogen- and L-diselenide-γ-amino acids with biological potential.

  6. Amino acids derived from Titan tholins

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Ogino, H.; Nagy, B.; Er, C.; Schram, K. H.; Arakawa, E. T.

    1986-01-01

    An organic heteropolymer (Titan tholin) was produced by continuous dc discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mbar pressure, roughly simulating the cloudtop atmosphere of Titan. Treatment of this tholin with 6N HCl yielded 16 amino acids by gas chromatography after derivatization of N-trifluroacetyl isopropyl esters on two different capillary columns. Identifications were confirmed by GC/MS. Glycine, aspartic acid, and alpha- and beta-alanine were produced in greatest abundance; the total yield of amino acids was approximately 10(-2), approximately equal to the yield of urea. The presence of "nonbiological" amino acids, the absence of serine, and the fact that the amino acids are racemic within experimental error together indicate that these molecules are not due to microbial or other contamination, but are derived from the tholin. In addition to the HCN, HC2CN, and (CN)2 found by Voyager, nitriles and aminonitriles should be sought in the Titanian atmosphere and, eventually, amino acids on the surface. These results suggest that episodes of liquid water in the past or future of Titan might lead to major further steps in prebiological organic chemistry on that body.

  7. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-04-23

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  8. Terminal sequence importance of de novo proteins from binary-patterned library: stable artificial proteins with 11- or 12-amino acid alphabet.

    PubMed

    Okura, Hiromichi; Takahashi, Tsuyoshi; Mihara, Hisakazu

    2012-06-01

    Successful approaches of de novo protein design suggest a great potential to create novel structural folds and to understand natural rules of protein folding. For these purposes, smaller and simpler de novo proteins have been developed. Here, we constructed smaller proteins by removing the terminal sequences from stable de novo vTAJ proteins and compared stabilities between mutant and original proteins. vTAJ proteins were screened from an α3β3 binary-patterned library which was designed with polar/ nonpolar periodicities of α-helix and β-sheet. vTAJ proteins have the additional terminal sequences due to the method of constructing the genetically repeated library sequences. By removing the parts of the sequences, we successfully obtained the stable smaller de novo protein mutants with fewer amino acid alphabets than the originals. However, these mutants showed the differences on ANS binding properties and stabilities against denaturant and pH change. The terminal sequences, which were designed just as flexible linkers not as secondary structure units, sufficiently affected these physicochemical details. This study showed implications for adjusting protein stabilities by designing N- and C-terminal sequences.

  9. Autoantibodies to human tryptophan hydroxylase and aromatic L-amino acid decarboxylase.

    PubMed

    Dal Pra, Chiara; Chen, Shu; Betterle, Corrado; Zanchetta, Renato; McGrath, Vivienne; Furmaniak, Jadwiga; Rees Smith, Bernard

    2004-03-01

    To assess the prevalence of autoantibodies (Abs) to tryptophan hydroxylase (TPH) and aromatic l-amino acid decarboxylase (AADC) in patients with different autoimmune diseases and to analyse their respective epitopes. TPH and AADC Abs were measured in an immunoprecipitation assay using (35)S-labelled full-length and fragments of TPH and AADC. Patients with different autoimmune adrenal diseases (n=84), non-adrenal autoimmune diseases (n=37), idiopathic vitiligo (n=8) and 56 healthy blood donors were studied. Fourteen of twenty-three (61%) of patients with autoimmune polyglandular syndrome (APS) type I and 1/34 (3%) of patients with isolated Addison's disease (AD) were positive for TPH Abs. None of the patients with APS type II (n=27), coeliac disease (n=10), autoimmune thyroid disease (AITD) (n=11), type 1 diabetes mellitus (DM) (n=16) or idiopathic vitiligo (n=8) was positive for TPH Abs. AADC Abs were detected in 12/23 (52%) patients with APS type I, in 1/29 (3%) patients with APS type II and 1/34 (3%) patients with isolated AD. None of the patients with coeliac disease, type 1 DM, AITD or idiopathic vitiligo was positive for AADC Abs. TPH Abs were found to interact with the C-terminal amino acids (aa) 308-423, central aa 164-205 and N-terminal aa 1-105 of the TPH molecule. AADC Ab binding epitopes were within the C-terminal aa 382-483, the central aa 243-381 and the N-terminal aa 1-167. Our study suggests that TPH Abs and AADC Abs react with several different epitopes and that different epitopes are recognized by different sera. The prevalence of TPH Abs and AADC Abs in patients with APS type I in our study is in agreement with previous reports. TPH Abs and AADC Abs were found very rarely in patients with other forms of autoimmune adrenal disease and were not detected in patients with non-adrenal autoimmune diseases.

  10. Posttranslational modification of Ha-ras p21 by farnesyl versus geranylgeranyl isoprenoids is determined by the COOH-terminal amino acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinsella, B.T.; Erdman, R.A.; Maltese, W.A.

    ras proteins undergo posttranslational modification by a 15-carbon farnesyl isoprenoid at a cysteine within a defined COOH-terminal amino acid motif; i.e., Cys-Ali-Ali-Ser/Met (where Ali represents an aliphatic residue). In other low molecular mass GTP-binding proteins, cysteines are modified by 20-carbon geranylgeranyl groups within a Cys-Ali-Ali-Leu motif. The authors changed the terminal Ser-189 of Ha-ras p21 to Leu-189 by site-directed mutagenesis and found that the protein was modified by ({sup 3}H)geranylgeranyl instead of ({sup 3}H)farnesyl in an in vitro assay. Gel-permeation chromatography of ({sup 3}H)mevalonate-labeled hydrocarbons released from immunoprecipitated ras proteins overexpressed in COS cells indicated that Ha-ras p21 (Leu-189) wasmore » also a substrate for 20-carbon isoprenyl modification in vivo. Additional steps in Ha-ras p21 processing, normally initiated by farnesylation, appear to be supported by geranylgeranylation, based on metabolic labeling of Ha-ras p21 (Leu-189) with ({sup 3}H) palmitate and its subcellular localization in a particulate fraction from COS cells. These observations indicate that the amino acid occupying the terminal position (Xaa) in the Cys-Ali-Ali-Xaa motif constitutes a key structural feature by which Ha-ras p21 and other proteins with ras-like COOH-terminal isoprenylation sites are distinguished as substrates for farnesyl- or geranylgeranyltransferases.« less

  11. The Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  12. N-Acyl derivatives of Asn, new bacterial N-acyl D-amino acids with surfactant activity.

    PubMed

    Peypoux, F; Laprévote, O; Pagadoy, M; Wallach, J

    2004-03-01

    New N-acyl D-amino acids were isolated from Bacillus pumilus IM 1801. Their structures were determined by chemical analysis and mass spectrometry. The lipid part was identified as a mixture of fatty acids with 11, 12, 13, 15, and 16 carbon atoms in the iso, anteiso or n configuration linked by an amide bond with a D-asparagine. They exhibited surfactant properties.

  13. Amino acid selective unlabeling for sequence specific resonance assignments in proteins

    PubMed Central

    Krishnarjuna, B.; Jaipuria, Garima; Thakur, Anushikha

    2010-01-01

    Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective ‘unlabeling’ or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly 13C/15N labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {12COi–15Ni+1}-filtered HSQC, which aids in linking the 1HN/15N resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i − 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to 2H labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of 14N at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies. Electronic supplementary material The online version of this article (doi:10.1007/s10858-010-9459-z) contains supplementary material, which is available to authorized users. PMID:21153044

  14. NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1

    PubMed Central

    Parnham, Stuart; Gaines, William A.; Duggan, Brendan M.; Marcotte, William R.

    2011-01-01

    The building blocks of spider dragline silk are two fibrous proteins secreted from the major ampullate gland named spidroins 1 and 2 (MaSp1, MaSp2). These proteins consist of a large central domain composed of approximately 100 tandem copies of a 35–40 amino acid repeat sequence. Non-repetitive N and C-terminal domains, of which the C-terminal domain has been implicated to transition from soluble and insoluble states during spinning, flank the repetitive core. The N-terminal domain until recently has been largely unknown due to difficulties in cloning and expression. Here, we report nearly complete assignment for all 1H, 13C, and 15N resonances in the 14 kDa N-terminal domain of major ampullate spidroin 1 (MaSp1-N) of the golden orb-web spider Nephila clavipes. PMID:21152998

  15. Specific electrostatic interactions between charged amino acid residues regulate binding of von Willebrand factor to blood platelets.

    PubMed

    Interlandi, Gianluca; Yakovenko, Olga; Tu, An-Yue; Harris, Jeff; Le, Jennie; Chen, Junmei; López, José A; Thomas, Wendy E

    2017-11-10

    The plasma protein von Willebrand factor (VWF) is essential for hemostasis initiation at sites of vascular injury. The platelet-binding A1 domain of VWF is connected to the VWF N-terminally located D'D3 domain through a relatively unstructured amino acid sequence, called here the N-terminal linker. This region has previously been shown to inhibit the binding of VWF to the platelet surface receptor glycoprotein Ibα (GpIbα). However, the molecular mechanism underlying the inhibitory function of the N-terminal linker has not been elucidated. Here, we show that an aspartate at position 1261 is the most critical residue of the N-terminal linker for inhibiting binding of the VWF A1 domain to GpIbα on platelets in blood flow. Through a combination of molecular dynamics simulations, mutagenesis, and A1-GpIbα binding experiments, we identified a network of salt bridges between Asp 1261 and the rest of A1 that lock the N-terminal linker in place such that it reduces binding to GpIbα. Mutations aimed at disrupting any of these salt bridges activated binding unless the mutated residue also formed a salt bridge with GpIbα, in which case the mutations inhibited the binding. These results show that interactions between charged amino acid residues are important both to directly stabilize the A1-GpIbα complex and to indirectly destabilize the complex through the N-terminal linker. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs

    PubMed Central

    Xu, Guanlong; Zhang, Xuxiao; Sun, Yipeng; Liu, Qinfang; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua

    2016-01-01

    The PA-X protein is a fusion protein incorporating the N-terminal 191 amino acids of the PA protein with a short C-terminal sequence encoded by an overlapping ORF (X-ORF) in segment 3 that is accessed by + 1 ribosomal frameshifting, and this X-ORF exists in either full length or a truncated form (either 61-or 41-condons). Genetic evolution analysis indicates that all swine influenza viruses (SIVs) possessed full-length PA-X prior to 1985, but since then SIVs with truncated PA-X have gradually increased and become dominant, implying that truncation of this protein may contribute to the adaptation of influenza virus in pigs. To verify this hypothesis, we constructed PA-X extended viruses in the background of a “triple-reassortment” H1N2 SIV with truncated PA-X, and evaluated their biological characteristics in vitro and in vivo. Compared with full-length PA-X, SIV with truncated PA-X had increased viral replication in porcine cells and swine respiratory tissues, along with enhanced pathogenicity, replication and transmissibility in pigs. Furthermore, we found that truncation of PA-X improved the inhibition of IFN-I mRNA expression. Hereby, our results imply that truncation of PA-X may contribute to the adaptation of SIV in pigs. PMID:26912401

  17. Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs.

    PubMed

    Xu, Guanlong; Zhang, Xuxiao; Sun, Yipeng; Liu, Qinfang; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua

    2016-02-25

    The PA-X protein is a fusion protein incorporating the N-terminal 191 amino acids of the PA protein with a short C-terminal sequence encoded by an overlapping ORF (X-ORF) in segment 3 that is accessed by + 1 ribosomal frameshifting, and this X-ORF exists in either full length or a truncated form (either 61-or 41-condons). Genetic evolution analysis indicates that all swine influenza viruses (SIVs) possessed full-length PA-X prior to 1985, but since then SIVs with truncated PA-X have gradually increased and become dominant, implying that truncation of this protein may contribute to the adaptation of influenza virus in pigs. To verify this hypothesis, we constructed PA-X extended viruses in the background of a "triple-reassortment" H1N2 SIV with truncated PA-X, and evaluated their biological characteristics in vitro and in vivo. Compared with full-length PA-X, SIV with truncated PA-X had increased viral replication in porcine cells and swine respiratory tissues, along with enhanced pathogenicity, replication and transmissibility in pigs. Furthermore, we found that truncation of PA-X improved the inhibition of IFN-I mRNA expression. Hereby, our results imply that truncation of PA-X may contribute to the adaptation of SIV in pigs.

  18. A rapid and efficient one-pot method for the reduction of N-protected α-amino acids to chiral α-amino aldehydes using CDI/DIBAL-H.

    PubMed

    Ivkovic, Jakov; Lembacher-Fadum, Christian; Breinbauer, Rolf

    2015-11-14

    N-Protected amino acids can be easily converted into chiral α-amino aldehydes in a one-pot reaction by activation with CDI followed by reduction with DIBAL-H. This method delivers Boc-, Cbz- and Fmoc-protected amino aldehydes from proteinogenic amino acids in very good isolated yields and complete stereointegrity.

  19. Sequence dependent N-terminal rearrangement and degradation of peptide nucleic acid (PNA) in aqueous solution

    NASA Technical Reports Server (NTRS)

    Eriksson, M.; Christensen, L.; Schmidt, J.; Haaima, G.; Orgel, L.; Nielsen, P. E.

    1998-01-01

    The stability of the PNA (peptide nucleic acid) thymine monomer inverted question markN-[2-(thymin-1-ylacetyl)]-N-(2-aminoaminoethyl)glycine inverted question mark and those of various PNA oligomers (5-8-mers) have been measured at room temperature (20 degrees C) as a function of pH. The thymine monomer undergoes N-acyl transfer rearrangement with a half-life of 34 days at pH 11 as analyzed by 1H NMR; and two reactions, the N-acyl transfer and a sequential degradation, are found by HPLC analysis to occur at measurable rates for the oligomers at pH 9 or above. Dependent on the amino-terminal sequence, half-lives of 350 h to 163 days were found at pH 9. At pH 12 the half-lives ranged from 1.5 h to 21 days. The results are discussed in terms of PNA as a gene therapeutic drug as well as a possible prebiotic genetic material.

  20. Chaperone protein HYPK interacts with the first 17 amino acid region of Huntingtin and modulates mutant HTT-mediated aggregation and cytotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Kamalika Roy; Centre for Neuroscience, Indian Institute of Science, Bangalore 560012; Bhattacharyya, Nitai P., E-mail: nitai_sinp@yahoo.com

    2015-01-02

    Highlights: • HYPK reduces mutant HTT-mediated aggregate formation and cytotoxicity. • Interaction of HYPK with HTT requires N-terminal 17 amino acid of HTT (HTT-N17). • Deletion of HTT-N17 leads to SDS-soluble, smaller, nuclear aggregates. • These smaller aggregates do not associate with HYPK and are more cytotoxic. • Maybe, interaction of HYPK with amphipathic HTT-N17 block HTT aggregate formation. - Abstract: Huntington’s disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminalmore » HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK.« less

  1. The effect of microbial phytase on ileal phosphorus and amino acid digestibility in the broiler chicken.

    PubMed

    Rutherfurd, S M; Chung, T K; Moughan, P J

    2002-09-01

    1. The study aimed to assess the effect of a commercially available microbial phytase on phytate phosphorus and total phosphorus content at the terminal ileum as well as true ileal amino acid digestibility. 2. Five diets, each containing a different plant-based feedstuff, were supplemented with microbial phytase and fed, along with a non-supplemented corresponding diet, to 28-d-old broiler chickens, Chromic oxide was used as an indigestible marker. Ileal contents were collected and analysed, along with the diets, for total phosphorus, phytate phosphorus and amino acids. 3. Endogenous phosphorus determined at the terminal ileum was 272 +/- 108 mg/kg food dry matter (mean +/- SE). Endogenous ileal amino acid flows ranged from 58 +/- 10 mg/kg food dry matter for methionine to 568 +/- 47 mg/kg food dry matter for glutamic acid. 4. Supplementation with microbial phytase resulted in a significantly greater phytate P disappearance from the terminal ileum for rice bran (17% units), but not for soyabean meal, maize, wheat or rapeseed meal. Similarly total phosphorus digestibility was significantly (P < 0.05) higher when microbial phytase was added to the rice-bran-based diet but not for any of the other feedstuffs. 5. Amino acid digestibility was significantly greater in the presence of microbial phytase for all the amino acids examined in wheat, for several of the amino acids each in maize and rapeseed meal and for one amino acid in rice bran and soyabean meal. The average increase in amino acid digestibility for those amino acids affected, was 13, 6, 10, 7 and 12% units for wheat, maize, rapeseed meal, rice bran and soyabean meal, respectively. 6. It appears that microbial phytase improves phosphorus digestibility and amino acid digestibility for certain plant-based feedstuffs.

  2. Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function

    PubMed Central

    2015-01-01

    The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade with dl-threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function. PMID:26719090

  3. Derivatization of amino acids with N,N-dimethyl-2,4-dinitro-5-fluorobenzylamine for liquid chromatography/electrospray ionization mass spectrometry.

    PubMed

    Liu, Zhongfa; Minkler, Paul E; Lin, De; Sayre, Lawrence M

    2004-01-01

    Derivatization, separation and identification of amino acids with a novel compound, N,N-dimethyl-2,4-dinitro-5-fluorobenzylamine (DMDNFB), using high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) was demonstrated. Compared to derivatization with 2,4-dinitrofluorobenzene (DNFB), DMDNFB-derivatized amino acids and dipeptides exhibit much larger ion current signals in the commonly used ESI positive mode, which was attributed to the introduction of the N,N-dimethylaminomethyl protonatable site. Copyright 2004 John Wiley & Sons, Ltd.

  4. Amino acid neurotransmitters and new approaches to anticonvulsant drug action.

    PubMed

    Meldrum, B

    1984-01-01

    Amino acids provide the most universal and important inhibitory (gamma-aminobutyric acid (GABA), glycine) and excitatory (glutamate, aspartate, cysteic acid, cysteine sulphinic acid) neurotransmitters in the brain. An anticonvulsant action may be produced (1) by enhancing inhibitory (GABAergic) processes, and (2) by diminishing excitatory transmission. Possible pharmacological mechanisms for enhancing GABA-mediated inhibition include (1) GABA agonist action, (2) GABA prodrugs, (3) drugs facilitating GABA release from terminals, (4) inhibition of GABA-transaminase, (5) allosteric enhancement of the efficacy of GABA at the receptor complex, (6) direction action on the chloride ionophore, and (7) inhibition of GABA reuptake. Examples of these approaches include the use of irreversible GABA-transaminase inhibitors, such as gamma-vinyl GABA, and the development of anticonvulsant beta-carbolines that interact with the "benzodiazepine receptor." Pharmacological mechanisms for diminishing excitatory transmission include (1) enzyme inhibitors that decrease the maximal rate of synthesis of glutamate or aspartate, (2) drugs that decrease the synaptic release of glutamate or aspartate, and (3) drugs that block the post-synaptic action of excitatory amino acids. Compounds that selectively antagonise excitation due to dicarboxylic amino acids have recently been developed. Those that selectively block excitation produced by N-methyl-D-aspartate (and aspartate) have proved to be potent anticonvulsants in many animal models of epilepsy. This provides a novel approach to the design of anticonvulsant drugs.

  5. Virulence-Affecting Amino Acid Changes in the PA Protein of H7N9 Influenza A Viruses

    PubMed Central

    Yamayoshi, Seiya; Yamada, Shinya; Fukuyama, Satoshi; Murakami, Shin; Zhao, Dongming; Uraki, Ryuta; Watanabe, Tokiko; Tomita, Yuriko; Macken, Catherine; Neumann, Gabriele

    2014-01-01

    ABSTRACT Novel avian-origin influenza A(H7N9) viruses were first reported to infect humans in March 2013. To date, 143 human cases, including 45 deaths, have been recorded. By using sequence comparisons and phylogenetic and ancestral inference analyses, we identified several distinct amino acids in the A(H7N9) polymerase PA protein, some of which may be mammalian adapting. Mutant viruses possessing some of these amino acid changes, singly or in combination, were assessed for their polymerase activities and growth kinetics in mammalian and avian cells and for their virulence in mice. We identified several mutants that were slightly more virulent in mice than the wild-type A(H7N9) virus, A/Anhui/1/2013. These mutants also exhibited increased polymerase activity in human cells but not in avian cells. Our findings indicate that the PA protein of A(H7N9) viruses has several amino acid substitutions that are attenuating in mammals. IMPORTANCE Novel avian-origin influenza A(H7N9) viruses emerged in the spring of 2013. By using computational analyses of A(H7N9) viral sequences, we identified several amino acid changes in the polymerase PA protein, which we then assessed for their effects on viral replication in cultured cells and mice. We found that the PA proteins of A(H7N9) viruses possess several amino acid substitutions that cause attenuation in mammals. PMID:24371069

  6. Common amino acid domain among endopolygalacturonases of ascomycete fungi.

    PubMed Central

    Keon, J P; Waksman, G

    1990-01-01

    The endopolygalacturonase (EC 3.2.1.15) enzymes produced in vitro by three ascomycete fungi, Aspergillus niger, Sclerotinia sclerotiorum, and Colletotrichum lindemuthianum were studied by using thin-layer isoelectric focusing and activity stain overlay techniques. The polygalacturonases from A. niger and S. sclerotiorum consisted of numerous isoforms, whereas the endopolygalacturonase from C. lindemuthianum consisted of a single protein species. The most abundant endopolygalacturonase isoform produced by each of these organisms was purified and characterized. Biochemical parameters, including molecular weight, isoelectric point, kinetic parameters, temperature and pH optima, and thermal stability, were determined. Considerable differences in physical and chemical properties were demonstrated among these fungal polygalacturonases. Antibodies raised against individual proteins exhibited little cross-reaction, suggesting that these enzymes differ structurally as well as biochemically. In contrast, the analysis of the N-terminal amino acid sequences of the three proteins showed extensive homology, particularly in a region labeled domain 1 in which 84% of the amino acids were conserved. Images PMID:2403258

  7. Mutual Exclusion of Urea and Trimethylamine N-oxide from Amino Acids in Mixed Solvent Environment

    NASA Astrophysics Data System (ADS)

    Ganguly, Pritam; Hajari, Timir; Shea, Joan-Emma; van der Vegt, Nico F. A.

    2015-03-01

    We study the solvation thermodynamics of individual amino acids in mixed urea and trimethylamine N-oxide (TMAO) solutions using molecular dynamics simulations and the Kirkwood-Buff theory. Our results on the preferential interactions between the amino acids and the cosolvents (urea and TMAO) show a mutual exclusion of both the cosolvents from the amino acid surface in the mixed cosolvent condition which is followed by an increase in the cosolvent-cosolvent aggregation away from the amino acid surface. The effects of the mixed cosolvents on the association of the amino acids and the preferential solvation of the amino acids by water are found to be highly non-linear in terms of the effects of the individual cosolvents. A similar result has been found for the association of the protein backbone, mimicked by triglycine. Our results have been confirmed by different TMAO force-fields and the mutual exclusions of the cosolvents from the amino acids are found to be independent of the choice of the strength of the TMAO-water interactions. Based on our data, a general mechanism can potentially be proposed for the effects of the mixed cosolvents on the preferential solvations of the solutes including the case of cononsolvency.

  8. -HPLC determination of acidic d-amino acids and their N-methyl derivatives in biological tissues

    PubMed Central

    Tsesarskaia, Mara; Galindo, Erika; Szókán, Gyula; Fisher, George

    2015-01-01

    d-aspartate (d-Asp) and N-methyl-d-aspartate (NMDA) occur in the neuroendocrine systems of vertebrates and invertebrates where they play a role in hormone release and synthesis, neurotransmission, and memory and learning. N-methyl-d-glutamate (NMDG) has also been detected in marine bivalves. Several methods have been used to detect these amino acids, but they require pretreatment of tissue samples with o-phthaldialdehyde (OPA) to remove primary amino acids which interfere with the detection of NMDA and NMDG. We report here a one step derivatization procedure with the chiral reagent N-α-(5-fluoro-2,4-dinitrophenyl)-(d or l)-valine amide, FDNP-Val-NH2, a close analog of Marfey’s reagent but with better resolution and higher molar absorptivity. The diastereomers formed are separated by HPLC on an ODS-Hypersil column eluted with TFA/water – TFA/MeCN. UV absorption at 340 nm permits detection levels as low as 5–10 picomoles. D-Asp, NMDA and NMDG peaks are not obscured by other primary or secondary amino acids; hence pretreatment of tissues with OPA is not required. This method is highly reliable and fast (less than 40 minutes HPLC run). Using this method, we have detected D-Asp, NMDA and NMDG in several biological tissues (octopus brain, optical lobe, and bucchal mass; foot and mantle of the mollusk Scapharca broughtonii), confirming the results of other researchers. PMID:19277955

  9. Research for amino acids in lunar samples.

    NASA Technical Reports Server (NTRS)

    Gehrke, C. W.; Zumwalt, R. W.; Kuo, K.; Rash, J. J.; Aue , W. A.; Stalling, D. L.; Kvenvolden, K. A.; Ponnamperuma, C.

    1972-01-01

    The study was primarily directed toward the examination of Apollo 14 lunar fines for indigenous amino acids or materials which could be converted to amino acids on hydrolysis with 6 N hydrochloric acid. Initial experiments were conducted to confirm the integrity of the derivatization reactions and reagents, and to optimize the gas-liquid chromatographic (GLC) instrumental and chromatographic system for the separation and flame ionization detection of the amino acid derivatives. In studies on the recovery of amino acids added to lunar fines, low recoveries were obtained when 10 ng of each amino acid were added to 50 mg of virgin fines, but the subsequent addition of 50 ng of each to the previously extracted sample resulted in much higher recoveries.

  10. Oxidation of the N-terminal methionine of lens alpha-A crystallin

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Horwitz, J.; Emmons, T.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Antiserum against the N-terminal peptide of bovine alpha-A crystallin has been used to monitor purification of two different seropositive peptides (i.e. T1a and T1b) from a tryptic digest of bovine lens proteins. Both these peptides have similar amino acid compositions, but peptide T1b has a molecular weight 16 atomic mass units larger than T1a, suggesting posttranslational modification. Analysis of ionization fragments of the T1b peptide by mass spectrometry demonstrates that this difference in molecular weight is due to the in vivo oxidation of the N-terminal met residue of the alpha-A crystallin molecule.

  11. Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids.

    PubMed

    Song, Letian; Tsang, Adrian; Sylvestre, Michel

    2015-06-01

    Xylanases are used in many industrial processes including pulp bleaching, baking, detergent, and the hydrolysis of plant cell wall in biofuels production. In this work we have evolved a single domain GH10 xylanase, Xyn10A_ASPNG, from Aspergillus niger to improve its thermostability. We introduced a rational approach involving as the first step a computational analysis to guide the design of a mutagenesis library in targeted regions which identified thermal important residues that were subsequently randomly mutagenized through rounds of iterative saturation mutagenesis (ISM). Focusing on five residues, four rounds of ISM had generated a quintuple mutant 4S1 (R25W/V29A/I31L/L43F/T58I) which exhibited thermal inactivation half-life (t1/2 ) at 60°C that was prolonged by 30 folds in comparison with wild-type enzyme. Whereas the wild-type enzyme retained 0.2% of its initial activity after a heat treatment of 10 min at 60°C and was completely inactivated after 2 min at 65°C, 4S1 mutant retained 30% of its initial activity after 15 min heating at 65°C. Furthermore, the mutant melting temperature (Tm ) increased by 17.4°C compared to the wild type. Each of the five mutations in 4S1 was found to contribute to thermoresistance, but the dramatic improvement of enzyme thermoresistance of 4S1 was attributed to the synergistic effects of the five mutations. Comparison of biochemical data and model structure between 4S1 and the wild-type enzyme suggested that the N-terminal coil of the enzyme is important in stabilizing GH10 xylanase structure. Based on model structure analyses, we propose that enforced hydrophobic interactions within N-terminal elements and between N- and C-terminal ends are responsible for the improved thermostability of Xyn10A_ASPNG. © 2015 Wiley Periodicals, Inc.

  12. Catalytic enantioselective silylation of N-sulfonylimines: asymmetric synthesis of α-amino acids from CO2 via stereospecific carboxylation of α-amino silanes.

    PubMed

    Mita, Tsuyoshi; Sugawara, Masumi; Saito, Keisuke; Sato, Yoshihiro

    2014-06-06

    A catalytic enantioselective silylation of N-tert-butylsulfonylimines using a Cu-secondary diamine complex was demonstrated. The resulting optically active α-amino silanes could be carboxylated under a CO2 atmosphere (1 atm) to afford the corresponding α-amino acids in a stereoretentive manner. This two-step sequence provides a new synthetic protocol for optically active α-amino acids from gaseous CO2 and imines in the presence of a catalytic amount of a chiral source.

  13. Primary amino acid derivatives: substitution of the 4'-N'-benzylamide site in (R)-N'-benzyl 2-amino-3-methylbutanamide, (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide, and (R)-N'-benzyl 2-amino-3-methoxypropionamide provides potent anticonvulsants with pain-attenuating properties.

    PubMed

    King, Amber M; Salomé, Christophe; Salomé-Grosjean, Elise; De Ryck, Marc; Kaminski, Rafal; Valade, Anne; Stables, James P; Kohn, Harold

    2011-10-13

    Recently, we reported that select N'-benzyl 2-substituted 2-amino acetamides (primary amino acid derivatives (PAADs)) exhibited pronounced activities in established whole animal anticonvulsant (i.e., maximal electroshock seizure (MES)) and neuropathic pain (i.e., formalin) models. The anticonvulsant activities of C(2)-hydrocarbon N'-benzyl 2-amino acetamides (MES ED(50) = 13-21 mg/kg) exceeded those of phenobarbital (ED(50) = 22 mg/kg). Two additional studies defining the structure-activity relationship of PAADs are presented in this issue of the journal. In this study, we demonstrated that the anticonvulsant activities of (R)-N'-benzyl 2-amino-3-methylbutanamide and (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide were sensitive to substituents at the 4'-N'-benzylamide site; electron-withdrawing groups retained activity, electron-donating groups led to a loss of activity, and incorporating either a 3-fluorobenzyloxy or 3-fluorophenoxymethyl group using a rationally designed multiple ligand approach improved activity. Additionally, we showed that substituents at the 4'-N'-benzylamide site of (R)-N'-benzyl 2-amino-3-methoxypropionamide also improved anticonvulsant activity, with the 3-fluorophenoxymethyl group providing the largest (∼4-fold) increase in activity (ED(50) = 8.9 mg/kg), a value that surpassed phenytoin (ED(50) = 9.5 mg/kg). Collectively, the pharmacological findings provided new information that C(2)-hydrocarbon PAADs represent a novel class of anticonvulsants.

  14. A reexamination of amino acids in lunar soil

    NASA Technical Reports Server (NTRS)

    Brinton, K. L. F.; Bada, J. L.; Arnold, J. R.

    1993-01-01

    Amino acids in lunar soils provide an important indicator of the level of prebiotic organic compounds on the moon. The results provide insight into the chemistry of amino acid precursors, and furthermore, given the flux of carbonaceous material to the moon, we can evaluate the survival of organics upon impact. The amino acid contents of both hydrolyzed and unhydrolyzed hot-water extracts of Apollo 17 lunar soil were determined using ophthaldialdehyde/N-acetyl cysteine (OPA/NAC) derivatization followed by HPLC analysis. Previous studies of lunar amino acids were inconclusive, as the technique used (derivatization with ninhydrin followed by HPLC analysis) was unable to discriminate between cosmogenic amino acids and terrestrial contaminants. Cosmogenic amino acids are racemic, and many of the amino acids found in carbonaceous meteorites such as Murchison, i.e., alpha-amino-i-butyric acid (aib), are extremely rare on Earth. The ninhydrin method does not distinguish amino acid enantiomers, nor does it detect alpha-alkyl amino acids such as aib, whereas the OPA/NAC technique does both.

  15. The isolation, purification and amino-acid sequence of insulin from the teleost fish Cottus scorpius (daddy sculpin).

    PubMed

    Cutfield, J F; Cutfield, S M; Carne, A; Emdin, S O; Falkmer, S

    1986-07-01

    Insulin from the principal islets of the teleost fish, Cottus scorpius (daddy sculpin), has been isolated and sequenced. Purification involved acid/alcohol extraction, gel filtration, and reverse-phase high-performance liquid chromatography to yield nearly 1 mg pure insulin/g wet weight islet tissue. Biological potency was estimated as 40% compared to porcine insulin. The sculpin insulin crystallised in the absence of zinc ions although zinc is known to be present in the islets in significant amounts. Two other hormones, glucagon and pancreatic polypeptide, were copurified with the insulin, and an N-terminal sequence for pancreatic polypeptide was determined. The primary structure of sculpin insulin shows a number of sequence changes unique so far amongst teleost fish. These changes occur at A14 (Arg), A15 (Val), and B2 (Asp). The B chain contains 29 amino acids and there is no N-terminal extension as seen with several other fish. Presumably as a result of the amino acid substitutions, sculpin insulin does not readily form crystals containing zinc-insulin hexamers, despite the presence of the coordinating B10 His.

  16. [Dynamics of amino acid and protein metabolism in laying hens after the administration of 15N-labeled wheat protein. 11. Incorporation of 15N in the tissues and the amino acids of the muscles].

    PubMed

    Gruhn, K; Zander, R

    1989-03-01

    Over a period of 4 days 12 colostomized laying hens daily received 36 g 15N labelled wheat with 15N excess (15N') of 14.37 atom-% together with a conventional feed mixture for laying hens. The labelling of the lysine N in the wheat was 13.58 atom-%, that of histidine N 14.38 and that of arginine 15N' 13.63 atom-% 15N'. Three hens each were butchered 12, 36, 60 and 108 h after the last 15N' feeding. The first three hens did not receive any feed before being butchered. The following three hens each received the unlabelled feed ration for another 1, 2 or 4 days resp. after the main period until they were butchered. The total of skeleton muscles, the heart and the stomach muscle (without inner skin) of each hen were combined into one sample, cut thinly, drenched with fluid nitrogen and pulverized. N, 15N' and the basic and non-basic amino acids as well as their 15N' were determined in the individual samples. In contrast to the organs, the proteins in the muscle tissue have a long half life so that a slight decrease of atom-% 15N' in the muscles could only be detected after 108 h. The 14N and 15N' quota of the non-basic amino acids in the total nitrogen of the muscles is 50%. The 14N quota of the basic amino acids is 30% and the 15N' quota only 22.5% in the total muscle N. The heavy nitrogen of the free lysine in the TCA soluble N fraction is hardly detectable 36 h and 60 h after the last 15N' supply and not at all after 108 h. In contrast to this, the other two free basic amino acids remain significantly higher labelled in dependence on the last butchering time.

  17. Positive selection in the N-terminal extramembrane domain of lung surfactant protein C (SP-C) in marine mammals.

    PubMed

    Foot, Natalie J; Orgeig, Sandra; Donnellan, Stephen; Bertozzi, Terry; Daniels, Christopher B

    2007-07-01

    Maximum-likelihood models of codon and amino acid substitution were used to analyze the lung-specific surfactant protein C (SP-C) from terrestrial, semi-aquatic, and diving mammals to identify lineages and amino acid sites under positive selection. Site models used the nonsynonymous/synonymous rate ratio (omega) as an indicator of selection pressure. Mechanistic models used physicochemical distances between amino acid substitutions to specify nonsynonymous substitution rates. Site models strongly identified positive selection at different sites in the polar N-terminal extramembrane domain of SP-C in the three diving lineages: site 2 in the cetaceans (whales and dolphins), sites 7, 9, and 10 in the pinnipeds (seals and sea lions), and sites 2, 9, and 10 in the sirenians (dugongs and manatees). The only semi-aquatic contrast to indicate positive selection at site 10 was that including the polar bear, which had the largest body mass of the semi-aquatic species. Analysis of the biophysical properties that were influential in determining the amino acid substitutions showed that isoelectric point, chemical composition of the side chain, polarity, and hydrophobicity were the crucial determinants. Amino acid substitutions at these sites may lead to stronger binding of the N-terminal domain to the surfactant phospholipid film and to increased adsorption of the protein to the air-liquid interface. Both properties are advantageous for the repeated collapse and reinflation of the lung upon diving and resurfacing and may reflect adaptations to the high hydrostatic pressures experienced during diving.

  18. The origin of amino acids in lunar regolith samples

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: α-aminoisobutyric acid (AIB), D- and L-β-amino-n-butyric acid (β-ABA), DL-α-amino-n-butyric acid, γ-amino-n-butyric acid, β-alanine, and ε-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic β-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, β-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the

  19. Characterization of an Invertase with pH Tolerance and Truncation of Its N-Terminal to Shift Optimum Activity toward Neutral pH

    PubMed Central

    Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme. PMID:23638032

  20. Characterization of an invertase with pH tolerance and truncation of its N-terminal to shift optimum activity toward neutral pH.

    PubMed

    Du, Liqin; Pang, Hao; Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme.

  1. Amino acids in the Yamato carbonaceous chrondrite from Antarctica

    NASA Technical Reports Server (NTRS)

    Shimoyama, A.; Ponnamperuma, C.; Yanai, K.

    1979-01-01

    Evidence for the presence of amino acids of extraterrestrial origin in the Antarctic Yamato carbonaceous chrondrite is presented. Hydrolyzed and nonhydrolyzed water-extracted amino acid samples from exterior, middle and interior portions of the meteorite were analyzed by an amino acid analyzer and by gas chromatography of N-TFA-isopropyl amino acid derivatives. Nine protein and six nonprotein amino acids were detected in the meteorite at abundances between 34 and less than one nmole/g, with equal amounts in interior and exterior portions. Nearly equal abundances of the D and L enantiomers of alanine, aspartic acid and glutamic acid were found, indicating the abiotic, therefore extraterrestrial, origin of the amino acids. The Antarctic environment and the uniformity of protein amino acid abundances are discussed as evidence against the racemization of terrestrially acquired amino acids, and similarities between Yamato amino acid compositions and the amino acid compositions of the Murchison and Murray type II carbonaceous chrondrites are indicated.

  2. Nucleotide sequence analysis of the gene encoding the Deinococcus radiodurans surface protein, derived amino acid sequence, and complementary protein chemical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, J.; Peters, M.; Lottspeich, F.

    1987-11-01

    The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate (HPI))-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and M/sub r/ estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%)more » of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids.« less

  3. Amino acid N-malonyltransferases from mung beans. Action on 1-aminocyclopropane-1-carboxylic acid and D-phenylalanine.

    PubMed

    Guo, L; Phillips, A T; Arteca, R N

    1993-12-05

    1-Aminocyclopropane-1-carboxylate (ACC) N-malonyltransferase from etiolated mung bean hypocotyls was examined for its relationship to D-phenylalanine N-malonyltransferase and other enzymes which transfer malonyl groups from malonyl-CoA to D-amino acids. Throughout a 3600-fold purification the ratio of D-phenylalanine N-malonyltransferase activity to ACC N-malonyltransferase activity was unchanged. Antibodies raised against purified ACC N-malonyltransferase 55-kDa protein were also able to precipitate all D-phenylalanine-directed activity from partially purified mung bean extracts. The irreversible inhibitors phenylglyoxal and tetranitromethane reduced malonyltransferase activity towards D-phenylalanine to the same extent as that for ACC. In addition, several other D-amino acids, particularly D-tryptophan and D-tyrosine, were able to inhibit action towards both ACC and D-phenylalanine. These lines of evidence suggest that a single enzyme is capable of promoting malonylation of both ACC and D-phenylalanine. Km values for D-phenylalanine and malonyl-CoA were found to be 48 and 43 microM, respectively; these values are 10-fold lower than the corresponding values when ACC was substrate. Coenzyme A was a noncompetitive (mixed type) product inhibitor towards malonyl-CoA at both unsaturated and saturated ACC concentrations. The enzyme was also inhibited uncompetitively at high concentrations of malonyl-CoA. We propose that the enzyme follows an Ordered Bi-Bi reaction pathway, with the amino acid substrate being bound initially.

  4. Amino acids in the Martian meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.; Brinton, K. L.; McDonald, G. D.

    1999-01-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  5. Amino acids in the Martian meteorite Nakhla.

    PubMed

    Glavin, D P; Bada, J L; Brinton, K L; McDonald, G D

    1999-08-03

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  6. Amino acids in the Martian meteorite Nakhla

    PubMed Central

    Glavin, Daniel P.; Bada, Jeffrey L.; Brinton, Karen L. F.; McDonald, Gene D.

    1999-01-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, β-alanine, and γ-amino-n-butyric acid (γ-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the d/l ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth. PMID:10430856

  7. Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain.

    PubMed

    Narayanan, Sunilkumar Puthenpurackal; Nair, Divya Gopalakrishnan; Schaal, Daniel; Barbosa de Aguiar, Marisa; Wenzel, Sabine; Kremer, Werner; Schwarzinger, Stephan; Kalbitzer, Hans Robert

    2016-06-24

    Fatal neurodegenerative disorders termed transmissible spongiform encephalopathies (TSEs) are associated with the accumulation of fibrils of misfolded prion protein PrP. The noble gas xenon accommodates into four transiently enlarged hydrophobic cavities located in the well-folded core of human PrP(23-230) as detected by [(1)H, (15)N]-HSQC spectroscopy. In thermal equilibrium a fifth xenon binding site is formed transiently by amino acids A120 to L125 of the presumably disordered N-terminal domain and by amino acids K185 to T193 of the well-folded domain. Xenon bound PrP was modelled by restraint molecular dynamics. The individual microscopic and macroscopic dissociation constants could be derived by fitting the data to a model including a dynamic opening and closing of the cavities. As observed earlier by high pressure NMR spectroscopy xenon binding influences also other amino acids all over the N-terminal domain including residues of the AGAAAAGA motif indicating a structural coupling between the N-terminal domain and the core domain. This is in agreement with spin labelling experiments at positions 93 or 107 that show a transient interaction between the N-terminus and the start of helix 2 and the end of helix 3 of the core domain similar to that observed earlier by Zn(2+)-binding to the octarepeat motif.

  8. Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain

    PubMed Central

    Narayanan, Sunilkumar Puthenpurackal; Nair, Divya Gopalakrishnan; Schaal, Daniel; Barbosa de Aguiar, Marisa; Wenzel, Sabine; Kremer, Werner; Schwarzinger, Stephan; Kalbitzer, Hans Robert

    2016-01-01

    Fatal neurodegenerative disorders termed transmissible spongiform encephalopathies (TSEs) are associated with the accumulation of fibrils of misfolded prion protein PrP. The noble gas xenon accommodates into four transiently enlarged hydrophobic cavities located in the well-folded core of human PrP(23–230) as detected by [1H, 15N]-HSQC spectroscopy. In thermal equilibrium a fifth xenon binding site is formed transiently by amino acids A120 to L125 of the presumably disordered N-terminal domain and by amino acids K185 to T193 of the well-folded domain. Xenon bound PrP was modelled by restraint molecular dynamics. The individual microscopic and macroscopic dissociation constants could be derived by fitting the data to a model including a dynamic opening and closing of the cavities. As observed earlier by high pressure NMR spectroscopy xenon binding influences also other amino acids all over the N-terminal domain including residues of the AGAAAAGA motif indicating a structural coupling between the N-terminal domain and the core domain. This is in agreement with spin labelling experiments at positions 93 or 107 that show a transient interaction between the N-terminus and the start of helix 2 and the end of helix 3 of the core domain similar to that observed earlier by Zn2+-binding to the octarepeat motif. PMID:27341298

  9. Human Protein and Amino Acid Requirements.

    PubMed

    Hoffer, L John

    2016-05-01

    Human protein and amino acid nutrition encompasses a wide, complex, frequently misunderstood, and often contentious area of clinical research and practice. This tutorial explains the basic biochemical and physiologic principles that underlie our current understanding of protein and amino acid nutrition. The following topics are discussed: (1) the identity, measurement, and essentiality of nutritional proteins; (2) the definition and determination of minimum requirements; (3) nutrition adaptation; (4) obligatory nitrogen excretion and the minimum protein requirement; (5) minimum versus optimum protein intakes; (6) metabolic responses to surfeit and deficient protein intakes; (7) body composition and protein requirements; (8) labile protein; (9) N balance; (10) the principles of protein and amino acid turnover, including an analysis of the controversial indicator amino acid oxidation technique; (11) general guidelines for evaluating protein turnover articles; (12) amino acid turnover versus clearance; (13) the protein content of hydrated amino acid solutions; (14) protein requirements in special situations, including protein-catabolic critical illness; (15) amino acid supplements and additives, including monosodium glutamate and glutamine; and (16) a perspective on the future of protein and amino acid nutrition research. In addition to providing practical information, this tutorial aims to demonstrate the importance of rigorous physiologic reasoning, stimulate intellectual curiosity, and encourage fresh ideas in this dynamic area of human nutrition. In general, references are provided only for topics that are not well covered in modern textbooks. © 2016 American Society for Parenteral and Enteral Nutrition.

  10. Partial amino-acid sequence of the precursor of an immunoglobulin light chain containing NH2-terminal pyroglutamic acid.

    PubMed Central

    Burstein, Y; Kantour, F; Schechter, I

    1976-01-01

    Analyses of amino-acid sequences of the total cell-free products programmed by the mRNA of MOPC-104E gamma light (L)-chain show that over 95% of the products have sequences of a distinct protein that correspond to the L-chain precursor. In this precursor an extra piece is coupled to the NH2-terminus of the mature L-chain. Analyses of products labeled with [3H]alanine, [3H]leucine, and [3H]proline demonstrate that the extra piece is composed of at least 18 residues. Analyses of [35S]methione-labeled product indicate that the extra piece may contain an additional NH2-terminal methionine, which is detected in about 10% of the molecules. Partial recovery of the NJ2-terminal methionine (alanine, leucine, and proline are recovered in yields close to theoretical, greater than 95%) suggests that it is the initiator methionine, which is known to be short lived in eukaryotes due to rapid hydrolysis. Thus, the extra piece seems to be 19 residues in length, and it contains one methionine at the NH2-terminus, three alanines at positions 2, 12, and 17, and five leucines at positions 6, 8, 10, 11, and 13. The close gathering of leucine residues, as well as their abundance (26%), suggest that the extra piece would be quite hydrophobic. Hydrophobicity seems to be a general property of the extra piece, since similar clusters of leucine were found in the precursors of 3 KL-chains (Burstein, Y. & Schechter, I. (1976) Biochem. J. 157, 145-151). The NH2-terminus of the mature MOPC-104E gamma L-chain is blocked by pyroglutamic acid. The fact that in the precursor a peptide segment precedes this NH2-terminus establishes that pyroglutamic acid is not the initiator residue for synthesis of the L-chain. Apparently, the pyroglutamic acid is formed by cyclization of glutamic acid or glutamine during cleavage of the extra piece to yield the mature L-chain. Images PMID:822420

  11. Amino acid sequences of the ribosomal proteins HL30 and HmaL5 from the archaebacterium Halobacterium marismortui.

    PubMed

    Hatakeyama, T; Hatakeyama, T

    1990-07-06

    The complete amino acid sequences of the ribosomal proteins HL30 and HmaL5 from the archaebacterium Halobacterium marismortui were determined. Protein HL30 was found to be acetylated at its N-terminal amino acid and shows homology to the eukaryotic ribosomal proteins YL34 from yeast and RL31 from rat. Protein HmaL5 was homologous to the protein L5 from Escherichia coli and Bacillus stearothermophilus as well as to YL16 from yeast. HmaL5 shows more similarities to its eukaryotic counterpart than to eubacterial ones.

  12. Amino acids

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  13. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  14. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    PubMed

    Cao, Xiaochuang; Ma, Qingxu; Zhong, Chu; Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  15. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China

    PubMed Central

    Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  16. N-Carbamoyl-β-alanine amidohydrolase from Agrobacterium tumefaciens C58: a promiscuous enzyme for the production of amino acids.

    PubMed

    Martínez-Gómez, A I; Andújar-Sánchez, M; Clemente-Jiménez, J M; Neira, J L; Rodríguez-Vico, F; Martínez-Rodríguez, S; Las Heras-Vázquez, F J

    2011-11-01

    The availability of enzymes with a high promiscuity/specificity relationship permits the hydrolysis of several substrates with a view to obtaining a certain product or using one enzyme for several productive lines. N-Carbamoyl-β-alanine amidohydrolase from Agrobacterium tumefaciens (Atβcar) has shown high versatility to hydrolyze different N-carbamoyl-, N-acetyl- and N-formyl-amino acids to produce different α, β, γ and δ amino acids. We have calculated the promiscuity index for the enzyme, obtaining a value of 0.54, which indicates that it is a modestly promiscuous enzyme. Atβcar presented the highest probability of hydrolysis for N-carbamoyl-amino acids, being the enzyme more efficient for the production of α-amino acids. We have also demonstrated by mutagenesis, modelling, kinetic and binding experiments that W218 and A359 indirectly influence the plasticity of the enzyme due to interaction with the environment of R291, the key residue for catalytic activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    USDA-ARS?s Scientific Manuscript database

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  18. Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles.

    PubMed

    Claes, Laurens; Verduyckt, Jasper; Stassen, Ivo; Lagrain, Bert; De Vos, Dirk E

    2015-04-18

    Oxidative decarboxylation of amino acids into nitriles was performed using molecular oxygen as terminal oxidant and a heterogeneous ruthenium hydroxide-based catalyst. A range of amino acids was oxidized in very good yield, using water as the solvent.

  19. N-Linked Glycosylation and Sequence Changes in a Critical Negative Control Region of the ASCT1 and ASCT2 Neutral Amino Acid Transporters Determine Their Retroviral Receptor Functions

    PubMed Central

    Marin, Mariana; Lavillette, Dimitri; Kelly, Sean M.; Kabat, David

    2003-01-01

    A widely dispersed interference group of retroviruses that includes the feline endogenous virus (RD114), baboon endogenous virus (BaEV), human endogenous virus type W (HERV-W), and type D primate retroviruses uses the human Na+-dependent neutral amino acid transporter type 2 (hASCT2; gene name, SLC1A5) as a common cell surface receptor. Although hamster cells are fully resistant to these viruses and murine cells are susceptible only to BaEV and HERV-W pseudotype viruses, these rodent cells both become highly susceptible to all of the viruses after treatment with tunicamycin, an inhibitor of protein N-linked glycosylation. A partial explanation for these results was recently provided by findings that the orthologous murine transporter mASCT2 is inactive as a viral receptor, that a related (ca. 55% identity) murine paralog (mASCT1; gene name, SLC1A4) mediates infections specifically of BaEV and HERV-W, and that N-deglycosylation of mASCT1 activates it as a receptor for all viruses of this interference group. Because the only two N-linked oligosaccharides in mASCT1 occur in the carboxyl-terminal region of extracellular loop 2 (ECL2), it was inferred that this region contributes in an inhibitory manner to infections by RD114 and type D primate viruses. To directly and more thoroughly investigate the receptor active sites, we constructed and analyzed a series of hASCT2/mASCT2 chimeras and site-directed mutants. Our results suggest that a hypervariable sequence of 21 amino acids in the carboxyl-terminal portion of ECL2 plays a critical role in determining the receptor properties of ASCT2 proteins for all viruses in this interference group. In addition, we analyzed the tunicamycin-dependent viral susceptibility of hamster cells. In contrast to mASCT1, which contains two N-linked oligosaccharides that partially restrict viral infections, hamster ASCT1 contains an additional N-linked oligosaccharide clustered close to the others in the carboxyl-terminal region of ECL2

  20. N-terminal deletions in Rous sarcoma virus p60src: effects on tyrosine kinase and biological activities and on recombination in tissue culture with the cellular src gene.

    PubMed Central

    Cross, F R; Garber, E A; Hanafusa, H

    1985-01-01

    We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein. Images PMID:2426576

  1. Functional analysis of fructosyl-amino acid oxidases of Aspergillus oryzae.

    PubMed

    Akazawa, Shin-Ichi; Karino, Tetsuya; Yoshida, Nobuyuki; Katsuragi, Tohoru; Tani, Yoshiki

    2004-10-01

    Three active fractions of fructosyl-amino acid oxidase (FAOD-Ao1, -Ao2a, and -Ao2b) were isolated from Aspergillus oryzae strain RIB40. N-terminal and internal amino acid sequences of FAOD-Ao2a corresponded to those of FAOD-Ao2b, suggesting that these two isozymes were derived from the same protein. FAOD-Ao1 and -Ao2 were different in substrate specificity and subunit assembly; FAOD-Ao2 was active toward N(epsilon)-fructosyl N(alpha)-Z-lysine and fructosyl valine (Fru-Val), whereas FAOD-Ao1 was not active toward Fru-Val. The genes encoding the FAOD isozymes (i.e., FAOAo1 and FAOAo2) were cloned by PCR with an FAOD-specific primer set. The deduced amino acid sequences revealed that FAOD-Ao1 was 50% identical to FAOD-Ao2, and each isozyme had a peroxisome-targeting signal-1, indicating their localization in peroxisomes. The genes was expressed in Escherichia coli and rFaoAo2 showed the same characteristics as FAOD-Ao2, whereas rFaoAo1 was not active. FAOAo2 disruptant was obtained by using ptrA as a selective marker. Wild-type strain grew on the medium containing Fru-Val as the sole carbon and nitrogen sources, but strain Delta faoAo2 did not grow. Addition of glucose or (NH(4))(2)SO(4) to the Fru-Val medium did not affect the assimilation of Fru-Val by wild-type, indicating glucose and ammonium repressions did not occur in the expression of the FAOAo2 gene. Furthermore, conidia of the wild-type strain did not germinate on the medium containing Fru-Val and NaNO(2) as the sole carbon and nitrogen sources, respectively, suggesting that Fru-Val may also repress gene expression of nitrite reductase. These results indicated that FAOD is needed for utilization of fructosyl-amino acids as nitrogen sources in A. oryzae.

  2. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  3. Distribution, industrial applications, and enzymatic synthesis of D-amino acids.

    PubMed

    Gao, Xiuzhen; Ma, Qinyuan; Zhu, Hailiang

    2015-04-01

    D-Amino acids exist widely in microbes, plants, animals, and food and can be applied in pharmaceutical, food, and cosmetics. Because of their widespread applications in industry, D-amino acids have recently received more and more attention. Enzymes including D-hydantoinase, N-acyl-D-amino acid amidohydrolase, D-amino acid amidase, D-aminopeptidase, D-peptidase, L-amino acid oxidase, D-amino acid aminotransferase, and D-amino acid dehydrogenase can be used for D-amino acids synthesis by kinetic resolution or asymmetric amination. In this review, the distribution, industrial applications, and enzymatic synthesis methods are summarized. And, among all the current enzymatic methods, D-amino acid dehydrogenase method not only produces D-amino acid by a one-step reaction but also takes environment and atom economics into consideration; therefore, it is deserved to be paid more attention.

  4. The localization of a vitamin K-induced modification in an N-terminal fragment of human prothrombin

    PubMed Central

    Skotland, Tore; Holm, Turid; Østerud, Bjarne; Flengsrud, Ragnar; Prydz, Hans

    1974-01-01

    1. The N-terminal fragment (PF-I) split off from prothrombin during coagulation was purified to homogeneity from human serum. 2. The apparent molecular weight is 27000±2000 in sodium dodecyl sulphate–polyacrylamide-gel electrophoresis, whereas a value of about 19600 is obtained by calculation based on amino acid and carbohydrate analyses. The N-terminal sequence is an Ala-Asx bond. The fragment contains about 16% carbohydrate, binds phospholipids in the presence of Ca2+ and is adsorbed to BaSO4. The pKa of its BaSO4-binding group(s) is 3.1–3.5. 3. By CNBr cleavage of fragment PF-I two peptides (C-1 and C-2) were obtained with molecular weights of about 5900 (C-2) and 12400 (C-1) on the basis of amino acid and carbohydrate analyses. Only the smaller (N-terminal) peptide is adsorbed to BaSO4 and, since the ability of the whole protein to bind to BaSO4 is known to be absent in samples obtained from patients treated with vitamin K antagonists, this peptide probably contains the site of a modification to the structure of the protein which occurs during biosynthesis and depends on vitamin K. This peptide does not contain hexosamine or sialic acid. ImagesFig. 2. PMID:4219283

  5. Mass spectrometry of analytical derivatives. 1. Cyanide cations in the spectra of N-alkyl-N-perfluoroacyl-α-amino acids and their methyl esters

    PubMed Central

    Todua, Nino G.; Tretyakov, Kirill V.; Mikaia, Anzor I.

    2016-01-01

    The central mission for the development of the National Institute of Standards and Technology/National Institutes of Health/Environmental Protection Agency Mass Spectral Library is the acquisition of reference gas chromatography–mass spectrometry data for important compounds and their chemical modification products. The addition of reliable reference data of various derivatives of amino acids to The Library, and the study of their behavior under electron ionization conditions may be useful for their identification, structure elucidation, and a better understanding of the data obtained when the same derivatives are subjected to other ionization methods. N-Alkyl-N-perfluoroacyl derivatives of amino acids readily produce previously unreported alkylnitrilium cations of composition [HC≡N-alkyl]+. Homologous [HC≡N-aryl]+ cations are typical for corresponding N-aryl analogs. The formation of other ions characteristic for these derivatives involves oxygen rearrangement giving rise to ions [CnF2n+1–C≡N+–CnH2n+1] and [CnF2n+1–C≡N+-aryl]. The introduction of an N-benzyl substituent in a molecule favors a process producing benzylidene iminium cations. l-Threonine and l-cysteine derivatives exhibit more fragmentation pathways not typical for other α-amino acids; additionally, the Nω-amino group in l-lysine directs the dissociation process and provides structural information on the substitution at the amino functions in the molecule. PMID:26307698

  6. Functional and computational analysis of amino acid patterns predictive of type III secretion system substrates in Pseudomonas syringae

    USDA-ARS?s Scientific Manuscript database

    Bacterial type III secretion systems (T3SSs) deliver proteins called effectors into eukaryotic cells. Although N-terminal amino acid sequences are required for translocation, the mechanism of substrate recognition by the T3SS is unknown. Almost all actively deployed T3SS substrates in the plant path...

  7. A highly conserved N-terminal sequence for teleost vitellogenin with potential value to the biochemistry, molecular biology and pathology of vitellogenesis

    USGS Publications Warehouse

    Folmar, L.D.; Denslow, N.D.; Wallace, R.A.; LaFleur, G.; Gross, T.S.; Bonomelli, S.; Sullivan, C.V.

    1995-01-01

    N-terminal amino acid sequences for vitellogenin (Vtg) from six species of teleost fish (striped bass, mummichog, pinfish, brown bullhead, medaka, yellow perch and the sturgeon) are compared with published N-terminal Vtg sequences for the lamprey, clawed frog and domestic chicken. Striped bass and mummichog had 100% identical amino acids between positions 7 and 21, while pinfish, brown bullhead, sturgeon, lamprey, Xenopus and chicken had 87%, 93%, 60%, 47%, 47-60%) for four transcripts and had 40% identical, respectively, with striped bass for the same positions. Partial sequences obtained for medaka and yellow perch were 100% identical between positions 5 to 10. The potential utility of this conserved sequence for studies on the biochemistry, molecular biology and pathology of vitellogenesis is discussed.

  8. Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology.

    PubMed

    Sasabe, Jumpei; Suzuki, Masataka

    2018-05-22

    Living organisms enantioselectively employ L-amino acids as the molecular architecture of protein synthesized in the ribosome. Although L-amino acids are dominantly utilized in most biological processes, accumulating evidence points to the distinctive roles of D-amino acids in non-ribosomal physiology. Among the three domains of life, bacteria have the greatest capacity to produce a wide variety of D-amino acids. In contrast, archaea and eukaryotes are thought generally to synthesize only two kinds of D-amino acids: D-serine and D-aspartate. In mammals, D-serine is critical for neurotransmission as an endogenous coagonist of N-methyl D-aspartate receptors. Additionally, D-aspartate is associated with neurogenesis and endocrine systems. Furthermore, recognition of D-amino acids originating in bacteria is linked to systemic and mucosal innate immunity. Among the roles played by D-amino acids in human pathology, the dysfunction of neurotransmission mediated by D-serine is implicated in psychiatric and neurological disorders. Non-enzymatic conversion of L-aspartate or L-serine residues to their D-configurations is involved in age-associated protein degeneration. Moreover, the measurement of plasma or urinary D-/L-serine or D-/L-aspartate levels may have diagnostic or prognostic value in the treatment of kidney diseases. This review aims to summarize current understanding of D-amino-acid-associated biology with a major focus on mammalian physiology and pathology.

  9. Helix A Stabilization Precedes Amino-terminal Lobe Activation upon Calcium Binding to Calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Baowei; Lowry, David; Mayer, M. Uljana

    2008-08-09

    The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)-resorufin (ReAsH), which upon binding to an engineered tetracysteine binding motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the 1H- 15N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH.more » Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe (Kd = 0.36 ± 0.04 μM), which results in a reduction in the rate of ReAsH binding from 4900 M -1 sec -1 to 370 M -1 sec -1. In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe requires calcium-occupancy of amino-terminal sites (Kd = 18 ± 3 μM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces secondary structural changes within the interdomain

  10. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2009-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.

  11. Racemic resolution of some DL-amino acids using Aspergillus fumigatus L-amino acid oxidase.

    PubMed

    Singh, Susmita; Gogoi, Binod K; Bezbaruah, Rajib L

    2011-07-01

    The ability of Aspergillus fumigatus L-amino acid oxidase (L-aao) to cause the resolution of racemic mixtures of DL-amino acids was investigated with DL-alanine, DL-phenylalanine, DL-tyrosine, and DL-aspartic acid. A chiral column, Crownpak CR+ was used for the analysis of the amino acids. The enzyme was able to cause the resolution of the three DL-amino acids resulting in the production of optically pure D-alanine (100% resolution), D-phenylalanine (80.2%), and D-tyrosine (84.1%), respectively. The optically pure D-amino acids have many uses and thus can be exploited industrially. This is the first report of the use of A. fumigatus L: -amino acid oxidase for racemic resolution of DL-amino acids.

  12. Fitness landscape transformation through a single amino acid change in the rho terminator.

    PubMed

    Freddolino, Peter L; Goodarzi, Hani; Tavazoie, Saeed

    2012-05-01

    Regulatory networks allow organisms to match adaptive behavior to the complex and dynamic contingencies of their native habitats. Upon a sudden transition to a novel environment, the mismatch between the native behavior and the new niche provides selective pressure for adaptive evolution through mutations in elements that control gene expression. In the case of core components of cellular regulation and metabolism, with broad control over diverse biological processes, such mutations may have substantial pleiotropic consequences. Through extensive phenotypic analyses, we have characterized the systems-level consequences of one such mutation (rho*) in the global transcriptional terminator Rho of Escherichia coli. We find that a single amino acid change in Rho results in a massive change in the fitness landscape of the cell, with widely discrepant fitness consequences of identical single locus perturbations in rho* versus rho(WT) backgrounds. Our observations reveal the extent to which a single regulatory mutation can transform the entire fitness landscape of the cell, causing a massive change in the interpretation of individual mutations and altering the evolutionary trajectories which may be accessible to a bacterial population.

  13. Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow Plum pox virus to adapt to new hosts.

    PubMed

    Carbonell, Alberto; Maliogka, Varvara I; Pérez, José de Jesús; Salvador, Beatriz; León, David San; García, Juan Antonio; Simón-Mateo, Carmen

    2013-10-01

    Plum pox virus (PPV)-D and PPV-R are two isolates from strain D of PPV that differ in host specificity. Previous analyses of chimeras originating from PPV-R and PPV-D suggested that the N terminus of the coat protein (CP) includes host-specific pathogenicity determinants. Here, these determinants were mapped precisely by analyzing the infectivity in herbaceous and woody species of chimeras containing a fragment of the 3' region of PPV-D (including the region coding for the CP) in a PPV-R backbone. These chimeras were not infectious in Prunus persica, but systemically infected Nicotiana clevelandii and N. benthamiana when specific amino acids were modified or deleted in a short 30-amino-acid region of the N terminus of the CP. Most of these mutations did not reduce PPV fitness in Prunus spp. although others impaired systemic infection in this host. We propose a model in which the N terminus of the CP, highly relevant for virus systemic movement, is targeted by a host defense mechanism in Nicotiana spp. Mutations in this short region allow PPV to overcome the defense response in this host but can compromise the efficiency of PPV systemic movement in other hosts such as Prunus spp.

  14. Supernovae, neutrinos and the chirality of amino acids.

    PubMed

    Boyd, Richard N; Kajino, Toshitaka; Onaka, Takashi

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the (14)N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

  15. Polymerization of amino acids containing nucleotide bases

    NASA Technical Reports Server (NTRS)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  16. The spark discharge synthesis of amino acids from various hydrocarbons

    NASA Technical Reports Server (NTRS)

    Ring, D.; Miller, S. L.

    1984-01-01

    The spark discharge synthesis of amino acids using an atmosphere of CH4+N2+H2O+NH3 has been investigated with variable pNH3. The amino acids produced using higher hydrocarbons (ethane, ethylene, acetylene, propane, butane, and isobutane) instead of CH4 were also investigated. There was considerable range in the absolute yields of amino acids, but the yields relative to glycine (or alpha-amino-n-butyric acid) were more uniform. The relative yields of the C3 to C6 aliphatic alpha-amino acids are nearly the same (with a few exceptions) with all the hydrocarbons. The glycine yields are more variable. The precursors to the C3-C6 aliphatic amino acids seem to be produced in the same process, which is separate from the synthesis of glycine precursors. It may be possible to use these relative yields as a signature for a spark discharge synthesis provided corrections can be made for subsequent decomposition events (e.g. in the Murchison meteorite).

  17. The Amino-Terminal PrP Domain Is Crucial to Modulate Prion Misfolding and Aggregation

    PubMed Central

    Cordeiro, Yraima; Kraineva, Julia; Gomes, Mariana P. B.; Lopes, Marilene H.; Martins, Vilma R.; Lima, Luís M. T. R.; Foguel, Débora; Winter, Roland; Silva, Jerson L.

    2005-01-01

    The main hypothesis for prion diseases is that the cellular protein (PrPC) can be altered into a misfolded, β-sheet-rich isoform (PrPSc), which undergoes aggregation and triggers the onset of transmissible spongiform encephalopathies. Here, we investigate the effects of amino-terminal deletion mutations, rPrPΔ51–90 and rPrPΔ32–121, on the stability and the packing properties of recombinant murine PrP. The region lacking in rPrPΔ51–90 is involved physiologically in copper binding and the other construct lacks more amino-terminal residues (from 32 to 121). The pressure stability is dramatically reduced with decreasing N-domain length and the process is not reversible for rPrPΔ51–90 and rPrPΔ32–121, whereas it is completely reversible for the wild-type form. Decompression to atmospheric pressure triggers immediate aggregation for the mutants in contrast to a slow aggregation process for the wild-type, as observed by Fourier-transform infrared spectroscopy. The temperature-induced transition leads to aggregation of all rPrPs, but the unfolding temperature is lower for the rPrP amino-terminal deletion mutants. The higher susceptibility to pressure of the amino-terminal deletion mutants can be explained by a change in hydration and cavity distribution. Taken together, our results show that the amino-terminal region has a pivotal role on the development of prion misfolding and aggregation. PMID:16040743

  18. Excitatory Amino Acids as Transmitters in the Brain

    DTIC Science & Technology

    1989-04-30

    Amino Acids as Transmitters in the Brain 12 PERSONAL AUTHOR(S) Cotman, C.W. 13a TYPE OF REPORT 1i3b TIME OYERED 14. DATE OF REPORT (Ye, Month, Day) 5s...necenearia i dentf by block number) FIEL.D GROUP SBGOP Excitatory receptors, excitatory amino acids , excitotoxicit N-methyl-D-aspartate, kainate...mediated by excitatory amino acids and their receptors. These receptors participate in both standard synaptic transmission as well as higher order

  19. UNSATURATED AMINO ACIDS V.

    PubMed Central

    Shapira, Jacob; Dittmer, Karl

    1961-01-01

    Shapira, Jacob (Department of Chemistry, Florida State University, Tallahassee) and Karl Dittmer. Unsaturated amino acids. V. Microbiological properties of some halogenated olefinic amino acids. J. Bacteriol. 82:640–647. 1961.—It has been shown previously that several amino acid analogues containing unsaturated linkages were inhibitors of the growth of Escherichia coli and Saccharomyces cerevisiae. This paper reports the results obtained when a series of unsaturated halogen-containing amino acids was examined. The cis isomer of ω-chloroallylglycine showed the greatest toxicity yet found in this series of unsaturated amino acids toward E. coli, whereas the trans-isomer was usually far less toxic. The major effect of cis-ω-chloroallylglycine in E. coli appeared to be to extend the lag phase before the normal rate of growth began. A wide variety of amino acids was capable of partially or completely preventing the toxicity of low levels of these compounds. At higher levels, relatively few amino acids (primarily valine, leucine, and glutamic acid) were effective. In E. coli, cis-ω-chloroallylglycine showed an unusual [Formula: see text] relationship with both glutamic acid and valine over a wide range in concentration. PMID:13911278

  20. Echinococcus granulosus: specificity of amino acid transport systems in protoscoleces.

    PubMed

    Jeffs, S A; Arme, C

    1987-08-01

    Protoscoleces of Echinococcus granulosus absorb the L-amino acids proline, methionine, leucine, alanine, serine, phenylalanine, lysine and glutamic acid by a combination of mediated transport and diffusion. All eight amino acids were accumulated against a concentration gradient. Comparison of Kt and Vmax values suggests that a low affinity for a particular compound is compensated for by a relatively larger number of transport sites for that compound. Four systems serve for the transport of the eight substrates studied: 2 for neutral (EgN1, EgN2) and 1 each for acidic (EgA) and basic (EgB) amino acids. All eight amino acids are incorporated into protein to varying degrees and substantial portions of absorbed L-alanine and L-methionine are metabolized into other compounds.

  1. Structure of a designed, right-handed coiled-coil tetramer containing all biological amino acids

    PubMed Central

    Sales, Mark; Plecs, Joseph J.; Holton, James M.; Alber, Tom

    2007-01-01

    The previous design of an unprecedented family of two-, three-, and four-helical, right-handed coiled coils utilized nonbiological amino acids to efficiently pack spaces in the oligomer cores. Here we show that a stable, right-handed parallel tetrameric coiled coil, called RH4B, can be designed entirely using biological amino acids. The X-ray crystal structure of RH4B was determined to 1.1 Å resolution using a designed metal binding site to coordinate a single Yb2+ ion per 33-amino acid polypeptide chain. The resulting experimental phases were particularly accurate, and the experimental electron density map provided an especially clear, unbiased view of the molecule. The RH4B structure closely matched the design, with equivalent core rotamers and an overall root-mean-square deviation for the N-terminal repeat of the tetramer of 0.24 Å. The clarity and resolution of the electron density map, however, revealed alternate rotamers and structural differences between the three sequence repeats in the molecule. These results suggest that the RH4B structure populates an unanticipated variety of structures. PMID:17766380

  2. Structure of a designed, right-handed coiled-coil tetramer containing all biological amino acids.

    PubMed

    Sales, Mark; Plecs, Joseph J; Holton, James M; Alber, Tom

    2007-10-01

    The previous design of an unprecedented family of two-, three-, and four-helical, right-handed coiled coils utilized nonbiological amino acids to efficiently pack spaces in the oligomer cores. Here we show that a stable, right-handed parallel tetrameric coiled coil, called RH4B, can be designed entirely using biological amino acids. The X-ray crystal structure of RH4B was determined to 1.1 Angstrom resolution using a designed metal binding site to coordinate a single Yb(2+) ion per 33-amino acid polypeptide chain. The resulting experimental phases were particularly accurate, and the experimental electron density map provided an especially clear, unbiased view of the molecule. The RH4B structure closely matched the design, with equivalent core rotamers and an overall root-mean-square deviation for the N-terminal repeat of the tetramer of 0.24 Angstrom. The clarity and resolution of the electron density map, however, revealed alternate rotamers and structural differences between the three sequence repeats in the molecule. These results suggest that the RH4B structure populates an unanticipated variety of structures.

  3. PLASMA PROTEIN AND HEMOGLOBIN PRODUCTION : DELETION OF INDIVIDUAL AMINO ACIDS FROM GROWTH MIXTURE OF TEN ESSENTIAL AMINO ACIDS. SIGNIFICANT CHANGES IN URINARY NITROGEN.

    PubMed

    Robscheit-Robbins, F S; Miller, L L; Whipple, G H

    1947-02-28

    Given healthy dogs fed abundant iron and protein-free or low protein diets with sustained anemia and hypoproteinemia, we can study the capacity of these animals to produce simultaneously new hemoglobin and plasma protein. Reserve stores of blood protein-building materials are measurably depleted and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for weeks or months depending upon the intake of food proteins or amino acid mixtures. These dogs are very susceptible to infection and various poisons. Dogs tire of these diets and loss of appetite terminates many experiments. Under these conditions (double depletion) standard growth mixtures of essential amino acids are tested to show the response in blood protein output and urinary nitrogen balance. As a part of each tabulated experiment one of the essential amino acids is deleted from the complete growth mixture to compare such response with that of the whole mixture. Methionine, threonine, phenylalanine, and tryptophane when singly eliminated from the complete amino acid mixture do effect a sharp rise in urinary nitrogen. This loss of urinary nitrogen is corrected when the individual amino acid is replaced in the mixture. Histidine, lysine, and valine have a moderate influence upon urinary nitrogen balance toward nitrogen conservation. Leucine, isoleucine, and arginine have minimal or no effect upon urinary nitrogen balance when these individual amino acids are deleted from the complete growth mixture of amino acids during 3 to 4 week periods. Tryptophane and to a less extent phenylalanine and threonine when returned to the amino acid mixture are associated with a conspicuous preponderance of plasma protein output over the hemoglobin output (Table 4). Arginine, lysine, and histidine when returned to the amino acid mixture are associated with a large preponderance of hemoglobin output. Various amino acid mixtures under these conditions may give a positive

  4. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.

    PubMed

    Li, Zhong; Yalcin, Talat; Cassady, Carolyn J

    2006-07-01

    Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.

  5. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  6. Efficient Enzymatic Preparation of (13) N-Labelled Amino Acids: Towards Multipurpose Synthetic Systems.

    PubMed

    da Silva, Eunice S; Gómez-Vallejo, Vanessa; Baz, Zuriñe; Llop, Jordi; López-Gallego, Fernando

    2016-09-12

    Nitrogen-13 can be efficiently produced in biomedical cyclotrons in different chemical forms, and its stable isotopes are present in the majority of biologically active molecules. Hence, it may constitute a convenient alternative to Fluorine-18 and Carbon-11 for the preparation of positron-emitter-labelled radiotracers; however, its short half-life demands for the development of simple, fast, and efficient synthetic processes. Herein, we report the one-pot, enzymatic and non-carrier-added synthesis of the (13) N-labelled amino acids l-[(13) N]alanine, [(13) N]glycine, and l-[(13) N]serine by using l-alanine dehydrogenase from Bacillus subtilis, an enzyme that catalyses the reductive amination of α-keto acids by using nicotinamide adenine dinucleotide (NADH) as the redox cofactor and ammonia as the amine source. The integration of both l-alanine dehydrogenase and formate dehydrogenase from Candida boidinii in the same reaction vessel to facilitate the in situ regeneration of NADH during the radiochemical synthesis of the amino acids allowed a 50-fold decrease in the concentration of the cofactor without compromising reaction yields. After optimization of the experimental conditions, radiochemical yields were sufficient to carry out in vivo imaging studies in small rodents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Two monoclonal antibodies specific for different epitopes within the amino-terminal region of F pilin.

    PubMed Central

    Frost, L S; Lee, J S; Scraba, D G; Paranchych, W

    1986-01-01

    Two murine monoclonal antibodies (JEL 92 and 93) specific for adjacent epitopes on F pilin were purified and characterized. JEL 93 immunoglobulin G (IgG) and its Fab fragments were specific for the amino-terminal region and were completely reactive with a synthetic peptide representing the first eight amino acids of F pilin. The acetyl group was demonstrated to be an important part of the epitope, since an unacetylated version of the amino-terminal peptide was 100-fold less reactive with JEL 93 IgG. JEL 92 IgG reacted with the region of F pilin surrounding Met-9, represented by a tryptic peptide derived from the first 17 amino acids. This reactivity was completely abolished by cleavage of the peptide with cyanogen bromide. As shown by electron microscopy, both monoclonal antibodies bound to a vesiclelike structure at one end of purified free pili and did not bind to the sides of the pili, nor did they appear to bind to the tip. When sonication was used to break pili into shorter fragments, the number of binding sites for JEL 92 but not JEL 93 IgG increased as measured by a competitive enzyme-linked immunosorbent assay. Images PMID:2428808

  8. Supernovae, Neutrinos and the Chirality of Amino Acids

    PubMed Central

    Boyd, Richard N.; Kajino, Toshitaka; Onaka, Takashi

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids. PMID:21747686

  9. A cost-effective approach to produce 15N-labelled amino acids employing Chlamydomonas reinhardtii CC503.

    PubMed

    Nicolás Carcelén, Jesús; Marchante-Gayón, Juan Manuel; González, Pablo Rodríguez; Valledor, Luis; Cañal, María Jesús; Alonso, José Ignacio García

    2017-08-18

    The use of enriched stable isotopes is of outstanding importance in chemical metrology as it allows the application of isotope dilution mass spectrometry (IDMS). Primary methods based on IDMS ensure the quality of the analytical measurements and traceability of the results to the international system of units. However, the synthesis of isotopically labelled molecules from enriched stable isotopes is an expensive and a difficult task. Either chemical and biochemical methods to produce labelled molecules have been proposed, but so far, few cost-effective methods have been described. The aim of this study was to use the microalgae Chlamydomonas reinhardtii to produce, at laboratory scale, 15 N-labelled amino acids with a high isotopic enrichment. To do that, a culture media containing 15 NH 4 Cl was used. No kinetic isotope effect (KIE) was observed. The labelled proteins biosynthesized by the microorganism were extracted from the biomass and the 15 N-labelled amino acids were obtained after a protein hydrolysis with HCl. The use of the wall deficient strain CC503 cw92 mt+ is fit for purpose, as it only assimilates ammonia as nitrogen source, avoiding isotope contamination with nitrogen from the atmosphere or the reagents used in the culture medium, and enhancing the protein extraction efficiency compared to cell-walled wild type Chlamydomonas. The isotopic enrichment of the labelled amino acids was calculated from their isotopic composition measured by gas chromatography mass spectrometry (GC-MS). The average isotopic enrichment for the 16 amino acids characterized was 99.56 ± 0.05% and the concentration of the amino acids in the hydrolysate ranged from 18 to 90 µg/mL. Previously reported biochemical methods to produce isotopically labelled proteins have been applied in the fields of proteomics and fluxomics. For these approaches, low amounts of products are required and the isotopic enrichment of the molecules has never been properly determined. So far, only 13

  10. Amino acid starvation in Escherichia coli K-12: characteristics of the translation process.

    PubMed Central

    Subrahmanyam, C S; Das, H K

    1976-01-01

    Some characteristics of the translation process during amino acid starvation in Escherichia coli have been examined. Once starvation has been established, premature termination of polypeptides is negligible and complete proteins are formed. There is some preference for the synthesis of shorter proteins. The number of ribosomes involved in protein synthesis appears to decline to about half during amino acid-starvation. The assembly time of proteins during amino acid starvation is increased to only about fourfold, though protein synthesis maintained by turnover is reduced to 10%. To explain these observations, a model has been proposed for the course of events that possibly take place from the onset of starvation. PMID:780337

  11. Genetic and biochemical analysis of the interaction of Bacillus subtilis CodY with branched-chain amino acids.

    PubMed

    Villapakkam, Anuradha C; Handke, Luke D; Belitsky, Boris R; Levdikov, Vladimir M; Wilkinson, Anthony J; Sonenshein, Abraham L

    2009-11-01

    Bacillus subtilis CodY protein is a DNA-binding global transcriptional regulator that responds to branched-chain amino acids (isoleucine, leucine, and valine) and GTP. Crystal structure studies have shown that the N-terminal region of the protein includes a GAF domain that contains a hydrophobic pocket within which isoleucine and valine bind. This region is well conserved in CodY homologs. Site-directed mutagenesis was employed to understand the roles of some of the residues in the GAF domain and hydrophobic pocket in interaction with isoleucine and GTP. The F40A, F71E, and F98A forms of CodY were inactive in vivo. They were activatable by GTP but to a much lesser extent by branched-chain amino acids in vitro. The CodY mutant R61A retained partial repression of target promoters in vivo and was able to respond to GTP in vitro but also responded poorly to branched-chain amino acids in vitro unless GTP was simultaneously present. Thus, the GAF domain includes residues essential for full activation of CodY by branched-chain amino acids, but these residues are not critical for activation by GTP. Binding studies with branched-chain amino acids and their analogs revealed that an amino group at position 2 and a methyl group at position 3 of valine are critical components of the recognition of the amino acids by CodY.

  12. [The importance of C-terminal aspartic acid residue (D141) to the antirestriction activity of the ArdB (R64) protein].

    PubMed

    Kudryavtseva, A A; Osetrova, M S; Livinyuk, V Ya; Manukhov, I V; Zavilgelsky, G B

    2017-01-01

    Antirestriction proteins of the ArdB/KlcA family are specific inhibitors of restriction (endonuclease) activity of type-I restriction/modification enzymes. The effect of conserved amino acid residues on the antirestriction activity of the ArdB protein encoded by the transmissible R64 (IncI1) plasmid has been investigated. An analysis of the amino acid sequences of ArdB homologues demonstrated the presence of four groups of conserved residues ((1) R16, E32, and W51; (2) Y46 and G48; (3) S81, D83 and E132, and (4) N77, L(I)140, and D141) on the surface of the protein globule. Amino acid residues of the fourth group showed a unique localization pattern with the terminal residue protruding beyond the globule surface. The replacement of two conserved amino acids (D141 and N77) located in the close vicinity of each other on the globule surface showed that the C-terminal D141 is essential for the antirestriction activity of ArdB. The deletion of this residue, as well as replacement by a hydrophobic threonine residue (D141T), completely abolished the antirestriction activity of ArdB. The synonymous replacement of D141 by a glutamic acid residue (D141E) caused an approximately 30-fold decrease of the antirestriction activity of ArdB, and the point mutation N77A caused an approximately 20-fold decrease in activity. The residues D141 and N77 located on the surface of the protein globule are presumably essential for the formation of a contact between ArdB and a currently unknown factor that modulates the activity of type-I restriction/modification enzymes.

  13. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  14. Pseudoephedrine-Directed Asymmetric α-Arylation of α-Amino Acid Derivatives.

    PubMed

    Atkinson, Rachel C; Fernández-Nieto, Fernando; Mas Roselló, Josep; Clayden, Jonathan

    2015-07-27

    Available α-amino acids undergo arylation at their α position in an enantioselective manner on treatment with base of N'-aryl urea derivatives ligated to pseudoephedrine as a chiral auxiliary. In situ silylation and enolization induces diastereoselective migration of the N'-aryl group to the α position of the amino acid, followed by ring closure to a hydantoin with concomitant explulsion of the recyclable auxiliary. The hydrolysis of the hydantoin products provides derivatives of quaternary amino acids. The arylation avoids the use of heavy-metal additives, and is successful with a range of amino acids and with aryl rings of varying electronic character. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Triblock copolyampholytes from 5-(N,N-dimethyl amino)isoprene styrene, and methacrylic acid: Synthesis and solution properties

    NASA Astrophysics Data System (ADS)

    Bieringer, R.; Abetz, V.; Müller, A. H. E.

    ABC triblock copolymers of the type poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(tert-butyl methacrylate) (AiST) were synthesized and hydrolyzed to yield poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(methacrylic acid) (AiSA) triblock copolyampholytes. Due to a complex solubility behavior the solution properties of these materials had to be investigated in THF/water solvent mixtures. Potentiometric titrations of AiSA triblock copolyampholytes showed two inflection points with the A block being deprotonated prior to the Ai hydrochloride block thus forming a polyzwitterion at the isoelectric point (iep). The aggregation behavior was studied by dynamic light scattering (DLS) and freeze-fracture/transmission electron microscopy (TEM). Large vesicular structures with almost pH-independent radii were observed.

  16. Synthesis of ω-Oxo Amino Acids and trans-5-Substituted Proline Derivatives Using Cross-Metathesis of Unsaturated Amino Acids.

    PubMed

    Salih, Nabaz; Adams, Harry; Jackson, Richard F W

    2016-09-16

    A range of 7-oxo, 8-oxo, and 9-oxo amino acids, analogues of 8-oxo-2-aminodecanoic acid, one of the key components of the cyclic tetrapeptide apicidin, have been prepared by a three-step process involving copper-catalyzed allylation of serine-, aspartic acid-, and glutamic acid-derived organozinc reagents, followed by cross-metathesis of the resulting terminal alkenes with unsaturated ketones and hydrogenation. The intermediate 7-oxo-5-enones underwent a highly diastereoselective (dr ≥96:4) acid-catalyzed aza-Michael reaction to give trans-2,5-disubstituted pyrrolidines, 5-substituted proline derivatives. The aza-Michael reaction was first observed when the starting enones were allowed to stand in solution in deuterochloroform but can be efficiently promoted by catalytic amounts of dry HCl.

  17. Metabolism of Nonessential N15-Labeled Amino Acids and the Measurement of Human Whole-Body Protein Synthesis Rates

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Settle, R. G.; Albina, J. A.; Dempsey, D. T.; Melnick, G.

    1991-01-01

    Eight N-15 labeled nonessential amino acids plus (15)NH4Cl were administered over a 10 h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted (Kendall coefficient of concordance W = 0.83, P is less than 0.01). Protein synthesis rates were calculated from the urinary ammonia plateau enrichment and the cumulative excretion of N-15. Glycine was one of the few amino acids that gave similar values by both methods.

  18. NMR conformational properties of an Anthrax Lethal Factor domain studied by multiple amino acid-selective labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vourtsis, Dionysios J.; Chasapis, Christos T.; Pairas, George

    2014-07-18

    Highlights: • A polypeptide, N-ALF{sub 233}, was overexpressed in E. coli and successfully isolated. • We produced {sup 2}H/{sup 15}N/{sup 13}C labeled protein samples. • Amino acid selective approaches were applied. • We acquired several heteronuclear NMR spectra, to complete the backbone assignment. • Prediction of the secondary structure was performed. - Abstract: NMR-based structural biology urgently needs cost- and time-effective methods to assist both in the process of acquiring high-resolution NMR spectra and their subsequent analysis. Especially for bigger proteins (>20 kDa) selective labeling is a frequently used means of sequence-specific assignment. In this work we present the successfulmore » overexpression of a polypeptide of 233 residues, corresponding to the structured part of the N-terminal domain of Anthrax Lethal Factor, using Escherichia coli expression system. The polypeptide was subsequently isolated in pure, soluble form and analyzed structurally by solution NMR spectroscopy. Due to the non-satisfying quality and resolution of the spectra of this 27 kDa protein, an almost complete backbone assignment became feasible only by the combination of uniform and novel amino acid-selective labeling schemes. Moreover, amino acid-type selective triple-resonance NMR experiments proved to be very helpful.« less

  19. Partial amino acid sequence of the branched chain amino acid aminotransferase (TmB) of E. coli JA199 pDU11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feild, M.J.; Armstrong, F.B.

    1987-05-01

    E. coli JA199 pDU11 harbors a multicopy plasmid containing the ilv GEDAY gene cluster of S. typhimurium. TmB, gene product of ilv E, was purified, crystallized, and subjected to Edman degradation using a gas phase sequencer. The intact protein yielded an amino terminal 31 residue sequence. Both carboxymethylated apoenzyme and (/sup 3/H)-NaBH-reduced holoenzyme were then subjected to digestion by trypsin. The digests were fractionated using reversed phase HPLC, and the peptides isolated were sequenced. The borohydride-treated holoenzyme was used to isolate the cofactor-binding peptide. The peptide is 27 residues long and a comparison with known sequences of other aminotransferases revealedmore » limited homology. Peptides accounting for 211 of 288 predicted residues have been sequenced, including 9 residues of the carboxyl terminus. Comparison of peptides with the inferred amino acid sequence of the E. coli K-12 enzyme has helped determine the sequence of the amino terminal 59 residues; only two differences between the sequences are noted in this region.« less

  20. Complete amino acid sequence of the myoglobin from the Pacific sei whale, Balaenoptera borealis.

    PubMed

    Jones, B N; Rothgeb, T M; England, R D; Gurd, F R

    1979-04-25

    The complete amino acid sequence of the major component myoglobin from Pacific sei whale, Balaenoptera borealis, was determined by specific cleavage of the protein to obtain large peptides which are readily degraded by the automatic sequencer. The acetimidated apomyoglobin was selectively cleaved at its two methionyl residues with cyanogen bromide and at its three arginyl residues by trypsin. From the sequence analysis of four of these peptides and the apomyoglobin, over 75% of the covalent structure of the protein was obtained. The remainder of the primary structure was determined by the sequence analysis of peptides that resulted from further digestion of the amino-terminal and central cyanogen bromide fragments. The amino-terminal fragment was specifically cleaved at its two tryptophanyl residues with N-chlorosuccinimide and the central cyanogen bromide fragment was cleaved at its glutamyl residues with staphylococcal protease and at its single tyrosyl residue with N-bromosuccinimide. The primary structure of this myoglobin proved identical with that from the gray whale but differs from that of the finback whale at four positions, from that of the minke whale at three positions and from the myoglobin of the humpback whale at one position. The above sequence identities and differences reflect the close taxonomic relationship of these five species of Cetacea.

  1. Stardust, Supernovae and the Chirality of the Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, R N; Kajino, T; Onaka, T

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereofmore » on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.« less

  2. Fmoc/Trt-amino acids: comparison to Fmoc/tBu-amino acids in peptide synthesis.

    PubMed

    Barlos, K; Gatos, D; Koutsogianni, S

    1998-03-01

    Model peptides containing the nucleophilic amino acids Trp and Met have been synthesized with the application of Fmoc/Trt- and Fmoc/tBu-amino acids, for comparison. The deprotection of the peptides synthesized using Fmoc/Trt-amino acids in all cases leads to crude peptides of higher purity than that of the same peptides synthesized using Fmoc/tBu-amino acids.

  3. Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban.

    PubMed Central

    Fujii, J; Ueno, A; Kitano, K; Tanaka, S; Kadoma, M; Tada, M

    1987-01-01

    Complementary DNA (cDNA) clones specific for phospholamban of sarcoplasmic reticulum membranes have been isolated from a canine cardiac cDNA library. The amino acid sequence deduced from the cDNA sequence indicates that phospholamban consists of 52 amino acid residues and lacks an amino-terminal signal sequence. The protein has an inferred mol wt 6,080 that is in agreement with its apparent monomeric mol wt 6,000, estimated previously by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phospholamban contains two distinct domains, a hydrophilic region at the amino terminus (domain I) and a hydrophobic region at the carboxy terminus (domain II). We propose that domain I is localized at the cytoplasmic surface and offers phosphorylatable sites whereas domain II is anchored into the sarcoplasmic reticulum membrane. PMID:3793929

  4. Structural organization of intercellular channels II. Amino terminal domain of the connexins: sequence, functional roles, and structure.

    PubMed

    Beyer, Eric C; Lipkind, Gregory M; Kyle, John W; Berthoud, Viviana M

    2012-08-01

    The amino terminal domain (NT) of the connexins consists of their first 22-23 amino acids. Site-directed mutagenesis studies have demonstrated that NT amino acids are determinants of gap junction channel properties including unitary conductance, permeability/selectivity, and gating in response to transjunctional voltage. The importance of this region has also been emphasized by the identification of multiple disease-associated connexin mutants affecting amino acid residues in the NT region. The first part of the NT is α-helical. The structure of the Cx26 gap junction channel shows that the NT α-helix localizes within the channel, and lines the wall of the pore. Interactions of the amino acid residues in the NT with those in the transmembrane helices may be critical for holding the channel open. The predicted sites of these interactions and the applicability of the Cx26 structure to the NT of other connexins are considered. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Copyright © 2011. Published by Elsevier B.V.

  5. Acetylene terminated aspartimides and resins therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Havens, Stephen J. (Inventor)

    1989-01-01

    Acetylene terminated aspartimides are prepared using two methods. In the first, an amino-substituted aromatic acetylene is reacted with an aromatic bismaleimide in a solvent of glacial acetic acid and/or m-cresol. In the second method, an aromatic diamine is reacted with an ethynyl containing maleimide, such an N-(3-ethynyl phenyl) maleimide, in a solvent of glacial acetic acid and/or m-cresol. In addition, acetylene terminated aspartimides are blended with various acetylene terminated oligomers and polymers to yield composite materials exhibiting improved mechanical properties.

  6. Chiral discrimination of α-hydroxy acids and N-Ts-α-amino acids induced by tetraaza macrocyclic chiral solvating agents by using 1H NMR spectroscopy.

    PubMed

    Lv, Caixia; Feng, Lei; Zhao, Hongmei; Wang, Guo; Stavropoulos, Pericles; Ai, Lin

    2017-02-21

    In the field of chiral recognition, reported chiral discrimination by 1 H NMR spectroscopy has mainly focused on various chiral analytes with a single chiral center, regarded as standard chiral substrates to evaluate the chiral discriminating abilities of a chiral auxiliary. Among them, chiral α-hydroxy acids, α-amino acids and their derivatives are chiral organic molecules involved in a wide variety of biological processes, and also play an important role in the area of preparation of pharmaceuticals, as they are part of the synthetic process in the production of chiral drug intermediates and protein-based drugs. In this paper, several α-hydroxy acids and N-Ts-α-amino acids were used to evaluate the chiral discriminating abilities of tetraaza macrocyclic chiral solvating agents (TAMCSAs) 1a-1d by 1 H NMR spectroscopy. The results indicate that α-hydroxy acids and N-Ts-α-amino acids were successfully discriminated in the presence of TAMCSAs 1a-1d by 1 H NMR spectroscopy in most cases. The enantiomers of the α-hydroxy acids and N-Ts-α-amino acids were assigned based on the change of integration of the 1 H NMR signals of the corresponding protons. The enantiomeric excesses (ee) of N-Ts-α-amino acids 11 with different optical compositions were calculated based on the integration of the 1 H NMR signals of the CH 3 protons (Ts group) of the enantiomers of (R)- and (S)-11 in the presence of TAMCSA 1b. At the same time, the possible chiral discriminating behaviors have been discussed by means of the Job plots of (±)-2 with TAMCSAs 1b and proposed theoretical models of the enantiomers of 2 and 6 with TAMCSA 1a, respectively.

  7. N-Acyl amino acids and their impact on biological processes.

    PubMed

    Hanuš, Lumír; Shohami, Esther; Bab, Itai; Mechoulam, Raphael

    2014-01-01

    Over the last two decades a large number of N-long-chain acyl amino acids have been identified in the mammalian body. The pharmacological activities of only a few of them have been investigated and some have been found to be of considerable interest. Thus arachidonoyl serine is vasodilatory and neuroprotective, arachidonoyl glycine is antinociceptive, and oleoyl serine rescues bone loss. However, the pathophysiological/biochemical roles of these amides are mostly unknown. © 2014 International Union of Biochemistry and Molecular Biology.

  8. Molecular properties of the N-terminal extension of the fission yeast kinesin-5, Cut7.

    PubMed

    Edamatsu, M

    2016-02-11

    Kinesin-5 plays an essential role in spindle formation and function, and serves as a potential target for anti-cancer drugs. The aim of this study was to elucidate the molecular properties of the N-terminal extension of the Schizosaccharomyces pombe kinesin-5, Cut7. This extension is rich in charged amino acids and predicted to be intrinsically disordered. In S. pombe cells, a Cut7 construct lacking half the N-terminal extension failed to localize along the spindle microtubules and formed a monopolar spindle. However, a construct lacking the entire N-terminal extension exhibited normal localization and formed a typical bipolar spindle. In addition, in vitro analyses revealed that the truncated Cut7 constructs demonstrated similar motile velocities and directionalities as the wild-type motor protein, but the microtubule landing rates were significantly reduced. These findings suggest that the N-terminal extension is not required for normal Cut7 intracellular localization or function, but alters the microtubule-binding properties of this protein in vitro.

  9. Compound-specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-09-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (δD, δ13C, and δ15N) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1/2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CR2 Graves Nunataks (GRA) 95229, CR2 Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing δ13C and increasing δD with increasing carbon number in the α-H, α-NH2 amino acids that correspond to predictions made for formation via Strecker-cyanohydrin synthesis. We also observe light δ13C signatures for β-alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ω-amino acids). Higher deuterium enrichments are observed in α-methyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than in CM chondrites, reflecting different parent-body chemistry.

  10. Molecular cloning and expression of the hyu genes from Microbacterium liquefaciens AJ 3912, responsible for the conversion of 5-substituted hydantoins to alpha-amino acids, in Escherichia coli.

    PubMed

    Suzuki, Shun'ichi; Takenaka, Yasuhiro; Onishi, Norimasa; Yokozeki, Kenzo

    2005-08-01

    A DNA fragment from Microbacterium liquefaciens AJ 3912, containing the genes responsible for the conversion of 5-substituted-hydantoins to alpha-amino acids, was cloned in Escherichia coli and sequenced. Seven open reading frames (hyuP, hyuA, hyuH, hyuC, ORF1, ORF2, and ORF3) were identified on the 7.5 kb fragment. The deduced amino acid sequence encoded by the hyuA gene included the N-terminal amino acid sequence of the hydantoin racemase from M. liquefaciens AJ 3912. The hyuA, hyuH, and hyuC genes were heterologously expressed in E. coli; their presence corresponded with the detection of hydantoin racemase, hydantoinase, and N-carbamoyl alpha-amino acid amido hydrolase enzymatic activities respectively. The deduced amino acid sequences of hyuP were similar to those of the allantoin (5-ureido-hydantoin) permease from Saccharomyces cerevisiae, suggesting that hyuP protein might function as a hydantoin transporter.

  11. Amino-Terminal β-Amyloid Antibody Blocks β-Amyloid-Mediated Inhibition of the High-Affinity Choline Transporter CHT.

    PubMed

    Cuddy, Leah K; Seah, Claudia; Pasternak, Stephen H; Rylett, R Jane

    2017-01-01

    Alzheimer's disease (AD) is a common age-related neurodegenerative disorder that is characterized by progressive cognitive decline. The deficits in cognition and attentional processing that are observed clinically in AD are linked to impaired function of cholinergic neurons that release the neurotransmitter acetylcholine (ACh). The high-affinity choline transporter (CHT) is present at the presynaptic cholinergic nerve terminal and is responsible for the reuptake of choline produced by hydrolysis of ACh following its release. Disruption of CHT function leads to decreased choline uptake and ACh synthesis, leading to impaired cholinergic neurotransmission. We report here that cell-derived β-amyloid peptides (Aβ) decrease choline uptake activity and cell surface CHT protein levels in SH-SY5Y neural cells. Moreover, we make the novel observation that the amount of CHT protein localizing to early endosomes and lysosomes is decreased significantly in cells that have been treated with cell culture medium that contains Aβ peptides released from neural cells. The Aβ-mediated loss of CHT proteins from lysosomes is prevented by blocking lysosomal degradation of CHT with the lysosome inhibitor bafilomycin A1 (BafA 1 ). BafA 1 also attenuated the Aβ-mediated decrease in CHT cell surface expression. Interestingly, however, lysosome inhibition did not block the effect of Aβ on CHT activity. Importantly, neutralizing Aβ using an anti-Aβ antibody directed at the N-terminal amino acids 1-16 of Aβ, but not by an antibody directed at the mid-region amino acids 22-35 of Aβ, attenuates the effect of Aβ on CHT activity and trafficking. This indicates that a specific N-terminal Aβ epitope, or specific conformation of soluble Aβ, may impair CHT activity. Therefore, Aβ immunotherapy may be a more effective therapeutic strategy for slowing the progression of cognitive decline in AD than therapies designed to promote CHT cell surface levels.

  12. α-Amino Acid-Isosteric α-Amino Tetrazoles

    PubMed Central

    Zhao, Ting; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Herdtweck, Eberhardt

    2016-01-01

    The synthesis of all 20 common natural proteinogenic and 4 otherα-amino acid-isosteric α-amino tetrazoles has been accomplished, whereby the carboxyl group is replaced by the isosteric 5-tetrazolyl group. The short process involves the use of the key Ugi tetrazole reaction followed by deprotection chemistries. The tetrazole group is bioisosteric to the carboxylic acid and is widely used in medicinal chemistry and drug design. Surprisingly, several of the common α-amino acid-isosteric α-amino tetrazoles are unknown up to now. Therefore a rapid synthetic access to this compound class and non-natural derivatives is of high interest to advance the field. PMID:26817531

  13. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borko, Ľubomír; Bauerová-Hlinková, Vladena, E-mail: vladena.bauerova@savba.sk; Hostinová, Eva

    2014-11-01

    X-ray and solution structures of the human RyR2 N-terminal region were obtained under near-physiological conditions. The structure exhibits a unique network of interactions between its three domains, revealing an important stabilizing role of the central helix. Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminusmore » is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C{sup α} atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine–isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.« less

  14. New Enzymatic Method of Chiral Amino Acid Synthesis by Dynamic Kinetic Resolution of Amino Acid Amides: Use of Stereoselective Amino Acid Amidases in the Presence of α-Amino-ɛ-Caprolactam Racemase▿

    PubMed Central

    Yamaguchi, Shigenori; Komeda, Hidenobu; Asano, Yasuhisa

    2007-01-01

    d- and l-amino acids were produced from l- and d-amino acid amides by d-aminopeptidase from Ochrobactrum anthropi C1-38 and l-amino acid amidase from Pseudomonas azotoformans IAM 1603, respectively, in the presence of α-amino-ɛ-caprolactam racemase from Achromobacter obae as the catalyst by dynamic kinetic resolution of amino acid amides. PMID:17586677

  15. Protein location prediction using atomic composition and global features of the amino acid sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherian, Betsy Sheena, E-mail: betsy.skb@gmail.com; Nair, Achuthsankar S.

    2010-01-22

    Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectivelymore » used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.« less

  16. Anharmonicity in Amino Acids

    NASA Astrophysics Data System (ADS)

    Martinho, Herculano; Lima, Thamires; Ishikawa, Mariana

    2012-02-01

    Two special dynamical transitions of universal character have been recently observed in macromolecules (lysozyme, myoglobin, bacteriorhodopsin, DNA, and RNA) at T^*˜100 - 150 K and TD˜180 - 220 K. The underlying mechanisms governing these transitions have been subject of debate. In the present work it is reported a survey on the temperature dependence of structural, vibrational and thermodynamical properties of a nearly anhydrous amino acid (orthorhombic polymorph of the amino acids L-cysteine and L-proline at a hydration level of 3.5%). The temperature dependence of X-Ray diffraction, Raman spectroscopy, and specific heat were considered. The data were analyzed considering amino acid-amino acid, amino acid-water, and water-water phonon-phonon interactions, and molecular rotors activation. Our results indicated that the two referred temperatures define the triggering of very simple and specific events that govern all the interactions of the biomolecule: activation of CH2 rigid rotors (Tamino acid and water dimer vibrational modes (T^*TD).

  17. Proteolytic interconversion and N-terminal sequences of the Citrobacter diversus major beta-lactamases.

    PubMed Central

    Franceschini, N; Amicosante, G; Perilli, M; Maccarrone, M; Oratore, A; van Beeumen, J; Frère, J M

    1991-01-01

    The N-terminal sequences of the two major beta-lactamases produced by Citrobacter diversus differed only by the absence of the first residue in form II and the loss of five amino acid residues at the C-terminal end. Limited proteolysis of the homogeneous form I protein yielded a variety of enzymatically active products. In the major product obtained after the action of papain, the first three N-terminal residues of form I had been cleaved, whereas at the C-terminal end the treated enzyme lacked five residues. However, this cannot explain the different behaviours of form I, form II and papain digestion product upon chromatofocusing. Form I, which was sequenced up to position 56, exhibited a very high degree of similarity with a Klebsiella oxytoca beta-lactamase. The determined sequence, which contained the active serine residue, demonstrated that the chromosome-encoded beta-lactamase of Citrobacter diversus belong to class A. Images Fig. 2. PMID:2039443

  18. Incorporation of N-amidino-pyroglutamic acid into peptides using intramolecular cyclization of alpha-guanidinoglutaric acid.

    PubMed

    Burov, Sergey; Moskalenko, Yulia; Dorosh, Marina; Shkarubskaya, Zoya; Panarin, Evgeny

    2009-11-01

    N-terminal modification of peptides by unnatural amino acids significantly affects their enzymatic stability, conformational properties and biological activity. Application of N-amidino-amino acids, positively charged under physiological conditions, can change peptide conformation and its affinity to the corresponding receptor. In this article, we describe synthesis of short peptides, containing a new building block-N-amidino-pyroglutamic acid. Although direct guanidinylation of pyroglutamic acid and oxidation of N-amidino-proline using RuO(4) did not produce positive results, N-amidino-Glp-Phe-OH was synthesized on Wang polymer by cyclization of alpha-guanidinoglutaric acid residue. In the course of synthesis, it was found that literature procedure of selective Boc deprotection using TMSOTf/TEA reagent is accompanied by concomitant side reaction of triethylamine alkylation by polymer linker fragment. It should be mentioned that independently from cyclization time and coupling agent (DIC or HCTU), the lactam formation was incomplete. Separation of the cyclic product from the linear precursor was achieved by HPLC in ammonium formate buffer at pH 6. HPLC analysis showed N-amidino-Glp-Phe-OH stability at acidic and physiological pH and fast ring opening in water solution at pH 9. The suggested method of N-amidino-Glp residue formation can be applied in the case of short peptide chains, whereas synthesis of longer ones will require fragment condensation approach.

  19. Reasons for the occurrence of the twenty coded protein amino acids

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Miller, S. L.

    1981-01-01

    Factors involved in the selection of the 20 protein L-alpha-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. It is concluded that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences of alpha-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, it would be expected that the catalysts would be poly-alpha-amino acids and that about 75% of the amino acids would be the same as on the earth.

  20. Transport of amino acids in the kidney.

    PubMed

    Makrides, Victoria; Camargo, Simone M R; Verrey, François

    2014-01-01

    Amino acids are the building blocks of proteins and key intermediates in the synthesis of biologically important molecules, as well as energy sources, neurotransmitters, regulators of cellular metabolism, etc. The efficient recovery of amino acids from the primary filtrate is a well-conserved key role of the kidney proximal tubule. Additionally, renal metabolism participates in the whole body disposition of amino acids. Therefore, a wide array of axially heterogeneously expressed transporters is localized on both epithelial membranes. For transepithelial transport, luminal uptake, which is carried out mainly by active symporters, is coupled with a mostly passive basolateral efflux. Many transporters require partner proteins for appropriate localization, or to modulate transporter activity, and/or increase substrate supply. Interacting proteins include cell surface antigens (CD98), endoplasmic reticulum proteins (GTRAP3-18 or 41), or enzymes (ACE2 and aminopeptidase N). In the past two decades, the molecular identification of transporters has led to significant advances in our understanding of amino acid transport and aminoacidurias arising from defects in renal transport. Furthermore, the three-dimensional crystal structures of bacterial homologues have been used to yield new insights on the structure and function of mammalian transporters. Additionally, transgenic animal models have contributed to our understanding of the role of amino acid transporters in the kidney and other organs and/or at critical developmental stages. Progress in elucidation of the renal contribution to systemic amino acid homeostasis requires further integration of kinetic, regulatory, and expression data of amino acid transporters into our understanding of physiological regulatory networks controlling metabolism. © 2014 American Physiological Society.

  1. Amino acid ionic liquids.

    PubMed

    Ohno, Hiroyuki; Fukumoto, Kenta

    2007-11-01

    The preparation of ionic liquids derived from amino acids, and their properties, are outlined. Since amino acids have both a carboxylic acid residue and an amino group in a single molecule, they can be used as either anions or cations. These groups are also useful in their ability to introduce functional group(s). Twenty different natural amino acids were used as anions, to couple with the 1-ethyl-3-methylimidazolium cation. The salts obtained were all liquid at room temperature. The properties of the resulting ionic liquids (AAILs) depend on the side groups of the amino acids involved. These AAILs, composed of an amino acid with some functional groups such as a hydrogen bonding group, a charged group, or an aromatic ring, had an increased glass transition (or melting) temperature and/or higher viscosity as a result of additional interactions among the ions. Viscosity is reduced and the decomposition temperature of imidazolium-type salts is improved by using the tetrabutylphosphonium cation. The chirality of AAILs was maintained even upon heating to 150 degrees C after acetylation of the free amino group. The amino group was also modified to introduce a strong acid group so as to form hydrophobic and chiral ionic liquids. Unique phase behavior of the resulting hydrophobic ionic liquids and water mixture is found; the mixture is clearly phase separated at room temperature, but the solubility of water in this IL increases upon cooling, to give a homogeneous solution. This phase change is reversible, and separation occurs again by raising the temperature a few degrees. It is extraordinary for an IL/water mixture to display such behavior with a lower critical solution temperature. Some likely applications are proposed for these amino acid derived ionic liquids.

  2. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    PubMed Central

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303

  3. Trophic spectra under the lens of amino acid isotopic analysis

    USDA-ARS?s Scientific Manuscript database

    Recent advances in compound specific isotopic ratio analysis (CSIRA) have allowed researchers to measure trophic fractionation of 15N in specific amino acids, namely glutamic acid and phenylalanine. These amino acids have proven useful in food web studies because of the wide and consistent disparity...

  4. Spin labeled amino acid nitrosourea derivatives--synthesis and antitumour activity.

    PubMed

    Zheleva, A; Raikov, Z; Ilarionova, M; Todorov, D

    1995-01-01

    The synthesis of three spin labeled derivatives of N-[N'-(chloroethyl)-N'-nitrosocarbamoyl] amino acids is reported. The new nitrosoureas are obtained by condensation of the corresponding N-[N'-(2-chloroethyl)-N'-nitrosocarbamoyl] amino acid with 2,2,6,6-tetramethyl-1-oxyl-4-aminopiperidine using dicyclohexylcarbodiimide. Their chemical structures are confirmed by elemental analysis, IR, MS, and EPR spectroscopy. All newly synthesized compounds showed high antitumour activity against the lymphoid leukemia L1210 in BDF1 mice.

  5. Metabolomics method to comprehensively analyze amino acids in different domains.

    PubMed

    Gu, Haiwei; Du, Jianhai; Carnevale Neto, Fausto; Carroll, Patrick A; Turner, Sally J; Chiorean, E Gabriela; Eisenman, Robert N; Raftery, Daniel

    2015-04-21

    Amino acids play essential roles in both metabolism and the proteome. Many studies have profiled free amino acids (FAAs) or proteins; however, few have connected the measurement of FAA with individual amino acids in the proteome. In this study, we developed a metabolomics method to comprehensively analyze amino acids in different domains, using two examples of different sample types and disease models. We first examined the responses of FAAs and insoluble-proteome amino acids (IPAAs) to the Myc oncogene in Tet21N human neuroblastoma cells. The metabolic and proteomic amino acid profiles were quite different, even under the same Myc condition, and their combination provided a better understanding of the biological status. In addition, amino acids were measured in 3 domains (FAAs, free and soluble-proteome amino acids (FSPAAs), and IPAAs) to study changes in serum amino acid profiles related to colon cancer. A penalized logistic regression model based on the amino acids from the three domains had better sensitivity and specificity than that from each individual domain. To the best of our knowledge, this is the first study to perform a combined analysis of amino acids in different domains, and indicates the useful biological information available from a metabolomics analysis of the protein pellet. This study lays the foundation for further quantitative tracking of the distribution of amino acids in different domains, with opportunities for better diagnosis and mechanistic studies of various diseases.

  6. Endogenous flow of amino acids in the avian ileum as influenced by increasing dietary peptide concentrations.

    PubMed

    Ravindran, Velmurugu; Morel, Patrick C H; Rutherfurd, Shane M; Thomas, Donald V

    2009-03-01

    The aim of the present study was to establish whether feeding broiler chickens with diets containing increasing dietary peptide concentrations would cause increases in ileal endogenous amino acid flow. The flow of N and most amino acids increased quadratically (P < 0.05 to 0.001) with increasing dietary concentrations of peptides. The exceptions were the flow of threonine, serine, glycine, tyrosine and cystine, which increased linearly (P < 0.001) with dietary peptide levels. Another notable exception to the general trend was the flow of proline, which was significantly higher (P < 0.01) in birds fed the protein-free diet. The amino acid profile of endogenous protein, expressed as proportion of crude protein, indicated that the ratios of threonine, glutamic acid, proline, glycine, leucine, histidine, arginine and cystine were influenced (P < 0.05) with increasing dietary peptide concentrations. In general, compared with the protein-free diet, the ratios of threonine and arginine in endogenous protein were lower (P < 0.05) and those of glutamic acid, glycine and histidine were greater (P < 0.05) in diets with high concentrations of peptides. The ratio of proline was found to decrease (P < 0.05) with increasing dietary peptide concentrations. These changes in the amino acid profile of endogenous protein are probably reflective of changes in the output of one or more of the components of endogenous protein. Overall, the present results demonstrated that increasing dietary peptide concentrations increased the flow of endogenous amino acid flow at the terminal ileum of broiler chickens in a dose-dependent manner and also caused changes in the composition of endogenous protein. The observed changes in endogenous amino flow will influence the maintenance requirements for amino acids and also have implications for the calculation of true digestibility coefficient of feedstuffs.

  7. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.

  8. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 thatmore » forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.« less

  9. Identification of Amino Acid Changes That May Have Been Critical for the Genesis of A(H7N9) Influenza Viruses

    PubMed Central

    Neumann, Gabriele; Macken, Catherine A.

    2014-01-01

    ABSTRACT Novel influenza A viruses of the H7N9 subtype [A(H7N9)] emerged in the spring of 2013 in China and had infected 163 people as of 10 January 2014; 50 of them died of the severe respiratory infection caused by these viruses. Phylogenetic studies have indicated that the novel A(H7N9) viruses emerged from reassortment of H7, N9, and H9N2 viruses. Inspections of protein sequences from A(H7N9) viruses and their immediate predecessors revealed several amino acid changes in A(H7N9) viruses that may have facilitated transmission and replication in the novel host. Since mutations that occurred more ancestrally may also have contributed to the genesis of A(H7N9) viruses, we inferred historical evolutionary events leading to the novel viruses. We identified a number of amino acid changes on the evolutionary path to A(H7N9) viruses, including substitutions that may be associated with host range, replicative ability, and/or host responses to infection. The biological significance of these amino acid changes can be tested in future studies. IMPORTANCE The novel influenza A viruses of the H7N9 subtype [A(H7N9)], which first emerged in the spring of 2013, cause severe respiratory infections in humans. Here, we performed a comprehensive evolutionary analysis of the progenitors of A(H7N9) viruses to identify amino acid changes that may have been critical for the emergence of A(H7N9) viruses and their ability to infect humans. We provide a list of potentially important amino acid changes that can be tested for their significance for the influenza virus host range, replicative ability, and/or host responses to infection. PMID:24522919

  10. PPII propensity of multiple-guest amino acids in a proline-rich environment.

    PubMed

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2011-07-07

    There has been considerable debate about the intrinsic PPII propensity of amino acid residues in denatured polypeptides. Experimentally, this scale is based on the behavior of guest amino acid residues placed in the middle of proline-based hosts. We have used classical molecular dynamics simulations combined with replica-exchange methods to carry out a comprehensive analysis of the conformational equilibria of proline-based host oligopeptides with multiple guest amino acids including alanine, glutamine, valine, and asparagine. The tracked structural characteristics include the secondary structural motifs based on the Ramachandran angles and the cis/trans isomerization of the prolyl bonds. In agreement with our recent study of single amino acid guests, we did not observe an intrinsic PPII propensity in any of the guest amino acids in a multiple-guest setting. Instead, the experimental results can be explained in terms of (i) the steric restrictions imposed on the C-terminal guest amino acid that is immediately followed by a proline residue and (ii) an increase in the trans content of the prolyl bonds due to the presence of guest residues. In terms of the latter, we found that the more guests added to the system, the larger the increase in the trans content of the prolyl bonds, which results in an effective increase in the PPII content of the peptide.

  11. Processing of the precursor of protamine P2 in mouse. Peptide mapping and N-terminal sequence analysis of intermediates.

    PubMed Central

    Carré-Eusèbe, D; Lederer, F; Lê, K H; Elsevier, S M

    1991-01-01

    Protamine P2, the major basic chromosomal protein of mouse spermatozoa, is synthesized as a precursor almost twice as long as the mature protein, its extra length arising from an N-terminal extension of 44 amino acid residues. This precursor is integrated into chromatin of spermatids, and the extension is processed during chromatin condensation in the haploid cells. We have studied processing in the mouse and have identified two intermediates generated by proteolytic cleavage of the precursor. H.p.l.c. separated protamine P2 from four other spermatid proteins, including the precursor and three proteins known to possess physiological characteristics expected of processing intermediates. Peptide mapping indicated that all of these proteins were structurally similar. Two major proteins were further purified by PAGE, transferred to poly(vinylidene difluoride) membranes and submitted to automated N-terminal sequence analysis. Both sequences were found within the deduced sequence of the precursor extension. The N-terminus of the larger intermediate, PP2C, was Gly-12, whereas the N-terminus of the smaller, PP2D, was His-21. Both processing sites involved a peptide bond in which the carbonyl function was contributed by an acidic amino acid. Images Fig. 1. Fig. 3. Fig. 4. PMID:1854346

  12. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra

    1998-10-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  13. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  14. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS).

    PubMed

    Hofmann, D; Gehre, M; Jung, K

    2003-09-01

    In order to identify natural nitrogen isotope variations of biologically important amino acids four derivatization reactions (t-butylmethylsilylation, esterification with subsequent trifluoroacetylation, acetylation and pivaloylation) were tested with standard mixtures of 17 proteinogenic amino acids and plant (moss) samples using GC-C-IRMS. The possible fractionation of the nitrogen isotopes, caused for instance by the formation of multiple reaction products, was investigated. For biological samples, the esterification of the amino acids with subsequent trifluoroacetylation is recommended for nitrogen isotope ratio analysis. A sample preparation technique is described for the isotope ratio mass spectrometric analysis of amino acids from the non-protein (NPN) fraction of terrestrial moss. 14N/15N ratios from moss (Scleropodium spec.) samples from different anthropogenically polluted areas were studied with respect to ecotoxicologal bioindication.

  15. Amino acid sequence of human cholinesterase. Annual report, 30 September 1984-30 September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockridge, O.

    1985-10-01

    The active-site serine residue is located 198 amino acids from the N-terminal. The active-site peptide was isolated from three different genetic types of human serum cholinesterase: from usual, atypical, and atypical-silent genotypes. It was found that the amino acid sequence of the active-site peptide was identical in all three genotypes. Comparison of the complete sequences of cholinesterase from human serum and acetylcholinesterase from the electric organ of Torpedo californica shows an identity of 53%. Cholinesterase is of interest to the Department of Defense because cholinesterase protects against organophosphate poisons of the type used in chemical warfare. The structural results presentedmore » here will serve as the basis for cloning the gene for cholinesterase. The potential uses of large amounts of cholinesterase would be for cleaning up spills of organophosphates and possibly for detoxifying exposed personnel.« less

  16. Amino acid uptake by temperate tree species characteristic of low- and high-fertility habitats.

    PubMed

    Scott, Emily E; Rothstein, David E

    2011-10-01

    The relationship between inorganic nitrogen (N) cycling and plant productivity is well established. However, recent research has demonstrated the ability of plants to take up low molecular weight organic N compounds (i.e., amino acids) at rates that often rival those of inorganic N forms. In this study, we hypothesize that temperate forest tree species characteristic of low-fertility habitats will prefer amino acids over species characteristic of high-fertility habitats. We measured the uptake of (15)N-labeled amino acids (glycine, glutamine, arginine, serine), ammonium (NH(4)(+)), and nitrate (NO(3)(-)) by four tree species that commonly occur in eastern North America, where their abundances have been correlated with inorganic N availability. Specific uptake rates of amino acids were largely similar for all tree species; however, high-fertility species took up NH(4)(+) at rates more than double those of low-fertility species, rendering amino acid N relatively more important to the N nutrition of low-fertility species. Low-fertility species acquired over four times more total N from arginine compared to NH(4)(+) and NO(3)(-); high-fertility species acquired the most N from NH(4)(+). Arginine had the highest uptake rates of any amino acid by all species; there were no significant differences in uptake rates of the remaining amino acids. Our results support the idea that the dominant species in a particular habitat are those best able to utilize the most available N resources.

  17. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis

    NASA Astrophysics Data System (ADS)

    Collin-Hansen, C.; Andersen, R. A.; Steinnes, E.

    2003-05-01

    A Cd-binding protein was isolated from the popular edible mushroom Boletus edulis, which is a hyperaccumulator of both Cd and Hg. Wild-growing samples of B. edulis were collected from soils rich in Cd. Cd radiotracer was added to the crude protein preparation obtained from ethanol precipitation of heat-treated cytosol. Proteins were then further separated in two consecutive steps; gel filtration and anion exchange chromatography. In both steps the Cd radiotracer profile showed only one distinct peak, which corresponded well with the profiles of endogenous Cd obtained by atomic absorption spectrophotometry (AAS). Concentrations of the essential elements Cu and Zn were low in the protein fractions high in Cd. N-terminal sequencing performed on the Cd-binding protein fractions revealed a protein with a novel amino acid sequence, which contained aromatic amino acids as well as proline. Both the N-terminal sequencing and spectrofluorimetric analysis with EDTA and ABD-F (4-aminosulfonyl-7-fluoro-2, 1, 3-benzoxadiazole) failed to detect cysteine in the Cd-binding fractions. These findings conclude that the novel protein does not belong to the metallothionein family. The results suggest a role for the protein in Cd transport and storage, and they are of importance in view of toxicology and food chemistry, but also for environmental protection.

  18. Surfactant protein B: lipid interactions of synthetic peptides representing the amino-terminal amphipathic domain.

    PubMed Central

    Bruni, R; Taeusch, H W; Waring, A J

    1991-01-01

    The mechanisms by which pulmonary surfactant protein B (SP-B) affects the surface activity of surfactant lipids are unclear. We have studied the peptide/lipid interactions of the amino-terminal amphipathic domain of SP-B by comparing the secondary conformations and surface activities of a family of synthetic peptides based on the native human SP-B sequence, modified by site-specific amino acid substitutions. Circular dichroism measurements show an alpha-helical structure correlating with the ability of the peptides to interact with lipids and with the surface activity of peptide/lipid dispersions. Amino acid substitutions altering either the charge or the hydrophobicity of the residues lowered the helical content and reduced the association of the aminoterminal segment with lipid dispersions. Surface activity of peptide/lipid mixtures was maximally altered by reversal of charge in synthetic peptides. These observations indicate that electrostatic interactions and hydrophobicity are important factors in determining optimal structure and function of surfactant peptides in lipid dispersions. Images PMID:1871144

  19. Amino acid metabolism in maize earshoots. Implications for assimilate preconditioning and nitrogen signaling.

    PubMed

    Seebauer, Juliann R; Moose, Stephen P; Fabbri, Bradon J; Crossland, Lyle D; Below, Frederick E

    2004-12-01

    Nitrogen (N) is an essential requirement for kernel growth in maize (Zea mays); however, little is known about how N assimilates are metabolized in young earshoots during seed development. The objective of this study was to assess amino acid metabolism in cob and spikelet tissues during the critical 2 weeks following silking. Two maize hybrids were grown in the field for 2 years at two levels of supplemental N fertilizer (0 and 168 kg N/ha). The effects of the reproductive sink on cob N metabolism were examined by comparing pollinated to unpollinated earshoots. Earshoots were sampled at 2, 8, 14, and 18 d after silking; dissected into cob, spikelet, and/or pedicel and kernel fractions; then analyzed for amino acid profiles and key enzyme activities associated with amino acid metabolism. Major amino acids in the cob were glutamine (Gln), aspartic acid (Asp), asparagine (Asn), glutamate, and alanine. Gln concentrations dropped dramatically from 2 to 14 d after silking in both pollinated and unpollinated cobs, whereas all other measured amino acids accumulated over time in unpollinated spikelets and cobs, especially Asn. N supply had a variable effect on individual amino acid levels in young cobs and spikelets, with Asn being the most notably enhanced. We found that the cob performs significant enzymatic interconversions among Gln, alanine, Asp, and Asn during early reproductive development, which may precondition the N assimilate supply for sustained kernel growth. The measured amino acid profiles and enzymatic activities suggest that the Asn to Gln ratio in cobs may be part of a signal transduction pathway involving aspartate aminotransferase, Gln synthetase, and Asn synthetase to indicate plant N status for kernel development.

  20. Two Proline-Rich Nuclear Localization Signals in the Amino- and Carboxyl-Terminal Regions of the Borna Disease Virus Phosphoprotein

    PubMed Central

    Shoya, Yuko; Kobayashi, Takeshi; Koda, Toshiaki; Ikuta, Kazuyoshi; Kakinuma, Mitsuaki; Kishi, Masahiko

    1998-01-01

    Borna disease virus (BDV) uses a unique strategy of replication and transcription which takes place in the nucleus, unlike other known, nonsegmented, negative-stranded RNA viruses of animal origin. In this process, viral constituents necessary for replication must be transported to the nucleus from the cytoplasm. We report here the evidence that BDV P protein, which may play an important role in viral replication and transcription, is transported into the nucleus in the absence of other viral constituents. This transportation is accomplished by its own nuclear localization signals (NLSs), which are present in both N-terminal (29PRPRKIPR36) and C-terminal (181PPRIYPQLPSAPT193) regions of the protein. These two NLSs can function independently and both have several Pro residues as key amino acids. PMID:9811710

  1. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.

    PubMed

    Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J

    2015-07-30

    Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.

  2. Amino acid "little Big Bang": representing amino acid substitution matrices as dot products of Euclidian vectors.

    PubMed

    Zimmermann, Karel; Gibrat, Jean-François

    2010-01-04

    Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  3. Amino- and carboxy-terminal deletion mutants of Gs alpha are localized to the particulate fraction of transfected COS cells

    PubMed Central

    1992-01-01

    To elucidate the structural basis for membrane attachment of the alpha subunit of the stimulatory G protein (Gs alpha), mutant Gs alpha cDNAs with deletions of amino acid residues in the amino and/or carboxy termini were transiently expressed in COS-7 cells. The particulate and soluble fractions prepared from these cells were analyzed by immunoblot using peptide specific antibodies to monitor distribution of the expressed proteins. Transfection of mutant forms of Gs alpha with either 26 amino terminal residues deleted (delta 3-28) or with 59 amino terminal residues deleted (delta 1-59) resulted in immunoreactive proteins which localized primarily to the particulate fraction. Similarly, mutants with 10 (delta 385-394), 32 (delta 353-384), or 42 (delta 353-394) amino acid residues deleted from the carboxy terminus also localized to the particulate fraction, as did a mutant form of Gs alpha lacking amino acid residues at both the amino and carboxy termini (delta 3-28)/(delta 353-384). Mutant and wild type forms of Gs alpha demonstrated a similar degree of tightness in their binding to membranes as demonstrated by treatment with 2.5 M NaCl or 6 M urea, but some mutant forms were relatively resistant compared with wild type Gs alpha to solubilization by 15 mM NaOH or 1% sodium cholate. We conclude that: (a) deletion of significant portions of the amino and/or carboxyl terminus of Gs alpha is still compatible with protein expression; (b) deletion of these regions is insufficient to cause cytosolic localization of the expressed protein. The basis of Gs alpha membrane targeting remains to be elucidated. PMID:1400589

  4. Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control.

    PubMed

    Somogyi, P; Minson, J B; Morilak, D; Llewellyn-Smith, I; McIlhinney, J R; Chalmers, J

    1989-09-04

    The source and possible role of excitatory amino acid projections to areas of the ventrolateral medulla (VLM) involved in cardiovascular control were studied. Following the injection of [3H]D-aspartate ([3H]D-Asp), a selective tracer for excitatory amino acid pathways, into vasopressor or vasodepressor areas of the VLM in rats, more than 90% of retrogradely labelled neurones were found in the nucleus of the solitary tract (NTS). Very few of the [3H]D-Asp-labelled cells were immunoreactive for tyrosine hydroxylase, none for phenylethanolamine-N-methyltransferase or gamma-aminobutyric acid. The density of labelled cells in the NTS was similar to that obtained with the non-selective tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and WGA-colloidal gold, but these tracers also labelled other cell groups in the medulla. Furthermore, the decrease in blood pressure, caused by pharmacological activation of neurones in the NTS of rats, or by electrical stimulation of the aortic depressor nerve in rabbits could be blocked by the selective N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate injected into the caudal vasodepressor area of the VLM. This area corresponds to the termination of [3H]D-Asp transporting NTS neurones. These results provide evidence that a population of NTS neurones projecting to the VLM use excitatory amino acids as transmitters. Among other possible functions, this pathway may mediate tonic and reflex control of blood pressure via NMDA receptors in the VLM.

  5. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  6. Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge.

    PubMed

    Park, Junghoon; Park, Seyong; Kim, Moonil

    2014-01-01

    The anaerobic degradation of each amino acid that could be generated through the hydrolysis of sewage sludge was evaluated. Stickland reaction as an intermediate reaction between two kinds of amino acids was restricted in order to evaluate each amino acid. Changes in the chemical oxygen demand (COD), T-N, NH4(+)-N, biogas, and CH4 were analysed for the anaerobic digestion process. The initial nitrogen concentration of all amino acids is adjusted as 1000 mg/L. The degradation rate of the amino acids was determined based on the ammonia form of nitrogen, which is generated by the deamination of amino acids. Among all amino acids, such as alpha-alanine, beta-alanine, lysine, arginine, glycine, histidine, cysteine, methionine, and leucine, deamination rates of cysteine, leucine, and methionine were just 61.55%, 54.59%, and 46.61%, respectively, and they had low removal rates of organic matter and showed very low methane production rates of 13.55, 71.04, and 80.77 mL CH4/g CODin, respectively. Especially for cysteine, the methane content was maintained at approximately 7% during the experiment. If wastewater contains high levels of cysteine, leucine, and methionine and Stickland reaction is not prepared, these amino acids may reduce the efficiency of the anaerobic digestion.

  7. Complete Amino Acid Sequence of a Copper/Zinc-Superoxide Dismutase from Ginger Rhizome.

    PubMed

    Nishiyama, Yuki; Fukamizo, Tamo; Yoneda, Kazunari; Araki, Tomohiro

    2017-04-01

    Superoxide dismutase (SOD) is an antioxidant enzyme protecting cells from oxidative stress. Ginger (Zingiber officinale) is known for its antioxidant properties, however, there are no data on SODs from ginger rhizomes. In this study, we purified SOD from the rhizome of Z. officinale (Zo-SOD) and determined its complete amino acid sequence using N terminal sequencing, amino acid analysis, and de novo sequencing by tandem mass spectrometry. Zo-SOD consists of 151 amino acids with two signature Cu/Zn-SOD motifs and has high similarity to other plant Cu/Zn-SODs. Multiple sequence alignment showed that Cu/Zn-binding residues and cysteines forming a disulfide bond, which are highly conserved in Cu/Zn-SODs, are also present in Zo-SOD. Phylogenetic analysis revealed that plant Cu/Zn-SODs clustered into distinct chloroplastic, cytoplasmic, and intermediate groups. Among them, only chloroplastic enzymes carried amino acid substitutions in the region functionally important for enzymatic activity, suggesting that chloroplastic SODs may have a function distinct from those of SODs localized in other subcellular compartments. The nucleotide sequence of the Zo-SOD coding region was obtained by reverse-translation, and the gene was synthesized, cloned, and expressed. The recombinant Zo-SOD demonstrated pH stability in the range of 5-10, which is similar to other reported Cu/Zn-SODs, and thermal stability in the range of 10-60 °C, which is higher than that for most plant Cu/Zn-SODs but lower compared to the enzyme from a Z. officinale relative Curcuma aromatica.

  8. Phosphoenolpyruvate carboxykinase of Trypanosoma brucei is targeted to the glycosomes by a C-terminal sequence.

    PubMed

    Sommer, J M; Nguyen, T T; Wang, C C

    1994-08-15

    Import of proteins into the glycosomes of T. brucei resembles the peroxisomal protein import in that C-terminal SKL-like tripeptide sequences can function as targeting signals. Many of the glycosomal proteins do not, however, possess such C-terminal tripeptide signals. Among these, phosphoenolpyruvate carboxykinase (PEPCK (ATP)) was thought to be targeted to the glycosomes by an N-terminal or an internal targeting signal. A limited similarity to the N-terminal targeting signal of rat peroxisomal thiolase exists at the N-terminus of T. brucei PEPCK. However, we found that this peroxisomal targeting signal does not function for glycosomal protein import in T. brucei. Further studies of the PEPCK gene revealed that the C-terminus of the predicted protein does not correspond to the previously deduced protein sequence of 472 amino acids due to a -1 frame shift error in the original DNA sequence. Readjusting the reading frame of the sequence results in a predicted protein of 525 amino acids in length ending in a tripeptide serine-arginine-leucine (SRL), which is a potential targeting signal for import into the glycosomes. A fusion protein of firefly luciferase, without its own C-terminal SKL targeting signal, and T. brucei PEPCK is efficiently imported into the glycosomes when expressed in procyclic trypanosomes. Deletion of the C-terminal SRL tripeptide or the last 29 amino acids of PEPCK reduced the import only by about 50%, while a deletion of the last 47 amino acids completely abolished the import. These results suggest that T. brucei PEPCK may contain a second, internal glycosomal targeting signal upstream of the C-terminal SRL sequence.

  9. Mirrors in the PDB: left-handed alpha-turns guide design with D-amino acids.

    PubMed

    Annavarapu, Srinivas; Nanda, Vikas

    2009-09-22

    Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Propensities for amino acids to occur in contiguous alpha(L) helices correlate with published thermodynamic scales for incorporation of D-amino acids into alpha(R) helices. Two backbone rules for terminating a left-handed helix are found: an alpha(R) conformation is disfavored at the amino terminus, and a beta(R) conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to alpha(L) helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. By examining left-handed alpha-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed alpha-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds.

  10. Mirrors in the PDB: left-handed α-turns guide design with D-amino acids

    PubMed Central

    Annavarapu, Srinivas; Nanda, Vikas

    2009-01-01

    Background Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Results Propensities for amino acids to occur in contiguous αL helices correlate with published thermodynamic scales for incorporation of D-amino acids into αR helices. Two backbone rules for terminating a left-handed helix are found: an αR conformation is disfavored at the amino terminus, and a βR conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to αL helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. Conclusion By examining left-handed α-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed α-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds. PMID:19772623

  11. Amino Acid Isotope Incorporation and Enrichment Factors in Pacific Bluefin Tuna, Thunnus orientalis

    PubMed Central

    Bradley, Christina J.; Madigan, Daniel J.; Block, Barbara A.; Popp, Brian N.

    2014-01-01

    Compound specific isotopic analysis (CSIA) of amino acids has received increasing attention in ecological studies in recent years due to its ability to evaluate trophic positions and elucidate baseline nutrient sources. However, the incorporation rates of individual amino acids into protein and specific trophic discrimination factors (TDFs) are largely unknown, limiting the application of CSIA to trophic studies. We determined nitrogen turnover rates of individual amino acids from a long-term (up to 1054 days) laboratory experiment using captive Pacific bluefin tuna, Thunnus orientalis (PBFT), a large endothermic pelagic fish fed a controlled diet. Small PBFT (white muscle δ15N∼11.5‰) were collected in San Diego, CA and transported to the Tuna Research and Conservation Center (TRCC) where they were fed a controlled diet with high δ15N values relative to PBFT white muscle (diet δ15N∼13.9‰). Half-lives of trophic and source amino acids ranged from 28.6 to 305.4 days and 67.5 to 136.2 days, respectively. The TDF for the weighted mean values of amino acids was 3.0 ‰, ranging from 2.2 to 15.8 ‰ for individual combinations of 6 trophic and 5 source amino acids. Changes in the δ15N values of amino acids across trophic levels are the underlying drivers of the trophic 15N enrichment. Nearly all amino acid δ15N values in this experiment changed exponentially and could be described by a single compartment model. Significant differences in the rate of 15N incorporation were found for source and trophic amino acids both within and between these groups. Varying half-lives of individual amino acids can be applied to migratory organisms as isotopic clocks, determining the length of time an individual has spent in a new environment. These results greatly enhance the ability to interpret compound specific isotope analyses in trophic studies. PMID:24465724

  12. Nonprotein amino acids from seeds of Cycas circinalis and Phaseolus vulgaris.

    PubMed

    Li, C J; Brownson, D M; Mabry, T J; Perera, C; Bell, E A

    1996-05-01

    Our chemical studies on Cycas circinalis seeds from Guam has provided two new nonprotein amino acids, N-(3'-one-5'-methyl)-hexylalanine and leucine betaine. N-methylisoleucine, previously reported as a component of naturally occurring peptides, has been isolated as a free amino acid from the seeds of Phaseolus vulgaris (pinto bean), together with S-methylcysteine, pipecolic acid and a dipeptide, gamma-glutamyl-leucine.

  13. [Plasma amino acids profile of healthy pregnant adolescents in Maracaibo, Venezuela].

    PubMed

    Ortega, Pablo; Castejón, Haydée V; Argotte, María G; Gómez, Gisela; Bohorquez, Lissette; Urrieta, Jesús R

    2003-06-01

    One hundred female adolescents (13-18 y) were clinical and anthropometrically studied to select only those with adequate nutrition. Most adolescents belonged to IV socio-economic stratum families (worker class). Height, weight, age, body mass index and medial arm circumference were used as anthropometric parameters. After screening, only 41 non pregnant girls (control) and 42 pregnant girls with adequate nutrition were selected to analyze plasma amino acids. Fasting peripheral venous blood was drawn, and plasma amino acids were analyzed by HPLC. Amino acid concentrations were expressed as umol/L +/- SE. SAS/STAT program was used for statistical analysis. Amino acid values of control adolescent group were found in ranges reported by other investigators, with slight variations, mostly in diminution, presumably due to nutritional, metabolic or genetic conditions of people living in tropical regions. In pregnant healthy adolescents, distributed according to gestational age: < 32 weeks (n = 30) and > 32 weeks (n = 12), a diminution of total molar plasma amino acids was found, by comparing with control values. Ten amino acids (Pro, Gly, Gln, Arg, Ser, Orn, Tau, Leu, Thr and Val) appeared significantively diminished throughout gestation, being Gly. Gln and Arg most affected since earlier weeks. During the 2nd period. Thr and Val increased their grade of affectation; whereas some amino acids values (Orn, Pro and Tau) tended to recuperate. Several of affected amino acids are gluconegoenic, thus, they could be utilized to supply the energy required by the pregnant adolescent against her double stress: the fetus development and her own development. The plasma amino acid values reported in both, healthy non pregnant and pregnant adolescents, could be taken as regional referential profile of plasma amino acids in this poblational group for further research on adolescent and fetal--maternal malnutrition.

  14. Chromatin Condensing Functions of the Linker Histone C-terminal Domain are mediated by Specific Amino Acid Composition and Intrinsic Protein Disorder†

    PubMed Central

    Lu, Xu; Hamkalo, Barbara; Parseghian, Missag H.; Hansen, Jeffrey C.

    2009-01-01

    Linker histones bind to the nucleosomes and linker DNA of chromatin fibers, causing changes in linker DNA structure and stabilization of higher order folded and oligomeric chromatin structures. Linker histones affect chromatin structure acting primarily through their ~100 residue C-terminal domain (CTD). We have previously shown that the ability of the linker histone H1° to alter chromatin structure was localized to two discontinuous 24-/25-residue CTD regions (Lu, X., and Hansen, J. C. (2004) J Biol Chem 279, 8701–8707). To determine the biochemical basis for these results, we have characterized chromatin model systems assembled with endogenous mouse somatic H1 isoforms, or recombinant H1° CTD mutants in which the primary sequence has been scrambled, the amino acid composition mutated, or the location of various CTD regions swapped. Our results indicate that specific amino acid composition plays a fundamental role in molecular recognition and function by the H1 CTD. Additionally, these experiments support a new molecular model for CTD function, and provide a biochemical basis for the redundancy observed in H1 isoform knockout experiments in vivo. PMID:19072710

  15. Central cardiovascular and behavioral effects of carboxy- and amino-terminal fragments of substance P in conscious rats.

    PubMed

    Tschöpe, C; Jost, N; Unger, T; Culman, J

    1995-08-28

    The central cardiovascular and behavioral effects of carboxy- (SP 5-11, SP 6-11, SP 7-11, SP 8-11) and amino- (SP 1-7, SP 1-9) terminal substance P (SP) fragments were compared with those of SP 1-11 in conscious rats. In addition, the ability of these SP-fragments to induce desensitization of the central NK1 receptor was investigated. SP 1-11 (50 pmol) injected i.c.v. induced an increase in mean arterial blood pressure (MAP), heart rate (HR) and a typical behavioral response consisting of face washing (FW), hindquarter grooming (HQG) and wet-dog shakes (WDS). The cardiovascular and behavioral responses to equimolar doses of SP 5-11 and SP 6-11 were similar to those of SP 1-11, however, only SP 5-11 induced exactly the same behavioral pattern as SP 1-11. SP 6-11 was more potent in inducing FW and WDS than SP 1-11 or SP 5-11. The carboxy-terminal SP-fragments, SP 7-11 and SP 8-11, and the amino-terminal SP-fragments, SP 1-7, SP 1-9, did not elicit any significant cardiovascular or behavioral responses. Pretreatment with SP 1-11 reduced the cardiovascular and behavioral responses to subsequent injections of SP 1-11. Of all SP-fragments tested, only SP 5-11 was able to attenuate the cardiovascular and behavioral responses to SP 1-11. Our results demonstrate that SP 6-11 represents the shortest carboxy-terminal amino acid sequence, that after i.c.v. injection, elicits the same cardiovascular response as SP 1-11, but fails to desensitize the NK1 receptor. The carboxy-terminal fragment, SP 5-11, is the shortest amino acid sequence which produces the same pattern of central cardiovascular and behavioral responses as SP 1-11 and also retains the ability to desensitize the NK1 receptor like SP 1-11.

  16. The N-terminal Region of the DNA-dependent Protein Kinase Catalytic Subunit Is Required for Its DNA Double-stranded Break-mediated Activation*

    PubMed Central

    Davis, Anthony J.; Lee, Kyung-Jong; Chen, David J.

    2013-01-01

    DNA-dependent protein kinase (DNA-PK) plays an essential role in the repair of DNA double-stranded breaks (DSBs) mediated by the nonhomologous end-joining pathway. DNA-PK is a holoenzyme consisting of a DNA-binding (Ku70/Ku80) and catalytic (DNA-PKcs) subunit. DNA-PKcs is a serine/threonine protein kinase that is recruited to DSBs via Ku70/80 and is activated once the kinase is bound to the DSB ends. In this study, two large, distinct fragments of DNA-PKcs, consisting of the N terminus (amino acids 1–2713), termed N-PKcs, and the C terminus (amino acids 2714–4128), termed C-PKcs, were produced to determine the role of each terminal region in regulating the activity of DNA-PKcs. N-PKcs but not C-PKcs interacts with the Ku-DNA complex and is required for the ability of DNA-PKcs to localize to DSBs. C-PKcs has increased basal kinase activity compared with DNA-PKcs, suggesting that the N-terminal region of DNA-PKcs keeps basal activity low. The kinase activity of C-PKcs is not stimulated by Ku70/80 and DNA, further supporting that the N-terminal region is required for binding to the Ku-DNA complex and full activation of kinase activity. Collectively, the results show the N-terminal region mediates the interaction between DNA-PKcs and the Ku-DNA complex and is required for its DSB-induced enzymatic activity. PMID:23322783

  17. Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures.

    PubMed

    Huijghebaert, S M; Hofmann, A F

    1986-07-01

    The influence of the chemical structure of the amino acid (or amino acid analogue) moiety of a number of synthetic cholyl amidates on deconjugation by cholylglycine hydrolase from Clostridium perfringens was studied in vitro at pH 5.4. Conjugates with alkyl homologues of glycine were hydrolyzed more slowly as the number of methylene units increased (cholylglycine greater than cholyl-beta-alanine greater than cholyl-gamma-aminobutyrate). In contrast, for conjugates with the alkyl homologues of taurine, cholylaminopropane sulfonate was hydrolyzed slightly faster than cholyltaurine, whereas cholylaminomethane sulfonate was hydrolyzed much more slowly. When glycine was replaced by other neutral alpha-amino acids, rates of hydrolysis decreased with increasing steric hindrance near the amide bond (cholyl-L-alpha-alanine much much greater than cholyl-L-leucine much greater than cholyl-L-valine greater than cholyl-L-tyrosine much greater than cholyl-D-valine). Conjugation with acidic or basic amino acids also greatly reduced the rates of hydrolysis, as cholyl-L-aspartate, cholyl-L-cysteate, cholyl-L-lysine, and cholyl-L-histidine were all hydrolyzed at a rate less than one-tenth that of cholylglycine. Methyl esterification of the carboxylic group of the amino acid moiety reduced the hydrolysis, but such substrates (cholylglycine methyl ester and cholyl-beta-alanine methyl ester) were completely hydrolyzed after overnight incubation with excess of enzyme. In contrast, cholyl-cholamine was not hydrolyzed at all, suggesting that a negative charge at the end of the side chain is required for optimal hydrolysis. Despite the lack of specificity for the amino acid moiety, a bile salt moiety was required, as the cholylglycine hydrolase did not display general carboxypeptidase activity for other non-bile acid substrates containing a terminal amide bond: hippuryl-L-phenylalanine and hippuryl-L-arginine, as well as oleyltaurine and oleylglycine, were not hydrolyzed. Fecal bacterial

  18. Biological and surface-active properties of double-chain cationic amino acid-based surfactants.

    PubMed

    Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy

    2014-08-01

    Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.

  19. Structural analysis and taste evaluation of γ-glutamyl peptides comprising sulfur-containing amino acids.

    PubMed

    Amino, Yusuke; Wakabayashi, Hidehiko; Akashi, Satoko; Ishiwatari, Yutaka

    2018-03-01

    The structures, flavor-modifying effects, and CaSR activities of γ-glutamyl peptides comprising sulfur-containing amino acids were investigated. The chemical structures, including the linkage mode of the N-terminal glutamic acid, of γ-L-glutamyl-S-(2-propenyl)-L-cysteine (γ-L-glutamyl-S-allyl-L-cysteine) and its sulfoxide isolated from garlic were established by comparing their NMR spectra with those of authentic peptides prepared using chemical methods. Mass spectrometric analysis also enabled determination of the linkage modes in the glutamyl dipeptides by their characteristic fragmentation. In sensory evaluation, these peptides exhibited flavor-modifying effects (continuity) in umami solutions less pronounced but similar to that of glutathione. Furthermore, the peptides exhibited intrinsic flavor due to the sulfur-containing structure, which may be partially responsible for their flavor-modifying effects. In CaSR assays, γ-L-glutamyl-S-methyl-L-cysteinylglycine was most active, which indicates that the presence of a medium-sized aliphatic substituent at the second amino acid residue in γ-glutamyl peptides enhances CaSR activity.

  20. The long terminal repeat-containing retrotransposon Tf1 possesses amino acids in gag that regulate nuclear localization and particle formation.

    PubMed

    Kim, Min-Kyung; Claiborn, Kathryn C; Levin, Henry L

    2005-08-01

    Tf1 is a long terminal repeat-containing retrotransposon of Schizosaccharomyces pombe that is studied to further our understanding of retrovirus propagation. One important application is to examine Tf1 as a model for how human immunodeficiency virus type 1 proteins enter the nucleus. The accumulation of Tf1 Gag in the nucleus requires an N-terminal nuclear localization signal (NLS) and the nuclear pore factor Nup124p. Here, we report that NLS activity is regulated by adjacent residues. Five mutant transposons were made, each with sequential tracts of four amino acids in Gag replaced by alanines. All five versions of Tf1 transposed with frequencies that were significantly lower than that of the wild type. Although all five made normal amounts of Gag, two of the mutations did not make cDNA, indicating that Gag contributed to reverse transcription. The localization of the Gag in the nucleus was significantly reduced by mutations A1, A2, and A3. These results identified residues in Gag that contribute to the function of the NLS. The Gags of A4 and A5 localized within the nucleus but exhibited severe defects in the formation of virus-like particles. Of particular interest was that the mutations in Gag-A4 and Gag-A5 caused their nuclear localization to become independent of Nup124p. These results suggested that Nup124p was only required for import of Tf1 Gag because of its extensive multimerization.

  1. Resolving the bulk δ 15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids

    NASA Astrophysics Data System (ADS)

    Styring, Amy K.; Sealy, Judith C.; Evershed, Richard P.

    2010-01-01

    Stable nitrogen isotope analysis is a fundamental tool in assessing dietary preferences and trophic positions within contemporary and ancient ecosystems. In order to assess more fully the dietary contributions to human tissue isotope values, a greater understanding of the complex biochemical and physiological factors which underpin bulk collagen δ 15N values is necessary. Determinations of δ 15N values of the individual amino acids which constitute bone collagen are necessary to unravel these relationships, since different amino acids display different δ 15N values according to their biosynthetic origins. A range of collagen isolates from archaeological faunal and human bone ( n = 12 and 11, respectively), representing a spectrum of terrestrial and marine protein origins and diets, were selected from coastal and near-coastal sites at the south-western tip of Africa. The collagens were hydrolysed and δ 15N values of their constituent amino acids determined as N-acetylmethyl esters (NACME) via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The analytical approach employed accounts for 56% of bone collagen nitrogen. Reconstruction of bulk bone collagen δ 15N values reveals a 2‰ offset from bulk collagen δ 15N values which is attributable to the δ 15N value of the amino acids which cannot currently be determined by GC-C-IRMS, notably arginine which comprises 53% of the nitrogen unaccounted for (23% of the total nitrogen). The δ 15N values of individual amino acids provide insights into both the contributions of various amino acids to the bulk δ 15N value of collagen and the factors influencing trophic position and the nitrogen source at the base of the food web. The similarity in the δ 15N values of alanine, glutamate, proline and hydroxyproline reflects the common origin of their amino groups from glutamate. The depletion in the δ 15N value of threonine with increasing trophic level indicates a fundamental difference between

  2. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)

    1994-01-01

    The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.

  3. Preferential hydrophobic interactions are responsible for a preference of D-amino acids in the aminoacylation of 5'-AMP with hydrophobic amino acids

    NASA Technical Reports Server (NTRS)

    Lacey, J. C. Jr; Wickramasinghe, N. S.; Sabatini, R. S.

    1992-01-01

    We have studied the chemistry of aminoacyl AMP to model reactions at the 3' terminus of aminoacyl tRNA for the purpose of understanding the origin of protein synthesis. The present studies relate to the D, L preference in the esterification of 5'-AMP. All N-acetyl amino acids we studied showed faster reaction of the D-isomer, with a generally decreasing preference for D-isomer as the hydrophobicity of the amino acid decreased. The beta-branched amino acids, Ile and Val, showed an extreme preference for D-isomer. Ac-Leu, the gamma-branched amino acid, showed a slightly low D/L ratio relative to its hydrophobicity. The molecular basis for these preferences for D-isomer is understandable in the light of our previous studies and seems to be due to preferential hydrophobic interaction of the D-isomer with adenine. The preference for hydrophobic D-amino acids can be decreased by addition of an organic solvent to the reaction medium. Conversely, peptidylation with Ac-PhePhe shows a preference for the LL isomer over the DD isomer.

  4. A New Paradigm for Creating Amino Acid Chirality

    NASA Astrophysics Data System (ADS)

    Boyd, Richard N.; Famiano, Michael A.; Kajino, Toshitaka; Onaka, Takashi

    2018-06-01

    The Supernova Neutrino Amino Acid Processing (SNAAP) model (1) selects left-handed amino acids via the interaction of electron anti-neutrinos with the N nuclei that have been oriented by the strong magnetic field. Within the amino acid molecules, the shielding tensor alters the local magnetic field, and this tensor is sensitive to the molecular chirality. The astrophysical object (2) that might supply the magnetic field and the neutrinos could be a core-collapse supernova, although there are problems with that site. A more likely candidate would be a close binary system consisting of a Wolf-Rayet star with a neutron star companion. The accretion disk that would form around the neutron star could enable dust formation, as well as meteoroids and planets, and the temperatures in the outer portions would accommodate amino acid formation. When the WR star explodes it provides the intense anti-neutrino flux, while the neutron star and the WR star provide the magnetic field. Quantum molecular calculations that included perturbation effects on the shielding tensor for nitrogen from the reorientation of the molecular electric dipole have been performed. They have found the amino acids moving in an external magnetic field to be physically distinct, so the anti-neutrinos from the WR star interacting with the N nuclei can perform a chirality dependent selection. An enantiomeric excess of a few percent has been found for isovaline in an aqueous environment. Alanine was found to have a comparable, but slightly lower, enantiomeric excess. This model suggests that our Solar System might have been created by a system such as this, as has also been suggested by recent measurements of unstable nuclides in our local environment.M.A. Famiano et al., Astrobiology 18, 190 (2018)R.N. Boyd et al., Astrophys. J. (in press), arXiv.org/abs/a802.08285

  5. Nitrogen isotopes provide clues to amino acid metabolism in human colorectal cancer cells.

    PubMed

    Krishnamurthy, R V; Suryawanshi, Yogesh R; Essani, Karim

    2017-05-31

    Glutamic acid and alanine make up more than 60 per cent of the total amino acids in the human body. Glutamine is a significant source of energy for cells and also a prime donor of nitrogen in the biosynthesis of many amino acids. Several studies have advocated the role of glutamic acid in cancer therapy. Identification of metabolic signatures in cancer cells will be crucial for advancement of cancer therapies based on the cell's metabolic state. Stable nitrogen isotope ratios ( 15 N/ 14 N, δ 15 N) are of particular advantage to understand the metabolic state of cancer cells, since most biochemical reactions involve transfer of nitrogen. In our study, we used the natural abundances of nitrogen isotopes (δ 15 N values) of individual amino acids from human colorectal cancer cell lines to investigate isotope discrimination among amino acids. Significant effects were noticed in the case of glutamic acid, alanine, aspartic acid and proline between cancer and healthy cells. The data suggest that glutamic acid is a nitrogen acceptor while alanine, aspartic acid and proline are nitrogen donors in cancerous cells. One plausible explanation is the transamination of the three acids to produce glutamic acid in cancerous cells.

  6. Pairwise amino acid secondary structural propensities

    NASA Astrophysics Data System (ADS)

    Chemmama, Ilan E.; Chapagain, Prem P.; Gerstman, Bernard S.

    2015-04-01

    We investigate the propensities for amino acids to form a specific secondary structure when they are paired with other amino acids. Our investigations use molecular dynamics (MD) computer simulations, and we compare the results to those from the Protein Data Bank (PDB). Proper comparison requires weighting of the MD results in a manner consistent with the relative frequency of appearance in the PDB of each possible pair of amino acids. We find that the propensity for an amino acid to assume a secondary structure varies dramatically depending on the amino acid that is before or after it in the primary sequence. This cooperative effect means that when selecting amino acids to facilitate the formation of a secondary structure in peptide engineering experiments, the adjacent amino acids must be considered. We also examine the preference for a secondary structure in bacterial proteins and compare the results to those of human proteins.

  7. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity

    PubMed Central

    Wu, Zhuo-Fu; Wang, Zhi; Zhang, Ye; Ma, Ya-Li; He, Cheng-Yan; Li, Heng; Chen, Lei; Huo, Qi-Sheng; Wang, Lei; Li, Zheng-Qiang

    2016-01-01

    Functional molecules synthesized by self-assembly between inorganic salts and amino acids have attracted much attention in recent years. A simple method is reported here for fabricating hybrid organic–inorganic nanoflowers using copper (II) ions as the inorganic component and natural amino acids as the organic component. The results indicate that the interactions between amino acid and copper ions cause the growth of the nanoflowers composed by C, N, Cu, P and O elements. The Cu ions and Cu(AA)n complexes containing Cu-O bond are present in the nanoflowers. The nanoflowers have flower-like porous structure dominated by the R groups of amino acids with high surface-to-volume ratios, which is beneficial for exerting its peroxidase-like activity depending on Fenton-like reaction mechanism with ABTS and Rhodamine B as the substrates. It is expected that the nanoflowers hold great promise as enzyme mimics for application in the field of biosensor, bioanalysis and biocatalysis. PMID:26926099

  8. Determination of Selected Amino Acids in Serum of Patients with Liver Disease.

    PubMed

    Kanďár, Roman; Drábková, Petra; Toiflová, Tereza; Čegan, Alexander

    2016-01-01

    The determination of amino acids can be a reliable approach for extended diagnosis of liver diseases. This is because liver disease can be a cause of impaired amino acid metabolism. Therefore, a method for the determination of serum amino acids, applicable for clinical purposes, is necessary. The aim of this study was to find differences in the levels of selected amino acids between patients with liver disease and a control group. Samples of peripheral venous blood were obtained from a group of patients with liver disease (n = 131, 59 women at an average age of 60 years and 72 men at an average age of 52 years) and a control group (n = 105, 47 women at an average age of 62 years and 58 men at an average age of 58 years). Before the separation, the amino acids were derivatized with naphthalene-2,3-dicarboxaldehyde. For the separation, reverse phase column was used. The effluent was monitored with a fluorescence detector. There were significant differences in the concentrations of some amino acids between the patients and the control group, but also between women and men. Correlations between some amino acids and markers of liver blood tests and lipid metabolism were observed. A simple, relatively rapid and selective HPLC method with fluorescence detection for the determination of selected amino acids in serum has been developed.

  9. Enhanced Resolution of Chiral Amino Acids with Capillary Electrophoresis for Biosignature Detection in Extraterrestrial Samples.

    PubMed

    Creamer, Jessica S; Mora, Maria F; Willis, Peter A

    2017-01-17

    Amino acids are fundamental building blocks of terrestrial life as well as ubiquitous byproducts of abiotic reactions. In order to distinguish between amino acids formed by abiotic versus biotic processes it is possible to use chemical distributions to identify patterns unique to life. This article describes two capillary electrophoresis methods capable of resolving 17 amino acids found in high abundance in both biotic and abiotic samples (seven enantiomer pairs d/l-Ala, -Asp, -Glu, -His, -Leu, -Ser, -Val and the three achiral amino acids Gly, β-Ala, and GABA). To resolve the 13 neutral amino acids one method utilizes a background electrolyte containing γ-cyclodextrin and sodium taurocholate micelles. The acidic amino acid enantiomers were resolved with γ-cyclodextrin alone. These methods allow detection limits down to 5 nM for the neutral amino acids and 500 nM for acidic amino acids and were used to analyze samples collected from Mono Lake with minimal sample preparation.

  10. Involvement of the N-terminal part of cyclophilin B in the interaction with specific Jurkat T-cell binding sites.

    PubMed

    Mariller, C; Haendler, B; Allain, F; Denys, A; Spik, G

    1996-07-15

    Cyclophilin B (CyPB) is secreted in biological fluids such as blood or milk and binds to a specific receptor present on the human lymphoblastic cell line Jurkat and on human peripheral blood lymphocytes. This study was intended to specify the areas of CyPB that are involved in the interaction with the receptor. A synthetic peptide corresponding to the first 24 N-terminal amino acid residues of CyPB was shown to specifically recognize the receptor. Moreover, modification of Arg18 of CyPB by p-hydroxyphenlglyoxal led to a dramatic loss of affinity for the receptor. However, when this residue was replaced by an alanine residue using site-directed mutagenesis, no modification of the binding properties was found, suggesting that Arg18 is not directly involved but is sufficiently close to the interaction site to interfere with the binding when modified. Competitive binding experiments using a chimaeric protein made up of the 24 N-terminal amino acid residues of CyPB fused to the cyclophilin A core sequence confirmed the involvement of this region of CyPB in receptor binding.

  11. Identification of Amino Acid Substitutions Supporting Antigenic Change of Influenza A(H1N1)pdm09 Viruses

    PubMed Central

    Koel, Björn F.; Mögling, Ramona; Chutinimitkul, Salin; Fraaij, Pieter L.; Burke, David F.; van der Vliet, Stefan; de Wit, Emmie; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D. M. E.; Smith, Derek J.; Fouchier, Ron A. M.

    2015-01-01

    ABSTRACT The majority of currently circulating influenza A(H1N1) viruses are antigenically similar to the virus that caused the 2009 influenza pandemic. However, antigenic variants are expected to emerge as population immunity increases. Amino acid substitutions in the hemagglutinin protein can result in escape from neutralizing antibodies, affect viral fitness, and change receptor preference. In this study, we constructed mutants with substitutions in the hemagglutinin of A/Netherlands/602/09 in an attenuated backbone to explore amino acid changes that may contribute to emergence of antigenic variants in the human population. Our analysis revealed that single substitutions affecting the loop that consists of amino acid positions 151 to 159 located adjacent to the receptor binding site caused escape from ferret and human antibodies elicited after primary A(H1N1)pdm09 virus infection. The majority of these substitutions resulted in similar or increased replication efficiency in vitro compared to that of the virus carrying the wild-type hemagglutinin and did not result in a change of receptor preference. However, none of the substitutions was sufficient for escape from the antibodies in sera from individuals that experienced both seasonal and pandemic A(H1N1) virus infections. These results suggest that antibodies directed against epitopes on seasonal A(H1N1) viruses contribute to neutralization of A(H1N1)pdm09 antigenic variants, thereby limiting the number of possible substitutions that could lead to escape from population immunity. IMPORTANCE Influenza A viruses can cause significant morbidity and mortality in humans. Amino acid substitutions in the hemagglutinin protein can result in escape from antibody-mediated neutralization. This allows the virus to reinfect individuals that have acquired immunity to previously circulating strains through infection or vaccination. To date, the vast majority of A(H1N1)pdm09 strains remain antigenically similar to the virus

  12. Conformational analysis of the N-terminal sequence Met1 Val60 of the tyrosine hydroxylase

    NASA Astrophysics Data System (ADS)

    Alieva, Irada N.; Mustafayeva, Narmina N.; Gojayev, Niftali M.

    2006-03-01

    Molecular mechanics method and molecular dynamics (MD) simulation techniques are used to study the behavior and the effect of the amino acids substitution on structure and molecular dynamics of the specific portion of Met1-Val60 amino acid residues from N-terminal regulatory domain of the tyrosine hydroxylase (TH) and its mutants in which the positively charged arginine residues at positions 37 and 38 were replaced by electrically neutral Gly and negatively charged Glu, and serine residue at position 40 was replaced by Ala or Asp residue. Our study allowed us to make the following conclusions: (i) the higher conformational flexibility of the Met1-Arg16 sequence is revealed in comparision to other part of the N-terminus; (ii) the stretch of amino acid residues Met30-Ser40 within the N-terminus forms β-turn so that two α-helices (residues 16-29 and residues 41-60) are paralel one another; (ii) the significant differences that are observed for the Arg37→Gly37, Arg37-Arg38→Glu37-Glu38 mutant segments indicates that the positive charge of the Arg37 and Arg38 residues is one of the main factor that maintains the characteristic of the turn; (ii) no major conformational changes are observed between Ser40→Ala40, and Ser40→Asp40 mutant segments.

  13. The effects of added sulphur amino acids, threonine and an ideal amino acid ratio on nitrogen metabolism in mature, overweight dogs.

    PubMed

    Bohaty, Robin E; de Godoy, Maria R C; McLeod, Kyle R; Harmon, David L

    2012-02-01

    The objectives of this study were to investigate the effects of added essential amino acids in conjunction with a dietary lysine/MJ of 0.72 on nitrogen (N) metabolism in dogs. Treatments were; a control diet, a diet that provided an ideal amino acid profile (IAA), a diet with added total sulphur amino acids (TSAA), and a diet with added TSAA and threonine (TT). Diets were fed to eight overweight, mature, female hounds using a replicated 4 x 4 Latin Square design. Food intake was similar across treatments, however, food N intake was higher (p < 0.001) for TSAA than control, IAA or TT. Nitrogen absorbed was higher (p < 0.01) for TSAA than IAA and control. Urea N excretion was greater for control than TT (p < 0.05). Urine N excretion did not differ between diets. There were no differences in digestibility or N retention of diets. There were no differences in protein turnover, synthesis, or degradation. Blood metabolites were within normal ranges and did not differ due to dietary treatment. Based on the measurements made in this study, there is no benefit for added TSAA, TT or additional EAA in diets for mature dogs formulated to provide a 0.72 g lysine/MJ ME ratio.

  14. D-Amino Acids in Living Higher Organisms

    NASA Astrophysics Data System (ADS)

    Fujii, Noriko

    2002-04-01

    The homochirality of biological amino acids (L-amino acids) and of the RNA/DNA backbone (D-ribose) might have become established before the origin of life. It has been considered that D-amino acids and L-sugars were eliminated on the primitive Earth. Therefore, the presence and function of D-amino acids in living organisms have not been studied except for D-amino acids in the cell walls of microorganisms. However, D-amino acids were recently found in various living higher organisms in the form of free amino acids, peptides, and proteins. Free D-aspartate and D-serine are present and may have important physiological functions in mammals. D-amino acids in peptides are well known as opioid peptides and neuropeptides. In protein, D-aspartate residues increase during aging. This review deals with recent advances in the study of D-amino acids in higher organisms.

  15. The Processed Amino-Terminal Fragment of Human TLR7 Acts as a Chaperone To Direct Human TLR7 into Endosomes

    PubMed Central

    Shepherd, Dawn; Booth, Sarah; Waithe, Dominic; Reis e Sousa, Caetano

    2015-01-01

    TLR7 mediates innate immune responses to viral RNA in endocytic compartments. Mouse and human (h)TLR7 undergo proteolytic cleavage, resulting in the generation of a C-terminal fragment that accumulates in endosomes and associates with the signaling adaptor MyD88 upon receptor triggering by TLR7 agonists. Although mouse TLR7 is cleaved in endosomes by acidic proteases, hTLR7 processing can occur at neutral pH throughout the secretory pathway through the activity of furin-like proprotein convertases. However, the mechanisms by which cleaved hTLR7 reaches the endosomal compartment remain unclear. In this study, we demonstrate that, after hTLR7 proteolytic processing, the liberated amino (N)-terminal fragment remains bound to the C terminus through disulfide bonds and provides key trafficking information that ensures correct delivery of the complex to endosomal compartments. In the absence of the N-terminal fragment, the C-terminal fragment is redirected to the cell surface, where it is functionally inactive. Our data reveal a novel role for the N terminus of hTLR7 as a molecular chaperone that provides processed hTLR7 with the correct targeting instructions to reach the endosomal compartment, hence ensuring its biological activity and preventing inadvertent cell surface responses to self-RNA. PMID:25917086

  16. C-terminal peptide extension via gas-phase ion/ion reactions

    PubMed Central

    Peng, Zhou; McLuckey, Scott A.

    2015-01-01

    The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400

  17. NH2-Terminal Residues of Neurospora crassa Proteins

    PubMed Central

    Rho, Hyune Mo; DeBusk, A. Gib

    1971-01-01

    The NH2-terminal amino acid composition of the soluble and ribosomal proteins from Neurospora crassa mycelia and conidia was determined by the dinitrophenyl method. A nonrandom distribution of NH2-terminal amino acids was observed in the complex protein mixtures. Glycine, alanine, and serine accounted for 75% of the NH2-terminal amino acids, and glycine appeared most frequently in mature proteins of mycelia. The appearance of phenylalanine as one of the major NH2-termini in crude conidial fraction suggests that the composition of proteins may vary in different developmental stages. PMID:5095291

  18. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, M.M.; Shoup, T.

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  19. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, M.M.; Shoup, T.

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  20. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, Mark M.; Shoup, Timothy

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  1. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, Mark M.; Shoup, Timothy

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  2. Branched-chain amino acid supplementation during bed rest: effect on recovery

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Donaldson, M. R.; Leskiw, M. J.; Schluter, M. D.; Baggett, D. W.; Boden, G.

    2003-01-01

    Bed rest is associated with a loss of protein from the weight-bearing muscle. The objectives of this study are to determine whether increasing dietary branched-chain amino acids (BCAAs) during bed rest improves the anabolic response after bed rest. The study consisted of a 1-day ambulatory period, 14 days of bed rest, and a 4-day recovery period. During bed rest, dietary intake was supplemented with either 30 mmol/day each of glycine, serine, and alanine (group 1) or with 30 mmol/day each of the three BCAAs (group 2). Whole body protein synthesis was determined with U-(15)N-labeled amino acids, muscle, and selected plasma protein synthesis with l-[(2)H(5)]phenylalanine. Total glucose production and gluconeogenesis from alanine were determined with l-[U-(13)C(3)]alanine and [6,6-(2)H(2)]glucose. During bed rest, nitrogen (N) retention was greater with BCAA feeding (56 +/- 6 vs. 26 +/- 12 mg N. kg(-1). day(-1), P < 0.05). There was no effect of BCAA supplementation on either whole body, muscle, or plasma protein synthesis or the rate of 3-MeH excretion. Muscle tissue free amino acid concentrations were increased during bed rest with BCAA (0.214 +/- 0.066 vs. 0.088 +/- 0.12 nmol/mg protein, P < 0.05). Total glucose production and gluconeogenesis from alanine were unchanged with bed rest but were significantly reduced (P < 0.05) with the BCAA group in the recovery phase. In conclusion, the improved N retention during bed rest is due, at least in part, to accretion of amino acids in the tissue free amino acid pools. The amount accreted is not enough to impact protein kinetics in the recovery phase but does improve N retention by providing additional essential amino acids in the early recovery phase.

  3. [Dynamics of amino acid and protein metabolism of laying hens after administration of 15N-labeled wheat protein. 5. Incorporation of 15N into the blood fraction and its amino acids].

    PubMed

    Gruhn, K; Zander, R; Kirchner, E

    1987-09-01

    12 colostomized laying hens which received 15N labelled wheat over 4 days were butchered 12 h, 36 h, 60 h and 108 h (3 animals each) after the last 15N application. The intake of 15N excess (15N') from the wheat amounted to 540 mg 15N' during the application period. The 15N' in the blood plasma decreased after the last 15N' application from 0.76 atom-% to 0.55 atom-% after 108 h, the labelling of the corpuscular components at the same measuring points increased from 0.28 to 0.50 atom-% 15N'. 96.6% of the plasma 15N' and 93.8% of that in the corpuscles is precipitable in trichloric acetic acid. The atom-% 15N' of histidine in the total blood remained unchanged in dependence on the butchering time. The 15N amount in lysine and arginine and that in the non-basic amino acids decreased inconsiderably in the period between 12 h and 108 h after the last 15N' wheat feeding.

  4. Regulation of Telomere Length Requires a Conserved N-Terminal Domain of Rif2 in Saccharomyces cerevisiae

    PubMed Central

    Kaizer, Hannah; Connelly, Carla J.; Bettridge, Kelsey; Viggiani, Christopher; Greider, Carol W.

    2015-01-01

    The regulation of telomere length equilibrium is essential for cell growth and survival since critically short telomeres signal DNA damage and cell cycle arrest. While the broad principles of length regulation are well established, the molecular mechanism of how these steps occur is not fully understood. We mutagenized the RIF2 gene in Saccharomyces cerevisiae to understand how this protein blocks excess telomere elongation. We identified an N-terminal domain in Rif2 that is essential for length regulation, which we have termed BAT domain for Blocks Addition of Telomeres. Tethering this BAT domain to Rap1 blocked telomere elongation not only in rif2Δ mutants but also in rif1Δ and rap1C-terminal deletion mutants. Mutation of a single amino acid in the BAT domain, phenylalanine at position 8 to alanine, recapitulated the rif2Δ mutant phenotype. Substitution of F8 with tryptophan mimicked the wild-type phenylalanine, suggesting the aromatic amino acid represents a protein interaction site that is essential for telomere length regulation. PMID:26294668

  5. The Apollo program and amino acids. [precursors significance in molecular evolution

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1973-01-01

    Apollo lunar sample analyses designed to detect the presence of organic compounds are reviewed, and the results are discussed from the viewpoint of relevance to laboratory experiments on the synthesis of amino acids and to theoretical models of cosmochemical processes resulting in the formation of organic compounds. Glycine, alanine, glutamic acid, aspartic acid, serine, and threonine have been found repeatedly in the hydrolyzates of hot aqueous extracts of lunar dust. These compounds represent an early step in the sequence of events leading to the rise of living material and were probably deposited by the solar wind. The results of the Apollo program so far suggest that the pathway from cosmic organic matter to life as it evolved on earth could have been pursued on the moon to the stage of amino acid precursors and then may have been terminated for lack of sufficient water.

  6. Metabolism of nonessential N-15-labeled amino acids and the measurement of human whole-body protein synthesis rates

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Settle, R. G.; Albina, J. A.; Melnick, G.; Dempsey, D. T.

    1991-01-01

    Eight N-15-labeled nonessential amino acids plus (N-15)H4Cl were administered over a 10-h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted.

  7. Identification and Functional Characterization of N-Terminally Acetylated Proteins in Drosophila melanogaster

    PubMed Central

    Gerrits, Bertran; Roschitzki, Bernd; Mohanty, Sonali; Niederer, Eva M.; Laczko, Endre; Timmerman, Evy; Lange, Vinzenz; Hafen, Ernst; Aebersold, Ruedi; Vandekerckhove, Joël; Basler, Konrad; Ahrens, Christian H.; Gevaert, Kris; Brunner, Erich

    2009-01-01

    Protein modifications play a major role for most biological processes in living organisms. Amino-terminal acetylation of proteins is a common modification found throughout the tree of life: the N-terminus of a nascent polypeptide chain becomes co-translationally acetylated, often after the removal of the initiating methionine residue. While the enzymes and protein complexes involved in these processes have been extensively studied, only little is known about the biological function of such N-terminal modification events. To identify common principles of N-terminal acetylation, we analyzed the amino-terminal peptides from proteins extracted from Drosophila Kc167 cells. We detected more than 1,200 mature protein N-termini and could show that N-terminal acetylation occurs in insects with a similar frequency as in humans. As the sole true determinant for N-terminal acetylation we could extract the (X)PX rule that indicates the prevention of acetylation under all circumstances. We could show that this rule can be used to genetically engineer a protein to study the biological relevance of the presence or absence of an acetyl group, thereby generating a generic assay to probe the functional importance of N-terminal acetylation. We applied the assay by expressing mutated proteins as transgenes in cell lines and in flies. Here, we present a straightforward strategy to systematically study the functional relevance of N-terminal acetylations in cells and whole organisms. Since the (X)PX rule seems to be of general validity in lower as well as higher eukaryotes, we propose that it can be used to study the function of N-terminal acetylation in all species. PMID:19885390

  8. Improving cell penetration of helical peptides stabilized by N-terminal crosslinked aspartic acids.

    PubMed

    Zhao, Hui; Jiang, Yanhong; Tian, Yuan; Yang, Dan; Qin, Xuan; Li, Zigang

    2017-01-04

    Cell penetration and nucleus translocation efficiency are important for the cellular activities of peptide therapeutics. For helical peptides stabilized by N-terminal crosslinked aspartic acid, correlations between their penetration efficiency/nucleus translocation and physicochemical properties were studied. An increase in hydrophobicity and isoelectric point will promote cellular uptake and nucleus translocation of stabilized helices.

  9. Structure of the Tropomyosin Overlap Complex from Chicken Smooth Muscle: Insight into the Diversity of N-Terminal Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, Jeremiah; Klenchin, Vadim A.; Rayment, Ivan

    Tropomyosin is a stereotypical {alpha}-helical coiled coil that polymerizes to form a filamentous macromolecular assembly that lies on the surface of F-actin. The interaction between the C-terminal and N-terminal segments on adjacent molecules is known as the overlap region. We report here two X-ray structures of the chicken smooth muscle tropomyosin overlap complex. A novel approach was used to stabilize the C-terminal and N-terminal fragments. Globular domains from both the human DNA ligase binding protein XRCC4 and bacteriophage {phi}29 scaffolding protein Gp7 were fused to 37 and 28 C-terminal amino acid residues of tropomyosin, respectively, whereas the 29 N-terminal aminomore » acids of tropomyosin were fused to the C-terminal helix bundle of microtubule binding protein EB1. The structures of both the XRCC4 and Gp7 fusion proteins complexed with the N-terminal EB1 fusion contain a very similar helix bundle in the overlap region that encompasses {approx}15 residues. The C-terminal coiled coil opens to allow formation of the helix bundle, which is stabilized by hydrophobic interactions. These structures are similar to that observed in the NMR structure of the rat skeletal overlap complex [Greenfield, N. J., et al. (2006) J. Mol. Biol. 364, 80-96]. The interactions between the N- and C-terminal coiled coils of smooth muscle tropomyosin show significant curvature, which differs somewhat between the two structures and implies flexibility in the overlap complex, at least in solution. This is likely an important attribute that allows tropomyosin to assemble around the actin filaments. These structures provide a molecular explanation for the role of N-acetylation in the assembly of native tropomyosin.« less

  10. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    PubMed

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  12. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family.

    PubMed

    Mackenzie, Bryan; Erickson, Jeffrey D

    2004-02-01

    The sodium-coupled neutral amino acid transporters (SNAT) of the SLC38 gene family resemble the classically-described System A and System N transport activities in terms of their functional properties and patterns of regulation. Transport of small, aliphatic amino acids by System A subtypes (SNAT1, SNAT2, and SNAT4) is rheogenic and pH sensitive. The System N subtypes SNAT3 and SNAT5 also countertransport H(+), which may be key to their operation in reverse, and have narrower substrate profiles than do the System A subtypes. Glutamine emerges as a favored substrate throughout the family, except for SNAT4. The SLC38 transporters undoubtedly play many physiological roles including the transfer of glutamine from astrocyte to neuron in the CNS, ammonia detoxification and gluconeogenesis in the liver, and the renal response to acidosis. Probing their regulation has revealed additional roles, and recent work has considered SLC38 transporters as therapeutic targets in neoplasia.

  13. Chemical Cleavage of an Asp-Cys Sequence Allows Efficient Production of Recombinant Peptides with an N-Terminal Cysteine Residue.

    PubMed

    Pane, Katia; Verrillo, Mariavittoria; Avitabile, Angela; Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Di Maro, Antimo; Rega, Camilla; Amoresano, Angela; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2018-04-18

    Peptides with an N-terminal cysteine residue allow site-specific modification of proteins and peptides and chemical synthesis of proteins. They have been widely used to develop new strategies for imaging, drug discovery, diagnostics, and chip technologies. Here we present a method to produce recombinant peptides with an N-terminal cysteine residue as a convenient alternative to chemical synthesis. The method is based on the release of the desired peptide from a recombinant fusion protein by mild acid hydrolysis of an Asp-Cys sequence. To test the general validity of the method we prepared four fusion proteins bearing three different peptides (20-37 amino acid long) at the C-terminus of a ketosteroid isomerase-derived and two Onconase-derived carriers for the production of toxic peptides in E. coli. The chosen peptides were (C)GKY20, an antimicrobial peptide from the C-terminus of human thrombin, (C)ApoB L , an antimicrobial peptide from an inner region of human Apolipoprotein B, and (C)p53pAnt, an anticancer peptide containing the C-terminal region of the p53 protein fused to the cell penetrating peptide Penetratin. Cleavage efficiency of Asp-Cys bonds in the four fusion proteins was studied as a function of pH, temperature, and incubation time. In spite of the differences in the amino acid sequence (GTGDCGKY, GTGDCHVA, GSGTDCGSR, SQGSDCGSR) we obtained for all the proteins a cleavage efficiency of about 70-80% after 24 h incubation at 60 °C and pH 2. All the peptides were produced with very good yield (5-16 mg/L of LB cultures), high purity (>96%), and the expected content of free thiol groups (1 mol per mole of peptide). Furthermore, (C)GKY20 was modified with PyMPO-maleimide, a commercially available fluorophore bearing a thiol reactive group, and with 6-hydroxy-2-cyanobenzothiazole, a reagent specific for N-terminal cysteines, with yields of 100% thus demonstrating that our method is very well suited for the production of fully reactive peptides with an N-terminal

  14. Magnetic properties of four Cu(ii)-amino acid salts

    NASA Astrophysics Data System (ADS)

    Calvo, Rafael

    1984-03-01

    We report a comparative study of magnetic properties of the Cu(II) salts of the amino acids l-alanine, dl-α-amino-n-butyric acid, α-amino isobutyric acid, and l-isoleucine. The position of the EPR lines of these quasi-two-dimensional magnetic systems was measured as a function of temperature T between 293 and 1.5 K, at 9.3 GHz and for magnetic fields applied along three axes of single crystal samples. Large changes of the gyromagnetic factor with T have been observed. They are attributed to an internal mean field, proportional to the applied field, which appears when the temperature is lowered due to short range magnetic order in the paramagnetic phase of the salts. The problem of short range magnetic order and g shifts in Cu-amino acid salts is discussed and compared with previous observations in Mn one-dimensional systems.

  15. Flux Analysis of Free Amino Sugars and Amino Acids in Soils by Isotope Tracing with a Novel Liquid Chromatography/High Resolution Mass Spectrometry Platform

    PubMed Central

    2017-01-01

    Soil fluxomics analysis can provide pivotal information for understanding soil biochemical pathways and their regulation, but direct measurement methods are rare. Here, we describe an approach to measure soil extracellular metabolite (amino sugar and amino acid) concentrations and fluxes based on a 15N isotope pool dilution technique via liquid chromatography and high-resolution mass spectrometry. We produced commercially unavailable 15N and 13C labeled amino sugars and amino acids by hydrolyzing peptidoglycan isolated from isotopically labeled bacterial biomass and used them as tracers (15N) and internal standards (13C). High-resolution (Orbitrap Exactive) MS with a resolution of 50 000 allowed us to separate different stable isotope labeled analogues across a large range of metabolites. The utilization of 13C internal standards greatly improved the accuracy and reliability of absolute quantification. We successfully applied this method to two types of soils and quantified the extracellular gross fluxes of 2 amino sugars, 18 amino acids, and 4 amino acid enantiomers. Compared to the influx and efflux rates of most amino acids, similar ones were found for glucosamine, indicating that this amino sugar is released through peptidoglycan and chitin decomposition and serves as an important nitrogen source for soil microorganisms. d-Alanine and d-glutamic acid derived from peptidoglycan decomposition exhibited similar turnover rates as their l-enantiomers. This novel approach offers new strategies to advance our understanding of the production and transformation pathways of soil organic N metabolites, including the unknown contributions of peptidoglycan and chitin decomposition to soil organic N cycling. PMID:28776982

  16. Flux Analysis of Free Amino Sugars and Amino Acids in Soils by Isotope Tracing with a Novel Liquid Chromatography/High Resolution Mass Spectrometry Platform.

    PubMed

    Hu, Yuntao; Zheng, Qing; Wanek, Wolfgang

    2017-09-05

    Soil fluxomics analysis can provide pivotal information for understanding soil biochemical pathways and their regulation, but direct measurement methods are rare. Here, we describe an approach to measure soil extracellular metabolite (amino sugar and amino acid) concentrations and fluxes based on a 15 N isotope pool dilution technique via liquid chromatography and high-resolution mass spectrometry. We produced commercially unavailable 15 N and 13 C labeled amino sugars and amino acids by hydrolyzing peptidoglycan isolated from isotopically labeled bacterial biomass and used them as tracers ( 15 N) and internal standards ( 13 C). High-resolution (Orbitrap Exactive) MS with a resolution of 50 000 allowed us to separate different stable isotope labeled analogues across a large range of metabolites. The utilization of 13 C internal standards greatly improved the accuracy and reliability of absolute quantification. We successfully applied this method to two types of soils and quantified the extracellular gross fluxes of 2 amino sugars, 18 amino acids, and 4 amino acid enantiomers. Compared to the influx and efflux rates of most amino acids, similar ones were found for glucosamine, indicating that this amino sugar is released through peptidoglycan and chitin decomposition and serves as an important nitrogen source for soil microorganisms. d-Alanine and d-glutamic acid derived from peptidoglycan decomposition exhibited similar turnover rates as their l-enantiomers. This novel approach offers new strategies to advance our understanding of the production and transformation pathways of soil organic N metabolites, including the unknown contributions of peptidoglycan and chitin decomposition to soil organic N cycling.

  17. N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency.

    PubMed

    Rudhe, Charlotta; Clifton, Rachel; Whelan, James; Glaser, Elzbieta

    2002-12-06

    Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.

  18. N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system.

    PubMed

    Mikami, Satoshi; Kobayashi, Tominari; Machida, Kodai; Masutani, Mamiko; Yokoyama, Shigeyuki; Imataka, Hiroaki

    2010-07-01

    Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.

  19. Structural Characterization of the N Terminus of IpaC from Shigella flexneri

    PubMed Central

    Harrington, Amanda T.; Hearn, Patricia D.; Picking, Wendy L.; Barker, Jeffrey R.; Wessel, Andrew; Picking, William D.

    2003-01-01

    The primary effector for Shigella invasion of epithelial cells is IpaC, which is secreted via a type III secretion system. We recently reported that the IpaC N terminus is required for type III secretion and possibly other functions. In this study, mutagenesis was used to identify an N-terminal secretion signal and to determine the functional importance of the rest of the IpaC N terminus. The 15 N-terminal amino acids target IpaC for secretion by Shigella flexneri, and placing additional amino acids at the N terminus does not interfere with IpaC secretion. Furthermore, amino acid sequences with no relationship to the native IpaC secretion signal can also direct its secretion. Deletions introduced beyond amino acid 20 have no effect on secretion and do not adversely affect IpaC function in vivo until they extend beyond residue 50, at which point invasion function is completely eliminated. Deletions introduced at amino acid 100 and extending toward the N terminus reduce IpaC's invasion function but do not eliminate it until they extend to the N-terminal side of residue 80, indicating that a region from amino acid 50 to 80 is critical for IpaC invasion function. To explore this further, the ability of an IpaC N-terminal peptide to associate in vitro with its translocon partner IpaB and its chaperone IpgC was studied. The N-terminal peptide binds tightly to IpaB, but the IpaC central hydrophobic region also appears to participate in this binding. The N-terminal peptide also associates with the chaperone IpgC and IpaB is competitive for this interaction. Based on additional biophysical data, we propose that a region between amino acids 50 and 80 is required for chaperone binding, and that the IpaB binding domain is located downstream from, and possibly overlapping, this region. From these data, we propose that the secretion signal, chaperone binding region, and IpaB binding domain are located at the IpaC N terminus and are essential for presentation of IpaC to host

  20. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material

    PubMed Central

    Wu, Min-Hui; Wan, Liang-Ze; Zhang, Yu-Qing

    2014-01-01

    A novel sodium N-fatty acyl amino acid (SFAAA) surfactant was synthesized using pupa oil and pupa protein hydrolysates (PPH) from a waste product of the silk industry. The aliphatic acids from pupa oil were modified into N-fatty acyl chlorides by thionyl chloride (SOCl2). SFAAA was synthesized using acyl chlorides and PPH. GC-MS analysis showed fatty acids from pupa oil consist mainly of unsaturated linolenic and linoleic acids and saturated palmitic and stearic acids. SFAAA had a low critical micelle concentration, great efficiency in lowering surface tension and strong adsorption at an air/water interface. SFAAA had a high emulsifying power, as well as a high foaming power. The emulsifying power of PPH and SFAAA in an oil/water emulsion was better with ethyl acetate as the oil phase compared to n-hexane. The environment-friendly surfactant made entirely from silkworm pupae could promote sustainable development of the silk industry. PMID:24651079

  1. Urinary amino acid analysis: a comparison of iTRAQ-LC-MS/MS, GC-MS, and amino acid analyzer.

    PubMed

    Kaspar, Hannelore; Dettmer, Katja; Chan, Queenie; Daniels, Scott; Nimkar, Subodh; Daviglus, Martha L; Stamler, Jeremiah; Elliott, Paul; Oefner, Peter J

    2009-07-01

    Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of propyl chloroformate and iTRAQ derivatized amino acids, respectively, to conventional amino acid analysis. The GC-MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC-MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC-MS, and iTRAQ-LC-MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27+/-5.22, 21.18+/-10.94, and 18.34+/-14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39+/-5.35, 6.23+/-3.84, and 35.37+/-29.42. Both GC-MS and iTRAQ-LC-MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines.

  2. Crystal Structure of a Novel N-Substituted L-Amino Acid Dioxygenase from Burkholderia ambifaria AMMD

    PubMed Central

    Qin, Hui-Min; Miyakawa, Takuya; Jia, Min Ze; Nakamura, Akira; Ohtsuka, Jun; Xue, You-Lin; Kawashima, Takashi; Kasahara, Takuya; Hibi, Makoto; Ogawa, Jun; Tanokura, Masaru

    2013-01-01

    A novel dioxygenase from Burkholderia ambifaria AMMD (SadA) stereoselectively catalyzes the C3-hydroxylation of N-substituted branched-chain or aromatic L-amino acids, especially N-succinyl-L-leucine, coupled with the conversion of α-ketoglutarate to succinate and CO2. To elucidate the structural basis of the substrate specificity and stereoselective hydroxylation, we determined the crystal structures of the SadA.Zn(II) and SadA.Zn(II).α-KG complexes at 1.77 Å and 1.98 Å resolutions, respectively. SadA adopted a double-stranded β-helix fold at the core of the structure. In addition, an HXD/EXnH motif in the active site coordinated a Zn(II) as a substitute for Fe(II). The α-KG molecule also coordinated Zn(II) in a bidentate manner via its 1-carboxylate and 2-oxo groups. Based on the SadA.Zn(II).α-KG structure and mutation analyses, we constructed substrate-binding models with N-succinyl-L-leucine and N-succinyl-L-phenylalanine, which provided new insight into the substrate specificity. The results will be useful for the rational design of SadA variants aimed at the recognition of various N-succinyl L-amino acids. PMID:23724013

  3. N-terminal truncations in the FhlA protein result in formate- and MoeA-independent expression of the hyc (formate hydrogenlyase) operon of Escherichia coli.

    PubMed

    Self, W T; Hasona, A; Shanmugam, K T

    2001-11-01

    The formate hydrogenlyase complex of Escherichia coli catalyses the cleavage of formate to CO2 and H2 and consists of a molybdoenzyme formate dehydrogenase-H, hydrogenase 3 and intermediate electron carriers. The structural genes of this enzyme complex are activated by the FhlA protein in the presence of both formate and molybdate; ModE-Mo serves as a secondary activator. Mutational analysis of the FhlA protein established that the unique N-terminal region of this protein was responsible for formate- and molybdenum-dependent transcriptional control of the hyc operon. Analysis of the N-terminal sequence of the FhlA protein revealed a unique motif (amino acids 7-37), which is also found in ATPases associated with several members of the ABC-type transporter family. A deletion derivative of FhlA lacking these amino acids (FhlA9-2) failed to activate the hyc operon in vivo, although the FhlA9-2 did bind to hyc promoter DNA in vitro. The ATPase activity of the FhlA9-2-DNA-formate complex was at least three times higher than that of the native protein-DNA-formate complex, and this degree of activity was achieved at a lower formate level. Extending the deletion to amino acid 117 (FhlA167) not only reversed the FhlA(-) phenotype of FhlA9-2, but also led to both molybdenum- and formate-independence. Deleting the entire N-terminal domain (between amino acids 5 and 374 of the 692 amino acid protein) also led to an effector-independent transcriptional activator (FhlA165), which had a twofold higher level of hyc operon expression than the native protein. Both FhlA165 and FhlA167 still required ModE-Mo as a secondary activator for an optimal level of hyc-lac expression. The FhlA165 protein also had a twofold higher affinity to hyc promoter DNA than the native FhlA protein, while the FhlA167 protein had a significantly lower affinity for hyc promoter DNA in vitro. Although the ATPase activity of the native protein was increased by formate, the ATPase activity of neither FhlA165 or

  4. Regulation of renal amino acid transporters during metabolic acidosis.

    PubMed

    Moret, Caroline; Dave, Mital H; Schulz, Nicole; Jiang, Jean X; Verrey, Francois; Wagner, Carsten A

    2007-02-01

    The kidney plays a major role in acid-base homeostasis by adapting the excretion of acid equivalents to dietary intake and metabolism. Urinary acid excretion is mediated by the secretion of protons and titratable acids, particularly ammonia. NH(3) is synthesized in proximal tubule cells from glutamine taken up via specific amino acid transporters. We tested whether kidney amino acid transporters are regulated in mice in which metabolic acidosis was induced with NH(4)Cl. Blood gas and urine analysis confirmed metabolic acidosis. Real-time RT-PCR was performed to quantify the mRNAs of 16 amino acid transporters. The mRNA of phosphoenolpyruvate carboxykinase (PEPCK) was quantified as positive control for the regulation and that of GAPDH, as internal standard. In acidosis, the mRNA of kidney system N amino acid transporter SNAT3 (SLC38A3/SN1) showed a strong induction similar to that of PEPCK, whereas all other tested mRNAs encoding glutamine or glutamate transporters were unchanged or reduced in abundance. At the protein level, Western blotting and immunohistochemistry demonstrated an increased abundance of SNAT3 and reduced expression of the basolateral cationic amino acid/neutral amino acid exchanger subunit y(+)-LAT1 (SLC7A7). SNAT3 was localized to the basolateral membrane of the late proximal tubule S3 segment in control animals, whereas its expression was extended to the earlier S2 segment of the proximal tubule during acidosis. Our results suggest that the selective regulation of SNAT3 and y(+)LAT1 expression may serve a major role in the renal adaptation to acid secretion and thus for systemic acid-base balance.

  5. Rigid Dipeptide Mimics: Synthesis of Enantiopure 5- and 7-Benzyl and 5,7-Dibenzyl Indolizidinone Amino Acids via Enolization and Alkylation of delta-Oxo alpha,omega-Di-[N-(9-(9-phenylfluorenyl))amino]azelate Esters.

    PubMed

    Polyak, Felix; Lubell, William D.

    1998-08-21

    Azabicyclo[X.Y.0]alkane amino acids are tools for constructing mimics of peptide structure and templates for generating combinatorial libraries for drug discovery. Our methodology for synthesizing these conformationally rigid dipeptides has been elaborated such that alkyl groups can be appended onto the heterocycle to generate mimics of peptide backbone and side-chain structure. Inexpensive glutamic acid was employed as chiral educt in a Claisen condensation/ketone alkylation/reductive amination/lactam cyclization sequence that furnished alkyl-branched azabicyclo[4.3.0]alkane amino acid. Enantiopure 5-benzyl-, 7-benzyl-, and 5,7-dibenzylindolizidinone amino acids 2-4 were stereoselectively synthesized via efficient reaction sequences featuring the alkylation of di-tert-butyl alpha,omega-di-[N-(PhF)amino]azelate delta-ketone 5. A variety of alkyl halides were readily added to the enolate of ketone 5 to provide mono- and dialkylated ketones 6 and 7. Hydride additions to 6 and 7, methanesulfonations, and intramolecular S(N)2 displacements by the PhF amine gave 5-alkylprolines that were converted by lactam cyclizations into 7- and 5-benzyl-, as well as 5,7-dibenzyl-2-oxo-3-N-(BOC)amino-1-azabicyclo[4.3.0]nonane-9-carboxylate methyl esters 10, 11, and 14. Epimerization of the alkyl-branched stereocenter via an iminium-enaminium equilibrium proved effective for controlling diastereoselectivity in reductive aminations with 6 and 7 in order to furnish 5-alkylprolines that were similarly converted to 7- benzyl- and 5,7-dibenzylindolizidinone N-(BOC)amino esters 10 and 14. Ester hydrolysis with hydroxide ion and potassium trimethylsilanolate then gave enantiopure indolizidinone amino acids 2-4. Epimerization at C-9 of benzylindolizidinone amino esters was also used to provide alternative diastereomers of 10, 11, and 14. This practical methodology for introducing side-chain groups onto the heterocycle with regioselective and diastereoselective control is designed to enhance

  6. Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence.

    PubMed

    Casal, J I; Langeveld, J P; Cortés, E; Schaaper, W W; van Dijk, E; Vela, C; Kamstrup, S; Meloen, R H

    1995-11-01

    The N-terminal domain of the major capsid protein VP2 of canine parvovirus was shown to be an excellent target for development of a synthetic peptide vaccine, but detailed information about number of epitopes, optimal length, sequence choice, and site of coupling to the carrier protein was lacking. Therefore, several overlapping peptides based on this N terminus were synthesized to establish conditions for optimal and reproducible induction of neutralizing antibodies in rabbits. The specificity and neutralizing ability of the antibody response for these peptides were determined. Within the N-terminal 23 residues of VP2, two subsites able to induce neutralizing antibodies and which overlapped by only two glycine residues at positions 10 and 11 could be discriminated. The shortest sequence sufficient for neutralization induction was nine residues. Peptides longer than 13 residues consistently induced neutralization, provided that their N termini were located between positions 1 and 11 of VP2. The orientation of the peptides at the carrier protein was also of importance, being more effective when coupled through the N terminus than through the C terminus to keyhole limpet hemocyanin. The results suggest that the presence of amino acid residues 2 to 21 (and probably 3 to 17) of VP2 in a single peptide is preferable for a synthetic peptide vaccine.

  7. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    NASA Astrophysics Data System (ADS)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  8. Differential distribution of amino acids in plants.

    PubMed

    Kumar, Vinod; Sharma, Anket; Kaur, Ravdeep; Thukral, Ashwani Kumar; Bhardwaj, Renu; Ahmad, Parvaiz

    2017-05-01

    Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson's correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1

  9. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Uma Devi, P; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of aerosol formulation to amino acids and fatty acids contents in Haruan extract.

    PubMed

    Febriyenti; Bai-Baie, Saringat Bin; Laila, Lia

    2012-01-01

    Haruan (Channa striatus) extract was formulated to aerosol for wound and burn treatment. Haruan extract is containing amino acids and fatty acids that important for wound healing process. The purpose of this study is to observe the effect of formulation and other excipients in the formula to amino acids and fatty acids content in Haruan extract before and after formulated into aerosol. Precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method is used for amino acids analysis. Fatty acids in Haruan extract were esterified using transesterification method to form FAMEs before analyzed using GC. Boron trifluoride-methanol reagent is used for transesterification. Tyrosine and methionine concentrations were different after formulated. The concentrations were decrease. There are six fatty acids have amount that significantly different after formulated into concentrate and aerosol. Contents of these fatty acids were increase. Generally, fatty acids which had content increased after formulated were the long-chain fatty acids. This might be happen because of chain extension process. Saponification and decarboxylation would give the chain extended product. Therefore contents of long-chain fatty acids were increase. Generally, the aerosol formulation did not affect the amino acids concentrations in Haruan extract while some long-chain fatty acids concentrations were increase after formulated into concentrate and aerosol.

  11. Bioavailabilty of beta-amino acid and C-terminally derived PK/PBAN analogs

    USDA-ARS?s Scientific Manuscript database

    The ability of linear beta amino-acid-substituted peptides (PK-betaA-1: Ac-YFT[beta3-P]RLa; PK-betaA-2: Ac-Y[beta2-homoF]TPRLa; PK-betaA-3: Ac-Y[beta3-F]TPRLa and PK-betaA-4: Ac-[beta3-F]FT[beta3-P]RLa) and unsubstituted analogs (Ac-YFTPRLa and YFTPRLa) of the pyrokinin(PK)/pheromone biosynthesis-ac...

  12. Nutritional and medicinal aspects of D-amino acids.

    PubMed

    Friedman, Mendel; Levin, Carol E

    2012-05-01

    This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.

  13. Amino acid production exceeds plant nitrogen demand in Siberian tundra

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Eloy Alves, Ricardo J.; Bárta, Jiři; Čapek, Petr; Gentsch, Norman; Guggenberger, Georg; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Prommer, Judith; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Richter, Andreas

    2018-03-01

    Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using 15N pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.

  14. Evolution of amino acid metabolism inferred through cladistic analysis.

    PubMed

    Cunchillos, Chomin; Lecointre, Guillaume

    2003-11-28

    Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.

  15. Amino Acid Properties Conserved in Molecular Evolution

    PubMed Central

    Rudnicki, Witold R.; Mroczek, Teresa; Cudek, Paweł

    2014-01-01

    That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts – one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications. PMID:24967708

  16. Urinary Amino Acid Analysis: A Comparison of iTRAQ®-LC-MS/MS, GC-MS, and Amino Acid Analyzer

    PubMed Central

    Kaspar, Hannelore; Dettmer, Katja; Chan, Queenie; Daniels, Scott; Nimkar, Subodh; Daviglus, Martha L.; Stamler, Jeremiah; Elliott, Paul; Oefner, Peter J.

    2009-01-01

    Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of propyl chloroformate and iTRAQ® derivatized amino acids, respectively, to conventional amino acid analysis. The GC-MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC-MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ® tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC-MS, and iTRAQ®-LC-MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27±5.22, 21.18±10.94, and 18.34±14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39±5.35, 6.23±3.84, and 35.37±29.42. Both GC-MS and iTRAQ®-LC-MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines. PMID:19481989

  17. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

    PubMed Central

    Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu

    2013-01-01

    Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant. PMID:25288957

  18. Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis.

    PubMed

    Castagna, M; Shayakul, C; Trotti, D; Sacchi, V F; Harvey, W R; Hediger, M A

    1997-01-01

    In mammalian cells, the uptake of amino acids is mediated by specialized, energy-dependent and passive transporters with overlapping substrate specificities. Most energy-dependent transporters are coupled either to the cotransport of Na+ or Cl- or to the countertransport of K+. Passive transporters are either facilitated transporters or channels. As a prelude to the molecular characterization of the different classes of transporters, we have isolated transporter cDNAs by expression-cloning with Xenopus laevis oocytes and we have characterized the cloned transporters functionally by uptake studies into oocytes using radiolabelled substrates and by electrophysiology to determine substrate-evoked currents. Mammalian transporters investigated include the dibasic and neutral amino acid transport protein D2/NBAT (system b0+) and the Na(+)- and K(+)-dependent neuronal and epithelial high-affinity glutamate transporter EAAC1 (system XAG-). A detailed characterization of these proteins has provided new information on transport characteristics and mechanisms for coupling to different inorganic ions. This work has furthermore advanced our understanding of the roles these transporters play in amino acid homeostasis and in various pathologies. For example, in the central nervous system, glutamate transporters are critically important in maintaining the extracellular glutamate concentration below neurotoxic levels, and defects of the human D2 gene have been shown to account for the formation of kidney stones in patients with cystinuria. Using similar approaches, we are investigating the molecular characteristics of K(+)-coupled amino acid transporters in the larval lepidopteran insect midgut. In the larval midgut, K+ is actively secreted into the lumen through the concerted action of an apical H+ V-ATPase and an apical K+/2H+ antiporter, thereby providing the driving force for absorption of amino acids. In vivo, the uptake occurs at extremely high pH (pH 10) and is driven by a

  19. Amino acid supplementation alters bone metabolism during simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.

    2005-01-01

    High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.

  20. The Metalloprotease Meprin β Generates Amino Terminal-truncated Amyloid β Peptide Species*

    PubMed Central

    Bien, Jessica; Jefferson, Tamara; Čaušević, Mirsada; Jumpertz, Thorsten; Munter, Lisa; Multhaup, Gerd; Weggen, Sascha; Becker-Pauly, Christoph; Pietrzik, Claus U.

    2012-01-01

    The amyloid β (Aβ) peptide, which is abundantly found in the brains of patients suffering from Alzheimer disease, is central in the pathogenesis of this disease. Therefore, to understand the processing of the amyloid precursor protein (APP) is of critical importance. Recently, we demonstrated that the metalloprotease meprin β cleaves APP and liberates soluble N-terminal APP (N-APP) fragments. In this work, we present evidence that meprin β can also process APP in a manner reminiscent of β-secretase. We identified cleavage sites of meprin β in the amyloid β sequence of the wild type and Swedish mutant of APP at positions p1 and p2, thereby generating Aβ variants starting at the first or second amino acid residue. We observed even higher kinetic values for meprin β than BACE1 for both the wild type and the Swedish mutant APP form. This enzymatic activity of meprin β on APP and Aβ generation was also observed in the absence of BACE1/2 activity using a β-secretase inhibitor and BACE knock-out cells, indicating that meprin β acts independently of β-secretase. PMID:22879596

  1. Effect of the quality of dietary amino acids composition on the urea synthesis in rats.

    PubMed

    Tujioka, Kazuyo; Ohsumi, Miho; Hayase, Kazutoshi; Yokogoshi, Hidehiko

    2011-01-01

    We have shown that urinary urea excretion increased in rats given a lower quality protein. The purpose of present study was to determine whether the composition of dietary amino acids affects urea synthesis. Experiments were done on three groups of rats given diets containing a 10% gluten amino acid mix diet or 10% casein amino acid mix diet or 10% whole egg protein amino acids mix diet for 10 d. The urinary excretion of urea, the liver concentration of N-acetylglutamate, and the liver concentration of free serine, glutamic acids and alanine were greater in the group given the amino acid mix diet of lower quality. The fractional and absolute rates of protein synthesis in tissues declined with a decrease in quality of dietary amino acids. The hepatic concentration of ornithine and the activities of hepatic urea-cycle enzymes were not related to the urea excretion. These results suggest that the increased concentrations of amino acids and N-acetylglutamate seen in the liver of rats given the amino acid mix diets of lower quality are likely among the factors stimulating urea synthesis. The protein synthesis in tissues is at least partly related to hepatic concentrations of amino acids. The composition of dietary amino acids is likely to be one of the factors regulating urea synthesis when the quality of dietary protein is manipulated.

  2. Amino Acid Crossword Puzzle

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  3. Present Global Situation of Amino Acids in Industry.

    PubMed

    Tonouchi, Naoto; Ito, Hisao

    At present, amino acids are widely produced and utilized industrially. Initially, monosodium glutamate (MSG) was produced by extraction from a gluten hydrolysate. The amino acid industry started using the residual of the lysate. The discovery of the functions of amino acids has led to the expansion of their field of use. In addition to seasoning and other food use, amino acids are used in many fields such as animal nutrients, pharmaceuticals, and cosmetics. On the other hand, the invention of the glutamate fermentation process, followed by the development of fermentation methods for many other amino acids, is no less important. The supply of these amino acids at a low price is very essential for their industrial use. Most amino acids are now produced by fermentation. The consumption of many amino acids such as MSG or feed-use amino acids is still rapidly increasing.

  4. Enantiomer-specific selection of amino acids.

    PubMed

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-12-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; (2) these behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.

  5. Enantiomer-specific selection of amino acids

    PubMed Central

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-01-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: 1. During long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; 2. These behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; 3. These behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids, and suggest a mechanistic link between substrate utilization and amino acid preferences. PMID:24072505

  6. Novel families of vacuolar amino acid transporters.

    PubMed

    Sekito, Takayuki; Fujiki, Yuki; Ohsumi, Yoshinori; Kakinuma, Yoshimi

    2008-08-01

    Amino acids are compartmentalized in the vacuoles of microorganisms and plants. In Saccharomyces cerevisiae, basic amino acids accumulate preferentially into vacuoles but acidic amino acids are almost excluded from them. This indicates that selective machineries operate at the vacuolar membrane. The members of the amino acid/auxin permease family and the major facilitator superfamily involved in the vacuolar compartmentalization of amino acids have been recently identified in studies using S. cerevisiae. Homologous genes for these transporters are also found in plant and mammalian genomes. The physiological significance in response to nitrogen starvation can now be discussed. (c) 2008 IUBMB

  7. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized, coupled...

  8. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized, coupled...

  9. Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?

    PubMed

    Vitor, Simone C; do Amarante, Luciano; Sodek, Ladaslav

    2018-05-16

    A substantial increase in malate in the xylem sap of soybean subjected to mineral N starvation originates mainly from aspartate, a prominent amino acid of the phloem. A substantial increase in xylem malate was found when non-nodulated soybean plants were transferred to a N-free medium. Nodulated plants growing in the absence of mineral N and, therefore, dependent on symbiotic N 2 fixation also contained elevated concentrations of malate in the xylem sap. When either nitrate or ammonium was supplied, malate concentrations in the xylem sap were low, both for nodulated and non-nodulated plants. Evidence was obtained that the elevated malate concentration of the xylem was derived from amino acids supplied by the phloem. Aspartate was a prominent component of the phloem sap amino acids and, therefore, a potential source of malate. Supplying the roots of intact plants with 13 C-aspartate revealed that malate of the xylem sap was readily labelled under N starvation. A hypothetical scheme is proposed whereby aspartate supplied by the phloem is metabolised in the roots and the products of this metabolism cycled back to the shoot. Under N starvation, aspartate metabolism is diverted from asparagine synthesis to supply N for the synthesis of other amino acids via transaminase activity. The by-product of aspartate transaminase activity, oxaloacetate, is transformed to malate and its export accounts for much of the elevated concentration of malate found in the xylem sap. This mechanism represents a new additional role for malate during mineral N starvation of soybean, beyond that of charge balance.

  10. Free amino acids in spider hemolymph.

    PubMed

    Tillinghast, Edward K; Townley, Mark A

    2008-11-01

    We examined the free amino acid composition of hemolymph from representatives of five spider families with an interest in knowing if the amino acid profile in the hemolymph of orb-web-building spiders reflects the high demands for small organic compounds in the sticky droplets of their webs. In nearly all analyses, on both orb and non-orb builders, glutamine was the most abundant free amino acid. Glycine, taurine, proline, histidine, and alanine also tended to be well-represented in orb and non-orb builders. While indications of taxon-specific differences in amino acid composition were observed, it was not apparent that two presumptive precursors (glutamine, taurine) of orb web sticky droplet compounds were uniquely enriched in araneids (orb builders). However, total amino acid concentrations were invariably highest in the araneids and especially so in overwintering juveniles, even as several of the essential amino acids declined during this winter diapause. Comparing the data from this study with those from earlier studies revealed a number of discrepancies. The possible origins of these differences are discussed.

  11. Rapid acquisition adaptive amino acid substitutions involved in the virulence enhancement of an H1N2 avian influenza virus in mice.

    PubMed

    Yu, Zhijun; Sun, Weiyang; Zhang, Xinghai; Cheng, Kaihui; Zhao, Chuqi; Xia, Xianzhu; Gao, Yuwei

    2017-08-01

    Although H1N2 avian influenza virus (AIV) only infect birds, documented cases of swine infection with H1N2 influenza viruses suggest this subtype AIV may pose a potential threat to mammals. Here, we generated mouse-adapted variants of a H1N2 AIV to identify adaptive changes that increased virulence in mammals. MLD 50 of the variants were reduced >1000-fold compared to the parental virus. Variants displayed enhanced replication in vitro and in vivo, and replicate in extrapulmonary organs. These data show that enhanced replication capacity and expanded tissue tropism may increase the virulence of H1N2 AIV in mice. Sequence analysis revealed multiple amino acid substitutions in the PB2 (L134H, I647L, and D701N), HA (G228S), and M1 (D231N) proteins. These results indicate that H1N2 AIV can rapidly acquire adaptive amino acid substitutions in mammalian hosts, and these amino acid substitutions collaboratively enhance the ability of H1N2 AIV to replicate and cause severe disease in mammals. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Temperature effects on protein depolymerization and amino acid immobilization rates in soils.

    NASA Astrophysics Data System (ADS)

    Noll, Lisa; Hu, Yuntao; Zhang, Shasha; Zheng, Qing; Wanek, Wolfgang

    2017-04-01

    Increasing N deposition, land use change, elevated atmospheric CO2 concentrations and global warming have altered soil nitrogen (N) cycling during the last decades. Those changes affected ecosystem services, such as C and N sequestration in soils, which calls for a better understanding of soil N transformation processes. The cleavage of macromolecular organic N by extracellular enzymes maintains an ongoing flow of new bioavailable organic N into biotic systems and is considered to be the bottle neck of terrestrial N cycling in litter and soils. Recent studies showed that protein depolymerization is susceptible to changes in C and N availabilities. Based on general biological observations the temperature sensitivity of soil organic N processes is expected to depend on whether they are rather enzyme limited (i.e. Q10=2) or diffusion limited (i.e. Q10= 1.0 - 1.3). However, temperature sensitivities of protein depolymerization and amino acid immobilization are still unknown. We therefore here report short-term temperature effects on organic N transformation rates in soils differing in physicochemical parameters but not in climate. Soil samples were collected from two geologically distinct sites close to the LFZ Raumberg-Gumpenstein, Styria, Austria, each from three different management types (arable land, grassland, forest). Four replicates of mineral soil were taken from every site and management type. The area provides a unique opportunity to study geological and management controls in soils without confounding effects of climate and elevation. The soils differ in several soil chemical parameters, such as soil pH, base saturation, soil C: N ratio and SOM content as well as in soil physical parameters, such as soil texture, bulk density and water holding capacity. Soils were pre-incubated at 5, 15 and 25˚ C for one day. Protein depolymerization rates and amino acid immobilization rates were assessed by an isotope pool dilution assay with 15N labeled amino acids at

  13. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  14. Amino terminus of substance P potentiates kainic acid-induced activity in the mouse spinal cord.

    PubMed

    Larson, A A; Sun, X

    1992-12-01

    Sensitization to the behavioral effects produced by repeated injections of kainic acid (KA) into the mouse spinal cord area has been previously shown to be abolished by pretreatment with capsaicin, a neurotoxin of substance P (SP)-containing primary afferent C-fibers. While SP has a variety of well characterized biological actions that are mediated by interactions of its COOH terminus with neurokinin receptors, more recently we have characterized an amino-terminally directed SP binding site. The present studies were initiated to determine whether behavioral sensitization to repeated injections of intrathecally administered KA is mediated by the COOH or NH2 terminal of SP. In the present studies, pretreatment with SP(1-7), an NH2-terminal fragment of SP, but not SP(5-11), a COOH-terminal fragment, potentiated KA-induced behavioral activity in mice. Pretreatment with [D-Pro2,D-Phe7]SP(1-7), an inhibitor of SP NH2-terminal binding, blocked the potentiative effect of SP(1-7) as well as the sensitization to repeated injections of KA. In contrast, [D-Pro2,D-Trp7,9]SP, a neurokinin antagonist, had little effect on behavioral sensitization to KA. The present study suggests that SP has an important modulatory role on excitatory amino acid activity in the spinal cord that is mediated by an action of the NH2 terminal of SP at a non-neurokinin receptor.

  15. Amino Acid Stability in the Early Oceans

    NASA Technical Reports Server (NTRS)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  16. 4-Aza-1-azoniabicyclo­[2.2.2]octa­ne–2-amino­benzoate–2-amino­benzoic acid (1/1/1)

    PubMed Central

    Arman, Hadi D.; Kaulgud, Trupta; Tiekink, Edward R. T.

    2011-01-01

    A 4-aza-1-azoniabicyclo­[2.2.2]octane cation, a 2-amino­benzoate anion and a neutral 2-amino­benzoic acid mol­ecule comprise the asymmetric unit of the title compound, C6H13N2 +·C7H6NO2 −·C7H7NO2. An intra­molecular N—H⋯O hydrogen bond occurs in the anion and in the neutral 2-amino­benzoic acid mol­ecule. The cation provides a charge-assisted N—H⋯O hydrogen bond to the anion, and the 2-amino­benzoic acid mol­ecule forms an O—H⋯N hydrogen bond to the unprotonated amino N atom in the cation. In this way, a three-component aggregate is formed. These are connected into a three-dimensional network by amino–carboxyl­ate N—H⋯O hydrogen bonds. N—H⋯N hydrogen bonds are also observed. PMID:22219964

  17. Optical Sensors for Detection of Amino Acids.

    PubMed

    Pettiwala, Aafrin M; Singh, Prabhat K

    2017-11-06

    Amino acids are crucially involved in a myriad of biological processes. Any aberrant changes in physiological level of amino acids often manifest in common metabolic disorders, serious neurological conditions and cardiovascular diseases. Thus, devising methods for detection of trace amounts of amino acids becomes highly elemental to their efficient clinical diagnosis. Recently, the domain of developing optical sensors for detection of amino acids has witnessed significant activity which is the focus of the current review article. We undertook a detailed search of the peer-reviewed literature that primarily deals with optical sensors for amino acids and focuses on the use of different type of materials as a sensing platform. Ninety-five papers have been included in the review, majority of which deals with optical sensors. We attempt to systematically classify these contributions based on applications of various chemical and biological scaffolds such as polymers, supramolecular assemblies, nanoparticles, DNA, heparin etc. for the sensing of amino acids. This review identifies that supramolecular assemblies and nanomaterial continue to be commonly used materials to devise sensors for amino acids followed by surfactant assemblies. The broad implications of amino acids in human health and diagnosis have stirred a lot of interest to develop optimized optical detection systems for amino acids in recent years, using different materials based on chemical and biological scaffolds. We have also attempted to highlight the merits and demerits of some of the noteworthy sensor systems to instigate further efforts for constructing amino acids sensor based on unconventional concepts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Ion Chromatography Based Urine Amino Acid Profiling Applied for Diagnosis of Gastric Cancer

    PubMed Central

    Fan, Jing; Hong, Jing; Hu, Jun-Duo; Chen, Jin-Lian

    2012-01-01

    Aim. Amino acid metabolism in cancer patients differs from that in healthy people. In the study, we performed urine-free amino acid profile of gastric cancer at different stages and health subjects to explore potential biomarkers for diagnosing or screening gastric cancer. Methods. Forty three urine samples were collected from inpatients and healthy adults who were divided into 4 groups. Healthy adults were in group A (n = 15), early gastric cancer inpatients in group B (n = 7), and advanced gastric cancer inpatients in group C (n = 16); in addition, two healthy adults and three advanced gastric cancer inpatients were in group D (n = 5) to test models. We performed urine amino acids profile of each group by applying ion chromatography (IC) technique and analyzed urine amino acids according to chromatogram of amino acids standard solution. The data we obtained were processed with statistical analysis. A diagnostic model was constructed to discriminate gastric cancer from healthy individuals and another diagnostic model for clinical staging by principal component analysis. Differentiation performance was validated by the area under the curve (AUC) of receiver-operating characteristic (ROC) curves. Results. The urine-free amino acid profile of gastric cancer patients changed to a certain degree compared with that of healthy adults. Compared with healthy adult group, the levels of valine, isoleucine, and leucine increased (P < 0.05), but the levels of histidine and methionine decreased (P < 0.05), and aspartate decreased significantly (P < 0.01). The urine amino acid profile was also different between early and advanced gastric cancer groups. Compared with early gastric cancer, the levels of isoleucine and valine decreased in advanced gastric cancer (P < 0.05). A diagnosis model constructed for gastric cancer with AUC value of 0.936 tested by group D showed that 4 samples could coincide with it. Another diagnosis model for clinical staging with an AUC value of 0

  19. Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus

    PubMed Central

    Yamada, Shinya; Hatta, Masato; Staker, Bart L.; Watanabe, Shinji; Imai, Masaki; Shinya, Kyoko; Sakai-Tagawa, Yuko; Ito, Mutsumi; Ozawa, Makoto; Watanabe, Tokiko; Sakabe, Saori; Li, Chengjun; Kim, Jin Hyun; Myler, Peter J.; Phan, Isabelle; Raymond, Amy; Smith, Eric; Stacy, Robin; Nidom, Chairul A.; Lank, Simon M.; Wiseman, Roger W.; Bimber, Benjamin N.; O'Connor, David H.; Neumann, Gabriele; Stewart, Lance J.; Kawaoka, Yoshihiro

    2010-01-01

    Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. PMID:20700447

  20. Analysis of amino acids and carbohydrates in green coffee.

    PubMed

    Murkovic, Michael; Derler, Karin

    2006-11-30

    The analysis of carbohydrates and amino acids in green coffee is of the utmost importance since these two classes of compounds act as precursors of the Maillard reaction during which the colour and aroma are formed. During the course of the Maillard reaction potentially harmful substances like acrylamide or 5-hydroxymethyl-furfural accrue as well. The carbohydrates were analysed by anion-exchange chromatography with pulsed amperometric detection and the amino acids by reversed phase chromatography after derivatization with 6-amino-quinolyl-N-hydroxysuccinimidyl carbamate and fluorescence detection. Both methods had to be optimized to obtain a sufficient resolution of the analytes for identification and quantification. Sucrose is the dominant carbohydrate in green coffee with a concentration of up to 90 mg/g (mean = 73 mg/g) in arabica beans and significantly lower amounts in robusta beans (mean=45 mg/g). Alanine is the amino acid with the highest concentration (mean = 1200 microg/g) followed by asparagine (mean = 680 microg/g) in robusta and 800 microg/g and 360 microg/g in arabica respectively. In general, the concentration of amino acids is higher in robusta than in arabica.

  1. Amino acids in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Kminek, G.; Botta, O.; Glavin, D. P.; Bada, J. L.

    2002-01-01

    High-performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated fiom a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P- or D-type asteroids. If the Tagish Lake meteorite was indeed derived fiom these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.

  2. A genetic analysis of an important hydrophobic interaction at the P22 tailspike protein N-terminal domain.

    PubMed

    Williams, Jeremie; Venkatesan, Karthikeya; Ayariga, Joseph Atia; Jackson, Doba; Wu, Hongzhuan; Villafane, Robert

    2018-06-01

    P22 bacteriophage has been studied extensively and has served as a model for many important processes such as in vivo protein folding, protein aggregation and protein-protein interactions. The trimeric tailspike protein (TSP) serves as the receptor-binding protein for the P22 bacteriophage to the bacterial host. The homotrimeric P22 tail consists of three chains of 666aa in which the first 108aa form a trimeric dome-like structure which is called the N-terminal domain (NTD) and is responsible for attachment of the tailspike protein to the rest of the phage particle structure in the phage assembly pathway. Knowledge of this interaction requires information on what amino acids are interacting in the interface and how the NTD structure is maintained. The first 23aa form the "stem peptide" which originates at the dome top and terminates at the dome bottom. It contains a hydrophobic valine patch (V8-V9-V10) located within the dome structure. It is hypothesized that the interaction between the hydrophobic valine patch located on stem peptide and the adjacent polypeptide is critical for the interchain interaction which should be important for the stability of the P22 TSP NTD itself. To test this hypothesis, each amino acid in the valine residues is substituted by an acid, a basic, and a hydrophobic amino acid. The results of such substitutions are presented as well as associated studies. The data strongly suggest that the valine patch is of critical importance in the hydrophobic interaction between stem peptide valine patch and an adjacent chain.

  3. N-Terminal Acetylation Inhibits Protein Targeting to the Endoplasmic Reticulum

    PubMed Central

    Forte, Gabriella M. A.; Pool, Martin R.; Stirling, Colin J.

    2011-01-01

    Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%–80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species. PMID:21655302

  4. Metabolic Patterns in Spirodela polyrhiza Revealed by 15N Stable Isotope Labeling of Amino Acids in Photoautotrophic, Heterotrophic, and Mixotrophic Growth Conditions

    PubMed Central

    Evans, Erin M.; Freund, Dana M.; Sondervan, Veronica M.; Cohen, Jerry D.; Hegeman, Adrian D.

    2018-01-01

    In this study we describe a [15N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of <100% [15N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies. PMID:29904627

  5. Metabolic Patterns in Spirodela polyrhiza Revealed by 15N Stable Isotope Labeling of Amino Acids in Photoautotrophic, Heterotrophic, and Mixotrophic Growth Conditions.

    PubMed

    Evans, Erin M; Freund, Dana M; Sondervan, Veronica M; Cohen, Jerry D; Hegeman, Adrian D

    2018-01-01

    In this study we describe a [ 15 N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of <100% [ 15 N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies.

  6. Metabolic patterns in Spirodela polyrhiza revealed by 15N stable isotope labeling of amino acids in photoautotrophic, heterotrophic, and mixotrophic growth conditions

    NASA Astrophysics Data System (ADS)

    Evans, Erin M.; Freund, Dana M.; Sondervan, Veronica M.; Cohen, Jerry D.; Hegeman, Adrian D.

    2018-05-01

    In this study we describe a [15N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for fifteen of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of less than 100% [15N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies.

  7. Identification and Characterization of Mutations Conferring Resistance to d-Amino Acids in Bacillus subtilis

    PubMed Central

    Leiman, Sara A.; Richardson, Charles; Foulston, Lucy; Elsholz, Alexander K. W.; First, Eric A.

    2015-01-01

    ABSTRACT Bacteria produce d-amino acids for incorporation into the peptidoglycan and certain nonribosomally produced peptides. However, d-amino acids are toxic if mischarged on tRNAs or misincorporated into protein. Common strains of the Gram-positive bacterium Bacillus subtilis are particularly sensitive to the growth-inhibitory effects of d-tyrosine due to the absence of d-aminoacyl-tRNA deacylase, an enzyme that prevents misincorporation of d-tyrosine and other d-amino acids into nascent proteins. We isolated spontaneous mutants of B. subtilis that survive in the presence of a mixture of d-leucine, d-methionine, d-tryptophan, and d-tyrosine. Whole-genome sequencing revealed that these strains harbored mutations affecting tRNATyr charging. Three of the most potent mutations enhanced the expression of the gene (tyrS) for tyrosyl-tRNA synthetase. In particular, resistance was conferred by mutations that destabilized the terminator hairpin of the tyrS riboswitch, as well as by a mutation that transformed a tRNAPhe into a tyrS riboswitch ligand. The most potent mutation, a substitution near the tyrosine recognition site of tyrosyl-tRNA synthetase, improved enzyme stereoselectivity. We conclude that these mutations promote the proper charging of tRNATyr, thus facilitating the exclusion of d-tyrosine from protein biosynthesis in cells that lack d-aminoacyl-tRNA deacylase. IMPORTANCE Proteins are composed of l-amino acids. Mischarging of tRNAs with d-amino acids or the misincorporation of d-amino acids into proteins causes toxicity. This work reports on mutations that confer resistance to d-amino acids and their mechanisms of action. PMID:25733611

  8. Searching for Extraterrestrial Amino Acids in a Contaminated Meteorite: Amino Acid Analyses of the Canakkale L6 Chondrite

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Elsila, J. E.; Glavin, D. P.; Dworkin, J. P.; Ornek, C. Y.; Esenoglu, H. H.; Unsalan, O.; Ozturk, B.

    2016-01-01

    Amino acids can serve as important markers of cosmochemistry, as their abundances and isomeric and isotopic compositions have been found to vary predictably with changes in parent body chemistry and alteration processes. Amino acids are also of astrobiological interest because they are essential for life on Earth. Analyses of a range of meteorites, including all groups of carbonaceous chondrites, along with H, R, and LL chondrites, ureilites, and a martian shergottite, have revealed that amino acids of plausible extraterrestrial origin can be formed in and persist after a wide range of parent body conditions. However, amino acid analyses of L6 chondrites to date have not provided evidence for indigenous amino acids. In the present study, we performed amino acid analysis on larger samples of a different L6 chondite, Canakkale, to determine whether or not trace levels of indigenous amino acids could be found. The Canakkale meteor was an observed fall in late July, 1964, near Canakkale, Turkey. The meteorite samples (1.36 and 1.09 g) analyzed in this study were allocated by C. Y. Ornek, along with a soil sample (1.5 g) collected near the Canakkale recovery site.

  9. Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids.

    PubMed

    Dutta, Devawati; Mandal, Chhabinath; Mandal, Chitra

    2017-12-01

    Glycosylation of proteins is the most common, multifaceted co- and post-translational modification responsible for many biological processes and cellular functions. Significant alterations and aberrations of these processes are related to various pathological conditions, and often turn out to be disease biomarkers. Conventional N-glycosylation occurs through the recognition of the consensus sequon, asparagine (Asn)-X-serine (Ser)/threonine (Thr), where X is any amino acid except for proline, with N-acetylglucosamine (GlcNAc) as the first glycosidic linkage. Usually, O-glycosylation adds a glycan to the hydroxyl group of Ser or Thr beginning with N-acetylgalactosamine (GalNAc). Protein glycosylation is further governed by additional diversifications in sequon and structure, which are yet to be fully explored. This review mainly focuses on the occurrence of N-glycosylation in non-consensus motifs, where Ser/Thr at the +2 position is substituted by other amino acids. Additionally, N-glycosylation is also observed in other amide/amine group-containing amino acids. Similarly, O-glycosylation occurs at hydroxyl group-containing amino acids other than serine/threonine. The neighbouring amino acids and local structural features around the potential glycosylation site also play a significant role in determining the extent of glycosylation. All of these phenomena that yield glycosylation at the atypical sites are reported in a variety of biological systems, including different pathological conditions. Therefore, the discovery of more novel sequence patterns for N- and O-glycosylation may help in understanding the functions of complex biological processes and cellular functions. Taken together, all these information provided in this review would be helpful for the biological readers. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sites that Can Produce Left-handed Amino Acids in the Supernova Neutrino Amino Acid Processing Model

    NASA Astrophysics Data System (ADS)

    Boyd, Richard N.; Famiano, Michael A.; Onaka, Takashi; Kajino, Toshitaka

    2018-03-01

    The Supernova Neutrino Amino Acid Processing model, which uses electron anti-neutrinos and the magnetic field from a source object such as a supernova to selectively destroy one amino acid chirality, is studied for possible sites that would produce meteoroids with partially left-handed amino acids. Several sites appear to provide the requisite magnetic field intensities and electron anti-neutrino fluxes. These results have obvious implications for the origin of life on Earth.

  11. Biopolymers Containing Unnatural Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter

    Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in

  12. Genetics of Amino Acid Taste and Appetite.

    PubMed

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-07-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. © 2016 American Society for Nutrition.

  13. Protein and amino acid nutrition

    USDA-ARS?s Scientific Manuscript database

    Dairy cow protein and amino acid nutrition have a significant role in sustainable dairying. Protein, amino acids, and nitrogen are inextricably linked through effects in the rumen, metabolism of the cow, and environmental nutrient management. Feeding systems have been making progress toward emphasiz...

  14. Synthesis and biological activity of amino acid conjugates of abscisic acid.

    PubMed

    Todoroki, Yasushi; Narita, Kenta; Muramatsu, Taku; Shimomura, Hajime; Ohnishi, Toshiyuki; Mizutani, Masaharu; Ueno, Kotomi; Hirai, Nobuhiro

    2011-03-01

    We prepared 19 amino acid conjugates of the plant hormone abscisic acid (ABA) and investigated their biological activity, enzymatic hydrolysis by a recombinant Arabidopsis amidohydrolases GST-ILR1 and GST-IAR3, and metabolic fate in rice seedlings. Different sets of ABA-amino acids induced ABA-like responses in different plants. Some ABA-amino acids, including some that were active in bioassays, were hydrolyzed by recombinant Arabidopsis GST-IAR3, although GST-ILR1 did not show hydrolysis activity for any of the ABA-amino acids. ABA-L-Ala, which was active in all the bioassays, an Arabidopsis seed germination, spinach seed germination, and rice seedling elongation assays, except in a lettuce seed germination assay and was hydrolyzed by GST-IAR3, was hydrolyzed to free ABA in rice seedlings. These findings suggest that some plant amidohydrolases hydrolyze some ABA-amino acid conjugates. Because our study indicates the possibility that different plants have hydrolyzing activity toward different ABA-amino acids, an ABA-amino acid may function as a species-selective pro-hormone of ABA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Amino Acid Contents of Meteorite Mineral Separates

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Burton, A. S; Locke, D.

    2017-01-01

    Indigenous amino acids have been found indigenous all 8 carbonaceous chondrite groups. However, the abundances, structural, enantiomeric and isotopic compositions of amino acids differ significantly among meteorites of different groups and petrologic types. This suggests that parent-body conditions (thermal or aqueous alteration), mineralogy, and the preservation of amino acids are linked. Previously, elucidating specific relationships between amino acids and mineralogy was not possible because the samples analyzed for amino acids were much larger than the scale at which petrologic heterogeneity is observed (sub mm-scale differences corresponding to sub-mg samples). Recent advances in amino acid measurements and application of techniques such as high resolution X-ray diffraction (HR-XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) for mineralogical characterizations allow us to perform coordinated analyses on the scale at which mineral heterogeneity is observed.

  16. Amino acids of the Murchison meteorite. II - Five carbon acyclic primary beta-, gamma-, and delta-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Yuen, G. U.

    1985-01-01

    The five-carbon acyclic primary beta, gamma, and delta amino alkanoic acids of the Murchison meteorite are studied using gas chromatography-mass spectrometry and ion exchange chromatography. The chromatograms reveal that alpha is the most abundant monoamino alkanoic acid followed by gamma and beta, and an exponential increase in the amount of amino acid is observed as the carbon number increases in the homologous series. The influence of frictional heating, spontaneous thermal decomposition, and radiation of the synthesis of amino acids is examined. The data obtained support an amino acid synthesis process involving random combination of single-carbon precursors.

  17. On the reported optical activity of amino acids in the Murchison meteorite

    USGS Publications Warehouse

    Bada, J.L.; Cronin, J.R.; Ho, M.-S.; Kvenvolden, K.A.; Lawless, J.G.; Miller, S.L.; Oro, John; Steinberg, S.

    1983-01-01

    In analyses of extracts from the Murchison meteorite (a carbonaceous chondrite), Engel and Nagy1 reported an excess of L-enantiomers for several protein amino acids but found that the non-protein amino acids were racemic. They suggested that the excess of L-isomers might have resulted from an asymmetric synthesis or decomposition. Their results disagree with those obtained previously2-4 and they claim this is due to improved methodology. In fact, their extraction method and analytical procedure (gas chromatography-mass spectrometry, GC-MS) was similar to those used in the original report2 of amino acids in the Murchison meteorite except that they used specific ion monitoring in the GC-MS measurements. We found the results of Engel and Nagy odd in that likely contaminants (the protein amino acids ala, leu, glu, asp and pro) were nonracemic while unlikely contaminants (isovaline and ??-amino-n-butyric acid) were racemic. For example, Engel and Nagy report that the leucine is ???90% L-enantiomer in the water-extracted sample whereas isovaline (??-methyl-??-aminobutyric acid) is racemic. It would be most unusual for an abiotic stereoselective decomposition or synthesis of amino acids to occur with protein amino acids but not with non-protein amino acids. We now show here that the explanation of terrestrial contamination is consistent with their results and is much more probable. ?? 1983 Nature Publishing Group.

  18. Discovery and History of Amino Acid Fermentation.

    PubMed

    Hashimoto, Shin-Ichi

    There has been a strong demand in Japan and East Asia for L-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other L-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

  19. A periplasmic, pyridoxal-5'-phosphate-dependent amino acid racemase in Pseudomonas taetrolens.

    PubMed

    Matsui, Daisuke; Oikawa, Tadao; Arakawa, Noriaki; Osumi, Shintaro; Lausberg, Frank; Stäbler, Norma; Freudl, Roland; Eggeling, Lothar

    2009-07-01

    The pyridoxal-5'-phosphate (PLP)-dependent amino acid racemases occur in almost every bacterium but may differ considerably with respect to substrate specificity. We here isolated the cloned broad substrate specificity racemase ArgR of Pseudomonas taetrolens from Escherichia coli by classical procedures. The racemase was biochemically characterized and amongst other aspects it was confirmed that it is mostly active with lysine, arginine and ornithine, but merely weakly active with alanine, whereas the alanine racemase of the same organism studied in comparison acts on alanine only. Unexpectedly, sequencing the amino-terminal end of ArgR revealed processing of the protein, with a signal peptide cleaved off. Subsequent localization studies demonstrated that in both P. taetrolens and E. coli ArgR activity was almost exclusively present in the periplasm, a feature so far unknown for any amino acid racemase. An ArgR-derivative carrying a carboxy-terminal His-tag was made and this was demonstrated to localize even in an E. coli mutant devoid of the twin-arginine translocation (Tat) pathway in the periplasm. These data indicate that ArgR is synthesized as a prepeptide and translocated in a Tat-independent manner. We therefore propose that ArgR translocation depends on the Sec system and a post-translocational insertion of PLP occurs. As further experiments showed, ArgR is necessary for the catabolism of D: -arginine and D: -lysine by P. taetrolens.

  20. Identification, Purification, and Characterization of a Novel Amino Acid Racemase, Isoleucine 2-Epimerase, from Lactobacillus Species

    PubMed Central

    Mutaguchi, Yuta; Ohmori, Taketo; Wakamatsu, Taisuke; Doi, Katsumi

    2013-01-01

    Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position. PMID:24039265

  1. A novel amino acid analysis method using derivatization of multiple functional groups followed by liquid chromatography/tandem mass spectrometry.

    PubMed

    Sakaguchi, Yohei; Kinumi, Tomoya; Yamazaki, Taichi; Takatsu, Akiko

    2015-03-21

    We have developed a novel amino acid analysis method using derivatization of multiple functional groups (amino, carboxyl, and phenolic hydroxyl groups). The amino, carboxyl, and phenolic hydroxyl groups of the amino acids were derivatized with 1-bromobutane so that the hydrophobicities and basicities of the amino acids were improved. The derivatized amino acids, including amino group-modified amino acids, could be detected with high sensitivity using liquid chromatography/tandem mass spectrometry (LC-MS/MS). In this study, 17 amino acids obtained by hydrolyzing proteins and 4 amino group-modified amino acids found in the human body (N,N-dimethylglycine, N-formyl-L-methionine, L-pyroglutamic acid, and sarcosine) were selected as target compounds. The 21 derivatized amino acids could be separated using an octadecyl-silylated silica column within 20 min and simultaneously detected. The detection limits for the 21 amino acids were 5.4-91 fmol, and the calibration curves were linear over the range of 10-100 nmol L(-1) (r(2) > 0.9984) with good repeatability. A confirmatory experiment showed that our proposed method could be applied to the determination of a protein certified reference material using the analysis of 12 amino acids combined with isotope dilution mass spectrometry. Furthermore, the proposed method was successfully applied to a stable isotope-coded derivatization method using 1-bromobutane and 1-bromobutane-4,4,4-d3 for comparative analysis of amino acids in human serum.

  2. Nanoflow Separation of Amino Acids for the Analysis of Cosmic Dust

    NASA Technical Reports Server (NTRS)

    Martin, M. P.; Glavin, D. P.; Dworkin, Jason P.

    2008-01-01

    The delivery of amino acids to the early Earth by interplanetary dust particles, comets, and carbonaceous meteorites could have been a significant source of the early Earth's prebiotic organic inventory. Amino acids are central to modern terrestrial biochemistry as major components of proteins and enzymes and were probably vital in the origin of life. A variety of amino acids have been detected in the CM carbonaceous meteorite Murchison, many of which are exceptionally rare in the terrestrial biosphere including a-aminoisobutyric acid (AIB) and isovaline. AIB has also been detected in a small percentage of Antarctic micrometeorite grains believed to be related to the CM meteorites We report on progress in optimizing a nanoflow liquid chromatography separation system with dual detection via laser-induced-fluorescence time of flight mass spectrometry (nLC-LIF/ToF-MS) for the analysis of o-phthaldialdehydelN-acetyl-L-cysteine (OPA/NAC) labeled amino acids in cosmic dust grains. The very low flow rates (<3 micro-L/min) of nLC over analytical LC (>0.1 ml/min) combined with <2 micron column bead sizes has the potential to produce efficient analyte ionizations andchromatograms with very sharp peaks; both increase sensitivity. The combination of the selectivity (only primary amines are derivatized), sensitivity (>4 orders of magnitude lower than traditional GC-MS techniques), and specificity (compounds identities are determined by both retention time and exact mass) makes this a compelling technique. However, the development of an analytical method to achieve separation of compounds as structurally similar as amino acid monomers and produce the sharp peaks required for maximum sensitivity is challenging.

  3. Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence.

    PubMed Central

    Casal, J I; Langeveld, J P; Cortés, E; Schaaper, W W; van Dijk, E; Vela, C; Kamstrup, S; Meloen, R H

    1995-01-01

    The N-terminal domain of the major capsid protein VP2 of canine parvovirus was shown to be an excellent target for development of a synthetic peptide vaccine, but detailed information about number of epitopes, optimal length, sequence choice, and site of coupling to the carrier protein was lacking. Therefore, several overlapping peptides based on this N terminus were synthesized to establish conditions for optimal and reproducible induction of neutralizing antibodies in rabbits. The specificity and neutralizing ability of the antibody response for these peptides were determined. Within the N-terminal 23 residues of VP2, two subsites able to induce neutralizing antibodies and which overlapped by only two glycine residues at positions 10 and 11 could be discriminated. The shortest sequence sufficient for neutralization induction was nine residues. Peptides longer than 13 residues consistently induced neutralization, provided that their N termini were located between positions 1 and 11 of VP2. The orientation of the peptides at the carrier protein was also of importance, being more effective when coupled through the N terminus than through the C terminus to keyhole limpet hemocyanin. The results suggest that the presence of amino acid residues 2 to 21 (and probably 3 to 17) of VP2 in a single peptide is preferable for a synthetic peptide vaccine. PMID:7474152

  4. Effects of Oral Glucosamine Hydrochloride Administration on Plasma Free Amino Acid Concentrations in Dogs

    PubMed Central

    Azuma, Kazuo; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Okamoto, Yoshiharu; Takamori, Yoshimori; Minami, Saburo

    2011-01-01

    We examined the effects of oral glucosamine hydrochloride (GlcN), N-acetyl-d-glucosamine (GlcNAc) and d-glucose (Glc) administration on plasma total free amino acid (PFAA) concentrations in dogs. The PFAA concentrations increased in the control group and the GlcNAc group at one hour after feeding, and each amino acid concentration increased. On the other hand, in the GlcN group and the Glc group PFAA concentrations decreased at one hour after feeding. A significant decrease in amino acid concentration was observed for glutamate, glycine and alanine. Our results suggest the existence of differences in PFAA dynamics after oral administration of GlcN and GlcNAc in dogs. PMID:21673884

  5. Absorption of N-phenylpropenoyl-L-amino acids in healthy humans by oral administration of cocoa (Theobroma cacao).

    PubMed

    Stark, Timo; Lang, Roman; Keller, Daniela; Hensel, Andreas; Hofmann, Thomas

    2008-10-01

    Besides flavan-3-ols, a family of N-phenylpropenoyl-L-amino acids (NPAs) has been recently identified as polyphenol/amino acid conjugates in the seeds of Theobroma cacao as well as in a variety of herbal drugs. Stimulated by reports on their biological activity, the purpose of this study was to investigate if these amides are absorbed by healthy volunteers after administration of a cocoa drink. For the first time, 12 NPAs were quantified in human urine by means of a stable isotope dilution analysis with LC-MS/MS (MRM) detection. A maximum amount was found in the urine taken 2 h after the cocoa consumption. The highest absolute amount of NPAs excreted with the urine was found for N-[4'-hydroxy-(E)-cinnamoyl]-L-aspartic acid (5), but the highest recovery rate (57.3 and 22.8%), that means the percentage amount of ingested amides excreted with the urine, were determined for N-[4'-hydroxy-(E)-cinnamoyl]-L-glutamic acid (6) and N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]-L-tyrosine (13). In order to gain first insights into the NPA metabolism in vivo, urine samples were analyzed by LC-MS/MS before and after beta-glucuronidase/sulfatase treatment. As independent of the enzyme treatment the same NPA amounts were found in urine, there is strong evidence that these amides are metabolized neither via their O-glucuronides nor their O-sulfates. In order to screen for caffeic acid O-glucuronides as potential NPA metabolites, urine samples were screened by means of LC-MS/MS for caffeic acid 3-O-beta-D-glucuronide and 4-O-beta-D-glucuronide. But not even trace amounts of one of these glucuronides were detectable, thus excluding them as major NPA metabolites and underlining the importance of future investigations on a potential O-methylation or reduction of the N-phenylpropenoyl moiety in NPAs.

  6. Extending enzyme molecular recognition with an expanded amino acid alphabet

    PubMed Central

    Windle, Claire L.; Simmons, Katie J.; Ault, James R.; Trinh, Chi H.; Nelson, Adam

    2017-01-01

    Natural enzymes are constructed from the 20 proteogenic amino acids, which may then require posttranslational modification or the recruitment of coenzymes or metal ions to achieve catalytic function. Here, we demonstrate that expansion of the alphabet of amino acids can also enable the properties of enzymes to be extended. A chemical mutagenesis strategy allowed a wide range of noncanonical amino acids to be systematically incorporated throughout an active site to alter enzymic substrate specificity. Specifically, 13 different noncanonical side chains were incorporated at 12 different positions within the active site of N-acetylneuraminic acid lyase (NAL), and the resulting chemically modified enzymes were screened for activity with a range of aldehyde substrates. A modified enzyme containing a 2,3-dihydroxypropyl cysteine at position 190 was identified that had significantly increased activity for the aldol reaction of erythrose with pyruvate compared with the wild-type enzyme. Kinetic investigation of a saturation library of the canonical amino acids at the same position showed that this increased activity was not achievable with any of the 20 proteogenic amino acids. Structural and modeling studies revealed that the unique shape and functionality of the noncanonical side chain enabled the active site to be remodeled to enable more efficient stabilization of the transition state of the reaction. The ability to exploit an expanded amino acid alphabet can thus heighten the ambitions of protein engineers wishing to develop enzymes with new catalytic properties. PMID:28196894

  7. Compound-Specific δ¹⁵N and δ¹³C Analyses of Amino Acids for Potential Discrimination between Organically and Conventionally Grown Wheat.

    PubMed

    Paolini, Mauro; Ziller, Luca; Laursen, Kristian Holst; Husted, Søren; Camin, Federica

    2015-07-01

    We present a study deploying compound-specific nitrogen and carbon isotope analysis of amino acids to discriminate between organically and conventionally grown plants. We focused on grain samples of common wheat and durum wheat grown using synthetic nitrogen fertilizers, animal manures, or green manures from nitrogen-fixing legumes. The measurement of amino acid δ(15)N and δ(13)C values, after protein hydrolysis and derivatization, was carried out using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our results demonstrated that δ(13)C of glutamic acid and glutamine in particular, but also the combination of δ(15)N and δ(13)C of 10 amino acids, can improve the discrimination between conventional and organic wheat compared to stable isotope bulk tissue analysis. We concluded that compound-specific stable isotope analysis of amino acids represents a novel analytical tool with the potential to support and improve the certification and control procedures in the organic sector.

  8. Effects of the pH and Concentration on the Stability of Standard Solutions of Proteinogenic Amino Acid Mixtures.

    PubMed

    Kato, Megumi; Yamazaki, Taichi; Kato, Hisashi; Yamanaka, Noriko; Takatsu, Akiko; Ihara, Toshihide

    2017-01-01

    To prepare metrologically traceable amino acid mixed standard solutions, it is necessary to determine the stability of each amino acid present in the mixed solutions. In the present study, we prepared amino acid mixed solutions using certified reference standards of 17 proteinogenic amino acids, and examined the stability of each of these amino acids in 0.1 N HCl. We found that the concentration of glutamic acid decreased significantly during storage. LC/MS analysis indicated that the instability of glutamic acid was due to the partial degradation of glutamic acid to pyroglutamic acid in 0.1 N HCl. Using accelerated degradation tests, we investigated several solvent compositions to improve the stability of glutamic acid in amino acid mixed solution, and determined that the change of the pH by diluting the mixed solution improved the stability of glutamic acid.

  9. The amino terminal end determines the stability and assembling capacity of eukaryotic ribosomal stalk proteins P1 and P2.

    PubMed

    Camargo, Hendricka; Nusspaumer, Gretel; Abia, David; Briceño, Verónica; Remacha, Miguel; Ballesta, Juan P G

    2011-05-01

    The eukaryotic ribosomal proteins P1 and P2 bind to protein P0 through their N-terminal domain to form the essential ribosomal stalk. A mutational analysis points to amino acids at positions 2 and 3 as determinants for the drastic difference of Saccharomyces cerevisiae P1 and P2 half-life, and suggest different degradation mechanisms for each protein type. Moreover, the capacity to form P1/P2 heterodimers is drastically affected by mutations in the P2β four initial amino acids, while these mutations have no effect on P1β. Binding of P2β and, to a lesser extent, P1β to the ribosome is also seriously affected showing the high relevance of the amino acids in the first turn of the NTD α-helix 1 for the stalk assembly. The negative effect of some mutations on ribosome binding can be reversed by the presence of the second P1/P2 couple in the ribosome, indicating a stabilizing structural influence between the two heterodimers. Unexpectedly, some mutations totally abolish heterodimer formation but allow significant ribosome binding and, therefore, a previous P1 and P2 association seems not to be an absolute requirement for stalk assembly. Homology modeling of the protein complexes suggests that the mutated residues can affect the overall protein conformation. © The Author(s) 2011. Published by Oxford University Press.

  10. Distribution of Amino Acids in Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  11. Amino-terminal residues of ΔNp63, mutated in ectodermal dysplasia, are required for its transcriptional activity.

    PubMed

    Lena, Anna Maria; Duca, Sara; Novelli, Flavia; Melino, Sonia; Annicchiarico-Petruzzelli, Margherita; Melino, Gerry; Candi, Eleonora

    2015-11-13

    p63, a member of the p53 family, is a crucial transcription factor for epithelial development and skin homeostasis. Heterozygous mutations in TP63 gene have been associated with human ectodermal dysplasia disorders. Most of these TP63 mutations are missense mutations causing amino acidic substitutions at p63 DNA binding or SAM domains that reduce or abolish the transcriptional activity of mutants p63. A significant number of mutants, however, resides in part of the p63 protein that apparently do not affect DNA binding and/or transcriptional activity, such as the N-terminal domain. Here, we characterize five p63 mutations at the 5' end of TP63 gene aiming to understand the pathogenesis of the diseases and to uncover the role of ΔNp63α N-terminus residues in determining its transactivation potential. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Nuclear uptake of an amino-terminal fragment of apolipoprotein E4 promotes cell death and localizes within microglia of the Alzheimer's disease brain.

    PubMed

    Love, Julia E; Day, Ryan J; Gause, Justin W; Brown, Raquel J; Pu, Xinzhu; Theis, Dustin I; Caraway, Chad A; Poon, Wayne W; Rahman, Abir A; Morrison, Brad E; Rohn, Troy T

    2017-01-01

    Although harboring the apolipoprotein E4 ( APOE4 ) allele is a well known risk factor in Alzheimer's disease (AD), the mechanism by which it contributes to disease risk remains elusive. To investigate the role of proteolysis of apoE4 as a potential mechanism, we designed and characterized a site-directed cleavage antibody directed at position D151 of the mature form of apoE4 and E3. Characterization of this antibody indicated a high specificity for detecting synthesized recombinant proteins corresponding to the amino acid sequences 1-151 of apoE3 and E4 that would generate the 17 kDa (p17) fragment. In addition, this antibody also detected a ~17 kDa amino-terminal fragment of apoE4 following incubation with collagenase and matrix metalloproteinase-9 (MMP-9), but did not react with full-length apoE4. Application of this amino-terminal apoE cleavage-fragment (nApoECFp17) antibody, revealed nuclear labeling within glial cells and labeling of a subset of neurofibrillary tangles in the human AD brain. A quantitative analysis indicated that roughly 80% of labeled nuclei were microglia. To confirm these findings, cultured BV2 microglia cells were incubated with the amino-terminal fragment of apoE4 corresponding to the cleavage site at D151. The results indicated efficient uptake of this fragment and trafficking to the nucleus that also resulted in significant cell death. In contrast, a similarly designed apoE3 fragment showed no toxicity and primarily localized within the cytoplasm. These data suggest a novel cleavage event by which apoE4 is cleaved by the extracellular proteases, collagenase and MMP-9, generating an amino-terminal fragment that is then taken up by microglia, traffics to the nucleus and promotes cell death. Collectively, these findings provide important mechanistic insights into the mechanism by which harboring the APOE4 allele may elevate dementia risk observed in AD.

  13. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans.

    PubMed

    Rand, D M; Kann, L M

    1996-07-01

    Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.

  14. Amino acids as antioxidants for frying oil

    USDA-ARS?s Scientific Manuscript database

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  15. Structure-activity relationship of HP (2-20) analog peptide: enhanced antimicrobial activity by N-terminal random coil region deletion.

    PubMed

    Park, Yoonkyung; Park, Seong-Cheol; Park, Hae-Kyun; Shin, Song Yub; Kim, Yangmee; Hahm, Kyung-Soo

    2007-01-01

    HP (2-20) (AKKVFKRLEKLFSKIQNDK) is a 19-aa antimicrobial peptide derived from N-terminus of Helicobacter pylori Ribosomal protein L1 (RpL1). In the previous study, several analogs with amino acid substitutions were designed to increase or decrease only the net hydrophobicity. In particular, substitutions of Gln(16) and Asp(18) with Trp (Anal 3) for hydrophobic amino acid caused a dramatic increase in antibiotic activity without a hemolytic effect. HP-A3 is a potent antimicrobial peptide that forms, in a hydrophobic medium, an amphipathic structure consisting of an N-terminal random coil region (residues 2-5) and extended C-terminal regular alpha-helical region (residues 6-20). To obtain the short and potent alpha-helical antimicrobial peptide, we synthesized a N-terminal random coil deleted HP-A3 (A3-NT) and examined their antimicrobial activity and mechanism of action. The resulting 15mer peptide showed increased antibacterial and antifungal activity to 2- and 4-fold, respectively, without hemolysis. Confocal fluorescence microscopy studies showed that A3-NT was accumulated in the plasma membrane. Flow cytometric analysis revealed that A3-NT acted in salt- and energy-independent manner. Furthermore, A3-NT causes significant morphological alterations of the bacterial surfaces as shown by scanning electron microscopy. Circular dichroism (CD) analysis revealed that A3-NT showed higher alpha-helical contents than the HP-A3 peptide in 50% TFE solution. Therefore, the cell-lytic efficiency of HP-A3, which depended on the alpha-helical content of peptide, correlated linearly with their antimicrobial potency.

  16. Sulphur-containing Amino Acids: Protective Role Against Free Radicals and Heavy Metals.

    PubMed

    Colovic, Mirjana B; Vasic, Vesna M; Djuric, Dragan M; Krstic, Danijela Z

    2018-01-30

    Sulphur is an abundant element in biological systems, which plays an important role in processes essential for life as a constituent of proteins, vitamins and other crucial biomolecules. The major source of sulphur for humans is plants being able to use inorganic sulphur in the purpose of sulphur-containing amino acids synthesis. Sulphur-containing amino acids include methionine, cysteine, homocysteine, and taurine. Methionine and cysteine are classified as proteinogenic, canonic amino acids incorporated in protein structure. Sulphur amino acids are involved in the synthesis of intracellular antioxidants such as glutathione and N-acetyl cysteine. Moreover, naturally occurring sulphur-containing ligands are effective and safe detoxifying agents, often used in order to prevent toxic metal ions effects and their accumulation in human body. Literature search for peer-reviewed articles was performed using PubMed and Scopus databases, and utilizing appropriate keywords. This review is focused on sulphur-containing amino acids - methionine, cysteine, taurine, and their derivatives - glutathione and N-acetylcysteine, and their defense effects as antioxidant agents against free radicals. Additionally, the protective effects of sulphur-containing ligands against the toxic effects of heavy and transition metal ions, and their reactivation role towards the enzyme inhibition are described. Sulphur-containing amino acids represent a powerful part of cell antioxidant system. Thus, they are essential in the maintenance of normal cellular functions and health. In addition to their worthy antioxidant action, sulphur-containing amino acids may offer a chelating site for heavy metals. Accordingly, they may be supplemented during chelating therapy, providing beneficial effects in eliminating toxic metals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Excitatory amino acid receptors and disease.

    PubMed

    Meldrum, B S

    1992-08-01

    Recent advances in the molecular biology of excitatory amino acid receptors are reviewed. Evidence that drugs blocking the excitatory action of glutamate at the N-methyl-D-aspartate (NMDA) and non-NMDA receptors may be of clinical use in epilepsy, Parkinson's disease, cerebral ischaemia and trauma, acquired immune deficiency syndrome (AIDS) encephalopathy and neuropathic pain is summarized.

  18. Influence of Murchison Minerals on Hydrogen-Deuterium Exchange of Amino Acids

    NASA Astrophysics Data System (ADS)

    Lerner, N. R.

    1993-07-01

    C and 155 degrees C in solutions containing Murchison dust. For both glycine and alanine the activation energy is -25 kcal/mole. Using this value, we have calculated the half-lives for complete exchange of the alpha-hydrogens of glycine and alanine for the temperature range thought to have existed on the parent body during aqueous alteration [5]. The half-lives at 0 degrees C and 20 degrees C are 7500 yr and 300 yr respectively for glycine and 55,000 yr and 2100 yr respectively for alanine. Murchison amino acid fraction IV [1] was known to contain impurities and hence the measured delta D value represents a lower limit for alpha-amino isobutyric acid. Assuming that all the deuterium recovered from fraction IV came from alpha-amino isobutryric acid, and that one atom of nitrogen is recovered for each molecule of alpha-amino isobutyric acid, a maximum delta D value of +2600 per mil can be calculated for this amino acid. This is comparable to delta D for the glycine-alanine fraction, which is mainly glycine [6]. In an aqueous environment glycine loses deuterium relatively rapidly while alpha-amino isobutyric acid does not undergo exchange. Hence the similarity in the delta D values of both fractions indicates that the period of aqueous alteration is less than the half-life for hydrogen-deuterium exchange of glycine. References: [1] Pizzarello S. et al. (1991) GCA, 55, 905-910. [2] Zinner E. (1988) In Meteorites and the Early Solar System (J. R. Kerridge and M. S. Matthews, eds.), 956-983, Univ. of Arizona. [3] Lerner N. R. et al. (1993) GCA, in press. [4] Bunch T. E. and Chang S. (1980) GCA, 44, 1543-1577. [5] Clayton R. N. and Mayeda T. K. (1984) EPSL, 67, 151-161. [6] Shock E. L. and Shulte M. D. (1990) GCA, 54, 3159-3173.

  19. Gemini surfactants from natural amino acids.

    PubMed

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed. © 2013.

  20. Amino Acids Regulate Transgene Expression in MDCK Cells

    PubMed Central

    Torrente, Marta; Guetg, Adriano; Sass, Jörn Oliver; Arps, Lisa; Ruckstuhl, Lisa; Camargo, Simone M. R.; Verrey, François

    2014-01-01

    Gene expression and cell growth rely on the intracellular concentration of amino acids, which in metazoans depends on extracellular amino acid availability and transmembrane transport. To investigate the impact of extracellular amino acid concentrations on the expression of a concentrative amino acid transporter, we overexpressed the main kidney proximal tubule luminal neutral amino acid transporter B0AT1-collectrin (SLC6A19-TMEM27) in MDCK cell epithelia. Exogenously expressed proteins co-localized at the luminal membrane and mediated neutral amino acid uptake. However, the transgenes were lost over few cell culture passages. In contrast, the expression of a control transgene remained stable. To test whether this loss was due to inappropriately high amino acid uptake, freshly transduced MDCK cell lines were cultivated either with physiological amounts of amino acids or with the high concentration found in standard cell culture media. Expression of exogenous transporters was unaffected by physiological amino acid concentration in the media. Interestingly, mycoplasma infection resulted in a significant increase in transgene expression and correlated with the rapid metabolism of L-arginine. However, L-arginine metabolites were shown to play no role in transgene expression. In contrast, activation of the GCN2 pathway revealed by an increase in eIF2α phosphorylation may trigger transgene derepression. Taken together, high extracellular amino acid concentration provided by cell culture media appears to inhibit the constitutive expression of concentrative amino acid transporters whereas L-arginine depletion by mycoplasma induces the expression of transgenes possibly via stimulation of the GCN2 pathway. PMID:24797296

  1. Amino acid homeostasis and signalling in mammalian cells and organisms

    PubMed Central

    Bröer, Angelika

    2017-01-01

    Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake. PMID:28546457

  2. Concentration variations of amino acids in mammalian fossils: effects of diagenesis and the implications for amino acid racemization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwell, B.; Rutter, N.W.

    Detailed amino acid analysis of bones, teeth, and antler from several mammal species have shown that concentrations of several amino acids can be related to three factors: type of material analyzed, diagenetic alteration of the material, and relative age of the fossil. Concentrations of several amino acids are significantly different in enamel compared to those of dentine or cement. This can be used to check that no contamination of one material by another has occurred, which is critical for using the data for amino acid dating, since all three materials have different racemization rates for some acids. With increased inmore » growth of secondary minerals, generally reduced amino acid concentrations are observed. Interacid ratios and concentrations vary significantly the norms expected for the type of material with increasing degrees of alteration. These effects can be linked to abnormal racemization ratios observed in the same samples. Therefore, abnormal concentrations and/or interacid ratios can be used to detect samples in which the D/L amino acid ratios otherwise appear normal, thereby insuring better accuracy of amino acid racemization analysis. For unaltered fossils, with increasing sample age regardless the type of material, some amino acids steadily degrade, while others actually increase in concentration initially due to their generation as by-products of decay. Preliminary studies indicate that this progressive alteration can used to complement racemization data for determining relative stratigraphic sequences.« less

  3. Effect of fermentation and subsequent pasteurization processes on amino acids composition of orange juice.

    PubMed

    Cerrillo, I; Fernández-Pachón, M S; Collado-González, J; Escudero-López, B; Berná, G; Herrero-Martín, G; Martín, F; Ferreres, F; Gil-Izquierdo, A

    2015-06-01

    The fermentation of fruit produces significant changes in their nutritional composition. An orange beverage has been obtained from the controlled alcoholic fermentation and thermal pasteurization of orange juice. A study was performed to determine the influence of both processes on its amino acid profile. UHPLC-QqQ-MS/MS was used for the first time for analysis of orange juice samples. Out of 29 amino acids and derivatives identified, eight (ethanolamine, ornithine, phosphoethanolamine, α-amino-n-butyric acid, hydroxyproline, methylhistidine, citrulline, and cystathionine) have not previously been detected in orange juice. The amino acid profile of the orange juice was not modified by its processing, but total amino acid content of the juice (8194 mg/L) was significantly increased at 9 days of fermentation (13,324 mg/L). Although the pasteurization process produced partial amino acid degradation, the total amino acid content was higher in the final product (9265 mg/L) than in the original juice, enhancing its nutritional value.

  4. Amino Acid Sensing in Skeletal Muscle

    PubMed Central

    Moro, Tatiana; Ebert, Scott M.; Adams, Christopher M.; Rasmussen, Blake B.

    2016-01-01

    Aging impairs skeletal muscle protein synthesis, leading to muscle weakness and atrophy. However, the underlying molecular mechanisms remain poorly understood. Here, we review evidence that mTORC1- and ATF4-mediated amino acid sensing pathways, triggered by impaired amino acid delivery to aged skeletal muscle, may play important roles in skeletal muscle aging. Interventions that alleviate age-related impairments in muscle protein synthesis, strength and/or muscle mass appear to do so by reversing age-related changes in skeletal muscle amino acid delivery, mTORC1 activity and/or ATF4 activity. An improved understanding of the mechanisms and roles of amino acid sensing pathways in skeletal muscle may lead to evidence-based strategies to attenuate sarcopenia. PMID:27444066

  5. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  6. Amino Acid Metabolism in Acute Renal Failure: Influence of Intravenous Essential L-Amino Acid Hyperalimentation Therapy

    PubMed Central

    Abel, Ronald M.; Shih, Vivian E.; Abbott, William M.; Beck, Clyde H.; Fischer, Josef E.

    1974-01-01

    A solution of 8 essential I-amino acids and hypertonic dextrose was administered to 5 patients in acute postoperative renal failure in a program of hyperalimentation designed to decrease the patient's catabolic state and to accrue certain metabolic benefits. A sixth patient receiving intravenous glucose alone served as a control. The pretreatment plasma concentrations of amino acids in all 6 patients did not differ significantly from normal; following intravenous essential amino acids at a dose of approximately 12.6 gm/24 hours, no significant elevations out of the normal range of these substances occurred. Since urinary excretion rates did not dramatically increase, urinary loss was excluded as a possible cause for the failure of increase of plasma concentrations. The results suggest that the administration of an intravenous solution of 1-amino acids and hypertonic dextrose is associated with rapid clearance from the blood of these substances and, with a failure of increased urinary excretion, indirect evidence of amino acid utilization for protein synthesis has been obtained. Histidine supplementation in patients with acute renal failure is probably unnecessary based on the lack of significant decreases in histidine concentrations in these patients. PMID:4850497

  7. Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.

    PubMed

    Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio

    2016-04-19

    Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biosensors for D-amino acid detection.

    PubMed

    Sacchi, Silvia; Rosini, Elena; Caldinelli, Laura; Pollegioni, Loredano

    2012-01-01

    The presence of D-amino acids in foods is promoted by harsh technological processes (e.g., high temperature or extreme pH values) or can be the consequence of adulteration or microbial contamination (D-amino acids are major components of the bacterial cell wall). For this reason, quality control is becoming more and more important both for the industry (as a cost factor) and for consumer protection. For routine food analysis and quality control, simple and easily applicable analytical methods are needed: biosensors can often satisfy these requirements. The use of an enzymatic, stereospecific reaction could confer selectivity to a biosensor for detecting and quantifying D-amino acids in foodstuffs. The flavoenzyme D-amino acid oxidase from the yeast Rhodotorula gracilis is an ideal biocatalyst for this kind of application because of its absolute stereospecificity, very high turnover number with various substrates, tight binding with the FAD cofactor, and broad substrate specificity. Furthermore, alterations in the local brain concentrations of D-serine (predominantly D-amino acid in the mammalian central nervous system) have been related to several neurological and psychiatric diseases. Therefore, quantifying this neuromodulator represents an important task in biological, medical, and pharmaceutical research. Recently, an enzymatic microbiosensor, also using R. gracilis D-amino acid oxidase as biocatalyst, was developed for detecting D-serine in vivo.

  9. Solution structure and backbone dynamics of the N-terminal region of the calcium regulatory domain from soybean calcium-dependent protein kinase alpha.

    PubMed

    Weljie, Aalim M; Gagné, Stéphane M; Vogel, Hans J

    2004-12-07

    Ca(2+)-dependent protein kinases (CDPKs) are vital Ca(2+)-signaling proteins in plants and protists which have both a kinase domain and a self-contained calcium regulatory calmodulin-like domain (CLD). Despite being very similar to CaM (>40% identity) and sharing the same fold, recent biochemical and structural evidence suggests that the behavior of CLD is distinct from its namesake, calmodulin. In this study, NMR spectroscopy is employed to examine the structure and backbone dynamics of a 168 amino acid Ca(2+)-saturated construct of the CLD (NtH-CLD) in which almost the entire C-terminal domain is exchange broadened and not visible in the NMR spectra. Structural characterization of the N-terminal domain indicates that the first Ca(2+)-binding loop is significantly more open than in a recently reported structure of the CLD complexed with a putative intramolecular binding region (JD) in the CDPK. Backbone dynamics suggest that parts of the third helix exhibit unusually high mobility, and significant exchange, consistent with previous findings that this helix interacts with the C-terminal domain. Dynamics data also show that the "tether" region, consisting of the first 11 amino acids of CLD, is highly mobile and these residues exhibit distinctive beta-type secondary structure, which may help to position the JD and CLD. Finally, the unusual global dynamic behavior of the protein is rationalized on the basis of possible interdomain rearrangements and the highly variable environments of the C- and N-terminal domains.

  10. Concentrations and nitrogen isotope compositions of free amino acids in Pinus massoniana (Lamb.) needles of different ages as indicators of atmospheric nitrogen pollution

    NASA Astrophysics Data System (ADS)

    Xu, Yu; Xiao, Huayun

    2017-09-01

    Free amino acid δ15N values and concentrations of current-year new (new), current-year mature (middle-age) and previous-year (old) Pinus massoniana (Lamb.) needles were determined for five sites with different distances from a highway in a forest in Guiyang (SW China). Needle free amino acid concentrations decreased with increasing distance from the highway, and only the free amino acid concentrations (total free amino acid, arginine, γ-aminobutyric acid, valine, alanine and proline) in the middle-aged needles demonstrated a strong correlation with distance from the highway, indicating that free amino acid concentrations in middle-aged needles may be a more suitable indicator of nitrogen (N) deposition compared to new and old needles. Needle free amino acid δ15N values were more positive near the highway compared to the more distant sites and increased with increasing needle age, indicating that N deposition in this site may be dominated by isotopically heavy NOx-N from traffic emissions. In sites beyond 400 m from the highway, the δ15N values of total free amino acids, histidine, glutamine, proline, alanine, aspartate, isoleucine, lysine, arginine and serine in each age of needle were noticeably negative compared to their respective δ15N values near the highway. This suggested that needle free amino acid δ15N values from these sites were more affected by 15N-depleted atmospheric NHx-N from soil emissions. This result was further supported by the similarity in the negative moss δ15N values at these sites to the δ15N values of soil-derived NHx-N. Needle free amino acid δ15N values therefore have the potential to provide information about atmospheric N sources. We conclude that needle free amino acid concentrations are sensitive indicators of N deposition and that the age-related free amino acid δ15N values in needles can efficiently reflect atmospheric N sources. This would probably promote the application of the combined plant tissue amino acid

  11. Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways.

    PubMed

    van Geldermalsen, Michelle; Quek, Lake-Ee; Turner, Nigel; Freidman, Natasha; Pang, Angel; Guan, Yi Fang; Krycer, James R; Ryan, Renae; Wang, Qian; Holst, Jeff

    2018-06-26

    Cancer cells require increased levels of nutrients such as amino acids to sustain their rapid growth. In particular, leucine and glutamine have been shown to be important for growth and proliferation of some breast cancers, and therefore targeting the primary cell-surface transporters that mediate their uptake, L-type amino acid transporter 1 (LAT1) and alanine, serine, cysteine-preferring transporter 2 (ASCT2), is a potential therapeutic strategy. The ASCT2 inhibitor, benzylserine (BenSer), is also able to block LAT1 activity, thus inhibiting both leucine and glutamine uptake. We therefore aimed to investigate the effects of BenSer in breast cancer cell lines to determine whether combined LAT1 and ASCT2 inhibition could inhibit cell growth and proliferation. BenSer treatment significantly inhibited both leucine and glutamine uptake in MCF-7, HCC1806 and MDA-MB-231 breast cancer cells, causing decreased cell viability and cell cycle progression. These effects were not primarily leucine-mediated, as BenSer was more cytostatic than the LAT family inhibitor, BCH. Oocyte uptake assays with ectopically expressed amino acid transporters identified four additional targets of BenSer, and gas chromatography-mass spectrometry (GCMS) analysis of intracellular amino acid concentrations revealed that this BenSer-mediated inhibition of amino acid uptake was sufficient to disrupt multiple pathways of amino acid metabolism, causing reduced lactate production and activation of an amino acid response (AAR) through activating transcription factor 4 (ATF4). Together these data showed that BenSer blockade inhibited breast cancer cell growth and viability through disruption of intracellular amino acid homeostasis and inhibition of downstream metabolic and growth pathways.

  12. Characterization and N-terminal sequencing of a calcium binding protein from the calcareous concretion organic matrix of the terrestrial crustacean Orchestia cavimana.

    PubMed

    Luquet, G; Testenière, O; Graf, F

    1996-04-16

    We extracted proteins from the organic matrix of calcareous concretions, which represents the calcium storage form in a terrestrial crustacean. Electrophoretic analyses of water-soluble organic-matrix proteinaceous components revealed 11 polypeptides, 6 of which are probably glycosylated. Among the unglycosylated proteins, we characterized a 23 kDa polypeptide, with an isoelectric point of 5.5, which is able to bind calcium. Its N-terminal sequence is rich in acidic amino acids (essentially aspartic acid). All these characteristics suggest its involvement in the calcium precipitation process within the successive layers of the organic matrix.

  13. Conformational and functional analysis of the C-terminal globular head of the reovirus cell attachment protein.

    PubMed

    Duncan, R; Horne, D; Strong, J E; Leone, G; Pon, R T; Yeung, M C; Lee, P W

    1991-06-01

    We have been investigating structure-function relationships in the reovirus cell attachment protein sigma 1 using various deletion mutants and protease analysis. In the present study, a series of deletion mutants were constructed which lacked 90, 44, 30, 12, or 4 amino acids from the C-terminus of the 455-amino acid-long reovirus type 3 (T3) sigma 1 protein. The full-length and truncated sigma 1 proteins were expressed in an in vitro transcription/translation system and assayed for L cell binding activity. It was found that the removal of as few as four amino acids from the C-terminus drastically affected the cell binding function of the sigma 1 protein. The C-terminal-truncated proteins were further characterized using trypsin, chymotrypsin, and monoclonal and polyclonal antibodies. Our results indicated that the C-terminal portions of the mutant proteins were misfolded, leading to a loss in cell binding function. The N-terminal fibrous tail of the proteins was unaffected by the deletions as was sigma 1 oligomerization, further illustrating the discrete structural and functional roles of the N- and C-terminal domains of sigma 1. In an attempt to identify smaller, functional peptides, full-length sigma 1 expressed in vitro was digested with trypsin and subsequently with chymotrypsin under various conditions. The results clearly demonstrated the highly stable nature of the C-terminal globular head of sigma 1, even when separated from the N-terminal fibrous tail. We concluded that: (1) the C-terminal globular head of sigma 1 exists as a compact, protease-resistant oligomeric structure; (2) an intact C-terminus is required for proper head folding and generation of the conformationally dependent cell binding domain.

  14. Amino acids precursors in lunar finds

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Harada, K.; Hare, P. E.; Hinsch, G.; Mueller, G.

    1975-01-01

    The consistent pattern is discussed of amino acids found in lunar dust from Apollo missions. The evidence indicates that compounds yielding amino acids were implanted into the surface of the moon by the solar wind, and the kind and amounts of amino acids found on the moon are closely similar to those found in meteorites. It is concluded that there is a common cosmochemical pattern for the moom and meteorites, and this offers evidence of a common course of cosmochemical reactions for carbon.

  15. Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou's general pseudo amino acid composition.

    PubMed

    Ju, Zhe; Wang, Shi-Yun

    2018-04-22

    As one of the most important and common protein post-translational modifications, citrullination plays a key role in regulating various biological processes and is associated with several human diseases. The accurate identification of citrullination sites is crucial for elucidating the underlying molecular mechanisms of citrullination and designing drugs for related human diseases. In this study, a novel bioinformatics tool named CKSAAP_CitrSite is developed for the prediction of citrullination sites. With the assistance of support vector machine algorithm, the highlight of CKSAAP_CitrSite is to adopt the composition of k-spaced amino acid pairs surrounding a query site as input. As illustrated by 10-fold cross-validation, CKSAAP_CitrSite achieves a satisfactory performance with a Sensitivity of 77.59%, a Specificity of 95.26%, an Accuracy of 89.37% and a Matthew's correlation coefficient of 0.7566, which is much better than those of the existing prediction method. Feature analysis shows that the N-terminal space containing pairs may play an important role in the prediction of citrullination sites, and the arginines close to N-terminus tend to be citrullinated. The conclusions derived from this study could offer useful information for elucidating the molecular mechanisms of citrullination and related experimental validations. A user-friendly web-server for CKSAAP_CitrSite is available at 123.206.31.171/CKSAAP_CitrSite/. Copyright © 2017. Published by Elsevier B.V.

  16. Synthesis and evaluation of L-cystathionine as a standard for amino acid analysis.

    PubMed

    Amino, Yusuke; Suzuki, Yumiko

    2017-01-01

    L-Cystathionine is a key nonprotein amino acid related to metabolic conditions. The quantitative determination of L-cystathionine in physiological fluids by amino acid analysis is important for clinical diagnosis; however, certified reference material for L-cystathionine with satisfactory purity, content, and quantity has been unavailable until recently. Consequently, a practical and simple method for the preparation of L-cystathionine was examined, which involves thioalkylation of N-tert-butoxycarbonyl-L-cysteine tert-butyl ester, derived from L-cystine, with (2S)-2-(tert-butoxycarbonyl)amino-4-iodobutanoic acid tert-butyl ester, derived from L-aspartic acid, to obtain L-cystathionine with protecting groups, followed by single-step deprotection under mild conditions. This method produces L-cystathionine in high purity (99.4%) and having sufficient percentage content according to amino acid analysis, which could be used as a standard for the amino acid analysis of physiological fluids.

  17. Amino Acid Degradation after Meteoritic Impact Simulation

    NASA Technical Reports Server (NTRS)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  18. Molecular basis for subtype-specificity and high-affinity zinc inhibition in the GluN1-GluN2A NMDA receptor amino terminal domain

    PubMed Central

    Romero-Hernandez, Annabel; Simorowski, Noriko; Karakas, Erkan

    2016-01-01

    Summary Zinc is vastly present in the mammalian brain and controls functions of various cell surface receptors to regulate neurotransmission. A distinctive characteristic of N-methyl-D-aspartate (NMDA) receptors containing a GluN2A subunit is that their ion channel activity is allosterically inhibited by a nano-molar concentration of zinc that binds to an extracellular domain called an amino terminal domain (ATD). Despite physiological importance, the molecular mechanism underlying the high-affinity zinc inhibition has been incomplete due to lack of a GluN2A ATD structure. Here we show the first crystal structures of the heterodimeric GluN1-GluN2A ATD, which provide the complete map of the high-affinity zinc binding site and reveals distinctive features from the ATD of the GluN1-GluN2B subtype. Perturbation of hydrogen bond networks at the hinge of the GluN2A bi-lobe structure affects both zinc inhibition and open probability supporting the general model where the bi-lobe motion in ATD regulates the channel activity in NMDA receptors. PMID:27916457

  19. Amino Acids from a Comet

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  20. Amino acid substitutions of conserved residues in the carboxyl-terminal domain of the [alpha]I(X) chain of type X collagen occur in two unrelated families with metaphyseal chondrodysplasia type Schmid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallis, G.A.; Rash, B.; Sweetman, W.A.

    1994-02-01

    Type X collagen is a homotrimeric, short-chain, nonfibrillar extracellular-matrix component that is specifically and transiently synthesized by hypertrophic chondrocytes at the site of endochondral ossification. The precise function of type X collagen is not known, but its specific pattern of expression suggests that mutations within the encoding gene (COL10A1) that alter the structure or synthesis of the protein may cause heritable forms of chondrodysplasia. The authors used the PCR and the SSCP techniques to analyze the coding and upstream promoter regions of the COL10A1 gene in a number of individuals with forms of chondrodysplasia. Using this approach, they identified twomore » individuals with metaphyseal chondrodysplasia type Schmid (MCDS) with SSCP changes in the region of the gene encoding the carboxyl-terminal domain. Sequence analysis demonstrated that the individuals were heterozygous for two unique single-base-pair transitions that led to the substitution of the highly conserved amino acid residue tyrosine at position 598 by aspartic acid in one person and of leucine at position 614 by proline in the other. The substitution at residue 598 segregated with the phenotype in a family of eight (five affected and three unaffected) related persons. The substitutions at residue 614 occurred in a sporadically affected individual but not in her unaffected mother and brother. Additional members of this family were not available for further study. These results suggest that certain amino acid substitutions within the carboxyl-terminal domain of the chains of the type X collagen molecule cause MCDS. These amino acid substitutions are likely to alter either chain recognition or assembly of the type X collagen molecule, thereby depleting the amount of normal type X collagen deposited in the extracellular matrix, with consequent aberrations in bone growth and development. 36 refs., 5 figs.« less

  1. Structure and Function of the Sterol Carrier Protein-2 N-Terminal Presequence†

    PubMed Central

    Martin, Gregory G.; Hostetler, Heather A.; McIntosh, Avery L.; Tichy, Shane E.; Williams, Brad J.; Russell, David H.; Berg, Jeremy M.; Spencer, Thomas A.; Ball, Judith; Kier, Ann B.; Schroeder, Friedhelm

    2008-01-01

    Although sterol carrier protein-2 (SCP-2) is encoded as a precursor protein (proSCP-2), little is known regarding the structure and function of the 20-amino acid N-terminal presequence. As shown herein, the presequence contains significant secondary structure and alters SCP-2: (i) secondary structure (CD), (ii) tertiary structure (aqueous exposure of Trp shown by UV absorbance, fluorescence, fluorescence quenching), (iii) ligand binding site [Trp response to ligands, peptide cross-linked by photoactivatable free cholesterol (FCBP)], (iv) selectivity for interaction with anionic phospholipid-rich membranes, (v) interaction with a peroxisomal import protein [FRET studies of Pex5p(C) binding], the N-terminal presequence increased SCP-2’s affinity for Pex5p(C) by 10-fold, and (vi) intracellular targeting in living and fixed cells (confocal microscopy). Nearly 5-fold more SCP-2 than proSCP-2 colocalized with plasma membrane lipid rafts/caveolae (AF488-CTB), 2.8-fold more SCP-2 than proSCP-2 colocalized with a mitochondrial marker (Mitotracker), but nearly 2-fold less SCP-2 than proSCP-2 colocalized with peroxisomes (AF488-antibody to PMP70). These data indicate the importance of the N-terminal presequence in regulating SCP-2 structure, cholesterol localization within the ligand binding site, membrane association, and, potentially, intracellular targeting. PMID:18465878

  2. PHYSIOLOGY OF THE AMINO ACIDS.

    PubMed

    VAN Slyke, D D

    1942-03-13

    We have followed the amino acids from their entrance into the alimentary tract in the form of food proteins through the successive steps of digestion, absorption into the blood stream and passage from the blood stream into the tissues, where they are concentrated by some unknown mechanism to many times their concentration in the blood plasma. We have seen something of the way in which certain of the amino acids can be transformed into one another in the body or synthesized from ammonia and keto acids. However, we have had to admit that our bodies can form in such ways only about half of the different amino acids that are required, and that the other half must be made for us by plants, bacteria or other organisms which have greater synthetic powers than we. And finally we have seen something of the manifold fates of the amino acids after they have entered our tissues; how they may be destroyed and their nitrogenous parts turned into urea in the liver before it is possible to put them to their more specialized uses, how their carbon fractions can be used to form glucose, how they may sacrifice themselves to protect us from toxic products, how they can serve as source material for certain vitamins, hormones and other compounds with physiological functions still to be identified, and how finally those amino acids which are not deflected to these various fates may enter into the proteins of the tissues and become for a time parts of our living structures.

  3. Relative reactivity of amino acids with chlorine in mixtures.

    PubMed

    Na, Chongzheng; Olson, Terese M

    2007-05-01

    The relative reactivity of chlorine with amino acids is an important determinant of the resulting chlorination products in systems where chlorine is the limiting reagent, for example, in the human gastrointestinal tract after consumption of chlorine-containing water, or during food preparation with chlorinated water. Since few direct determinations of the initial reactivity of chlorine with amino acids have been made, 17 amino acids were compared in this study using competitive kinetic principles. The experimental results showed that (1) most amino acids have similar initial reactivities at neutral pH; (2) amino acids with thiol groups such as methionine and cysteine are exceptionally reactive and produce sulfoxides; (3) amino acids without thiol groups primarily undergo monochlorination of the amino nitrogen; and (4) glycine and proline are the least reactive. Dichlorination was estimated to occur with approximately 26% of the amino acid groups when the total amino acid: chlorine concentrations were equal.

  4. Unnatural reactive amino acid genetic code additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  5. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  6. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander [La Jolla, CA; Cropp, T Ashton [San Diego, CA; Chin, Jason W [Cambridge, GB; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2011-02-15

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  8. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander [La Jolla, CA; Cropp, T Ashton [Bethesda, MD; Chin, Jason W [Cambridge, GB; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA

    2011-08-09

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNAsyn-thetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  9. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    PubMed

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.

  10. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly*

    PubMed Central

    Stransky, Laura A.; Forgac, Michael

    2015-01-01

    The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump composed of a peripheral ATPase domain (V1) and a membrane-integral proton-translocating domain (V0) and is involved in many normal and disease processes. An important mechanism of regulating V-ATPase activity is reversible assembly of the V1 and V0 domains. Increased assembly in mammalian cells occurs under various conditions and has been shown to involve PI3K. The V-ATPase is necessary for amino acid-induced activation of mechanistic target of rapamycin complex 1 (mTORC1), which is important in controlling cell growth in response to nutrient availability and growth signals. The V-ATPase undergoes amino acid-dependent interactions with the Ragulator complex, which is involved in recruitment of mTORC1 to the lysosomal membrane during amino acid sensing. We hypothesized that changes in the V-ATPase/Ragulator interaction might involve amino acid-dependent changes in V-ATPase assembly. To test this, we measured V-ATPase assembly by cell fractionation in HEK293T cells treated with and without amino acids. V-ATPase assembly increases upon amino acid starvation, and this effect is reversed upon readdition of amino acids. Lysosomes from amino acid-starved cells possess greater V-ATPase-dependent proton transport, indicating that assembled pumps are catalytically active. Amino acid-dependent changes in both V-ATPase assembly and activity are independent of PI3K and mTORC1 activity, indicating the involvement of signaling pathways distinct from those implicated previously in controlling assembly. By contrast, lysosomal neutralization blocks the amino acid-dependent change in assembly and reactivation of mTORC1 after amino acid starvation. These results identify an important new stimulus for controlling V-ATPase assembly. PMID:26378229

  11. Characterization of d-succinylase from Cupriavidus sp. P4-10-C and its application in d-amino acid synthesis.

    PubMed

    Sumida, Yosuke; Iwai, Sachio; Nishiya, Yoshiaki; Kumagai, Shinya; Yamada, Toshihide; Azuma, Masayuki

    2018-03-01

    d-Amino acids are important building blocks for various compounds, such as pharmaceuticals and agrochemicals. A more cost-effective enzymatic method for d-amino acid production is needed in the industry. We improved a one-pot enzymatic method for d-amino acid production by the dynamic kinetic resolution of N-succinyl amino acids using two enzymes: d-succinylase (DSA) from Cupriavidus sp. P4-10-C, which hydrolyzes N-succinyl-d-amino acids enantioselectively to their corresponding d-amino acid, and N-succinyl amino acid racemase (NSAR, EC.4.2.1.113) from Geobacillus stearothermophilus NCA1503. In this study, DSA and NSAR were purified and their properties were investigated. The optimum temperature of DSA was 50°C and it was stable up to 55°C. The optimum pH of DSA and NSAR was around 7.5. In d-phenylalanine production, the optical purity of product was improved to 91.6% ee from the examination about enzyme concentration. Moreover, 100 mM N-succinyl-dl-tryptophan was converted to d-tryptophan at 81.8% yield with 94.7% ee. This enzymatic method could be useful for the industrial production of various d-amino acids. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Electrospray ionization tandem mass spectrometry differentiation of N-phosphoryl-[alpha]-, [beta]- and [gamma]-amino acids

    NASA Astrophysics Data System (ADS)

    Qiang, Liming; Cao, Shuxia; Zhao, Xiaoyang; Mao, Xiangju; Guo, Yanchun; Liao, Xincheng; Zhao, Yufen

    2007-10-01

    The fragmentation patterns of N-diisopropyloxyphosphoryl-l-[alpha]-Ala (DIPP-l-[alpha]-Ala), N-diisopropyloxyphosphoryl-d-[alpha]-Ala (DIPP-d-[alpha]-Ala), N-diisopropyloxyphosphoryl-[beta]-Ala (DIPP-[beta]-Ala) and N-diisopropyloxyphosphoryl-[gamma]-amino butyric acid (DIPP-[gamma]-Aba) were investigated by electrospray ionization tandem mass spectrometry (ESI-MS/MS). DIPP-d-[alpha]-Ala showed the same fragmentation pathways as DIPP-l-[alpha]-Ala. In the fragmentation of protonated DIPP-[beta]-Ala, the characteristic fragment ion [M + H - 2C3H6 - H2O - CH2CO]+ appeared and could be used to distinguish [beta]-Ala from l-[alpha]-Ala and d-[alpha]-Ala through tandem mass spectra, even though they possess the same molecular weight. In the fragmentation of protonated DIPP-[gamma]-Aba, the break of PN bond occurred and an interesting protonated lactam ion with five-membered ring was generated. Furthermore, in the MS3 spectrum of [M + Na - 2C3H6]+ ion of DIPP-[gamma]-Aba, a strong intensity of unique fragment ion, namely lactam-sodium adduct with five-membered ring, was observed, which could be considered as a mark for [gamma]-amino acids. The stepwise fragmentations of their [M + Na]+ ions and [M - H]- ions showed that they all underwent a PN to PO bond migration through a five-membered or six-membered or even seven-membered ring transition state, respectively, which supported the great affinity of hydroxyl for phosphoryl group.

  13. Nickel Ligation of the N-Terminal Amine of HypA Is Required for Urease Maturation in Helicobacter pylori.

    PubMed

    Hu, Heidi Q; Johnson, Ryan C; Merrell, D Scott; Maroney, Michael J

    2017-02-28

    The human pathogen Helicobacter pylori requires nickel for colonization of the acidic environment of the stomach. HypA, a Ni metallochaperone that is typically associated with hydrogenase maturation, is also required for urease maturation and acid survival of H. pylori. There are two proposed Ni site structures for HypA; one is a paramagnetic six-coordinate site characterized by X-ray absorption spectroscopy (XAS) in unmodified HypA, while another is a diamagnetic four-coordinate planar site characterized by solution nuclear magnetic resonance in an N-terminally modified HypA construct. To determine the role of the N-terminal amine in Ni binding of HypA, an N-terminal extension variant, L2*-HypA, in which a leucine residue was inserted into the second position of the amino acid sequence in the proposed Ni-binding motif, was characterized in vitro and in vivo. Structural characterization of the Ni site using XAS showed a coordination change from six-coordinate in wild-type HypA (WT-HypA) to five-coordinate pyramidal in L2*-HypA, which was accompanied by the loss of two N/O donor protein ligands and the addition of an exogenous bromide ligand from the buffer. The magnetic properties of the Ni sites in WT-HypA compared to those of the Ni sites in L2*-HypA confirmed that a spin-state change from high to low spin accompanied this change in structure. The L2*-HypA H. pylori strain was shown to be acid sensitive and deficient in urease activity in vivo. In vitro characterization showed that L2*-HypA did not disrupt the HypA-UreE interaction that is essential for urease maturation but was at least 20-fold weaker in Ni binding than WT-HypA. Characterization of the L2*-HypA variant clearly demonstrates that the N-terminal amine of HypA is involved in proper Ni coordination and is necessary for urease activity and acid survival.

  14. Nickel Ligation of the N-Terminal Amine of HypA Is Required for Urease Maturation in Helicobacter pylori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Heidi Q.; Johnson, Ryan C.; Merrell, D. Scott

    The human pathogen Helicobacter pylori requires nickel for colonization of the acidic environment of the stomach. HypA, a Ni metallochaperone that is typically associated with hydrogenase maturation, is also required for urease maturation and acid survival of H. pylori. There are two proposed Ni site structures for HypA; one is a paramagnetic six-coordinate site characterized by X-ray absorption spectroscopy (XAS) in unmodified HypA, while another is a diamagnetic four-coordinate planar site characterized by solution nuclear magnetic resonance in an N-terminally modified HypA construct. To determine the role of the N-terminal amine in Ni binding of HypA, an N-terminal extension variant,more » L2*-HypA, in which a leucine residue was inserted into the second position of the amino acid sequence in the proposed Ni-binding motif, was characterized in vitro and in vivo. Structural characterization of the Ni site using XAS showed a coordination change from six-coordinate in wild-type HypA (WT-HypA) to five-coordinate pyramidal in L2*-HypA, which was accompanied by the loss of two N/O donor protein ligands and the addition of an exogenous bromide ligand from the buffer. The magnetic properties of the Ni sites in WT-HypA compared to those of the Ni sites in L2*-HypA confirmed that a spin-state change from high to low spin accompanied this change in structure. The L2*-HypA H. pylori strain was shown to be acid sensitive and deficient in urease activity in vivo. In vitro characterization showed that L2*-HypA did not disrupt the HypA–UreE interaction that is essential for urease maturation but was at least 20-fold weaker in Ni binding than WT-HypA. Characterization of the L2*-HypA variant clearly demonstrates that the N-terminal amine of HypA is involved in proper Ni coordination and is necessary for urease activity and acid survival.« less

  15. The Nitrogen Moieties of Dietary Nonessential Amino Acids Are Distinctively Metabolized in the Gut and Distributed to the Circulation in Rats.

    PubMed

    Nakamura, Hidehiro; Kawamata, Yasuko; Kuwahara, Tomomi; Sakai, Ryosei

    2017-08-01

    Background: Although previous growth studies in rodents have indicated the importance of dietary nonessential amino acids (NEAAs) as nitrogen sources, individual NEAAs have different growth-promoting activities. This phenomenon might be attributable to differences in the nitrogen metabolism of individual NEAAs. Objective: The aim of this study was to compare nitrogen metabolism across dietary NEAAs with the use of their 15 N isotopologues. Methods: Male Fischer rats (8 wk old) were given 1.0 g amino acid-defined diets containing either 15 N-labeled glutamate, glutamine (amino or amide), aspartate, alanine, proline, glycine, or serine hourly for 5-6 h. Then, steady-state amino acid concentrations and their 15 N enrichments in the gut and in portal and arterial plasma were measured by an amino acid analyzer and LC tandem mass spectrometry, respectively. Results: The intestinal 15 N distribution and portal-arterial balance of 15 N metabolites indicated that most dietary glutamate nitrogen (>90% of dietary input) was incorporated into various amino acids, including alanine, proline, and citrulline, in the gut. Dietary aspartate nitrogen, alanine nitrogen, and amino nitrogen of glutamine were distributed similarly to other amino acids both in the gut and in the circulation. In contrast, incorporation of the nitrogen moieties of dietary proline, serine, and glycine into other amino acids was less than that of other NEAAs, although interconversion between serine and glycine was very active. Cluster analysis of 15 N enrichment data also indicated that dietary glutamate nitrogen, aspartate nitrogen, alanine nitrogen, and the amino nitrogen of glutamine were distributed similarly to intestinal and circulating amino acids. Further, the analysis revealed close relations between intestinal and arterial 15 N enrichment for each amino acid. The steady-state 15 N enrichment of arterial amino acids indicated that substantial amounts of circulating amino acid nitrogen are derived

  16. [Determination of 13C enrichment in soil amino acid enantiomers by gas chromatogram/mass spectrometry].

    PubMed

    He, Hong-Bo; Zhang, Wei; Ding, Xue-Li; Bai, Zhen; Liu, Ning; Zhang, Xu-Dong

    2008-06-01

    The transformation and renewal of amino acid enantiomers is of significance in indicating the turnover mechanism of soil organic matter. In this paper, a method of gas chromatogram/mass spectrometry combined with U-13 C-glucose incubation was developed to determine the 13C enrichment in soil amino acid enantiomers, which could effectively differentiate the original and the newly synthesized amino acids in soil matrix. The added U-13 C-glucose was utilized rapidly to structure the amino acid carbon skeleton, and the change of relative abundance of isotope ions could be determined by mass spectrometry. The direct incorporation of U-13 C glucose was estimated by the intensity increase of m/z (F + n) to F (F was parent fragment, and n was the carbon number in the fragment), while the total isotope incorporation from the added 13C could be calculated according to the abundance ratio increment summation from m/z (Fa + 1) through (Fa + T) (Fa was the fragment containing all original skeleton carbons, and T was the carbon number in the amino acid molecule). The 13C enrichment in the target compound was expressed as atom percentage excess (APE), and that of D-amino acid needed to be corrected by the coefficient of hydrolysis-induced racemization. The 13C enrichment reflected the carbon turnover velocity of individual amino acid enantiomers, and was powerful to investigate the dynamics of soil amino acids.

  17. Amino terminal glutamate residues confer spermine sensitivity and affect voltage gating and channel conductance of rat connexin40 gap junctions.

    PubMed

    Musa, Hassan; Fenn, Edward; Crye, Mark; Gemel, Joanna; Beyer, Eric C; Veenstra, Richard D

    2004-06-15

    Connexin40 (Cx40) contains a specific binding site for spermine (affinity approximately 100 microm) whereas connexin43 (Cx43) is unaffected by identical concentrations of intracellular spermine. Replacement of two unique glutamate residues, E9 and E13, from the cytoplasmic amino terminal domain of Cx40 with the corresponding lysine residues from Cx43 eliminated the block by 2 mm spermine, reduced the transjunctional voltage (V(j)) gating sensitivity, and reduced the unitary conductance of this Cx40E9,13K gap junction channel protein. The single point mutations, Cx40E9K and Cx40E13K, predominantly affected the residual conductance state (G(min)) and V(j) gating properties, respectively. Heterotypic pairing of Cx40E9,13K with wild-type Cx40 in murine neuro2A (N2A) cells produced a strongly rectifying gap junction reminiscent of the inward rectification properties of the Kir (e.g. Kir2.x) family of potassium channels. The reciprocal Cx43K9,13E mutant protein exhibited reduced V(j) sensitivity, but displayed much less rectification in heterotypic pairings with wtCx43, negligible changes in the unitary channel conductance, and remained insensitive to spermine block. These data indicate that the connexin40 amino terminus may form a critical cytoplasmic pore-forming domain that serves as the receptor for V(j)-dependent closure and block by intracellular polyamines. Functional reciprocity between Cx40 and Cx43 gap junctions involves other amino acid residues in addition to the E or K 9 and 13 loci located on the amino terminal domain of these two connexins.

  18. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji

    2015-02-20

    XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species.more » To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4{sup N326L}) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4{sup N326L} in the nucleus but only partially rescued radiosensitivity of M10-XRCC4{sup N326L}. These results collectively indicated that the functional defects of XRCC4{sup N326L} might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein. - Highlights: • Extremely C-terminal region of XRCC4 is highly conserved among vertebrate species. • XRCC4 C-terminal point mutants, R325F and N326L, are functionally deficient in terms of survival after irradiation. • N326L localizes to the cytoplasm because of synthetic nuclear export signal. • Leptomycin B

  19. Aerosol-Forming Reactions of Glyoxal, Methylglyoxal and Amino Acids in Clouds

    NASA Astrophysics Data System (ADS)

    de Haan, D. O.; Smith, K. W.; Stroik, D. R.; Corrigan, A. L.; Lee, F. E.; Phan, J. T.; Conley, A. C.

    2008-12-01

    Glyoxal and methylglyoxal are two common aldehydes present in fog and cloud water. Amino acids are present in clouds at similar concentrations. Here we present bulk and aerosol mass spectroscopic data demonstrating that irreversible reactions between glyoxal and amino acids, triggered by droplet evaporation, produce N-derivatized imidazole compounds along with deeply colored Maillard reaction products. These reactions can occur in the dark and in the absence of oxidants. Reactions between methylglyoxal and amino acids produce analogous methylated products plus oligomers with masses up to m/z = 1000. These reactions, which go to completion on the 10-min-timescale of cloud processing, could be significant sources of secondary organic aerosol and humic-like substances (HULIS or brown carbon).

  20. Purification, characterization, gene cloning and nucleotide sequencing of D: -stereospecific amino acid amidase from soil bacterium: Delftia acidovorans.

    PubMed

    Hongpattarakere, Tipparat; Komeda, Hidenobu; Asano, Yasuhisa

    2005-12-01

    The D-amino acid amidase-producing bacterium was isolated from soil samples using an enrichment culture technique in medium broth containing D-phenylalanine amide as a sole source of nitrogen. The strain exhibiting the strongest activity was identified as Delftia acidovorans strain 16. This strain produced intracellular D-amino acid amidase constitutively. The enzyme was purified about 380-fold to homogeneity and its molecular mass was estimated to be about 50 kDa, on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was active preferentially toward D-amino acid amides rather than their L-counterparts. It exhibited strong amino acid amidase activity toward aromatic amino acid amides including D-phenylalanine amide, D-tryptophan amide and D-tyrosine amide, yet it was not specifically active toward low-molecular-weight D-amino acid amides such as D-alanine amide, L-alanine amide and L-serine amide. Moreover, it was not specifically active toward oligopeptides. The enzyme showed maximum activity at 40 degrees C and pH 8.5 and appeared to be very stable, with 92.5% remaining activity after the reaction was performed at 45 degrees C for 30 min. However, it was mostly inactivated in the presence of phenylmethanesulfonyl fluoride or Cd2+, Ag+, Zn2+, Hg2+ and As3+ . The NH2 terminal and internal amino acid sequences of the enzyme were determined; and the gene was cloned and sequenced. The enzyme gene damA encodes a 466-amino-acid protein (molecular mass 49,860.46 Da); and the deduced amino acid sequence exhibits homology to the D-amino acid amidase from Variovorax paradoxus (67.9% identity), the amidotransferase A subunit from Burkholderia fungorum (50% identity) and other enantioselective amidases.

  1. Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation.

    PubMed

    Edwards, Thomas E; Robinson, Bruce H; Sigurdsson, Snorri Th

    2005-03-01

    The Tat protein and the transactivation responsive (TAR) RNA form an essential complex in the HIV lifecycle, and mutations in the basic region of the Tat protein alter this RNA-protein molecular recognition. Here, EPR spectroscopy was used to identify amino acids, flanking an essential arginine of the Tat protein, which contribute to specific and rigid TAR-Tat complex formation by monitoring changes in the mobility of nitroxide spin-labeled TAR RNA nucleotides upon binding. Arginine to lysine N-terminal mutations did not affect TAR RNA interfacial dynamics. In contrast, C-terminal point mutations, R56 in particular, affected the mobility of nucleotides U23 and U38, which are involved in a base-triple interaction in the complex. This report highlights the role of dynamics in specific molecular complex formation and demonstrates the ability of EPR spectroscopy to study interfacial dynamics of macromolecular complexes.

  2. Genetics of Amino Acid Taste and Appetite123

    PubMed Central

    Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Beauchamp, Gary K

    2016-01-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. PMID:27422518

  3. Amino acids in the cultivation of mammalian cells.

    PubMed

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  4. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates.

    PubMed

    Kleifeld, Oded; Doucet, Alain; Prudova, Anna; auf dem Keller, Ulrich; Gioia, Magda; Kizhakkedathu, Jayachandran N; Overall, Christopher M

    2011-09-22

    Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and

  5. Plasma Amino Acid Levels in Children with Autism and Their Families.

    ERIC Educational Resources Information Center

    Aldred, Sarah; Moore, Kieran M.; Fitzgerald, Michael; Waring, Rosemary H.

    2003-01-01

    Plasma amino acid levels were measured in autistic (n=12), Asperger syndrome (n=11) patients, their parents and siblings. Patients with autism or Asperger syndrome and their siblings and parents all had raised glutamic acid, phenyalanine, asparagine, tyrosine, alanine, and lysine levels than age-matched controls. Results suggest dysregulated amino…

  6. Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics

    PubMed Central

    Wünsch, Matthias; Schröder, David; Fröhr, Tanja; Teichmann, Lisa; Hedwig, Sebastian; Janson, Nils; Belu, Clara; Simon, Jasmin; Heidemeyer, Shari; Holtkamp, Philipp; Rudlof, Jens; Klemme, Lennard; Hinzmann, Alessa; Neumann, Beate; Stammler, Hans-Georg

    2017-01-01

    The amide moiety of peptides can be replaced for example by a triazole moiety, which is considered to be bioisosteric. Therefore, the carbonyl moiety of an amino acid has to be replaced by an alkyne in order to provide a precursor of such peptidomimetics. As most amino acids have a chiral center at Cα, such amide bond surrogates need a chiral moiety. Here the asymmetric synthesis of a set of 24 N-sulfinyl propargylamines is presented. The condensation of various aldehydes with Ellman’s chiral sulfinamide provides chiral N-sulfinylimines, which were reacted with (trimethylsilyl)ethynyllithium to afford diastereomerically pure N-sulfinyl propargylamines. Diverse functional groups present in the propargylic position resemble the side chain present at the Cα of amino acids. Whereas propargylamines with (cyclo)alkyl substituents can be prepared in a direct manner, residues with polar functional groups require suitable protective groups. The presence of particular functional groups in the side chain in some cases leads to remarkable side reactions of the alkyne moiety. Thus, electron-withdrawing substituents in the Cα-position facilitate a base induced rearrangement to α,β-unsaturated imines, while azide-substituted propargylamines form triazoles under surprisingly mild conditions. A panel of propargylamines bearing fluoro or chloro substituents, polar functional groups, or basic and acidic functional groups is accessible for the use as precursors of peptidomimetics. PMID:29234470

  7. Regulation of the proteome by amino acids.

    PubMed

    Bourgoin-Voillard, Sandrine; Goron, Arthur; Seve, Michel; Moinard, Christophe

    2016-03-01

    Besides their main contribution as substrates for protein synthesis, amino acids as signaling molecules could exert some regulatory functions on protein synthesis and/or proteolysis that have been emphasized in a number of recent studies. Several publications have highlighted supplemental roles of those amino acids in protein metabolism as well as in immunity, heat shock response, or apoptosis processes. In this way, via their regulatory properties, selected amino acids (such as leucine, glutamine, arginine, citrulline, or methionine) directly influence the proteome. In this review, we are proposing an overview of the regulation of the proteome by amino acids in mammals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Negatively-charged residues in the polar carboxy-terminal region in FSP27 are indispensable for expanding lipid droplets.

    PubMed

    Tamori, Yoshikazu; Tateya, Sanshiro; Ijuin, Takeshi; Nishimoto, Yuki; Nakajima, Shinsuke; Ogawa, Wataru

    2016-03-01

    FSP27 has an important role in large lipid droplet (LD) formation because it exchanges lipids at the contact site between LDs. In the present study, we clarify that the amino-terminal domain of FSP27 (amino acids 1-130) is dispensable for LD enlargement, although it accelerates LD growth. LD expansion depends on the carboxy-terminal domain of FSP27 (amino acids 131-239). Especially, the negative charge of the acidic residues (D215, E218, E219 and E220) in the polar carboxy-terminal region (amino acids 202-239) is essential for the enlargement of LD. We propose that the carboxy-terminal domain of FSP27 has a crucial role in LD expansion, whereas the amino-terminal domain only has a supportive role. © 2016 Federation of European Biochemical Societies.

  9. Synthesis and stereochemical analysis of β-nitromethane substituted γ-amino acids and peptides.

    PubMed

    Ganesh Kumar, Mothukuri; Mali, Sachitanand M; Gopi, Hosahudya N

    2013-02-07

    The high diastereoselectivity in the Michael addition of nitromethane to α,β-unsaturated γ-amino esters, crystal conformations of β-nitromethane substituted γ-amino acids and peptides are studied. Results suggest that the N-Boc protected amide NH, conformations of α,β-unsaturated γ-amino esters and alkyl side chains play a crucial role in dictating the high diastereoselectivity of nitromethane addition to E-vinylogous amino esters. Investigation of the crystal conformations of both α,β-unsaturated γ-amino esters and the Michael addition products suggests that an H-C(γ)-C(β)=C(α) eclipsed conformer of the unsaturated amino ester leads to the major (anti) product compared to that of an N-C(γ)-C(β)=C(α) eclipsed conformer. The major diastereomers were separated and subjected to the peptide synthesis. The single crystal analysis of the dipeptide containing β-nitromethane substituted γ-amino acids reveals a helical type of folded conformation with an isolated H-bond involving a nine-atom pseudocycle.

  10. Acquisition and Assimilation of Nitrogen as Peptide-Bound and D-Enantiomers of Amino Acids by Wheat

    PubMed Central

    Hill, Paul W.; Quilliam, Richard S.; DeLuca, Thomas H.; Farrar, John; Farrell, Mark; Roberts, Paula; Newsham, Kevin K.; Hopkins, David W.; Bardgett, Richard D.; Jones, David L.

    2011-01-01

    Nitrogen is a key regulator of primary productivity in many terrestrial ecosystems. Historically, only inorganic N (NH4 + and NO3 -) and L-amino acids have been considered to be important to the N nutrition of terrestrial plants. However, amino acids are also present in soil as small peptides and in D-enantiomeric form. We compared the uptake and assimilation of N as free amino acid and short homopeptide in both L- and D-enantiomeric forms. Sterile roots of wheat (Triticum aestivum L.) plants were exposed to solutions containing either 14C-labelled L-alanine, D-alanine, L-trialanine or D-trialanine at a concentration likely to be found in soil solution (10 µM). Over 5 h, plants took up L-alanine, D-alanine and L-trialanine at rates of 0.9±0.3, 0.3±0.06 and 0.3±0.04 µmol g−1 root DW h−1, respectively. The rate of N uptake as L-trialanine was the same as that as L-alanine. Plants lost ca.60% of amino acid C taken up in respiration, regardless of the enantiomeric form, but more (ca.80%) of the L-trialanine C than amino acid C was respired. When supplied in solutions of mixed N form, N uptake as D-alanine was ca.5-fold faster than as NO3 -, but slower than as L-alanine, L-trialanine and NH4 +. Plants showed a limited capacity to take up D-trialanine (0.04±0.03 µmol g−1 root DW h−1), but did not appear to be able to metabolise it. We conclude that wheat is able to utilise L-peptide and D-amino acid N at rates comparable to those of N forms of acknowledged importance, namely L-amino acids and inorganic N. This is true even when solutes are supplied at realistic soil concentrations and when other forms of N are available. We suggest that it may be necessary to reconsider which forms of soil N are important in the terrestrial N cycle. PMID:21541281

  11. In Vitro Degradation of Pure Magnesium―The Effects of Glucose and/or Amino Acid

    PubMed Central

    Wang, Yu; Cui, Lan-Yue; Li, Shuo-Qi; Zou, Yu-Hong; Han, En-Hou

    2017-01-01

    The influences of glucose and amino acid (L-cysteine) on the degradation of pure magnesium have been investigated using SEM, XRD, Fourier transformed infrared (FTIR), X-ray photoelectron spectroscopy (XPS), polarization and electrochemical impedance spectroscopy and immersion tests. The results demonstrate that both amino acid and glucose inhibit the corrosion of pure magnesium in saline solution, whereas the presence of both amino acid and glucose accelerates the corrosion rate of pure magnesium. This may be due to the formation of -C=N- bonding (a functional group of Schiff bases) between amino acid and glucose, which restricts the formation of the protective Mg(OH)2 precipitates. PMID:28773085

  12. The Apollo Program and Amino Acids

    ERIC Educational Resources Information Center

    Fox, Sidney W.

    1973-01-01

    Discusses the determination of hydrolyzable amino acid precursors and a group of six amino acids in the returned lunar samples of the Apollo programs. Indicates that molecular evolution is arrested at the precursor stage on the Moon because of lack of water. (CC)

  13. Versatile Synthesis of Amino Acid Functional Polymers without Protection Group Chemistry.

    PubMed

    Brisson, Emma R L; Xiao, Zeyun; Franks, George V; Connal, Luke A

    2017-01-09

    The copolymerization of N-isopropylacrylamide (NiPAm) with aldehyde functional monomers facilitates postpolymerization functionalization with amino acids via reductive amination, negating the need for protecting groups. In reductive amination, the imine formed from the condensation reaction between an amine and an aldehyde is reduced to an amine. In this work, we categorize amino acids into four classes based on the functionality of their side chains (acidic, polar neutral, neutral, and basic) and use their amine groups in condensation reactions with aldehyde functional polymers. The dynamic nature of the imine as well as the versatility of reductive amination to functionalize a polymer with a range of amino acids is highlighted. In this manner, amino acid functional polymers are synthesized without the use of protecting groups with high yields, demonstrating the high functional group tolerance of carbonyl condensation chemistry and the subsequent reduction of the imine. Prior to the reduction of the imine bond, transimination reactions are used to demonstrate dynamic polymers that shuffle from a glycine- to a histidine-functional polymer.

  14. Amino and fatty acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  15. omega-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2: a new catalyst for kinetic resolution of beta-amino acids and amines.

    PubMed

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-04-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.

  16. ω-Amino Acid:Pyruvate Transaminase from Alcaligenes denitrificans Y2k-2: a New Catalyst for Kinetic Resolution of β-Amino Acids and Amines

    PubMed Central

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-01-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed ω-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic β-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for l-β-amino-n-butyric acid (l-β-ABA). The enzyme converts various β-amino acids and amines to the corresponding β-keto acids and ketones by using pyruvate as an amine acceptor. The apparent Km and Vmax for l-β-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM l-β-ABA, the apparent Km and Vmax for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM d,l-β-ABA, producing optically pure d-β-ABA (99% enantiomeric excess) with 53% conversion. PMID:15066855

  17. The influence of minerals on decomposition of the n-alkyl-α-amino acid norvaline under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.

    2013-03-01

    Laboratory experiments were conducted to observe the effect of iron oxide and sulfide minerals on decomposition reactions of norvaline, a representative of a group of alkyl-α-amino acids observed in meteorites and prebiotic synthesis experiments. The primary products observed during heating of aqueous solutions of norvaline at temperatures of 156-186 °C in the presence of minerals included CO2, NH3, butyric acid, and valeric acid. The products indicated that norvaline predominantly decomposed by a combination of pathways that included both decarboxylation followed rapidly by oxidative deamination (norvaline → butanamide + CO2 → butyric acid + NH3) and deamination directly to valeric acid (norvaline → valeric acid + NH3). An experiment performed with alanine under similar conditions showed it decomposed by analogous reactions that produced acetic and propionic acids along with CO2 and NH3. For both amino acids, the presence of minerals accelerated decomposition rates as well as altered the final products of reaction, when compared with decomposition in the absence of mineral substrates. In addition, decomposition of norvaline was found to proceed much faster in the presence of the mineral assemblage hematite-magnetite-pyrite (HMP) than with the assemblage pyrite-pyrrhotite-magnetite (PPM), a trend that has been observed for several other organic compounds. The influence of minerals on decomposition reactions of these amino acids appears to be attributable to a combination of surface catalysis and production of dissolved sulfur compounds. Overall, the results indicate that minerals may exert a substantial influence on amino acid stability in many geologic environments, and emphasize the need to consider the impact of minerals when evaluating the lifetimes and decomposition rates of amino acids in terrestrial and planetary systems. Estimated half-lives for alkyl-α-amino acids based on the experimental results indicate that moderately hot hydrothermal

  18. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach.

    PubMed

    Sani, Hartini Ahmad; Shariff, Fairolniza Mohd; Rahman, Raja Noor Zaliha Raja Abd; Leow, Thean Chor; Salleh, Abu Bakar

    2018-01-01

    The substitutions of the amino acid at the predetermined critical point at the C-terminal of L2 lipase may increase its thermostability and enzymatic activity, or even otherwise speed up the unfolding of the protein structure. The C-terminal of most proteins is often flexible and disordered. However, some protein functions are directly related to flexibility and play significant role in enzyme reaction. The critical point for mutation of L2 lipase structure was predicted at the position 385 of the L2 sequence, and the best three mutants were determined based on I-Mutant2.0 software. The best three mutants were S385E, S385I and S385V. The effects of the substitution of the amino acids at the critical point were analysed with molecular dynamics simulation by using Yet Another Scientific Artificial Reality Application software. The predicted mutant L2 lipases were found to have lower root mean square deviation value as compared to L2 lipase. It was indicated that all the three mutants had higher compactness in the structure, consequently enhanced the stability. Root mean square fluctuation analysis showed that the flexibility of L2 lipase was reduced by mutations. Purified S385E lipase had an optimum temperature of 80 °C in Tris-HCl pH 8. The highest enzymatic activity of purified S385E lipase was obtained at 80 °C temperature in Tris-HCl pH 8, while for L2 lipase it was at 70 °C in Glycine-NaOH pH 9. The thermal stability of S385V lipase was enhanced as compared to other protein since that the melting point (T m ) value was at 85.96 °C. S385I lipase was more thermostable compared to recombinant L2 lipase and other mutants at temperature 60 °C within 16 h preincubation.

  19. [Metabolic pattern of pig hindgut bacteria on aromatic amino acids by an in vitro fermentation method].

    PubMed

    Ma, Meilei; He, Xiangyu; Zhu, Weiyun

    2016-11-04

    This experiment was conducted to study different metabolic patterns of pig hindgut bacteria on aromatic amino acids by an in vitro fermentation method. Ileum, cecum and colon chyme in Duroc, Landrace and Yorkshire goods hybridization pigs were taken as inoculum. The single aromatic amino acid concentration was kept 10 mmol/L in fermentation flask. Then the fermentation flask was incubated at 37℃ for 24 h. Gas production was measured at 4, 8, 12, 16 and 24 h, and samples of fermentation collected at 0 h and 24 h were used to measure ammonia nitrogen NH3-N and microbial crude protein (MCP). Denaturing gradient gel electrophoresis (DGGE) and real-time PCR were used to monitor and quantify the development of bacteria community in zymotic fluid.[ The concentrations of NH3-N and MCP were significantly affected by aromatic amino acids and intestinal segments (P<0.01). Intestinal segments also affected gas production (GP) significantly (P0.01). NH3-N, MCP and GP were affected by interaction of aromatic amino acids and intestinal segments. DGGE analysis showed bacteria of aromatic amino acids shared amount of bands together, especially similarity analysis of DGGE profile of Phe and Tyr in ileum, Tyr and Trp in colon were 87.9% and 80.5% separately. Shannon diversity indices analysis revealed that aromatic amino acids in cecum and colon varied significantly (P<0.05). Real-time PCR results showed that the quantity of total bacteria were affected by aromatic amino acids and intestinal segments significantly (P<0.05). The potential as proportion of different aromatic amino acids are different. Compared with Trp and Phe, the diversity of bacteria utilizing Tyr in cecum or colon is low; compared with Tyr and Trp, a large number of Phe participated in synthesizing bacteria.The fermentation pattern of specific aromatic amino acids in different intestinal segment was unique. Compared with ileum and cecum, much more aromatic amino acids participated in the synthesis of bacteria in

  20. Bulk vs. amino acid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size-fractionated zooplankton biomass in the subtropical N Atlantic

    NASA Astrophysics Data System (ADS)

    Mompeán, Carmen; Bode, Antonio; Gier, Elizabeth; McCarthy, Matthew D.

    2016-08-01

    A comparative analysis of natural abundance of stable N isotopes (δ15N) in individual amino acids and bulk organic matter of size-fractionated plankton revealed the differential impact of nitrogen fixation through the food web in a transect across the subtropical North Atlantic. All δ15N measurements showed low values in the central region, followed by the western zone, while maximum δ15N values were found in the eastern zone. These results were consistent with the prevalence of nitrogen fixation in the central and western zones, and the influence of the west Africa upwelling in the eastern zone. Use of compound-specific amino acid isotope data (CSI-AA) revealed relatively low variability in the impact of diazotrophic nitrogen within the different plankton size fractions, while δ15N of bulk organic matter showed high variability with size. Explicit CSI-AA trophic position estimates showed a small increase with mean plankton size class and varied in a relatively narrow range 1.8-2.5), with the lowest values in the central zone. High correlations between bulk plankton δ15N and individual amino acids (in particular Phe and Thr), as well as reconstructed total protein δ15N values, suggest a set of new relationships that may be important to tracing direct plankton contributions to nitrogen recycling in the ocean, including detrital organic nitrogen pools. Overall, these new results represent the most detailed investigation of CSI-AA data in plankton size classes to date, and indicated a greater importance of diazotrophic N than suggested by concurrent measurements of bulk δ15N, abundance of large nitrogen fixing organisms or nitrogen fixation rates.

  1. Quantum Computational Calculations of the Ionization Energies of Acidic and Basic Amino Acids: Aspartate, Glutamate, Arginine, Lysine, and Histidine

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.

    An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.

  2. Relative Amino Acid Composition Signatures of Organisms and Environments

    PubMed Central

    Moura, Alexandra; Savageau, Michael A.; Alves, Rui

    2013-01-01

    Background Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment. Methodologies/Principal Findings To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny. Conclusions Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms. PMID:24204807

  3. Relative amino acid composition signatures of organisms and environments.

    PubMed

    Moura, Alexandra; Savageau, Michael A; Alves, Rui

    2013-01-01

    Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment. To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny. Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms.

  4. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    PubMed

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus. Copyright © 2014 the American Physiological Society.

  5. Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes.

    PubMed

    Seligmann, Hervé

    2018-05-01

    Genetic codes mainly evolve by reassigning punctuation codons, starts and stops. Previous analyses assuming that undefined amino acids translate stops showed greater divergence between nuclear and mitochondrial genetic codes. Here, three independent methods converge on which amino acids translated stops at split between nuclear and mitochondrial genetic codes: (a) alignment-free genetic code comparisons inserting different amino acids at stops; (b) alignment-based blast analyses of hypothetical peptides translated from non-coding mitochondrial sequences, inserting different amino acids at stops; (c) biases in amino acid insertions at stops in proteomic data. Hence short-term protein evolution models reconstruct long-term genetic code evolution. Mitochondria reassign stops to amino acids otherwise inserted at stops by codon-anticodon mismatches (near-cognate tRNAs). Hence dual function (translation termination and translation by codon-anticodon mismatch) precedes mitochondrial reassignments of stops to amino acids. Stop ambiguity increases coded information, compensates endocellular mitogenome reduction. Mitochondrial codon reassignments might prevent viral infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation.

    PubMed

    Eldeeb, Mohamed A; Leitao, Luana C A; Fahlman, Richard P

    2018-06-01

    The N-end rule links the identity of the N-terminal amino acid of a protein to its in vivo half-life, as some N-terminal residues confer metabolic instability to a protein via their recognition by the cellular machinery that targets them for degradation. Since its discovery, the N-end rule has generally been defined as set of rules of whether an N-terminal residue is stabilizing or not. However, recent studies are revealing that the N-terminal code of amino acids conferring protein instability is more complex than previously appreciated, as recent investigations are revealing that the identity of adjoining downstream residues can also influence the metabolic stability of N-end rule substrate. This is exemplified by the recent discovery of a new branch of N-end rule pathways that target proteins bearing N-terminal proline. In addition, recent investigations are demonstrating that the molecular machinery in N-termini dependent protein degradation may also target proteins for lysosomal degradation, in addition to proteasome-dependent degradation. Herein, we describe some of the recent advances in N-end rule pathways and discuss some of the implications regarding the emerging additional sequence requirements.

  7. The role of microbial amino acid metabolism in host metabolism.

    PubMed

    Neis, Evelien P J G; Dejong, Cornelis H C; Rensen, Sander S

    2015-04-16

    Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus.

  8. Effects of squat exercise and branched-chain amino acid supplementation on plasma free amino acid concentrations in young women.

    PubMed

    Shimomura, Yoshiharu; Kobayashi, Hisamine; Mawatari, Kazunori; Akita, Keiichi; Inaguma, Asami; Watanabe, Satoko; Bajotto, Gustavo; Sato, Juichi

    2009-06-01

    The present study was conducted to examine alterations in plasma free amino acid concentrations induced by squat exercise and branched-chain amino acid (BCAA) supplementation in young, untrained female subjects. In the morning on the exercise session day, participants ingested drinks containing either BCAA (isoleucine:leucine:valine=1:2.3:1.2) or dextrin (placebo) at 0.1 g/kg body weight 15 min before a squat exercise session, which consisted of 7 sets of 20 squats, with 3 min intervals between sets. In the placebo trial, plasma BCAA concentrations were decreased subsequent to exercise, whereas they were significantly increased in the BCAA trial until 2 h after exercise. Marked changes in other free amino acids in response to squat exercise and BCAA supplementation were observed. In particular, plasma concentrations of methionine and aromatic amino acids were temporarily decreased in the BCAA trial, being significantly lower than those in the placebo trial. These results suggest that BCAA intake before exercise affects methionine and aromatic amino acid metabolism.

  9. Influenza A Virus Virulence Depends on Two Amino Acids in the N-Terminal Domain of Its NS1 Protein To Facilitate Inhibition of the RNA-Dependent Protein Kinase PKR

    PubMed Central

    Schierhorn, Kristina L.; Jolmes, Fabian; Bespalowa, Julia; Saenger, Sandra; Peteranderl, Christin; Dzieciolowski, Julia; Mielke, Maja; Budt, Matthias; Pleschka, Stephan; Herrmann, Andreas; Herold, Susanne

    2017-01-01

    silencing of PKR. In addition, our data show that this is a main activity of amino acids 35 and 46, as the strong attenuation of corresponding mutant viruses in human cells was rescued to a large extent by lowering of PKR expression levels. Significantly, this corresponded with restoration of viral virulence for NS1 R35A and R46A mutant viruses in PKR−/− mice. Therefore, our data establish a model in which the NS1 N-terminal domain engages in a binding interaction to inhibit activation of PKR and ensure efficient viral propagation and virulence. PMID:28250123

  10. Altered peripheral amino acid profile indicate a systemic impact of active celiac disease and a possible role of amino acids in disease pathogenesis.

    PubMed

    Torinsson Naluai, Åsa; Saadat Vafa, Ladan; Gudjonsdottir, Audur H; Arnell, Henrik; Browaldh, Lars; Nilsson, Staffan; Agardh, Daniel

    2018-01-01

    We have previously performed a Genome Wide Association and linkage study that indicated a new disease triggering mechanism involving amino acid metabolism and nutrient sensing signaling pathways. The aim of this study was to investigate if plasma amino acid levels differed among children with celiac disease compared with disease controls. Fasting plasma samples from 141 children with celiac disease and 129 non-celiac disease controls, were analyzed for amino acid levels by liquid chromatography-tandem mass spectrometry (LC/MS). A general linear model using age and experimental effects as covariates was used to compare amino acid levels between children with a diagnosis of celiac disease and controls. Seven out of twenty-three analyzed amino acids were elevated in children with celiac disease compared with controls (tryptophan, taurine, glutamic acid, proline, ornithine, alanine and methionine). The significance of the individual amino acids do not survive multiple correction, however, multivariate analyses of the amino acid profile showed significantly altered amino acid levels in children with celiac disease overall and after correction for age, sex and experimental effects (p = 8.4 × 10-8). These findings support the idea that amino acids could influence systemic inflammation and play a possible role in disease pathogenesis.

  11. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of total protein (expressed as free amino acid) L-Alanine 6.1 L-Arginine 6.6 L-Aspartic acid... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6 L... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Amino acids. 172.320 Section 172.320 Food and...

  12. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of total protein (expressed as free amino acid) L-Alanine 6.1 L-Arginine 6.6 L-Aspartic acid... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6 L... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Amino acids. 172.320 Section 172.320 Food and...

  13. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of total protein (expressed as free amino acid) L-Alanine 6.1 L-Arginine 6.6 L-Aspartic acid... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6 L... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Amino acids. 172.320 Section 172.320 Food and...

  14. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of total protein (expressed as free amino acid) L-Alanine 6.1 L-Arginine 6.6 L-Aspartic acid... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6 L... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Amino acids. 172.320 Section 172.320 Food and Drugs...

  15. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids.

    PubMed

    Kawakami, Ryushi; Ohmori, Taketo; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2015-08-01

    To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.

  16. Quantification of transformation rates of soil amino sugars and amino acids by a novel isotope pool dilution approach via liquid chromatography/high resolution mass spectrometry (LC/HRMS)

    NASA Astrophysics Data System (ADS)

    Hu, Yuntao; Zheng, Qing; Noll, Lisa; Zhang, Shasha; Wanek, Wolfgang

    2017-04-01

    Organic nitrogen transformation processes are the key driver of soil nitrogen availability, strongly affecting the nitrogen turnover and carbon cycling of terrestrial ecosystems. Low molecular weight organic nitrogen compounds (e.g. amino acids and amino sugars) that can be directly utilized by plants or microorganisms are released by the extracellular cleavage of high molecular weight organic nitrogen compounds (e.g. proteins, peptidoglycan, and chitin) by hydrolytic enzymes. This decomposition process is believed to be the rate-limiting step in the soil N cycle. Direct measurements of the in situ transformation rates of these small N compounds is highly challenging but can be realized by applying the isotope pool dilution (IPD) technique, in which the target compound pool is labeled with isotopic tracers and subsequently the dilution of the tracers is measured. We have recently pioneered the development of IPD assays to investigate the in situ flux of proteinaceous amino acids and glucose due to decomposition of organic matter and microbial utilization, but the roles of fluxes of amino sugars and amino acid enantiomers in soil nitrogen transformation processes are still unknown due to the lack of feasible extraction, purification, separation and detection methods. Here we developed a 15N IPD assay by utilizing a novel LC/HRMS (Orbitrap) platform, with the aim to measure transformation rates of amino sugars and amino acid enantiomers. After the tracer experiments soil extracts were purified by solid phase extraction prior to the analysis by MS. The utilization of Orbitrap-HRMS allowed us to resolve the mass signals of unlabeled analytes, and their 15N labeled (tracers) and 13C labeled (internal standards) analogues. The commercially unavailable 15N and 13C labeled amino sugars and amino acid enantiomers were produced from bacterial cell walls after batch culture in labeled growth media. This workflow was validated with soils from two sampling sites, allowing us to

  17. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine.

    PubMed

    Weiss, Ingrid M; Muth, Christina; Drumm, Robert; Kirchner, Helmut O K

    2018-01-01

    The pathways of thermal instability of amino acids have been unknown. New mass spectrometric data allow unequivocal quantitative identification of the decomposition products. Calorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 °C and 280 °C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70% volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H 2 O, some NH 3 and no CO 2 . Cysteine produces CO 2 and little else. The reactions are described by polynomials, AA→ a NH 3 + b H 2 O+ c CO 2 + d H 2 S+ e residue, with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds. Eight of the 20 standard amino acids decompose at well-defined, characteristic temperatures, in contrast to commonly accepted knowledge. Products of decomposition are simple. The novel quantitative results emphasize the impact of water and cyclic condensates with peptide bonds and put constraints on hypotheses of the origin, state and stability of amino acids in the range between 200 °C and 300 °C.

  18. Advances in protein-amino acid nutrition of poultry.

    PubMed

    Baker, David H

    2009-05-01

    The ideal protein concept has allowed progress in defining requirements as well as the limiting order of amino acids in corn, soybean meal, and a corn-soybean meal mixture for growth of young chicks. Recent evidence suggests that glycine (or serine) is a key limiting amino acid in reduced protein [23% crude protein (CP) reduced to 16% CP] corn-soybean meal diets for broiler chicks. Research with sulfur amino acids has revealed that small excesses of cysteine are growth depressing in chicks fed methionine-deficient diets. Moreover, high ratios of cysteine:methionine impair utilization of the hydroxy analog of methionine, but not of methionine itself. A high level of dietary L: -cysteine (2.5% or higher) is lethal for young chicks, but a similar level of DL: -methionine, L: -cystine or N-acetyl-L: -cysteine causes no mortality. A supplemental dietary level of 3.0% L: -cysteine (7x requirement) causes acute metabolic acidosis that is characterized by a striking increase in plasma sulfate and decrease in plasma bicarbonate. S-Methylmethionine, an analog of S-adenosylmethionine, has been shown to have choline-sparing activity, but it only spares methionine when diets are deficient in choline and(or) betaine. Creatine, or its precursor guanidinoacetic acid, can spare dietary arginine in chicks.

  19. Enantioselective separation of amino acids as biomarkers indicating life in extraterrestrial environments.

    PubMed

    Pietrogrande, Maria Chiara

    2013-10-01

    Traces of prebiotic amino acids, i.e., the building blocks of proteins, are excellent biomarkers that could provide evidence of extinct or extant life in extra-terrestrial environments. In particular, characterization of the enantiomeric excess of amino acids gives relevant information about the biotic or abiotic origin of molecules, because it is generally assumed that life elsewhere could be based on either L or D amino acids, but not both. The analytical procedures used in in-situ space missions for chiral discrimination of amino acids must meet severe requirements imposed by flight conditions: short analysis time, low energy consumption, robustness, storage for long periods under extreme conditions, high efficiency and sensitivity, automation, and remote-control operation. Such methods are based on gas chromatography, high-pressure liquid chromatography, and capillary electrophoresis, usually coupled with mass spectrometry; of these, gas chromatography-mass spectrometry (GC-MS) is the only such combination yet used in space missions. Preliminary in-situ sample derivatization is required before GC-MS analysis to convert amino acids into volatile and thermally stable compounds. The silylation reagent most commonly used, N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide, is unsuitable for detection of homochirality, and alternative derivatization techniques have been developed that preserve the stereochemical configuration of the original compounds and are compatible with spaceflight conditions. These include the reagent N,N-dimethylformamide dimethylacetal, which has already been used in the Rosetta mission, a mixture of alkyl chloroformate, ethanol, and pyridine, a mixture of perfluorinated anhydrides and perfluoro alcohols, and hexafluoroacetone, the first gaseous derivatizing agent. In all the space instruments, solvent extraction of organic matter and chemical derivatization have been combined in a single automatic and remote-controlled procedure in a

  20. Active role of fatty acid amino acid conjugates in nitrogen metabolidm by Spodoptera litura larvae

    USDA-ARS?s Scientific Manuscript database

    Since the first fatty acid amino acid conjugate (FAC) was isolated from regurgitant of Spodoptera exigua larvae in 1997 [volicitin: N-(17-hydroxylinolenoyl)- L-glutamine], their role as elicitors of induced responses in plants has been well documented. However, studies of the biosyntheses as well as...

  1. 6th Amino Acid Assessment Workshop

    USDA-ARS?s Scientific Manuscript database

    The focus of the 6th workshop is on lysine, arginine, and related amino acids. Functions, metabolic pathways, clinical uses, and upper tolerance intakes are emphasized in the articles that follow. Lysine is arguably the most deficient amino acid in the food supply of countries where poverty exists, ...

  2. Combinatorics of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  3. Survival of Amino Acids in Micrometeorites During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Bada, Jeffrey L.

    2003-01-01

    The delivery of amino acids by micrometeorites to the early Earth during the period of heavy bombardment could have been a significant source of the Earth's prebiotic amino acid inventory provided that these organic compounds survived atmospheric entry heating. To investigate the sublimation of amino acids from a micrometeorite analog at elevated temperature, grains from the CM-type carbonaceous chondrite Murchison were heated to 550 C inside a glass sublimation apparatus (SA) under reduced pressure. The sublimed residue that had collected on the cold finger of the SA after heating was analyzed for amino acids by HPLC. We found that when the temperature of the meteorite reached approx. 150 C, a large fraction of the amino acid glycine had vaporized from the meteorite, recondensed onto the end of the SA cold finger, and survived as the rest of the grains heated to 550 C. alpha-Aminoisobutryic acid and isovaline, which are two of the most abundant non-protein amino acids in Murchison, did not sublime from the meteorite and were completely destroyed during the heating experiment. Our experimental results suggest that sublimation of glycine present in micrometeorite grains may provide a way for this amino acid to survive atmospheric entry heating at temperatures less than 550 C; all other amino acids apparently are destroyed. Key Words: Amino acids-Exogenous delivery-Micrometeorites-Sublimation.

  4. Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6)

    PubMed Central

    Boudko, Dmitri Y.

    2012-01-01

    Two protein families that represent major components of essential amino acid transport in insects have been identified. They are annotated as the SLC6 and SLC7 families of transporters according to phylogenetic proximity to characterized amino acid transporters (HUGO nomenclature). Members of these families have been identified as important apical and basolateral parts of transepithelial essential amino acid absorption in the metazoan alimentary canal. Synergistically, they play critical physiological roles as essential substrate providers to diverse metabolic processes, including generic protein synthesis. This review briefly clarifies the requirements for amino acid transport and a variety of amino acid transport mechanisms, including the aforementioned families. Further it focuses on the large group of Nutrient Amino acid Transporters (NATs), which comprise a recently identified subfamily of the Neurotransmitter Sodium Symporter family (NSS or SLC6). The first insect NAT, cloned from the caterpillar gut, has a broad substrate spectrum similar to mammalian B0 transporters. Several new NAT-SLC6 members have been characterized in an effort to explore mechanisms for the essential amino acid absorption in model dipteran insects. The identification and functional characterization of new B0-like and narrow specificity transporters of essential amino acids in fruit fly and mosquitoes leads to a fundamentally important insight: that NATs evolved and act together as the integrated active core of a transport network that mediates active alimentary absorption and systemic distribution of essential amino acids. This role of NATs is projected from the most primitive prokaryotes to the most complex metazoan organisms, and represents an interesting platform for unraveling the molecular evolution of amino acid transport and modeling amino acid transport disorders. The comparative study of NATs elucidates important adaptive differences between essential amino acid transportomes

  5. Arrangement of Proteinogenic α-Amino Acids on a Cyclic Peptide Comprising Alternate Biphenyl-Cored ζ-Amino Acids.

    PubMed

    Tashiro, Shohei; Chiba, Masayuki; Shionoya, Mitsuhiko

    2017-05-18

    Aiming at precisely arranging several proteinogenic α-amino acids on a folded scaffold, we have developed a cyclic hexapeptide comprising an alternate sequence of biphenyl-cored ζ-amino acids and proteinogenic α-amino acids such as l-leucine. The amino acids were connected by typical peptide synthesis, and the resultant linear hexapeptide was intramolecularly cyclized to form a target cyclic peptide. Theoretical analyses and NMR spectroscopy suggested that the cyclic peptide was folded into an unsymmetrical conformation, and the structure was likely to be flexible in CHCl 3 . The optical properties including UV/Vis absorption, fluorescence, and circular dichroism (CD) were also evaluated. Furthermore, the cyclic peptide became soluble in water by introducing three carboxylate groups at the periphery of the cyclic skeleton. This α/ζ-alternating cyclic peptide is therefore expected to serve as a unique scaffold for arranging several functionalities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solid-state NMR detection of 14N-13C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.

    PubMed

    Middleton, David A

    2011-02-01

    Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the secondary structure, alignment and registration of β-strands within amyloid fibrils and identify the tertiary and quaternary contacts defining the packing of the β-sheet layers. Detection of (14)N-(13)C dipolar couplings may provide potentially useful additional structural constraints on β-sheet packing within amyloid fibrils but has not until now been exploited for this purpose. Here a frequency-selective, transfer of population in double resonance SSNMR experiment is used to detect a weak (14)N-(13)C dipolar coupling in amyloid-like fibrils of the peptide H(2)N-SNNFGAILSS-COOH, which was uniformly (13)C and (15)N labelled across the four C-terminal amino acids. The (14)N-(13)C interatomic distance between leucine and asparagine side groups is constrained between 2.4 and 3.8 Å, which allows current structural models of the β-spine arrangement within the fibrils to be refined. This procedure could be useful for the general structural analysis of other proteins in condensed phases and environments, such as biological membranes. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Amino Acid Permeases and Virulence in Cryptococcus neoformans

    PubMed Central

    Takahashi, Juliana Possato Fernandes; Guerra, Juliana Mariotti; Santos, Dayane Cristina da Silva; Purisco, Sônia Ueda; Melhem, Márcia de Souza Carvalho; Fazioli, Raquel dos Anjos; Phanord, Clerlune; Sartorelli, Patrícia; Vallim, Marcelo A.

    2016-01-01

    Fungal opportunistic pathogens colonize various environments, from plants and wood to human and animal tissue. Regarding human pathogens, one great challenge during contrasting niche occupation is the adaptation to different conditions, such as temperature, osmolarity, salinity, pressure, oxidative stress and nutritional availability, which may constitute sources of stress that need to be tolerated and overcome. As an opportunistic pathogen, C. neoformans faces exactly these situations during the transition from the environment to the human host, encountering nutritional constraints. Our previous and current research on amino acid biosynthetic pathways indicates that amino acid permeases are regulated by the presence of the amino acids, nitrogen and temperature. Saccharomyces cerevisiae and Candida albicans have twenty-four and twenty-seven genes encoding amino acid permeases, respectively; conversely, they are scarce in number in Basidiomycetes (C. neoformans, Coprinopsis cinerea and Ustilago maydis), where nine to ten permease genes can be found depending on the species. In this study, we have demonstrated that two amino acid permeases are essential for virulence in C. neoformans. Our data showed that C. neoformans uses two global and redundant amino acid permeases, Aap4 and Aap5 to respond correctly to thermal and oxidative stress. Double deletion of these permeases causes growth arrest in C. neoformans at 37°C and in the presence of hydrogen peroxide. The inability to uptake amino acid at a higher temperature and under oxidative stress also led to virulence attenuation in vivo. Our data showed that thermosensitivity caused by the lack of permeases Aap4 and Aap5 can be remedied by alkaline conditions (higher pH) and salinity. Permeases Aap4 and Aap5 are also required during fluconazole stress and they are the target of the plant secondary metabolite eugenol, a potent antifungal inhibitor that targets amino acid permeases. In summary, our work unravels (i

  8. Oxidative Folding and N-terminal Cyclization of Onconase+

    PubMed Central

    Welker, Ervin; Hathaway, Laura; Xu, Guoqiang; Narayan, Mahesh; Pradeep, Lovy; Shin, Hang-Cheol; Scheraga, Harold A.

    2008-01-01

    Cyclization of the N-terminal glutamine residue to pyroglutamic acid in onconase, an anti-cancer chemotherapeutic agent, increases the activity and stability of the protein. Here, we examine the correlated effects of the folding/unfolding process and the formation of this N-terminal pyroglutamic acid. The results in this study indicate that cyclization of the N-terminal glutamine has no significant effect on the rate of either reductive unfolding or oxidative folding of the protein. Both the cyclized and uncyclized proteins seem to follow the same oxidative folding pathways; however, cyclization altered the relative flux of the protein in these two pathways by increasing the rate of formation of a kinetically trapped intermediate. Glutaminyl cyclase (QC) catalyzed the cyclization of the unfolded, reduced protein, but had no effect on the disulfide-intact, uncyclized, folded protein. The structured intermediates of uncyclized onconase were also resistant to QC-catalysis, consistent with their having a native-like fold. These observations suggest that, in vivo, cyclization takes place during the initial stages of oxidative folding, specifically, before the formation of structured intermediates. The competition between oxidative folding and QC-mediated cyclization suggests that QC-catalyzed cyclization of the N-terminal glutamine in onconase occurs in the endoplasmic reticulum, probably co-translationally. PMID:17439243

  9. Selection of Amino Acid Chirality via Neutrino Interactions with 14N in Crossed Electric and Magnetic Fields

    PubMed Central

    Boyd, Richard N.; Kajino, Toshitaka; Onaka, Takashi

    2018-01-01

    Abstract Previous work has suggested that the chirality of the amino acids could be established in the magnetic field of a nascent neutron star from a core-collapse supernova or massive collapsar. The magnetic field would orient the 14N nuclei, and the alignment of its nuclear spin with respect to those of the electron antineutrinos emitted from the collapsing star would determine the probability of destruction of the 14N nuclei by interactions with the antineutrinos. Subsequent work estimated the bulk polarization of the 14N nuclei in large rotating meteoroids in such an environment. The present work adds a crucial piece of this model by describing the details by which the selective 14N nuclear destruction would produce molecular chiral selectivity. The effects of the neutrino-induced interactions on the 14N nuclei bound in amino acids polarized in strong magnetic fields are studied. It is shown that electric fields in the reference frame of the nuclei modify the magnetic field at the nucleus, creating nuclear magnetizations that are asymmetric in chirality. The antineutrino cross sections depend on this magnetization, creating a selective destructive effect. The environmental conditions and sites in which such a selection mechanism could occur are discussed. Selective destruction of D-enantiomers results in enantiomeric excesses which may be sufficient to drive subsequent autocatalysis necessary to produce the few-percent enantiomeric excesses found in meteorites and subsequent homochirality. Molecular quantum chemical calculations were performed for alanine, and the chirality-dependent effects studied were included. A preference for left-handed molecules was found, and enantiomeric excesses as high as 0.02% were estimated for molecules in the electromagnetic conditions expected from a core-collapse supernova. Key Words: Amino acids—Supernovae—Antineutrinos—Enantiomeric excess—Chirality. Astrobiology 18, 190–206. PMID:29160728

  10. New Functions and Potential Applications of Amino Acids.

    PubMed

    Uneyama, Hisayuki; Kobayashi, Hisamine; Tonouchi, Naoto

    Currently, several types of amino acids are being produced and used worldwide. Nevertheless, several new functions of amino acids have been recently discovered that could result in other applications. For example, oral stimulation by glutamate triggers the cephalic phase response to prepare for food digestion. Further, the stomach and intestines have specific glutamate-recognizing systems in their epithelial mucosa. Regarding clinical applications, addition of monosodium glutamate to the medicinal diet has been shown to markedly enhance gastric secretion in a vagus-dependent manner. Branched-chain amino acids (BCAAs) are the major components of muscles, and ingestion of BCAAs has been found to be effective for decreasing muscle pain. BCAAs are expected to be a solution for the serious issue of aging. Further, ingestion of specific amino acids could be beneficial. Glycine can be ingested for good night's sleep: glycine ingestion before bedtime significantly improved subjective sleep quality. Ingestion of alanine and glutamine effectively accelerates alcohol metabolism, and ingestion of cystine and theanine effectively prevents colds. Finally, amino acids could be used in a novel clinical diagnostic method: the balance of amino acids in the blood could be an indicator of the risk of diseases such as cancer. These newly discovered functions of amino acids are expected to contribute to the resolution of various issues.

  11. On the abiotic formation of amino acids. I - HCN as a precursor of amino acids detected in extracts of lunar samples. II - Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.

  12. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No. 693...

  13. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No. 693...

  14. Wet, Carbonaceous Asteroids: Altering Minerals, Changing Amino Acids

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2011-04-01

    Many carbonaceous chondrites contain alteration products from water-rock interactions at low temperature and organic compounds. A fascinating fact known for decades is the presence in some of them of an assortment of organic compounds, including amino acids, sometimes called the building blocks of life. Murchison and other CM carbonaceous chondrites contain hundreds of amino acids. Early measurements indicated that the amino acids in carbonaceous chondrites had equal proportions of L- and D-structures, a situation called racemic. This was in sharp contrast to life on Earth, which heavily favors L- forms. However, beginning in 1997, John Cronin and Sandra Pizzarello (Arizona State University) found L- excesses in isovaline and several other amino acids in the Murchison carbonaceous chondrite. In 2009, Daniel Glavin and Jason Dworkin (Astrobiology Analytical Lab, Goddard Space Flight Center) reported the first independent confirmation of L-isovaline excesses in Murchison using a different analytical technique than employed by Cronin and Pizzarello. Inspired by this work, Daniel Glavin, Michael Callahan, Jason Dworkin, and Jamie Elsila (Astrobiology Analytical Lab, Goddard Space Flight Center), have done an extensive study of the abundance and symmetry of amino acids in carbonaceous chondrites that experienced a range of alteration by water in their parent asteroids. The results show that amino acids are more abundant in the less altered meteorites, implying that aqueous processing changes the mix of amino acids. They also confirmed the enrichment in L-structures of some amino acids, especially isovaline, confirming earlier work. The authors suggest that aqueously-altered planetesimals might have seeded the early Earth with nonracemic amino acids, perhaps explaining why life from microorganisms to people use only L- forms to make proteins. The initial imbalance caused by non-biologic processes in wet asteroids might have been amplified by life on Earth. Alternatively

  15. Amino acids in modern and fossil woods

    NASA Technical Reports Server (NTRS)

    Lee, C.; Bada, J. L.; Peterson, E.

    1976-01-01

    The amino acid composition and the extent of racemization in several modern and fossil woods are reported. The method of analysis is described, and data are presented on the total amino acid concentration, the amino acid ratios, and the enantiomeric ratios in each sample. It is found that the amino acid concentration per gram of dry wood decreases with age of the sample, that the extent of racemization increases with increasing age, and that the amounts of aspartic acid, threonine, and serine decrease relative to valine with increasing age. The relative racemization rates of amino acids in wood, bone, and aqueous solution are compared, and it is shown that racemization in wood is much slower than in bone or aqueous solution. Racemization results for woods from the Kalambo Falls area of Zambia are used to calculate a minimum age of 110,000 years for the transition between the Sangoan and Acheulian industries at that site. This result is shown to be consistent with numerous radiometric dates for older Acheulian sites in Africa and to compare well with geologically inferred dates for the beginning of the Eemian and the end of the Acheulian industry in southern Africa.

  16. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    PubMed

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.

  17. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ɛ-aminocaproic acid) and α-amino- n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies ( ΔG o) of the non-α-amino acids as a function of temperature and pH. Comparison of their ΔG o values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ΔG o values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  18. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH.

    PubMed

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ε-aminocaproic acid) and α-amino-n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies (∆G (o)) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G (o) values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G (o) values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  19. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    PubMed Central

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James

    2015-01-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223

  20. Extraterrestrial Amino Acids in Ureilites Including Almahata Sitta

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.

    2011-01-01

    Ureilites are a class of meteorites that lack chondrules (achondrites) but have relatively high carbon abundances, averaging approx.3 wt %. Using highly sensitive liquid chromatography coupled with UV fluorescence and time-of-flight mass spectrometry (LC-FD/ToF-MS), it was recently determined that there are amino acids in. fragment 94 of the Almahata Sitta ureilite[l]. Based on the presence of amino acids that are rare in the Earth's biosphere, as well as the near-racemic enantiomeric ratios of marry of the more common amino acids, it was concluded that most of the detected amino acids were indigenous to the meteorite. Although the composition of the Almahata Sitta ureilite appears to be unlike other recovered ureilites, the discovery of amino acids in this meteorite raises the question of whether other ureilites rnav also contain amino acids. Herein we present the results of LC-FDlTo.F-MS analyses of: a sand sample from the Almahata Sitta strewn held, Almahata Sitta fragments 425 (an ordinary H5 chondrite) and 427 (ureilite), as well as an Antarctic ureilite (Allan lulls, ALHA 77257).

  1. R(-)-4-(3-Isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole, a fluorescent chiral tagging reagent: sensitive resolution of chiral amines and amino acids by reversed-phase liquid chromatography.

    PubMed

    Toyo'oka, T; Jin, D; Tomoi, N; Oe, T; Hiranuma, H

    2001-02-01

    The usefulness of R(-)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole [R(-)-DBD-PyNCS], a fluorescent chiral tagging reagent, for the determination of racemic amines and amino acids, was studied. The reagent reacted with beta-blockers selected as representative secondary amines to produce corresponding fluorescent diastereomers (excitation at 460 nm and emission at 550 nm). The yields of the derivatization reaction were dependent on the stereostructure arround the NH group in beta-blockers. The resulting diastereomers were completely separated with single chromatographic run using linear gradient elutions by reversed-phase chromatography. R(-)-DBD-PyNCS was also applied to the determination of DL-amino acid, considered to be one of the primary amines, in human urine and foodstuffs. DL-amino acids tested equally reacted with the reagent, and the thiocarbamoyl derivatives were separated with an ODS column. The epimerization during the derivatization reaction was negligible judging from the resolution of opposite diastereomers on the chromatogram. The occurence of D-amino acids (D-Ala, D-Ser, D-Asp and/or D-Glu) was identified in the samples tested. The structures and the purities were elucidated with on-line HPLC-MS. The chiral reagent possessing an isothiocyanate group (-NCS) in the structure seems to be applicable to continuous sequential analysis of peptides containing D-amino acids. The thiocarbamoyl derivatives obtained from the reaction with DL-amino acids were converted to thiohydantoins via thiazolinones in acidic medium. The thiohydantoins produced from acidic, basic, neutral, hydroxyl and aromatic amino acids were completely separated with isocratic elutions using acidic mobile phase containing 0.1% TFA. The separations were sufficient for the identification of DL-amino acid in peptide sequences. Although the epimerization during the conversion reaction to thiohydantoins was not avoidable, the descrimination of D- and

  2. Analysis of the free amino acid content in pollen of nine Asteraceae species of known allergenic activity.

    PubMed

    Mondal, A K; Parui, S; Mandal, S

    1998-01-01

    The study reports the free amino acid composition of the pollen of nine members of the family Asteraceae, i.e. Ageratum conyzoides L., Blumea oxyodonta DC., Eupatorium odoratum L., Gnaphalium indicum L., Mikania scandens Willd., Parthenium hysterophorus L., Spilanthes acmella Murr., Vernonia cinerea (L.) Lees. and Xanthium strumarium L. by thin layer chromatography. The amino acid content was found to vary from 0.5-4.0% of the total dry weight. Fourteen amino acids were identified, among which amino-n-butyric acid, aspartic acid and proline were present in almost all pollen samples. The other major amino acids present in free form included arginine, cystine, glutamic acid, glycine, isoleucine, leucine, methionine, ornithine, tryptophan and tyrosine.

  3. Occurrence of C-Terminal Residue Exclusion in Peptide Fragmentation by ESI and MALDI Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine

    2012-02-01

    the high mass range of the MS/MS spectra. The mass difference between this signal and the protonated molecular ion corresponds to the mass of the C-terminal residue. It allowed a straightforward identification of the amino acid positioned at this extremity. It must be emphasized that a neutral residue loss can be misattributed to the formation of a ym-1 ion, i.e., to the loss of the N-terminal residue following the a1-ym-1 fragmentation channel. Extreme caution must be adopted when reading the direct sequence ion on the positive ion MS/MS spectra of singly charged peptides not to mix up the attribution of the N- and C-terminal amino acids. Although such peculiar fragmentation behavior is of obvious interest for de novo peptide sequencing, it can also be exploited in proteomics, especially for studies involving digestion protocols carried out with proteolytic enzymes other than trypsin (Lys-N, Glu-C, and Asp-N) that produce arginine-containing peptides.

  4. The effect of amino acid infusion on anesthesia-induced hypothermia in muscle atrophy model rats.

    PubMed

    Kanazawa, Masahiro; Ando, Satoko; Tsuda, Michio; Suzuki, Toshiyasu

    2010-01-01

    An infusion of amino acids stimulates heat production in skeletal muscle and then attenuates the anesthesia-induced hypothermia. However, in a clinical setting, some patients have atrophic skeletal muscle caused by various factors. The present study was therefore conducted to investigate the effect of amino acids on the anesthesia-induced hypothermia in the state of muscle atrophy. As the muscle atrophy model, Sprague-Dawley rats were subjected to hindlimb immobilization for 2 wk. Normal rats and atrophy model rats were randomly assigned to one of the two treatment groups: saline or amino acids (n=8 for each group). Test solutions were administered intravenously to the rats under sevoflurane anesthesia for 180 min, and the rectal temperature was measured. Plasma samples were collected for measurement of insulin, blood glucose, and free amino acids. The rectal temperature was significantly higher in the normal-amino acid group than in the muscle atrophy-amino acid group from 75 to 180 min. The plasma insulin level was significantly higher in the rats given amino acids than in the rats given saline in both normal and model groups. In the rats given amino acids, plasma total free amino acid concentration was higher in the model group than in the normal group. These results indicate that skeletal muscle plays an important role in changes in body temperature during anesthesia and the effect of amino acids on anesthesia-induced hypothermia decreases in the muscle atrophy state. In addition, intravenous amino acids administration during anesthesia induces an increase in the plasma insulin level.

  5. Complexes of polyadenylic acid and the methyl esters of amino acids

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.

    1983-01-01

    A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.

  6. Amino Acids of Epstein-Barr Virus Nuclear Antigen 3A Essential for Repression of Jκ-Mediated Transcription and Their Evolutionary Conservation

    PubMed Central

    Dalbiès-Tran, Rozenn; Stigger-Rosser, Evelyn; Dotson, Travis; Sample, Clare E.

    2001-01-01

    Epstein-Barr virus (EBV) nuclear antigen 3A (EBNA-3A) is essential for virus-mediated immortalization of B lymphocytes in vitro and is believed to regulate transcription of cellular and/or viral genes. One known mechanism of regulation is through its interaction with the cellular transcription factor Jκ. This interaction downregulates transcription mediated by EBNA-2 and Jκ. To identify the amino acids that play a role in this interaction, we have generated mutant EBNA-3A proteins. A mutant EBNA-3A protein in which alanine residues were substituted for amino acids 199, 200, and 202 no longer downregulated transcription. Surprisingly, this mutant protein remained able to coimmunoprecipitate with Jκ. Using a reporter gene assay based on the recruitment of Jκ by various regions spanning EBNA-3A, we have shown that this mutation abolished binding of Jκ to the N-proximal region (amino acids 125 to 222) and that no other region of EBNA-3A alone was sufficient to mediate an association with Jκ. To determine the biological significance of the interaction of EBNA-3A with Jκ, we have studied its conservation in the simian lymphocryptovirus herpesvirus papio (HVP) by cloning HVP-3A, the homolog of EBNA-3A encoded by this virus. This 903-amino-acid protein exhibited 37% identity with its EBV counterpart, mainly within the amino-terminal half. HVP-3A also interacted with Jκ through a region located between amino acids 127 and 223 and also repressed transcription mediated through EBNA-2 and Jκ. The evolutionary conservation of this function, in proteins that have otherwise significantly diverged, argues strongly for an important biological role in virus-mediated immortalization of B lymphocytes. PMID:11119577

  7. Solution-phase synthesis of a hindered N-methylated tetrapeptide using Bts-protected amino acid chlorides: efficient coupling and methylation steps allow purification by extraction.

    PubMed

    Vedejs, E; Kongkittingam, C

    2000-04-21

    N-Benzothiazole-2-sulfonyl (Bts)-protected amino acid chlorides were used to prepare the hindered cyclosporin 8-11 tetrapeptide subunit 1. The synthesis was performed via 3a and the deprotected amines 5a, 13, and 19, including three repeated cycles involving N-methylation using iodomethane/potassium carbonate, deprotection of the Bts group, and N-acylation with a N-Bts-amino acid chloride such as 9b or 9c. Among three Bts cleavage methods compared (H3PO2/THF; NaBH4/EtOH; PhSH/K2CO3), the third gave somewhat higher overall yields. N-Acylation of 5a with the Bts-protected N-methylamino acid chloride 10b followed by deprotection was also highly efficient and could be used as an alternative route to 11. Each of the deprotected amines was isolated without chromatography using simple extraction methods to remove neutral byproducts. The tetrapeptide 1 was obtained in analytically pure form as the monohydrate.

  8. Overexpression of violaxanthin de-epoxidase: properties of C-terminal deletions on activity and pH-dependent lipid binding.

    PubMed

    Hieber, A David; Bugos, Robert C; Verhoeven, Amy S; Yamamoto, Harry Y

    2002-01-01

    Violaxanthin de-epoxidase (VDE) is localized in the thylakoid lumen and catalyzes the de-epoxidation of violaxanthin to form antheraxanthin and zeaxanthin. VDE is predicted to be a lipocalin protein with a central barrel structure flanked by a cysteine-rich N-terminal domain and a glutamate-rich C-terminal domain. A full-length Arabidopsis thaliana (L.) Heynh. VDE and deletion mutants of the N- and C-terminal regions were expressed in Escherichia coli and tobacco (Nicotiana tabacum L. cv. Xanthi) plants. High expression of VDE in E. coli was achieved after adding the argU gene that encodes the E. coli arginine AGA tRNA. However, the specific activity of VDE expressed in E. coli was low, possibly due to incorrect folding. Removal of just 4 amino acids from the N-terminal region abolished all VDE activity whereas 71 C-terminal amino acids could be removed without affecting activity. The difficulties with expression in E. coli were overcome by expressing the Arabidopsis VDE in tobacco. The transformed tobacco exhibited a 13- to 19-fold increase in VDE specific activity, indicating correct protein folding. These plants also demonstrated an increase in the initial rate of nonphotochemical quenching consistent with an increased initial rate of de-epoxidation. Deletion mutations of the C-terminal region suggest that this region is important for binding of VDE to the thylakoid membrane. Accordingly, in vitro lipid-micelle binding experiments identified a region of 12 amino acids that is potentially part of a membrane-binding domain. The transformed tobacco plants are the first reported example of plants with an increased level of VDE activity.

  9. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors

    NASA Astrophysics Data System (ADS)

    Sun, Aixia; Liu, Xiang; Tang, Ganghua

    2017-12-01

    Tumor cells have an increased nutritional demand for amino acids(AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] amino acids, labeling alpha-C- amino acids, the branched-chain of amino acids and N-substituted carbon-11 labeled amino acids. These tracers target protein synthesis or amino acid(AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non–small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.

  10. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    PubMed

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  11. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    PubMed

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. © 2014 Scandinavian Plant Physiology Society.

  12. Extraterrestrial Amino Acids Identified in Metal-Rich CH and CB Carbonaceous Chondrites from Antarctica

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Elsila, Jamie E.; Hein, Jason E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-01-01

    Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondritesbut are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal-rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment(PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675(CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time-of-flight mass spectrometry and fluorescence, and gas chromatography isotope ratiomass spectrometry. The (delta D, delta C-13, delta N-15) ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (1316 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.22 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of beta-, gamma-, and delta-amino acids compared to the corresponding alpha-amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.

  13. GC-MS analysis of amino acid enantiomers as their N(O,S)-perfluoroacyl perfluoroalkyl esters: application to space exploration

    NASA Astrophysics Data System (ADS)

    Zampolli, M.; Sternberg, R.; Szopa, C.; Pietrogrande, M. C.; Buch, A.; Dondi, F.; Raulin, F.

    The search for optical activity in extraterrestrial sample is an important key for the study of the origin of life With this aim detection of chemical biomarkers i e of organic molecules which play an important role in biochemistry will be one of the main goals of future space missions To reach this goal an investigation of a GC-MS method based on the derivatization of amino acids by using a mixture of perfluorinated alcohols and perfluorinated anhydrides has been performed Amino acids are converted in their N O S -perfluoroacyl perfluoroalkyl esters in a single step procedure using different combinations of the derivatization reagents trifluoroacetic anhydride TFAA - 2 2 2-trifluoro-1-ethanol TFE TFAA-2 2 3 3 4 4 4-heptafluoro-1-butanol HFB heptafluorobutyric anhydride HFBA -HFB The obtained derivatives are analyzed using two different chiral columns a Chirasil-L-Val and a gammat cyclodextrin Rt- gamma -DEXsa stationary phases which show different and complementary enantiomeric selectivity The mass spectra of the derivatized compounds are studied and mass fragmentation patterns are proposed significant fragment ions can be identified to detect amino acid derivatives The obtained results are compared in terms of the enantiomeric separation achieved and mass spectrometric response Linearity studies and the measurement of the limit of detection LOD prove that the proposed method is suitable for a quantitative determination of several amino acids enantiomers 1 The use of a PTV Programmed Temperature Vaporiser

  14. Extraterrestrial Amino Acids in Orgueil and Ivuna: Tracing the Parent Body of CI Type Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Meyer, Michael (Technical Monitor); Ehrenfreund, Pascale; Glavin, Daniel P.; Bota, Oliver; Cooper, George; Bada, Jeffrey

    2001-01-01

    Amino acid analyses using HPLC of pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna have found that beta-alanine, glycine, and gamma-amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from approx. 600 to 2,000 parts per billion (ppb). Other alpha-amino acids such as alanine, alpha-ABA, alpha-aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (less than 200 ppb). Carbon isotopic measurements of beta-alanine and glycine and the presence of racemic (D/L 1) alanine and beta-ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the CIs is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites.

  15. Comparison of amino acid digestibility of feedstuffs determined with the precision-fed cecectomized rooster assay and the standardized ileal amino acid digestibility assay.

    PubMed

    Kim, E J; Utterback, P L; Applegate, T J; Parsons, C M

    2011-11-01

    The objective of this study was to evaluate and compare amino acid digestibility of several feedstuffs using 2 commonly accepted methods: the precision-fed cecectomized rooster assay (PFR) and the standardized ileal amino acid assay (SIAAD). Six corn, 6 corn distillers dried grains with or without solubles (DDGS/DDG), one wet distillers grains, one condensed solubles, 2 meat and bone meal (MBM) and a poultry byproduct meal were evaluated. Due to insufficient amounts, the wet distillers grains and condensed solubles were only evaluated in roosters. Standardized amino acid digestibility varied among the feed ingredients and among samples of the same ingredient for both methods. For corn, there were generally no differences in amino acid digestibility between the 2 methods. When differences did occur, there was no consistent pattern among the individual amino acids and methods. Standardized amino acid digestibility was not different between the 2 methods for 4 of the DDG samples; however, the PFR yielded higher digestibility values for a high protein DDG and a conventionally processed DDGS. The PFR yielded higher amino acid digestibility values than the SIAAD for several amino acids in 1 MBM and the poultry byproduct meal, but it yielded lower digestibility values for the other MBM. Overall, there were no consistent differences between methods for amino acid digestibility values. In conclusion, the PFR and SIAAD methods are acceptable for determining amino acid digestibility. However, these procedures do not always yield similar results for all feedstuffs evaluated. Thus, further studies are needed to understand the underlying causes in this variability.

  16. The role of amino acid profiles in diabetes risk assessment.

    PubMed

    Nagao, Kenji; Yamakado, Minoru

    2016-07-01

    The concentrations of plasma-free amino acids, such as branched-chain amino acids and aromatic amino acids, are associated with visceral obesity, insulin resistance, and the future development of diabetes and cardiovascular diseases. This review discusses recent progress in the early assessment of the risk of developing diabetes and the reversal of altered plasma-free amino acids through interventions. Additionally, recent developments that have increased the utility of amino acid profiling technology are also described. Plasma-free amino acid alterations in the early stage of lifestyle-related diseases are because of obesity and insulin resistance-related inflammation, and these alterations are reversed by appropriate (nutritional, drug, or surgical) interventions that improve insulin sensitivity. For clinical applications, procedures for measuring amino acids are being standardized and automated. Plasma-free amino acid profiles have potential as biomarkers for both assessing diabetes risk and monitoring the effects of strategies designed to lower that risk. In addition, the methodology for measuring amino acids has been refined, with the goal of routine clinical application.

  17. Amino acids and sport: a true love story?

    PubMed

    Goron, Arthur; Moinard, Christophe

    2018-05-31

    Among a plethora of dietary supplements, amino acids are very popular with athletes for several reasons (e.g., to prevent nutritional deficiency, improve muscle function, and decrease muscle damages) whose purpose is to improve performance. However, it is difficult to get a clear idea of which amino acids have real ergogenic impact. Here, we review and analyze the clinical studies evaluating specific amino acids (glutamine, arginine, leucine, etc.) in athletes. Only english-language clinical studies evaluating a specific effect of one amino acid were considered. Despite promising results, many studies have methodological limits or specific flaws that do not allow definitive conclusions. To date, only chronic β-alanine supplementation demonstrated an ergogenic effect in athletes. Much research is still needed to gain evidence-based data before any other specific amino acid can be recommended for use in athletes.

  18. Influence of specific amino acid side-chains on the antimicrobial activity and structure of bovine lactoferrampin.

    PubMed

    Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2012-06-01

    Lactoferrin is an 80 kDa iron binding protein found in the secretory fluids of mammals and it plays a major role in host defence. An antimicrobial peptide, lactoferrampin, was identified through sequence analysis of bovine lactoferrin and its antimicrobial activity against a wide range of bacteria and yeast species is well documented. In the present work, the contribution of specific amino acid residues of lactoferrampin was examined to evaluate the role that they play in membrane binding and bilayer disruption. The structures of all the bovine lactoferrampin derivatives were examined with circular dichroism and nuclear magnetic resonance spectroscopy, and their interactions with phospholipids were evaluated with differential scanning calorimetry and isothermal titration calorimetry techniques. From our results it is apparent that the amphipathic N-terminal helix anchors the peptide to membranes with Trp 268 and Phe 278 playing important roles in determining the strength of the interaction and for inducing peptide folding. In addition, the N-terminal helix capping residues (DLI) increase the affinity for negatively charged vesicles and they mediate the depth of membrane insertion. Finally, the unique flexibility in the cationic C-terminal region of bovine lactoferrampin does not appear to be essential for the antimicrobial activity of the peptide.

  19. Dynamic Variation and Reversion in the Signature Amino Acids of H7N9 Virus During Human Infection.

    PubMed

    Zou, Xiaohui; Guo, Qiang; Zhang, Wei; Chen, Hui; Bai, Wei; Lu, Binghuai; Zhang, Wang; Fan, Yanyan; Liu, Chao; Wang, Yeming; Zhou, Fei; Cao, Bin

    2018-04-24

    Signature amino acids of H7N9 influenza virus play critical roles in human adaption and pathogenesis, but their dynamic variation is unknown during disease development. We sequentially collected respiratory samples from H7N9 patients at different timepoints and applied next-generation sequencing (NGS) to the whole genome of the H7N9 virus to investigate the variation at signature sites. A total of 11 patients were involved and from whom 29 samples were successfully sequenced, including samples from multiple timepoints in 9 patients. NA R292K, PB2 E627K, and D701N were the three most dynamic mutations. The oseltamivir resistance-related NA R292K mutation was present in 9 samples from 5 patients, including one sample obtained before antiviral therapy. In all patients with the NA 292K mutation, the oseltamivir-sensitive 292R genotype persisted and was not eliminated by antiviral treatment. The PB2 E627K substitution was present in 18 samples from 8 patients, among which 12 samples demonstrated a mixture of E/K and the 627K frequency exhibited dynamic variation. Dual D701N and E627K mutations emerged but failed to achieve predominance in any of the samples. Signature amino acids in PB2 and NA demonstrated high polymorphism and dynamic variation within individual patients during H7N9 virus infection.

  20. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi

    2015-12-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.

  1. MS-READ: Quantitative measurement of amino acid incorporation.

    PubMed

    Mohler, Kyle; Aerni, Hans-Rudolf; Gassaway, Brandon; Ling, Jiqiang; Ibba, Michael; Rinehart, Jesse

    2017-11-01

    Ribosomal protein synthesis results in the genetically programmed incorporation of amino acids into a growing polypeptide chain. Faithful amino acid incorporation that accurately reflects the genetic code is critical to the structure and function of proteins as well as overall proteome integrity. Errors in protein synthesis are generally detrimental to cellular processes yet emerging evidence suggest that proteome diversity generated through mistranslation may be beneficial under certain conditions. Cumulative translational error rates have been determined at the organismal level, however codon specific error rates and the spectrum of misincorporation errors from system to system remain largely unexplored. In particular, until recently technical challenges have limited the ability to detect and quantify comparatively rare amino acid misincorporation events, which occur orders of magnitude less frequently than canonical amino acid incorporation events. We now describe a technique for the quantitative analysis of amino acid incorporation that provides the sensitivity necessary to detect mistranslation events during translation of a single codon at frequencies as low as 1 in 10,000 for all 20 proteinogenic amino acids, as well as non-proteinogenic and modified amino acids. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations

    NASA Astrophysics Data System (ADS)

    Pusterla, Ivano; Bode, Jeffrey W.

    2015-08-01

    Amide-forming ligation reactions allow the chemical synthesis of proteins by the union of unprotected peptide segments, and enable the preparation of protein derivatives not accessible by expression or bioengineering approaches. The native chemical ligation (NCL) of thioesters and N-terminal cysteines is unquestionably the most successful approach, but is not ideal for all synthetic targets. Here we describe the synthesis of an Fmoc-protected oxazetidine amino acid for use in the α-ketoacid-hydroxylamine (KAHA) amide ligation. When incorporated at the N-terminus of a peptide segment, this four-membered cyclic hydroxylamine can be used for rapid serine-forming ligations with peptide α-ketoacids. This ligation operates at low concentration (100 μM-5 mM) and mild temperatures (20-25 °C). The utility of the reaction was demonstrated by the synthesis of S100A4, a 12 kDa calcium-binding protein not easily accessible by NCL or other amide-forming reactions due to its primary sequence and properties.

  3. Determination of amino acids in grape-derived products: a review.

    PubMed

    Callejón, R M; Troncoso, A M; Morales, M L

    2010-06-15

    The amino acids present in foods and beverages affect the quality of these products and they play an important role in enology. Amino acids are consumed by yeasts as a source of nitrogen during alcoholic fermentation and are precursors of aroma compounds. In this review various chromatographic methodologies for the determination of amino acids are described, and specific applications for the analysis of amino acid content are discussed. Amino acids usually need to be derivatized to make them more detectable. Several derivatizing reagents have been employed for the determination of amino acids in enological applications, and each has its advantages and disadvantages.

  4. Imbalance of plasma amino acids, metabolites and lipids in patients with lysinuric protein intolerance (LPI).

    PubMed

    Kurko, Johanna; Tringham, Maaria; Tanner, Laura; Näntö-Salonen, Kirsti; Vähä-Mäkilä, Mari; Nygren, Heli; Pöhö, Päivi; Lietzen, Niina; Mattila, Ismo; Olkku, Anu; Hyötyläinen, Tuulia; Orešič, Matej; Simell, Olli; Niinikoski, Harri; Mykkänen, Juha

    2016-09-01

    Lysinuric protein intolerance (LPI [MIM 222700]) is an aminoaciduria with defective transport of cationic amino acids in epithelial cells in the small intestine and proximal kidney tubules due to mutations in the SLC7A7 gene. LPI is characterized by protein malnutrition, failure to thrive and hyperammonemia. Many patients also suffer from combined hyperlipidemia and chronic kidney disease (CKD) with an unknown etiology. Here, we studied the plasma metabolomes of the Finnish LPI patients (n=26) and healthy control individuals (n=19) using a targeted platform for analysis of amino acids as well as two analytical platforms with comprehensive coverage of molecular lipids and polar metabolites. Our results demonstrated that LPI patients have a dichotomy of amino acid profiles, with both decreased essential and increased non-essential amino acids. Altered levels of metabolites participating in pathways such as sugar, energy, amino acid and lipid metabolism were observed. Furthermore, of these metabolites, myo-inositol, threonic acid, 2,5-furandicarboxylic acid, galactaric acid, 4-hydroxyphenylacetic acid, indole-3-acetic acid and beta-aminoisobutyric acid associated significantly (P<0.001) with the CKD status. Lipid analysis showed reduced levels of phosphatidylcholines and elevated levels of triacylglycerols, of which long-chain triacylglycerols associated (P<0.01) with CKD. This study revealed an amino acid imbalance affecting the basic cellular metabolism, disturbances in plasma lipid composition suggesting hepatic steatosis and fibrosis and novel metabolites correlating with CKD in LPI. In addition, the CKD-associated metabolite profile along with increased nitrite plasma levels suggests that LPI may be characterized by increased oxidative stress and apoptosis, altered microbial metabolism in the intestine and uremic toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Free amino acids and 5'-nucleotides in Finnish forest mushrooms.

    PubMed

    Manninen, Hanna; Rotola-Pukkila, Minna; Aisala, Heikki; Hopia, Anu; Laaksonen, Timo

    2018-05-01

    Edible mushrooms are valued because of their umami taste and good nutritional values. Free amino acids, 5'-nucleotides and nucleosides were analyzed from four Nordic forest mushroom species (Lactarius camphoratus, Boletus edulis, Cantharellus cibarius, Craterellus tubaeformis) using high precision liquid chromatography analysis. To our knowledge, these taste components were studied for the first time from Craterellus tubaeformis and Lactarius camphoratus. The focus was on the umami amino acids and 5'-nucleotides. The free amino acid and 5'-nucleotide/nucleoside contents of studied species differed from each other. In all studied samples, umami amino acids were among five major free amino acids. The highest concentration of umami amino acids was on L. camphoratus whereas B. edulis had the highest content of sweet amino acids and C. cibarius had the highest content of bitter amino acids. The content of umami enhancing 5'-nucleotides were low in all studied species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Toxicity of nickel and silver to Nostoc muscorum: interaction with ascorbic acid, glutathione, and sulfur-containing amino acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, L.C.; Raizada, M.

    1987-08-01

    Exposure of Nostoc muscorum to different concentrations of Ni and Ag brought about reduction in growth, carbon fixation, heterocyst production, and nitrogenase activity and increase in the loss of ions (K+, Na+). In an attempt to ameliorate the toxicity of test metals by ascorbic acid, glutathione, and sulfur-containing amino acids (L-cysteine and L-methionine), it was found that the level of protection by ascorbic acid and glutathione was more for Ag than Ni. However, metal-induced inhibition of growth and carbon fixation was equally ameliorated by methionine. But the level of protection by cysteine was quite different, i.e., 27% for Ni andmore » 22% for Ag. Protection of metal toxicity in N. muscorum by amino acids lends further support to self-detoxifying ability of cyanobacteria because they are known to synthesize all essential amino acids.« less

  7. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  8. Homology-based modeling of the Erwinia amylovora type III secretion chaperone DspF used to identify amino acids required for virulence and interaction with the effector DspE.

    PubMed

    Triplett, Lindsay R; Wedemeyer, William J; Sundin, George W

    2010-09-01

    The structure of DspF, a type III secretion system (T3SS) chaperone required for virulence of the fruit tree pathogen Erwinia amylovora, was modeled based on predicted structural homology to characterized T3SS chaperones. This model guided the selection of 11 amino acid residues that were individually mutated to alanine via site-directed mutagenesis. Each mutant was assessed for its effect on virulence complementation, dimerization and interaction with the N-terminal chaperone-binding site of DspE. Four amino acid residues were identified that did not complement the virulence defect of a dspF knockout mutant, and three of these residues were required for interaction with the N-terminus of DspE. This study supports the significance of the predicted beta-sheet helix-binding groove in DspF chaperone function. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  9. A Search for Amino Acids and Nucleobases in the Martian Meteorite Roberts Massif 04262 Using Liquid Chromatography-Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Burton, Aaron S.; Elsila, Jamie E.; Baker, Eleni M.; Smith, Karen E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-01-01

    The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography-mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot-water extracts with high relative abundances of beta-alanine and gamma-amino-eta-butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight-chained amine-terminal eta-omega-amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites. A carbon isotope ratio of -24(0/00) +/- 6(0/00) for beta-alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of eta-omega-amino acids may be due to a high temperature Fischer-Tropschtype synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.

  10. Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems

    NASA Astrophysics Data System (ADS)

    Richter, P. R.; Liu, Y.; An, Y.; Li, X.; Nasir, A.; Strauch, S. M.; Becker, I.; Krüger, J.; Schuster, M.; Ntefidou, M.; Daiker, V.; Haag, F. W. M.; Aiach, A.; Lebert, M.

    2015-01-01

    In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH+4 (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4.

  11. Metabolomic Profiling of Fatty Acid and Amino Acid Metabolism in Youth With Obesity and Type 2 Diabetes

    PubMed Central

    Mihalik, Stephanie J.; Michaliszyn, Sara F.; de las Heras, Javier; Bacha, Fida; Lee, SoJung; Chace, Donald H.; DeJesus, Victor R.; Vockley, Jerry; Arslanian, Silva A.

    2012-01-01

    OBJECTIVE We compared acylcarnitine (AcylCN) species, common amino acid and fat oxidation (FOX) byproducts, and plasma amino acids in normal weight (NW; n = 39), obese (OB; n = 64), and type 2 diabetic (n = 17) adolescents. RESEARCH DESIGN AND METHODS Fasting plasma was analyzed by tandem mass spectrometry, body composition by dual energy X-ray absorptiometry and computed tomography, and total-body lipolysis and substrate oxidation by [2H5]glycerol and indirect calorimetry, respectively. In vivo insulin sensitivity (IS) was assessed with a 3-h hyperinsulinemic-euglycemic clamp. RESULTS Long-chain AcylCNs (C18:2-CN to C14:0-CN) were similar among the three groups. Medium- to short-chain AcylCNs (except C8 and C10) were significantly lower in type 2 diabetes compared with NW, and when compared with OB, C2-, C6-, and C10-CN were lower. Amino acid concentrations were lower in type 2 diabetes compared with NW. Fasting lipolysis and FOX were higher in OB and type 2 diabetes compared with NW, and the negative association of FOX to C10:1 disappeared after controlling for adiposity, Tanner stage, and sex. IS was lower in OB and type 2 diabetes with positive associations between IS and arginine, histidine, and serine after adjusting for adiposity, Tanner stage, and sex. CONCLUSIONS These metabolomics results, together with the increased rates of in vivo FOX, are not supportive of defective fatty acid or amino acid metabolism in obesity and type 2 diabetes in youth. Such observations are consistent with early adaptive metabolic plasticity in youth, which over time—with continued obesity and aging—may become dysfunctional, as observed in adults. PMID:22266733

  12. Engineering posttranslational proofreading to discriminate nonstandard amino acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunjapur, Aditya M.; Stork, Devon A.; Kuru, Erkin

    Accurate incorporation of nonstandard amino acids (nsAAs) is central for genetic code expansion to increase the chemical diversity of proteins. However, aminoacyl-tRNA synthetases are polyspecific and facilitate incorporation of multiple nsAAs. We investigated and repurposed a natural protein degradation pathway, the N-end rule pathway, to devise an innovative system for rapid assessment of the accuracy of nsAA incorporation. Using this tool to monitor incorporation of the nsAA biphenylalanine allowed the identification of tyrosyl-tRNA synthetase (TyrRS) variants with improved amino acid specificity. The evolved TyrRS variants enhanced our ability to contain unwanted proliferation of genetically modified organisms. In conclusion, this posttranslationalmore » proofreading system will aid the evolution of orthogonal translation systems for specific incorporation of diverse nsAAs.« less

  13. Engineering posttranslational proofreading to discriminate nonstandard amino acids

    DOE PAGES

    Kunjapur, Aditya M.; Stork, Devon A.; Kuru, Erkin; ...

    2018-01-04

    Accurate incorporation of nonstandard amino acids (nsAAs) is central for genetic code expansion to increase the chemical diversity of proteins. However, aminoacyl-tRNA synthetases are polyspecific and facilitate incorporation of multiple nsAAs. We investigated and repurposed a natural protein degradation pathway, the N-end rule pathway, to devise an innovative system for rapid assessment of the accuracy of nsAA incorporation. Using this tool to monitor incorporation of the nsAA biphenylalanine allowed the identification of tyrosyl-tRNA synthetase (TyrRS) variants with improved amino acid specificity. The evolved TyrRS variants enhanced our ability to contain unwanted proliferation of genetically modified organisms. In conclusion, this posttranslationalmore » proofreading system will aid the evolution of orthogonal translation systems for specific incorporation of diverse nsAAs.« less

  14. Proximate composition, amino acid and fatty acid composition of fish maws.

    PubMed

    Wen, Jing; Zeng, Ling; Xu, Youhou; Sun, Yulin; Chen, Ziming; Fan, Sigang

    2016-01-01

    Fish maws are commonly recommended and consumed in Asia over many centuries because it is believed to have some traditional medical properties. This study highlights and provides new information on the proximate composition, amino acid and fatty acid composition of fish maws of Cynoscion acoupa, Congresox talabonoides and Sciades proops. The results indicated that fish maws were excellent protein sources and low in fat content. The proteins in fish maws were rich in functional amino acids (FAAs) and the ratio of FAAs and total amino acids in fish maws ranged from 0.68 to 0.69. Among species, croaker C. acoupa contained the most polyunsaturated fatty acids, arachidonic acid, docosahexaenoic acid and eicosapntemacnioc acid, showing the lowest value of index of atherogenicity and index of thrombogenicity, showing the highest value of hypocholesterolemic/hypercholesterolemic ratio, which is the most desirable.

  15. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  16. The Formation of Racemic Amino Acids by UV Photolysis of Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Dworkin, Jason P.; Sandford, Scott A.; Cooper, George; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Small biologically relevant organic molecules including the amino acids glycine, alanine, and marine were formed in the laboratory by the UV (Ultraviolet) photolysis of realistic interstellar ice analogs, composed primarily of H2O, and including CH3OH, NH3, and HCN, under interstellar conditions. N-formyl glycine, cycloserine (4-amino-3-isoxazolidinone), and glycerol were detected before hydrolysis, and glycine, racemic alanine, racemic marine, glycerol, ethanolamine, and glyceric acid were found after hydrolysis. This suggests that some meteoritic amino acids (and other molecules) may be the direct result of interstellar ice photochemistry, expanding the current paradigm that they formed by reactions in liquid water on meteorite parent bodies.

  17. Surface Enhanced Raman Scattering studies of L-amino acids adsorbed on silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Botta, Raju; Rajanikanth, A.; Bansal, C.

    2015-01-01

    Silver nanocluster films were prepared using plasma inert gas phase condensation technique. These were used as Raman active substrates for Surface Enhanced Raman Scattering (SERS) studies of 19 standard L-amino acids adsorbed on the surface of Ag nanoclusters via Agsbnd N bonds. A detailed study of two essential aromatic amino acids viz. L-Phenylalanine and L-Tryptophan showed a correlation between the Raman intensity of the characteristic lines of phenol and indole side chains and their molar concentrations in the range 1 μM-1 mM. This indicates that Raman studies can be used for quantitative determination of the amino acids in proteins.

  18. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  19. Increased universality of Lepidopteran elicitor compounds across insects: Identification of fatty acid amino acid conjugates (FACs)

    USDA-ARS?s Scientific Manuscript database

    Fatty acid amino acid conjugates (FACs) are known elicitors of induced release of volatile compounds in plants that, in turn, attract foraging parasitoids. Since the discovery of volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] in the regurgitant of larval Spodoptera exigua1, a series of related FAC...

  20. Comparison of amino acids interaction with gold nanoparticle.

    PubMed

    Ramezani, Fatemeh; Amanlou, Massoud; Rafii-Tabar, Hashem

    2014-04-01

    The study of nanomaterial/biomolecule interface is an important emerging field in bionanoscience, and additionally in many biological processes such as hard-tissue growth and cell-surface adhesion. To have a deeper understanding of the amino acids/gold nanoparticle assemblies, the adsorption of these amino acids on the gold nanoparticles (GNPs) has been investigated via molecular dynamics simulation. In these simulations, all the constituent atoms of the nanoparticles were considered to be dynamic. The geometries of amino acids, when adsorbed on the nanoparticle, were studied and their flexibilities were compared with one another. The interaction of each of 20 amino acids was considered with 3 and 8 nm gold GNPs.