Science.gov

Sample records for aminofluorene-modified dg adduct

  1. Arrest of human mitochondrial RNA polymerase transcription by the biological aldehyde adduct of DNA, M1dG

    PubMed Central

    Cline, Susan D.; Lodeiro, M. Fernanda; Marnett, Lawrence J.; Cameron, Craig E.; Arnold, Jamie J.

    2010-01-01

    The biological aldehydes, malondialdehyde and base propenal, react with DNA to form a prevalent guanine adduct, M1dG. The exocyclic ring of M1dG opens to the acyclic N2-OPdG structure when paired with C but remains closed in single-stranded DNA or when mispaired with T. M1dG is a target of nucleotide excision repair (NER); however, NER is absent in mitochondria. An in vitro transcription system with purified human mitochondrial RNA polymerase (POLRMT) and transcription factors, mtTFA and mtTFB2, was used to determine the effect of M1dG on POLRMT elongation. DNA templates contained a single adduct opposite either C or T downstream of either the light-strand (LSP) or heavy-strand (HSP1) promoter for POLRMT. M1dG in the transcribed strand arrested 60–90% POLRMT elongation complexes with greater arrest by the adduct when opposite T. POLRMT was more sensitive to N2-OPdG and M1dG after initiation at LSP, which suggests promoter-specific differences in the function of POLRMT complexes. A closed-ring analog of M1dG, PdG, blocked ≥95% of transcripts originating from either promoter regardless of base pairing, and the transcripts remained associated with POLRMT complexes after stalling at the adduct. This work suggests that persistent M1dG adducts in mitochondrial DNA hinder the transcription of mitochondrial genes. PMID:20671026

  2. Protective Role of CYP2E1 Inhibitor Diallyl Disulfide (DADS) on Alcohol Induced Malondialdehyde-Deoxyguanosine (M1dG) Adduct Formation

    PubMed Central

    Sapkota, M.; Hottor, T. K.; DeVasure, J. M.; Wyatt, T. A.; McCaskill, M. L.

    2014-01-01

    Background Alcohol use disorders are often associated with lung disease. Alcohol exposure leads to the production of reactive oxygen species, lipid peroxidation, and formation of malondialdehyde (MDA) as well as induce the expression of cytochrome p450 2E1 (CYP2E1). Likewise, cigarette smoking can lead to lung lipid peroxidation and formation of MDA. MDA can bind to DNA forming MDA deoxyguanosine (M1dG) adducts, which have been implicated in alcohol-related cancers and cardiovascular disease. Because CYP2E1 regulates MDA production, and our previous studies have shown that alcohol and cigarette smoke can lead to MDA formation, we hypothesized that CYP2E1 would modulate M1dG adduct formation and single strand DNA damage in alcohol- and cigarette smoke-exposed lung cells and tissue. Methods Normal human bronchial epithelial cells (HBEC) were pre-treated with 10 μM DADS for 1h, and treated with 80 mM ethanol +/− 5% cigarette smoke extract (CSE) for 3 hrs for comet assay and 6 hrs for CYP2E1, MDA, and M1dG adduct assays. C57BL/6 mice were administered 20% ethanol ad libitum in drinking water for 8 wk and exposed to whole body cigarette smoke for 5 wk. Mice were also fed a CYP2E1 inhibitor, diallyl disulfide (DADS), at 1 μM/g of feed in their daily diet for 7 wk. Whole lung tissue homogenate was used for CYP2E1, MDA, and M1dG adduct assays. Results Ethanol exposure significantly increased HBEC olive tail moment. DADS pretreatment of HBEC attenuated this ethanol effect. Ethanol also induced MDA and M1dG adduct formation, which was also significantly reduced by DADS treatment. CSE +/− ethanol did not enhance these effects. In lung tissue homogenate of 8 wk alcohol-fed mice, MDA and M1dG adduct levels were significantly elevated in comparison to control mice and mice fed DADS while consuming alcohol. No increase in MDA and M1dG adduct formation was observed in 5 wk cigarette smoke-exposed mice. Conclusions These findings suggest that CYP2E1 plays a pivotal role in

  3. ACCUMULATION OF M1DG DNA ADDUCTS AFTER CHRONIC EXPOSURE TO PCBS, BUT NOT FROM ACUTE EXPOSURE TO DIOXIN-LIKE COMPOUNDS

    EPA Science Inventory

    ABSTRACT: Oxidative DNA damage is one of the key events leading to mutation and cancer. The present study examined the accumulation of M1dG DNA adducts, 3-(2’-deoxy-β-D-erythro-pentofuranosyl)-pyrimido[1,2-a]-purin-10(3H)-one, after single or yearly exposur...

  4. Following an environmental carcinogen N2-dG adduct through replication: elucidating blockage and bypass in a high-fidelity DNA polymerase

    PubMed Central

    Xu, Pingna; Oum, Lida; Beese, Lorena S.; Geacintov, Nicholas E.; Broyde, Suse

    2007-01-01

    We have investigated how a benzo[a]pyrene-derived N2-dG adduct, 10S(+)-trans-anti-[BP]-N2-dG ([BP]G*), is processed in a well-characterized Pol I family model replicative DNA polymerase, Bacillus fragment (BF). Experimental results are presented that reveal relatively facile nucleotide incorporation opposite the lesion, but very inefficient further extension. Computational studies follow the possible bypass of [BP]G* through the pre-insertion, insertion and post-insertion sites as BF alternates between open and closed conformations. With dG* in the normal B-DNA anti conformation, BP seriously disturbs the polymerase structure, positioning itself either deeply in the pre-insertion site or on the crowded evolving minor groove side of the modified template, consistent with a polymerase-blocking conformation. With dG* in the less prevalent syn conformation, BP causes less distortion: it is either out of the pre-insertion site or in the major groove open pocket of the polymerase. Thus, the syn conformation can account for the observed relatively easy incorporation of nucleotides, with mutagenic purines favored, opposite the [BP]G* adduct. However, with the lesion in the BF post-insertion site, more serious distortions caused by the adduct even in the syn conformation explain the very inefficient extension observed experimentally. In vivo, a switch to a potentially error-prone bypass polymerase likely dominates translesion bypass. PMID:17576677

  5. Molecular modeling benzo[a]pyrene N2-dG adducts in the two overlapping active sites of the Y-family DNA polymerase Dpo4.

    PubMed

    Chandani, Sushil; Loechler, Edward L

    2007-01-01

    The potent, ubiquitous environmental mutagen/carcinogen benzo[a]pyrene (B[a]P) induces a single major adduct [+ta]-B[a]P-N2-dG, whose bypass in most cases results in either no mutation (dCTP insertion) or a G-->T mutation (dATP insertion). Translesion synthesis (TLS) of [+ta]-B[a]P-N2-dG generally requires DNA polymerases (DNAPs) in the Y-family, which exist in cells to bypass DNA damage caused by chemicals and radiation. A molecular dynamics (MD) study is described with dCTP opposite [+ta]-B[a]P-N2-dG in Dpo4, which is the best studied Y-family DNAP from a structural point of view. Two orientations of B[a]P-N2-dG (BPmi5 and BPmi3) are considered, along with two orientations of the dCTP (AS1 and AS2), as outlined next. Based on NMR studies, the pyrene moiety of B[a]P-N2-dG is in the minor groove, when paired with dC, and can point toward either the base on the 5'-side (BPmi5) or the 3'-side (BPmi3). Based on published X-ray structures, Dpo4 appears to have two partially overlapping active sites. The architecture of active site 1 (AS1) is similar to all other families of DNAPs (e.g., the shape of the dNTP). Active site 2 (AS2), however, is non-canonical (e.g., the beta- and gamma-phosphates in AS2 are approximately where the alpha- and beta-phosphates are in AS1). In the Dpo4 models generated herein, using the BPmi3 orientation the pyrene moiety of [+ta]-B[a]P-N2-dG points toward the duplex region of the DNA, and is accommodated without distortions in AS1, but with distortions in AS2. Considering the BPmi5 orientation, the pyrene moiety points toward the ss-region of DNA in Dpo4, and sits in a hole defined by the fingers and little fingers domain ("chimney"); BPmi5 is accommodated in AS2 without significant distortions, but poorly in AS1. In summary, when dCTP is paired with [+ta]-B[a]P-N2-dG in the two overlapping active sites in Dpo4, the pyrene in the BPmi3 orientation is accommodated better in active site 1 (AS1), while the pyrene in the BPmi5 orientation is

  6. Variants of mouse DNA polymerase κ reveal a mechanism of efficient and accurate translesion synthesis past a benzo[a]pyrene dG adduct

    PubMed Central

    Liu, Yang; Yang, Yeran; Tang, Tie-Shan; Zhang, Hui; Wang, Zhifeng; Friedberg, Errol; Yang, Wei; Guo, Caixia

    2014-01-01

    DNA polymerase κ (Polκ) is the only known Y-family DNA polymerase that bypasses the 10S (+)-trans-anti-benzo[a]pyrene diol epoxide (BPDE)-N2-deoxyguanine adducts efficiently and accurately. The unique features of Polκ, a large structure gap between the catalytic core and little finger domain and a 90-residue addition at the N terminus known as the N-clasp, may give rise to its special translesion capability. We designed and constructed two mouse Polκ variants, which have reduced gap size on both sides [Polκ Gap Mutant (PGM) 1] or one side flanking the template base (PGM2). These Polκ variants are nearly as efficient as WT in normal DNA synthesis, albeit with reduced accuracy. However, PGM1 is strongly blocked by the 10S (+)-trans-anti-BPDE-N2-dG lesion. Steady-state kinetic measurements reveal a significant reduction in efficiency of dCTP incorporation opposite the lesion by PGM1 and a moderate reduction by PGM2. Consistently, Polκ-deficient cells stably complemented with PGM1 GFP-Polκ remained hypersensitive to BPDE treatment, and complementation with WT or PGM2 GFP-Polκ restored BPDE resistance. Furthermore, deletion of the first 51 residues of the N-clasp in mouse Polκ (mPolκ52–516) leads to reduced polymerization activity, and the mutant PGM252–516 but not PGM152–516 can partially compensate the N-terminal deletion and restore the catalytic activity on normal DNA. However, neither WT nor PGM2 mPolκ52–516 retains BPDE bypass activity. We conclude that the structural gap physically accommodates the bulky aromatic adduct and the N-clasp is essential for the structural integrity and flexibility of Polκ during translesion synthesis. PMID:24449898

  7. Meeting DG's

    ScienceCinema

    None

    2011-04-25

    Le DG J.Adams commente les 3 thèmes de la réunion: 1.) le prochain DG du Cern (qui sera H.Schopper) 2.) le LEP 3.) les conclusions du comité des finances concernant salaires, allocations etc. Discussion entre le DG J.Adams, Mons.Ullmann, chef du personel et l'auditoire

  8. Correlation between production of benzo(A)pyrene metabolites and BPDE I-DG adduct levels in human epithelial cells in vitro pretreated with cytochrome P450 inhibitors or inducer

    SciTech Connect

    Lehman, T.A.; Milo, G.E.

    1987-05-01

    Human epidermal keratinocytes were established from neonatal foreskins. Cultures were pretreated for 24 hr with either butylated hydroxyanisole (BHA), methyl butylated hydroxyanisole (MeBHA) or 7,8 benzoflavone (7,8BF). For metabolite detection studies, cultures were treated with radiolabeled benzo(a)pyrene (BP) for 24 hr. Ethyl acetate soluble metabolites were extracted for HPLC analysis. BHA and 7,8BF pretreatment both significantly decreased intracellular production of 7,8 diol BP compared to cultures treated only with radiolabeled BP. MeBHA pretreatment greatly increased intracellular 7,8 diol BP formation compared to BP treated controls. For DNA adduct analysis, cultures were pretreated as described above, and then treated for 24 hr with non-radiolabeled BP. Cellular DNA was isolated and /sup 32/P-postlabeled for adduct analysis. Cultures pretreated with either BHA or 7,8BF formed significantly fewer BPDE I-dG adducts than nonpretreated cultures, while cultures pretreated with MeBHa formed more BPDE I-dG adducts. Thus, BHA and 7,8BF act similarly in reducing BP activation and adduct formation while MeBHa, a structural analog of BHA, increases BP activation and adduct formation in human keratinocyte cultures in vitro.

  9. Stereospecific Formation of the (R)-γ-Hydroxytrimethylene Interstrand N2-dG:N2-dG Cross-Link Arising from the γ-OH-1,N2-Propano-2'-deoxyguanosine Adduct in the 5′-CpG-3′ DNA Sequence

    PubMed Central

    Huang, Hai; Kim, Hye-Young; Kozekov, Ivan D.; Cho, Young-Jin; Wang, Hao; Kozekova, Albena; Harris, Thomas H.; Rizzo, Carmelo J.; Stone, Michael P.

    2009-01-01

    Acrolein reacts with dG to form hydroxylated 1,N2-propanodeoxyguanosine (OH-PdG) adducts. Most abundant are the epimeric 3-(2-deoxy-β-D-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2a] purin-10(3H)-ones, commonly referred to as the γ-OH-PdG adduct. When placed complementary to deoxycytosine in duplex DNA, these undergo rearrangment to the N2-(3-oxopropyl)-dG aldehyde. The latter forms diastereomeric interstrand N2-dG:N2-dG cross-links in the 5'-CpG-3' sequence. Here we report the structure of the stereochemically favored (R)-γ-hydroxytrimethylene N2-dG:N2-dG interstrand DNA cross-link in 5'-d(G1C2T3A4G5C6X7A8G9T10C11C12)-3'•5'-d(G13G14A15C16T17C18Y19C20T21A22G23C24)-3' (X7 is the dG adjacent to the α-carbon of the carbinolamine linkage and Y19 is the dG adjacent to the γ-carbon of the carbinolamine linkage; the cross-link is in the 5'-CpG-3' sequence). The structure was characterized using isotope-edited 15N NOESY-HSQC NMR, in which the exocyclic amines at X7 or Y19 were 15N-labeled. Analyses of NOE intensities involving Y19 N2H indicated that the (R)-γ-hydroxytrimethylene linkage was the major cross-link species, constituting 80–90% of the cross-link. The X7 and Y19 imino resonances were observed at 65 °C. Additionally, for the 5'-neighbor base pair G5•C20, the G5 imino resonance remained sharp at 55 °C, but broadened at 65 °C. In contrast, for the 3'-neighbor A8•T17 base pair, the T17 imino resonance was severely broadened at 55 °C. Structural refinement using NOE distance restraints obtained from isotope-edited 15N NOESY HSQC data indicated that the (R)-γ-hydroxytrimethylene linkage maintained the C6•Y19 and X7•C18 base pairs with minimal structural perturbations. The (R)-γ-hydroxytrimethylene linkage was located in the minor groove. The X7 N2 and Y19 N2 atoms were in the gauche-conformation with respect to the linkage, which maintained Watson-Crick hydrogen bonding of the cross-linked base pairs. The anti conformation

  10. Chemistry and Biology of Aflatoxin-DNA Adducts

    SciTech Connect

    Stone, Michael P.; Banerjee, Surajit; Brown, Kyle L.; Egli, Martin

    2012-03-27

    Aspergillus flavus is a fungal contaminant of stored rice, wheat, corn, and other grainstuffs, and peanuts. This is of concern to human health because it produces the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}), which is genotoxic and is implicated in the etiology of liver cancer. AFB{sub 1} is oxidized in vivo by cytochrome P450 to form aflatoxin B{sub 1} epoxide, which forms an N7-dG adduct (AFB{sub 1}-N7-dG) in DNA. The latter rearranges to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative that equilibrates between {alpha} and {beta} anomers of the deoxyribose. In DNA, both the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts intercalate above the 5'-face of the damaged guanine. Each produces G {yields} T transversions in Escherichia coli, but the AFB{sub 1}-{beta}-FAPY adduct is more mutagenic. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) provides a model for understanding error-prone bypass of the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts. It bypasses the AFB{sub 1}-N7-dG adduct, but it conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including mis-insertion of dATP, consistent with the G {yields} T mutations characteristic of AFB{sub 1} mutagenesis in E. coli. Crystallographic analyses of a series of binary and ternary complexes with the Dpo4 polymerase revealed differing orientations of the N7-C8 bond of the AFB{sub 1}-N7-dG adduct as compared to the N{sup 5}-C8 bond in the AFB{sub 1}-{beta}-FAPY adduct, and differential accommodation of the intercalated AFB{sub 1} moieties within the active site. These may modulate AFB{sub 1} lesion bypass by this polymerase.

  11. DNA adducts in biomonitoring.

    PubMed

    Hemminki, K

    1995-05-01

    The types of occupational groups studied by postlabelling include foundry, coke oven and aluminium workers, roofers, garage and terminal workers, car mechanics and chimney sweeps. There does not seem to be a direct relationship between the exposure and adduct levels. However, the postlabelling assay is sensitive enough to show adducts in apparently unexposed individuals. The origin of such adducts is unknown; in the case of aromatic adducts, the origin is likely to be environmental and/or dietary. PMID:7618142

  12. Adenine-DNA adducts derived from the highly tumorigenic dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not

    PubMed Central

    Kropachev, Konstantin; Kolbanovskiy, Marina; Liu, Zhi; Cai, Yuqin; Zhang, Lu; Schwaid, Adam G.; Kolbanovskiy, Alexander; Ding, Shuang; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2013-01-01

    The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N2-dG) and adenine (N6-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N2-dG linkage site is ~ 35 times more susceptible to NER dual incisions than the stereochemically identical N6-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar, but somewhat smaller effect (factor of ~15) is observed. The striking resistance of the bulky N6-dA in contrast to the modest to good susceptibilities of the N2-dG adducts to NER are interpreted in terms of the balance between lesion-induced DNA-distorting and DNA-stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA. PMID:23570232

  13. Formation of 1,4-dioxo-2-butene-derived adducts of 2'-deoxyadenosine and 2'-deoxycytidine in oxidized DNA.

    PubMed

    Chen, Bingzi; Vu, Choua C; Byrns, Michael C; Dedon, Peter C; Peterson, Lisa A

    2006-08-01

    Oxidation of deoxyribose in DNA produces a variety of electrophilic residues that are capable of reacting with nucleobases to form adducts such as M(1)dG, the pyrimidopurinone adduct of dG. We now report that deoxyribose oxidation in DNA leads to the formation of oxadiazabicyclo(3.3.0)octaimine adducts of dC and dA. We previously demonstrated that these adducts arise in reactions of nucleosides and DNA with trans-1,4-dioxo-2-butene, the beta-elimination product of the 2-phosphoryl-1,4-dioxobutane residue arising from 5'-oxidation of deoxyribose in DNA, and with cis-1,4-dioxo-2-butene, a metabolite of furan. Treatment of DNA with enediyne antibiotics capable of oxidizing the 5'-position of deoxyribose (calicheamicin and neocarzinostatin) led to a concentration-dependent formation of oxadiazabicyclo(3.3.0)octaimine adducts of dC and dA, while the antibiotic bleomycin, which is capable of performing only 4-oxidation of deoxyribose, did not give rise to the adducts. The nonspecific DNA oxidant, gamma-radiation, also produced the adducts that represented approximately 0.1% of the 2-phosphoryl-1,4-dioxobutane residues formed during the irradiation. These results suggest that the oxadiazabicyclo(3.3.0)octaimine adducts of dC and dA could represent endogenous DNA lesions arising from oxidative stresses that also give rise to other DNA adducts. PMID:16918236

  14. Conformational Properties of Equilenin-DNA Adducts: Stereoisomer and Base Effects

    PubMed Central

    Ding, Shuang; Shapiro, Robert; Cai, Yuqin; Geacintov, Nicholas E.; Broyde, Suse

    2008-01-01

    Equilin and equilenin, components of the hormone replacement therapy drug Premarin, can be metabolized to the catechol 4-hydroxyequilenin (4-OHEN). The quinoids produced by 4-OHEN oxidation react with dC, dA and dG to form unusual stable cyclic adducts, which have been found in human breast tumor tissue. Four stereoisomeric adducts have been identified for each base. These twelve Premarin-derived adducts provide a unique opportunity for analyzing effects of stereochemistry and base damage on DNA structure, and consequently its function. Our computational studies have shown that these adducts, with obstructed Watson-Crick hydrogen bond edges and near-perpendicular ring systems, have limited conformational flexibility, and near-mirror image conformations in stereoisomer pairs. The dC and dA adducts can adopt major and minor groove positions in the double helix, but the dG adducts are positioned only in the major groove. In all cases, opposite orientations of the equilenin rings with respect to the 5'→3' direction of the damaged strand are found in stereoisomer pairs derived from the same base, and no Watson-Crick pairing is possible. However, detailed structural properties in DNA duplexes are distinct for each stereoisomer of each damaged base. These differences may underlie observed differential stereoisomer and base-dependent mutagenicities and repair susceptibilities of these adducts. PMID:18416538

  15. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7{beta}, 8{alpha}-dihydoxy-9{alpha}, l0{alpha}-epoxy-7,8,9, 10-tetrahydrobenzo[{alpha}]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, ({minus})-trans-, (+)-cis- and ({minus})-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( {approximately} 25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant {pi}-{pi} stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G{sub 2} or G{sub 3} (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N{sup 2}-dG in DNA isolated from the skin of mice treated topically with benzo[{alpha}]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N{sup 2}-dG.

  16. Former ESO DG Adriaan Blaauw Turned 90

    NASA Astrophysics Data System (ADS)

    2004-06-01

    On April 12, former ESO DG professor Adriaan Blaauw reached his 90th birthday. Adriaan, together with many friends, family members, colleagues from The Netherlands and abroad, celebrated this occasion on April 17, during an informal get-together at the 19th-century country-mansion Nienoord in Leek, near Groningen.

  17. Characterization of deoxyguanosine adducts from hydroquinone/benzoquinone

    SciTech Connect

    Jowa, J.; Winkel, S.; Witz, G.; Snyder, R.

    1986-03-01

    Occupational exposure to benzene has long been associated with the development of pancytopenia and leukemia. This toxicity has been attributed to the action of benzene metabolites. The authors have chosen to investigate the reaction of hydroquinone (HQ)/benzoquinone(BQ) with deoxyguanosine(dG) and DNA. (/sup 14/C)HQ was incubated with (/sup 3/H)dG in potassium phosphate buffer pH7.2 for 24 hours. Two dual labeled products were found by HPLC and presumed to be adducts. The same result was obtained when BQ was substituted in the reaction for HQ. Both adducts were found in isolated DNA from Clostridium perfringens, Micrococcus lysodeikticus, human placenta and calf thymus reacted with HO under similar conditions. One of the dG adducts was proposed to be (/sup 3/'OH) benzetheno(1,N-2)deoxyguanosine based on NMR and mass spectral results. The other adduct was characterized by a molecular weight of 339. The latter adduct was found in greater amounts than the former when HQ was reacted with denatured DNA.

  18. DG Poisson algebra and its universal enveloping algebra

    NASA Astrophysics Data System (ADS)

    Lü, JiaFeng; Wang, XingTing; Zhuang, GuangBin

    2016-05-01

    In this paper, we introduce the notions of differential graded (DG) Poisson algebra and DG Poisson module. Let $A$ be any DG Poisson algebra. We construct the universal enveloping algebra of $A$ explicitly, which is denoted by $A^{ue}$. We show that $A^{ue}$ has a natural DG algebra structure and it satisfies certain universal property. As a consequence of the universal property, it is proved that the category of DG Poisson modules over $A$ is isomorphic to the category of DG modules over $A^{ue}$. Furthermore, we prove that the notion of universal enveloping algebra $A^{ue}$ is well-behaved under opposite algebra and tensor product of DG Poisson algebras. Practical examples of DG Poisson algebras are given throughout the paper including those arising from differential geometry and homological algebra.

  19. Detection of DNA methylation adducts in Hodgkin's disease patients treated with procarbazine.

    PubMed

    Bianchini, F; Weiderpass, E; Kyrtopoulos, S; Souliotis, V L; Henry-Amar, M; Wild, C P; Boffetta, P

    1996-01-01

    Abstract The aim of the present study was to assess the relationship between dose of the methylating agent procarbazine (PCZ), DNA methylation adduct formation andresponse to chemotherapy treatment in 23 Hodgkin's disease patients receiving MOPP/ABV combination therapy. The DNA adducts, 7-methyldeoxyguanosine (7-medG) and0(6)-methyldeoxyguanosine (0(6)-medG), were measured in leucocytes at the end of the first cycle of PCZ treatment (77-100 mg m(Z) per day). 7-medG was detected in only two patients prior to treatment and0(6)-medG was below the detection limit (0.08 pole per mole dG) in all subjects prior to treatment. The mean levels after PCZ treatment were 12.55 pmole 7-medG per mole dG and0.254 μmole 0(6)-medG per mole dG with a 2-3 fold variation between individuals. No correlation was observed between the levels of the two adducts suggesting inter-individual differences in formation andremoval of the two adducts. Failure of treatment was observed in five patients andthis was not correlated with higher or lower levels of 7-medG or 0(6)-medG. Other adducts formed as a consequence of treatment with PCZ or other MOPP/ABV components could have more relevance in this respect. The ability to measure DNA methylation adducts at the individual level following exposure to PCZ or other methylating chemotherapeutic drugs (e.g. dacarbazine) could be useful in prospective studies of secondary cancer in Hodgkin's disease patients. PMID:23888989

  20. Nuclear Magnetic Resonance Studies of an N2-Guanine Adduct Derived from the Tumorigen Dibenzo[a,l]pyrene in DNA: Impact of Adduct Stereochemistry, Size, and Local DNA Sequence on Solution Conformations

    PubMed Central

    2015-01-01

    The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide–DNA adducts formed include the stereoisomeric 14S and 14Rtrans-anti-DB[a,l]P-N2-dG and the stereochemically analogous 10S- and 10R-B[a]P-N2-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N2-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N2-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5′-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure–function relationship in NER. PMID

  1. Synthesis and mutagenesis of the butadiene-derived N3 2'-deoxyuridine adducts.

    PubMed

    Fernandes, Priscilla H; Hackfeld, Linda C; Kozekov, Ivan D; Hodge, Richard P; Lloyd, R Stephen

    2006-07-01

    1,3-Butadiene is a known carcinogen and mutagen that acts through a variety of metabolic intermediates that react with DNA, forming stable and unstable lesions on dG, dA, dC, and dT. The N3 2'-deoxyuridine adducts are a highly stable, stereoisomeric mixture of adducts derived from the reaction of cytosine with the monoepoxide metabolite of butadiene, followed by spontaneous deamination. In this study, the phosphoramidites and subsequent oligodeoxynucleotides containing the N3 2'-deoxyuridine adducts have been constructed and characterized. Using a single-stranded shuttle vector DNA, the mutagenic potential of these adducts has been tested following replication in mammalian cells. Replication past the N3 2'-deoxyuridine adducts was found to be highly mutagenic with an overall mutation yield of approximately 97%. The major mutations that were observed were C to T transitions and C to A transversions. In vitro, these adducts posed a complete block to both the Klenow fragment of Escherichia coli polymerase I and polymerase epsilon, while these lesions significantly blocked polymerase delta. These data suggested a possible involvement of bypass polymerases in the in vivo replication of these lesions. Overall, these findings indicate that the N3 2'-deoxyuridine adducts are highly mutagenic lesions that may contribute to butadiene-mediated carcinogenesis. PMID:16841966

  2. Isolevuglandin Adducts in Disease

    PubMed Central

    Bi, Wenzhao

    2015-01-01

    Abstract Significance: A diverse family of lipid-derived levulinaldehydes, isolevuglandins (isoLGs), is produced by rearrangement of endoperoxide intermediates generated through both cyclooxygenase (COX) and free radical-induced cyclooxygenation of polyunsaturated fatty acids and their phospholipid esters. The formation and reactions of isoLGs with other biomolecules has been linked to alcoholic liver disease, Alzheimer's disease, age-related macular degeneration, atherosclerosis, cardiac arythmias, cancer, end-stage renal disease, glaucoma, inflammation of allergies and infection, mitochondrial dysfunction, multiple sclerosis, and thrombosis. This review chronicles progress in understanding the chemistry of isoLGs, detecting their production in vivo and understanding their biological consequences. Critical Issues: IsoLGs have never been isolated from biological sources, because they form adducts with primary amino groups of other biomolecules within seconds. Chemical synthesis enabled investigation of isoLG chemistry and detection of isoLG adducts present in vivo. Recent Advances: The first peptide mapping and sequencing of an isoLG-modified protein present in human retina identified the modification of a specific lysyl residue of the sterol C27-hydroxylase Cyp27A1. This residue is preferentially modified by iso[4]LGE2 in vitro, causing loss of function. Adduction of less than one equivalent of isoLG can induce COX-associated oligomerization of the amyloid peptide Aβ1-42. Adduction of isoLGE2 to phosphatidylethanolamines causes gain of function, converting them into proinflammatory isoLGE2-PE agonists that foster monocyte adhesion to endothelial cells. Future Directions: Among the remaining questions on the biochemistry of isoLGs are the dependence of biological activity on isoLG isomer structure, the structures and mechanism of isoLG-derived protein–protein and DNA–protein cross-link formation, and its biological consequences. Antioxid. Redox Signal. 22

  3. Alcohol, Aldehydes, Adducts and Airways

    PubMed Central

    Sapkota, Muna; Wyatt, Todd A.

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  4. Alcohol, Aldehydes, Adducts and Airways.

    PubMed

    Sapkota, Muna; Wyatt, Todd A

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  5. Malondialdehyde–Deoxyguanosine Adducts among Workers of a Thai Industrial Estate and Nearby Residents

    PubMed Central

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Ceppi, Marcello; Sangrajrang, Suleeporn; Piro, Sara; Boffetta, Paolo

    2010-01-01

    Background Humans living near industrial point emissions can experience high levels of exposures to air pollutants. Map Ta Phut Industrial Estate in Thailand is the location of the largest steel, oil refinery, and petrochemical factory complexes in Southeast Asia. Air pollution is an important source of oxidative stress and reactive oxygen species, which interact with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. Objective We measured the levels of malondialdehyde–deoxyguanosine (dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in petrochemical workers, nearby residents, and subjects living in a control district without proximity to industrial sources. Design We conducted a cross-sectional study to compare the prevalence of malondialdehyde-dG adducts in groups of subjects experiencing various degrees of air pollution. Results The multivariate regression analysis shows that the adduct levels were associated with occupational and environmental exposures to air pollution. The highest adduct level was observed in the steel factory workers. In addition, the formation of DNA damage tended to be associated with tobacco smoking, but without reaching statistical significance. A nonsignificant increase in DNA adducts was observed after 4–6 years of employment among the petrochemical complexes. Conclusions Air pollution emitted from the Map Ta Phut Industrial Estate complexes was associated with increased adduct levels in petrochemical workers and nearby residents. Considering the mutagenic potential of DNA lesions in the carcinogenic process, we recommend measures aimed at reducing the levels of air pollution. PMID:20056580

  6. POLARIMETRY OF DG TAU AT 350 mum

    SciTech Connect

    Krejny, M.; Matthews, T. G.; Novak, G.; Cho, J.; Li, H.; Shinnaga, H.; Vaillancourt, J. E.

    2009-11-01

    We present the first 350 mum polarization measurement for the disk of the T Tauri star (TTS) DG Tau. The data were obtained using the SHARP polarimeter at the Caltech Submillimeter Observatory. We measured normalized Stokes parameters q= -0.0086 +- 0.0060 and u = -0.0012 +- 0.0061, which gives a 2sigma upper limit for the percent polarization of 1.7%. We obtain information about the polarization spectrum by comparing our 350 mum measurement with an 850 mum polarization detection previously published for this source. Comparing the two measurements in Stokes space (not in percent polarization) shows that the two data points are not consistent, i.e., either the degree of polarization or the angle of polarization (or both) must change significantly as one moves from 850 mum to 350 mum. This conclusion concerning the polarization spectrum disagrees with the predictions of a recent model for TTS disk polarization. We show that this discrepancy can be explained by optical depth effects. Specifically, we demonstrate that if one were to add more mass to the model disk, one would expect to obtain a model polarization spectrum in which the polarization degree falls sharply with increasing frequency, consistent with the observations at the two wavelengths. We suggest that multiwavelength polarimetry of TTS disk emission may provide a promising method for probing the opacity of TTS disks.

  7. DEVELOPMENT OF HFE SECTIONS OF DG-1145.

    SciTech Connect

    HIGGINS,J.C.; OHARA, J.M.; BONGARRA, J.

    2007-03-26

    For the licensing of the current fleet of commercial nuclear power plants (NPPs), the Nuclear Regulatory Commission (NRC) used two key documents, NUREG-0800 and Regulatory Guide (RG) 1.70. RG 1.70 provided guidance to applicants on the contents needed in their Safety Analysis Reports (SARs) submitted as part of their application to construct or operate an NPP. NUREG-0800, the NRC Standard Review Plan (SRP), provides guidance to the NRR staff reviewers on performing their safety reviews of these applications. As part of the preparation for a new wave of improved NPP designs the NRC is in the process of updating the SRP and is also developing a new RG designated as draft RG or DG-1145, ''Combined License Applications for Nuclear Power Plants (LWR Edition).'' This will eventually become RG 1.206 and will take the place of RG 1.70. This will provide guidance for combined license (COL) applicants, as well as for other 10CFR Part 52 variations that are permitted.

  8. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ.

    PubMed

    Kasiviswanathan, Rajesh; Minko, Irina G; Lloyd, R Stephen; Copeland, William C

    2013-05-17

    Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates. PMID:23543747

  9. Factors that influence the mutagenic patterns of DNA adducts from chemical carcinogens.

    PubMed

    Seo, K Y; Jelinsky, S A; Loechler, E L

    2000-10-01

    Carcinogens are generally mutagens, which is understandable given that tumor cells grow uncontrollably because they have mutations in critical genes involved in growth control. Carcinogens often induce a complex pattern of mutations (e.g., GC-->TA, GC-->AT, etc.). These mutations are thought to be initiated when a DNA polymerase encounters a carcinogen-DNA adduct during replication. In principle, mutational complexity could be due to either a collection of different adducts each inducing a single kind of mutation (Hypothesis 1a), or a single adduct inducing different kinds of mutations (Hypothesis 1b). Examples of each are discussed. Regarding Hypothesis 1b, structural factors (e.g., DNA sequence context) and biological factors (e.g., differing DNA polymerases) that can affect the pattern of adduct mutagenesis are discussed. This raises the question: how do structural and biological factors influence the pattern of adduct mutagenesis. For structural factors, three possibilities are considered: (Hypothesis 2a) a single conformation of an adduct giving rise to multiple mutations -- dNTP insertion by DNA polymerase being influenced by (e.g.) the surrounding DNA sequence context; (Hypothesis 2b) a variation on this ("dislocation mutagenesis"); or (Hypothesis 2c) a single adduct adopting multiple conformations, each capable of giving a different pattern of mutations. Hypotheses 2a, 2b and 2c can each in principle rationalize many mutational results, including how the pattern of adduct mutagenesis might be influenced by factors, such as DNA sequence context. Five lines of evidence are discussed suggesting that Hypothesis 2c can be correct for base substitution mutagenesis. For example, previous work from our laboratory was interpreted to indicate that [+ta]-B[a]P-N(2)-dG in a 5'-CGG sequence context (G115) could be trapped in a conformation giving predominantly G-->T mutations, but heating caused the adduct to equilibrate to its thermodynamic mixture of conformations

  10. The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin

    PubMed Central

    Chakravarti, Dhrubajyoti; Venugopal, Divya; Mailander, Paula C.; Meza, Jane L.; Higginbotham, Sheila; Cavalieri, Ercole L.; Rogan, Eleanor G.

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) form stable and depurinating DNA adducts in mouse skin to induce preneoplastic mutations. Some mutations transform cells, which then clonally expand to establish tumors. Strong clues about the mutagenic mechanism can be obtained if the PAH-DNA adducts can be correlated with both preneoplastic and tumor mutations. To this end, we studied mutagenesis in PAH-treated early preneoplastic skin (1 day after exposure) and in the induced papillomas in SENCAR mice. Papillomas were studied by PCR amplification of the H-ras gene and sequencing. For benzo[a]pyrene (BP), BP-7,8-dihydrodiol (BPDHD), 7,12-dimethylbenz[a]anthracene (DMBA) and dibenzo[a,l]pyrene (DB[a,l]P), the codon 13 (GGC to GTC) and codon 61 (CAA to CTA) mutations in papillomas corresponded to the relative levels of Gua and Ade-depurinating adducts, despite BP and BPDHD forming significant amounts of stable DNA adducts. Such a relationship was expected for DMBA and DB[a,l]P, as they formed primarily depurinating adducts. These results suggest that depurinating adducts play a major role in forming the tumorigenic mutations. To validate this correlation, preneoplastic skin mutations were studied by cloning H-ras PCR products and sequencing individual clones. DMBA- and DB[a,l]P-treated skin showed primarily A.T to G.C mutations, which correlated with the high ratio of the Ade/Gua-depurinating adducts. Incubation of skin DNA with T.G-DNA glycosylase eliminated most of these A.T to G.C mutations, indicating that they existed as G.T heteroduplexes, as would be expected if they were formed by errors in the repair of abasic sites generated by the depurinating adducts. BP and its metabolites induced mainly G.C to T.A mutations in preneoplastic skin. However, PCR over unrepaired anti-BPDE-N2dG adducts can generate similar mutations as artifacts of the study protocol, making it difficult to establish an adduct-mutation correlation for determining which BP-DNA adducts induce the early

  11. Base-Displaced Intercalated Structure of the N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone DNA Adduct.

    PubMed

    Politica, Dustin A; Malik, Chanchal K; Basu, Ashis K; Stone, Michael P

    2015-12-21

    3-Nitrobenzanthrone (3-NBA), an environmental mutagen found in diesel exhaust and a suspected carcinogen, undergoes metabolic reduction followed by reaction with DNA to form aminobenzanthrone (ABA) adducts, with the major alkylation product being N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (C8-dG-ABA). Site-specific synthesis of the C8-dG-ABA adduct in the oligodeoxynucleotide 5'-d(GTGCXTGTTTGT)-3':5'-d(ACAAACACGCAC)-3'; X = C8-dG-ABA adduct, including codons 272-275 of the p53 gene, has allowed for investigation into the structural and thermodynamic properties of this adduct. The conformation of the C8-dG-ABA adduct was determined using NMR spectroscopy and was refined using molecular dynamics (MD) calculations restrained by experimentally determined interproton distance restraints obtained from NOE experiments. The refined structure revealed that the C8-dG-ABA adduct formed a base-displaced intercalated conformation. The adducted guanine was shifted into the syn conformation about the glycosidic bond. The 5'- and 3'-neighboring base pairs remained intact. While this facilitated π-stacking interactions between the ABA moiety and neighboring bases, the thermal melting temperature (Tm) of the adduct-containing duplex showed a decrease of 11 °C as compared to the corresponding unmodified oligodeoxynucleotide duplex. Overall, in this sequence, the base-displaced intercalated conformation of the C8-dG-ABA lesion bears similarity to structures of other arylamine C8-dG adducts. However, in this sequence, the base-displaced intercalated conformation for the C8-dG-ABA adduct differs from the conformation of the N(2)-dG-ABA adduct reported by de los Santos and co-workers, in which it is oriented in the minor groove toward the 5' end of the duplex, with the modified guanine remaining in the anti conformation about the glyosidic torsion angle, and the complementary base remaining within the duplex. The results are discussed in relationship to differences between the C8-d

  12. Reconfigurable threshold logic gates with nanoscale DG-MOSFETs

    NASA Astrophysics Data System (ADS)

    Kaya, Savas; Hamed, Hesham F. A.; Ting, Darwin T.; Creech, Gregory

    2007-10-01

    The benefits in using double-gate (DG) MOSFETs as components of threshold logic gates (TLG) have been analyzed for the first time. A novel, variable-weight DG-TLG has also been proposed, which can greatly widen the range of reconfigurable functions accessible to users. Both fixed and variable-weight DG-TLG circuits operate correctly at a low supply voltage of 1.0 V, and outperform the conventional CMOS equivalents in terms of the most important metrics such as power, speed and area. It is found that variable-weight DG-TLG circuits with analog weight and threshold control have attractive features such as expanded TLG functionality, reduced transistor count, low programming voltages and power-scaling capability, particularly for circuits with four or fewer inputs.

  13. DNA adducts in human carcinogenesis: etiological relevance and structure-activity relationship.

    PubMed

    Bartsch, H

    1996-06-01

    Sensitive methods for quantifying DNA adducts from (i) benzo[a]pyrene (BP), (ii) alkylation exposure, and (iii) etheno(epsilon)-DNA adduct-forming chemicals were developed and applied to humans and animal models. The aims were to identify hitherto unknown sources and mechanisms of exogenous and endogenous DNA damage, to examine the effect of drug polymorphism on BP adduct levels, and to develop QSAR between tumorigenic potency, heritable genetic damage and structural elements of alkylating carcinogens (Vogel and Nivard (1994) Mutation Res., 395, 13-32). (i) BP-DNA adducts: An HPLC/fluorimetry assay suitable for measuring (+)-anti-BP-diol-epoxide (BPDE) adducts in human tissues and white blood cells (WBC) was developed (Alexandrov et al. (1992) Cancer Res., 52, 6248-6253). In smokers, a positive correlation was found between pulmonary CYP1A1-related catalytic activity (AHH) and the level of lung BPDE-DNA adducts. In coke oven workers, an enhancing effect of smoking on BPDE-adduct levels in WBC was demonstrated (Rojas et al. (1995) Carcinogenesis, 16, 1373-1376). (ii) 3-Alkyladenines (3-alkAde): Alkylating carcinogens form 3-alkAde adducts in DNA which depurinate to yield 3-alkAde in urine, for which a detection method was developed (Friesen et al. (1991) Chem. Res. Toxicol., 4, 102-106; Prevost et al. (1990) Carcinogenesis, 11, 1747-1751), using immunoaffinity purification and GC-MS analysis. The usefulness of 3-alkAde analysis for the determination of the whole-body dose of alkylating agents derived from exogenous and endogenous sources was demonstrated. (iii) Etheno-DNA adduct-forming agents: Etheno(epsilon)-DNA base adducts (epsilon A, epsilon dC, epsilon dG) are promutagenic DNA lesions that are formed by occupational (vinyl halides) and environmental (urethane) carcinogens. An ultrasensitive detection method was developed (Nair et al. (1995) Carcinogenesis, 16, 613-617), based on immunoaffinity purification and 32P-postlabelling of epsilon-nucleoside 3

  14. Chemistry and Biology of DNA Containing 1,N2-Deoxyguanosine Adducts of the α,β-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and 4-Hydroxynonenal

    PubMed Central

    2009-01-01

    The α,β-unsaturated aldehydes (enals) acrolein, crotonaldehyde, and trans-4-hydroxynonenal (4-HNE) are products of endogenous lipid peroxidation, arising as a consequence of oxidative stress. The addition of enals to dG involves Michael addition of the N2-amine to give N2-(3-oxopropyl)-dG adducts, followed by reversible cyclization of N1 with the aldehyde, yielding 1,N2-dG exocyclic products. The 1,N2-dG exocyclic adducts from acrolein, crotonaldehyde, and 4-HNE exist in human and rodent DNA. The enal-induced 1,N2-dG lesions are repaired by the nucleotide excision repair pathway in both Escherichia coli and mammalian cells. Oligodeoxynucleotides containing structurally defined 1,N2-dG adducts of acrolein, crotonaldehyde, and 4-HNE were synthesized via a postsynthetic modification strategy. Site-specific mutagenesis of enal adducts has been carried out in E. coli and various mammalian cells. In all cases, the predominant mutations observed are G→T transversions, but these adducts are not strongly miscoding. When placed into duplex DNA opposite dC, the 1,N2-dG exocyclic lesions undergo ring opening to the corresponding N2-(3-oxopropyl)-dG derivatives. Significantly, this places a reactive aldehyde in the minor groove of DNA, and the adducted base possesses a modestly perturbed Watson−Crick face. Replication bypass studies in vitro indicate that DNA synthesis past the ring-opened lesions can be catalyzed by pol η, pol ι, and pol κ. It also can be accomplished by a combination of Rev1 and pol ζ acting sequentially. However, efficient nucleotide insertion opposite the 1,N2-dG ring-closed adducts can be carried out only by pol ι and Rev1, two DNA polymerases that do not rely on the Watson−Crick pairing to recognize the template base. The N2-(3-oxopropyl)-dG adducts can undergo further chemistry, forming interstrand DNA cross-links in the 5′-CpG-3′ sequence, intrastrand DNA cross-links, or DNA−protein conjugates. NMR and mass spectrometric analyses

  15. In Vitro Bypass of the Major Malondialdehyde- and Base Propenal-Derived DNA Adduct by Human Y-family DNA Polymerases κ, ι, and Rev1†

    PubMed Central

    2010-01-01

    3-(2′-Deoxy-β-d-erythro-pentofuranosyl)pyrimido-[1,2-a]purin-10(3H)-one (M1dG) is the major adduct derived from the reaction of DNA with the lipid peroxidation product malondialdehyde and the DNA peroxidation product base propenal. M1dG is mutagenic in Escherichia coli and mammalian cells, inducing base-pair substitutions (M1dG → A and M1dG → T) and frameshift mutations. Y-family polymerases may contribute to the mutations induced by M1dG in vivo. Previous reports described the bypass of M1dG by DNA polymerases η and Dpo4. The present experiments were conducted to evaluate bypass of M1dG by the human Y-family DNA polymerases κ, ι, and Rev1. M1dG was incorporated into template-primers containing either dC or dT residues 5′ to the adduct, and the template-primers were subjected to in vitro replication by the individual DNA polymerases. Steady-state kinetic analysis of single nucleotide incorporation indicates that dCMP is most frequently inserted by hPol κ opposite the adduct in both sequence contexts, followed by dTMP and dGMP. dCMP and dTMP were most frequently inserted by hPol ι, and only dCMP was inserted by Rev1. hPol κ extended template-primers in the order M1dG:dC > M1dG:dG > M1dG:dT ∼ M1dG:dA, but neither hPol ι nor Rev1 extended M1dG-containing template-primers. Liquid chromatography−mass spectrometry analysis of the products of hPol κ-catalyzed extension verified this preference in the 3′-GXC-5′ template sequence but revealed the generation of a series of complex products in which dAMP is incorporated opposite M1dG in the 3′-GXT-5′ template sequence. The results indicate that DNA hPol κ or the combined action of hPol ι or Rev1 and hPol κ bypass M1dG residues in DNA and generate products that are consistent with some of the mutations induced by M1dG in mammalian cells. PMID:20726503

  16. In vitro bypass of the major malondialdehyde- and base propenal-derived DNA adduct by human Y-family DNA polymerases κ, ι, and Rev1.

    PubMed

    Maddukuri, Leena; Eoff, Robert L; Choi, Jeong-Yun; Rizzo, Carmelo J; Guengerich, F Peter; Marnett, Lawrence J

    2010-09-28

    3-(2'-Deoxy-β-d-erythro-pentofuranosyl)pyrimido-[1,2-a]purin-10(3H)-one (M(1)dG) is the major adduct derived from the reaction of DNA with the lipid peroxidation product malondialdehyde and the DNA peroxidation product base propenal. M(1)dG is mutagenic in Escherichia coli and mammalian cells, inducing base-pair substitutions (M(1)dG → A and M(1)dG → T) and frameshift mutations. Y-family polymerases may contribute to the mutations induced by M(1)dG in vivo. Previous reports described the bypass of M(1)dG by DNA polymerases η and Dpo4. The present experiments were conducted to evaluate bypass of M(1)dG by the human Y-family DNA polymerases κ, ι, and Rev1. M(1)dG was incorporated into template-primers containing either dC or dT residues 5' to the adduct, and the template-primers were subjected to in vitro replication by the individual DNA polymerases. Steady-state kinetic analysis of single nucleotide incorporation indicates that dCMP is most frequently inserted by hPol κ opposite the adduct in both sequence contexts, followed by dTMP and dGMP. dCMP and dTMP were most frequently inserted by hPol ι, and only dCMP was inserted by Rev1. hPol κ extended template-primers in the order M(1)dG:dC > M(1)dG:dG > M(1)dG:dT ∼ M(1)dG:dA, but neither hPol ι nor Rev1 extended M(1)dG-containing template-primers. Liquid chromatography-mass spectrometry analysis of the products of hPol κ-catalyzed extension verified this preference in the 3'-GXC-5' template sequence but revealed the generation of a series of complex products in which dAMP is incorporated opposite M(1)dG in the 3'-GXT-5' template sequence. The results indicate that DNA hPol κ or the combined action of hPol ι or Rev1 and hPol κ bypass M(1)dG residues in DNA and generate products that are consistent with some of the mutations induced by M(1)dG in mammalian cells. PMID:20726503

  17. Determining efficacy of cancer chemopreventive agents using a cell-free system concomitant with DNA adduction.

    PubMed

    Smith, W A; Gupta, R C

    1999-03-10

    The large (>2000) and expanding number of natural and synthetic agents with potential cancer chemopreventive properties renders it economically and physically impossible to test each of these agents for their efficacy in the widely accepted 2-year animal bioassay and clinical trials. Therefore, there is a growing need for relevant short-term screening tests to study these compounds such that only the most efficacious ones undergo extensive long-term studies. We have previously reported in a pilot study that the use of a microsome-mediated test system concomitant with DNA adduction is a pertinent and relevant model for rapidly studying the efficacy and mechanisms of cancer chemopreventive agents. We have extended this study to investigate 26 additional agents for their potential chemopreventive abilities by studying their effects on microsome-mediated benzo[a]pyrene (BP)-DNA adduction. These agents had differential effects on the two major adducts of BP-DNA, i.e., BP-7,8-diol-9,10-epoxide (BPDE)-deoxyguanosine (dG) and 9-OH-BP-dG-derived adducts. These agents were therefore categorized into five classes. Three test agents (ellagic acid, genistein and oltipraz) were strong inhibitors of both adducts. These agents diminished BP-DNA adduction by 65-95% and were categorized as Class I agents. Six other agents (benzyl isocyanate, R(+)-1-phenylethyl isocyanate, linoleic acid ethyl ester, (+)-biotin, indole-3-carboxylic acid and beta-carotene) moderately inhibited both BP-DNA adducts (25-64%); these compounds were identified as Class II agents. Six additional test agents inhibited only one adduct selectively and nine others were ineffective; these agents were categorized as Class III and Class IV, respectively. Interestingly, seven test agents enhanced BPDE-dG or 9-OH-BP-dG or both adducts and were categorized as Class V agents. Four of these Class V agents concomitantly inhibited BPDE-dG while enhancing 9-OH-BP-dG. This emphasizes the importance of studying individual DNA

  18. 76 FR 76330 - Airworthiness Directives; DG Flugzeugbau GmbH Sailplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will not affect intrastate aviation in Alaska... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; DG Flugzeugbau GmbH... ] Flugzeugbau GmbH Models DG-500 Elan Orion sailplanes and DG-500M and DG-500MB powered sailplanes....

  19. Geometric correction of PHI images by POS/DG data

    NASA Astrophysics Data System (ADS)

    Wu, Chuanqing; Tong, Qingxi; Zheng, Lanfen

    2001-09-01

    Position and Orientation System/Direct Georeferencing (POS/DG) data is important to hyperspectral images, for it has much information of flight attitude, such as absolute position (x,y,z) and rotation parameters. The largest advantage of this method, using POS/DG data to correct remote sensing images, is to save much manual work and money. This method doesn't need any ground work. It can get high quality images just through a correction program. It is more economical, simpler and faster than conventional methods. This article concentrates on the research of how to use POS/DG data to correct the hyperspectral images (in this article is PHI images) and discuss the efficiencies of a few kinds of resampling methods.

  20. Identification of adducts formed by reaction of N-acetoxy-3,5-dimethylaniline with DNA

    PubMed Central

    Cui, Liang; Sun, Hsiao-Lan; Wishnok, John S.; Tannenbaum, Steven R.; Skipper, Paul L.

    2008-01-01

    Aromatic amines constitute one of the most extensively studied classes of chemical carcinogens. Although monocyclic aromatic amines are generally regarded as weak carcinogens, a recent epidemiologic study of bladder cancer found that the arylamine 3,5-dimethylaniline (3,5-DMA) may play a significant role in the etiology of this disease in man. Investigations using experimental animals also strongly suggested that DNA adducts—of indeterminate structure—formed by 3,5-DMA might account for its presumptive activity. The present study was undertaken to determine the structures of the major DNA adducts formed in vitro by the known, and possibly carcinogenic, N-hydroxylated metabolite. Calf thymus DNA (ct-DNA) was modified by reaction with N-acetoxy-3,5-dimethylaniline (N-AcO-3,5-DMA). After enzymatic hydrolysis of DNA to individual 2'-deoxyribonucleosides, adduct profiles were determined using HPLC/MS. 3,5-DMA formed four major DNA adducts, one to 2’-deoxyguanosine (dG), two to 2’-deoxyadenosine (dA), and one to 2’-deoxycytidine (dC). Reactions of N-AcO-3,5-DMA with dG, dA, and dC produced the same adducts as reaction with ct-DNA with very similar profiles. Adducts were isolated chromatographically and unambiguously characterized as N-(deoxyguanosin-8-yl)-3,5-dimethylaniline (dG-C8−3,5-DMA), 4-(deoxyadenosin-N6-yl)-3,5-dimethylaniline (dA-N6-3,5-DMA), N-(deoxyadenosin-8-yl)-3,5-dimethylaniline (dA-C8−3,5-DMA), and N-(deoxycytidin-5-yl)-3,5-dimethylaniline (dC-C5−3,5-DMA) by high-resolution mass spectra (HR-MS) and NMR spectroscopy including 1H-NMR, 13C-NMR, and two-dimensional NMR. This report includes the first detailed description of a dC adduct of an aromatic amine. The present results provide chemical support for a carcinogenic mechanism of action by 3,5-DMA based on N-hydroxylation and the intermediacy of a nitrenium ion in the formation of DNA adducts. PMID:18020398

  1. DNA adducts-chemical addons

    PubMed Central

    Rajalakshmi, T. R.; AravindhaBabu, N.; Shanmugam, K. T.; Masthan, K. M. K.

    2015-01-01

    DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde). This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers. PMID:26015708

  2. DNA adducts-chemical addons.

    PubMed

    Rajalakshmi, T R; AravindhaBabu, N; Shanmugam, K T; Masthan, K M K

    2015-04-01

    DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde). This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers. PMID:26015708

  3. The boron trifluoride nitromethane adduct

    NASA Astrophysics Data System (ADS)

    Ownby, P. Darrell

    2004-02-01

    The separation of the boron isotopes using boron trifluoride·organic-donor, Lewis acid·base adducts is an essential first step in preparing 10B enriched and depleted crystalline solids so vital to nuclear studies and reactor applications such as enriched MgB 2, boron carbide, ZrB 2, HfB 2, aluminum boron alloys, and depleted silicon circuits for radiation hardening and neutron diffraction crystal structure studies. The appearance of this new adduct with such superior properties demands attention in the continuing search for more effective and efficient means of separation. An evaluation of the boron trifluoride nitromethane adduct, its thermodynamic and physical properties related to large-scale isotopic separation is presented. Its remarkably high separation factor was confirmed to be higher than the expected theoretical value. However, the reportedly high acid/donor ratio was proven to be an order of magnitude lower. On-going research is determining the crystal structure of deuterated and 11B enriched 11BF 3·CD 3NO 2 by X-ray and neutron diffraction.

  4. Polychlorinated Biphenyls Induce Oxidative DNA Adducts in Female Sprague-Dawley Rats.

    PubMed

    Mutlu, Esra; Gao, Lina; Collins, Leonard B; Walker, Nigel J; Hartwell, Hadley J; Olson, James R; Sun, Wei; Gold, Avram; Ball, Louise M; Swenberg, James A

    2016-08-15

    Polychlorinated biphenyls (PCBs) are organic chemicals that were traditionally produced and widely used in industry as mixtures and are presently formed as byproducts of pigment and dye manufacturing. They are known to persist and bioaccumulate in the environment. Some have been shown to induce liver cancer in rodents. Although the mechanism of the toxicity of PCBs is unknown, it has been shown that they increase oxidative stress, including lipid peroxidation. We hypothesized that oxidative stress-induced DNA damage could be a contributor for PCB carcinogenesis and analyzed several DNA adducts in female Sprague-Dawley rats exposed to 3,3',4,4',5-pentachlorobiphenyl (PCB 126), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), and a binary mixture (PCB 126 + 153) for 14, 31, and 53 wks. Eight adducts were measured to profile oxidative DNA lesions, including 8-oxo-deoxyguanosine (8-oxo-dG), 1,N(6)-ethenodeoxyadenosine (1,N(6)-εdA), N(2),3-ethenoguanine (N(2),3-εG), 1,N(2)-ethenodeoxyguanosine (1,N(2)-εdG), as well as malondialdehyde (M1dG), acrolein (AcrdG), crotonaldehyde (CrdG), and 4-hydroxynonenal-derived dG adducts (HNEdG) by LC-MS/MS analysis. Statistically significant increases were observed for 8-oxo-dG and 1,N(6)-εdA concentrations in hepatic DNA of female rats exposed to the binary mixture (1000 ng/kg/day + 1000 μg/kg/day) but not in rats exposed to PCB 126 (1000 ng/kg/day) or PCB 153 (1000 μg/kg/day) for 14 and 31 wks. However, exposure to PCB 126 (1000 ng/kg/day) for 53 wks significantly increased 8-oxo-dG, 1,N(6)-εdA, AcrdG, and M1dG. Exposure to PCB 153 (1000 μg/kg/day) for 53 wks increased 8-oxo-dG, and 1,N(6)-εdA. Exposure to the binary mixture for 53 wks increased 8-oxo-dG, 1,N(6)-εdA, AcrdG, 1,N(2)-εdG, and N(2),3-εG significantly above control groups. Increased hepatic oxidative DNA adducts following exposure to PCB 126, PCB 153, or the binary mixture shows that an increase in DNA damage may play an important role in hepatic toxicity and

  5. 78 FR 65869 - Airworthiness Directives; DG Flugzeugbau GmbH Gliders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ...'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will not affect...-17646; AD 2013-22-14] RIN 2120-AA64 Airworthiness Directives; DG Flugzeugbau GmbH Gliders AGENCY... adopting a new airworthiness directive (AD) for any DG Flugzeugbau GmbH Model DG-1000T glider equipped...

  6. 78 FR 67013 - Airworthiness Directives; DG Flugzeugbau GmbH Gliders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ...'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will not affect...-030-AD; Amendment 39-17644; AD 2013-22-12] RIN 2120-AA64 Airworthiness Directives; DG Flugzeugbau GmbH.... SUMMARY: We are adopting a new airworthiness directive (AD) for all DG Flugzeugbau GmbH Models DG-800A,...

  7. Double gate (DG)-SOI ratioed logic with symmetric DG load??a novel approach for sub 50 nm low-voltage/low-power circuit design

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Salman, A.; Ioannou, D. P.; Tretz, C.; Ioannou, D. E.

    2004-11-01

    In this paper we introduce a novel logic gate family based on Double Gate (DG) SOI MOSFETs for low voltage/low power circuits. The logic gates are based on ratioed logic with depletion-mode (i.e., intrinsically on) Symmetric DG (SDG) load transistors and inversion-mode Asymmetric DG (ADG) driver transistors. Using this technique a basic inverter was designed, with better performance compared to "classical" CMOS DG design. This technique was extended to create a complete set of basic logic gates including NOR2, NAND2 and XOR2 gates.

  8. DNA ADDUCTS OF THE ANTITUMOR AGENT DIAZIQUONE

    EPA Science Inventory

    We have studied adduct formation of the antineoplastic agent diaziquone with DNA and nucleotides in vitro. he aziridine moieties of AZQ can be expected to interact covalently with DNA which in turn presumably elicit the antitumor activity. e analyzed AZQ-DNA adducts by a modified...

  9. Recognition of cisplatin adducts by cellular proteins.

    PubMed

    Kartalou, M; Essigmann, J M

    2001-07-01

    Cisplatin is a widely used chemotherapeutic agent. It reacts with nucleophilic bases in DNA and forms 1,2-d(ApG), 1,2-d(GpG) and 1,3-d(GpTpG) intrastrand crosslinks, interstrand crosslinks and monofunctional adducts. The presence of these adducts in DNA is through to be responsible for the therapeutic efficacy of cisplatin. The exact signal transduction pathway that leads to cell cycle arrest and cell death following treatment with the drug is not known but cell death is believed to be mediated by the recognition of the adducts by cellular proteins. Here we describe the structural information available for cisplatin and related platinum adducts, the interactions of the adducts with cellular proteins and the implications of these interactions for cell survival. PMID:11406166

  10. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Pelties, C.; Gabriel, A.

    2012-12-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  11. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2013-04-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  12. WATER VAPOR IN THE PROTOPLANETARY DISK OF DG Tau

    SciTech Connect

    Podio, L.; Dougados, C.; Thi, W.-F.; Menard, F.; Pinte, C.; Codella, C.; Cabrit, S.; Nisini, B.; Sandell, G.; Williams, J. P.; Testi, L.; Woitke, P.

    2013-03-20

    Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high-excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most water ice reservoirs are stored, was only reported in the nearby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para-water ground-state transitions at 557 and 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are {approx}19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H{sub 2}O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 M{sub Sun }, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of {approx}10{sup 2}-10{sup 3} Earth oceans in vapor and {approx}100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by the impact of icy bodies forming in the outer disk.

  13. DG Planning with Amalgamation of Operational and Reliability Considerations

    NASA Astrophysics Data System (ADS)

    Battu, Neelakanteshwar Rao; Abhyankar, A. R.; Senroy, Nilanjan

    2016-04-01

    Distributed Generation has been playing a vital role in dealing issues related to distribution systems. This paper presents an approach which provides policy maker with a set of solutions for DG placement to optimize reliability and real power loss of the system. Optimal location of a Distributed Generator is evaluated based on performance indices derived for reliability index and real power loss. The proposed approach is applied on a 15-bus radial distribution system and a 18-bus radial distribution system with conventional and wind distributed generators individually.

  14. T-duality and exceptional generalized geometry through symmetries of dg-manifolds

    NASA Astrophysics Data System (ADS)

    Lupercio, Ernesto; Rengifo, Camilo; Uribe, Bernardo

    2014-09-01

    We study dg-manifolds which are R[2]-bundles over R[1]-bundles over manifolds, we calculate its symmetries, its derived symmetries and we introduce the concept of T-dual dg-manifolds. Within this framework, we construct the T-duality map as a degree -1 map between the cohomologies of the T-dual dg-manifolds and we show an explicit isomorphism between the differential graded algebra of the symmetries of the T-dual dg-manifolds. We, furthermore, show how the algebraic structure underlying Bn generalized geometry could be recovered as derived dg-Leibniz algebra of the fixed points of the T-dual automorphism acting on the symmetries of a self T-dual dg-manifold, and we show how other types of algebraic structures underlying exceptional generalized geometry could be obtained as derived symmetries of certain dg-manifolds.

  15. SYNTHESIS OF THE FULLY PROTECTED PHOSPHORAMIDITE OF THE BENZENE-DNA ADDUCT, N2- (4-HYDROXYPHENYL)-2'-DEOXYGUANOSINE AND INCORPORATION OF THE LATER INTO DNA OLIGOMERS

    SciTech Connect

    Chenna, Ahmed; Gupta, Ramesh C.; Bonala, Radha R.; Johnson, Francis; Huang, Bo

    2008-06-09

    N2-(4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N2-(4-hydroxyphenyl)-2'-dG (N2-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N2-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N2-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.

  16. [DNA adducts in human female genital organs].

    PubMed

    Postawski, Krzysztof; Przadka-Rabaniuk, Dorota; Monist, Marta; Baranowski, Włodzimierz

    2007-12-01

    DNA adducts, one of genetic damages markers, precede and finally can lead to oncogenic mutations. They appear in genome as a result of DNA bases damages caused by various and numerous environmental factors eg. ultraviolet light, ionic radiation, toxins and also endogenic substances, for example estrogens. It is believed that the creation of DNA adducts is a necessary but insufficient process for the neoplastic transformation of the cell. The following review presents concise knowledge about the DNA adducts creation and their sequels served in healthy and cancerous tissues of the female genital organs, on the base of the available data. PMID:18411923

  17. Quantification of multiple DNA adducts formed through oxidative stress using liquid chromatography and electrospray tandem mass spectrometry.

    PubMed

    Churchwell, Mona I; Beland, Frederick A; Doerge, Daniel R

    2002-10-01

    Damage to DNA can arise through covalent modification of bases by reaction with oxidants and products of lipid peroxidation derived through normal aerobic metabolism. Such premutagenic lesions, including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), pyrimido[1,2alpha]purine-10(3H)one-2'-deoxyribose (M1-dG), etheno-2'-deoxyadenosine (epsilon-dA), and etheno-2'-deoxycytidine (epsilon-dC), are believed to be important in the development of human cancers related to diet, disease states, and lifestyle. We report the development of a method for concurrent quantification of these four adducts in DNA hydrolysates of 100 microg or less using on-line sample preparation coupled with liquid chromatography and tandem mass spectrometry. The sensitive detection permitted adduct quantification at levels below one adduct in 10(8) normal nucleotides and measurement of these adducts in DNA from untreated rodent liver and normal human liver samples. This methodology should prove useful in hypothesis-driven studies of cancer etiology in laboratory animals and humans. PMID:12387628

  18. Detection of 1,N(2)-propano-2'-deoxyguanosine adducts in genomic DNA by ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry in combination with stable isotope dilution.

    PubMed

    Zhang, Ning; Song, Yuanyuan; Wu, Danni; Xu, Tian; Lu, Meiling; Zhang, Weibing; Wang, Hailin

    2016-06-10

    Crotonaldehyde (Cro) is one of widespread and genotoxic α,β-unsaturated aldehydes and can react with the exocyclic amino group of 2'-deoxyguanosine (dG) in genomic DNA to form 1,N(2)-propano-2'-deoxyguanosine (ProdG) adducts. In this study, two diastereomers of high purity were prepared, including non-isotope and stable isotope labeled ProdG adducts, and exploited stable isotope dilution-based calibration method. By taking advantage of synthesized ProdG standards, we developed a sensitive ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) method for accurate quantification of two diastereomers of ProdG adducts. In addition to optimization of the UHPLC separation, ammonium bicarbonate (NH4HCO3) was used as additive in the mobile phase for enhancing the ionization efficiency to ProdG adducts and facilitating MS detection. The limits of detection (LODs, S/N=3) and the limits of quantification (LOQs, S/N=10) are estimated about 50 amol and 150 amol, respectively. By the use of the developed method, both diastereomers of ProdG adducts can be detected in untreated human MRC5 cells with a frequency of 2.4-3.5 adducts per 10(8) nucleotides. Crotonaldehyde treatment dramatically increases the levels of ProdG adducts in human MRC5 in a concentration-dependent manner. PMID:27179676

  19. An Adenine-DNA Adduct Derived from Nitroreduction of 6-Nitrochrysene is more Resistant to Nucleotide Excision Repair than Guanine-DNA Adducts

    PubMed Central

    Krzeminski, Jacek; Kropachev, Konstantin; Reeves, Dara; Kolbanovskiy, Aleksandr; Kolbanovskiy, Marina; Chen, Kun-Ming; Sharma, Arun K.; Geacintov, Nicholas; Amin, Shantu; El-Bayoumy, Karam

    2013-01-01

    Previous studies in rats, mice and in vitro systems showed that 6-NC can be metabolically activated by two major pathways: 1) the formation of N-hydroxy-6-aminochrysene by nitroreduction to yield three major adducts: N-(dG-8-yl)-6-AC, 5-(dG-N2-yl)-6-AC and N-(dA-8-yl)-6-AC, and 2) the formation of trans-1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C) by a combination of nitroreduction and ring oxidation pathways to yield: N-(dG-8-yl)-1,2-DHD-6-AC, 5-(dG-N2-yl)-1,2-DHD-6-AC and N-(dA-8-yl)-1,2-DHD-6-AC. These DNA lesions are likely to cause mutations if they are not removed by cellular defense mechanisms before DNA replication occurs. Here we compared for the first time, in HeLa cell extracts in vitro, the relative nucleotide excision repair (NER) efficiencies of DNA lesions derived from simple nitroreduction and from a combination of nitroreduction and ring oxidation pathways. We show that the N-(dG-8-yl)-1,2-DHD-6-AC adduct is more resistant to NER than the N-(dG-8-yl)-6-AC adduct by a factor of ~2. Furthermore, the N-(dA-8-yl)-6-AC is much more resistant to repair since its NER efficiency is ~ 8-fold lower than that of the N-(dG-8-yl)-6-AC adduct. On the basis of our previous study and the present investigation, lesions derived from 6-NC and benzo[a]pyrene can be ranked from the most to the least resistant lesion as follows: N-(dA-8-yl)-6-AC > N-(dG-8-yl)-1,2-DHD-6-AC > 5-(dG-N2-yl)-6-AC ~ N-(dG-8-yl)-6-AC ~ (+)-7R,8S,9S,10S-benzo[a]pyrene diol epoxide-derived trans-anti-benzo[a]pyrene-N2-dG adduct. The slow repair of the various lesions derived from 6-NC and thus their potential persistence in mammalian tissue, could in part account for the powerful carcinogenicity of 6-NC as compared to B[a]P in the rat mammary gland. PMID:24112095

  20. Multiclass Carcinogenic DNA Adduct Quantification in Formalin-Fixed Paraffin-Embedded Tissues by Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Guo, Jingshu; Yun, Byeong Hwa; Upadhyaya, Pramod; Yao, Lihua; Krishnamachari, Sesha; Rosenquist, Thomas A; Grollman, Arthur P; Turesky, Robert J

    2016-05-01

    DNA adducts are a measure of internal exposure to genotoxicants and an important biomarker for human risk assessment. However, the employment of DNA adducts as biomarkers in human studies is often restricted because fresh-frozen tissues are not available. In contrast, formalin-fixed paraffin-embedded (FFPE) tissues with clinical diagnosis are readily accessible. Recently, our laboratory reported that DNA adducts of aristolochic acid, a carcinogenic component of Aristolochia herbs used in traditional Chinese medicines worldwide, can be recovered quantitatively from FFPE tissues. In this study, we have evaluated the efficacy of our method for retrieval of DNA adducts from archived tissue by measuring DNA adducts derived from four other classes of human carcinogens: polycyclic aromatic hydrocarbons (PAHs), aromatic amines, heterocyclic aromatic amines (HAAs), and N-nitroso compounds (NOCs). Deoxyguanosine (dG) adducts of the PAH benzo[a]pyrene (B[a]P), 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (dG-N(2)-B[a]PDE); the aromatic amine 4-aminobiphenyl (4-ABP), N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP); the HAA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP); and the dG adducts of the NOC 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), O(6)-methyl-dG (O(6)-Me-dG) and O(6)-pyridyloxobutyl-dG (O(6)-POB-dG), formed in liver, lung, bladder, pancreas, or colon were recovered in comparable yields from fresh-frozen and FFPE preserved tissues of rodents treated with the procarcinogens. Quantification was achieved by ultraperformance liquid chromatography coupled with electrospray ionization ion-trap multistage mass spectrometry (UPLC/ESI-IT-MS(3)). These advancements in the technology of DNA adduct retrieval from FFPE tissue clear the way for use of archived pathology samples in molecular epidemiology studies designed to assess the causal role of exposure to hazardous chemicals

  1. Fruit and vegetable and fried food consumption and 3-(2-deoxy-β-D-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine adduct formation

    PubMed Central

    PELUSO, MARCO; MUNNIA, ARMELLE; PIRO, SARA; JEDPIYAWONGSE, ADISORN; SANGRAJRANG, SULEEPORN; GIESE, ROGER W.; CEPPI, MARCELLO; BOFFETTA, PAOLO; SRIVATANAKUL, PETCHARIN

    2012-01-01

    Diet has been shown to modulate M1dG adduct, a biomarker of oxidative stress and lipid peroxidation. Thus, we analysed the association between diet and M1dG in 120 controls and 67 Map Ta Phut industrial estate workers, Rayong, Thailand to evaluate the influence of fruit and vegetables, and fried and charcoal-grilled/barbecued food consumption on M1dG. M1dG was decreased in controls reporting to consume 14–17 servings/week of fruit and vegetables [Mean Ratio (MR)=0.35, C.I. 0.18–0.69, p<0.05]. Conversely, a non-statistically significant M1dG increment was detected in controls consuming 9–18 servings/week of fried food (MR=1.33, C.I. 0.88–2.00, p=0.168). No effect of charcoal-grilled/barbecued food was found. No effect of diet was observed in workers. An association with smoking was observed in controls (MR=1.88, C.I. 1.14–3.10, p<0.05), but not in workers. M1dG can induce mutations and/or methylation changes within the promoter regions of cancer-related genes, thus promotion of healthy eating practices should be recommended. PMID:22081860

  2. 77 FR 71359 - Airworthiness Directives; DG Flugzeugbau GmbH Gliders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... 12866, (2) Is not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; DG Flugzeugbau GmbH... Flugzeugbau GmbH Model DG-1000T gliders equipped with Solo Kleinmotoren Model 2350 C engines. This proposed...

  3. Coronal Emission from dG Halo Stars

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Harnden, F. R.

    2005-01-01

    The halo dG star HD 114762 was observed with the XMM-Newton satellite on 28-29 June 2004, during orbit 834, and the data were processed using the XMM-Newton Science Analysis System (SAS), version 6.0.0. Somewhat surprisingly, the target was NOT detected during this approx.30 ks exposure, which yielded instead a count rate upper limit of less than 0.0041 cts/s. We computed an X-ray flux upper limit by assuming a Raymond-Smith thermal spectrum of coronal temperature 1 million degrees K, typical of quiet old stars, a hydrogen column density of 2-10$^{19)$ cm$^{-2)$ and sub-solar abundances of 0.2. Our calculated X-ray luminosity upper limit in the 0.25-7.8 keV band is L$_x < 4.95 $\\time$10$^{26)$ erg/s, where we have assumed a stellar distance of 28 pc. This relatively low upper limit has implications for the capability of metal poor stars to host solar-like dynamos, as we will report in a forthcoming paper (now in preparation).

  4. New fluorescence methodology for detecting DNA adducts

    SciTech Connect

    Giese, R.W.

    1993-05-21

    A new reagent, BO-IMI, has been developed that achieves, single step, phosphate specific fluorescence labeling under aqueous conditions. Both 3 in. and 5 in. mononucleotides, including representative DNA adducts can be labeled. Included in this technique is a convenient procedure for postlabeling sample cleanup, leading to a practical detection of the products by capillary electrophoresis with laser fluorescencedetection. We consider that this new method will have a significant impact on the measurement of DNA adducts in human samples. This work was largely accomplished in the second half of our project. In the first half, we set up a new way to isolate DNA nucleotides from blood, worked with an initial, less specific technique for labeling DNA adducts, compared ionizing radiation vs oxidative damage to fluorescein labeled deoxyadenylic acid, and set up a capillary electrophoresis laser fluorescence detection system.

  5. Reduced variational space analysis of methane adducts

    SciTech Connect

    Cundari, T.R.; Klinckman, T.R.

    1998-10-05

    Methane is the major component of natural gas, and hence its catalytic conversion to functionalized products (e.g., methanol) is of great interest. A variety of transition metal complexes have been investigated experimentally for the selective activation of methane. Recent experiments and computations suggest that weakly bound methane adducts play a pivotal role in metal-mediated methane activation. Calculation of the intrinsic reaction coordinates for methane activation by d{sup 0} imidos indicates that the adduct lies along the pathway for methane activation. Isolation of a stable methane adduct, suitable for experimental characterization, would be aided by a greater understanding of their chemistry. Given the short-lived nature of these adducts and the limited direct experimental information, computational chemistry is a useful tool for understanding the bonding and structure of these catalytic intermediates. This research investigated the bonding forces in methane adducts of transition metal (TM) complexes. The calculations reported here employed effective core potential (ECP) methods within the Hartree-Fock approximation using the GAMESS quantum chemistry program. The reduced variational space self-consistent field (RVS-SCF) method developed by Stevens and Fink was employed. This technique was used to analyze the Coulomb and exchange energy (CEX), polarization energy (POL), and charge transfer energy (CT) contributions to the binding energy ({Delta}E{sub add}) of methane to a TM complex. Adducts of high-valent (d{sup 0}) transition metal complexes were studied. The role of metal, ligand, and charge on the different contributions to the binding energy were analyzed.

  6. Sperm DNA oxidative damage and DNA adducts.

    PubMed

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm

  7. Breast fine-needle aspiration malondialdehyde deoxyguanosine adduct in breast cancer.

    PubMed

    Peluso, Marco; Munnia, Armelle; Risso, Gabriella G; Catarzi, Sandra; Piro, Sara; Ceppi, Marcello; Giese, Roger W; Brancato, Beniamino

    2011-04-01

    This study has analysed the generation of 3-(2-deoxy-β-D-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine adduct [M₁dG], a biomarker of oxidative stress and lipid peroxidation, in breast fine-needle aspirate samples of 22 patients with breast cancer, at different clinical stages, in respect to 13 controls. The multivariate analysis show that M(1)dG adduct was higher in cases than in controls (Mean Ratio (MR) = 5.26, 95% CI = 3.16-8.77). Increased M₁dG was observed in women with a tumour grade 3 and a pathological diameter 2 (MR = 7.61, 95% CI = 3.91-14.80 and MR = 5.75, 95% CI = 3.13-10.59, respectively). A trend with increasing tumour grade and pathological diameter was present (MR = 1.98, 95% CI = 1.57-2.50 and MR = 2.44, 95% CI = 1.71-3.48, respectively). Not significant effects of age and smoking habit were found (MR = 1.58, 95% CI = 0.92-2.72 and MR = 1.68, 95% CI 0.88-3.20, respectively). An increment over the background frequency of M₁dG can contribute to breast cancer development. Increasing severity of breast tumour can influence DNA damage level. PMID:21250785

  8. Tracking matrix effects in the analysis of DNA adducts of polycyclic aromatic hydrocarbons.

    PubMed

    Klaene, Joshua J; Flarakos, Caroline; Glick, James; Barret, Jennifer T; Zarbl, Helmut; Vouros, Paul

    2016-03-25

    LC-MS using electrospray ionization is currently the method of choice in bio-organic analysis covering a wide range of applications in a broad spectrum of biological media. The technique is noted for its high sensitivity but one major limitation that hinders achievement of its optimal sensitivity is the signal suppression due to matrix inferences introduced by the presence of co-extracted compounds during the sample preparation procedure. The analysis of DNA adducts of common environmental carcinogens is particularly sensitive to such matrix effects as sample preparation is a multistep process which involves "contamination" of the sample due to the addition of enzymes and other reagents for digestion of the DNA in order to isolate the analyte(s). This problem is further exacerbated by the need to reach low levels of quantitation (LOQ in the ppb level) while also working with limited (2-5μg) quantities of sample. We report here on the systematic investigation of ion signal suppression contributed by each individual step involved in the sample preparation associated with the analysis of DNA adducts of polycyclic aromatic hydrocarbon (PAH) using as model analyte BaP-dG, the deoxyguanosine (dG) adduct of benzo[a]pyrene (BaP). The individual matrix contribution of each one of these sources to analyte signal was systematically addressed as were any interactive effects. The information was used to develop a validated analytical protocol for the target biomarker at levels typically encountered in vivo using as little as 2μg of DNA and applied to a dose response study using a metabolically competent cell line. PMID:26607319

  9. Roles of DgD14 in regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum 'Jinba').

    PubMed

    Wen, Chao; Xi, Lin; Gao, Bin; Wang, Keyong; Lv, Suhui; Kou, Yaping; Ma, Nan; Zhao, Liangjun

    2015-11-01

    Shoot branching plays an important role in determining plant architecture. Strigolactones (SLs) negatively regulate shoot branching, and can respond to conditions of low or absent phosphate or nitrogen. The D14 gene is a probable candidate as an SL receptor in rice, petunia, and Arabidopsis. To investigate the roles of D14 in shoot branching of chrysanthemum, we isolated the D14 homolog DgD14. Functional analysis showed that DgD14 was a nuclear-localized protein, and restored the phenotype of Arabidopsis d14-1. Exogenous SL (GR24) could down-regulate DgD14 expression, but this effect could be overridden by apical auxin application. Decapitation could down-regulate DgD14 expression, but this effect could be restored by exogenous auxin. In addition, DgD14 transcripts produced rapid responses in shoot and root under conditions of phosphate absence, but only a mild variation in bud and stem with low nitrogen treatment. Indistinct reductions of P levels in shoot were observed in plants grown under low nitrogen conditions. The absence of phosphate and low levels of nitrogen negatively affected plant growth. These results demonstrate that P levels in shoot had a close relationship with phosphate, whereas nitrogen did not directly regulate DgD14 expression in shoot. Taken together, these results demonstrated that DgD14 was the functional strigolactone signaling component in chrysanthemum. PMID:26310142

  10. DETERMINATION OF HEMOGLOBIN ADDUCTS FOLLOWING ACRYLAMIDE EXPOSURE

    EPA Science Inventory

    The present project was undertaken to develop new methodologies for biological monitoring of exposure to the toxicant acrylamide in laboratory animals as well as humans. ethods were developed to measure the adducts of acrylamide and its epoxide metabolite glycinamide to cysteine ...

  11. 32P-postlabelling methods for cyclic DNA adducts.

    PubMed

    Watson, W P; Crane, A E; Steiner, S

    1993-01-01

    32P-Postlabelling procedures coupled with HPLC have been developed to detect and measure a range of cyclic DNA adducts formed by bifunctional genotoxic agents. The methods are based on reverse-phase HPLC, particularly column-switching HPLC, to enrich adduct 3'-monophosphates before labelling. Following 3'-dephosphorylation of the 3'5'-[5'-32P]bisphosphates with nuclease P1, the resulting 5'-[32P]monophosphate adducts are resolved, identified and characterized by co-chromatography with synthetic reference standards. The procedures have been applied to a number of cyclic adducts including those formed by chloroacetaldehyde, glycidaldehyde and malonaldehyde. In general, labelling efficiencies measured as chromatographed 5'-[32P]monophosphates were in the range 30-40%. However, the values for the malonaldehyde deoxyguanosine adduct were much lower. The techniques have been applied to studies on the formation of DNA adducts in the skin of male C3H mice treated cutaneously with glycidaldehyde. The HPLC-32P-postlabelling analysis of epidermal DNA hydrolysates indicated that a single major cyclic adduct was formed by reaction with deoxyadenosine residues in mouse skin DNA. The adduct was identified as a hydroxymethyl ethenodeoxyadenosine adduct by comparison with a synthetic standard. This adduct was highly fluorescent and it was possible to make quantitative comparisons of the amounts of adduct determined by either HPLC-32P-postlabelling or HPLC-fluorescence detection. PMID:8225493

  12. Structure and mechanism of error-free replication past the major benzo[a]pyrene adduct by human DNA polymerase κ.

    PubMed

    Jha, Vikash; Bian, Chuanbing; Xing, Guangxin; Ling, Hong

    2016-06-01

    Benzo[a]pyrene (BP) is a well-known and frequently encountered carcinogen which generates a bulky DNA adduct (+)-trans-10S-BP-N(2)-dG (BP-dG) in cells. DNA polymerase kappa (polκ) is the only known Y-family polymerase that bypasses BP-dG accurately and thus protects cells from genotoxic BP. Here, we report the structures of human polκ in complex with DNA containing either a normal guanine (G) base or a BP-dG adduct at the active site and a correct deoxycytidine. The structures and supporting biochemical data reveal a unique mechanism for accurate replication by translesion synthesis past the major bulky adduct. The active site of polκ opens at the minor groove side of the DNA substrate to accommodate the bulky BP-dG that is attached there. More importantly, polκ stabilizes the lesion DNA substrate in the same active conformation as for regular B-form DNA substrates and the bulky BPDE ring in a 5' end pointing conformation. The BP-dG adducted DNA substrate maintains a Watson-Crick (BP-dG:dC) base pair within the active site, governing correct nucleotide insertion opposite the bulky adduct. In addition, polκ's unique N-clasp domain supports the open conformation of the enzyme and the extended conformation of the single-stranded template to allow bypass of the bulky lesion. This work illustrates the first molecular mechanism for how a bulky major adduct is replicated accurately without strand misalignment and mis-insertion. PMID:27034468

  13. Structure and mechanism of error-free replication past the major benzo[a]pyrene adduct by human DNA polymerase κ

    PubMed Central

    Jha, Vikash; Bian, Chuanbing; Xing, Guangxin; Ling, Hong

    2016-01-01

    Benzo[a]pyrene (BP) is a well-known and frequently encountered carcinogen which generates a bulky DNA adduct (+)-trans-10S-BP-N2-dG (BP-dG) in cells. DNA polymerase kappa (polκ) is the only known Y-family polymerase that bypasses BP-dG accurately and thus protects cells from genotoxic BP. Here, we report the structures of human polκ in complex with DNA containing either a normal guanine (G) base or a BP-dG adduct at the active site and a correct deoxycytidine. The structures and supporting biochemical data reveal a unique mechanism for accurate replication by translesion synthesis past the major bulky adduct. The active site of polκ opens at the minor groove side of the DNA substrate to accommodate the bulky BP-dG that is attached there. More importantly, polκ stabilizes the lesion DNA substrate in the same active conformation as for regular B-form DNA substrates and the bulky BPDE ring in a 5′ end pointing conformation. The BP-dG adducted DNA substrate maintains a Watson–Crick (BP-dG:dC) base pair within the active site, governing correct nucleotide insertion opposite the bulky adduct. In addition, polκ's unique N-clasp domain supports the open conformation of the enzyme and the extended conformation of the single-stranded template to allow bypass of the bulky lesion. This work illustrates the first molecular mechanism for how a bulky major adduct is replicated accurately without strand misalignment and mis-insertion. PMID:27034468

  14. Analysis of the Central X-ray Source in DG Tau

    NASA Astrophysics Data System (ADS)

    Schneider, P. Christian; Schmitt, Jürgen H. M. M.

    As a stellar X-ray source DG Tau shows two rather unusual features: A resolved X-ray jet [2] and an X-ray spectrum best described by two thermal components with different absorbing column densities, a so called "two-absorber X-ray (TAX)" morphology [1, 2]. In an effort to understand the properties of the central X-ray source in DG Tau a detailed position analysis was carried out.

  15. Human DNA adduct measurements: state of the art.

    PubMed Central

    Poirier, M C; Weston, A

    1996-01-01

    Human DNA adduct formation (covalent modification of DNA with chemical carcinogens) is a promising biomarker for elucidating the molecular epidemiology of cancer. Classes of compounds for which human DNA adducts have been observed include polycyclic aromatic hydrocarbons (PAHs), nitrosamines, mycotoxins, aromatic amines, heterocyclic amines, ultraviolet light, and alkylating cancer chemotherapeutic agents. Most human DNA adduct exposure monitoring has been performed with either 32P-postlabeling or immunoassays, neither of which is able to chemically characterize specific DNA adducts. Recently developed combinations of methods with chemical and physical end points have allowed identification of specific adducts in human tissues. Studies are presented that demonstrate that high ambient levels of benzo[a]pyrene are associated with high levels of DNA adducts in human blood cell DNA and that the same DNA adduct levels drop when the ambient PAH levels decrease significantly. DNA adduct dosimetry, which has been achieved with some dietary carcinogens and cancer chemotherapeutic agents, is described, as well as studies correlating DNA adducts with other biomarkers. It is likely that some toxic, noncarcinogenic compounds may have genotoxic effects, including oxidative damage, and that adverse health outcomes other than cancer may be correlated with DNA adduct formation. The studies presented here may serve as useful prototypes for exploration of other toxicological end points. PMID:8933030

  16. Polymorphic acetylation of arylamines and DNA-adduct formation.

    PubMed

    Weber, W W; Levy, G N; Martell, K J

    1990-01-01

    Inbred mouse strains congenic for rapid and slow N-acetyltransferase (NAT) (A.B6, rapid and B6.A, slow) were used to separate the effect of the NAT polymorphism from the influence of other genetically polymorphic enzymes on DNA adduct formation induced by exposure to arylamine carcinogens. Adduct formation was measured by HPLC analysis of 32P-postlabeled nucleotides from DNA of the urinary bladder and liver. Acetylator phenotype was a significant determinant of DNA damage in females as slow acetylators had higher levels of bladder DNA adducts than rapids. This correlation was the reverse of that seen with liver DNA. Older mice (20-23 weeks) formed much higher bladder DNA adduct levels than young mice (7 week). The increase in bladder adduct formation with age was seen in both sexes of all mouse strains. The older male B6 mice showed a 26-fold increase in bladder adducts and the older females showed no more than a 2-fold increase. In addition, the older male B6 mice produced significant amounts of an unidentified, early eluting adduct peak. Biochemical studies of liver NAT and O-acetyltransferase (OAT) activities showed a direct correlation between the levels of liver 2-aminofluorene (AF) NAT activity and levels of liver DNA-adduct formation, but the role of OAT activity in adduct formation in the mouse remains unclear. These results indicate that the NAT phenotype, age and sex are all important determinants of arylamine-DNA adduct formation in mice. PMID:2134671

  17. Covalent adduction of nitrogen mustards to model protein nucleophiles.

    PubMed

    Thompson, Vanessa R; DeCaprio, Anthony P

    2013-08-19

    Protein adducts have the potential to serve as unique biomarkers of exposure to compounds of interest. Many xenobiotics (or their metabolites) are electrophilic and therefore reactive with nucleophilic amino acid residues on proteins. Nitrogen mustards are reactive xenobiotics with potential use as chemical warfare agents (CWA) or agents of terrorist attack, in addition to being employed as chemotherapeutic agents. The present study utilized cysteine-, lysine-, and histidine-containing model peptides to characterize in vitro adduction of the nitrogen mustards mechloroethamine (HN-2) and tris-(2-chlorethyl)amine (HN-3) to these nucleophilic amino acid residues by means of liquid chromatography-tandem mass spectrometry. The study assessed the structure of adducts formed, the time course of adduct formation, concentration-response relationships, and temporal stability of adducts. Adduction was hypothesized to occur on all three model peptides via initial formation of a reactive aziridinium intermediate for both mechloroethamine and tris-(2-chlorethyl)amine, followed by covalent adduction to nucleophilic residues. While adduction was found to occur most readily with cysteine, it was also observed at lysine and histidine, demonstrating that adduction by mechloroethamine and tris-(2-chlorethyl)amine is possible at multiple nucleophilic sites. Following solid phase extraction cleanup, adducts formed with mechloroethamine were stable for up to three weeks. Adducts formed with tris-(2-chlorethyl)amine were less stable; however, hydrolyzed secondary adducts were observed throughout the three week period. This study demonstrates that the nitrogen mustards mechloroethamine and tris-(2-chlorethyl)amine form stable adducts with reactive protein nucleophiles other than cysteine. PMID:23859065

  18. Development of an immunoassay to detect benzene adducts in hemoglobin

    SciTech Connect

    Grassman, J.A.

    1993-01-01

    The purpose of this project was to develop an immunoassay to detect the adducts formed in hemoglobin after exposure to benzene, which is known to cause bone marrow degeneration and acute myelogenous leukemia. The use of benzene-adduct detection as a biological monitoring method would permit measurement of low exposures and exposures sustained weeks earlier. The reactivity of hydroquinone, an important benzene metabolite, with blood proteins and amino acids was investigated in order to decide which antigens and analytes were likely to be suitable for immunoassay development. The second section determined the combination of benzene-metabolite and antigen need to produce an immunoassay with the requisite low detection limit and specificity. The immunoassays with the best performance were tested on hemoglobin from benzene-exposed mice. In vitro studies showed that hydroquinone efficiently formed adducts with erythrocyte membranes and hemoglobin but not with albumin. Adduction efficiency was greater in incubations using purified hemoglobin than whole blood. Cysteine accounted for 15 to 27% of the adducts formed by hydroquinone. The site of the other adducts were not identified although there was evidence that the hemoglobin heme was adducted. Adducts were found on only 1 of the 2 globin chains. Tryptic digestion of the globin failed to associate the adducts with a specific peptide. Antigens made from hydroquinone-adducted hemoglobin but not hydroquinone-adducted cysteines coupled to carrier proteins effectively elicited adduct-specific antibodies. Interference due to reactivity to hemoglobin was controlled by using uniform quantities of hemoglobin in all wells. The mid-range of the best assays were approximately 12 pmoles HQ per well. Antibodies directed toward hemoglobin adducted with the benzene metabolites phenol, catechol and 1,2,4-trihydroxybenzene were also made. The performance of the anti-1,2,4-trihydroxybenzene were suitable for quantitative immunoassays.

  19. Protein modification by acrolein: Formation and stability of cysteine adducts

    PubMed Central

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2010-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to identify in vitro and in vivo. In this study, model peptides with cysteine, lysine, and histidine residues were used to examine the reactivity of acrolein. Results from these experiments show that acrolein reacts rapidly with cysteine residues through Michael addition to form M+56 Da adducts. These M+56 adducts are, however, not stable, even though spontaneous dissociation of the adduct is slow. Further studies demonstrated that when acrolein and model peptides are incubated at physiological pH and temperature, the M+56 adducts decreased gradually accompanied by the increase of M+38 adducts, which are formed from intra-molecular Schiff base formation. Adduct formation with the side chains of other amino acid residues (lysine and histidine) was much slower than cysteine and required higher acrolein concentration. When cysteine residues were blocked by reaction with iodoacetamide and higher concentrations of acrolein were used, adducts of the N-terminal amino group or histidyl residues were formed but lysine adducts were not detected. Collectively, these data demonstrate that acrolein reacts avidly with protein cysteine residues and that the apparent loss of protein-acrolein Michael adducts over time may be related to the appearance of a novel (M+38) adduct. These findings may be important in identification of in vivo adducts of acrolein with protein cysteine residues. PMID:19231900

  20. Spectroscopic Characterization of Interstrand Carbinolamine Crosslinks Formed in the 5'-CpG-3' Sequence by the Acrolein-Derived γ-OH-1,N2-Propano-2'-deoxyguanosine DNA Adduct

    PubMed Central

    Cho, Young-Jin; Kim, Hye-Young; Huang, Hai; Slutsky, Alvira; Minko, Irina G.; Wang, Hao; Nechev, Lubomir V.; Kozekov, Ivan D.; Kozekova, Albena; Tamura, Pamela; Jacob, Jaison; Voehler, Markus; Harris, Thomas M.; Lloyd, R. Stephen; Rizzo, Carmelo J.; Stone, Michael P.

    2008-01-01

    The interstrand N2,N2-dG DNA crosslinking chemistry of the acrolein-derived γ-OH-1,N2-propanodeoxyguanosine (γ-OH-PdG) adduct in the 5'-CpG-3' sequence was monitored within a dodecamer duplex by NMR spectroscopy, in situ, using a series of site-specific 13C- and 15N-edited experiments. At equilibrium 40% of the DNA was crosslinked, with the carbinolamine form of the crosslink predominating. The crosslink existed in equilibrium with the non-crosslinked N2-(3-oxo-propyl)-dG aldehyde and its geminal diol hydrate. The ratio of aldehyde:diol increased at higher temperatures. The 1,N2-dG cyclic adduct was not detected. Molecular modeling suggested that the carbinolamine linkage should be capable of maintaining Watson-Crick hydrogen bonding at both of the tandem C•G base pairs. In contrast, dehydration of the carbinolamine crosslink to an imine (Schiff base) crosslink, or cyclization of the latter to form a pyrimidopurinone crosslink, was predicted to require disruption of Watson-Crick hydrogen bonding at one or both of the tandem crosslinked C•G base pairs. When the γ-OH-PdG adduct contained within the 5'-CpG-3' sequence was instead annealed into duplex DNA opposite T, a mixture of the 1,N2-dG cyclic adduct, the aldehyde, and the diol, but no crosslink, was observed. With this mismatched duplex, reaction with the tetrapeptide KWKK formed DNA-peptide crosslinks efficiently. When annealed opposite dA, γ-OH-PdG remained as the 1,N2-dG cyclic adduct although transient epimerization was detected by trapping with the peptide KWKK. The results provide a rationale for the stability of interstrand crosslinks formed by acrolein and perhaps other α,β-unsaturated aldehydes. These sequence-specific carbinolamine crosslinks are anticipated to interfere with DNA replication and contribute to acrolein-mediated genotoxicity. PMID:16351098

  1. Effects of epigallocatechin gallate, L-ascorbic acid, alpha-tocopherol, and dihydrolipoic acid on the formation of deoxyguanosine adducts derived from lipid peroxidation.

    PubMed

    Nath, Raghu G; Wu, Mona Y; Emami, Armaghan; Chung, Fung-Lung

    2010-01-01

    Oxidation of polyunsaturated fatty acids (PUFAs) releases alpha,beta-unsaturated aldehydes that modify deoxyguanosine (dG) to form cyclic 1,N(2)-propanodeoxyguanosine adducts. One of the major adducts detected in vivo is acrolein (Acr)-derived 1,N(2)-propanodeoxyguanosine (Acr-dG). We used a chemical model system to examine the effects of 4 antioxidants known to inhibit fatty acid oxidation on the formation of Acr-dG and 8-oxodeoxyguaonsine (8-oxodG) from the PUFA docosahexaenoic acid (DHA) under oxidative conditions. We found that epigallocatechin gallate (EGCG) and dihydrolipoic acid (DHLA) inhibit both Acr-dG and 8-oxodG formation. In contrast, ascorbic acid and alpha-tocopherol actually increase Acr-dG at high concentrations and do not show a concentration-dependant inhibition of 8-oxodG. We also studied their effects on blocking Acr-dG formation directly from Acr. EGCG and DHLA can both effectively block Acr-dG formation, but ascorbic acid and alpha-tocopherol show weak or little effect. These results highlight the complexity of antioxidant mechanisms and also reveal that EGCG and DHLA are effective at suppressing lipid peroxidation-induced Acr-dG and 8-oxodG formation as well as blocking the reaction of dG with Acr. PMID:20574923

  2. Structural and Dynamic Characterization of Polymerase κ’s Minor Groove Lesion Processing Reveals How Adduct Topology Impacts Fidelity

    PubMed Central

    2015-01-01

    DNA lesion bypass polymerases process different lesions with varying fidelities, but the structural, dynamic, and mechanistic origins of this phenomenon remain poorly understood. Human DNA polymerase κ (Polκ), a member of the Y family of lesion bypass polymerases, is specialized to bypass bulky DNA minor groove lesions in a predominantly error-free manner, by housing them in its unique gap. We have investigated the role of the unique Polκ gap and N-clasp structural features in the fidelity of minor groove lesion processing with extensive molecular modeling and molecular dynamics simulations to pinpoint their functioning in lesion bypass. Here we consider the N2-dG covalent adduct derived from the carcinogenic aromatic amine, 2-acetylaminofluorene (dG-N2-AAF), that is produced via the combustion of kerosene and diesel fuel. Our simulations reveal how the spacious gap directionally accommodates the lesion aromatic ring system as it transits through the stages of incorporation of the predominant correct partner dCTP opposite the damaged guanine, with preservation of local active site organization for nucleotidyl transfer. Furthermore, flexibility in Polκ’s N-clasp facilitates the significant misincorporation of dTTP opposite dG-N2-AAF via wobble pairing. Notably, we show that N-clasp flexibility depends on lesion topology, being markedly reduced in the case of the benzo[a]pyrene-derived major adduct to N2-dG, whose bypass by Polκ is nearly error-free. Thus, our studies reveal how Polκ’s unique structural and dynamic properties can regulate its bypass fidelity of polycyclic aromatic lesions and how the fidelity is impacted by lesion structures. PMID:25148552

  3. Mutagenesis by site-specific arylamine adducts in plasmid DNA: Enhancing replication of the adducted strand alters mutation frequency

    SciTech Connect

    Reid, T.M.; Lee, Meisie; King, C.M. )

    1990-07-03

    Site specifically modified plasmids were used to determine the mutagenic effects of single arylamine adducts in bacterial cells. A synthetic heptadecamer bearing a single N-(guanin-8-yl)-2-aminofluorene (AF) or N-(guanin-8-yl)-2-(acetylamino)fluorene (AAF) adduct was used to introduce the adducts into a specific site in plasmid DNA that contained a 17-base single-stranded region complementary to the modified oligonucleotide. Following transformation of bacterial cells with the adduct-bearing DNA, putative mutants were detected by colony hybridization techniques that allowed unbiased detection of all mutations at or near the site of the adduct. The site-specific AF or AAF adducts were also placed into plasmid DNA that contained uracil residues on the strand opposite that bearing the lesions. The presence of uracil in one strand of the DNA decreases the ability of the bacterial replication system to use the uracil-containing strand, thereby favoring the use of the strand bearing the adducts. In a comparison of the results obtained with site specifically modified DNA, either with or without uracil, the presence of the uracil increased the mutation frequencies of the AF adduct by >7-fold to 2.9% and of the AAF adduct by >12-fold to 0.75%. The AF adduct produced primarily single-base deletions in the absence of uracil but only base substitutions in the uracil-containing constructs. The AAF adduct produced mutations only in the uracil-containing DNA, which included both frame shifts and base substitutions. Mutations produced by both adducts were SOS dependent.

  4. Impact of parameter fluctuations on RF stability performance of DG tunnel FET

    NASA Astrophysics Data System (ADS)

    Sivasankaran, K.; Mallick, P. S.

    2015-08-01

    This paper presents the impact of parameter fluctuation due to process variation on radio frequency (RF) stability performance of double gate tunnel FET (DG TFET). The influence of parameter fluctuation due to process variation leads to DG TFET performance degradation. The RF figures of merit (FoM) such as cut-off frequency (ft), maximum oscillation frequency (fmax) along with stability factor for different silicon body thickness, gate oxide thickness and gate contact alignment are obtained from extracted device parameters through numerical simulation. The impact of parameter fluctuation of silicon body thickness, gate oxide thickness and gate contact alignment was found significant and the result provides design guidelines of DG TFET for RF applications.

  5. Insights into channel potentials and electron quasi-Fermi potentials for DG tunnel FETs

    NASA Astrophysics Data System (ADS)

    Menka; Bulusu, Anand; Dasgupta, S.

    2015-01-01

    A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potentials on the device characteristics of a silicon double-gate tunnel field effect transistor (Si-DG TFET) is reported in this paper. The investigation is mainly aimed at studying electrical properties such as the electric potential, the electron density, and the electron quasi-Fermi potential in a channel. From the simulation results, it is found that the electrical properties in the channel region of the DG TFET are different from those for a DG MOSFET. It is observed that the central channel potential of the DG TFET is not pinned to a fixed potential even after the threshold is passed (as in the case of the DG MOSFET); instead, it initially increases and later on decreases with increasing gate voltage, and this is also the behavior exhibited by the surface potential of the device. However, the drain current always increases with the applied gate voltage. It is also observed that the electron quasi-Fermi potential (eQFP) decreases as the channel potential starts to decrease, and there are hiphops in the channel eQFP for higher applied drain voltages. The channel regime resistance is also observed for higher gate length, which has a great effect on the I-V characteristics of the DG TFET device. These channel regime electrical properties will be very useful for determining the tunneling current; thus these results may have further uses in developing analytical current models.

  6. Cytochrome c adducts with PCB quinoid metabolites.

    PubMed

    Li, Miao; Teesch, Lynn M; Murry, Daryl J; Pope, R Marshal; Li, Yalan; Robertson, Larry W; Ludewig, Gabriele

    2016-02-01

    Polychlorinated biphenyls (PCBs) are a group of 209 individual congeners widely used as industrial chemicals. PCBs are found as by-products in dye and paint manufacture and are legacy, ubiquitous, and persistent as human and environmental contaminants. PCBs with fewer chlorine atoms may be metabolized to hydroxy- and dihydroxy-metabolites and further oxidized to quinoid metabolites both in vitro and in vivo. Specifically, quinoid metabolites may form adducts on nucleophilic sites within cells. We hypothesized that the PCB-quinones covalently bind to cytochrome c and, thereby, cause defects in the function of cytochrome c. In this study, synthetic PCB quinones, 2-(4'-chlorophenyl)-1,4-benzoquinone (PCB3-pQ), 4-4'-chlorophenyl)-1,2-benzoquinone (PCB3-oQ), 2-(3', 5'-dichlorophenyl)-1,4-benzoquinone, 2-(3',4', 5'-trichlorophenyl)-1,4-benzoquinone, and 2-(4'-chlorophenyl)-3,6-dichloro-1,4-benzoquinone, were incubated with cytochrome c, and adducts were detected by liquid chromatography-mass spectrometry (LC-MS) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was employed to separate the adducted proteins, while trypsin digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied to identify the amino acid binding sites on cytochrome c. Conformation change of cytochrome c after binding with PCB3-pQ was investigated by SYBYL-X simulation and cytochrome c function was examined. We found that more than one molecule of PCB-quinone may bind to one molecule of cytochrome c. Lysine and glutamic acid were identified as the predominant binding sites. Software simulation showed conformation changes of adducted cytochrome c. Additionally, cross-linking of cytochrome c was observed on the SDS-PAGE gel. Cytochrome c was found to lose its function as electron acceptor after incubation with PCB quinones. These data provide evidence that the covalent

  7. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mannich-based adduct. 721.4590 Section 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4590 Mannich-based adduct....

  8. PURIFICATION AND RECOVERY OF BULKY HYDROPHOBIC DNA ADDUCTS

    EPA Science Inventory

    For many years 32P postlabeling has detected DNA adducts at very low levels and yet has not been able to identify unknown adducts. Mass spectrometry offers substantially improved identification powers, albeit at some loss in detection limits. With this ultimate utilization of ma...

  9. Intramolecular Tetrylene Lewis Adducts: Synthesis and Reactivity.

    PubMed

    Schneider, Julia; Krebs, Kilian M; Freitag, Sarah; Eichele, Klaus; Schubert, Hartmut; Wesemann, Lars

    2016-07-01

    A series of benzyl(diphenylphosphino) and o-phenyl(diphenlyphosphino) substituted germylenes and plumbylenes were synthesized by nucleophilic substitution between the respective lithium reagent and tetrylene halide. The Lewis pairs were characterized by X-ray crystallography and NMR spectroscopy. The reactivity of the tetrylenes was investigated with respect to azide addition. In the germylene case, the germaniumimide was formed as the kinetically controlled product, which rearranges upon heating to give the phosphinimide. The stannylene and plumbylene derivatives react with adamantylazide to give the azide adducts. 1-Pentene reacts diastereoselectively with the phosphagermirane to give a cyclic addition product. Trimethysilylacetylene shows an addition with the benzylphosphino-substituted germylene and plumbylene to give the cycloheteropentene molecules. The addition product between phenylacetylene and the four membered Ge-P adduct shows after addition at room temperature a 1,4-phenylmigration to give a cyclic phosphine. Alkylnitrene insertion into a Ge-C bond of the alkyne addition product of the phosphagermirane was found in reaction with adamantylazide. PMID:27273819

  10. Diet-related DNA adduct formation in relation to carcinogenesis.

    PubMed

    Hemeryck, Lieselot Y; Vanhaecke, Lynn

    2016-08-01

    The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways. PMID:27330144

  11. Role of pyridine in Wyodak-pyridine adducts

    SciTech Connect

    David L. Wertz; Amanda Winters; Tara Craft; Jami Holloway

    2006-02-01

    When pyridine (PYR) is added to powdered Wyodak subbituminous coal (WYO), the sample is converted to a paste, and the molecular-level adduct which is formed is stable for months. After the excess pyridine has evaporated from the WYO-PYR sample, the stoichiometry of the adduct is ca. two pyridine molecules per bilayer of WYO polycyclic units; this adduct exists even after mild vacuum treatment of the sample. The pyridine molecules in this adduct appear to be located between the bilayer lamellae and to be H-bonded to either H-O or H-N moieties attached to the poly-cyclic aromatic units of WYO. An H-bonded N- - -H-X distance of 2.6 {angstrom} has been calculated from a structural model of the WYO-PYR adduct. 37 refs., 12 figs., 4 tabs.

  12. General method for quantifying base adducts in specific mammalian genes

    SciTech Connect

    Thomas, D.C.; Morton, A.G.; Bohr, V.A.; Sancar, A.

    1988-06-01

    A general method has been developed to measure the formation and removal of DNA adducts in defined sequences of mammalian genomes. Adducted genomic DNA is digested with an appropriate restriction enzyme, treated with Escherichia coli UvrABC excision nuclease (ABC excinuclease), subjected to alkaline gel electrophoresis, and probed for specific sequences by Southern hybridization. The ABC excinuclease incises DNA containing bulky adducts and thus reduces the intensity of the full-length fragments in Southern hybridization in proportion to the number of adducts present in the probed sequence. This method is similar to that developed by Bohr et al. for quantifying pyrimidine dimers by using T4 endonuclease V. Because of the wide substrate range of ABC exinuclease, however, our method can be used to quantify a large variety of DNA adducts in specific genomic sequences.

  13. Insertion of dNTPs Opposite the 1,N2-Propanodeoxyguanosine Adduct by Sulfolobus solfataricus P2 DNA Polymerase IV†, ‡

    PubMed Central

    Wang, Yazhen; Musser, Sarah K.; Saleh, Sam; Marnett, Lawrence J.; Egli, Martin; Stone, Michael P.

    2009-01-01

    1, N2-Propanodeoxyguanosine (PdG) is a stable structural analogue for the 3-(2′-deoxy-β-d-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1dG) adduct derived from exposure of DNA to base propenals and to malondialdehyde. The structures of ternary polymerase–DNA–dNTP complexes for three template–primer DNA sequences were determined, with the Y-family Sulfolobus solfataricus DNA polymerase IV (Dpo4), at resolutions between 2.4 and 2.7 Å. Three template 18-mer–primer 13-mer sequences, 5′-d(TCACXAAATCCTTCCCCC)-3′ • 5′-d(GGGGGAAGGATTT)-3′ (template I), 5′-d(TCACXGAATCCT-TCCCCC)-3′ • 5′-d(GGGGGAAGGATTC)-3′ (template II), and 5′-d(TCATXGAATCCTTCCCCC)-3′ • 5′-d(GGGGGAAGGATTC)-3′ (template III), where X is PdG, were analyzed. With templates I and II, diffracting ternary complexes including dGTP were obtained. The dGTP did not pair with PdG, but instead with the 5′-neighboring template dC, utilizing Watson–Crick geometry. Replication bypass experiments with the template–primer 5′TCACXAAATCCTTACGAGCATCGCCCCC-3′ • 5′-GGGGGCGATGCTCGTAAGGATTT-3′, where X is PdG, which includes PdG in the 5′-CXA-3′ template sequence as in template I, showed that the Dpo4 polymerase inserted dGTP and dATP when challenged by the PdG adduct. For template III, in which the template sequence was 5′-TXG-3′, a diffracting ternary complex including dATP was obtained. The dATP did not pair with PdG, but instead with the 5′-neighboring T, utilizing Watson–Crick geometry. Thus, all three ternary complexes were of the “type II” structure described for ternary complexes with native DNA [Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2001) Cell 107, 91–102]. The PdG adduct remained in the anti conformation about the glycosyl bond in each of these threee ternary complexes. These results provide insight into how −1 frameshift mutations might be generated for the PdG adduct, a structural model for the exocylic M1dG adduct

  14. Reiterative dG addition by Euplotes crassus telomerase during extension of non-telomeric DNA.

    PubMed Central

    Bednenko, J; Melek, M; Shippen, D E

    1998-01-01

    Telomerase from the ciliate Euplotes crassus incorporates G4T4telomeric repeats onto both telomeric and non-telomeric single-stranded DNA 3'-ends via reverse transcription of a templating domain in its RNA subunit. Here we describe an unusual mode of template copying that is characteristic of DNA synthesis onto non-telomeric 3'-ends in vitro . When dTTP was eliminated from telomerase reactions, telomeric primers or DNA products generated from the telomerase endonuclease were extended by precise copying of the RNA template. In contrast, telomerase catalyzed the addition of up to 13 dG residues onto primers with non-telomeric 3'-ends under the same reaction conditions. Introducing mismatches in the 3'-terminus of telomeric primers that reduced primer complementarity to the RNA template induced reiterative dG incorporation, indicating that the reaction is influenced by Watson-Crick base pair formation between the primer and the RNA template. Unexpectedly, the reiterative dG addition mode was confined to telomerase derived from developing cells that undergo new telomere formation. This reaction was not observed in vegetatively growing cells. We postulate that indiscriminate dG addition by telomerase occurs by reiterative copying of C residues in the telomerase RNA templating domain and reflects lateral instability of the primer-template interaction during de novo telomere formation. PMID:9705511

  15. An experimental analysis of the dual gate emitter switched thyristor (DG-EST)

    NASA Astrophysics Data System (ADS)

    Sawant, Shankar; Sridhar, S.; Baliga, B. Jayant

    1999-10-01

    In recent years, various dual MOS gated thyristor structures have been proposed to improve the three pronged trade-off of forward voltage drop, turn-off time and forward biased safe operating area when compared to single gate devices. The dual gate emitter switched thyristor (DG-EST), with its unique thyristor current partitioning mechanism, has been reported to posses superior characteristics when compared to conventional single gate ESTs. In this paper, a detailed study of the device physics of operation of the DG-EST is presented, supported by two dimensional numerical simulations. Effects of variations in the floating emitter length, lifetime in the drift region and temperature on the forward voltage drop are experimentally observed. An analytical model predicting the maximum controllable current density ( JMCC) of the DG-EST is reported and confirmed through experimental measurements. The DG-EST is found to have a superior trade-off curve of on-state voltage drop versus turn-off time when compared to the conventional emitter switched thyristor (C-EST).

  16. Mechanistic Investigation of the Bypass of a Bulky Aromatic DNA Adduct Catalyzed by a Y-family DNA Polymerase

    PubMed Central

    Gadkari, Varun V.; Tokarsky, E. John; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2014-01-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2’-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4. PMID:25048879

  17. 32P-POSTLABELING DNA ADDUCT ASSAY: CIGARETTE SMOKE-INDUCED DNA ADDUCTS IN THE RESPIRATORY AND NONRESPIRATORY RAT TISSUES

    EPA Science Inventory

    An analysis of the tissue DNA adducts in rats by the sensitive 32P-postlabeling assay showed one to eight detectable DNA adducts in lung, trachea, larynx, heart and bladder of the sham controls. hronic exposure of animals to mainstream cigarette smoke showed a remarkable enhancem...

  18. The ADER-DG method for seismic wave propagation and earthquake rupture dynamics

    NASA Astrophysics Data System (ADS)

    Pelties, Christian; Gabriel, Alice; Ampuero, Jean-Paul; de la Puente, Josep; Käser, Martin

    2013-04-01

    We will present the Arbitrary high-order DERivatives Discontinuous Galerkin (ADER-DG) method for solving the combined elastodynamic wave propagation and dynamic rupture problem. The ADER-DG method enables high-order accuracy in space and time while being implemented on unstructured tetrahedral meshes. A tetrahedral element discretization provides rapid and automatized mesh generation as well as geometrical flexibility. Features as mesh coarsening and local time stepping schemes can be applied to reduce computational efforts without introducing numerical artifacts. The method is well suited for parallelization and large scale high-performance computing since only directly neighboring elements exchange information via numerical fluxes. The concept of fluxes is a key ingredient of the numerical scheme as it governs the numerical dispersion and diffusion properties and allows to accommodate for boundary conditions, empirical friction laws of dynamic rupture processes, or the combination of different element types and non-conforming mesh transitions. After introducing fault dynamics into the ADER-DG framework, we will demonstrate its specific advantages in benchmarking test scenarios provided by the SCEC/USGS Spontaneous Rupture Code Verification Exercise. An important result of the benchmark is that the ADER-DG method avoids spurious high-frequency contributions in the slip rate spectra and therefore does not require artificial Kelvin-Voigt damping, filtering or other modifications of the produced synthetic seismograms. To demonstrate the capabilities of the proposed scheme we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes branching and curved fault segments. Furthermore, topography is respected in the discretized model to capture the surface waves correctly. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in

  19. HiCoDG: A Hierarchical Data-Gathering Scheme Using Cooperative Multiple Mobile Elements †

    PubMed Central

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2014-01-01

    In this paper, we study mobile element (ME)-based data-gathering schemes in wireless sensor networks. Due to the physical speed limits of mobile elements, the existing data-gathering schemes that use mobile elements can suffer from high data-gathering latency. In order to address this problem, this paper proposes a new hierarchical and cooperative data-gathering (HiCoDG) scheme that enables multiple mobile elements to cooperate with each other to collect and relay data. In HiCoDG, two types of mobile elements are used: the mobile collector (MC) and the mobile relay (MR). MCs collect data from sensors and forward them to the MR, which will deliver them to the sink. In this work, we also formulated an integer linear programming (ILP) optimization problem to find the optimal trajectories for MCs and the MR, such that the traveling distance of MEs is minimized. Two variants of HiCoDG, intermediate station (IS)-based and cooperative movement scheduling (CMS)-based, are proposed to facilitate cooperative data forwarding from MCs to the MR. An analytical model for estimating the average data-gathering latency in HiCoDG was also designed. Simulations were performed to compare the performance of the IS and CMS variants, as well as a multiple traveling salesman problem (mTSP)-based approach. The simulation results show that HiCoDG outperforms mTSP in terms of latency. The results also show that CMS can achieve the lowest latency with low energy consumption. PMID:25526356

  20. 75 FR 54918 - Draft Regulatory Guide, DG-1247, “Design-Basis Hurricane and Hurricane Missiles for Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... August 31, 2010 (75 FR 53352), the U.S. Nuclear Regulatory Commission (NRC) published a notice of issuance and availability of Draft Regulatory Guide (DG)--1247, ``Design-Basis Hurricane and Hurricane... COMMISSION Draft Regulatory Guide, DG-1247, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear...

  1. 75 FR 45677 - Draft Regulatory Guide, DG-1216,”Plant-Specific Applicability of Transition Break Size Specified...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    .... SUPPLEMENTARY INFORMATION: On June 28, 2010 (75 FR 36700), the NRC published a notice of issuance and... COMMISSION Draft Regulatory Guide, DG-1216,''Plant-Specific Applicability of Transition Break Size Specified... . The Draft Regulatory Guide, DG-1216, ``Plant- Specific Applicability of Transition Break...

  2. Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis.

    PubMed

    Tong, Zheng; Hong, Bo; Yang, Yingjie; Li, Qiuhua; Ma, Nan; Ma, Chao; Gao, Junping

    2009-09-01

    We isolated 13 DREB1 (dehydration responsive element binding factor 1) genes from chrysanthemum and further divided them into three groups, DgDREB1A, DgDREB1B and DgDREB1C, based on the phylogenetic analysis. Each group showed their unique expression patterns under cold, dehydration and salt stress conditions. Arabidopsis plants overexpressing DgDREB1A (1A plants) exhibited significantly stronger tolerance to freezing and drought than those overexpressing DgDREB1B (1B plants) and the control plants. In addition, 1A plants showed delayed flowering, but not dwarfism; while 1B plants showed dwarfism, but not delayed flowering. In 1A plants, the expression of three stress-related DREB1-downstream genes, COR47, COR15A, and RD29A, was strongly induced while the expression of CO and FT, two photoperiod responsive flowering-time genes, was inhibited. In 1B plants, the expression of GA2ox7, a GA-deactivation enzyme gene, was dramatically enhanced. The results above strongly suggest that members from different DgDREB1 groups may have distinct effects on plant development: DgDREB1A may be involved in photoperiod-related flowering-time determination and DgDREB1B in GA-mediated plant development. PMID:19544047

  3. NMR solution structure of an N2-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: Intercalation from the minor groove with ruptured Watson-Crick base pairing

    PubMed Central

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H.; Cai, Yuqin; Rodriguez, Fabian A.; Sayer, Jane M.; Jerina, Donald M.; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2012-01-01

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the non-planar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely-studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14-position with the exocyclic amino group of guanine. Here, we present the first NMR solution structure of a DB[a,l]P-derived adduct, the 14R (+)-trans-anti-DB[a,l]P–N2-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N2-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3’-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3’-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE - DNA adduct conformation differs from: (1) the classical intercalation motif where Watson-Crick base-pairing is intact at the lesion site, and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix . The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed. PMID:23121427

  4. Biocatalytic Reductions of Baylis - Hillman Adducts

    SciTech Connect

    A Walton; W Conerly; Y Pompeu; B Sullivan; J Stewart

    2011-12-31

    Baylis-Hillman adducts are highly useful synthetic intermediates; to enhance their value further, we sought enantiocomplementary alkene reductases to introduce chirality. Two solutions emerged: (1) a wild-type protein from Pichia stipitis (OYE 2.6), whose performance significantly outstrips that of the standard enzyme (Saccharomyces pastorianus OYE1), and (2) a series of OYE1 mutants at position 116 (Trp in the wild-type enzyme). To understand how mutations could lead to inverted enantioselectivity, we solved the X-ray crystal structure of the Trp116Ile OYE1 variant complexed with a cyclopentenone substrate. This revealed key protein-ligand interactions that control the orientation of substrate binding above the FMN cofactor.

  5. DNA adduct formation by alachlor metabolites

    SciTech Connect

    Brown, M.A.; Kimmel, E.C.; Casida, J.E.

    1988-01-01

    The extent of DNA adduct formation by alachlor (ArN(CH/sub 2/OCH/sub 3/)C(O)CH/sub 2/Cl wherein Ar is 2,6-diethylphenyl) and its metabolites is used as a guide to deduce the causal agent(s) in the carcinogenicity of this major herbicide. (/sup 14/C-phenyl)Alachlor is compared to its two metabolic cleavage products, (/sup 14/C-phenyl) 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) (ArNHC(O)CH/sub 2/Cl) and (/sup 14/C-phenyl)2,6-diethylaniline (DEA) (ArNH/sub 2/), and to (/sup 14/C-methoxy)alachlor in various in vitro and in vivo systems. Horseradish peroxidase and hydrogen peroxide activate DEA, but not CEDPA or alachlor, for formation of adducts with calf thymus DNA, which probably involves 2,6-diethylnitrosobenzene (ArNO) as an intermediate. Mouse liver microsomes and NADPH are both required to enhance the binding from each labeled preparation to calf thymus DNA; 4-fold higher labeling is observed from (/sup 14/C-methoxy)- than from (/sup 14/C-phenyl)alachlor. This 4-fold preferential DNA labeling from the /sup 14/C-methoxy compound is likewise found in the liver of mice treated intraperitoneally. Mouse liver protein and hemoglobin are also labeled, in vivo, with (/sup 14/C-phenyl)alachlor, -CDEPA and -DEA, and, as with the DNA, the labeling of these proteins is 1.5- to 2-fold higher with (/sup 14/C-methoxy)alachlor.

  6. Glottal Adduction and Subglottal Pressure in Singing.

    PubMed

    Herbst, Christian T; Hess, Markus; Müller, Frank; Švec, Jan G; Sundberg, Johan

    2015-07-01

    Previous research suggests that independent variation of vocal loudness and glottal configuration (type and degree of vocal fold adduction) does not occur in untrained speech production. This study investigated whether these factors can be varied independently in trained singing and how subglottal pressure is related to average glottal airflow, voice source properties, and sound level under these conditions. A classically trained baritone produced sustained phonations on the endoscopic vowel [i:] at pitch D4 (approximately 294 Hz), exclusively varying either (a) vocal register; (b) phonation type (from "breathy" to "pressed" via cartilaginous adduction); or (c) vocal loudness, while keeping the others constant. Phonation was documented by simultaneous recording of videokymographic, electroglottographic, airflow and voice source data, and by percutaneous measurement of relative subglottal pressure. Register shifts were clearly marked in the electroglottographic wavegram display. Compared with chest register, falsetto was produced with greater pulse amplitude of the glottal flow, H1-H2, mean airflow, and with lower maximum flow declination rate (MFDR), subglottal pressure, and sound pressure. Shifts of phonation type (breathy/flow/neutral/pressed) induced comparable systematic changes. Increase of vocal loudness resulted in increased subglottal pressure, average flow, sound pressure, MFDR, glottal flow pulse amplitude, and H1-H2. When changing either vocal register or phonation type, subglottal pressure and mean airflow showed an inverse relationship, that is, variation of glottal flow resistance. The direct relation between subglottal pressure and airflow when varying only vocal loudness demonstrated independent control of vocal loudness and glottal configuration. Achieving such independent control of phonatory control parameters would be an important target in vocal pedagogy and in voice therapy. PMID:25944295

  7. Immunodetection of Serum Albumin Adducts as Biomarkers for Organophosphorus Exposure

    PubMed Central

    Chen, Sigeng; Zhang, Jun; Lumley, Lucille

    2013-01-01

    A major challenge in organophosphate (OP) research has been the identification and utilization of reliable biomarkers for the rapid, sensitive, and efficient detection of OP exposure. Although Tyr 411 OP adducts to human serum albumin (HSA) have been suggested to be one of the most robust biomarkers in the detection of OP exposure, the analysis of HSA-OP adduct detection has been limited to techniques using mass spectrometry. Herein, we describe the procurement of two monoclonal antibodies (mAb-HSA-GD and mAb-HSA-VX) that recognized the HSA Tyr 411 adduct of soman (GD) or S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), respectively, but did not recognize nonphosphonylated HSA. We showed that mAb-HSA-GD was able to detect the HSA Tyr 411 OP adduct at a low level (i.e., human blood plasma treated with 180 nM GD) that could not be detected by mass spectrometry. mAb-HSA-GD and mAb-HSA-VX showed an extremely low-level detection of GD adducted to HSA (on the order of picograms). mAb-HSA-GD could also detect serum albumin OP adducts in blood plasma samples from different animals administered GD, including rats, guinea pigs, and monkeys. The ability of the two antibodies to selectively recognize nerve agents adducted to serum albumin suggests that these antibodies could be used to identify biomarkers of OP exposure and provide a new biologic approach to detect OP exposure in animals. PMID:23192655

  8. Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis.

    PubMed

    Agerbirk, Niels; De Nicola, Gina Rosalinda; Olsen, Carl Erik; Müller, Caroline; Iori, Renato

    2015-10-01

    Isothiocyanates form adducts with a multitude of biomolecules, and these adducts need analytical methods. Likewise, analytical methods for hydrophilic isothiocyanates are needed. We considered reaction with ammonia to form thiourea derivatives. The hydrophilic, glycosylated isothiocyanate moringin, 4-(α-L-rhamnopyranosyloxy)benzyl isothiocyanate, was efficiently derivatized to the thiourea derivative by incubation with ammonia. The hydrophobic benzyl isothiocyanate was also efficiently derivatized to the thiourea derivative. The thiourea group provided a UV absorbing chromophore, and the derivatives showed expectable sodium and hydrogen adducts in ion trap mass spectrometry and were suitable for liquid chromatography analysis. Reactive dithiocarbamate adducts constitute the major type of reactive ITC adduct expected in biological matrices. Incubation of a model dithiocarbamate with ammonia likewise resulted in conversion to the corresponding thiourea derivative, suggesting that a variety of matrix-bound reactive isothiocyanate adducts can be determined using this strategy. As an example of the application of the method, recovery of moringin and benzyl isothiocyanate applied to cabbage leaf discs was studied in simulated insect feeding assays. The majority of moringin was recovered as native isothiocyanate, but a major part of benzyl isothiocyanate was converted to reactive adducts. PMID:26342619

  9. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  10. Protein adduct formation as a molecular mechanism in neurotoxicity.

    PubMed

    Lopachin, Richard M; Decaprio, Anthony P

    2005-08-01

    Chemicals that cause nerve injury and neurological deficits are a structurally diverse group. For the majority, the corresponding molecular mechanisms of neurotoxicity are poorly understood. Many toxicants (e.g., hepatotoxicants) of other organ systems and/or their oxidative metabolites have been identified as electrophiles and will react with cellular proteins by covalently binding nucleophilic amino acid residues. Cellular toxicity occurs when adduct formation disrupts protein structure and/or function, which secondarily causes damage to submembrane organelles, metabolic pathways, or cytological processes. Since many neurotoxicants are also electrophiles, the corresponding pathophysiological mechanism might involve protein adduction. In this review, we will summarize the principles of covalent bond formation that govern reactions between xenobiotic electrophiles and biological nucleophiles. Because a neurotoxicant can form adducts with multiple nucleophilic residues on proteins, the challenge is to identify the mechanistically important adduct. In this regard, it is now recognized that despite widespread chemical adduction of tissue proteins, neurotoxicity can be mediated through binding of specific target nucleophiles in key neuronal proteins. Acrylamide and 2,5-hexanedione are prototypical neurotoxicants that presumably act through the formation of protein adducts. To illustrate both the promise and the difficulty of adduct research, these electrophilic chemicals will be discussed with respect to covalent bond formation, suspected protein sites of adduction, and proposed mechanisms of neurotoxicity. The goals of future investigations are to identify and quantify specific protein adducts that play a causal role in the generation of neurotoxicity induced by electrophilic neurotoxicants. This is a challenging but critical objective that will be facilitated by recent advances in proteomic methodologies. PMID:15901921

  11. Graded channel architecture: the solution for misaligned DG FD SOI n-MOSFETs

    NASA Astrophysics Data System (ADS)

    Sharma, Rupendra Kumar; Gupta, Ritesh; Gupta, Mridula; Gupta, R. S.

    2008-07-01

    A double-gate (DG) metal-oxide semiconductor field-effect transistor (MOSFET) is the leading contender for a deep submicron MOSFET to reduce gate oxide tunneling. One major issue of concern in a DG-MOSFET is the alignment between the top and bottom gates that influences the device performance, especially in a subthreshold regime. Use of graded channel (high-low, low-high and low-high-low doping) architecture somehow reduces this gate misalignment effect and hence has been analyzed in the present paper through intensive simulation and analytical analysis. The model uses the conformal mapping transformation approach to include the fringing field effect that arises at the bottom gate electrode in the ungated region and is used to predict the surface potential, electric field, threshold voltage, sub-threshold slope and drain-induced barrier lowering effects. The results so obtained have been verified with 3D numerical simulation using an ATLAS 3D device simulator.

  12. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    DOE PAGESBeta

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides themore » first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.« less

  13. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    SciTech Connect

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.

  14. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity.

    PubMed

    Jiang, Shuai; Pan, Amy W; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T; Pan, Chong-xian

    2015-12-21

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 10(8) nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 10(8) nucleotides per hour in carboplatin alone (p = 0.021). This rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic. PMID:26544157

  15. DG-FTLE: Lagrangian coherent structures with high-order discontinuous-Galerkin methods

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel A.; Jacobs, Gustaaf B.

    2015-08-01

    We present an algorithm for the computation of finite-time Lyapunov exponent (FTLE) fields using discontinuous-Galerkin (dG) methods in two dimensions. The algorithm is designed to compute FTLE fields simultaneously with the time integration of dG-based flow solvers of conservation laws. Fluid tracers are initialized at Gauss-Lobatto quadrature nodes within an element. The deformation gradient tensor, defined by the deformation of the Lagrangian flow map in finite time, is determined per element with high-order dG operators. Multiple flow maps are constructed from a particle trace that is released at a single initial time by mapping and interpolating the flow map formed by the locations of the fluid tracers after finite time integration to a unit square master element and to the quadrature nodes within the element, respectively. The interpolated flow maps are used to compute forward-time and backward-time FTLE fields at several times using dG operators. For a large finite integration time, the interpolation is increasingly poorly conditioned because of the excessive subdomain deformation. The conditioning can be used in addition to the FTLE to quantify the deformation of the flow field and identify subdomains with material lines that define Lagrangian coherent structures. The algorithm is tested on three benchmarks: an analytical spatially periodic gyre flow, a vortex advected by a uniform inviscid flow, and the viscous flow around a square cylinder. In these cases, the algorithm is shown to have spectral convergence.

  16. A new approach to extracting the RF parameters of asymmetric DG MOSFETs with the NQS effect

    NASA Astrophysics Data System (ADS)

    Pati, Sudhansu Kumar; Koley, Kalyan; Dutta, Arka; Mohankumar, N.; Sarkar, Chandan Kumar

    2013-11-01

    In analog circuit design an important parameter, from the perspective of superior device performance, is linearity. The DG MOSFET in asymmetric mode operation has been found to present a better linearity. In addition to that it provides, at the discretion of analog circuit designer, an additional degree of freedom, by providing independent bias control for the front and the back gates. Here a non-quasi-static (NQS) small signal model for DGMOSFET with asymmetric gate bias is proposed for extracting the parameters of the device using TCAD simulations. The parameters extracted here for analysis are the intrinsic front and back gate to drain capacitance, Cgd1 and Cgd2, the intrinsic front and back distributed channel resistance, Rgd1 and Rgd2 respectively, the transport delay, τm, and the inductance, Lsd. The parameter extraction model for an asymmetric DG MOSFET is validated with pre-established extracted parameter data, for symmetric DG MOSFET devices, from the available literature. The device simulation is performed with respect to frequency up to 100 GHz.

  17. Combined effect of CVR and penetration of DG in the voltage profile and losses of lowvoltage secondary distribution networks

    NASA Astrophysics Data System (ADS)

    Bokhari, Abdullah

    Demarcations between traditional distribution power systems and distributed generation (DG) architectures are increasingly evolving as higher DG penetration is introduced in the system. The concerns in existing electric power systems (EPSs) to accommodate less restrictive interconnection policies while maintaining reliability and performance of power delivery have been the major challenge for DG growth. In this dissertation, the work is aimed to study power quality, energy saving and losses in a low voltage distributed network under various DG penetration cases. Simulation platform suite that includes electric power system, distributed generation and ZIP load models is implemented to determine the impact of DGs on power system steady state performance and the voltage profile of the customers/loads in the network under the voltage reduction events. The investigation designed to test the DG impact on power system starting with one type of DG, then moves on multiple DG types distributed in a random case and realistic/balanced case. The functionality of the proposed DG interconnection is designed to meet the basic requirements imposed by the various interconnection standards, most notably IEEE 1547, public service commission, and local utility regulation. It is found that implementation of DGs on the low voltage secondary network would improve customer's voltage profile, system losses and significantly provide energy savings and economics for utilities. In a network populated with DGs, utility would have a uniform voltage profile at the customers end as the voltage profile becomes more concentrated around targeted voltage level. The study further reinforced the concept that the behavior of DG in distributed network would improve voltage regulation as certain percentage reduction on utility side would ensure uniform percentage reduction seen by all customers and reduce number of voltage violations.

  18. Relating protein adduction to gene expression changes: a systems approach

    PubMed Central

    Zhang, Bing; Shi, Zhiao; Duncan, Dexter T; Prodduturi, Naresh; Marnett, Lawrence J; Liebler, Daniel C

    2013-01-01

    Modification of proteins by reactive electrophiles such as the 4-hydroxy-2-nonenal (HNE) plays a critical role in oxidant-associated human diseases. However, little is known about protein adduction and the mechanism by which protein damage elicits adaptive effects and toxicity. We developed a systems approach for relating protein adduction to gene expression changes through the integration of protein adduction, gene expression, protein-DNA interaction, and protein-protein interaction data. Using a random walk strategy, we expanded a list of responsive transcription factors inferred from gene expression studies to upstream signaling networks, which in turn allowed overlaying protein adduction data on the network for the prediction of stress sensors and their associated regulatory mechanisms. We demonstrated the general applicability of transcription factor-based signaling network inference using 103 known pathways. Applying our workflow on gene expression and protein adduction data from HNE-treatment not only rediscovered known mechanisms of electrophile stress but also generated novel hypotheses regarding protein damage sensors. Although developed for analyzing protein adduction data, the framework can be easily adapted for phosphoproteomics and other types of protein modification data. PMID:21594272

  19. Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island

    NASA Astrophysics Data System (ADS)

    Roy, P. C.; Majumder, A.; Chakraborty, N.

    2010-10-01

    An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.

  20. Detection and quantitation of benzo(a)pyrene-derived DNA adducts in mouse liver by liquid chromatography - tandem mass spectrometry: comparison with P-32-postlabeling

    SciTech Connect

    Singh, R.; Gaskell, M.; Le Pla, R.C.; Kaur, B.; Azim-Araghi, A.; Roach, J.; Koukouves, G.; Souliotis, V.L.; Kyrtopoulos, S.A.; Farmer, P.B.

    2006-06-19

    The polycyclic aromatic hydrocarbon, benzo(a)pyrene (B(a)P) is a proven animal carcinogen that is potentially carcinogenic to humans. B( a)P is an ubiquitous environmental pollutant and is also present in tobacco smoke, coal tar, automobile exhaust emissions, and charred food. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using electrospray ionization and selected reaction monitoring (SRM) has been developed for the detection of 10-(deoxyguanosin-N{sub 2}-yl)-7,8,9-trihydroxy-7,8,9,10- tetrahydrobenzo(a)pyrene (B(a)PDE-N{sub 2}dG) adducts formed in DNA following the metabolic activation of B(a)P to benzo(a) pyrene-7,8-dihydrodiol-9,10-epoxide (B(a)PDE).

  1. Covalent thiol adducts arising from reactive intermediates of cocaine biotransformation.

    PubMed

    Schneider, Kevin J; DeCaprio, Anthony P

    2013-11-18

    Exposure to cocaine results in the depletion of hepatocellular glutathione and macromolecular protein binding in humans. Such cocaine-induced responses have generally been attributed to oxidative stress and reactive metabolites resulting from oxidative activation of the cocaine tropane nitrogen. However, little conclusive data exists on the mechanistic pathways leading to protein modification or the structure and specificity of cocaine-derived adduction products. We now report a previously uncharacterized route of cocaine bioactivation leading to the covalent adduction of biological thiols, including cysteine and glutathione. Incubation of cocaine with biological nucleophiles in an in vitro biotransformation system containing human liver microsomes identified a monooxygenase-mediated event leading to the oxidation of, and subsequent sulfhydryl addition to, the cocaine aryl moiety. Adduct structures were confirmed using ultra-high performance liquid chromatography coupled to high resolution, high mass accuracy mass spectrometry. Examination of assays containing transgenic bactosomes expressing single human cytochrome P450 isoforms determined the role of P450s 1A2, 2C19, and 2D6 in the oxidation process resulting in adduct formation. P450-catalyzed aryl epoxide formation and subsequent attack by free nucleophilic moieties is consistent with the resulting adduct structures, mechanisms of formation, and the empirical observation of multiple structural and stereo isomers. Analogous adduction mechanisms were maintained across all sulfhydryl-containing nucleophile models examined; N-acetylcysteine, glutathione, and a synthetic cysteine-containing hexapeptide. Predictive in silico calculations of molecular reactivity and electrophilicity/nucleophilicity were compared to the results of in vitro assay incubations in order to better understand the adduction process using the principles of hard and soft acid and base (HSAB) theory. This study elucidated a novel metabolic

  2. Inhibition of Akt potentiates 2-DG-induced apoptosis via downregulation of UPR in acute lymphoblastic leukemia.

    PubMed

    DeSalvo, Joanna; Kuznetsov, Jeffim N; Du, Jianfeng; Leclerc, Gilles M; Leclerc, Guy J; Lampidis, Theodore J; Barredo, Julio C

    2012-07-01

    The ability to pair the regulation of metabolism and cellular energetics with oncogenes and tumor suppressor genes provides cancer cells with a growth and survival advantage over normal cells. We investigated the mechanism of cell death induced by 2-deoxy-D-glucose (2-DG), a sugar analog with dual activity of inhibiting glycolysis and N-linked glycosylation, in acute lymphoblastic leukemia (ALL). We found that, unlike most other cancer phenotypes in which 2-DG only inhibits cell proliferation under normoxic conditions, ALL lymphoblasts undergo apoptosis. Bp-ALL cell lines and primary cells exhibited sensitivity to 2-DG, whereas T-ALL cells were relatively resistant, revealing phenotypic differences within ALL subtypes. Cotreatment with D-mannose, a sugar essential for N-linked glycosylation, rescues 2-DG-treated ALL cells, indicating that inhibition of N-linked glycosylation and induction of ER stress and the unfolded protein response (UPR) is the predominant mechanism of 2-DG's cytotoxicity in ALL. 2-DG-treated ALL cells exhibit upregulation of P-AMPK, P-Akt, and induction of ER stress/UPR markers (IRE1α, GRP78, P-eIF2α, and CHOP), which correlate with PARP cleavage and apoptosis. In addition, we find that pharmacologic and genetic Akt inhibition upregulates P-AMPK, downregulates UPR, and sensitizes ALL cells to remarkably low doses of 2-DG (0.5 mmol/L), inducing 85% cell death and overcoming the relative resistance of T-ALL. In contrast, AMPK knockdown rescues ALL cells by upregulating the prosurvival UPR signaling. Therefore, 2-DG induces ALL cell death under normoxia by inducing ER stress, and AKT and AMPK, traditionally thought to operate predominantly on the glycolytic pathway, differentially regulate UPR activity to determine cell death or survival. PMID:22692960

  3. Cisplatin adducts on a GGG sequence within a DNA duplex studied by NMR spectroscopy and molecular dynamics simulations.

    PubMed

    Téletchéa, Stéphane; Skauge, Tormod; Sletten, Einar; Kozelka, Jirí

    2009-11-16

    The antitumor drug cisplatin(cis-[PtCl2(NH3)2]) reacts with cellular DNA to form GG intrastrand adducts between adjacent guanines as predominant lesions. GGG sites have been shown to be hotspots of platination. To study the structural perturbation induced by binding of cisplatin to two adjacent guanines of a GGG trinucleotide,we examined here the decanucleotide duplex d[(G1C2C3G*4 G*5 G6T7-C8G9C10).d(G11C12G13A14C15C16C17G18-G19C20)] (dsCG*G*G) intrastrand cross-linked at the G* guanines by cis-{Pt(NH3)2}2+ using NMR spectroscopy and molecular dynamics (MD) simulations.The NMR spectra of dsCG*G*G were found to be similar to those of previously characterized DNA duplexes cross-linked by cisplatin at apyG*G*X site (py=pyrimidine; X=C,T, A). This similarity of NMR spectra indicates that the base at the 3'-side of the G*G*-Pt cross-link does not affect the structure to a large extent. An unprecedented reversible isomerization between the duplex dsCG*G*G (bearing a G*4 G*5 -Pt chelate) and duplex dsGG*G*T (bearing a G*5 G*6 -Pt chelate)was observed, which yielded a 40:60 equilibrium between the two intrastrand GG-Pt cross-links. No formation of interstrand cross-links was observed.NMR spectroscopic data of dsCG*G*G indicated that the deoxyribose of the 5'-G* adopts an N-type conformation, and the cytidines C3, C15,and C16 have average phase angles intermediate between S and N. The NMR spectroscopic chemical shifts of dsGG*G*T showed some fundamental differences to those of pyG*G*-platinum adducts but were in agreement with the NMR spectra reported previously for the DNA duplexes crosslinked at an AG*G*C sequence by cisplatin or oxaliplatin. The presence of apurine instead of a pyrimidine at the 5'-side of the G*G* cross-link seems therefore to affect the structure of the XG* step significantly. PMID:19813235

  4. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases

    NASA Astrophysics Data System (ADS)

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  5. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases.

    PubMed

    Karmakar, Saswata; Harcourt, Emily M; Hewings, David S; Scherer, Florian; Lovejoy, Alexander F; Kurtz, David M; Ehrenschwender, Thomas; Barandun, Luzi J; Roost, Caroline; Alizadeh, Ash A; Kool, Eric T

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens. PMID:26291948

  6. PROTEIN ADDUCTS AS BIOMAKERS OF EXPOSURE TO ORGANOPHOSPHORUS COMPOUNDS

    PubMed Central

    Marsillach, Judit; Costa, Lucio G.; Furlong, Clement E.

    2013-01-01

    Exposure to organophosphorus (OP) compounds can lead to serious neurological damage or death. Following bioactivation by the liver cytochromes P450, the OP metabolites produced are potent inhibitors of serine active-site enzymes including esterases, proteases and lipases. OPs may form adducts on other cellular proteins. Blood cholinesterases (ChEs) have long served as biomarkers of OP exposure in humans. However, the enzymatic assays used for biomonitoring OP exposures have several drawbacks. A more useful approach will focus on multiple biomarkers and avoid problems with the enzymatic activity assays. OP inhibitory effects result from a covalent bond with the active-site serine of the target enzymes. The serine OP adducts become irreversible following a process referred to as aging where one alkyl group dissociates over variable lengths of time depending on the OP adduct. The OP-adducted enzyme then remains in circulation until it is degraded, allowing for a longer window of detection compared with direct analysis of OPs or their metabolites. Mass spectrometry (MS) provides a very sensitive method for identification of post-translational protein modifications. MS analyses of the percentage adduction of the active-site serine of biomarker proteins such as ChEs will eliminate the need for basal activity levels of the individual and will provide for a more accurate determination of OP exposure. MS analysis of biomarker proteins also provides information about the OP that has caused inhibition. Other useful biomarker proteins include other serine hydrolases, albumin, tubulin and transferrin. PMID:23261756

  7. Isolation, identification, and assay of [3H]-porfiromycin adducts of EMT6 mouse mammary tumor cell DNA: effects of hypoxia and dicumarol on adduct patterns.

    PubMed

    Tomasz, M; Hughes, C S; Chowdary, D; Keyes, S R; Lipman, R; Sartorelli, A C; Rockwell, S

    1991-07-01

    [3H]-(N-la-methyl) Porfiromycin (POR) was employed to detect and identify the radiolabeled mono- and bis-adducts formed in living EMT6 mouse mammary tumor cells under different conditions. To provide authentic standard adducts, calf-thymus DNA was treated with POR under reductive activation, then digested to nucleosides and POR-nucleoside adducts. The three major adducts formed were isolated by HPLC and authenticated. Two were mono-adducts, composed of deoxyguanosine linked at its N2-position to C-1 of POR and of 10-decarbamoyl POR. The third was a bis-adduct, in which POR was crosslinked to two deoxyguanosines at their N2-positions. DNA from [3H]-POR treated EMT6 cells was digested an analyzed by HPLC. DNA-associated label was located in thymidine and in two mono-adducts and one bis-adduct identical to those described above. Label in thymidine resulted from N-demethylation of POR and reincorporation of label into new thymidylate residues. Adducts were formed more abundantly in hypoxia than in air. In addition, the mono-adduct to crosslink ratios were different, approximately 1:1 and 2:1 for hypoxic and aerobic cells, respectively. The different patterns of alkylation in air and hypoxia may be related to the greater toxicity of POR in hypoxia. When cells were treated simultaneously with POR and dicumarol, adduct levels were lower, and a new, unknown adduct was observed primarily under hypoxia; these changes may be related to the altered toxicity of POR in the presence of dicumarol. The HPLC assay detected simultaneously the full array of stable mono- and bis-adducts in DNA with good sensitivity (greater than or equal to 2 x 10(6) adducts/nucleotide) and excellent reproducibility. This assay should be generally applicable to all cells and tissues when MC or POR with high specific radioactivity can be employed. PMID:1714285

  8. Application of the DG-1199 methodology to the ESBWR and ABWR.

    SciTech Connect

    Kalinich, Donald A.; Gauntt, Randall O.; Walton, Fotini

    2010-09-01

    Appendix A-5 of Draft Regulatory Guide DG-1199 'Alternative Radiological Source Term for Evaluating Design Basis Accidents at Nuclear Power Reactors' provides guidance - applicable to RADTRAD MSIV leakage models - for scaling containment aerosol concentration to the expected steam dome concentration in order to preserve the simplified use of the Accident Source Term (AST) in assessing containment performance under assumed design basis accident (DBA) conditions. In this study Economic and Safe Boiling Water Reactor (ESBWR) and Advanced Boiling Water Reactor (ABWR) RADTRAD models are developed using the DG-1199, Appendix A-5 guidance. The models were run using RADTRAD v3.03. Low Population Zone (LPZ), control room (CR), and worst-case 2-hr Exclusion Area Boundary (EAB) doses were calculated and compared to the relevant accident dose criteria in 10 CFR 50.67. For the ESBWR, the dose results were all lower than the MSIV leakage doses calculated by General Electric/Hitachi (GEH) in their licensing technical report. There are no comparable ABWR MSIV leakage doses, however, it should be noted that the ABWR doses are lower than the ESBWR doses. In addition, sensitivity cases were evaluated to ascertain the influence/importance of key input parameters/features of the models.

  9. The performance measure of GS-DG MOSFET: an impact of metal gate work function

    NASA Astrophysics Data System (ADS)

    Mohapatra, S. K.; Pradhan, K. P.; Sahu, P. K.; Kumar, M. R.

    2014-06-01

    The quantitative assessment of the nanoscale gate stack double gate (GS-DG) MOSFET performance values are numerically calculated with different gate metal work functions (Φ m = 4.52 eV, 4.6 eV, 4.7 eV). The effect of electrostatic control on dc, analog and RF figures of merit (FOMs) which includes subthreshold slope (SS), drain induced barrier lowering (DIBL), transconductance generation factor (TGF), early voltage (V EA), intrinsic gain (AV), cut off frequency (f T) and transconductance frequency product (TFP), gain frequency product (GFP) and gain transconductance frequency product (GTFP) have been investigated for the model GS-DG MOSFET. Higher TGF and AV was achieved with Φ m = 4.6 eV for the device. For a better comparison among the analog/RF FOMs, the threshold voltage (V th) is maintained at a constant value for different work function cases. To achieve a constant V th, the channel doping (NA) and source/drain doping (ND) is tuned accordingly for all device cases. Superior f T which is due to higher transconductance (g m) and lower output conductance (g d), was observed for the device. In addition, better gain performances i.e. GFP and GTFP were achieved resulting from improved g m. Thus, the device structure modelled with Φ m of 4.6 eV can be considered as a better candidate for analog and RF circuit applications.

  10. Novel 2DG-based harmine derivatives for targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Aqin; Chen, Yuqi; Chen, Wei R.; Gu, Yueqing

    2013-02-01

    Harmine is a beta-carboline alkaloid from the plant Peganum harmala. These alkaloids were stimulated by their promising antitumor activities in the recent years. In this study, we designed and synthesized two harmine derivatives #1and #2 modified at position-9 of harmine with ethyl and phenylpropyl, respectively. To improve the tumor targeting capability, #1' and #2' were synthesized by conjugating 2-amino-2-deoxy-D-glucose (2DG) to the derivatives #1 and #2, respectively. The MTT assays of all these compounds in vitro against L02, HepG2 showed all compounds had low toxicity to normal cells (L02) and significantly enhanced carcinoma cell inhibitory rate compared to harmine. Cytotoxicity against liver cancer cell lines of compound #1' #2' is higher than #1 #2, and even the compound #2' is better than positive drug 5-FU. The compound #2', a novel 2DG-based harmine derivatives, could become a promising drug for targeted cancer therapy and combination therapy with other antitumor drugs.

  11. Evaluation of Superimposed Sequence Components of Currents based Islanding Detection Scheme during DG Interconnections

    NASA Astrophysics Data System (ADS)

    Sareen, Karan; Bhalja, Bhavesh R.; Maheshwari, Rudra Prakash

    2016-02-01

    A new islanding detection scheme for distribution network containing different types of distributed generations (DGs) is presented in this paper. The proposed scheme is based on acquiring three phase current samples for full cycle duration of each simulation case of islanding/non-islanding conditions at the point of common coupling (PCC) of the targeted DG. Afterwards, superimposed positive & negative sequence components of current are calculated and continuously compared with pre-determined threshold values. Performance of the proposed scheme has been evaluated on diversified islanding and non-islanding events which were generated by modeling standard IEEE 34-bus system using PSCAD/EMTDC software package. The proposed scheme is capable to detect islanding condition rapidly even for perfect power balance situation for both synchronous and inverter based DGs. Furthermore, it remains stable during non-islanding events such as tripping of multiple DGs and different DG interconnection operating conditions. Therefore, the proposed scheme avoids nuisance tripping during diversified non-islanding events. At the end, comparison of the proposed scheme with the existing scheme clearly indicates its advantage over the existing scheme.

  12. QUANTITATIVE AND TEMPORAL RELATIONSHIPS BETWEEN DNA ADDUCT FORMATION IN TARGET AND SURROGATE TISSUES: IMPLICATIONS FOR BIOMONITORING

    EPA Science Inventory

    DNA-carcinogen adducts offer a potential dosimeter for environmental genotoxicants reaching the exposed individual. ecause the target tissues for many chemical carcinogens are not readily accessible for monitoring adducts in humans, peripheral blood lymphocytes (PBLS) have served...

  13. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  14. Strategy for identifying unknown hemoglobin adducts using adductome LC-MS/MS data: Identification of adducts corresponding to acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one.

    PubMed

    Carlsson, Henrik; Törnqvist, Margareta

    2016-06-01

    Electrophilic compounds have the ability to form adducts with nucleophilic sites in proteins and DNA in tissues, and thereby constitute risks for toxic effects. Adductomic approaches are developed for systematic screening of adducts to DNA and blood proteins, with the aim to detect unknown internal exposures to electrophiles. In a previous adductomic screening of adducts to N-terminals in hemoglobin, using LC-MS/MS, 19 unknown adducts were detected in addition to seven previously identified adducts. The present paper describes the identification of four of these unknown adducts, as well as the strategy used to identify them. Using LC-MS data from the screening, hypotheses about adduct identities were formulated: probable precursor electrophiles with matching molecular weights were suggested based on the molecular weights of the modifications and the retention times of the analytes, in combination with comparisons of theoretical Log P calculations and databases. Reference adducts were generated by incubation of blood samples with the hypothesized precursor electrophiles. The four identified precursor electrophiles, corresponding to the observed unknown adducts, were glyoxal, methylglyoxal, acrylic acid and 1-octen-3-one. Possible origins/exposure sources and toxicological information concerning the electrophilic precursors are discussed. The identified adducts could be explored as possible biomarkers for exposure. PMID:27046699

  15. UNUSUALLY STABLE ADDUCT BETWEEN METHANOLYZED AMOXICILLIN OR AMPICILLIN AND THEIR DIKETOPIPERAZINE DERIVATIVES.

    PubMed

    Kosińska, Katarzyna; Frański, Rafał; Frańska, Magdalena

    2016-01-01

    Amoxicillin and ampicillin were subjected to methanolysis. As expected, the methanolysis products were observed by HPLC-ESI-MS. Besides these products, diketopiperazine derivatives were also detected. Additionally, unusually stable adduct formed between the products of methanolysis and diketopiperazine derivatives was also identified. Analogical adducts were detected when ethanolysis was performed instead of methanolysis. HPLC-ESI-MS analysis of the separated adducts confirmed that the adducts were composed of methanolysis products and diketopiperazine derivatives. PMID:27180422

  16. DNA Sequence Modulates Geometrical Isomerism of the trans-8,9-Dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy Aflatoxin B1 Adduct

    PubMed Central

    2016-01-01

    Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus, is oxidized by cytochrome P450 enzymes to aflatoxin B1-8,9-epoxide, which alkylates DNA at N7-dG. Under basic conditions, this N7-dG adduct rearranges to yield the trans-8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy aflatoxin B1 (AFB1–FAPY) adduct. The AFB1–FAPY adduct exhibits geometrical isomerism involving the formamide moiety. NMR analyses of duplex oligodeoxynucleotides containing the 5′-XA-3′, 5′-XC-3′, 5′-XT-3′, and 5′-XY-3′ sequences (X = AFB1–FAPY; Y = 7-deaza-dG) demonstrate that the equilibrium between E and Z isomers is controlled by major groove hydrogen bonding interactions. Structural analysis of the adduct in the 5′-XA-3′ sequence indicates the preference of the E isomer of the formamide group, attributed to formation of a hydrogen bond between the formyl oxygen and the N6 exocyclic amino group of the 3′-neighbor adenine. While the 5′-XA-3′ sequence exhibits the E isomer, the 5′-XC-3′ sequence exhibits a 7:3 E:Z ratio at equilibrium at 283 K. The E isomer is favored by a hydrogen bond between the formyl oxygen and the N4-dC exocyclic amino group of the 3′-neighbor cytosine. The 5′-XT-3′ and 5′-XY-3′ sequences cannot form such a hydrogen bond between the formyl oxygen and the 3′-neighbor T or Y, respectively, and in these sequence contexts the Z isomer is favored. Additional equilibria between α and β anomers and the potential to exhibit atropisomers about the C5–N5 bond do not depend upon sequence. In each of the four DNA sequences, the AFB1–FAPY adduct maintains the β deoxyribose configuration. Each of these four sequences feature the atropisomer of the AFB1 moiety that is intercalated above the 5′-face of the damaged guanine. This enforces the Ra axial conformation for the C5–N5 bond. PMID:25587868

  17. A Driving Right Leg Circuit (DgRL) for Improved Common Mode Rejection in Bio-Potential Acquisition Systems.

    PubMed

    Guermandi, Marco; Scarselli, Eleonora Franchi; Guerrieri, Roberto

    2016-04-01

    The paper presents a novel Driving Right Leg (DgRL) circuit designed to mitigate the effect of common mode signals deriving, say, from power line interferences. The DgRL drives the isolated ground of the instrumentation towards a voltage which is fixed with respect to the common mode potential on the subject, therefore minimizing common mode voltage at the input of the front-end. The paper provides an analytical derivation of the common mode rejection performances of DgRL as compared to the usual grounding circuit or Driven Right Leg (DRL) loop. DgRL is integrated in a bio-potential acquisition system to show how it can reduce the common mode signal of more than 70 dB with respect to standard patient grounding. This value is at least 30 dB higher than the reduction achievable with DRL, making DgRL suitable for single-ended front-ends, like those based on active electrodes. EEG signal acquisition is performed to show how the system can successfully cancel power line interference without any need for differential acquisition, signal post-processing or filtering. PMID:26285217

  18. IMPROVED THIN-LAYER CHROMATOGRAPHIC SEPARATION OF 32P-POSTLABELING DNA ADDUCTS

    EPA Science Inventory

    DNA adducts represent the putative initiating event in the chemical process. 2P-Postlabeling is one of several assayswhich have been developed for the sensitive detection of DNA adducts. n integral part of the 32p-postlabeling assay is the separation of adducted nucleotides by mu...

  19. NMR at the Picomole Level of a DNA Adduct

    PubMed Central

    Kautz, Roger; Wang, Poguang; Giese, Roger W.

    2014-01-01

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the pmol level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene 5′-monophosphate (AAF-dGMP), in 1.5 μL of D2O with 10% methanol-d4, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid, and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a several-fold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample into the observed volume realizes the full theoretical mass sensitivity of a microcoil, comparable to a micro-cryo probe. With 80 ng, an NMR spectrum acquired over 40 hr showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a S/N of at least 10, despite broadening due to previously-noted effects of conformational exchange. Also a 2D TOCSY spectrum (total correlation spectroscopy) was acquired on 1.6 μg in 18 hr. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct. PMID:24028148

  20. Distortions induced in DNA by cis-platinum interstrand adducts

    SciTech Connect

    Sip, M.; Schwartz, A.; Vovelle, F.; Ptak, M.; Leng, M. )

    1992-03-10

    A 22 base pair double-stranded oligonucleotide containing a unique interstrand adduct resulting from chelation of the two guanine residues within the central sequence d(TGCT/AGCA) by a cis-platinum residue has been studied by means of gel electrophoresis, chemical probes, and molecular mechanics. The anomalously slow electrophoretic mobility of the multimers of the platinated and ligated oligomers suggests that the platinated oligonucleotide is bent. The two cytosine residues (complementary to the platinated guanines) are hyperreactive to hydroxylamine, indicating a large exposure of the two bases to the solvent. The adduct does not induce a local denaturation within the flanking sequences since the adenine residues are not reactive with diethyl pyrocarbonate. This is confirmed by the nonreactivity of the complementary T residues with osmium tetraoxide. These results and the molecular mechanics modeling suggest that the interstrand adduct bends the double helix by approximately 55{degree} toward the major groove, that the double helix conserves its average twist angle, and that the distortion induced by the adduct is localized at the platinated sequence d(GC/CG).

  1. Mass Spectrometric Analyses of Organophosphate Insecticide Oxon Protein Adducts

    PubMed Central

    Thompson, Charles M.; Prins, John M.; George, Kathleen M.

    2010-01-01

    Objective Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. Data sources and extraction We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. Data synthesis A number of OP-based insecticides share common structural elements that result in predictable OP–protein adducts. The resultant OP–protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. Conclusions MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure. PMID:20056576

  2. CARCINOGEN-DNA ADDUCTS: INTRODUCTION, LITERATURE SUMMARY, AND RECOMMENDATIONS

    EPA Science Inventory

    The report summarizes the literature concerning adducts formed by xenobiotics with DNA and/or protein and discusses their feasibility as a monitoring tool for use in exposure and risk assessment. The report is divided into three segments. The first segment provides an introductio...

  3. CANCER BIOMARKERS IN HUMAN ATHEROSCLEROTIC LESIONS: DETECTION OF DNA ADDUCTS

    EPA Science Inventory

    Since somatic mutations are suspected to contribute to the pathogenesis not only of cancer but also of atherosclerotic plaques, we measured DNA adducts in the smooth muscle layer of atherosclerotic lesions in abnormal aorta specimens taken at surgery from seven patients. NA adduc...

  4. DETERMINATION OF HEMOGLOBIN ADDUCTS IN HUMANS OCCUPATIONALLY EXPOSED TO ACRYLAMIDE

    EPA Science Inventory

    Hemoglobin (Hb) adduct determinations were used to monitor occupational exposure to acrylamide (AA) and acrylonitrile (AN). orth-one workers in a factory in the People's Republic of China who were involved in the synthesis of a AA by catalytic hydration of AN and the manufacturin...

  5. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66) is.... Requirements as specified in § 721.80(h). (ii) Release to water. Requirements as specified in § 721.90 (a)(4... 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  6. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66) is.... Requirements as specified in § 721.80(h). (ii) Release to water. Requirements as specified in § 721.90 (a)(4... 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  7. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66) is.... Requirements as specified in § 721.80(h). (ii) Release to water. Requirements as specified in § 721.90 (a)(4... 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  8. 40 CFR 721.4590 - Mannich-based adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting. (1) The chemical substance generically identified as a Mannich-based adduct (PMN P-93-66) is.... Requirements as specified in § 721.80(h). (ii) Release to water. Requirements as specified in § 721.90 (a)(4... 721.4590 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  9. Probing myo-inositol 1-phosphate synthase with multisubstrate adducts

    PubMed Central

    Deranieh, Rania M.; Greenberg, Miriam L.; Le Calvez, Pierre-B.; Mooney, Maura C.; Migaud, Marie E.

    2015-01-01

    The synthesis of a series of carbohydrate-nucleotide hybrids, designed to be multisubstrate adducts mimicking myo-inositol 1-phosphate synthase first oxidative transition state, is reported. Their ability to inhibit the synthase has been assessed and results have been rationalised computationally to estimate their likely binding mode. PMID:23132282

  10. A gamma-ray transient at the position of DG CVn

    NASA Astrophysics Data System (ADS)

    Loh, A.; Corbel, S.; Dubus, G.

    2015-12-01

    Solar flares are regularly detected by the Large Area Telescope (LAT) on board the Fermi satellite, however no gamma-ray emission from other stellar eruptions has ever been captured. A recent Swift detection of a powerful outburst originating from the nearby binary star DG CVn, with optical and radio counterparts, gave us an opportunity to measure the 0.1--100 GeV emission from this kind of objects for the first time. We performed a deep LAT study over the past six years of the Fermi mission and we report a significant gamma-ray excess in November 2012, at a position consistent with this binary at a 2σ confidence level. Since no multi-wavelength coverage was available in 2012 and because no high-energy emission was detected during the recent X-ray superflare, we discuss the possible origin of this gamma-ray transient.

  11. DG method for the numerical solution of the state problem in shape optimization

    NASA Astrophysics Data System (ADS)

    Hozman, J.; Šimůnková, M.

    2015-11-01

    In this article we are concerned with the discontinuous Galerkin (DG) method in connection with the numerical solution of the state problem in the field of shape optimization techniques. The presented state problem is described by the stationary energy equation of the system of the mould, glass piece, plunger and plunger cavity arising from the forming process in the glass industry. The attention is paid to the development of the numerical scheme based on the piecewise polynomial, generally discontinuous approximation, which enables to better resolve various phenomena typical for such a heterogeneous medium problem, compared with standard common numerical techniques. The studied problem is supplemented with the preliminary numerical results demonstrating the potency of the proposed scheme.

  12. The OH rotational population and photodissociation of H{sub 2}O in DG Tauri

    SciTech Connect

    Carr, John S.; Najita, Joan R.

    2014-06-10

    We analyze the OH rotational emission in the Spitzer Space Telescope mid-infrared spectrum of the T Tauri star DG Tau. OH is observed in emission from upper level energies of 1900 K to 28,000 K. The rotational diagram cannot be fit with any single combination of temperature and column density and has slopes that correspond to excitation temperatures ranging from 200 K to 6000 K. The relative Λ-doublet population within each rotational level is not equal, showing that the OH population is not in thermal equilibrium. The symmetric Λ-doublet state is preferred in all rotational states, with an average of 0.5 for the population ratio of the anti-symmetric to symmetric state. We show that the population distribution of the high rotational lines and the Λ-doublet ratio are consistent with the formation of OH following the photo-dissociation of H{sub 2}O by FUV photons in the second absorption band of water (∼1150-1400 Å), which includes Lyα. Other processes, OH formation from either photo-dissociation of water in the first absorption band (1450-1900 Å) or the reaction O({sup 1} D) + H{sub 2}, or collisional excitation, cannot explain the observed emission in the high rotational states but could potentially contribute to the population of lower rotational levels. These results demonstrate that the photodissociation of water is active in DG Tau and support the idea that the hot rotational OH emission commonly observed in Classical T Tauri stars is due to the dissociation of H{sub 2}O by FUV radiation.

  13. Ion-molecule adduct formation in tandem mass spectrometry.

    PubMed

    Alechaga, Élida; Moyano, Encarnación; Galceran, Maria Teresa

    2016-02-01

    Nowadays most LC-MS methods rely on tandem mass spectrometry not only for quantitation and confirmation of compounds by multiple reaction monitoring (MRM), but also for the identification of unknowns from their product ion spectra. However, gas-phase reactions between charged and neutral species inside the mass analyzer can occur, yielding product ions at m/z values higher than that of the precursor ion, or at m/z values difficult to explain by logical losses, which complicate mass spectral interpretation. In this work, the formation of adduct ions in the mass analyzer was studied using several mass spectrometers with different mass analyzers (ion trap, triple quadrupole, and quadrupole-Orbitrap). Heterocyclic amines (AαC, MeAαC, Trp-P-1, and Trp-P-2), photo-initiators (BP and THBP), and pharmaceuticals (phenacetin and levamisole) were selected as model compounds and infused in LCQ Classic, TSQ Quantum Ultra AM, and Q-Exactive Orbitrap (ThermoFisher Scientific) mass spectrometers using electrospray as ionization method. The generation of ion-molecule adducts depended on the compound and also on the instrument employed. Adducts with neutral organic solvents (methanol and acetonitrile) were only observed in the ion trap instrument (LCQ Classic), because of the ionization source on-axis configuration and the lack of gas-phase barriers, which allowed inertial entrance of the neutrals into the analyzer. Adduct formation (only with water) in the triple quadrupole instruments was less abundant than in the ion trap and quadrupole-Orbitrap mass spectrometers, because of the lower residence time of the reactive product ions in the mass analyzer. The moisture level of the CID and/or damper gas had a great effect in beam-like mass analyzers such as triple quadrupole, but not in trap-like mass analyzers, probably because of the long residence time that allowed adduct formation even with very low concentrations of water inside the mass spectrometer. PMID:26700446

  14. Detection of protein adduction derived from dauricine by alkaline permethylation.

    PubMed

    Xie, Honglei; Liu, Yuyang; Peng, Ying; Zhao, Dongmei; Zheng, Jiang

    2016-06-01

    Dauricine is a bisbenzylisoquinoline alkaloid derivative and has shown multiple pharmacological properties. Despite this, our previous study demonstrated that dauricine induced severe lung toxicity in experimental animals. Metabolic activation of dauricine to the corresponding quinone methide intermediate is suggested to play an important role in dauricine-induced cytotoxicity. Protein adduction derived from the reactive intermediate is considered to initiate the process of the toxicity. In the present study, we developed an alkaline permethylation- and mass spectrometry-based approach to detect dauricine-derived protein adduction. Protein samples were permethylated in the presence of NaOH and CH3I at 80 °C, followed by LC-MS/MS analysis. A thioether product was produced in the reaction. Not only does this technique quantify dauricine-derived protein adduction but also it tells the nature of the interaction between the target proteins and the reactive intermediate of dauricine. The recovery, precision, limit of detection, limit of quantity, and method detection limit were found to be 102.8 %±1.7 %, 1.89 %, 1.32 fmol/mL, 4.93 fmol/mL and 3.37 fmol/mL respectively. The surrogate recovery and surrogate RSD values were 81.5-103.0 % and 2.59 %, respectively. This analytical method has proven sensitive, selective, reliable, and feasible to assess total protein adduction derived from dauricine, and will facilitate the mechanistic investigation of dauricine and other bisbenzylisoquinoline toxicities. Graphical Abstract Alkaline permethylation of dauricine derived protein adduct. PMID:27071763

  15. Quantification of Carnosine-Aldehyde Adducts in Human Urine.

    PubMed

    da Silva Bispo, Vanderson; Di Mascio, Paolo; Medeiros, Marisa

    2014-10-01

    Lipid peroxidation generates several reactive carbonyl species, including 4-hydroxy-2-nonenal (HNE), acrolein (ACR), 4-hydroxy-2-hexenal (HHE) and malondialdehyde. One major pathwayof aldehydes detoxification is through conjugation with glutathione catalyzed by glutathione-S-transferases or, alternatively, by conjugation with endogenous histidine containing dipeptides, such as carnosine (CAR). In this study, on-line reverse-phase high-performance liquid chromatography (HPLC) separation with tandem mass spectrometry detection was utilized for the accurate quantification of CAR- ACR, CAR-HHE and CAR-HNE adducts in human urinary samples from non-smokers young adults. Standard adducts were prepared and isolated by HPLC. The results showed the presence of a new product from the reaction of CAR with ACR. This new adduct was completely characterized by HPLC/MS-MSn, 1H RMN, COSY and HSQC. The new HPLC/MS/MS methodology employing stable isotope-labeled internal standards (CAR-HHEd5 and CAR-HNEd11) was developed for adducts quantification. This methodology permits quantification of 10pmol CAR-HHE and 1pmol of CAR-ACR and CAR-HNE. Accurate determinations in human urine sample were performed and showed 4.65±1.71 to CAR-ACR, 5.13±1.76 to CAR-HHE and 5.99±3.19nmol/mg creatinine to CAR-HNE. Our results indicate that carnosine pathways can be an important detoxification route of a, ß -unsaturated aldehydes. Moreover, carnosine adducts may be useful as redox stress indicator. PMID:26461323

  16. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo

    PubMed Central

    Wu, Liying; Huang, Xin; Wu, Kuiwu; Xu, Lun; Li, Dahu; Liu, Shuhong; Zhao, Yongqi; Fan, Ming; Zhu, Lingling

    2015-01-01

    Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain. PMID:26466323

  17. DG TO FT - AUTOMATIC TRANSLATION OF DIGRAPH TO FAULT TREE MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    Fault tree and digraph models are frequently used for system failure analysis. Both types of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Each model has its advantages. While digraphs can be derived in a fairly straightforward manner from system schematics and knowledge about component failure modes and system design, fault tree structure allows for fast processing using efficient techniques developed for tree data structures. The similarities between digraphs and fault trees permits the information encoded in the digraph to be translated into a logically equivalent fault tree. The DG TO FT translation tool will automatically translate digraph models, including those with loops or cycles, into fault tree models that have the same minimum cut set solutions as the input digraph. This tool could be useful, for example, if some parts of a system have been modeled using digraphs and others using fault trees. The digraphs could be translated and incorporated into the fault trees, allowing them to be analyzed using a number of powerful fault tree processing codes, such as cut set and quantitative solution codes. A cut set for a given node is a group of failure events that will cause the failure of the node. A minimum cut set for a node is any cut set that, if any of the failures in the set were to be removed, the occurrence of the other failures in the set will not cause the failure of the event represented by the node. Cut sets calculations can be used to find dependencies, weak links, and vital system components whose failures would cause serious systems failure. The DG TO FT translation system reads in a digraph with each node listed as a separate object in the input file. The user specifies a terminal node for the digraph that will be used as the top node of the resulting fault tree. A fault tree basic event node representing the failure of that digraph node is created and becomes a child of the terminal

  18. 32P-postlabeling DNA adduct assay: cigarette smoke-induced dna adducts in the respiratory and nonrespiratory rat tissues. Book chapter

    SciTech Connect

    Gupta, R.C.; Gairola, C.G.

    1990-01-01

    An analysis of the tissue DNA adducts in rats by the sensitive (32)p-postlabeling assay showed one to eight detectable DNA adducts in lung, trachea, larynx, heart and bladder of the sham controls. Chronic exposure of animals to mainstream cigarette smoke showed a remarkable enhancement of most adducts in the lung and heart DNA. Since cigarette smoke contains several thousand chemicals and a few dozen of them are known or potential carcinogens, the difference between the DNA adducts of nasal and the other tissues may reflect the diversity of reactive constituents and their differential absorption in different tissues. In comparison to the lung DNA adducts, the adducts in nasal DNA were less hydrophobic. Identity of the predominant adducts was further investigated by comparison with several reference DNA adducts from 10 PAH and aromatic amines. Since some of these chemicals are present in cigarette smoke, the results suggest that these constituents of cigarette smoke may not be directly responsible for formation of DNA adducts in the lung and heart of the smoke-exposed animals.

  19. Detection of benzo[a]pyrene diol epoxide-DNA adducts in peripheral blood lymphocytes and antibodies to the adducts in serum from coke oven workers.

    PubMed Central

    Harris, C C; Vahakangas, K; Newman, M J; Trivers, G E; Shamsuddin, A; Sinopoli, N; Mann, D L; Wright, W E

    1985-01-01

    Coke oven workers are exposed to high levels of carcinogenic polycyclic aromatic hydrocarbons, including benzo[a]pyrene (B[a]P), and are at increased risk of lung cancer. Since B[a]P is enzymatically activated to 7 beta,8 alpha-dihydroxy(9 alpha, 10 alpha)epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (B[a]PDE) that forms adducts with DNA, the presence of these adducts was measured in DNA from peripheral blood lymphocytes by synchronous fluorescence spectrophotometry and enzyme radioimmunoassay. Approximately two-thirds of the workers had detectable levels of B[a]PDE-DNA adducts. Antibodies to the DNA adducts were also found in the serum of 27% of the workers. B[a]PDE-DNA adducts were not detectable in lymphocytes and antibodies to the adducts were not detected in sera from a control group of nonsmoking laboratory workers. DNA adducts and/or antibodies to the adducts indicate exposure to B[a]P and its metabolic activation to the carcinogenic metabolite that covalently binds to and damages DNA. Detection of adducts and antibodies to them may also be useful as internal dosimeters of the pathobiological effective doses of chemical carcinogens. PMID:2413443

  20. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    SciTech Connect

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA than that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.

  1. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    SciTech Connect

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  2. Genome-wide genetic screen identified the link between dG9a and epidermal growth factor receptor signaling pathway in vivo.

    PubMed

    Shimaji, Kouhei; Konishi, Takahiro; Yoshida, Hideki; Kimura, Hiroshi; Yamaguchi, Masamitsu

    2016-08-01

    G9a is one of the histone H3 Lys 9 (H3K9) specific methyltransferases first identified in mammals. Drosophila G9a (dG9a) has been reported to induce H3K9 dimethylation in vivo, and the target genes of dG9a were identified during embryonic and larval stages. Although dG9a is important for a variety of developmental processes, the link between dG9a and signaling pathways are not addressed yet. Here, by genome-wide genetic screen, taking advantage of the rough eye phenotype of flies that over-express dG9a in eye discs, we identified 16 genes that enhanced the rough eye phenotype induced by dG9a over-expression. These 16 genes included Star, anterior open, bereft and F-box and leucine-rich repeat protein 6 which are components of epidermal growth factor receptor (EGFR) signaling pathway. When dG9a over-expression was combined with mutation of Star, differentiation of R7 photoreceptors in eye imaginal discs as well as cone cells and pigment cells in pupal retinae was severely inhibited. Furthermore, the dG9a over-expression reduced the activated ERK signals in eye discs. These data demonstrate a strong genetic link between dG9a and the EGFR signaling pathway. PMID:27343629

  3. Human Biomonitoring of DNA Adducts by Ion Trap Multistage Mass Spectrometry.

    PubMed

    Guo, Jingshu; Turesky, Robert J

    2016-01-01

    Humans are continuously exposed to hazardous chemicals in the environment. These chemicals or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. The identification of DNA adducts is required for understanding exposure and the etiological role of a genotoxic chemical in cancer risk. The analytical chemist is confronted with a great challenge because the levels of DNA adducts generally occur at <1 adduct per 10(7) nucleotides, and the amount of tissue available for measurement is limited. Ion trap mass spectrometry has emerged as an important technique to screen for DNA adducts because of the high level sensitivity and selectivity, particularly when employing multi-stage scanning (MS(n) ). The product ion spectra provide rich structural information and corroborate the adduct identities even at trace levels in human tissues. Ion trap technology represents a significant advance in measuring DNA adducts in humans. © 2016 by John Wiley & Sons, Inc. PMID:27584705

  4. UVR Exposure Sensitizes Keratinocytes to DNA Adduct Formation

    PubMed Central

    Nair, Sudhir; Kekatpure, Vikram D.; Judson, Benjamin L.; Rifkind, Arleen B.; Granstein, Richard D.; Boyle, Jay O.; Subbaramaiah, Kotha; Guttenplan, Joseph B.; Dannenberg, Andrew J.

    2009-01-01

    Ultraviolet radiation (UVR) and exposure to tobacco smoke, a source of polycyclic aromatic hydrocarbons (PAH), have been linked to skin carcinogenesis. UVR-mediated activation of the aryl hydrocarbon receptor (AhR) stimulates the transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAH to genotoxic metabolites. We determined whether UVR exposure sensitized human keratinocytes to PAH-induced DNA adduct formation. UVR exposure induced CYP1A1 and CYP1B1 in HaCaT cells, an effect that was mimicked by photooxidized tryptophan (aTRP) and FICZ, a component of aTRP. UVR exposure or pretreatment with aTRP or FICZ also sensitized cells to benzo[a]pyrene (B[a]P) induced DNA adduct formation. α-Naphthoflavone (αNF), an AhR antagonist, suppressed UVR-, aTRP- and FICZ-mediated induction of CYP1A1 and CYP1B1 and inhibited B[a]P induced DNA adduct formation. Treatment with 17-AAG, a Hsp90 inhibitor, caused a marked decrease in levels of AhR, inhibited UVR-, aTRP- and FICZ-mediated induction of CYP1A1 and CYP1B1 and blocked the sensitization of HaCaT cells to B[a]P induced DNA adduct formation. FICZ has been suggested to be a physiological ligand of the AhR that may have systemic effects. Hence, studies of FICZ were also carried out in MSK-Leuk1 cells, a model of oral leukoplakia. Pretreatment with αNF or 17-AAG blocked FICZ-mediated induction of CYP1A1 and CYP1B1, and suppressed the increased B[a]P-induced DNA adduct formation. Collectively, these results suggest that sunlight may activate AhR signaling and thereby sensitize cells to PAH-mediated DNA adduct formation. Antagonists of AhR signaling may have a role in the chemoprevention of photocarcinogenesis. PMID:19789301

  5. DG TO FT - AUTOMATIC TRANSLATION OF DIGRAPH TO FAULT TREE MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    Fault tree and digraph models are frequently used for system failure analysis. Both types of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Each model has its advantages. While digraphs can be derived in a fairly straightforward manner from system schematics and knowledge about component failure modes and system design, fault tree structure allows for fast processing using efficient techniques developed for tree data structures. The similarities between digraphs and fault trees permits the information encoded in the digraph to be translated into a logically equivalent fault tree. The DG TO FT translation tool will automatically translate digraph models, including those with loops or cycles, into fault tree models that have the same minimum cut set solutions as the input digraph. This tool could be useful, for example, if some parts of a system have been modeled using digraphs and others using fault trees. The digraphs could be translated and incorporated into the fault trees, allowing them to be analyzed using a number of powerful fault tree processing codes, such as cut set and quantitative solution codes. A cut set for a given node is a group of failure events that will cause the failure of the node. A minimum cut set for a node is any cut set that, if any of the failures in the set were to be removed, the occurrence of the other failures in the set will not cause the failure of the event represented by the node. Cut sets calculations can be used to find dependencies, weak links, and vital system components whose failures would cause serious systems failure. The DG TO FT translation system reads in a digraph with each node listed as a separate object in the input file. The user specifies a terminal node for the digraph that will be used as the top node of the resulting fault tree. A fault tree basic event node representing the failure of that digraph node is created and becomes a child of the terminal

  6. Q3DG: A computer program for strain-energy-release rates for delamination growth in composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1986-01-01

    The Q3DG is a computer program developed to perform a quasi-three-dimensional stress analysis for composite laminates which may contain delaminations. The laminates may be subjected to mechanical, thermal, and hygroscopic loads. The program uses the finite element method and models the laminates with eight-noded parabolic isoparametric elements. The program computes the strain-energy-release components and the total strain-energy release in all three modes for delamination growth. A rectangular mesh and data file generator, DATGEN, is included. The DATGEN program can be executed interactively and is user friendly. The documentation includes sections dealing with the Q3D analysis theory, derivation of element stiffness matrices and consistent load vectors for the parabolic element. Several sample problems with the input for Q3DG and output from the program are included. The capabilities of the DATGEN program are illustrated with examples of interactive sessions. A microfiche of all the examples is included. The Q3DG and DATGEN programs have been implemented on CYBER 170 class computers. Q3DG and DATGEN were developed at the Langley Research Center during the early eighties and documented in 1984 to 1985.

  7. Complex Rheological Modelling with the ADER-DG Method: Anisotropy, Viscoelasticity and Poroelasticity.

    NASA Astrophysics Data System (ADS)

    de La Puente, J.; Kaeser, M. A.; Dumbser, M.; Igel, H.

    2006-12-01

    The improvements of our knowledge of the geological and geophysical properties of subsurface models in seismologically interesting regions often reveal highly complex geometries. Geometrical complexity still presents a challenge for numerical methods based on regular, structured griding. On the other hand, numerical methods on geometrically more flexible unstructured tetrahedral meshes until recently could not provide high- order accuracy. Therefore, most approaches were forced to find a compromise between preserving the complexity of the models and having highly accurate results. The last two years have seen the upcoming of a new technique for seismic wave propagation: the ADER-DG method. The method is suited for simulating wavefields on unstructured meshes, triangular in 2D or tetrahedral in 3D. The variables are approximated by high-order polynomials in space and information is shared between elements by the use of numerical fluxes. The accurate spatial representation of the variables is coupled with a high-order time-integration method (ADER: Arbitrary high order DERivatives) which automatically provides the same order of accuracy in space and time. For the first time in the field of computational seismology arbitrary high-order accuracy can be achieved on unstructured meshes for simulating wave fields in highly complex media. However the physics describing wave behaviour in the Earth is far from being perfectly elastic and isotropic. Many widely observed phenomena as energy losses, dispersion or wave-splitting require a deeper understanding of the physical processes that govern seismic wave propagation. Here we present an extension of the ADER-DG method to the anisotropic and viscoelastic case. Anisotropy is included in the most general case regardless the possible existence of material symmetries, such as orthorhombic or transversely isotropic. As element interfaces for an unstructured mesh are arbitrarily aligned, such symmetries cannot be exploited and the

  8. Proteomic analysis of adducted butyrylcholinesterase for biomonitoring organophosphorus exposures

    PubMed Central

    Marsillach, Judit; Hsieh, Edward J.; Richter, Rebecca J.; MacCoss, Michael J.; Furlong, Clement E.

    2014-01-01

    Organophosphorus (OP) compounds include a broad group of toxic chemicals such as insecticides, chemical warfare agents and antiwear agents. The liver cytochromes P450 bioactivate many OPs to potent inhibitors of serine hydrolases. Cholinesterases were the first OP targets discovered and are the most studied. They are used to monitor human exposures to OP compounds. However, the assay that is currently used has limitations. The mechanism of action of OP compounds is the inhibition of serine hydrolases by covalently modifying their active-site serine. After structural rearrangement, the complex OP inhibitor-enzyme is irreversible and will remain in circulation until the modified enzyme is degraded. Mass spectrometry is a sensitive technology for analyzing protein modifications, such as OP-adducted enzymes. These analyses also provide some information about the nature of the OP adduct. Our aim is to develop high-throughput protocols for monitoring OP exposures using mass spectrometry. PMID:23123252

  9. Smoking related carcinogen-DNA adducts in biopsy samples of human urinary bladder: Identification of N-(deoxyguanosin-8-yl)-4-aminobiphenyl as a major adduct

    SciTech Connect

    Talaska, G. Univ. of Cincinnati, OH ); Al-Juburi, A.Z.S.S. ); Kadlubar, F.F. )

    1991-06-15

    The prevalence of covalent modifications to DNA (carcinogen-DNA adducts) in 42 human urinary bladder biopsy samples was investigated by {sup 32}P-postlabeling methods, with enhancement by both nuclease P1 treatment and 1-butanol extraction. Total mean carcinogen-DNA adduct levels and the mean levels of several specific adducts were significantly elevated in DNA samples of 13 current smokers, as opposed to 9 never smokers or 20 ex-smokers (5 years abstinence). There was no significant difference between the latter two groups. Several DNA adducts enhanced by nuclease P1 treatment were chromatographically similar to putative hydrocarbon DNA adducts reported earlier for placenta and lung DNA samples obtained from cigarette smokers. Putative aromatic amine adducts were detected by 1-butanol extraction that were not present when the samples were treated with nuclease P1. One of these displayed chromatographic behavior identical to the predominant adduct induced by the human urinary bladder carcinogen, 4-aminobiphenyl, which is present in cigarette smoke. This adduct comigrated in several thin-layer chromatographic systems with a synthetic N-(deoxyguanosin-8-yl)-4-amino(2,2{prime}-{sup 3}H)biphenyl-3{prime},5{prime}-bisphosphate marker. These data reinforce an association between cigarette smoking and DNA damage and suggest a molecular basis for the initiation of human urinary bladder cancer by cigarette smoke.

  10. 2' and 3' Carboranyl uridines and their diethyl ether adducts

    DOEpatents

    Soloway, Albert H.; Barth, Rolf F.; Anisuzzaman, Abul K.; Alam, Fazlul; Tjarks, Werner

    1992-01-01

    There is disclosed a process for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. Said carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of said compounds in methods for boron neutron capture therapy in mammalian tumor cells.

  11. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    SciTech Connect

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  12. A structurally-characterized NbCl5-NHC adduct.

    PubMed

    Bortoluzzi, Marco; Ferretti, Eleonora; Marchetti, Fabio; Pampaloni, Guido; Zacchini, Stefano

    2014-05-01

    The selective reactions of niobium pentachloride with two bulky NHC carbenes afforded NbCl5(NHC) complexes, bearing the highest oxidation state ever found for a metal centre in a transition metal halide-NHC adduct. The X-ray structure of 2a is the first one reported for a monodentate NHC-niobium species, and exhibits an abnormally long Nb-C bond. PMID:24658260

  13. Dispersant additives derived from lactone modified amido-amine adducts

    SciTech Connect

    Gutierrez, A.; Lundberg, R.D.

    1990-10-16

    This patent describes a lactone modified dispersant additive. It comprises one adduct of a polyolefin of 300 to 10,000 number average molecular weight substituted with at least 0.8 (e.g., from about 1 to 4) dicarboxylic acid producing moieties (preferably acid or anhydride moieties) per polyolefin molecule, an amido-amine or thioamido-amine characterized by being a reaction product of at least a polyamine and an alpha, beta-unsaturated compound.

  14. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    ERIC Educational Resources Information Center

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  15. 32P-postlabelling analysis of small aromatic and of bulky non-aromatic DNA adducts.

    PubMed

    Reddy, M V

    1993-01-01

    The 32P-postlabelling methodology for analysis of DNA adducts derived from carcinogens containing one aromatic ring (e.g., safrole, styrene oxide, benzene metabolites, 1-nitrosoindole-3-acetonitrile) or a bulky non-aromatic moiety (e.g., mitomycin C, diaziquone) is reviewed. Six steps are involved: digestion of DNA to 3'-nucleotides, enrichment of adducts, 32P-labelling of adducts, separation of labelled adducts by TLC, detection, and quantitation. The first step, DNA digestion with micrococcal nuclease and spleen phosphodiesterase, is applicable to DNA modified with most carcinogens independent of their size and structure. Of the two commonly used procedures for enrichment of aromatic adducts in DNA digests, the nuclease P1 treatment is substantially more effective than butanol extraction for small aromatic and bulky non-aromatic adducts. For initial purification of these adducts from unadducted material after 32P-labelling, multi-directional polyethyleneimine (PEI)-cellulose TLC using 1 M sodium phosphate, pH 6.0, as the D1 solvent is not suitable, because they are not retained on PEI-cellulose under these conditions. A higher concentration of sodium phosphate (e.g., 2.3 M) or development with D1 and D3 solvents in the same direction helps to retain adducts of safrole and of benzene metabolites. Also, transfer of adducts from multiple cut-outs above the origin after D1 chromatography, as adopted for analysis of I-compounds, is potentially applicable. However, initial purification by reverse-phase TLC, followed by in situ transfer and resolution by PEI-cellulose TLC has been found to be most effective for these adducts. Reverse-phase TLC at 4 degrees C or in a stronger salt solution further improves retention of some adducts (e.g., mitomycin C and diaziquone adducts). For adduct separation by PEI-cellulose TLC, salt solutions with or without urea are used. PMID:8225492

  16. Effect of phytochemical intervention on dibenzo[a,l]pyrene-induced DNA adduct formation.

    PubMed

    Russell, Gilandra K; Gupta, Ramesh C; Vadhanam, Manicka V

    2015-04-01

    Dibenzo[a,l]pyrene (DBP) has been found to be the most potent carcinogen of the polycyclic aromatic hydrocarbons (PAHs). Primary sources for DBP in the environment are combustion of wood and coal burning, gasoline and diesel exhaust, and tires. Given the likelihood of environmental exposure to DBP and strong experimental evidence of its potency, it is likely to contribute to lung cancer development. Intervention with compounds of natural origin ("phytochemicals") is considered an effective means to prevent cancer development and favorably modulate the underlying mechanisms, including DNA adduct formation. In this study, several agents have been identified that inhibit environmental carcinogen-induced DNA adduct formation using a cell-free microsomal system. Of the ten agents tested, resveratrol (648 ± 26 adducts/10(9) nucleotides), oltipraz (1007 ± 348 adducts/10(9) nucleotides), delphinidin (1252 ± 142 adducts/10(9) nucleotides), tanshinone I (1981 ± 213 adducts/10(9) nucleotides), tanshinone IIA (2606 ± 478 adducts/10(9) nucleotides) and diindoylmethane (3643 ± 469 adducts/10(9) nucleotides) were the most effective compared to vehicle treatment (14,062 ± 1097 adducts/10(9) nucleotides). DBP is metabolized by phase I metabolizing enzymes CYP1A1, CYP1A2, and CYP1B1. DBP-induced DNA adducts can be inhibited by several mechanisms. We found that all the test agents inhibited DNA adducts by inhibiting one or more of these enzymes. Oltipraz inhibited DNA adducts entirely by inhibiting the CYP450s, while resveratrol and delphinidin inhibited DNA adducts by also interacting directly with the carcinogenic metabolite, anti-dibenzo(a,l)pyrene-11,12-dihydrodiol-13,14-epoxide. PMID:25794985

  17. Effect of phytochemical intervention on dibenzo[a,l]pyrene-induced DNA adduct formation

    PubMed Central

    Russell, Gilandra K.; Gupta, Ramesh C.; Vadhanam, Manicka V.

    2015-01-01

    Dibenzo[a,l]pyrene (DBP) has been found to be the most potent carcinogen of the polycyclic aromatic hydrocarbons (PAHs). Primary sources for DBP in the environment are combustion of wood and coal burning, gasoline and diesel exhaust, and tires. Given the likelihood of environmental exposure to DBP and strong experimental evidence of its potency, it is likely to contribute to lung cancer development. Intervention with compounds of natural origin (“phytochemicals”) is considered an effective means to prevent cancer development and favorably modulate the underlying mechanisms, including DNA adduct formation. In this study, several agents have been identified that inhibit environmental carcinogen-induced DNA adduct formation using a cell-free microsomal system. Of the ten agents tested, resveratrol (648 ± 26 adducts/109 nucleotides), oltipraz (1007 ± 348 adducts/109 nucleotides), delphinidin (1252 ± 142 adducts/109 nucleotides), tanshinone I (1981 ± 213 adducts/109 nucleotides), tanshinone IIA (2606 ± 478 adducts/109 nucleotides) and diindoylmethane (3643 ± 469 adducts/109 nucleotides) were the most effective compared to vehicle treatment (14,062 ± 1097 adducts/109 nucleotides). DBP is metabolized by phase I metabolizing enzymes CYP1A1, CYP1A2, and CYP1B1. DBP-induced DNA adducts can be inhibited by several mechanisms. We found that all the test agents inhibited DNA adducts by inhibiting one or more of these enzymes. Oltipraz inhibited DNA adducts entirely by inhibiting the CYP450s, while resveratrol and delphinidin inhibited DNA adducts by also interacting directly with the carcinogenic metabolite, anti-dibenzo(a,l)pyrene-11,12-dihydrodiol-13,14-epoxide. PMID:25794985

  18. Thermal stability of DNA adducts induced by cyanomorpholinoadriamycin in vitro.

    PubMed Central

    Cullinane, C; Phillips, D R

    1993-01-01

    The Adriamycin derivative, cyanomorpholinoadriamycin (CMA) was reacted with DNA in vitro to form apparent interstrand crosslinks. The extent of interstrand crosslink formation was monitored by a gel electrophoresis assay and maximal crosslinking of DNA was observed within 1 hr with 5 microM of drug. The interstrand crosslinks were heat labile, with a midpoint melting temperature of 70 degrees C (10 min exposure to heat) in 45% formamide. When CMA-induced adducts were detected as blockages of lambda-exonuclease, 12 blockage sites were observed with 8 being prior to 5'-GG sequences, one prior to 5'-CC, one prior to 5'-GC and 2 at unresolved combinations of these sequences. These exonuclease-detected blockages reveal the same sites of CMA-induced crosslinking as detected by in vitro transcription footprinting and primer-extension blockages on single strand DNA, where the blockages at 5'-GG and 5'-CC were identified as sites of intrastrand crosslinking and the 5'-GC blockage as a probable site of interstrand crosslinking. The thermal stability of both types of crosslink (10 min exposure to heat) ranged from 63-70 degrees C at individual sites. High levels of adduct were detected with poly (dG-dC) but not with poly (dI-dC). These results suggest adduct formation involving an aminal linkage between the 3 position of the morpholino moiety and N2 of guanine. Images PMID:8493102

  19. Structural Characterization of Hydroxyl Radical Adducts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2015-06-01

    The oxidation by the hydroxyl (OH) radical is one of the most widely studied reactions because of its central role in chemistry, biology, organic synthesis, and photocatalysis in aqueous environments, wastewater treatment, and numerous other chemical processes. Although the redox potential of OH is very high, direct electron transfer (ET) is rarely observed. If it happens, it mostly proceeds through the formation of elusive OH adduct intermediate which facilitates ET and formation of hydroxide anion. Using time resolved resonance Raman technique we structurally characterized variety of OH adducts to sulfur containing organic compounds, halide ions as well as some metal cations. The bond between oxygen of OH radical and the atom of oxidized molecule differs depending on the nature of solute that OH radical reacts with. For most of sulfur containing organics, as well as halide and pseudo-halide ions, our observation suggested that this bond has two-center three-electron character. For several metal aqua ions studied, the nature of the bond depends on type of the cation being oxidized. Discussion on spectral parameters of all studied hydroxyl radical adducts as well as the role solvent plays in their stabilization will be presented.

  20. Analysis of high-k spacer on symmetric underlap DG-MOSFET with Gate Stack architecture

    NASA Astrophysics Data System (ADS)

    Das, Rahul; Chakraborty, Shramana; Dasgupta, Arpan; Dutta, Arka; Kundu, Atanu; Sarkar, Chandan K.

    2016-09-01

    This paper shows the systematic study of underlap double gate (U-DG) NMOSFETs with Gate Stack (GS) under the influence of high-k spacers. In highly scaled devices, underlap is used at the Source and Drain side so as to reduce the short channel effects (SCE's), however, it significantly reduces the on current due to the increased channel resistance. To overcome these drawbacks, the use of high-k spacers is projected as one of the remedies. In this paper, the analog performance of the devices is studied on the basis of parameters like transconductance (gm), transconductance generation factor (gm/Id) and intrinsic gain (gmro). The RF performance is analyzed on the merits of intrinsic capacitance (Cgd, Cgs), resistance (Rgd, Rgs), transport delay (τm), inductance (Lsd), cutoff frequency (fT), and the maximum frequency of oscillation (fmax). The circuit performance of the devices are studied by implementing the device as the driver MOSFET in a Single Stage Common Source Amplifier. The Gain Bandwidth Product (GBW) has been analyzed from the frequency response of the circuit.

  1. VERY LARGE ARRAY OBSERVATIONS OF DG TAU'S RADIO JET: A HIGHLY COLLIMATED THERMAL OUTFLOW

    SciTech Connect

    Lynch, C.; Mutel, R. L.; Gayley, K. G.; Guedel, M.; Ray, T.; Skinner, S. L.; Schneider, P. C.

    2013-03-20

    The active young protostar DG Tau has an extended jet that has been well studied at radio, optical, and X-ray wavelengths. We report sensitive new Very Large Array (VLA) full-polarization observations of the core and jet between 5 GHz and 8 GHz. Our high angular resolution observation at 8 GHz clearly shows an unpolarized inner jet with a size of 42 AU (0.''35) extending along a position angle similar to the optical-X ray outer jet. Using our nearly coeval 2012 VLA observations, we find a spectral index {alpha} = +0.46 {+-} 0.05, which combined with the lack of polarization is consistent with bremsstrahlung (free-free) emission, with no evidence for a non-thermal coronal component. By identifying the end of the radio jet as the optical depth unity surface, and calculating the resulting emission measure, we find that our radio results are in agreement with previous optical line studies of electron density and consequent mass-loss rate. We also detect a weak radio knot at 5 GHz located 7'' from the base of the jet, coincident with the inner radio knot detected by Rodriguez et al. in 2009 but at lower surface brightness. We interpret this as due to expansion of post-shock ionized gas in the three years between observations.

  2. Regulation of iron transport related genes by boron in the marine bacterium Marinobacter algicola DG893.

    PubMed

    Romano, Ariel; Trimble, Lyndsay; Hobusch, Ashtian R; Schroeder, Kristine J; Amin, Shady A; Hartnett, Andrej D; Barker, Ryan A; Crumbliss, Alvin L; Carrano, Carl J

    2013-08-01

    While there has been extensive interest in the use of boron isotope ratios as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the high (0.4 mM) concentration and the depth-independent (conservative or non-nutrient-like) concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the modern ocean. Here we report that boron affects the expression of a number of protein and genes in the "algal-associated" Gram-negative marine bacterium Marinobacter algicola DG893. Most intriguingly, a number of these proteins and genes are related to iron uptake. In a recent separate publication we have shown that boron regulates one such iron transport related protein, i.e. the periplasmic iron binding protein FbpA via a direct interaction of the metalloid with this protein. Here we show that a number of other iron uptake related genes are also affected by boron but in the opposite way i.e. they are up-regulated. We propose that the differential effect of boron on FbpA expression relative to other iron transport related genes is a result of an interaction between boron and the global iron regulatory protein Fur. PMID:23775459

  3. Immobilization of Pseudomonas sp. DG17 onto sodium alginate–attapulgite–calcium carbonate

    PubMed Central

    Wang, Hong Qi; Hua, Fei; Zhao, Yi Cun; Li, Yi; Wang, Xuan

    2014-01-01

    A strain of Pseudomonas sp. DG17, capable of degrading crude oil, was immobilized in sodium alginate–attapulgite–calcium carbonate for biodegradation of crude oil contaminated soil. In this work, proportion of independent variables, the laboratory immobilization parameters, the micromorphology and internal structure of the immobilized granule, as well as the crude oil biodegradation by sodium alginate–attapulgite–calcium carbonate immobilized cells and sodium alginate–attapulgite immobilized cells were studied to build the optimal immobilization carrier and granule-forming method. The results showed that the optimal concentrations of sodium alginate–attapulgite–calcium carbonate and calcium chloride were 2.5%–3.5%, 0.5%–1%, 3%–7% and 2%–4%, respectively. Meanwhile, the optimal bath temperature, embedding cell amount, reaction time and multiplication time were 50–60 °C, 2%, 18 h and 48 h, respectively. Moreover, biodegradation was enhanced by immobilized cells with a total petroleum hydrocarbon removal ranging from 33.56% ± 3.84% to 56.82% ± 3.26% after 20 days. The SEM results indicated that adding calcium carbonate was helpful to form internal honeycomb-like pores in the immobilized granules. PMID:26019567

  4. Effects of hexagonal boron nitride on dry compression mixture of Avicel DG and Starch 1500.

    PubMed

    Uğurlu, Timuçin; Halaçoğlu, Mekin Doğa

    2016-01-01

    The objective of this study was to investigate the lubrication properties of hexagonal boron nitride (HBN) on a (1:1) binary mixture of Avicel DG and Starch 1500 after using the dry granulation-slugging method and compare it with conventional lubricants, such as magnesium stearate (MGST), glyceryl behenate (COMP) and stearic acid (STAC). MGST is one of the most commonly used lubricants in the pharmaceutical industry. However, it has several adverse effects on tablet properties. In our current study, we employed various methods to eradicate the work hardening phenomenon in dry granulation, and used HBN as a new lubricant to overcome the adverse effects of other lubricants on tablet properties. HBN was found to be as effective as MGST and did not show any significant adverse effects on the crushing strength or work hardening. From the scanning electron microscope (SEM) images, it was concluded that HBN distributed better than MGST. As well as showing better distribution, HBN's effect on disintegration was the least pronounced. Semi-quantitative weight percent distribution of B and N elements in the tablets was obtained using EDS (energy dispersive spectroscopy). Based on atomic force microscope (AFM) surface roughness images, formulations prepared with 1% HBN showed better plastic character than those prepared with MGST. PMID:25716058

  5. DNA adducts and carcinogenicity of nitro-polycyclic aromatic hydrocarbons

    SciTech Connect

    Fu, P.P.; Herreno-Saenz, D.; Von Tungeln, L.S.

    1994-10-01

    We have been interested in the structure-activity relationships of nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), and have focused on the correlation of structural and electronic features with biological activities, including mutagenicity and tumorigenicity. In our studies, we have emphasized 1-, 2-, 3-, and 6-nitrobenzo[a]pyrenes (nitro-B[a]Ps) and related compounds, all of which are derived from the potent carcinogen benzo[a]pyrene. While 1-, 2-, and 3-nitro-B[a]P are potent mutagens in Salmonella, 6-nitro-B[a]P is a weak mutagen. In vitro metabolism of 1- and 3-nitro-B[a]P has been found to generate multiple pathways for mutagenic activation. The formation of the corresponding trans-7,8-dihydrodiols and 7,8,9,10-tetrahydrotetrols suggests that 1- and 3-nitro-B[a]P trans-7,8-diol-anti-9, 10--epoxides are ultimate metabolites of the parent nitro-B[a]Ps. We have isolated a DNA adduct from the reaction between 3-nitro-B[a]P trans-7,8-diol-anti-9, 10-epoxide and calf thymus DNA, and identified it as 10-(deoxyguanosin-N{sup 2}-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-3-nitro-B[a]P. The same adduct was identified from in vitro metabolism of [{sup 3}H]3-nitro-B[a]P by rat liver microsomes in the presence of calf thymus DNA. A DNA adduct of 3-nitro-B[a]P formed from reaction of N-hydroxy-3-amino-B[a]P, prepared in situ with calf thymus DNA was also isolated. This adduct was identified as 6-(deoxyguanosin-N{sup 2}-yl)-3-amino-B[a]P. The same adduct was obtained from incubating DNA with 3-nitro-B[a]P in the presence of the mammalian nitroreductase, xanthine oxidase, and hypoxanthine. 48 refs., 6 figs., 1 tab.

  6. DNA adducts of ethylene dibromide: Aspects of formation and mutagenicity

    SciTech Connect

    Cmarik, J.L.

    1991-01-01

    1,2-Dibromoethane (ethylene dibromide, EDB), a potential human carcinogen, undergoes bioactivation by the pathway of glutathione (GSH) conjugation, which generates a reactive intermediate capable of alkylating DNA. The major DNA adduct formed is S-[2-(N[sup 7]-guanyl)ethyl]GSH. This dissertation examined the bioactivation of EDB and the formation of DNA adducts. The selectivity of purified rat and human GSH S-transferases for EDB was examined in vitro. An assay was developed to measure the formation of S,S[prime]-ethylene-bis(GSH). The [alpha] class of the GSH S-transferases was responsible for the majority of EDB-GSH conjugation with both the rat and human enzymes. Human tissue samples for a victim of EDB poisoning were analyzed for S-[2-(N[sup 7]-guanyl)ethyl]GSH utilizing electrochemical detection. No adducts were detected in samples of brain, heart, or kidney. The pattern of alkylation of guanines in fragments of plasmid pBR322 DNA by S-(2-chloroethyl)GSH and related compounds was determined. Alkylation varied approximately ten-fold in intensity and was strongest in runs of guanines. Few differences were observed in the alkylation patterns generated by the different compounds tested. The spectrum of mutations caused by S-(2-chloroethyl)GSH was determined using an M13 bacteriophage forward mutation assay. The majority of mutations (70%) were G:C to A:T transitions. Participation of the N[sup 7]-guanyl adduct in the mutagenic process is strongly implicated. The sequence selectivity of alkylation in the region of M13 sequenced in the mutation assay was determined. Comparison of the sequence selectivity with the mutation spectrum revealed no obligate relationship between the extent of adduct formation and the number of mutations which resulted at different sites. Sequence context appears to exert a strong influence on the processing of lesions. These studies strongly implicate S-[2-(N[sup 7]-guanyl)-ethyl]GSH as a mutagenic lesion formed by EDB.

  7. Low response in white blood cell DNA adducts among workers in a highly polluted cokery environment.

    PubMed

    Kuljukka, T; Savela, K; Vaaranrinta, R; Mutanen, P; Veidebaum, T; Sorsa, M; Peltonen, K

    1998-06-01

    Coke oven workers are often heavily exposed to polynuclear aromatic hydrocarbons (PAHs); this exposure has been associated with higher cancer rates among these workers. We assessed the exposure of cokery workers in an oil shale processing plant. Personal hygienic monitoring, measurement of urinary 1-hydroxypyrene (1-OHP), and analysis of PAH-DNA adducts in white blood cells (WBCs) were performed. The 32P-postlabeling method was used for adduct measurement. The mean adduct value, 1.6 adducts per 10(8) nucleotides, did not differ significantly from the control value (P = 0.098). Smokers had significantly higher adduct levels than non-smoking workers (P = 0.002). 1-OHP levels measured in post-shift samples correlated with DNA adducts found in white blood cells (WBCs). We conclude that hygienic monitoring and measurement of urinary metabolites are essential background exposure data when the biologically effective dose of chemical carcinogens is assessed. PMID:9636933

  8. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  9. Structure of adducts of isoindolo[2,1-a]benzimidazole derivatives with maleimides

    NASA Astrophysics Data System (ADS)

    Korolev, Oleksandr; Yegorova, Tatyana; Levkov, Igor; Malytskyy, Volodymyr; Shishkin, Oleg; Zubatyuk, Roman; Palamarchuk, Genadiy; Vedrenne, Marc; Baltas, Michel; Voitenko, Zoia

    2015-03-01

    The selectivity of formation and some mechanistic insights during the synthesis of substituted isoindolo[2,1-a]benzimidazoles are discussed. Furthermore, the reactions of the obtained products with maleimides were carried out. Two types rearrangement adducts together with intermediate Michael type adducts were isolated. The influence of the reaction conditions and reagents ratio is discussed. Specific spectral criteria for the identification of the Michael type adducts are indicated.

  10. Structural aspects of adducts of N-phthaloylglycine and its derivatives

    NASA Astrophysics Data System (ADS)

    Barooah, Nilotpal; Sarma, Rupam J.; Batsanov, Andrei S.; Baruah, Jubaraj B.

    2006-06-01

    N-phthaloylglycine forms 2:1 adduct with 1,3-dihydroxybenzene and 1:2 adduct with 2-aminopyrimidine. Whereas N-phthaloylglycine form salts with 2,6-diaminopyridine and with 8-hydroxyquinoline. The 1:1 adduct of N, N'-bis(glycinyl)pyromellitic diimide with dimethylsulphoxide, 2-aminopyrimidine and 4,4'-dihydroxybiphenyl are prepared and characterised. The reaction of N, N'-bis(glycinyl)pyromellitic diimide with 2,6-diaminopyridine gives corresponding salt.

  11. Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements

    PubMed Central

    McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-01-01

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567

  12. Glutathione transferase A4-4 resists adduction by 4-hydroxynonenal☆

    PubMed Central

    Shireman, Laura M.; Kripps, Kimberly A.; Balogh, Larissa M.; Conner, Kip P.; Whittington, Dale; Atkins, William M.

    2010-01-01

    4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro- 2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it. PMID:20836986

  13. Glutathione transferase A4-4 resists adduction by 4-hydroxynonenal.

    PubMed

    Shireman, Laura M; Kripps, Kimberly A; Balogh, Larissa M; Conner, Kip P; Whittington, Dale; Atkins, William M

    2010-12-15

    4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it. PMID:20836986

  14. Comparison of DNA adducts from exposure to complex mixtures in various human tissues and experimental systems

    PubMed Central

    Lewtas, Joellen; Mumford, Judy; Everson, Richard B.; Hulka, Barbara; Wilcosky, Tim; Kozumbo, Walter; Thompson, Claudia; George, Michael; Dobiáš, Lubomir; Šrám, Radim; Li, Xueming; Gallagher, Jane

    1993-01-01

    DNA adducts derived from complex mixtures of polycyclic aromatic compounds emitted from tobacco smoke are compared to industrial pollution sources (e.g., coke ovens and aluminum smelters), smoky coal burning, and urban air pollution. Exposures to coke oven emissions and smoky coal, both potent rodent skin tumor initiators and lung carcinogens in humans, result in high levels of DNA adducts compared to tobacco smoke in the in vitro calf thymus DNA model system, in cultured lymphocytes, and in the mouse skin assay. Using tobacco smoke as a model in human studies, we have compared relative DNA adduct levels detected in blood lymphocytes, placental tissue, bronchoalveolar lung lavage cells, sperm, and autopsy tissues of smokers and nonsmokers. Adduct levels in DNA isolated from smokers were highest in human heart and lung tissue with smaller but detectable differences in placental tissue and lung lavage cells. Comparison of the DNA adduct levels resulting from human exposure to different complex mixtures shows that emissions from coke ovens, aluminum smelters, and smoky coal result in higher DNA adduct levels than tobacco smoke exposure. These studies suggest that humans exposed to complex combustion mixtures will have higher DNA adduct levels in target cells (e.g., lung) as compared to nontarget cells (e.g., lymphocytes) and that the adduct levels will be dependent on the genotoxic and DNA adduct-forming potency of the mixture. ImagesFIGURE 1.FIGURE 1.FIGURE 2.FIGURE 3.FIGURE 3.FIGURE 3.FIGURE 3.FIGURE 3.FIGURE 3.FIGURE 4. PMID:8319665

  15. Detection and comparison of DNA adducts after in vitro and in vivo diesel emission exposures

    SciTech Connect

    Gallagher, J.; George, M.; Kohan, M.; Thompson, C.; Shank, T.

    1993-01-01

    Development of methodologies to evaluate certain classes of polycyclic aromatic compounds (PAC) detected in complex mixtures to which humans are exposed would greatly improve the diagnostic potential of (32)P-postlabeling analysis. Identification of DNA adduct patterns of specific exposure-related marker adducts would strengthen associations between observed DNA adducts and exposures to different environmental pollutants (e.g., kerosene, cigarette smoke, coke oven, and diesel). Diesel-modified DNA adduct patterns were compared in various in vitro and in vivo rodent model systems and then compared to DNA reactive oxidative and reductive metabolites of 1-nitropyrene. The formation of nitrated-polycyclic aromatic hydrocarbon (nitrated-PAH) DNA adducts, derived from the metabolism of diesel extract constituents, was enhanced relative to other PAH-derived DNA adducts via xanthine oxidase-catalyzed nitroreduction. These adducts were detectable only by the butanol extraction version of the postlabeling analysis. Marker adducts detected in the various test systems presented here will assist in characterizing nuclease-P1-sensitive nitrated PAH adducts in humans.

  16. Chromatographic and fluorescence spectroscopic studies of individual 7,12-dimethylbenz(a)anthracene--deoxyribonucleoside adducts

    SciTech Connect

    Moschel, R.C.; Pigott, M.A.; Costantino, N.; Dipple, A.

    1983-09-01

    Compared with standard Sephadex LH-20 column chromatography, a newly developed high pressure liquid chromatographic separation of hydrocarbon deoxyribonucleoside adducts derived from the DNA of mouse embryo cell cultures exposed to 7,12-dimethylbenz(a)anthracene (DMBA) provides markedly superior resolution. Once resolved, the fluorescence spectroscopic properties of the three major DMBA--DNA adducts indicate that the fluorescence exhibited by adducts derived from a bay region syn dihydrodiol epoxide of DMBA differs subtly from that exhibited by adducts derived from the isomeric anti dihydrodiol epoxide.

  17. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin

    SciTech Connect

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Bérard, Izabel; and others

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied.

  18. Stereospecific Formation of Interstrand Carbinolamine DNA Crosslinks by Crotonaldehyde- and Acetaldehyde-Derived α-CH3-γ-OH-1,N2-Propano-2’-deoxyguanosine Adducts in the 5′-CpG-3′ Sequence

    PubMed Central

    Cho, Young-Jin; Wang, Hao; Kozekov, Ivan D.; Kurtz, Andrew J.; Jacob, Jaison; Voehler, Markus; Smith, Jarrod; Harris, Thomas M.; Lloyd, R. Stephen; Rizzo, Carmelo J.; Stone, Michael P.

    2008-01-01

    The crotonaldehyde- and acetaldehyde-derived R- and S-α-CH3-γ-OH-1,N2-propanodeoxyguanosine adducts were monitored in single-stranded and duplex oligodeoxynucleotides using NMR spectroscopy. In both instances the cis and trans diastereomers of the α-CH3 and γ-OH groups underwent slow exchange, with the trans diastereomers being favored. In single-stranded oligodeoxynucleotides, the aldehyde intermediates were not detected spectroscopically, but their presence was revealed through the formation of N-terminal conjugates with the tetrapeptide KWKK. When annealed into 5′-d(GCTAGCXAGTCC)-3′•5′-d(GGACTCYCTAGC)-3′ containing the 5′-CpG-3′ sequence context (X=R- or S-α-CH3-γ-13C-OH-PdG; Y=15N2-dG), at pH 7, partial opening of the R- or S-α-CH3-γ-13C-OH-PdG adducts to the corresponding N2-(3-oxo-1-methyl-propyl)-dG aldehydes was observed at temperatures below the Tm of the duplexes. These aldehydes equilibrated with their geminal diol hydrates; higher temperatures favored the aldehydes. When annealed opposite to T, the S-α-CH3-γ-13C-OH-PdG adduct was stable. At 37 °C, an interstrand DNA crosslink was observed spectroscopically only for the R-α-CH3-γ-OH-PdG adduct. Molecular modeling predicted that the interstrand crosslink formed by the R-α-CH3-γ-OH-PdG adduct introduced less disruption into the duplex structure than did the crosslink arising from the S-α-CH3-γ-OH-PdG adduct, due to differing orientations of the R- and S-CH3 groups. Modeling also predicted that the α-methyl group of the aldehyde arising from the R-α-CH3-γ-OH-PdG adduct oriented in the 3′ direction in the minor groove, facilitating crosslinking. In contrast, the α-methyl group of the aldehyde arising from the S-α-CH3-γ-OH-PdG adduct oriented in the 5′ direction within the minor groove potentially hindering crosslinking. NMR revealed that for the R-α-CH3-γ-OH-PdG adduct, the carbinolamine form of the crosslink was favored in duplex DNA, in situ, with the imine or

  19. Detection of mitomycin C-DNA adducts in vivo by 32P-postlabeling: time course for formation and removal of adducts and biochemical modulation.

    PubMed

    Warren, A J; Maccubbin, A E; Hamilton, J W

    1998-02-01

    Mitomycin C (MMC) is a DNA cross-linking agent that has been used in cancer chemotherapy for over 20 years, yet little is known either qualitatively or quantitatively about MMC-induced DNA adduct formation and repair in vivo. As an initial means of investigating this, we used a recently developed 32P-postlabeling assay to examine the formation and loss of MMC-DNA adducts in the tissues of a simple in vivo model test system, the chick embryo, following treatment with a chemotherapeutic dose of MMC. As early as 15 min after MMC treatment, four adducts could be detected in the liver which were tentatively identified as the (CpG) N2G-MMC-N2G interstrand cross-link, the bifunctionally activated MMC-N2G monoadduct, and two isomers (alpha and beta) of the monofunctionally activated MMC-N2G monoadduct. The (GpG) N2G-MMC-N2G intrastrand cross-link appears to be a poor substrate for nuclease P1 and/or T4 kinase and was not evaluable by this assay. Levels of all four detectable adducts increased substantially within the first 2 h after MMC treatment, reached maximal levels by 6 h, and decreased progressively thereafter through 24 h, although low levels of certain adducts persisted beyond 24 h. Lung and kidney had comparable levels of total MMC adducts, which were approximately 60% those of the liver, and there were no significant differences in the proportion of specific adducts among the three tissues. The interstrand cross-link represented approximately 13-14% of the total MMC adducts, which is approximately 5-fold greater than the proportion of CpG sites in the genome. In addition, the interstrand cross-link was selectively decreased after 16 h relative to the three monoadducts, suggesting preferential repair. The effect of modulating different components of the Phase I and Phase II drug metabolism on MMC adduct formation, using either glutethimide, 3,4,3',4'-tetrachlorobiphenyl, dexamethasone, buthionine sulfoximine, ethacrynic acid, or N-acetylcysteine pretreatments, was

  20. Influence of Underlap on Gate Stack DG-MOSFET for analytical study of Analog/RF performance

    NASA Astrophysics Data System (ADS)

    Kundu, Atanu; Dasgupta, Arpan; Das, Rahul; Chakraborty, Shramana; Dutta, Arka; Sarkar, Chandan K.

    2016-06-01

    In this paper, the characteristics of 18 nm Underlap Double Gate (U-DG) NMOSFET with gate stack, (GS) are presented. The high-k dielectric as gate insulator under consideration is Hafnium Dioxide (HfO2). The SiO2 padding reduces the effect of scattering at the silicon and oxide interface. The ratio of on current to off current is used for optimizing the underlap length. The Analog and RF performance comparison are shown in this paper considering the drain current (Id), the transconductance (gm), the intrinsic gain (gmRo), the intrinsic capacitances (Cgs, Cgd), the intrinsic resistances (Rgs, Rgd), the transport delay (τm), the intrinsic inductance (Hsd), the unity current gain cut-off frequency (fT) and the maximum frequency of oscillation (fmax). RF parameters are extracted using the Non Quasi Static (NQS) model of the U-DG MOSFET. The performance of single stage amplifiers using the devices is also analyzed. The sharpest transition is shown in case of U-DG-GS MOSFET with optimized underlap length and enhancement in the intrinsic capacitances and resistances, and unity Gain Bandwidth product in case of devices with GS.

  1. DgSMC-B code: A robust and autonomous direct simulation Monte Carlo code for arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Kargaran, H.; Minuchehr, A.; Zolfaghari, A.

    2016-07-01

    In this paper, we describe the structure of a new Direct Simulation Monte Carlo (DSMC) code that takes advantage of combinatorial geometry (CG) to simulate any rarefied gas flows Medias. The developed code, called DgSMC-B, has been written in FORTRAN90 language with capability of parallel processing using OpenMP framework. The DgSMC-B is capable of handling 3-dimensional (3D) geometries, which is created with first-and second-order surfaces. It performs independent particle tracking for the complex geometry without the intervention of mesh. In addition, it resolves the computational domain boundary and volume computing in border grids using hexahedral mesh. The developed code is robust and self-governing code, which does not use any separate code such as mesh generators. The results of six test cases have been presented to indicate its ability to deal with wide range of benchmark problems with sophisticated geometries such as airfoil NACA 0012. The DgSMC-B code demonstrates its performance and accuracy in a variety of problems. The results are found to be in good agreement with references and experimental data.

  2. TENTATIVE EVIDENCE FOR RELATIVISTIC ELECTRONS GENERATED BY THE JET OF THE YOUNG SUN-LIKE STAR DG Tau

    SciTech Connect

    Ainsworth, Rachael E.; Ray, Tom P.; Taylor, Andrew M.; Scaife, Anna M. M.; Green, David A.; Buckle, Jane V.

    2014-09-01

    Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from active galactic nuclei. We present data at 325 and 610 MHz taken with the Giant Metrewave Radio Telescope of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass young stellar object at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpret this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength B {sub min} ≈ 0.11 mG and particle energy E {sub min} ≈ 4 × 10{sup 40} erg, which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.

  3. KINEMATICS OF THE OUTFLOW FROM THE YOUNG STAR DG TAU B: ROTATION IN THE VICINITIES OF AN OPTICAL JET

    SciTech Connect

    Zapata, Luis A.; Lizano, Susana; Rodríguez, Luis F.; Loinard, Laurent; Tafoya, Daniel; Ho, Paul T. P.; Fernández-López, Manuel

    2015-01-10

    We present {sup 12}CO(2-1) line and 1300 μm continuum observations made with the Submillimeter Array of the young star DG Tau B. We find, in the continuum observations, emission arising from the circumstellar disk surrounding DG Tau B. The {sup 12}CO(2-1) line observations, on the other hand, revealed emission associated with the disk and the asymmetric outflow related with this source. Velocity asymmetries about the flow axis are found over the entire length of the flow. The amplitude of the velocity differences is of the order of 1-2 km s{sup –1} over distances of about 300-400 AU. We interpret them as a result of outflow rotation. The sense of the outflow and disk rotation is the same. Infalling gas from a rotating molecular core cannot explain the observed velocity gradient within the flow. Magneto-centrifugal disk winds or photoevaporated disk winds can produce the observed rotational speeds if they are ejected from a Keplerian disk at radii of several tens of AU. Nevertheless, these slow winds ejected from large radii are not very massive, and cannot account for the observed linear momentum and angular momentum rates of the molecular flow. Thus, the observed flow is probably entrained material from the parent cloud. DG Tau B is a good laboratory to model in detail the entrainment process and see if it can account for the observed angular momentum.

  4. Group 13 Superacid Adducts of [PCl2N]3.

    PubMed

    Tun, Zin-Min; Heston, Amy J; Panzner, Matthew J; Scionti, Vincenzo; Medvetz, Doug A; Wright, Brian D; Johnson, Nicholas A; Li, Linlin; Wesdemiotis, Chrys; Rinaldi, Peter L; Youngs, Wiley J; Tessier, Claire A

    2016-04-01

    Irrespective of the order of the addition of reagents, the reactions of [PCl2N]3 with MX3 (MX3 = AlCl3, AlBr3, GaCl3) in the presence of water or gaseous HX give the air- and light-sensitive superacid adducts [PCl2N]3·HMX4. The reactions are quantitative when HX is used. These reactions illustrate a Lewis acid/Brønsted acid dichotomy in which Lewis acid chemistry can become Brønsted acid chemistry in the presence of adventitious water or HX. The crystal structures of all three [PCl2N]3·HMX4 adducts show that protonation weakens the two P-N bonds that flank the protonated nitrogen atom. Variable-temperature NMR studies indicate that exchange in solution occurs in [PCl2N]3·HMX4, even at lower temperatures than those for [PCl2N]3·MX3. The fragility of [PCl2N]3·HMX4 at or near room temperature and in the presence of light suggests that such adducts are not involved directly as intermediates in the high-temperature ring-opening polymerization (ROP) of [PCl2N]3 to give [PCl2N]n. Attempts to catalyze or initiate the ROP of [PCl2N]3 with the addition of [PCl2N]3·HMX4 at room temperature or at 70 °C were not successful. PMID:26974866

  5. Metabolites and DNA adduct formation from flavoenzyme-activated porfiromycin.

    PubMed

    Pan, S S; Iracki, T

    1988-08-01

    Porfiromycin was reductively metabolized by NADPH cytochrome P-450 reductase and xanthine oxidase under anaerobic conditions. The production of metabolites varied with the pH and the contents of the reaction buffer. In Tris buffer, two major metabolites were produced at pH 7.5 and above, whereas one major metabolite was produced at pH 6.5. The three major metabolites were separated and isolated by HPLC. Identification by californium-252 plasma desorption mass spectrometry showed that the two major metabolites from pH 7.5 were (trans) and (cis)-forms of 7-amino-1-hydroxyl-2-methylaminomitosene and the major metabolite from pH 6.5 was 7-amino-2-methylaminomitosene. All three major metabolites showed substitutions at the C-1 position. DNA was alkylated readily by enzyme-activated porfiromycin. Digestion of porfiromycin-alkylated DNA by DNase, snake venom phosphodiesterase, and alkaline phosphatase resulted in an insoluble nuclease-resistant fraction and a soluble fraction. The nuclease-resistant fraction reflected a high content of cross-linked adducts. Upon HPLC analysis, the solubilized fraction contained two monofunctionally linked porfiromycin adducts and a possibly cross-linked dinucleotide. The major adduct was isolated by HPLC and identified by NMR, as N2-(2'-deoxyguanosyl)-7-amino-2-methylaminomitosene. The N2 position of deoxyguanosine appeared as the major monofunctional alkylating site for DNA alkylation by porfiromycin. Thus, mitomycin C and porfiromycin (which differs from mitomycin C only by the addition of a methyl group to the aziridine nitrogen) share the same enzymatic activating mechanism that leads to the formation of the same types of metabolites and the same specificity of DNA alkylation. PMID:3412325

  6. First Crystal Structure for a Gold Carbene-Protein Adduct.

    PubMed

    Ferraro, Giarita; Gabbiani, Chiara; Merlino, Antonello

    2016-07-20

    The X-ray structure of the adduct formed in the reaction between the gold N-heterocyclic carbene compound Au(NHC)Cl (with NHC = 1-butyl-3-methyl-imidazole-2-ylidene) and the model protein thaumatin is reported here. The structure reveals binding of Au(NHC)(+) fragments to distinct protein sites. Notably, binding of the gold compound occurs at lysine side chains and at the N-terminal tail; the metal binds the protein after releasing Cl(-) ligand, but retaining NHC fragment. PMID:27364343

  7. Unraveling the Photoswitching Mechanism in Donor-Acceptor Stenhouse Adducts.

    PubMed

    Lerch, Michael M; Wezenberg, Sander J; Szymanski, Wiktor; Feringa, Ben L

    2016-05-25

    Molecular photoswitches have opened up a myriad of opportunities in applications ranging from responsive materials and control of biological function to molecular logics. Here, we show that the photoswitching mechanism of donor-acceptor Stenhouse adducts (DASA), a recently reported class of photoswitches, proceeds by photoinduced Z-E isomerization, followed by a thermal, conrotatory 4π-electrocyclization. The photogenerated intermediate is manifested by a bathochromically shifted band in the visible absorption spectrum of the DASA. The identification of the role of this intermediate reveals a key step in the photoswitching mechanism that is essential to the rational design of switching properties via structural modification. PMID:27152878

  8. Lack of Involvement of CEP Adducts in TLR Activation and in Angiogenesis

    PubMed Central

    Gounarides, John; Cobb, Jennifer S.; Zhou, Jing; Cook, Frank; Yang, Xuemei; Yin, Hong; Meredith, Erik; Rao, Chang; Huang, Qian; Xu, YongYao; Anderson, Karen; De Erkenez, Andrea; Liao, Sha-Mei; Crowley, Maura; Buchanan, Natasha; Poor, Stephen; Qiu, Yubin; Fassbender, Elizabeth; Shen, Siyuan; Woolfenden, Amber; Jensen, Amy; Cepeda, Rosemarie; Etemad-Gilbertson, Bijan; Giza, Shelby; Mogi, Muneto; Jaffee, Bruce; Azarian, Sassan

    2014-01-01

    Proteins that are post-translationally adducted with 2-(ω-carboxyethyl)pyrrole (CEP) have been proposed to play a pathogenic role in age-related macular degeneration, by inducing angiogenesis in a Toll Like Receptor 2 (TLR2)-dependent manner. We have investigated the involvement of CEP adducts in angiogenesis and TLR activation, to assess the therapeutic potential of inhibiting CEP adducts and TLR2 for ocular angiogenesis. As tool reagents, several CEP-adducted proteins and peptides were synthetically generated by published methodology and adduction was confirmed by NMR and LC-MS/MS analyses. Structural studies showed significant changes in secondary structure in CEP-adducted proteins but not the untreated proteins. Similar structural changes were also observed in the treated unadducted proteins, which were treated by the same adduction method except for one critical step required to form the CEP group. Thus some structural changes were unrelated to CEP groups and were artificially induced by the synthesis method. In biological studies, the CEP-adducted proteins and peptides failed to activate TLR2 in cell-based assays and in an in vivo TLR2-mediated retinal leukocyte infiltration model. Neither CEP adducts nor TLR agonists were able to induce angiogenesis in a tube formation assay. In vivo, treatment of animals with CEP-adducted protein had no effect on laser-induced choroidal neovascularization. Furthermore, in vivo inactivation of TLR2 by deficiency in Myeloid Differentiation factor 88 (Myd88) had no effect on abrasion-induced corneal neovascularization. Thus the CEP-TLR2 axis, which is implicated in other wound angiogenesis models, does not appear to play a pathological role in a corneal wound angiogenesis model. Collectively, our data do not support the mechanism of action of CEP adducts in TLR2-mediated angiogenesis proposed by others. PMID:25343517

  9. Dynamic and static control of the human knee joint in abduction-adduction.

    PubMed

    Zhang, L Q; Wang, G

    2001-09-01

    It is unclear whether humans can voluntarily control dynamic and static properties in knee abduction-adduction, which may be important in performing functional tasks and preventing injuries, whether the main load is about the abduction axis or not. A joint-driving device was used to perturb the knee in abduction-adduction at full knee extension under both passive (muscle relaxed) and active (muscle contracted in abduction or adduction) conditions. Dynamic control properties in knee abduction-adduction were characterized by joint stiffness, viscosity, and limb inertia, and quasi-static knee torque-angle relationship was characterized by knee abduction-adduction laxity and quasi-static stiffness (at a 20Nm moment). It was found that the subjects were capable of generating net abduction and adduction moment through differential co-contraction of muscles crossing the medial and lateral sides of the knee, which helped to reduce the abduction-adduction joint laxity (p< or =0.01) and increase stiffness (p<0.027) and viscous damping. Knee abduction laxity was significantly lower than adduction laxity (p=0.043) and the quasi-static abduction stiffness was significantly higher than adduction stiffness (p<0.001). The knee joint showed significantly higher stiffness and viscosity in abduction-adduction than their counterparts in knee flexion-extension at comparable levels of joint torque (p<0.05). Similar to dynamic flexion-extension properties, the system damping ratio remained constant over different levels of contraction, indicating simplified control tasks for the central nervous system; while the natural undamped frequency increased considerably with abduction-adduction muscle contraction, presumably making the knee a quicker system during strenuous tasks involving strong muscle contraction. PMID:11506781

  10. Covalent adducts arising from the decomposition products of lipid hydroperoxides in the presence of cytochrome C

    PubMed Central

    Williams, Michelle V.; Wishnok, John S.; Tannenbaum, Steven R.

    2008-01-01

    Polyunsaturated fatty acids can be converted to lipid hydroperoxides through non-enzymatic and enzymatic pathways. The prototypic ω-6 lipid hydroperoxide 13-hydroperoxy-octadecadienoic acid (13-HPODE) decomposes homolytically to form highly reactiveα,β-unsaturated aldehydes, such as 9,12-dioxo-10(E)-dodecenoic acid (DODE), 4-oxo-2(E)-nonenal (ONE), 4,5-epoxy-2(E)-decenal (EDE), and 4-hydroxy-2(E)-nonenal (HNE), that can form covalent adducts with DNA. Both 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal can also modify proteins to form products that can potentially serve as biomarkers of lipid hydroperoxide-mediated macromolecule damage. In this study cytochrome C was used to identify and characterize the modification sites individually for each of these aldehydes and also to determine the most abundant adduct formed following decomposition of 13-HPODE. The adducts were characterized by ESI-TOF/MS analysis of the intact proteins and by a combination of ESI-ion-trap/MSn and quadrupole-TOF/MS/MS analysis of the tryptic and chymotryptic peptides. The major adducts included an HNE-His Michael adduct on H33, EDE-Lys adducts on K7 and K8, ONE-Lys ketoamide adducts on K5, K7, and K8, an apparent ONE-Lys Michael adduct on K5, and DODE-Lys carboxyl ketoamide adducts on K86 and K87. DODE was the most reactive aldehyde toward cytochrome C. The major adduct from this reaction was analogous to the most abundant adduct resulting from the decomposition of 13-HPODE in the presence of cytochrome C. PMID:17407328

  11. Ultrasensitive isolation, identification and quantification of DNA-protein adducts by ELISA-based RADAR assay.

    PubMed

    Kiianitsa, Kostantin; Maizels, Nancy

    2014-07-01

    Enzymes that form transient DNA-protein covalent complexes are targets for several potent classes of drugs used to treat infectious disease and cancer, making it important to establish robust and rapid procedures for analysis of these complexes. We report a method for isolation of DNA-protein adducts and their identification and quantification, using techniques compatible with high-throughput screening. This method is based on the RADAR assay for DNA adducts that we previously developed (Kiianitsa and Maizels (2013) A rapid and sensitive assay for DNA-protein covalent complexes in living cells. Nucleic Acids Res., 41:e104), but incorporates three key new steps of broad applicability. (i) Silica-assisted ethanol/isopropanol precipitation ensures reproducible and efficient recovery of DNA and DNA-protein adducts at low centrifugal forces, enabling cell culture and DNA precipitation to be carried out in a single microtiter plate. (ii) Rigorous purification of DNA-protein adducts by a procedure that eliminates free proteins and free nucleic acids, generating samples suitable for detection of novel protein adducts (e.g. by mass spectroscopy). (iii) Identification and quantification of DNA-protein adducts by direct ELISA assay. The ELISA-based RADAR assay can detect Top1-DNA and Top2a-DNA adducts in human cells, and gyrase-DNA adducts in Escherichia coli. This approach will be useful for discovery and characterization of new drugs to treat infectious disease and cancer, and for development of companion diagnostics assays for individualized medicine. PMID:24914050

  12. MULTIPLE DNA ADDUCTS IN LYMPHOCYTES OF SMOKERS AND NONSMOKERS DETERMINED BY 32P-POSTLABELING ANALYSIS

    EPA Science Inventory

    Identification of DNA adducts in peripheral lymphocytes could serve as a means of monitoring human exposure to potential genotoxic agents. n this study, DNA from peripheral lymphocytes of smokers and nonsmokers was examined for adducts by the P1 nuclease 32P-postlabeling techniqu...

  13. CIGARETTE SMOKE-INDUCED DNA ADDUCTS IN THE RESPIRATORY AND NONRESPIRATORY TISSUE OF RATS

    EPA Science Inventory

    Formation of DNA adducts is regarded a- an essential initial step in the process of chemical carcinogenesis. To determine how chronic exposure to cigarette smoke affects the distribution of DNA adducts In selected respiratory and nonrespiratory tissues, we exposed male Sprague-Da...

  14. FORMATION OF HEMOGLOBIN ADDUCTS OF ACRYLAMIDE AND ITS EPOXIDE METABOLITE GLYCIDAMIDE IN THE RAT

    EPA Science Inventory

    A method was developed for the determination of hemoglobin (Hb) adducts form by the neurotoxic agent acrylamide and its mutagenic epoxide metabolite glycidamide. he method was based on simultaneous measurements of the cysteine adducts formed by these two agents by means of gas ch...

  15. Cyclooctyne [60]fullerene hexakis adducts: a globular scaffold for copper-free click chemistry.

    PubMed

    Ramos-Soriano, Javier; Reina, José J; Pérez-Sánchez, Alfonso; Illescas, Beatriz M; Rojo, Javier; Martín, Nazario

    2016-08-18

    The synthesis of a new highly symmetric hexakis adduct of C60 appended with 12 cyclooctyne moieties has been carried out. This compound has been used for the copper-free strain-promoted cycloaddition reaction to a series of azides with excellent yields. This strategy for the obtention of clicked adducts of [60]fullerene is of special interest for biological applications. PMID:27492263

  16. Significance of DNA adduct studies in animal models for cancer molecular dosimetry and risk assessment.

    PubMed Central

    Beland, F A; Poirier, M C

    1993-01-01

    To elucidate the relationship between DNA adduct formation and tumorigenesis, a number of experiments have been conducted to measure DNA adducts in target tissues from experimental animals during continuous exposure to carcinogens. With aflatoxins, aromatic amines, and polycyclic aromatic hydrocarbons, tumor induction appears to be associated with the major DNA adduct detected, whereas with N-nitrosamines the response is normally correlated with minor forms of DNA damage. During continuous carcinogen administration, steady-state adduct concentrations are generally obtained in the target tissues, and there is often a linear correlation between the carcinogen concentration and the steady-state DNA adduct level. Exceptions exist when the mechanism of activation changes or with the onset of significant toxicity. Steady-state DNA adduct levels are often linearly related to the tumorigenic response. Carcinogen-induced cell proliferation occurs when significant deviations from linearity are observed. Because DNA adducts detected in humans are chemically identical to those found in experimental animals, DNA adduct data in animals may contribute to our understanding of human cancer risk. PMID:8319658

  17. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ester with pentaerythritol. 721.3680 Section 721.3680 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  18. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ester with pentaerythritol. 721.3680 Section 721.3680 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  19. Spontaneous dehydrocoupling in peri-substituted phosphine-borane adducts.

    PubMed

    Taylor, Laurence J; Surgenor, Brian A; Wawrzyniak, Piotr; Ray, Matthew J; Cordes, David B; Slawin, Alexandra M Z; Kilian, Petr

    2016-02-01

    Bis(borane) adducts Acenap(PiPr2·BH3)(PRH·BH3) (Acenap = acenaphthene-5,6-diyl; 4a, R = Ph; 4b, R = ferrocenyl, Fc; 4c, R = H) were synthesised by the reaction of excess H3B·SMe2 with either phosphino-phosphonium salts [Acenap(PiPr2)(PR)](+)Cl(-) (1a, R = Ph; 1b, R = Fc), or bis(phosphine) Acenap(PiPr2)(PH2) (3). Bis(borane) adducts 4a-c were found to undergo dihydrogen elimination at room temperature, this spontaneous catalyst-free phosphine-borane dehydrocoupling yields BH2 bridged species Acenap(PiPr2)(μ-BH2)(PR·BH3) (5a, R = Ph; 5b, R = Fc; 5c, R = H). Thermolysis of 5c results in loss of the terminal borane moiety to afford Acenap(PiPr2)(μ-BH2)(PH) (14). Single crystal X-ray structures of 3, 4b and 5a-c are reported. PMID:26314761

  20. Turned head--adducted hip--truncal curvature syndrome.

    PubMed Central

    Hamanishi, C; Tanaka, S

    1994-01-01

    One hundred and eight neonates and infants who showed the clinical triad of a head turned to one side, adduction contracture of the hip joint on the occipital side of the turned head, and truncal curvature, which we named TAC syndrome, were studied. These cases included seven with congenital and five with late infantile dislocations of the hip joint and 14 who developed muscular torticollis. Forty one were among 7103 neonates examined by one of the authors. An epidemiological analysis confirmed the aetiology of the syndrome to be environmental. The side to which the head was turned and that of the adducted hip contracture showed a high correlation with the side of the maternal spine on which the fetus had been lying. TAC syndrome is an important asymmetrical deformity that should be kept in mind during neonatal examination, and may be aetiologically related to the unilateral dislocation of the hip joint, torticollis, and infantile scoliosis which develop after a vertex presentation. Images PMID:8048823

  1. Kinetics, mechanism and thermodynamics of bisulfite-aldehyde adduct formation

    SciTech Connect

    Olson, T.M.; Boyce, S.D.; Hoffmann, M.R.

    1986-04-01

    The kinetics and mechanism of bisulfite addition to benzaldehyde were studied at low pH in order to assess the importance of this reaction in stabilizing S(IV) in fog-, cloud-, and rainwater. Previously, the authors established that appreciable concentrations of the formaldehyde-bisulfite adduct (HMSA) are often present in fogwater. Measured HMSA concentrations in fogwater often do not fully account for observed excess S(IV) concentrations, however, so that other S(IV)-aldehyde adducts may be present. Reaction rates were determined by monitoring the disappearance of benzaldehyde by U.V. spectrophotometry under pseudo-first order conditions, (S(IV))/sub T/ >>(phi-CHO)/sub T/, in the pH range 0 - 4.4 at 25/sup 0/C. The equilibrium constant was determined by dissolving the sodium salt of the addition compound in a solution adjusted to pH 3.9, and measuring the absorbance of the equilibrated solution at 250 nm. A literature value of the extinction coefficient for benzaldehyde was used to calculate the concentration of free benzaldehyde. All solutions were prepared under an N/sub 2/ atmosphere using deoxygenated, deionized water and ionic strength was maintained at 1.0 M with sodium chloride.

  2. Quantitation of 4,4′-methylene diphenyl diisocyanate human serum albumin adducts

    PubMed Central

    Luna, Leah G.; Green, Brett J.; Zhang, Fagen; Arnold, Scott M.; Siegel, Paul D.; Bartels, Michael J.

    2016-01-01

    4,4′-Methylene diphenyl diisocyanate (herein 4,4′-MDI) is used in the production of polyurethane foams, elastomers, coatings, adhesives and the like for a wide range of commercial products. Occupational exposure to MDI levels above current airborne exposure limits can elicit immune mediated hypersensitivity reactions such as occupational asthma in sensitive individuals. To accurately determine exposure, there has been increasing interest in developing analytical methods to measure internal biomarkers of exposure to MDI. Previous investigators have reported methodologies for measuring MDI diamine metabolites and MDI-Lysine (4,4′-MDI-Lys) adducts. The purpose of this study was to develop and validate an ultra performance liquid chromatography isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS) quantitation method via a signature peptide approach to enable biomonitoring of 4,4′-MDI adducted to human serum albumin (HSA) in plasma. A murine, anti-4,4′-MDI monoclonal IgM antibody was bound to magnetic beads and utilized for enrichment of the MDI adducted HSA. Following enrichment, trypsin digestion was performed to generate the expected 414 site (primary site of adduction) 4,4′-MDI-adducted HSA signature peptide that was quantified by UPLC-ID/MS/MS. An Agilent 6530 UPLC/quadrupole time of flight MS (QTOF) system was utilized for intact adducted protein analysis and an Agilent 6490 UPLC/MS/MS system operated in multiple reaction monitoring (MRM) mode was utilized for quantification of the adducted signature peptide biomarker both for in chemico and worker serum samples. Worker serum samples were initially screened utilizing the previously developed 4,4′-MDI-Lys amino acid method and results showed that 12 samples were identified as quantifiable for 4,4′-MDI-Lys adducts. The signature peptide adduct approach was applied to the 12 worker samples identified as quantifiable for 4,4′-MDI-Lys adducts. Results indicated no positive results were obtained

  3. DNA adducts in marine mussel and fresh water fishes living in polluted and unpolluted environments

    SciTech Connect

    Kurelec, B.; Checko, M.; Krca, S.; Garg, A.; Gupta, R.C. Baylor College of Medicine, Houston, TX )

    1988-09-01

    {sup 32}P-postlabeling analysis of DNA adducts in the digestive gland of marine mussel Mytilus galloprovincialis from polluted and unpolluted sites near Rovinj, Northern Adriatic, revealed that majority of adducts are caused by natural environmental factors rather than by man-made chemicals. The only pollutant-specific adducts were observed in a mussel exposed to seawater experimentally polluted with aminofluorene, and in a population of mussel living at a site heavily polluted with a waste waters of an oil refinery. Fresh water fish species Leuciscus cephalus, Barbus barbus, Abramis brama and Rutilus pigus virgo living in a polluted Sava River, Yugoslavia, or in its unpolluted tributary Korana River, have induced in their livers qualitatively identical and quantitatively similar DNA adducts. These DNA adducts had a species-specific patterns and their appearance was seasonally-dependent.

  4. Liquid chromatography-thermospray mass spectrometry of DNA adducts formed with mitomycin C, porfiromycin and thiotepa.

    PubMed

    Musser, S M; Pan, S S; Callery, P S

    1989-07-14

    High-performance liquid chromatography (HPLC) and thermospray mass spectrometry were combined for the analysis of DNA adducts formed from the interaction of the anticancer drugs mitomycin C, porfiromycin and thiotepa with calf thymus DNA. The adducts formed from reaction of mitomycin C and porfiromycin with DNA were separated from unmodified nucleosides by HPLC on a C18 column and identified by thermospray mass spectrometry. Thiotepa DNA adducts readily depurinated from DNA and were chromatographed and identified by thermospray liquid chromatography-mass spectrometry as the modified bases without the ribose moiety attached. The utility of thermospray mass spectrometry for the identification of microgram quantities of nucleoside adducts and depurinated base adducts of these anticancer drugs was demonstrated. PMID:2504760

  5. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II–DNA adducts

    PubMed Central

    Aparicio, Tomas; Baer, Richard; Gottesman, Max

    2016-01-01

    Repair of DNA double-strand breaks (DSBs) with complex ends poses a special challenge, as additional processing is required before DNA ligation. For example, protein–DNA adducts must be removed to allow repair by either nonhomologous end joining or homology-directed repair. Here, we investigated the processing of topoisomerase II (Top2)–DNA adducts induced by treatment with the chemotherapeutic agent etoposide. Through biochemical analysis in Xenopus laevis egg extracts, we establish that the MRN (Mre11, Rad50, and Nbs1) complex, CtIP, and BRCA1 are required for both the removal of Top2–DNA adducts and the subsequent resection of Top2-adducted DSB ends. Moreover, the interaction between CtIP and BRCA1, although dispensable for resection of endonuclease-generated DSB ends, is required for resection of Top2-adducted DSBs, as well as for cellular resistance to etoposide during genomic DNA replication. PMID:26880199

  6. Design considerations for novel device architecture: hetero-material double-gate (HEM-DG) MOSFET with sub-100 nm gate length

    NASA Astrophysics Data System (ADS)

    Saxena, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2004-07-01

    The paper presents the results of a systematic analytical characterization, supplemented by 2D device simulation, applied to novel device architecture: hetero-material double-gate (HEM-DG) MOSFET with effective channel length down to 30 nm. A new approach to explain the pertinent device physics is presented, which can facilitate device design and technology selection for enhanced performance. Numerical device simulation data, obtained using 2D device simulator: ATLAS, for threshold voltage, drain induced barrier lowering (DIBL) and subthreshold swing (S) were compared to the model to validate the analytical formulation. The comparison of symmetric DG (SDG) MOSFET and HEM-DG MOSFET configurations demonstrated superiority of HEM-DG MOSFET: ideal S and reduced DIBL. Comparison with simulated results reveals excellent quantitative agreement.

  7. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function

    PubMed Central

    Liu, Zhi; Ding, Shuang; Kropachev, Konstantin; Lei, Jia; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2015-01-01

    The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide

  8. DNA adducts as a measure of lung cancer risk in humans exposed to polycyclic aromatic hydrocarbons.

    PubMed Central

    Kriek, E; Van Schooten, F J; Hillebrand, M J; Van Leeuwen, F E; Den Engelse, L; De Looff, A J; Dijkmans, A P

    1993-01-01

    Workers in the coking, foundry, and aluminum industry can be exposed to high concentrations of polycyclic aromatic hydrocarbons (PAHs) and are at increased risk for lung cancer, as are cigarette smokers. In recent years several studies on workers in the foundry and coking industries have been reported. In these studies, white blood cell(WBC) DNA was used for analysis of PAH-DNA adducts. Theoretically, DNA adduct formation is a more relevant biological parameter for assessing exposure risk than PAH in the work atmosphere, or the amount of a metabolite in the urine, because adduct levels reflect that part of the dose that escapes detoxification and binds to DNA. We analyzed WBC DNA from coke-oven workers and from workers in an aluminum production plant and demonstrated the presence of PAH-DNA adducts. Forty-seven percent of the coke-oven workers had detectable levels of PAH-DNA adducts in their WBC compared with 27% of the controls (p < 0.05), measured with ELISA. In both groups, smokers had significantly higher levels of PAH-DNA adducts than did nonsmokers. In the aluminum workers, no PAH-DNA adducts were detected by ELISA, although the benzo[a]pyrene concentrations in the work atmosphere were comparable to those of the coke-oven workers. The more sensitive 32P-postlabeling assay showed the presence of PAH-DNA adducts in 91% of the aluminum workers. There was no correlation of WBC adduct levels with the concentration of PAH in the work atmosphere. Recently we showed that total PAH-DNA adduct levels in WBC from lung cancer patients were much higher than those generally found in healthy smokers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8319662

  9. Depurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention.

    PubMed

    Cavalieri, Ercole L; Rogan, Eleanor G

    2016-03-01

    Estrogens can initiate cancer by reacting with DNA. Specific metabolites of endogenous estrogens, the catechol estrogen-3,4-quinones, react with DNA to form depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating mutations that can lead to the initiation of cancer. A variety of endogenous and exogenous factors can disrupt estrogen homeostasis, which is the normal balance between estrogen activating and protective enzymes. In fact, if estrogen metabolism becomes unbalanced and generates excessive catechol estrogen 3,4-quinones, formation of depurinating estrogen-DNA adducts increases and the risk of initiating cancer is greater. The levels of depurinating estrogen-DNA adducts are high in women diagnosed with breast cancer and those at high risk for the disease. High levels of depurinating estrogen-DNA adducts before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Women with thyroid or ovarian cancer also have high levels of estrogen-DNA adducts, as do men with prostate cancer or non-Hodgkin lymphoma. Depurinating estrogen-DNA adducts are initiators of many prevalent types of human cancer. These findings and other discoveries led to the recognition that reducing the levels of estrogen-DNA adducts could prevent the initiation of human cancer. The dietary supplements N-acetylcysteine and resveratrol inhibit formation of estrogen-DNA adducts in cultured human breast cells and in women. These results suggest that the two supplements offer an approach to reducing the risk of developing various prevalent types of human cancer. Graphical abstract Major metabolic pathway in cancer initiation by estrogens. PMID:26979321

  10. /sup 32/P-postlabeling analysis of aromatic DNA adducts in fish from polluted areas

    SciTech Connect

    Dunn, B.P.; Black, J.J.; Maccubbin, A.

    1987-12-15

    Brown bullheads (Ictalurus nebulosus) were sampled from sites in the Buffalo and Detroit Rivers where fish are exposed to high levels of sediment bound polycyclic aromatic hydrocarbons, and suffer from an elevated frequency of liver cancer. DNA was isolated from the livers of these wild fish and from control specimens which were raised in clean aquariums. DNA was enzymatically digested to normal and adducted nucleotides, and hydrophobic/bulky adducts were enriched in the digests either by preparative reverse-phase high-pressure liquid chromatography, or selective nuclease P1 dephosphorylation of normal nucleotides. Aromatic DNA-carcinogen adducts were then quantitated using /sup 32/P-postlabeling analysis. Using both adduct enrichment procedures, chromatograms derived from DNA of fish from polluted areas showed a diffuse diagonal radioactive zone not present in DNA from aquarium raised fish. The diagonal zone appeared to consist at least in part of multiple overlapping discrete adduct spots which could be partially separated by gradient high-pressure liquid chromatography prior to /sup 32/P-postlabeling analysis, and most of which were more strongly retained on a reverse-phase column than the major benzo(a)pyrene-DNA adduct. The behavior of the adducts in the diagonal radioactive zone and of their unlabeled precursors is consistent with their identification as nucleotide adducts of a variety of bulky hydrophobic aromatic environmental compounds. Total pollution-related adduct levels as analyzed by HPLC adduct enrichment and /sup 32/P-postlabeling were 70.1 +/- 29 (SD) nmol/mol normal nucleotide in fish from the Buffalo River, and 52 and 56 nmol/mol for two specimens from the Detroit River.

  11. Metabolic activation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine and DNA adduct formation depends on p53: Studies in Trp53(+/+),Trp53(+/-) and Trp53(-/-) mice.

    PubMed

    Krais, Annette M; Speksnijder, Ewoud N; Melis, Joost P M; Singh, Rajinder; Caldwell, Anna; Gamboa da Costa, Gonçalo; Luijten, Mirjam; Phillips, David H; Arlt, Volker M

    2016-02-15

    The expression of the tumor suppressor p53 can influence the bioactivation of, and DNA damage induced by, the environmental carcinogen benzo[a]pyrene, indicating a role for p53 in its cytochrome P450 (CYP)-mediated biotransformation. The carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), which is formed during the cooking of food, is also metabolically activated by CYP enzymes, particularly CYP1A2. We investigated the potential role of p53 in PhIP metabolism in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with a single oral dose of 50 mg/kg body weight PhIP. N-(Deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP-C8-dG) levels in DNA, measured by liquid chromatography-tandem mass spectrometry, were significantly lower in liver, colon, forestomach and glandular stomach of Trp53(-/-) mice compared to Trp53(+/+) mice. Lower PhIP-DNA adduct levels in the livers of Trp53(-/-) mice correlated with lower Cyp1a2 enzyme activity (measured by methoxyresorufin-O-demethylase activity) in these animals. Interestingly, PhIP-DNA adduct levels were significantly higher in kidney and bladder of Trp53(-/-) mice compared to Trp53(+/+) mice, which was accompanied by higher sulfotransferase (Sult) 1a1 protein levels and increased Sult1a1 enzyme activity (measured by 2-naphthylsulfate formation from 2-naphthol) in kidneys of these animals. Our study demonstrates a role for p53 in the metabolism of PhIP in vivo, extending previous results on a novel role for p53 in xenobiotic metabolism. Our results also indicate that the impact of p53 on PhIP biotransformation is tissue-dependent and that in addition to Cyp1a enzymes, Sult1a1 can contribute to PhIP-DNA adduct formation. PMID:26335255

  12. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  13. (32)P-POSTLABELING ANALYSIS OF DNA ADDUCTS OF TWO NITRATED POLYCYCLIC AROMATIC HYDROCARBONS IN RABBIT TRACHEAL EPITHELIAL CELLS

    EPA Science Inventory

    The 1-nitropyrene (1-NPP and 3-nitrofluoranthene (3-NF) adducts have been analyzed by (32)P-postlabeling and with 1-NP have been compared to the total number of adducts estimated from (14)C binding in rabbit trachael epithelial (RTE) DNA samples. One adduct spot, by (32)P-postlab...

  14. ON BENZO[A]PYRENE DERIVED DNA ADDUCTS FORMED IN LUNG TISSUE OF MICE

    EPA Science Inventory

    On Benzo [a] pyrene Derived DNA Adducts Formed in Lung Tissue of Mice
    The previously identified major DNA adducts of benzo[a]pyrene (BP) in vitro and in vivo are the stable and unstable adducts formed by reaction of the bay-region diol epoxide of BP (BPDE) and BP radical catio...

  15. IR spectra and structure of 4-hydroxybenzylidenemalononitrile, its oxyanion, cyanide adduct and adduct-oxyanion: experimental and ab initio studies

    NASA Astrophysics Data System (ADS)

    Velcheva, Evelina A.; Binev, Yuri I.; Petrova, Milena J.

    1999-01-01

    The structures of 4-hydroxybenzylidenemalononitrile (HO-C 6H 4-CHC(CN) 2, I), its oxyanion ( -O-C 6H 4-CHC(CN) 2, II), cyanide adduct (HO-C 6H 4-CH(CN)-C¯(CN) 2, III) and adduct-oxyanion ( -O-C 6H 4-CH(CN)-C¯(CN) 2, IV) have been studied by means of both quantitative IR spectra and ab initio force field calculations. The conversion of ( I) into the anionic species causes strong changes in the IR spectra: decreases in the ν CN frequency down to 110 cm -1, up to 7-fold increases in the ACN intensity, up to 58 cm -1 ν CN splitting, etc. The charge analysis shows that the intramolecular charge transfer between the electronegative [C(CN) 2] and electropositive fragments of ( I) is 0.34 e -. Nearly 0.6 e - of the oxyanionic charge of ( II) remains within the oxyphenylene fragment and nearly 0.5 e - of the carbanionic charge of ( III) delocalizes within the dicyanomethide fragment. The two charges in ( IV) are spread over the whole species.

  16. Chronic Dietary Administration of the Glycolytic Inhibitor 2-Deoxy-D-Glucose (2-DG) Inhibits the Growth of Implanted Ehrlich’s Ascites Tumor in Mice

    PubMed Central

    Singh, Saurabh; Pandey, Sanjay; Bhatt, Anant Narayan; Chaudhary, Richa; Bhuria, Vikas; Kalra, Namita; Soni, Ravi; Roy, Bal Gangadhar; Saluja, Daman; Dwarakanath, Bilikere S.

    2015-01-01

    Background Dietary energy restriction (DER) has been well established as a potent anticancer strategy. Non-adoption of restricted diet for an extended period has limited its practical implementation in humans with a compelling need to develop agents that mimic effects similar to DER, without reduction in actual dietary intake. Glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), has recently been shown to possess potential as an energy restriction mimetic agent (ERMA). In the present study we evaluated the effect of dietary 2-DG administration on a mouse tumor model, with a focus on several potential mechanisms that may account for the inhibition of tumorigenesis. Methodology/Principal Findings Swiss albino strain ‘A’ mice were administered with 0.2% and 0.4% w/v 2-DG in drinking water for 3 months prior to tumor implantation (Ehrlich’s ascites carcinoma; EAC) and continued till the termination of the study with no adverse effects on general physiology and animal growth. Dietary 2-DG significantly reduced the tumor incidence, delayed the onset, and compromised the tumor growth along with enhanced survival. We observed reduced blood glucose and serum insulin levels along with decreased proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine positive (BrdU+) tumor cells in 2-DG fed mice. Also, reduced levels of certain key players of metabolic pathways such as phosphatidylinositol 3-kinase (PI3K), phosphorylated-Akt and hypoxia inducible factor-1 alpha (HIF-1α) were also noted in tumors of 2-DG fed mice. Further, decrease in CD4+/CD8+ ratio and T-regulatory cells observed in 2-DG fed mice suggested enhanced antitumor immunity and T cell effector function. Conclusion/Significance These results strongly suggest that dietary 2-DG administration in mice, at doses easily achievable in humans, suitably modulates several pleotrophic factors mimicking DER and inhibits tumorigenesis, emphasizing the use of ERMAs as a promising cancer preventive strategy. PMID

  17. Roles of DgBRC1 in regulation of lateral branching in chrysanthemum (Dendranthema ×grandiflora cv. Jinba).

    PubMed

    Chen, Xiaoli; Zhou, Xiaoyang; Xi, Lin; Li, Junxiang; Zhao, Ruiyan; Ma, Nan; Zhao, Liangjun

    2013-01-01

    The diverse plasticity of plant architecture is largely determined by shoot branching. Shoot branching is an event regulated by multiple environmental, developmental and hormonal stimuli through triggering lateral bud response. After perceiving these signals, the lateral buds will respond and make a decision on whether to grow out. TCP transcriptional factors, BRC1/TB1/FC1, were previously proven to be involved in local inhibition of shoot branching in Arabidopsis, pea, tomato, maize and rice. To investigate the function of BRC1, we isolated the BRC1 homolog from chrysanthemum. There were two transcripts of DgBRC1 coming from two alleles in one locus, both of which complemented the multiple branches phenotype of Arabidopsis brc1-1, indicating that both are functionally conserved. DgBRC1 was mainly expressed in dormant axillary buds, and down-regulated at the bud activation stage, and up-regulated by higher planting densities. DgBRC1 transcripts could respond to apical auxin supply and polar auxin transport. Moreover, we found that the acropetal cytokinin stream promoted branch outgrowth whether or not apical auxin was present. Basipetal cytokinin promoted outgrowth of branches in the absence of apical auxin, while strengthening the inhibitory effects on lower buds in the presence of apical auxin. The influence of auxin and strigolactons (SLs) on the production of cytokinin was investigated, we found that auxin locally down-regulated biosynthesis of cytokinin in nodes, SLs also down-regulated the biosynthesis of cytokinin, the interactions among these phytohormones need further investigation. PMID:23613914

  18. Quantifying Metabolic Heterogeneity in Head and Neck Tumors in Real Time: 2-DG Uptake Is Highest in Hypoxic Tumor Regions

    PubMed Central

    Nakajima, Erica C.; Laymon, Charles; Oborski, Matthew; Hou, Weizhou; Wang, Lin; Grandis, Jennifer R.; Ferris, Robert L.; Mountz, James M.; Van Houten, Bennett

    2014-01-01

    Purpose Intratumoral metabolic heterogeneity may increase the likelihood of treatment failure due to the presence of a subset of resistant tumor cells. Using a head and neck squamous cell carcinoma (HNSCC) xenograft model and a real-time fluorescence imaging approach, we tested the hypothesis that tumors are metabolically heterogeneous, and that tumor hypoxia alters patterns of glucose uptake within the tumor. Experimental Design Cal33 cells were grown as xenograft tumors (n = 16) in nude mice after identification of this cell line's metabolic response to hypoxia. Tumor uptake of fluorescent markers identifying hypoxia, glucose import, or vascularity was imaged simultaneously using fluorescent molecular tomography. The variability of intratumoral 2-deoxyglucose (IR800-2-DG) concentration was used to assess tumor metabolic heterogeneity, which was further investigated using immunohistochemistry for expression of key metabolic enzymes. HNSCC tumors in patients were assessed for intratumoral variability of 18F-fluorodeoxyglucose (18F-FDG) uptake in clinical PET scans. Results IR800-2-DG uptake in hypoxic regions of Cal33 tumors was 2.04 times higher compared to the whole tumor (p = 0.0001). IR800-2-DG uptake in tumors containing hypoxic regions was more heterogeneous as compared to tumors lacking a hypoxic signal. Immunohistochemistry staining for HIF-1α, carbonic anhydrase 9, and ATP synthase subunit 5β confirmed xenograft metabolic heterogeneity. We detected heterogeneous 18F-FDG uptake within patient HNSCC tumors, and the degree of heterogeneity varied amongst tumors. Conclusion Hypoxia is associated with increased intratumoral metabolic heterogeneity. 18F-FDG PET scans may be used to stratify patients according to the metabolic heterogeneity within their tumors, which could be an indicator of prognosis. PMID:25127378

  19. DNA adducts in human placenta as related to air pollution and to GSTM1 genotype.

    PubMed

    Topinka, J; Binková, B; Mracková, G; Stávková, Z; Benes, I; Dejmek, J; Lenícek, J; Srám, R J

    1997-04-24

    DNA adducts in human placenta have been studied in relation to metabolic genotype for glutathione S-transferase M1 (GSTM1) in 98 mothers living in two regions with a different annual average air pollution levels: Northern Bohemia-the district of Teplice as polluted industrial area (mines, brown coal power plants) and Southern Bohemia-the district of Prachatice as agricultural area without heavy industry. Forty-nine placenta samples (25 from the Teplice district and 24 from the Prachatice district) from non-smoking mothers with the date of delivery in the summer period and 49 placenta samples (25 from the Teplice district and 24 from Prachatice district) from mothers with the date of delivery in the winter period were analysed. The total DNA adduct levels were calculated as the sum of adducts in the diagnoal radioactive zone (DRZ) and one distinct spot outside of the DRZ (termed X), which was detected in almost all placenta samples. We found total DNA adduct levels of 1.40 +/- 0.87 (0.04-3.65) and 1.04 +/- 0.63 (0.11-3.08) adducts per 10(8) nucleotides for the Teplice and Prachatice districts, respectively. The significant difference between both districts in placental DNA adduct levels was found for the winter sampling period only (1.49 vs. 0.96 adducts per 10(8) nucleotides; p = 0.023). No seasonal variation was observed for DNA adduct levels in the overall population studied. A positive GSTM1 genotype was detected in 51 subjects, while GSTM1-null genotype was found in 47 subjects. Higher DNA adduct levels were detected in a group with GSTM1-null genotype (p = 0.009). This finding seems more significant for subjects in the Teplice district (p = 0.047) than for those in the Prachatice district (p = 0.092). Significant district and seasonal differences were found in subgroups carrying the GSTM1-null genotype. DNA adduct levels in placentas of mothers with GSTM1-null genotype living in the polluted district of Teplice were higher than those in Prachatice (p = 0

  20. Preparation and Characterization of Cysteine Adducts of Deoxynivalenol.

    PubMed

    Stanic, Ana; Uhlig, Silvio; Solhaug, Anita; Rise, Frode; Wilkins, Alistair L; Miles, Christopher O

    2016-06-15

    Conjugation with the biologically relevant thiol glutathione is one of the metabolic pathways for the mycotoxin deoxynivalenol (DON) in wheat. The occurrence of putative DON-cysteine conjugates has also been shown in wheat, likely in part as a result of degradation of the glutathione conjugates. It was reported that thiols react in vitro with DON at two positions: reversibly at C-10 of the α,β-unsaturated ketone and irreversibly at C-13 of the epoxy group. We synthesized pure DON-cysteine adducts and made analytical standards using quantitative NMR experiments. Compounds were characterized using NMR and LC-HRMS/MS and tested in vitro for toxicity. Cysteine conjugates were much less toxic than DON at the same concentration, and LC-HRMS analysis demonstrated that there was no detectable metabolism of the conjugates in human monocytes or human macrophages. PMID:27229448

  1. Vitamin A-aldehyde adducts: AMD risk and targeted therapeutics.

    PubMed

    Sparrow, Janet R

    2016-04-26

    Although currently available treatment options for age-related macular degeneration (AMD) are limited, particularly for atrophic AMD, the identification of predisposing genetic variations has informed clinical studies addressing therapeutic options such as complement inhibitors and anti-inflammatory agents. To lower risk of early AMD, recommended lifestyle interventions such as the avoidance of smoking and the intake of low glycemic antioxidant-rich diets have largely followed from the identification of nongenetic modifiable factors. On the other hand, the challenge of understanding the complex relationship between aging and cumulative damage leading to AMD has fueled investigations of the visual cycle adducts that accumulate in retinal pigment epithelial (RPE) cells and are a hallmark of aging retina. These studies have revealed properties of these compounds that provide insights into processes that may compromise RPE and could contribute to disease mechanisms in AMD. This work has also led to the design of targeted therapeutics that are currently under investigation. PMID:27071115

  2. Non Covalent Interactions and Internal Dynamics in Adducts of Freons

    NASA Astrophysics Data System (ADS)

    Caminati, Walther; Gou, Qian; Evangelisti, Luca; Feng, Gang; Spada, Lorenzo; Vallejo-López, Montserrat; Lesarri, Alberto; Cocinero, Emilio J.

    2014-06-01

    The complexation of chlorofluorocarbons (CFCs) with atmospheric water and pollutants of the atmosphere affects their reactivity and it seems to accelerate, for example, the decomposition rate of freons in the atmosphere [1]. For this reason we characterized shapes, stabilities, nature of the non-covalent interactions, structures and internal dynamics of a number of complexes of CFCs with water and of their dimers or oligomers by rotational spectroscopy. It has been found that hydrogenated CFCs form adducts with other molecules through weak hydrogen bonds (WHBs). Their C-H groups can act as proton donors, enhanced by the electron withdrawing of the halogen atoms, interacting with the electron rich regions of the partner molecules [2]. Also in adducts or oligomers of hydrogenated CFCs the monomer units are held together by nets of WHBs [3]. When CFCs are perhalogenated, the positive electrostatic region ("σ-hole") can interact electrostatically with negative sites of another, or of the same molecular entity, giving rise, according to IUPAC, to the so called halogen bond (HaB). However, it has been observed that when the perhalogenated CFCs has a Π electron system, a lone pair•••Π interaction (Bürgi-Dunitz) is favoured [4]. We describe here the HaBs that CF4 and CF3Cl form with a variety of partner molecules such as water, ammonia, dimethyl ether, etc. Important spectroscopic features outline strong dynamics effects taking place in this kind of complex. References [1] V. Vaida, H. G. Kjaergaard, K. J. Feierabend, Int. Rev. Phys. Chem. 22 (2003) 203. [2] See, for example: W. Caminati, S. Melandri, A. Maris, P. Ottaviani, Angew. Chem. Int. Ed. 45 (2006) 2438. [3] G. Feng, L. Evangelisti, I. Cacelli, L. Carbonaro, G. Prampolini, W. Caminati, Chem. Commun. 50 (2014) 171. [4] Q. Gou, G. Feng, L. Evangelisti, W. Caminati, Angew. Chem. Int. Ed. 52 (2013) 52 11888.

  3. A mathematical model for intracellular effects of toxins on DNA adduction and repair

    SciTech Connect

    Gaver, D.P.; Jacobs, P.A.; Carpenter, R.L.; Burkhart, J.G.

    1997-01-01

    The processes by which certain classes of toxic compounds or their metabolites may react with DNA to alter the genetic information contained in subsequent generations of cells or organisms are a major component of hazard associated with exposure to chemicals in the environment. Many classes of chemicals may form DNA adducts and there may or may not be a defined mechanism to remove a particular adduct from DNA independent of replication. Many compounds and metabolites that bind DNA also readily bind existing proteins; some classes of toxins and DNA adducts have the capacity to inactive a repair enzyme and divert the repair process competitively. This paper formulates an intracellular dynamic model for one aspect of the action of toxins that form DNA adducts, recognizing a capacity for removal of those adducts by a repair enzyme combined with reaction of the toxin and/or the DNA adduct to inactive the repair enzyme. This particular model illustrates the possible saturation of repair enzyme capacity by the toxin dosage and shows that bistable behavior can occur, with the potential to induce abrupt shifts away from steady-state equilibria. The model suggests that bistable behavior, dose and variation between individuals or tissues may combine under certain conditions to amplify the biological effect of dose observed as DNA adduction and its consequences as mutation. A model recognizing stochastic phenomena also indicates that variation in within-cell toxin concentration may promote jumps between stable equilibria.

  4. Polycyclic aromatic hydrocarbon-DNA adducts and the CYP1A1 restriction fragment length polymorphism

    SciTech Connect

    Shields, P.G.; Bowman, E.D.; Weston, A.; Harris, C.C.; Sugimura, H.; Caporaso, N.E.; Petruzzelli, S.F. ); Trump, B.F. )

    1992-11-01

    Human cancer risk assessment at a genetic level involves the investigation of carcinogen metabolism and DNA adduct formation. Wide interindividual differences in metabolism result in different DNA adduct levels. For this and other reasons, many laboratories have considered DNA adducts to be a measure of the biologically effective dose of a carcinogen. Techniques for studying DNA adducts using chemically specific assays are becoming available. A modification of the [sup 32]P-postlabeling assay for polycyclic aromatic hydrocarbon DNA adducts described here provides potential improvements in quantification. DNA adducts, however, reflect only recent exposure to carcinogens; in contrast, genetic testing for metabolic capacity indicates the extent to which carcinogens can be activated and exert genotoxic effects. Such studies may reflect both separate and integrated risk factors together with DNA adduct levels. A recently described restriction fragment length polymorphism for the CYP1A1, which codes for the cytochrome P450 enzyme primarily responsible for the metabolic activation of carcinogenic polycyclic aromatic hydrocarbons, has been found to be associated with lung cancer risk in a Japanese population. In a subset of individuals enrolled in a US lung cancer case-control study, no association with lung cancer was found. 17 refs., 3 figs.

  5. Determinants of 4-aminobiphenyl-DNA adducts in bladder cancer biopsies.

    PubMed

    Airoldi, Luisa; Orsi, Federica; Magagnotti, Cinzia; Coda, Renato; Randone, Donato; Casetta, Giovanni; Peluso, Marco; Hautefeuille, Agnes; Malaveille, Christian; Vineis, Paolo

    2002-05-01

    Exposure to 4-aminobiphenyl (4-ABP) is an important determinant of urinary bladder cancer in humans. We have analyzed by gas chromatography-mass spectrometry the DNA adducts of 4-ABP in 75 bladder cancer biopsies. The purpose was to understand whether smoking, N-acetyltransferase 2 (NAT2) polymorphism, diet or tumor grade were determinants of 4-ABP-DNA levels. 4-ABP-DNA adducts were above the detection limit of 0.1 fmol/microg DNA for 37/75 patients. Overall the level of adducts was 2.7 +/- 0.7 (mean +/- SE) fmol/microg DNA (86 +/- 22 adducts/10(8) normal nucleotides, mean +/- SE). A strong association with grade was observed. In the group of patients with detectable 4-ABP-DNA adducts the odds ratio for having a tumor grade of 2 or 3 was respectively 4.3 (95% CI 0.8-21.9) and 6 (1.3-27.5), compared with grade 1. A non-statistically significant association was found between adduct levels and the deduced slow acetylator phenotype in grades 2 and 3. The intake of fruit and vegetables produced a lower frequency of detectable adducts, though the association was not statistically significant. Detectable 4-ABP-DNA adducts were clearly associated with current smoking in higher tumor grades (grade 3 versus grades 1 + 2, odds ratios 10.4; 95% CI 1.7-63.1). Overall, our findings indicate that higher levels of DNA adducts characterize more invasive tumors (higher tumor grades). This seems to be facilitated by smoking and contrasted by the intake of fruit and vegetables. PMID:12016161

  6. 32P analysis of DNA adducts in tissues of benzene-treated rats.

    PubMed

    Reddy, M V; Blackburn, G R; Schreiner, C A; Mehlman, M A; Mackerer, C R

    1989-07-01

    Solid tumors have been reported in the Zymbal gland, oral and nasal cavities, liver, and mammary gland of Sprague-Dawley rats following chronic, high-dose administration of benzene. The carcinogenic activity of benzene is thought to be caused by activation to toxic metabolites that can interact with DNA, forming covalent adducts. A nuclease P1-enhanced 32P-postlabeling assay, having a sensitivity limit of 1 adduct in 10(9-10) DNA nucleotides, was found suitable for measuring aromatic DNA adducts derived in vitro from catechol, benzenetriol (BT), phenol, hydroquinone (HQ), and benzoquinone (BQ), potential metabolites of benzene. When DNA specimens isolated from tissues of female Sprague-Dawley rats at 24 hr after an oral gavage dose of 200 to 500 mg/kg, 5 days/week, in olive oil (3 mL/kg) for 1 day, 1 week, 5 weeks, and 10 weeks were analyzed by the 32P-postlabeling procedure, no aromatic adducts were detected unequivocally with DNA samples of liver, kidney, bone marrow, and mammary gland. With Zymbal gland DNA, three weak spots at levels totaling four lesions per 10(9) DNA nucleotides were seen only after 10 weeks of treatment, and these adducts did not correspond chromatographically to major adducts in vitro from the above specified compounds. Consequently, this finding requires confirmatory experiments. This distinct adduct pattern may relate to tumor induction in this organ following benzene administration. Our results also indicate that DNA adducts derived from catechol, BT, phenol, HQ, and BQ are either not formed in vivo with benzene or formed at levels below the detection limit of 1 adduct per 10(9-10) DNA nucleotides. PMID:2792046

  7. 32P analysis of DNA adducts in tissues of benzene-treated rats.

    PubMed Central

    Reddy, M V; Blackburn, G R; Schreiner, C A; Mehlman, M A; Mackerer, C R

    1989-01-01

    Solid tumors have been reported in the Zymbal gland, oral and nasal cavities, liver, and mammary gland of Sprague-Dawley rats following chronic, high-dose administration of benzene. The carcinogenic activity of benzene is thought to be caused by activation to toxic metabolites that can interact with DNA, forming covalent adducts. A nuclease P1-enhanced 32P-postlabeling assay, having a sensitivity limit of 1 adduct in 10(9-10) DNA nucleotides, was found suitable for measuring aromatic DNA adducts derived in vitro from catechol, benzenetriol (BT), phenol, hydroquinone (HQ), and benzoquinone (BQ), potential metabolites of benzene. When DNA specimens isolated from tissues of female Sprague-Dawley rats at 24 hr after an oral gavage dose of 200 to 500 mg/kg, 5 days/week, in olive oil (3 mL/kg) for 1 day, 1 week, 5 weeks, and 10 weeks were analyzed by the 32P-postlabeling procedure, no aromatic adducts were detected unequivocally with DNA samples of liver, kidney, bone marrow, and mammary gland. With Zymbal gland DNA, three weak spots at levels totaling four lesions per 10(9) DNA nucleotides were seen only after 10 weeks of treatment, and these adducts did not correspond chromatographically to major adducts in vitro from the above specified compounds. Consequently, this finding requires confirmatory experiments. This distinct adduct pattern may relate to tumor induction in this organ following benzene administration. Our results also indicate that DNA adducts derived from catechol, BT, phenol, HQ, and BQ are either not formed in vivo with benzene or formed at levels below the detection limit of 1 adduct per 10(9-10) DNA nucleotides. Images FIGURE 1. FIGURE 2. FIGURE 3. PMID:2792046

  8. Inhaled cigarette smoke induces the formation of DNA adducts in lungs of rats

    SciTech Connect

    Bond, J.A.; Chen, B.T.; Griffith, W.C.; Mauderly, J.L.

    1989-06-01

    Cigarette smoking causes a variety of adverse human health effects, including lung cancer. The molecular events associated with smoke-induced carcinogenesis are thought to be related in part to the genotoxic activities of the chemicals associated with smoke. The purpose of this investigation was to determine the molecular dosimetry of compounds in cigarette smoke in lungs of rats exposed by inhalation. These studies investigated the effects of exposure mode, sex, and time (adduct persistence) on the level of DNA adducts. Male and female F344/N rats were exposed 6 hr/day, 5 days/week for 22 days to cigarette smoke by nose-only intermittent (NOI), nose-only continuous (NOC), or whole-body continuous (WBC) exposures. Separate groups of rats were sham-exposed nose-only (NOS) or whole-body (WBS) to filtered air. All smoke exposure modes yielded daily smoke exposure concentration X time products of 600 mg particulate.hr/m3 for the first week and 1200 mg particulate.hour/m3 thereafter. Groups of rats were killed at 18 hr and 3 weeks after the 22-day exposure period and DNA adducts in lung tissues were quantified by the /sup 32/P-postlabeling method. There were significant (p less than 0.05) increases in levels of clearly resolved lung DNA adducts in male and female rats exposed to smoke compared to sham-exposed rats. There were no significant effects of exposure mode or sex on lung DNA adducts. Mean levels (+/- SE) of clearly resolved lung DNA adducts for both sexes combined in NOI, NOC, WBC, NOS, and WBS groups were 50 +/- 4, 52 +/- 6, 52 +/- 7, 21 +/- 6, and 22 +/- 4 adducts per 10(9) bases, respectively. Levels of clearly resolved DNA adducts were significantly less in lungs of rats killed 3 weeks after exposure and had declined to near control levels, suggesting that smoke-induced adducts are repaired by lung DNA repair enzymes.

  9. Polycyclic aromatic hydrocarbon-DNA adducts and survival among women with breast cancer

    SciTech Connect

    Sagiv, Sharon K. Gaudet, Mia M.; Eng, Sybil M.; Abrahamson, Page E.; Shantakumar, Sumitra; Teitelbaum, Susan L.; Bell, Paula; Thomas, Joyce A.; Neugut, Alfred I.; Santella, Regina M.; Gammon, Marilie D.

    2009-04-15

    Polycyclic aromatic hydrocarbons (PAH) are mammary carcinogens in animal studies, and a few epidemiologic studies have suggested a link between elevated levels of PAH-DNA adducts and breast cancer incidence. An association between PAH-DNA adducts and survival among breast cancer cases has not been previously reported. We conducted a survival analysis among women with newly diagnosed invasive breast cancer between 1996 and 1997, enrolled in the Long Island Breast Cancer Study Project. DNA was isolated from blood samples that were obtained from cases shortly after diagnosis and assayed for PAH-DNA adducts using ELISA. Among the 722 cases with PAH-DNA adduct measurements, 97 deaths (13.4%) from all causes and 54 deaths (7.5%) due to breast cancer were reported to National Death Index (NDI) by December 31, 2002. Using Cox proportional hazards models and controlling for age at diagnosis, we did not find evidence that all-cause mortality (hazard ratio (HR)=0.88; 95% confidence interval (CI): 0.57-1.37), or breast cancer mortality (HR=1.20; 95% CI: 0.63-2.28) was strongly associated with detectable PAH-DNA adduct levels compared with non-detectable adducts; additionally, no dose-response association was observed. Among a subgroup with treatment data (n=520), adducts were associated with over a two-fold higher mortality among those receiving radiation, but mortality for adducts was reduced among hormone therapy users. Results from this large population-based study do not provide strong support for an association between detectable PAH-DNA adducts and survival among women with breast cancer, except perhaps among those receiving radiation treatment.

  10. 7-Alkylguanine adduct levels in urine, lungs and liver of mice exposed to styrene by inhalation

    SciTech Connect

    Vodicka, Pavel Erik . E-mail: pvodicka@biomed.cas.cz; Linhart, Igor; Novak, Jan; Koskinen, Mikko; Vodickova, Ludmila; Hemminki, Kari

    2006-01-15

    This study describes urinary excretion of two nucleobase adducts derived from styrene 7,8-oxide (SO), i.e., 7-(2-hydroxy-1-phenylethyl)guanine (N7{alpha}G) and 7-(2-hydroxy-2-phenylethyl)guanine (N7{beta}G), as well as a formation of N7-SO-guanine adducts in lungs and liver of two month old male NMRI mice exposed to styrene by inhalation in a 3-week subacute study. Strikingly higher excretion of both isomeric nucleobase adducts in the first day of exposure was recorded, while the daily excretion of nucleobase adducts in following time intervals reached the steady-state level at 4.32 + 1.14 and 6.91 + 1.17 pmol/animal for lower and higher styrene exposure, respectively. {beta}-SO-guanine DNA adducts in lungs increased with exposure in a linear way (F = 13.7 for linearity and 0.17 for non-linearity, respectively), reaching at the 21st day the level of 23.0 adducts/10{sup 8} normal nucleotides, i.e., 0.74 fmol/{mu}g DNA of 7-alkylguanine DNA adducts for the concentration of 1500 mg/m{sup 3}, while no 7-SO-guanine DNA adducts were detected in the liver after 21 days of inhalation exposure to both of styrene concentrations. A comparison of 7-alkylguanines excreted in urine with 7-SO-guanines in lungs (after correction for depurination and for missing {alpha}-isomers) revealed that persisting 7-SO-guanine DNA adducts in lungs account for about 0.5% of the total alkylation at N7 of guanine. The total styrene-specific 7-guanine alkylation accounts for about 1.0 x 10{sup -5}% of the total styrene uptake, while N1-adenine alkylation contributes to this percentage only negligibly.