Sample records for ammonia nitrite nitrate

  1. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    PubMed

    Tiso, Mauro; Schechter, Alan N

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health. PMID:25803049

  2. Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions

    PubMed Central

    Tiso, Mauro; Schechter, Alan N.

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health. PMID:25803049

  3. Ammonia Formation by the Reduction of Nitrite/Nitrate by FeS: Ammonia Formation Under Acidic Conditions

    NASA Technical Reports Server (NTRS)

    Summers, David P.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    FeS reduces nitrite to, ammonia at pHs lower than the corresponding reduction by aqueous Fe+2. The reduction follows a reasonable first order decay, in nitrite concentration, with a half life of about 150 min (room temperature, CO2, pH 6.25). The highest ammonia product yield measured was 53%. Under CO2, the product yield decreases from pH 5.0 to pH 6.9. The increasing concentration of bicarbonate at higher pH interferes with the reaction. Bicarbonate interference is shown by comparing runs under N2 and CO2. The reaction proceeds well in the presence of such species as chloride, sulfate, and phosphate though the yield drops significantly with phosphate. FeS also reduces nitrate and, unlike with Fe+2, the reduction shows more reproducibility. Again, the product yield decreases with increasing pH, from 7% at pH 4.7 to 0% at pH 6.9. It appears as if nitrate is much more sensitive to the presence of added species, perhaps not competing as well for binding sites on the FeS surface. This may be the cause of the lack of reproducibility of nitrate reduction by Fe+2 (which also can be sensitive to binding by certain species).

  4. Reduction of nitrate ions into nitrite and ammonia over some photocatalysts

    SciTech Connect

    Kudo, Akihiko; Domen, Kazunari; Maruya, Ken-Ichi; Onishi, Takaharu (Tokyo Inst. of Tech., Yokohama (Japan))

    1992-05-01

    The authors have previously report that nitrate was quantitatively reduced by Ti[sup 3+] to form ammonia on the surface of thermally reduced TiO[sub 2] and Pt-TiO[sub 2] powders in the absence of light and that the photocatalytic reduction of nitrate to form ammonia proceeded on a Pt-TiO[sub 2] catalyst at room temperature. Nitrate is reduced to ammonia by hydrogen adsorbed on supported platinum even under dark conditions. The hydrogen absorbed on platinum in the present study is supplied by the photoreduction of water in the photocatalytic cycle. This process seems to be similar to those observed in ecological systems, where reduction of nitrate to ammonia proceeds in the dark phase of photosynthesis and the reducing power is supplied from substrates formed by the photoreduction. Thus, the photocatalytic reduction of nitrate is important for energy conversion by artifical photosynthesis and pollution control. In this paper, the reduction of nitrate was studied over various photocatalysts (native and modified TiO[sub 2], SrTiO[sub 3], K[sub 4]Nb[sub 6]O[sub 17], In[sub 2]O[sub 3], and WO[sub 3]) under some different conditions, and the relationship between activity and reaction conditions (photocatalyst composition and solution acidity) was revealed.

  5. Acute and chronic toxicity of ammonia, nitrite, and nitrate to the endangered Topeka shiner (Notropis topeka) and fathead minnows (Pimephales promelas).

    PubMed

    Adelman, Ira R; Kusilek, Luke I; Koehle, Jessica; Hess, Jonathan

    2009-10-01

    Toxicity tests with ammonia, nitrite, and nitrate were conducted on the endangered Topeka shiner (Notropis topeka) to determine if current U.S. Environmental Protection Agency (U.S. EPA) water quality criteria are protective of this species. Results from acute lethal and chronic growth tests are reported for both Topeka shiners and fathead minnows (Pimephales promelas). Embryo-larval tests were conducted with only fathead minnows because Topeka shiner embryos were not available. Predicted outcomes for Topeka shiner embryo-larval toxicity endpoints were calculated by comparing relationships between growth tests and embryo-larval tests for fathead minnows and extrapolating those relationships to Topeka shiners. Results show that the U.S. EPA's criterion for total ammonia-nitrogen (TAN), 1.24 mg/L when early life stages are present, would be protective, given that our most sensitive result was a predicted maximum acceptable toxicant concentration (MATC) for Topeka shiners at 5.63 mg/L TAN, calculated from the fathead minnow chronic embryo-larval test. The U.S. EPA's criterion for nitrite (5 mg/L) would not be protective, given that our most sensitive result was a predicted MATC for Topeka shiners of 3.97 mg/L NO2-N, calculated from the fathead minnow chronic embryo-larval test. However, nitrite is generally transient, and unpublished field data show levels far lower than the criterion. Finally, the U.S. EPA's recommendation of a maximum of 90 mg/L NO3-N for the protection of warmwater fishes would protect Topeka shiners but not fathead minnows. For Topeka shiners, the MATC from the 30-d juvenile growth test was 360 mg/L NO3-N, but for fathead minnows, the MATC was 84 mg/L. More field sampling may be needed to determine if levels comply with criteria, especially in Topeka shiner critical habitat. PMID:19459722

  6. NITRATE AND NITRITE CONTAMINATION IN VEGETABLES IN CHINA

    Microsoft Academic Search

    ZE-YI ZHOU; MING-JIAN WANG; JU-SI WANG

    2000-01-01

    This paper reviews recent studies of nitrate and nitrite contamination in Chinese vegetables. Nitrate and nitrite contamination is very serious and increases the amount of nitrogenous fertilizer applications. Factors influencing nitrate and nitrite contamination in vegetables are analyzed and discussed.

  7. Nitrates, Nitrites, and Health. Bulletin 750.

    ERIC Educational Resources Information Center

    Deeb, Barbara S.; Sloan, Kenneth W.

    This review is intended to assess available literature in order to define the range of nitrate/nitrite effects on animals. Though the literature deals primarily with livestock and experimental animals, much of the contemporary research is concerned with human nitrite intoxication. Thus, the effects on man are discussed where appropriate. Some of…

  8. The nitrate to ammonia and ceramic (NAC) process

    Microsoft Academic Search

    A. J. Mattus; D. D. Lee

    1993-01-01

    A new low-temperature (50--60°C) process for the reduction of nitrate or nitrite to ammonia gas in a stirred, ethylene glycol led reactor has been developed. The process has nearly completed 2 years of bench-top testing in preparation for a pilot-scale demonstration in the fall of 1994. The nitrate to ammonia and ceramic (NAC) process utilizes the active metal Al (in

  9. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...2012-01-01 false Products and nitrates and nitrites. 319.2 Section 319... General § 319.2 Products and nitrates and nitrites. Any product, such...is a standard in this part and to which nitrate or nitrite is permitted or required...

  10. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...2014-01-01 false Products and nitrates and nitrites. 319.2 Section 319... General § 319.2 Products and nitrates and nitrites. Any product, such...is a standard in this part and to which nitrate or nitrite is permitted or required...

  11. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...2013-01-01 false Products and nitrates and nitrites. 319.2 Section 319... General § 319.2 Products and nitrates and nitrites. Any product, such...is a standard in this part and to which nitrate or nitrite is permitted or required...

  12. Sources and sinks for ammonia and nitrite on the early Earth and the reaction of nitrite with ammonia

    NASA Technical Reports Server (NTRS)

    Summers, D. P.

    1999-01-01

    An analysis of sources and sinks for ammonia and nitrite on the early Earth was conducted. Rates of formation and destruction, and steady state concentrations of both species were determined by steady state kinetics. The importance of the reaction of nitrite with ammonia on the feasibility of ammonia formation from nitrite was evaluated. The analysis considered conditions such as temperature, ferrous iron concentration, and pH. For sinks we considered the reduction of nitrite to ammonia, reaction between nitrite and ammonia, photochemical destruction of both species, and destruction at hydrothermal vents. Under most environmental conditions, the primary sink for nitrite is reduction to ammonia. The reaction between ammonia and nitrite is not an important sink for either nitrite or ammonia. Destruction at hydrothermal vents is important at acidic pH's and at low ferrous iron concentrations. Photochemical destruction, even in a worst case scenario, is unimportant under many conditions except possibly under acidic, low iron concentration, or low temperature conditions. The primary sink for ammonia is photochemical destruction in the atmosphere. Under acidic conditions, more of the ammonia is tied up as ammonium (reducing its vapor pressure and keeping it in solution) and hydrothermal destruction becomes more important.

  13. Dietary nitrate and nitrite modulate blood and organ nitrite and the cellular ischemic stress response

    PubMed Central

    Raat, Nicolaas J.H.; Noguchi, Audrey C.; Liu, Virginia B.; Raghavachari, Nalini; Liu, Delong; Xu, Xiuli; Shiva, Sruti; Munson, Peter J.; Gladwin, Mark T.

    2009-01-01

    Dietary nitrate, found in abundance in green vegetables, can be converted to the cytoprotective molecule nitrite by oral bacteria, suggesting that nitrate and nitrite may represent active cardioprotective constituents of the Mediterranean diet. We therefore tested the hypothesis that dietary nitrate and nitrite levels modulate tissue damage and ischemic gene expression in a mouse liver ischemia-reperfusion model. We found that stomach content, plasma, heart and liver nitrite levels were significantly reduced after dietary nitrate and nitrite depletion, and could be restored to normal levels with nitrite supplementation in water. Remarkably, we confirmed that basal nitrite levels significantly reduced liver injury after ischemia-reperfusion. Consistent with an effect of nitrite on the post-translational modification of complex I of the mitochondrial electron transport chain, the severity of liver infarction was inversely proportional to complex I activity after nitrite repletion in the diet. The transcriptional response of dietary nitrite after ischemia was more robust than after normoxia, suggesting a hypoxic potentiation of nitrite-dependent transcriptional signaling. Our studies indicate that normal dietary nitrate and nitrite levels modulate ischemic stress responses and hypoxic gene expression programs, supporting the hypothesis that dietary nitrate and nitrite are cytoprotective components of the diet. PMID:19464364

  14. Nitrate and Nitrite Accumulation in Fresh Vegetables from Greece

    Microsoft Academic Search

    K. Fytianos; P. Zarogiannis

    1999-01-01

    Concentrations of nitrate and nitrite in vegetables have been the focus of attention in several countries. Nitrate and nitrite occur widely in human and animal foodstuffs, both as intentional additives and as undersirable contaminants. It has long been recognised that high levels of these compounds are undesirable in certain foodstuffs such as baby foods. The interest in their accurate determination

  15. Acute toxicity of nitrate and nitrite to sensitive freshwater insects, mollusks, and a crustacean.

    PubMed

    Soucek, D J; Dickinson, A

    2012-02-01

    Both point- and nonpoint-sources of pollution have contributed to increased inorganic nitrogen concentrations in freshwater ecosystems. Although numerous studies have investigated the toxic effects of ammonia on freshwater species, relatively little work has been performed to characterize the acute toxicity of the other two common inorganic nitrogen species: nitrate and nitrite. In particular, to our knowledge, no published data exist on the toxicity of nitrate and nitrite to North American freshwater bivalves (Mollusca) or stoneflies (Insecta, Plecoptera). We conducted acute (96-h) nitrate and nitrite toxicity tests with two stonefly species (Allocapnia vivipara and Amphinemura delosa), an amphipod (Hyalella azteca), two freshwater unionid mussels (Lampsilis siliquoidea and Megalonaias nervosa), a fingernail clam (Sphaerium simile), and a pond snail (Lymnaea stagnalis). Overall, we did not observe a particularly wide degree of variation in sensitivity to nitrate, with median lethal concentrations ranging from 357 to 937 mg NO(3)-N/l; furthermore, no particular taxonomic group appeared to be more sensitive to nitrate than any other. In our nitrite tests, the two stoneflies tested were by far the most sensitive, and the three mollusks tested were the least sensitive. In contrast to what was observed in the nitrate tests, variation among species in sensitivity to nitrite spanned two orders of magnitude. Examination of the updated nitrite database, including previously published data, clearly showed that insects tended to be more sensitive than crustaceans, which were in turn more sensitive than mollusks. Although the toxic mechanism of nitrite is generally thought to be the conversion of oxygen-carrying pigments into forms that cannot carry oxygen, our observed trend in sensitivity of broad taxonomic groups, along with information on respiratory pigments in those groups, suggests that some other yet unknown mechanism may be even more important. PMID:21877224

  16. Nitrates, nitrites and gastric cancer in Great Britain

    Microsoft Academic Search

    David Forman; Samim Al-Dabbagh; Richard Doll

    1985-01-01

    Nitrate and nitrite were measured in the saliva of two populations who differed in their risk of developing gastric cancer. Surprisingly, the levels of both ions were significantly higher in the low-risk group.

  17. USING THE BERTHELOT METHOD FOR NITRITE AND NITRATE ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The indophenol-blue or Berthelot method for ammonium analysis can be used indirectly for the determination of nitrite and nitrate after initial reduction of these species with Devarda’s alloy. Since this approach subjects nitrate determination to interferences normally associated with ammonium anal...

  18. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    PubMed Central

    Balk, Melike; Laverman, Anniet M.; Keuskamp, Joost A.; Laanbroek, Hendrikus J.

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils. PMID:25784903

  19. Food sources of nitrates and nitrites: the physiologic context for potential health benefits1-3

    Microsoft Academic Search

    Norman G Hord; Yaoping Tang; Nathan S Bryan

    2009-01-01

    The presence of nitrates and nitrites in food is associated with an increased risk of gastrointestinal cancer and, in infants, methemoglo- binemia. Despite the physiologic roles for nitrate and nitrite in vas- cular and immune function, consideration of food sources of nitrates and nitrites as healthful dietary components has received little atten- tion. Approximately 80% of dietary nitrates are derived

  20. Nitrite reduction in paracoccus halodenitrificans: Evidence for the role of a cd-type cytochrome in ammonia formation

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Cronin, S. E.

    1984-01-01

    Cell-free extracts prepared from Paracoccus halodenitrificans catalyzed the reduction of nitrate to ammonia in the presence of dithionite and methyl viologen. Enzyme activity was located in the soluble fraction and was associated with a cytochrome whose spectral properties resembled those of a cd-type cytochrome. Unlike the sissimilatory cd-cytochrome nitrate reductase associated with the membrane fraction of P. halodenitrificans, this soluble cd-cytochrome did not reduce nitrite to nitrous oxide.

  1. Reduction of nitrate and nitrite salts under hydrothermal conditions

    SciTech Connect

    Foy, B.R.; Dell`Orco, P.C.; Wilmanns, E.; McInroy, R.; Ely, J.; Robinson, J.M.; Buelow, S.J.

    1994-10-01

    The feasibility of reducing nitrate/nitrite salts under hydrothermal conditions for the treatment of aqueous mixed wastes stored in the underground tanks at the Department of Energy site at Hanford, Washington was studied. The reduction of nitrate and nitrite salts by reaction with EDTA using a tank waste simulant was examined at temperatures between 623K and 800K and pressures between 0.6 and 1.2 kbar. Continuous flow reactors were used to determine kinetics and products of reactions. All reactions were studied under pressures high enough to produce single phase conditions. The reactions are rapid, go to completion in less than a minute, and produce simple products, such as carbonate, nitrogen, and nitrous oxide gases. The experimental results demonstrate the ability of chemical reactions under hydrothermal conditions to reduce the nitrate and nitrite salts and destroy organic compounds in the waste mixtures.

  2. Prenatal Exposure to Nitrates, Nitrites, and Nitrosatable Drugs and Preterm Births

    E-print Network

    Vuong, Ann Minh

    2013-10-28

    , we examined the relation between preterm births and: 1) prenatal nitrosatable drug usage; 2) dietary intake of nitrates/nitrites; 3) joint exposures to nitrosatable drugs and nitrate/nitrite intake; and 4) nitrosatable drugs and vitamin C intake among...

  3. Technological and economic update on the nitrate to ammonia and ceramic process

    SciTech Connect

    Mattus, A.J.

    1998-05-01

    The Nitrate to Ammonia and Ceramic (NAC) process, which was developed several years ago at the Oak Ridge National Laboratory (ORNL), still remains relatively unknown. This is despite its simplicity in converting nitrate or nitrite to ammonia gas at high efficiency while forming a very useful hydrated alumina-based solid that binds most metals and nonmetals. Two recent Department of Energy (DOE)-contracted total life-cycle cost analyses, related to treating nitrate-based wastes at Hanford, Savannah River, and Oak Ridge, have shown that the NAC technology is only one-third to one-fourth the cost of vitrification, electroreduction, steam reforming, and plasma arc.

  4. Ultraviolet irradiation effects incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2012-01-01

    One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, 15N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of 15N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of 15N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290–300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.

  5. Crystal structure transformers in inorganic nitrites, nitrates, and carbonates

    Microsoft Academic Search

    C. N. R. Rao; B. Prakash; M. Natarajan

    1975-01-01

    A critical survey of the data describing crystal structure transformations in inorganic nitrites, nitrates and carbonates is compiled. Data on crystallographic, thermodynamic, spectroscopic, electrical, dielectric and other properties are given for each solid. Experimental techniques used to obtain the data are given and comments on the data are included in the tables. The literature is surveyed up to June 1973.

  6. Photochemistry of nitrite and nitrate in aqueous solution: a review

    Microsoft Academic Search

    John Mack; James R. Bolton

    1999-01-01

    It has long been known that the photolysis of nitrite and nitrate solutions results in the formation of OH radicals. The mechanism of NO3? photolysis has been the subject of considerable controversy in the literature, however. This review summarizes the experimental work on NO2? and NO3? photolysis in the context of recent advances in the understanding of the chemistry of

  7. Acute toxicity of ammonia and nitrite to shortnose sturgeon fingerlings

    USGS Publications Warehouse

    Fontenot, Q.C.; Isely, J.J.; Tomasso, J.R.

    1998-01-01

    The 96-h median-lethal concentration (96-h LC50) of total ammonia nitrogen (ammonia-N) to fingerling shortnose sturgeon Acipenser brevirostrum was 149.8 ?? 55.20 mg/L (mean ?? SD, 17.9 ?? 0.62??C, pH = 6.8-7.3). Calculated 96-h LC50 for un-ionized ammonia-N was 0.58 ?? 0.213 mg/L. The 96-h LC50 of nitrite nitrogen to shortnose sturgeon fingerlings was 11.3 ?? 8.17 mg/L (17.9 ?? 0.31??C, <1.0 mg chloride/L, <1.0 mg magnesium/L, 1.8 mg calcium/L, 7.7 mg sodium/L).

  8. Ammonia on the prebiotic Earth: Iron(II) reduction of nitrite. [Abstract only

    NASA Technical Reports Server (NTRS)

    Summers, David P.; Chang, Sherwood

    1994-01-01

    Theories for the origin of life require the availability of reduced nitrogen. In the non-reducing atmosphere suggested by geochemical evidence, production in the atmosphere and survival of NH3 against photochemical destruction are problematic. Electric discharges and impact shocks would produce NO rather than HCN or NH3. Conversion of NO to nitrous and nitric acid (by way of HNO) and precipitation in acid rain would provide a source of fixed nitrogen to the early ocean. One solution to the NH3 problem may have been the reduction of nitrite/nitrate in the ocean with aqueous ferrous iron, Fe(2+): 6Fe(+2) + 7 H2O + NO2(-) yields 3Fe2O3 + 11 H(+) + NH3. We have measured the kinetics of this reaction as a function of temperature, pH, and concentrations of salts, Fe(+2), and NO2(-). Cations (Na(+), Mg(2+), K(+)) and anions (Cl(-), Br(-), SO4(2-)) increase the rate by factors of 4 to 8. Although a competing pathway yields N2, the efficiency of the conversion of nitrite to ammonia ranges from 25% to 85%. Nitrate reduction was not consistently reproducible; however, when it was observed, its rate was slower by at least 8X than that of nitrite reduction. If the prebiotic atmosphere contained 0.2 to 10 atmospheres CO2 as suggested by Walker (1985), the Fe(+2) concentration and the rate would have been limited by siderite (FeCO3) solubility.

  9. Nitric oxide 2012, in press Plasma and exhaled breath condensate nitrite-nitrate level in relation

    E-print Network

    Paris-Sud XI, Université de

    1 Nitric oxide 2012, in press Plasma and exhaled breath condensate nitrite-nitrate level and Environment of Asthma; FeNO, fraction of exhaled nitric oxide; NO, Nitric Oxide; NO2 - , Nitrite; NO3 oxide" pathway, are nitric oxide (NO), nitrites (NO2 - ) and nitrates (NO3 - ), which are indirect

  10. Nitrate and nitrite as ‘in vivo’ quenchers of chlorophyll fluorescence in blue-green algae

    Microsoft Academic Search

    A. Serrano; J. Rivas; M. Losada

    1981-01-01

    The effect of nitrate and nitrite on long-term chlorophyll fluorescence has been studied in filamentous blue-green algae. Cells grown autotrophically with nitrate as nitrogen source show, under argon atmosphere, a high level of fluorescence. The addition of either nitrete or nitrite induces a significant fluorescence quenching, but, whereas in the case of nitrite no previous treatment is required, in the

  11. A novel control method for nitritation: The domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor

    Microsoft Academic Search

    Takaaki Tokutomi; Chizu Shibayama; Satoshi Soda; Michihiko Ike

    2010-01-01

    A novel nitritation method based on the addition of inorganic carbon (IC) was verified using an airlift-fluidized bed reactor packed with sponge cubes. A continuous-treatment experiment demonstrated that the type of nitrification—nitrite or nitrate accumulation—could be controlled by the addition of different alkalinity sources (NaHCO3 or NaOH, respectively). The maximum rate of ammonia oxidation at 30°C was 2.47kg-N\\/(m3 d), with

  12. Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors.

    PubMed

    Egli, Konrad; Langer, Christian; Siegrist, Hans-Ruedi; Zehnder, Alexander J B; Wagner, Michael; van der Meer, Jan Roelof

    2003-06-01

    Partial nitrification of ammonium to nitrite under oxic conditions (nitritation) is a critical process for the effective use of alternative nitrogen removal technologies from wastewater. Here we investigated the conditions which promote establishment of a suitable microbial community for performing nitritation when starting from regular sewage sludge. Reactors were operated in duplicate under different conditions (pH, temperature, and dilution rate) and were fed with 50 mM ammonium either as synthetic medium or as sludge digester supernatant. In all cases, stable nitritation could be achieved within 10 to 20 days after inoculation. Quantitative in situ hybridization analysis with group-specific fluorescent rRNA-targeted oligonucleotides (FISH) in the different reactors showed that nitrite-oxidizing bacteria of the genus Nitrospira were only active directly after inoculation with sewage sludge (up to 4 days and detectable up to 10 days). As demonstrated by quantitative FISH and restriction fragment length polymorphism (RFLP) analyses of the amoA gene (encoding the active-site subunit of the ammonium monooxygenase), the community of ammonia-oxidizing bacteria changed within the first 15 to 20 days from a more diverse set of populations consisting of members of the Nitrosomonas communis and Nitrosomonas oligotropha sublineages and the Nitrosomonas europaea-Nitrosomonas eutropha subgroup in the inoculated sludge to a smaller subset in the reactors. Reactors operated at 30 degrees C and pH 7.5 contained reproducibly homogeneous communities dominated by one amoA RFLP type from the N. europaea-N. eutropha group. Duplicate reactors at pH 7.0 developed into diverse communities and showed transient population changes even within the ammonia oxidizer community. Reactors at pH 7.5 and 25 degrees C formed communities that were indistinguishable by the applied FISH probes but differing in amoA RFLP types. Communities in reactors fed with sludge digester supernatant exhibited a higher diversity and were constantly reinoculated with ammonium oxidizers from the supernatant. Therefore, such systems could be maintained at a higher dilution rate (0.75 day(-1) compared to 0.2 day(-1) for the synthetic wastewater reactors). Despite similar reactor performance with respect to chemical parameters, the underlying community structures were different, which may have an influence on stability during perturbations. PMID:12788718

  13. Independence of nitrate and nitrite inhibition of Desulfovibrio vulgaris Hildenborough and use of nitrite as a substrate for growth.

    PubMed

    Korte, Hannah L; Saini, Avneesh; Trotter, Valentine V; Butland, Gareth P; Arkin, Adam P; Wall, Judy D

    2015-01-20

    Sulfate-reducing microbes, such as Desulfovibrio vulgaris Hildenborough, cause “souring” of petroleum reservoirs through produced sulfide and precipitate heavy metals, either as sulfides or by alteration of the metal reduction state. Thus, inhibitors of these microbes, including nitrate and nitrite ions, are studied in order to limit their impact. Nitrite is a potent inhibitor of sulfate reducers, and it has been suggested that nitrate does not inhibit these microbes directly but by reduction to nitrite, which serves as the ultimate inhibitor. Here we provide evidence that nitrate inhibition of D. vulgaris can be independent of nitrite production. We also show that D. vulgaris can use nitrite as a nitrogen source or terminal electron acceptor for growth. Moreover, we report that use of nitrite as a terminal electron acceptor requires nitrite reductase (nrfA) as a D. vulgaris nrfA mutant cannot respire nitrite but remains capable of utilizing nitrite as a nitrogen source. These results illuminate previously uncharacterized metabolic abilities of D. vulgaris that may allow niche expansion in low-sulfate environments. Understanding these abilities may lead to better control of sulfate-reducing bacteria in industrial settings and more accurate prediction of their interactions in the environment. PMID:25534748

  14. Blue Light, a Positive Switch Signal for Nitrate and Nitrite Uptake by the Green Alga Monoraphidium braunii1

    PubMed Central

    Aparicio, Pedro J.; Quiñones, Miguel A.

    1991-01-01

    Blue light was shown to regulate the utilization of oxidized nitrogen sources by green algae, both by activating nitrate reductase and promoting nitrite reductase biosysnthesis (MA Quiñones, PJ Aparicio [1990] Inorganic Nitrogen in Plants and Microorganisms, Springer-Verlag, Berlin, pp 171-177; MA Quiñones, PJ Aparicio [1990] Photochem Photobiol 51: 681-692). The data reported herein show that, when cells of Monoraphidium braunii at pH 8, containing both active nitrate reductase and nitrite reductase, were sparged with CO2-free air and irradiated with strong background red light, they took up oxidized nitrogen sources only when PAR comprised blue light. The activation of the transport system(s) of either both nitrate and nitrite was very quick and elicited by low irradiance blue light. In fact, blue light appears to act as a switch signal from the environment, since the uptake of these anions immediately ceased when this radiation was turned off. The requirement of blue light for nitrate uptake was independent of the availability of CO2 to cells. However, cells under high CO2 tensions, although they showed an absolute blue light requirement to initially establish the uptake of nitrite, as they gained carbon skeletons to allocate ammonia, gradually increased their nitrite uptake rates in the subsequent red light intervals. Under CO2-free atmosphere, cells irradiated with strong background red light of 660 nanometers only evolved oxygen when they were additionally irradiated with low irradiance blue light and either nitrate or nitrite was present in the media to provide electron acceptors for the photosynthetic reaction. PMID:16667993

  15. Uptake of Nitrite by Neurospora crassa

    PubMed Central

    Schloemer, Robert H.; Garrett, Reginald H.

    1974-01-01

    Like the nitrate transport system, the nitrite uptake system in Neurospora crassa is induced by either nitrate or nitrite. This induction is prevented by cycloheximide, puromycin, or 6-methyl purine. The Km for nitrite of the induced nitrite uptake system is 86 ?M, and the Vmax is 100 ?mol of nitrite per g (wet weight) per h. Nitrite uptake is inhibited by metabolic poisons such as arsenate, dinitrophenol, cyanide, and antimycin A. No repression or inhibition of the nitrite transport system by ammonia, nitrate, or Casamino Acids was observed. PMID:4274458

  16. NarK enhances nitrate uptake and nitrite excretion in Escherichia coli.

    PubMed Central

    DeMoss, J A; Hsu, P Y

    1991-01-01

    narK mutants of Escherichia coli produce wild-type levels of nitrate reductase but, unlike the wild-type strain, do not accumulate nitrite when grown anaerobically on a glucose-nitrate medium. Comparison of the rates of nitrate and nitrite metabolism in cultures growing anaerobically on glucose-nitrate medium revealed that a narK mutant reduced nitrate at a rate only slightly slower than that in the NarK+ parental strain. Although the specific activities of nitrate reductase and nitrite reductase were similar in the two strains, the parental strain accumulated nitrite in the medium in almost stoichiometric amounts before it was further reduced, while the narK mutant did not accumulate nitrite in the medium but apparently reduced it as rapidly as it was formed. Under conditions in which nitrite reductase was not produced, the narK mutant excreted the nitrite formed from nitrate into the medium; however, the rate of reduction of nitrate to nitrite was significantly slower than that of the parental strain or that which occurred when nitrite reductase was present. These results demonstrate that E. coli is capable of taking up nitrate and excreting nitrite in the absence of a functional NarK protein; however, in growing cells, a functional NarK promotes a more rapid rate of anaerobic nitrate reduction and the continuous excretion of the nitrite formed. Based on the kinetics of nitrate reduction and of nitrite reduction and excretion in growing cultures and in washed cell suspensions, it is proposed that the narK gene encodes a nitrate/nitrite antiporter which facilitates anaerobic nitrate respiration by coupling the excretion of nitrite to nitrate uptake. The failure of nitrate to suppress the reduction of trimethylamine N-oxide in narK mutants was not due to a change in the level of trimethylamine N-oxide reductase but apparently resulted from a relative decrease in the rate of anaerobic nitrate reduction caused by the loss of the antiporter system. PMID:2045360

  17. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide

    SciTech Connect

    Stuehr, D.J.; Marletta, M.A.

    1985-11-01

    Escherichia coli lipopolysaccharide (LPS)-induced nitrate biosynthesis was studied in LPS-sensitive C3H/He and LPS-resistant C3H/HeJ mice. Intraperitoneal injection of 15 ..mu..g of LPS led to a temporary 5- to 6-fold increase in blood nitrate concentration in the C3H/He strain. Levels of nitrate excreted in the urine were also increased. In contrast, no increase was observed in the C3H/HeJ strain with LPS injections up to 175 ..mu..g. Furthermore, thioglycolate-elicited peritoneal macrophages from C3H/He, but not from C3H/HeJ mice, produced nitrite (60%) and nitrate (40%) when cultured with LPS (10 ..mu..g/ml). T-lymphocyte addition/depletion experiments showed the presence of T cells enhanced this response. However, LPS did not cause nitrite or nitrate production in cultures of spleen lymphocytes from either strain. LPS-induced nitrate synthesis was also observed with nude mice and CBA/N mice, indicating that neither functional T lymphocytes nor LPS-responsive B lymphocytes were required for the response in vivo. This was consistent with the in vitro results showing macrophages alone were competent. Mycobacterium bovis infection of C3H/He and C3H/HeJ mice resulted in a large increase in nitrate production over the course of the infection for both strains, suggesting T-lymphocyte-mediated activation of macrophages as a potent stimulus for nitrate biosynthesis. The synthesis of nitrite is significant in that it can directly participate in the endogenous formation of nitrosamines and may also be involved in some aspect of the chemistry of cytotoxicity.

  18. The use and control of nitrate and nitrite for the processing of meat products

    Microsoft Academic Search

    Karl-Otto Honikel

    2008-01-01

    Nitrate and nitrite are used for the purpose of curing meat products. In most countries the use of both substances, usually added as potassium or sodium salts, is limited. Either the ingoing or the residual amounts are regulated by laws.The effective substance is nitrite acting primarily as an inhibitor for some microorganisms.Nitrite added to a batter of meat is partially

  19. Toluene nitration in irradiated nitric acid and nitrite solution

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the •NO2 radical.

  20. Acute changes in urinary excretion of nitrite + nitrate do not necessarily predict renal vascular NO production

    Microsoft Academic Search

    Tamás Süt?; György Losonczy; Changbin Qiu; Cheryl Hill; Lennie Samsell; John Ruby; Nyles Charon; Rocco Venuto; Chris Baylis

    1995-01-01

    Acute changes in urinary excretion of nitrite + nitrate do not necessarily predict renal vascular NO production. NO2 + NO3 (NOx), the stable oxidation products of NO, and cGMP are widely accepted as indices of in vivo NO production. Whether acute changes in urinary excretion of nitrite + nitrate (UNOXV) can be taken to reflect acute changes in renal and\\/or

  1. Changes in nitrate and nitrite content of four vegetables during storage at refrigerated and ambient temperatures

    Microsoft Academic Search

    J.-C. Chung; S.-S. Chou; D.-F. Hwang

    2004-01-01

    The nitrate and nitrite contents of four kinds of vegetables (spinach, crown daisy, organic Chinese spinach and organic non-heading Chinese cabbage) in Taiwan were determined during storage at both refrigerated (5 ± 1°C) and ambient temperatures (22 ± 1°C) for 7 days. During storage at ambient temperature, nitrate levels in the vegetables dropped significantly from the third day while nitrite

  2. Consecutive estimation of nitrate and nitrite ions in vegetables and fruits by electron paramagnetic resonance spectrometry

    Microsoft Academic Search

    N. D Yordanov; E Novakova; S Lubenova

    2001-01-01

    Consecutive estimation of nitrate and nitrite in vegetables and fruits by electron paramagnetic resonance (EPR) spectrometry is described, based on the selective reactions of nitrate and nitrite ions to yield a stoichiometric amount of the EPR-active mononitrosyldiethyldithiocarbamate complex of iron in aerobic conditions. Since, nitrogen monoxide and dioxide (which may be present in the air) give the same reaction, the

  3. Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during...

  4. Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during ...

  5. Effects of agriculture production systems on nitrate and nitrite accumulation on baby-leaf salads

    PubMed Central

    Aires, Alfredo; Carvalho, Rosa; Rosa, Eduardo A S; Saavedra, Maria J

    2013-01-01

    Nitrate and nitrite are widespread contaminants of vegetables, fruits, and waters. The levels of these compounds are increased as a result of using organic wastes from chemical industries, domestic wastes, effluents, nitrogenous fertilizers, and herbicides in agriculture. Therefore, determining the nitrate and nitrite levels in biological, food, and environmental samples is important to protect human health and the environment. In this context, we set this study, in which we report the effect of production system (conventional and organic) on the accumulation of nitrates and nitrites in fresh baby-leaf samples. The average levels of the nitrate () and nitrite () contents in six different baby-leaf salads of a single species (green lettuce, red lettuce, watercress, rucola, chard, and corn salad) produced in organic and conventional agriculture system were evaluated. Spectrophotometric analytical method recently published was validated and used. Nitrates and nitrites were detected in all samples. The nitrates levels from organic production varied between 1.45 and 6.40?mg/kg fresh weight (FW), whereas those from conventional production ranged from 10.5 to 45.19?mg/kg FW. The nitrites content was lower than nitrates and ranged from 0.32 to 1.89?mg/kg FW in organic production system and between 0.14 and 1.41?mg/kg FW in conventional production system. Our results showed that the nitrate content was dependent on the agricultural production system, while for nitrites, this dependency was less pronounced. PMID:24804008

  6. Automated, colorimetric methods for determination of nitrate plus nitrite, nitrite, ammonium and orthophosphate ions in natural water samples

    USGS Publications Warehouse

    Antweiler, Ronald C.; Patton, Charles J.; Taylor, Howard E.

    1996-01-01

    The apparatus and methods used for the automatic, colorimetric determinations of dissolved nutrients (nitrate plus nitrite, nitrite, ammonium and orthophosphate) in natural waters are described. These techniques allow for the determination of nitrate plus nitrite for the concentration range 0.02 to 8 mg/L (milligrams per liter) as N (nitrogen); for nitrite, the range is 0.002 to 1.0 mg/L as N; for ammonium, the range is 0.006 to 2.0 mg/L as N; and for orthophosphate, the range is 0.002 to 1.0 mg/L as P (phosphorus). Data are presented that demonstrate the accuracy, precision and quality control of the methods.

  7. Feedback Regulation of Nitrate Influx in Barley Roots by Nitrate, Nitrite, and Ammonium.

    PubMed Central

    King, B. J.; Siddiqi, M. Y.; Ruth, T. J.; Warner, R. L.; Glass, ADM.

    1993-01-01

    The short-lived radiotracer 13N was used to study feedback regulation of nitrate influx through the inducible high-affinity transport system of barley (Hordeum vulgare L. cv Steptoe) roots. Both wild-type plants and the mutant line Az12:Az70 (genotype nar1a;nar7w), which is deficient in the NADH-specific and NAD(P)H-bispecific nitrate reductases (R.L. Warner, R.C. Huffaker [1989] Plant Physiol 91: 947-953) showed strong feedback inhibition of nitrate influx within approximately 5 d of exposure to 100 fmu]M nitrate. The result with the mutant, in which the flux of nitrogen into reduced products is greatly reduced, indicated that nitrate itself was capable of exercising feedback regulation upon its own influx. This conclusion was supported by the observation that feedback in wild-type plants occurred in both the presence and absence of L-methionine sulfoximine, an inhibitor of ammonium assimilation. Nitrite and ammonium were also found to be capable of exerting feedback inhibition upon nitrate influx, although it was not determined whether these ions themselves or subsequent metabolites were responsible for the effect. It is suggested that feed-back regulation of nitrate influx is potentially mediated through several nitrogen pools, including that of nitrate itself. PMID:12231904

  8. A novel control method for nitritation: The domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor.

    PubMed

    Tokutomi, Takaaki; Shibayama, Chizu; Soda, Satoshi; Ike, Michihiko

    2010-07-01

    A novel nitritation method based on the addition of inorganic carbon (IC) was verified using an airlift-fluidized bed reactor packed with sponge cubes. A continuous-treatment experiment demonstrated that the type of nitrification-nitrite or nitrate accumulation-could be controlled by the addition of different alkalinity sources (NaHCO(3) or NaOH, respectively). The maximum rate of ammonia oxidation at 30 degrees C was 2.47kg-N/(m(3) d), with nitrate formation of less than 0.5% of the converted ammonia. Nitrite accumulation of over 90% was maintained stably over 250 days at 30 degrees C and was achieved even at 19 degrees C. Qualitative and quantitative shifts of nitrifying bacteria in the biofilm were monitored by real-time PCR and T-RFLP analysis. Ammonia-oxidizing bacteria (AOB) were dominant but nitrite-oxidizing bacteria (NOB) were eliminated in the reactor when NaHCO(3) was used as the alkalinity source. From the kinetic data, we inferred that high IC concentrations drive stable nitritation by promoting a higher growth rate for AOB than for NOB. PMID:20554306

  9. Low serum total nitrite and nitrate levels in severe leptospirosis

    PubMed Central

    2013-01-01

    Background The relationship between inducible nitric oxide synthatase activity and disease severity in leptospirosis is unclear. Nitric oxide is converted to nitrites and nitrates, thus nitrite and nitrate levels (NOx) in serum are considered surrogate markers for nitric oxide. NOx are excreted through the kidneys, and elimination is diminished in renal impairment. We assessed the correlation of NOx with disease severity in patients with leptospirosis, compared with healthy controls and non-leptospirosis fever patients. Methods All patients admitted over a two-month period to the National Hospital, Colombo, Sri Lanka with a clinical picture suggestive of leptospirosis were included. Leptospirosis was confirmed by the microscopic agglutination test (titre?400). Severe leptospirosis was defined by the presence of two or more of the following criteria: jaundice (bilirubin> 51.3 ?mol/l), oliguria (urine output < 400 ml/day), serum creatinine> 133 ?mol/l or blood urea > 25.5 mmol/l, or the presence of organ dysfunction. Non-leptospirosis fever patients and healthy volunteers were used as control groups. NOx levels were measured using a modified Griess reaction. Results Forty patients were confirmed as having leptospirosis and 26 of them had severe disease. NOx levels were significantly higher in confirmed leptospirosis patients compared to healthy controls, MAT equivocal patients and non-leptospirosis fever patients (p<0.001). NOx concentrations were also significantly higher in patients with severe compared to mild leptospirosis (p<0.001). Once NOx levels were corrected for renal function, by using the ratio NOx/creatinine, NOx levels were actually significantly lower in patients with severe disease compared to other patients, and values were similar to those of healthy controls. Conclusions We postulate that high NOx levels may be protective against severe leptospirosis, and that finding low NOx levels (when corrected for renal function) in patients with leptospirosis may predict the development of severe disease and organ dysfunction. PMID:23648003

  10. Community Analysis of Ammonia and Nitrite Oxidizers during Start-Up of Nitritation Reactors

    Microsoft Academic Search

    Konrad Egli; Christian Langer; Hans-Ruedi Siegrist; Alexander J. B. Zehnder; Michael Wagner; Jan Roelof van der Meer

    2003-01-01

    Partial nitrification of ammonium to nitrite under oxic conditions (nitritation) is a critical process for the effective use of alternative nitrogen removal technologies from wastewater. Here we investigated the conditions which promote establishment of a suitable microbial community for performing nitritation when starting from regular sewage sludge. Reactors were operated in duplicate under different conditions (pH, temperature, and dilution rate)

  11. Nitrate and nitrite in vegetables from north China: content and intake

    Microsoft Academic Search

    Weike Zhong; Changmin Hu; Minjiang Wang

    2002-01-01

    The contents of nitrate and nitrite in potato, cabbage, Chinese cabbage, scallion (shallot), celery, cucumber, tomato, eggplant and wax gourd taken from the north China market from 1998 to 1999 were determined. These vegetables provide the major contribution to the nitrate intake from the diet. The highest content of nitrate was found in celery followed by Chinese cabbage, cabbage, scallion,

  12. Myeloperoxidase and Horseradish Peroxidase Catalyze Tyrosine Nitration in Proteins from Nitrite and Hydrogen Peroxide

    Microsoft Academic Search

    Jacinda B. Sampson; YaoZu Ye; Henry Rosen; Joseph S. Beckman

    1998-01-01

    Nitration of tyrosine residues in proteins occurs in a wide range of inflammatory diseases involving neutrophil and macrophage activation. We report that both myeloperoxidase (MPO) and horseradish peroxidase (HRP) utilize nitrite (NO2?) and hydrogen peroxide (H2O2) as substrates to catalyze tyrosine nitration in proteins. MPO was approximately 10 times more effective than HRP as a nitration catalyst of bovine serum

  13. Prevalence of nitrite and nitrate contents and its effect on edible bird nest's color.

    PubMed

    Paydar, Mohammadjavad; Wong, Yi Li; Wong, Won Fen; Hamdi, Omer Abdalla Ahmed; Kadir, Noraniza Abd; Looi, Chung Yeng

    2013-12-01

    Edible bird nests (EBNs) are important ethnomedicinal commodity in the Chinese community. Recently, But and others showed that the white EBNs could turn red by vapors from sodium nitrite (NaNO2) in acidic condition or from bird soil, but this color-changing agent remained elusive. The aim of this study was to determine the prevalence of nitrite and nitrate contents and its affects on EBN's color. EBNs were collected from swiftlet houses or caves in Southeast Asia. White EBNs were exposed to vapor from NaNO2 in 2% HCl, or bird soil. The levels of nitrite (NO2-) and nitrate (NO3-) in EBNs were determined through ion chromatography analysis. Vapors from NaNO2 in 2% HCl or bird soil stained white bird nests to brown/red colors, which correlated with increase nitrite and nitrate levels. Moreover, naturally formed cave-EBNs (darker in color) also contained higher nitrite and nitrate levels compared to white house-EBNs, suggesting a relationship between nitrite and nitrate with EBN's color. Of note, we detected no presence of hemoglobin in red "blood" nest. Using infrared spectra analysis, we demonstrated that red/brown cave-EBNs contained higher intensities of C-N and N-O bonds compared to white house-EBNs. Together, our study suggested that the color of EBNs was associated with the prevalence of the nitrite and nitrate contents. PMID:24279333

  14. [Effect of the fermentation process on levels of nitrates and nitrites in selected vegetables].

    PubMed

    Heród-Leszczy?ska, T; Miedzobrodzka, A

    1992-01-01

    The aim of this study was to follow the changes in the levels of nitrates and nitrites throughout the process of fermentation of sauerkraut from white and red cabbage and red beets. The nitrate and nitrite levels were determined in raw and fermentation as well as in red beets and "beet acid" after a week of souring. Nitrate were determined by the brucine method, while nitrates by the Griess colorimetric method. Mean reduction of nitrates in sauerkraut (in relation to raw cabbage) was ca. 55.5% and that of nitrites ca. 76.7%. In the red sour cabbage a decrease in the level of nitrates in relation to the product by ca. 84.1% and in that of nitrites by ca. 67.4% was found. The stabilization of both nitrate levels in both kinds of cabbages followed as after the second month of storage, as confirmed by statistical analysis of the results. In the red beets after the process of fermentation a decrease in the level of nitrates by ca. 91.6% was noted. An undefined portion of the studied compounds passed into the liquid. The "beet acid" contained 595.9 mg/dm1 of nitrates and 3.26 mg/dm3 of nitrites. PMID:1308742

  15. Nitrate and Nitrite Reduction by Microorganisms Embedded in a Filter Paper Incubated Aerobically

    PubMed Central

    Hilali, A.; Molina, J. A. E.

    1979-01-01

    Pseudomonas aeruginosa, grown to steric saturation between the cellulose fibers of a filter paper, reduced nitrate or nitrite or both when the cell-filled paper was washed, transferred to phosphate buffer, nitrate, or nitrite or both, and glucose agar plates, and incubated under aerobiosis as resting cells. The biological nature of the reduction was ascertained by the use of nitrate and nitrite reductaseless mutants. The mesh of cellulose fibers was necessary to create a sufficient barrier to oxygen diffusion, since denitrification was not obtained within large and thick colonies of P. aeruginosa. When a soil suspension was used to inoculate the filter paper, ammonium and nitrite accumulated. Concomitant to nitrate reduction, the total nonvolatile inorganic nitrogen decreased and then increased as if part of it was immobilized to be subsequently mineralized. PMID:16345478

  16. Evaluation of porous cathodes for the electrochemical reduction of nitrates and nitrites in alkaline waste streams

    E-print Network

    Weidner, John W.

    in alkaline waste streams K. JHA and J.W. WEIDNER* Department of Chemical Engineering, University of South for the electrochemical reduction of nitrates and nitrites in alkaline waste streams. A dynamic model of a batch process

  17. NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli

    Microsoft Academic Search

    John J. Rowe; Trees Ubbink-Kok; Douwe Molenaar; Wil N. Konings; Arnold J. M. Driessen

    1994-01-01

    Escherichia coli can use nitrate as a terminal electron acceptor for anaerobic respiration. A polytopic membrane protein, termed NarK, has been implicated in nitrate uptake and nitrite excretion and is thought to function as a nitrate\\/nitrite antiporter. The longest-lived radioactive isotope of nitrogen, 13N-nitrate (half-life = 9.96 min) and the nitrite-sensitive fluorophore N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide have now been used to define

  18. Determination of nitrate and nitrite in vegetables by capillary electrophoresis with indirect detection

    Microsoft Academic Search

    M. Jimidar; C. Hartmann; N. Cousement; D. L. Massart

    1995-01-01

    Nitrate and nitrite (and some other anions) were determined in vegetables by capillary electrophoresis (CE). The anions were extracted from the vegetables by mixing and diluting the samples with water at moderate temperature. The CE method is divided into two parts: a high-concentration-level method (for nitrate determination) and a low-concentration-level method (for nitrite determination). These CE methods were compared with

  19. Effects of some processing methods on nitrate and nitrite changes in cruciferous vegetables

    Microsoft Academic Search

    Teresa Leszczy?ska; Agnieszka Filipiak-Florkiewicz; Ewa Cie?lik; El?bieta Sikora; Pawe? M. Pisulewski

    2009-01-01

    Changes in nitrate and nitrite content in selected cruciferous vegetables, resulting from blanching, boiling, freezing, frozen storage and boiling after previous freezing, were analyzed. The highest level of nitrate was detected in curly kale (302.0mg\\/kg) and the lowest in green cauliflower (61.0mg\\/kg). As for nitrite, the respective levels were found in white cauliflower (3.49mg\\/kg) and green cauliflower (1.47mg\\/kg). Both blanching

  20. Perioperative kinetics of the nitric oxide derivatives nitrite\\/nitrate during orthotopic liver transplantation

    Microsoft Academic Search

    Stefan Winkler; Ibrahim El Menyawi; Eckart Wildling; Emmanuel Sporn; Claus G. Krenn

    2007-01-01

    Nitric oxide (NO) is an important mediator in ischemia–reperfusion injury during human orthotopic liver transplantation (OLT). The perioperative kinetics of nitrite\\/nitrate plasma levels in 25 patients undergoing uncomplicated OLT were studied. A uniform pattern with significant increases of nitrite\\/nitrate levels immediately after reperfusion was seen in all patients, followed by a decrease to pretransplant levels within 24h. Peak levels 30min

  1. A Rapid, Simple Spectrophotometric Method for Simultaneous Detection of Nitrate and Nitrite

    Microsoft Academic Search

    Katrina M. Miranda; Michael G. Espey; David A. Wink

    2001-01-01

    Numerous methods are available for measurement of nitrate (NO?3). However, these assays can either be time consuming or require specialized equipment (e.g., nitrate reductase, chemiluminescent detector). We have developed a method for simultaneous evaluation of nitrate and nitrite concentrations in a microtiter plate format. The principle of this assay is reduction of nitrate by vanadium(III) combined with detection by the

  2. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  3. Pharmacology and therapeutic role of inorganic nitrite and nitrate in vasodilatation.

    PubMed

    Bailey, J C; Feelisch, M; Horowitz, J D; Frenneaux, M P; Madhani, M

    2014-12-01

    Nitrite has emerged as an important bioactive molecule that can be biotransformed to nitric oxide (NO) related metabolites in normoxia and reduced to NO under hypoxic and acidic conditions to exert vasodilatory effects and confer a variety of other benefits to the cardiovascular system. Abundant research is currently underway to understand the mechanisms involved and define the role of nitrite in health and disease. In this review we discuss the impact of nitrite and dietary nitrate on vascular function and the potential therapeutic role of nitrite in acute heart failure. PMID:24992304

  4. Effects of agriculture production systems on nitrate and nitrite accumulation on baby-leaf salads.

    PubMed

    Aires, Alfredo; Carvalho, Rosa; Rosa, Eduardo A S; Saavedra, Maria J

    2013-01-01

    Nitrate and nitrite are widespread contaminants of vegetables, fruits, and waters. The levels of these compounds are increased as a result of using organic wastes from chemical industries, domestic wastes, effluents, nitrogenous fertilizers, and herbicides in agriculture. Therefore, determining the nitrate and nitrite levels in biological, food, and environmental samples is important to protect human health and the environment. In this context, we set this study, in which we report the effect of production system (conventional and organic) on the accumulation of nitrates and nitrites in fresh baby-leaf samples. The average levels of the nitrate ([Formula: see text]) and nitrite ([Formula: see text]) contents in six different baby-leaf salads of a single species (green lettuce, red lettuce, watercress, rucola, chard, and corn salad) produced in organic and conventional agriculture system were evaluated. Spectrophotometric analytical method recently published was validated and used. Nitrates and nitrites were detected in all samples. The nitrates levels from organic production varied between 1.45 and 6.40?mg/kg fresh weight (FW), whereas those from conventional production ranged from 10.5 to 45.19?mg/kg FW. The nitrites content was lower than nitrates and ranged from 0.32 to 1.89?mg/kg FW in organic production system and between 0.14 and 1.41?mg/kg FW in conventional production system. Our results showed that the nitrate content was dependent on the agricultural production system, while for nitrites, this dependency was less pronounced. PMID:24804008

  5. Microfluidic paper-based analytical device for the determination of nitrite and nitrate.

    PubMed

    Jayawardane, B Manori; Wei, Shen; McKelvie, Ian D; Kolev, Spas D

    2014-08-01

    A low-cost disposable colorimetric microfluidic paper-based analytical device (?PAD) was developed for the determination of nitrite and nitrate. Nitrite is determined directly by the Griess reaction while nitrate is first reduced to nitrite in a hydrophilic channel of the ?PAD with immobilized zinc microparticles. This ?PAD is fabricated by a simple and inexpensive inkjet printing method. Under optimal conditions, the limits of detection and quantification for nitrite are 1.0 and 7.8 ?M, respectively, while the corresponding values for nitrate are 19 and 48 ?M, respectively. The repeatability, expressed as relative standard deviation (RSD), is less than 2.9% and 5.6% (n ? 8) for the determination of nitrite and nitrate, respectively. This ?PAD was successfully applied to the determination of nitrate and nitrite in both synthetic and natural water samples. It is user and environmentally friendly and suitable for on-site measurement of the analytes mentioned above in environmental and drinking waters. PMID:25001619

  6. Tolerance of ciliated protozoan Paramecium bursaria (Protozoa, Ciliophora) to ammonia and nitrites

    NASA Astrophysics Data System (ADS)

    Xu, Henglong; Song, Weibo; Lu, Lu; Alan, Warren

    2005-09-01

    The tolerance to ammonia and nitrites in freshwater ciliate Paramecium bursaria was measured in a conventional open system. The ciliate was exposed to different concentrations of ammonia and nitrites for 2h and 12h in order to determine the lethal concentrations. Linear regression analysis revealed that the 2h-LC50 value for ammonia was 95.94 mg/L and for nitrite 27.35 mg/L using probit scale method (with 95% confidence intervals). There was a linear correlation between the mortality probit scale and logarithmic concentration of ammonia which fit by a regression equation y=7.32 x 9.51 ( R 2=0.98; y, mortality probit scale; x, logarithmic concentration of ammonia), by which 2 h-LC50 value for ammonia was found to be 95.50 mg/L. A linear correlation between mortality probit scales and logarithmic concentration of nitrite is also followed the regression equation y=2.86 x+0.89 ( R 2=0.95; y, mortality probit scale; x, logarithmic concentration of nitrite). The regression analysis of toxicity curves showed that the linear correlation between exposed time of ammonia-N LC50 value and ammonia-N LC50 value followed the regression equation y=2 862.85 e -0.08 x ( R 2=0.95; y, duration of exposure to LC50 value; x, LC50 value), and that between exposed time of nitrite-N LC50 value and nitrite-N LC50 value followed the regression equation y=127.15 e -0.13 x ( R 2=0.91; y, exposed time of LC50 value; x, LC50 value). The results demonstrate that the tolerance to ammonia in P. bursaria is considerably higher than that of the larvae or juveniles of some metozoa, e.g. cultured prawns and oysters. In addition, ciliates, as bacterial predators, are likely to play a positive role in maintaining and improving water quality in aquatic environments with high-level ammonium, such as sewage treatment systems.

  7. Quantitative analysis of nitrate and nitrite contents in vegetables commonly consumed in Delta State, Nigeria.

    PubMed

    Onyesom, I; Okoh, P N

    2006-11-01

    Plasma thiocyanate has been reported to be high among cassava-eating populations such as that in Nigeria because of the cyanide content of cassava. Thiocyanate, which is secreted into the stomach contents of animals, has been demonstrated to catalyse the formation of nitrosamines (potent carcinogens) in the stomach from secondary amines and nitrite. The main source of the nitrite precursor in this environment is vegetables, primarily eaten as the chief supplier of proteins. The present study attempts to analyse the levels of nitrate and nitrite in vegetables commonly grown and consumed in Delta State, Nigeria. The nitrate and nitrite contents in green vegetable (Amaranthus spp.), bitter leaf (Vernonia amygdalina), pumpkin (Telfaria occidentalis) and water leaf (Talinum triangulare) grown in different localities of the state were determined by standard analytical procedures. The results show that those vegetables grown in the industrialised urban centres of the state had higher nitrate (223 (SD 71) mg/kg dry weight; P<0.05) and nitrite (12.6 (SD 1.7) mg/kg dry weight; P>0.05) levels when compared with the same species (188 (SD 77) mg nitrate/kg dry weight and 10.9 (SD 1.1) mg nitrite/kg dry weight) cultivated in less industrialised suburbs. We conclude that frequent consumption of such vegetables whose nitrate and nitrite contents are high by cassava-eating individuals might put them at risk of developing stomach cancer and other possible results of nitrate and/or nitrite toxicity. In order to avoid an outbreak in our communities, appropriate agencies should monitor and regulate the release of chemicals into the environment. In the meantime, the cultivation and consumption of vegetables grown in industrialised areas of the state should be discouraged. PMID:17092380

  8. Nitrate and nitrite in the diet: how to assess their benefit and risk for human health.

    PubMed

    Habermeyer, Michael; Roth, Angelika; Guth, Sabine; Diel, Patrick; Engel, Karl-Heinz; Epe, Bernd; Fürst, Peter; Heinz, Volker; Humpf, Hans-Ulrich; Joost, Hans-Georg; Knorr, Dietrich; de Kok, Theo; Kulling, Sabine; Lampen, Alfonso; Marko, Doris; Rechkemmer, Gerhard; Rietjens, Ivonne; Stadler, Richard H; Vieths, Stefan; Vogel, Rudi; Steinberg, Pablo; Eisenbrand, Gerhard

    2015-01-01

    Nitrate is a natural constituent of the human diet and an approved food additive. It can be partially converted to nitrogen monoxide, which induces vasodilation and thereby decreases blood pressure. This effect is associated with a reduced risk regarding cardiovascular disease, myocardial infarction, and stroke. Moreover, dietary nitrate has been associated with beneficial effects in patients with gastric ulcer, renal failure, or metabolic syndrome. Recent studies indicate that such beneficial health effects due to dietary nitrate may be achievable at intake levels resulting from the daily consumption of nitrate-rich vegetables. N-nitroso compounds are endogenously formed in humans. However, their relevance for human health has not been adequately explored up to now. Nitrate and nitrite are per se not carcinogenic, but under conditions that result in endogenous nitrosation, it cannot be excluded that ingested nitrate and nitrite may lead to an increased cancer risk and may probably be carcinogenic to humans. In this review, the known beneficial and detrimental health effects related to dietary nitrate/nitrite intake are described and the identified gaps in knowledge as well as the research needs required to perform a reliable benefit/risk assessment in terms of long-term human health consequences due to dietary nitrate/nitrite intake are presented. PMID:25164923

  9. Nitrite formation during low pressure ultraviolet lamp irradiation of nitrate.

    PubMed

    Lu, Ning; Gao, Nai-Yun; Deng, Yang; Li, Qing-Song

    2009-01-01

    During ultraviolet light (UV) disinfection, nitrate (NO3-) present in raw water may transform to nitrite (NO2-) that can cause serious human diseases. In this study, the formation of NO2- from NO3- was studied at different experimental conditions under the irradiation of a low-pressure ultraviolet (LPUV) lamp at 253.9 nm. The investigated experimental variables included initial NO3- concentration, solution pH (6.2-9.5), and hydrogen peroxide (H2O2) dose (0-25 mg L(-1)). Moreover, the effect of titanium dioxide (TiO2) was determined. Results showed that the formation of NO2- was enhanced at a high initial NO3- concentration and a high pH, but was inhibited, to some different degrees, by introduction of H2O2 or photocatalyst TiO2. The effect of pH on NO2- formation was probably due to the impact of hydrogen ion on the stability of several intermediates such as peroxynitrite (ONOO-), N2O3, and N2O4. And the inhibiting effects of H2O2 and TiO2 were attributable to production of additional hydroxyl radical (OH) that scavenged NO2-. At pH 9.5 and an initial NO3- concentration of 10 mg L(-1) NO3--N, the concentration of NO2- produced was above 0.1 mg L(-1) NO2--N, the Germany drinking water standard. When 25 mg L(-1) H2O2 was added, the NO2- level was decreased below the standard. PMID:19759441

  10. Simultaneous determination of nitrite, nitrate and ascorbic acid in canned vegetable juices by reverse?phase ion?interaction HPLC

    Microsoft Academic Search

    C. F. Cheng; C. W. Tsang

    1998-01-01

    A simple ion?interaction C18 reverse?phase high performance liquid chromatographic method was developed for simultaneous determination of nitrite, nitrate and ascorbic acid in canned vegetable juices. The method makes use of 0.010 m octylammonium ortho?phosphate as the ion interacting reagent and 20% (v\\/v) aqueous methanol as the mobile phase. The content of nitrite, nitrate (expressed as nitrite ion and nitrate ion,

  11. An improved method to measure nitrate/nitrite with an NO-selective electrochemical sensor

    PubMed Central

    Boo, Yong Chool; Tressel, Sarah L.; Jo, Hanjoong

    2007-01-01

    Nitric oxide produced from nitric oxide synthase(s) is an important cell signaling molecule in physiology and pathophysiology. In the present study, we describe a very sensitive and convenient analytical method to measure NOx (nitrite plus nitrate) in culture media by employing an ultra-sensitive nitric oxide-selective electrochemical sensor which became commercially available recently. An aliquot of conditioned culture media was first treated with nitrate reductase/NADPH/glucose-6-phosphate dehydrogenase/glucose-6-phosphate to convert nitrate to nitrite quantitatively. The nitrite (that is present originally plus the reduced nitrate) was then reduced to equimolar NO in an acidic iodide bath while NO was being detected by the sensor. This analytical method appears to be very useful to assess basal and stimulated NO release from cultured cells. PMID:17056288

  12. Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Huffaker, R. C.

    1989-01-01

    The role of NO3- and NO2- in the induction of nitrite reductase (NiR) activity in detached leaves of 8-day-old barley (Hordeum vulgare L.) seedlings was investigated. Barley leaves contained 6 to 8 micromoles NO2-/gram fresh weight x hour of endogenous NiR activity when grown in N-free solutions. Supply of both NO2- and NO3- induced the enzyme activity above the endogenous levels (5 and 10 times, respectively at 10 millimolar NO2- and NO3- over a 24 hour period). In NO3(-)-supplied leaves, NiR induction occurred at an ambient NO3- concentration of as low as 0.05 millimolar; however, no NiR induction was found in leaves supplied with NO2- until the ambient NO2- concentration was 0.5 millimolar. Nitrate accumulated in NO2(-)-fed leaves. The amount of NO3- accumulating in NO2(-)-fed leaves induced similar levels of NiR as did equivalent amounts of NO3- accumulating in NO3(-)-fed leaves. Induction of NiR in NO2(-)-fed leaves was not seen until NO3- was detectable (30 nanomoles/gram fresh weight) in the leaves. The internal concentrations of NO3-, irrespective of N source, were highly correlated with the levels of NiR induced. When the reduction of NO3- to NO2- was inhibited by WO4(2-), the induction of NiR was inhibited only partially. The results indicate that in barley leaves in NiR is induced by NO3- directly, i.e. without being reduced to NO2-, and that absorbed NO2- induces the enzyme activity indirectly after being oxidized to NO3- within the leaf.

  13. Corrosion risk associated with microbial souring control using nitrate or nitrite.

    PubMed

    Hubert, Casey; Nemati, Mehdi; Jenneman, Gary; Voordouw, Gerrit

    2005-08-01

    Souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB) in oil reservoirs, can be controlled through nitrate or nitrite addition. To assess the effects of this containment approach on corrosion, metal coupons were installed in up-flow packed-bed bioreactors fed with medium containing 8 mM sulfate and 25 mM lactate. Following inoculation with produced water to establish biogenic H(2)S production, some bioreactors were treated with 17.5 mM nitrate or up to 20 mM nitrite, eliminating souring. Corrosion rates were highest near the outlet of untreated bioreactors (up to 0.4 mm year(-1)). Nitrate (17.5 mM) eliminated sulfide but gave pitting corrosion near the inlet of the bioreactor, whereas a high nitrite dose (20 mM) completely eliminated microbial activity and associated corrosion. More gradual, step-wise addition of nitrite up to 20 mM resulted in the retention of microbial activity and localized pitting corrosion, especially near the bioreactor inlet. We conclude that: (1) SRB control by nitrate or nitrite reduction shifts the corrosion risk from the bioreactor outlet to the inlet (i.e. from production to injection wells) and (2) souring treatment by continuous addition of a high inhibitory nitrite dose is preferable from a corrosion-prevention point of view. PMID:15711941

  14. Dietary nitrate and nitrite intake and risk of non-Hodgkin lymphoma

    PubMed Central

    Aschebrook-Kilfoy, Briseis; Ward, Mary H.; Dave, Bhavana J.; Smith, Sonali M.; Weisenburger, Dennis D.; Chiu, Brian C.-H.

    2015-01-01

    Although established risk factors such as immunodeficiency and viral infections may be responsible for a portion of non-Hodgkin lymphoma (NHL) cases, the vast majority of NHL cases remain unexplained. The role of dietary nitrate and nitrite in NHL risk is of interest since they are precursors of N-nitroso compounds and nitrosoureas have been shown to induce B and T-cell lymphomas in animal studies. However, few studies have evaluated the potential association between consumption of nitrate and nitrite intake and NHL by subtype or chromosomal translocation status, and the results of these studies have been inconsistent. We estimated the dietary intake of nitrate and nitrite using a food frequency questionnaire in a population-based, case-control study of 348 cases and 470 controls conducted in Nebraska in 1999–2002. A non-significant excess risk of NHL was found among women who reported an intake of nitrite in the highest quartile compared to the lowest quartile (OR = 1.6; 95% CI: 0.8–2.9), particularly nitrite from animal sources (OR=1.9; 95% CI: 1.0–3.4). No significant associations were observed for nitrate or nitrite by NHL subtype. Although there were some increases in risk that support the N-nitroso hypothesis, they were not significant and do not confer strong evidence of an association. PMID:23013327

  15. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    SciTech Connect

    Metcalf, S.G.

    1998-06-11

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10.

  16. Nitrifying microorganisms in fixed-bed biofilm reactors fed with different nitrite and ammonia concentrations.

    PubMed

    ter Haseborg, Eike; Zamora, Talia Mateu; Fröhlich, Jörn; Frimmel, Fritz H

    2010-03-01

    Nitrifying bacteria and archaea were fed in fixed-bed biofilm reactors with different nitrite and ammonia concentrations in synthetic and real wastewater. During high nitrite concentrations (rho(NO(2)(-))=5-10mg/L), an increase in the abundance of Nitrobacter species was detected with fluorescence in situ hybridization (FISH), while Nitrospira species disappeared to a large extent. During high ammonia concentrations (rho(NH(4)(+))=60-80 mg/L), a slight increase in ammonia-oxidizing bacteria was obtained, while the abundance of archaebacteria remained unchanged. Lab-scale reactors showed a similar nitrifying microbial population as reactors fed with real wastewater. However, increased abundances of Nitrospira species as observed in wastewater reactors and in the wastewater trickling filters could not be found in the laboratory reactors. PMID:19910189

  17. Mechanism of nitrite oxidation by eosinophil peroxidase: implications for oxidant production and nitration by eosinophils

    PubMed Central

    van Dalen, Christine J.; Winterbourn, Christine C.; Kettle, Anthony J.

    2005-01-01

    Eosinophil peroxidase is a haem enzyme of eosinophils that is implicated in oxidative tissue injury in asthma. It uses hydrogen peroxide to oxidize thiocyanate and bromide to their respective hypohalous acids. Nitrite is also a substrate for eosinophil peroxidase. We have investigated the mechanisms by which the enzyme oxidizes nitrite. Nitrite was very effective at inhibiting hypothiocyanous acid (‘cyanosulphenic acid’) and hypobromous acid production. Spectral studies showed that nitrite reduced the enzyme to its compound II form, which is a redox intermediate containing FeIV in the haem active site. Compound II does not oxidize thiocyanate or bromide. These results demonstrate that nitrite is readily oxidized by compound I, which contains FeV at the active site. However, it reacts more slowly with compound II. The observed rate constant for reduction of compound II by nitrite was determined to be 5.6×103 M?1·s?1. Eosinophils were at least 4-fold more effective at promoting nitration of a heptapeptide than neutrophils. This result is explained by our finding that nitrite reacts 10-fold faster with compound II of eosinophil peroxidase than with the analogous redox intermediate of myeloperoxidase. Nitration by eosinophils was increased 3-fold by superoxide dismutase, which indicates that superoxide interferes with nitration. We propose that at sites of eosinophilic inflammation, low concentrations of nitrite will retard oxidant production by eosinophil peroxidase, whereas at higher concentrations nitrogen dioxide will be a major oxidant formed by these cells. The efficiency of protein nitration will be decreased by the diffusion-controlled reaction of superoxide with nitrogen dioxide. PMID:16336215

  18. Simultaneous determination of nitrate and nitrite in human plasma by gas chromatography-mass spectrometry.

    PubMed

    Kage, Shigetoshi; Kudo, Keiko; Ikeda, Noriaki

    2002-09-01

    We devised a sensitive and simple method for the simultaneous determination of nitrate and nitrite in human plasma, using extractive alkylation. These inorganic anions were alkylated with pentafluorobenzyl bromide, using tetradecyldimethylbenzylammonium chloride as the phase-transfer catalyst, with 1,3,5-tribromobenzene as an internal standard. The derivatives were analyzed by gas chromatography-mass spectrometry, using the negative-ion chemical ionization mode with isobutane as the reagent gas. Calibration curves for nitrate and nitrite were linear over the concentration range of 0.01 to 1.0 micromol/mL in plasma, and the lower limit of detection for both compounds was 0.005 micromol/mL. The accuracy and precision of this method were evaluated and coefficients of variation were lower than 10.4%. Blood nitrate and nitrite concentrations of six victims who committed suicide by inhaling automobile exhaust gas could be determined using our method. PMID:12220012

  19. Anaerobic respiration of Bacillus macerans with fumarate, TMAO, nitrate and nitrite and regulation of the pathways by oxygen and nitrate

    Microsoft Academic Search

    Jan Schirawski; Gottfried Unden

    1995-01-01

    In Bacillus macerans, anaerobic respiratory pathways and the regulation of facultatively anaerobic catabolism by electron acceptors were analysed. In addition to fermentative growth, B. macerans was able to grow anaerobically by fumarate, trimethylamine N-oxide, nitrate, and nitrite respiration with glycerol as donor. During growth by fumarate respiration, a membrane-bound fumarate reductase was present that was different from succinate dehydrogenase. The

  20. Electrochemical reduction of nitrate and nitrite in concentrated sodium hydroxide at platinum and nickel electrodes

    SciTech Connect

    Hu Lin Li [Univ. of Tennessee, Knoxville, TN (United States); Robertson, D.H.; Chambers, J.Q. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Hobbs, D.T. [Savannah River Lab., Aiken, SC (United States)

    1996-10-01

    This work describes the electrochemical reduction of nitrate in alkaline solutions. Conditions which maximize the current efficiency for the production of dinitrogen and/or ammonia gases could be very important for the treatment of radioactive waste solutions.

  1. The reactivity of cesium nickel ferrocyanide towards nitrate and nitrite salts

    SciTech Connect

    Burger, L.L.; Scheele, R.D.

    1991-09-01

    Beginning in late 1988, the Pacific Northwest Laboratory (PNL) began an experimental program at the request of Westinghouse Hanford Company (WHC) to investigate the effects of temperature on the oxidation reaction between synthetic nickel cesium ferrocyanide (FeCN) and nitrates and nitrites representative of materials present in some of the Hanford single-shell tanks (SSTs). After completing a preliminary series of experiments in 1988, the program was expanded to include five tasks to evaluate the effect of selected compositional and operational parameters on the reaction and explosion temperatures of FeCN and nitrate and/or nitrite mixtures. 10 refs., 4 figs., 6 tabs.

  2. Development and Validation of a Method for Determination of Residual Nitrite\\/Nitrate in Foodstuffs and Water After Zinc Reduction

    Microsoft Academic Search

    Leonardo Merino

    2009-01-01

    An environmentally friendly and cost-effective spectrophotometric method to analyze nitrate and\\/or nitrite was developed.\\u000a The method is based on reduction of nitrate with zinc powder (instead of the cadmium or enzymes used in the standard methods\\u000a approved by ISO\\/CEN). The initial nitrite concentration and total nitrite after reduction are determined by the very sensitive\\u000a and widely used diazotization-coupling Griess reaction.

  3. Nitrate to Ammonia Ceramic (NAC) bench scale stabilization study

    SciTech Connect

    Caime, W.J.; Hoeffner, S.L.

    1995-12-31

    Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. At INEL alone there are 800,000 gallons. The largest quantity of these wastes is the 149 single shell tanks (SSTs) tanks at Hanford which can hold 1 million gallons each. The nitrate to ammonia ceramic (NAC) process has been developed to remove a majority of the nitrate content from the wastes.

  4. Effect of potential Hanford ferrocyanide waste constituents on the reaction between ferrocyanide and nitrates/nitrites

    SciTech Connect

    Scheele, R.D.; Burger, L.L.; Sell, R.L.

    1993-02-01

    During the 1950s, ferrocyanide- and nitrate-bearing wastes were produced at Hanford. A concern about continued safe storage and future treatment of these wastes has arisen because ferrocyanide and nitrate mixtures can explode when heated. Because of this concern, the Pacific Northwest Laboratory has performed experimental studies to determine the conditions needed to continue storing the wastes safely. In this paper, we present the results of our studies on the effects of other potential ferrocyanide waste constituents on the explosivity of mixtures of sodium nickel ferrocyanide and sodium nitrate and nitrite. In particular, this paper presents the results of investigations on the diluent effects of equimolar sodium nitrate and nitrite, sodium nickel ferrocyanide, and sodium aluminate, and the catalyst or initiator effects of nickel sulfide.

  5. Promotion ofSeedGermination byNitrate, Nitrite, Hydroxylamine, andAmmoniumSalts1

    Microsoft Academic Search

    S. B. HENDRICKS; R. B. TAYLORSON

    Actionanduptakeofazides, nitrates, nitrites, hydroxyla- mines,andammoniumsalts weremeasured ongermination of Amaranthus albus, Lactuca sativa, Phleumpratense, Barbarea vulgaris, B.verna, andSetaria glauca seeds. Nitrate andnitrite reductase activities weremeasured invivoforeachofthese kindsofseeds. Activities weremeasured invitroforcatalase, peroxidase, glycolate oxidase, andpyridine nucleotide quinone reductase onextracts ofA.albus andL.sativa seeds before and aftergermination. Theenzymicactivities measuredandthe responsiveness ofthehaemproteins toinhibition bytheseveral compoundsindicate thatnitrites, azides, andhydroxylamines promoteseedgermination byinhibition ofH202decomposition bycatalase. Ammnonium salts showedpronounced

  6. Nitrate reductase and nitrite reductase activity in free-living cells and bacteroids of Rhizobium loti

    Microsoft Academic Search

    J. Monza; M. J. Delgado; E. J. Bedmar

    1992-01-01

    Cells of Rhizobium loti strains T1 and U226 cultured in defined medium with glutamate as the only nitrogen source and bacteroids isolated from root nodules of Lotus corniculatus, L. pedunculatus and L. tenuis did not show constitutive (non-nitrate induced) nitrate reductase activity (NRA). In contrast, nitrite reductase activity (NiRA) was present in both free-living cells and bacteroids of either strain

  7. Vegetable-borne nitrate and nitrite and the risk of methaemoglobinaemia

    Microsoft Academic Search

    Thomas Y. K. Chan

    2011-01-01

    High levels of nitrate in vegetables are frequently reported. The potential hazard of vegetable-borne nitrate is from its conversion to methaemoglobin-producing nitrite before and\\/or after ingestion. Methaemoglobin cannot bind oxygen and produces a leftward shift in oxygen-dissociation curve, causing hypoxaemia. Infants under 3 months old are particularly susceptible to methaemoglobinaemia. Older infants and children are also at risk. Adults are

  8. Dietary exposure of Hong Kong adults to nitrate and nitrite from vegetable intake

    Microsoft Academic Search

    Melva Yung-yung Chen; Stephen Wai Cheung Chung; Jeff Chuong-hao Tran; Katherine Siu-kuen Tong; Yuk-yin Ho; Constance Hon-yee Chan; Ying Xiao

    2011-01-01

    The aim of this study was to assess the dietary exposure of adults in Hong Kong to nitrate and nitrite from vegetables. If all vegetables consumed were raw, the dietary exposure to nitrate for average consumers was estimated to be 4.4?mg?kg body weight (bw)?day and, for high consumers, was estimated to be 13?mg?kg?bw?day, which is about 120 and 350% of

  9. Sustained Photoproduction of Ammonia from Nitrate by Anacystis nidulans

    PubMed Central

    Ramos, Juan L.; Guerrero, Miguel G.; Losada, Manuel

    1982-01-01

    Conditions that lengthen the time during which l-methionine-dl-sulfoximine (MSX) promotes excretion of ammonia produced by photosynthetic nitrate reduction in Anacystis nidulans have been sought. If MSX was added every 24 h, maximal rates of ammonia production were maintained for 3 days. After this time, ammonia production ceased due to a specific deficiency of glutamine in the cells, which finally led to cell lysis. The effective ammonia production period could be further extended either by adding a low amount of glutamine at the end of the 3-day period or by allowing the cells to recover for 8 h in the absence of MSX after every 48-h period in the presence of inhibitor. In this way, a steady production of ammonia lasting for at least 10 days was achieved. The MSX-treated cyanobacterial cells thus represent a system relatively stable with time for the conversion of light energy into chemical energy through the photoreduction of nitrate to ammonia. PMID:16346126

  10. Modification of nitrifying biofilm into nitritating one by combination of increased free ammonia concentrations, lowered HRT and dissolved oxygen concentration

    Microsoft Academic Search

    Ivar Zekker; Ergo Rikmann; Toomas Tenno; Anne Menert; Vallo Lemmiksoo; Alar Saluste; Taavo Tenno; Martin Tomingas

    2011-01-01

    Nitrifying biomass on ring-shaped carriers was modified to nitritating one in a relatively short period of time (37 days) by limiting the air supply, changing the aeration regime, shortening the hydraulic retention time and increasing free ammonia (FA) concentration in the moving-bed biofilm reactor (MBBR). The most efficient strategy for the development and maintenance of nitritating biofilm was found to

  11. Investigating the control of Listeria monocytogenes on uncured, no-nitrate-or-nitrite-added meat products

    Microsoft Academic Search

    Kohl Danielle Schrader

    2010-01-01

    With the increased growth in natural and organic processed meats, suppliers have begun to offer “ clean label ” solutions to improve the safety of minimally processed foods. This study investigated the growth of Listeria monocytogenes on uncured, no – nitrate – or– nitrite– added Emulsified Frankfurter Style Cooked Sausages (EFSC) with or without natural or “ clean label ”

  12. A Crp-dependent two-component system regulates nitrate and nitrite respiration in Shewanella oneidensis.

    PubMed

    Dong, Yangyang; Wang, Jixuan; Fu, Huihui; Zhou, Guangqi; Shi, Miaomiao; Gao, Haichun

    2012-01-01

    We have previously illustrated the nitrate/nitrite respiratory pathway of Shewanella oneidensis, which is renowned for its remarkable versatility in respiration. Here we investigated the systems regulating the pathway with a reliable approach which enables characterization of mutants impaired in nitrate/nitrite respiration by guaranteeing biomass. The S. oneidensis genome encodes an Escherichia coli NarQ/NarX homolog SO3981 and two E. coli NarP/NarL homologs SO1860 and SO3982. Results of physiological characterization and mutational analyses demonstrated that S. oneidensis possesses a single two-component system (TCS) for regulation of nitrate/nitrite respiration, consisting of the sensor kinase SO3981(NarQ) and the response regulator SO3982(NarP). The TCS directly controls the transcription of nap and nrfA (genes encoding nitrate and nitrite reductases, respectively) but regulates the former less tightly than the latter. Additionally, phosphorylation at residue 57 of SO3982 is essential for its DNA-binding capacity. At the global control level, Crp is found to regulate expression of narQP as well as nap and nrfA. In contrast to NarP-NarQ, Crp is more essential for nap rather than nrfA. PMID:23240049

  13. Nitrogen13-labeled nitrite and nitrate: distribution and metabolism after intratracheal administration

    Microsoft Academic Search

    N. J. Parks; K. A. Krohn; C. A. Mathis; J. H. Chasko; K. R. Geiger; M. E. Gregor; N. F. Peek

    1981-01-01

    Radioactive nitrogen-13 from nitrite (NOâ⁻) or nitrate (NOâ⁻) administered intratracheally or intravenously without added carrier to mice or rabbits was distributed evenly throughout most organs and tissues regardless of the entry route or the anion administered. Nitrogen-13 from both anions was distributed uniformly between plasma and blood cells. Rapid in vivo oxidation of NOâ⁻ to NOâ⁻ at concentrations of 2

  14. Electrochemical reduction of nitrates and nitrites in alkaline media in the presence of hexavalent chromium

    E-print Network

    Weidner, John W.

    as lead corrosion renders this alternative undesirable. Removing the chromate prior to the electrochemical reduction of nitrates and nitrites in alkaline media at constant current is rendered inoperable to proceed eciently. The optimum current and reversal time are coupled through an optimum charge density

  15. Simultaneous determination of nitrite and nitrate in meat products and vegetables by capillary electrophoresis

    Microsoft Academic Search

    Nevin Öztekin; M. Said Nutku; F. Bedia Erim

    2002-01-01

    A capillary electrophoresis method for the simultaneous analysis of nitrite and nitrate in meat products and vegetables using direct UV detection is reported. The method is based on the separation of two anions in a capillary coated with polyethyleneimine (PEI). Since PEI is a cationic polymer, the electroosmotic flow is reversed over a wide pH range and the fast separation

  16. Nitrate and nitrite ingestion and risk of ovarian cancer among postmenopausal women in Iowa.

    PubMed

    Inoue-Choi, Maki; Jones, Rena R; Anderson, Kristin E; Cantor, Kenneth P; Cerhan, James R; Krasner, Stuart; Robien, Kim; Weyer, Peter J; Ward, Mary H

    2015-07-01

    Nitrate and nitrite are precursors in the endogenous formation of N-nitroso compounds (NOC), potential human carcinogens. We evaluated the association of nitrate and nitrite ingestion with postmenopausal ovarian cancer risk in the Iowa Women's Health Study. Among 28,555 postmenopausal women, we identified 315 incident epithelial ovarian cancers from 1986 to 2010. Dietary nitrate and nitrite intakes were assessed at baseline using food frequency questionnaire data. Drinking water source at home was obtained in a 1989 follow-up survey. Nitrate-nitrogen (NO3 -N) and total trihalomethane (TTHM) levels for Iowa public water utilities were linked to residences and average levels were computed based on each woman's duration at the residence. We computed multivariable-adjusted hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards regression. We tested interactions of nitrate with TTHMs and dietary factors known to influence NOC formation. Ovarian cancer risk was 2.03 times higher (CI?=?1.22-3.38, ptrend ?=?0.003) in the highest quartile (?2.98 mg/L) compared with the lowest quartile (?0.47 mg/L; reference) of NO3 -N in public water, regardless of TTHM levels. Risk among private well users was also elevated (HR?=?1.53, CI?=?0.93-2.54) compared with the same reference group. Associations were stronger when vitamin C intake was nitrate was inversely associated with ovarian cancer risk (ptrend ?=?0.02); whereas, dietary nitrite from processed meats was positively associated with the risk (ptrend ?=?0.04). Our findings indicate that high nitrate levels in public drinking water and private well use may increase ovarian cancer risk among postmenopausal women. PMID:25430487

  17. Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2011-01-01

    In addition to operational details and performance benchmarks for these new DA-AtNaR2 nitrate + nitrite assays, this report also provides results of interference studies for common inorganic and organic matrix constituents at 1, 10, and 100 times their median concentrations in surface-water and groundwater samples submitted annually to the NWQL for nitrate + nitrite analyses. Paired t-test and Wilcoxon signed-rank statistical analyses of results determined by CFA-CdR methods and DA-AtNaR2 methods indicate that nitrate concentration differences between population means or sign ranks were either statistically equivalent to zero at the 95 percent confidence level (p ? 0.05) or analytically equivalent to zero-that is, when p < 0.05, concentration differences between population means or medians were less than MDLs.

  18. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst

    SciTech Connect

    Iyengar, R.; Stuehr, D.J.; Marletta, M.A.

    1987-09-01

    The macrophage cell line RAW 264.7 when activated with Escherichia coli lipopolysaccharide and interferon-..gamma.. synthesized nitrite (NO/sub 2//sup -/) and nitrate (NO/sub 3//sup -/). Medium change after the activation showed that L-arginine was the only amino acid essential for this synthesis. D-Arginine would not substitute for L-arginine. Other analogues that could replace L-arginine were L-homoarginine, L-arginine methyl ester, L-arginamide, and the peptide L-arginyl-L-aspartate. L-Argininic acid, L-agmatine, L-ornithine, urea, L-citrulline, and ammonia were among the nonprecursors, while L-canavanine inhibited this L-arginine-derived NO/sub 2//sup -//NO/sub 3//sup -/ synthesis. When morpholine was added to the culture medium of the activated RAW 264.7 macrophages, N-nitrosation took place, generating N-nitrosomorpholine. GC/MS experiments using L-(guanido-/sup 15/N/sub 2/)arginine established that the NO/sub 2//sup -//NO/sub 3//sup -/ and the nitrosyl group of N-nitrosomorpholine were derived exclusively from one or both of the terminal guanido nitrogens of arginine. Chromatographic analysis showed that the other product of the L-arginine synthesis of NO/sub 2//sup -//NO/sub 3//sup -/ was L-citrulline. The role of the respiratory burst in NO/sub 2//sup -//NO/sub 3//sup -/ synthesis was examined using the macrophage cell lines J774.16 and J774 C3C. Both cell lines synthesized similar amounts of NO/sub 2//sup -//NO/sub 3//sup -/. However, J774 C3C cells do not produce superoxide and hence do not exhibit the respiratory burst. Additional experiments also ruled out the involvement of the respiratory burst in NO/sub 2//sup -//NO/sub 3//sup -/ synthesis.

  19. Comparison of endogenous metabolism during long-term anaerobic starvation of nitrite/nitrate cultivated denitrifying phosphorus removal sludges.

    PubMed

    Wang, Yayi; Zhou, Shuai; Wang, Hong; Ye, Liu; Qin, Jian; Lin, Ximao

    2015-01-01

    Denitrifying phosphorus removal (DPR) by denitrifying phosphorus-accumulating organisms (DPAOs) is a promising approach for reducing energy and carbon usage. However, influent fluctuations or interruptions frequently expose the DPAOs biomass to starvation conditions, reducing biomass activity and amount, and ultimately degrading the performance of DPR. Therefore, a better understanding of the endogenous metabolism and recovery ability of DPAOs is urgently required. In the present study, anaerobic starvation (12 days) and recovery were investigated in nitrite- and nitrate-cultivated DPAOs at 20 ± 1 °C. The cell decay rates in nitrite-DPAOs sludges from the end of the anaerobic and aerobic phase were 0.008 day?¹ and 0.007 day?¹, respectively, being 64% and 68% lower than those of nitrate-DPAOs sludges. Nitrite-DPAOs sludges also recovered more rapidly than nitrate-DPAOs sludge after 12 days of starvation. The maintenance energy of nitrite-DPAOs sludges from the end of the anaerobic and aerobic phase were approximately 31% and 34% lower, respectively, than those of nitrate-DPAOs sludges. Glycogen and polyphosphate (poly-P) sequentially served as the main maintenance energy sources in both nitrite-and nitrate-DPAOs sludges. However, the transformation pathway of the intracellular polymers during starvation differed between them. Nitrate-DPAOs sludge used extracellular polymeric substances (EPS) (mainly polysaccharides) as an additional maintenance energy source during the first 3 days of starvation. During this phase, EPS appeared to contribute to 19-27% of the ATP production in nitrate-DPAOs, but considerably less to the cell maintenance of nitrite-DPAOs. The high resistance of nitrite-DPAOs to starvation might be attributable to frequent short-term starvation and exposure to toxic substances such as nitrite/free nitrous acids in the parent nitrite-fed reactor. The strong resistance of nitrite-DPAOs sludge to anaerobic starvation may be exploited in P removal by shortcut denitrification processes. PMID:25462744

  20. Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters.

    PubMed

    Beaton, Alexander D; Cardwell, Christopher L; Thomas, Rupert S; Sieben, Vincent J; Legiret, François-Eric; Waugh, Edward M; Statham, Peter J; Mowlem, Matthew C; Morgan, Hywel

    2012-09-01

    Microfluidic technology permits the miniaturization of chemical analytical methods that are traditionally undertaken using benchtop equipment in the laboratory environment. When applied to environmental monitoring, these "lab-on-chip" systems could allow high-performance chemical analysis methods to be performed in situ over distributed sensor networks with large numbers of measurement nodes. Here we present the first of a new generation of microfluidic chemical analysis systems with sufficient analytical performance and robustness for deployment in natural waters. The system detects nitrate and nitrite (up to 350 ?M, 21.7 mg/L as NO(3)(-)) with a limit of detection (LOD) of 0.025 ?M for nitrate (0.0016 mg/L as NO(3)(-)) and 0.02 ?M for nitrite (0.00092 mg/L as NO(2)(-)). This performance is suitable for almost all natural waters (apart from the oligotrophic open ocean), and the device was deployed in an estuarine environment (Southampton Water) to monitor nitrate+nitrite concentrations in waters of varying salinity. The system was able to track changes in the nitrate-salinity relationship of estuarine waters due to increased river flow after a period of high rainfall. Laboratory characterization and deployment data are presented, demonstrating the ability of the system to acquire data with high temporal resolution. PMID:22835223

  1. Quantification of nitrite and nitrate in seawater by triethyloxonium tetrafluoroborate derivatization-headspace SPME GC-MS.

    PubMed

    Pagliano, E; Onor, M; Pitzalis, E; Mester, Z; Sturgeon, R E; D'Ulivo, A

    2011-10-15

    Triethyloxonium tetrafluoroborate derivatization combined with direct headspace (HS) or SPME-gas chromatography-mass spectrometry (GC-MS) is proposed here for the simultaneous determination of nitrite and nitrate in seawater at micromolar level after conversion to their corresponding volatile ethyl-esters (EtO-NO and EtO-NO(2)). Isotopically enriched nitrite [(15)N] and nitrate [(15)N] are employed as internal standards and for quantification purposes. HS-GC-MS provided instrumental detection limits of 0.07 ?M NO(2)(-) and 2 ?M NO(3)(-). Validation of the methodology was achieved by determination of nitrite and nitrate in MOOS-1 (Seawater Certified Reference Material for Nutrients, NRC Canada), yielding results in excellent agreement with certified values. All critical aspects connected with the potential inter-conversion between nitrite and nitrate (less than 10%) were evaluated and corrected for by the use of the isotopically enriched internal standard. PMID:21962676

  2. Comparative ease of separation of mixtures of selected nuisance anions (nitrate, nitrite, sulfate, phosphate) using Octolig.

    PubMed

    Stull, Frederick W; Martin, Dean F

    2009-12-01

    Mixtures of sodium salts of nitrate, nitrite, sulfate, and phosphate were prepared in relative amounts present in atomic waste containers with a view to effect removal by chromatography over Octolig, commercially available material with polyethylenediamine moieties covalently attached to high-surface area silica gel. Separation was attempted using aqueous solutions and column chromatography with Octolig. It is presumed that this material is capable of removing the anions by means of encapsulation. Matrix effects were tested by varying the relative concentrations. Rates of elution were varied 5-fold without adverse effect. The order of selectivity was found to be phosphate > sulfate > nitrite > nitrate through experiments altering the volume and relative concentrations. Quantitative removal of all anions (375 ppm of each) could be achieved given reasonable volumes of Octolig. An effort at regeneration by altering the pH of the eluant indicated the stability of the encapsulated anions. PMID:20183512

  3. Long-term evaluation of a spectral sensor for nitrite and nitrate

    Microsoft Academic Search

    L. Rieger; G. Langergraber; D. Kaelin; H. Siegrist; PA Vanrolleghem

    2008-01-01

    A spectral in-situ UV sensor was investigated to measure nitrite and nitrate concentrations in the effluent of the EAWAG pilot-scale plant. The sensor was used with a calibration that was based on data from another WWTP and was operated over a period of 1.5 years. The results showed constant accuracy although the sensor was operated with minimal maintenance (manual cleaning

  4. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics

    Microsoft Academic Search

    Jon O. Lundberg; Eddie Weitzberg; Mark T. Gladwin

    2008-01-01

    The inorganic anions nitrate (NO3?) and nitrite (NO2?) were previously thought to be inert end products of endogenous nitric oxide (NO) metabolism. However, recent studies show that these supposedly inert anions can be recycled in vivo to form NO, representing an important alternative source of NO to the classical l-arginine–NO-synthase pathway, in particular in hypoxic states. This Review discusses the

  5. DXRD studies of sodium nickel ferrocyanide reactions with equimolar nitrate\\/nitrite salts

    Microsoft Academic Search

    Joseph N. Dodds; William J. Thomson

    1994-01-01

    Dynamic X-ray diffraction (DXRD) has been used to identify and quantify the solid-state reactions that take place between sodium nickel ferrocyanide, Na[sub 2]NiFe(CN)[sub 6], and equimolar concentrations of sodium nitrate\\/nitrite, reactions of interest to the continued environmental safety of certain waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work that indicated that

  6. Nitric oxide in biological fluids: analysis of nitrite and nitrate by high-performance ion chromatography

    Microsoft Academic Search

    Steven A. Everett; Madeleine F. Dennis; Gillian M. Tozer; Vivien E. Prise; Peter Wardman; Michael R. L. Stratford

    1995-01-01

    The analysis of nitric oxide-derived nitrite and nitrate ions in biological fluids represents a proven strategy for determining nitric oxide participation in a diverse range of physiological and pathophysiological processes in vivo. In this article we describe a versatile method for the simultaneous measurement of NO2? and NO3? anions in both plasma and isolated tumour models based on anion-exchange chromatography

  7. The nitrate to ammonia and ceramic (NAC) process -- a newly developed low-temperature technology

    Microsoft Academic Search

    A. J. Mattus; D. D. Lee

    1993-01-01

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new low-temperature (50-60C) process for converting nitrate to ammonia and ceramic (NAC), showed that between 90 and 99% of the nitrate at Hanford can be readily converted to ammonia. Aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an alumina-silica-based ceramic solid. The

  8. Plasma nitrate/nitrite removal by peritoneal dialysis might predispose infants with low blood pressure to cerebral ischaemia

    PubMed Central

    Carlström, Mattias; Wide, Katarina; Lundvall, Mikael; Cananau, Carmen; Svensson, Anders; Lundberg, Jon O.; Bárány, Peter; Krmar, Rafael T.

    2015-01-01

    The underlying pathogenic mechanisms of neurological complications in infants undergoing peritoneal dialysis (PD) are poorly understood. We report on four male infants treated with PD who developed symptomatic cerebral ischaemia. Blood pressure (BP) levels were low both before the event and at presentation. In two patients, we observed that the removal of nitrate and nitrite by PD could have impaired the nitrate/nitrite–-nitrite oxide (NO) pathway, a system that generates NO independently of NO synthase. Our observation suggests that low BP and reduced NO bioavailability puts infants treated with PD at risk for impaired cerebral blood flow and consequently for brain ischaemia. PMID:25815180

  9. Phenol nitration upon oxidation of nitrite by Mn(III,IV) (hydr)oxides.

    PubMed

    Vione, Davide; Maurino, Valter; Minero, Claudio; Pelizzetti, Ezio

    2004-05-01

    An interesting aspect of the chemistry of nitrite is the possibility for this compound to interact with other environmental factors and many oxidising species, which results in the oxidation of nitrite to nitrogen dioxide. This is a potentially interesting process that can lead to the formation of nitroaromatic compounds in the environment. In previous papers we have shown that nitrite can interact with dissolved Fe(III) and nitrate under irradiation, Fenton and heterogeneous photo-Fenton reagents, and semiconductor oxides such as TiO2, alpha-Fe2O3, and beta-FeOOH under irradiation. This paper reports on the interaction between nitrite/nitrous acid and the Mn(III,IV) (hydr)oxides beta-MnO2 and gamma-MnOOH, both in neutral solution under irradiation and in acidic conditions in the dark. beta-MnO2 and gamma-MnOOH originate from the oxidation of Mn(II) and play a key role in the redox cycling of manganese in the environment. These Mn(III,IV) (hydr)oxides show some photocatalytic activity, and they can act as thermal oxidants at acidic pH. The photoinduced oxidation of nitrite and the thermal oxidation of nitrous acid by Mn(III,IV) (hydr)oxides yield nitrogen dioxide and lead to the formation of nitrophenols in the presence of phenol. These processes can take place at the water-sediment or water-colloid interface in natural waters and on the surface of atmospheric particulate. Furthermore, the phenol/gamma-MnOOH/HNO2 system in dark acidic solution is an interesting model due to the formation of phenoxyl radical upon phenol monoelectronic oxidation by gamma-MnOOH. The kinetics of nitrophenol generation under such conditions indicates that phenol nitration is unlikely to take place upon reaction between phenoxyl and *NO2 and suggests a solution to a literature debate on the subject. PMID:15051364

  10. Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite.

    PubMed

    Hubert, Casey; Nemati, Mehdi; Jenneman, Gary; Voordouw, Gerrit

    2003-01-01

    Produced water from the Coleville oil field in Saskatchewan, Canada was used to inoculate continuous up-flow packed-bed bioreactors. When 7.8 mM sulfate and 25 mM lactate were present in the in-flowing medium, H(2)S production (souring) by sulfate-reducing bacteria (SRB) was prevented by addition of 17.5 mM nitrate or 20 mM nitrite. Changing the sulfate or lactate concentration of the in-flowing medium indicated that the concentrations of nitrate or nitrite required for containment of souring decreased proportionally with a lowered concentration of the electron donor lactate, while the sulfate concentration of the medium had no effect. Microbial communities were dominated by SRB. Nitrate addition did not give rise to changes in community composition, indicating that lactate oxidation and H(2)S removal were caused by the combined action of SRB and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Apparently the nitrite concentrations formed by these NR-SOB did not inhibit the SRB sufficiently to cause community shifts. In contrast, significant community shifts were observed upon direct addition of high concentrations (20 mM) of nitrite. Strains NO3A and NO2B, two newly isolated, nitrate-reducing bacteria (NRB) emerged as major community members. These were found to belong to the epsilon-division of the Proteobacteria, to be most closely related to Campylobacter lari, and to oxidize lactate with nitrate or nitrite as the electron acceptor. Thus the mechanism of microbial H(2)S removal in up-flow packed-bed bioreactors depended on whether nitrate (SRB/NR-SOB) or nitrite (SRB/NR-SOB as well as NRB) was used. However, the amount of nitrate or nitrite needed to completely remove H(2)S was dictated by the electron donor (lactate) concentration, irrespective of mechanism. PMID:12675569

  11. Inhibition of nitrate uptake by ammonia in a blue-green alga, Anabaena cylindrica

    Microsoft Academic Search

    Masayuki Ohmori; Kazuko Ohmori; Heinrich Strotmann

    1977-01-01

    Ammonia at concentrations above 1×10-5 M inhibits uptake of nitrate in the nitrogen-fixing blue-green alga, Anabaena cylindrica. This inhibition takes place both in the light and in the dark. The rate of nitrate uptake is stimulated by light. Addition of relatively high concentrations of nitrate (1–10 mM) reversibly inhibits ammonia uptake. FCCP, an uncoupler of phosphorylation, inhibits both nitrate and

  12. Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum

    Microsoft Academic Search

    Patricia Jargeat; David Rekangalt; Marie-Christine Verner; Gilles Gay; Jean-Claude Debaud; Roland Marmeisse; Laurence Fraissinet-Tachet

    2003-01-01

    Symbiotic ectomycorrhizal fungi contribute to the nitrogen nutrition of their host-plants but little information is available on the molecular control of their nitrogen metabolism. We cloned and characterised genes encoding a nitrite reductase and a nitrate transporter in the ectomycorrhizal basidiomycete Hebeloma cylindrosporum. These two genes are divergently transcribed and linked to a previously cloned nitrate reductase gene, thus demonstrating

  13. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash

    Microsoft Academic Search

    Mirco Govoni; Emmelie Å. Jansson; Eddie Weitzberg; Jon O. Lundberg

    2008-01-01

    Recent studies surprisingly show that dietary inorganic nitrate, abundant in vegetables, can be metabolized in vivo to form nitrite and then bioactive nitric oxide. A reduction in blood pressure was recently noted in healthy volunteers after dietary supplementation with nitrate; an effect consistent with formation of vasodilatory nitric oxide. Oral bacteria have been suggested to play a role in bioactivation

  14. The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis.

    PubMed

    Malm, Sven; Tiffert, Yvonne; Micklinghoff, Julia; Schultze, Sonja; Joost, Insa; Weber, Isabel; Horst, Sarah; Ackermann, Birgit; Schmidt, Mascha; Wohlleben, Wolfgang; Ehlers, Stefan; Geffers, Robert; Reuther, Jens; Bange, Franz-Christoph

    2009-04-01

    Mycobacterium tuberculosis can utilize various nutrients including nitrate as a source of nitrogen. Assimilation of nitrate requires the reduction of nitrate via nitrite to ammonium, which is then incorporated into metabolic pathways. This study was undertaken to define the molecular mechanism of nitrate assimilation in M. tuberculosis. Homologues to a narGHJI-encoded nitrate reductase and a nirBD-encoded nitrite reductase have been found on the chromosome of M. tuberculosis. Previous studies have implied a role for NarGHJI in nitrate respiration rather than nitrate assimilation. Here, we show that a narG mutant of M. tuberculosis failed to grow on nitrate. A nirB mutant of M. tuberculosis failed to grow on both nitrate and nitrite. Mutant strains of Mycobacterium smegmatis mc(2)155 that are unable to grow on nitrate were isolated. The mutants were rescued by screening a cosmid library from M. tuberculosis, and a gene with homology to the response regulator gene glnR of Streptomyces coelicolor was identified. A DeltaglnR mutant of M. tuberculosis was generated, which also failed to grow on nitrate, but regained its ability to utilize nitrate when nirBD was expressed from a plasmid, suggesting a role of GlnR in regulating nirBD expression. A specific binding site for GlnR within the nirB promoter was identified and confirmed by electrophoretic mobility shift assay using purified recombinant GlnR. Semiquantitative reverse transcription PCR, as well as microarray analysis, demonstrated upregulation of nirBD expression in response to GlnR under nitrogen-limiting conditions. In summary, we conclude that NarGHJI and NirBD of M. tuberculosis mediate the assimilatory reduction of nitrate and nitrite, respectively, and that GlnR acts as a transcriptional activator of nirBD. PMID:19332834

  15. Promotion of seed germination by nitrate, nitrite, hydroxylamine, and ammonium salts.

    PubMed

    Hendricks, S B; Taylorson, R B

    1974-09-01

    Action and uptake of azides, nitrates, nitrites, hydroxylamines, and ammonium salts were measured on germination of Amaranthus albus, Lactuca sativa, Phleum pratense, Barbarea vulgaris, B. verna, and Setaria glauca seeds. Nitrate and nitrite reductase activities were measured in vivo for each of these kinds of seeds. Activities were measured in vitro for catalase, peroxidase, glycolate oxidase, and pyridine nucleotide quinone reductase on extracts of A. albus and L. sativa seeds before and after germination. The enzymic activities measured and the responsiveness of the haemproteins to inhibition by the several compounds indicate that nitrites, azides, and hydroxylamines promote seed germination by inhibition of H(2)O(2) decomposition by catalase. Ammonium salts showed pronounced promotive activity only for B. verna and B. vulgaris seeds, for which they served as metabolic substrates.The promotion of germination is thought to depend on coupling of peroxidase action to NADPH oxidation, which can regulate the pentose pathway of d-glucose 6-phosphate use. Pyridine nucleotide quinone reductase is the possible coupling enzyme. This enzyme and others required for the action are present in the seeds before imbibition of water. PMID:16658878

  16. Promotion of Seed Germination by Nitrate, Nitrite, Hydroxylamine, and Ammonium Salts 1

    PubMed Central

    Hendricks, S. B.; Taylorson, R. B.

    1974-01-01

    Action and uptake of azides, nitrates, nitrites, hydroxylamines, and ammonium salts were measured on germination of Amaranthus albus, Lactuca sativa, Phleum pratense, Barbarea vulgaris, B. verna, and Setaria glauca seeds. Nitrate and nitrite reductase activities were measured in vivo for each of these kinds of seeds. Activities were measured in vitro for catalase, peroxidase, glycolate oxidase, and pyridine nucleotide quinone reductase on extracts of A. albus and L. sativa seeds before and after germination. The enzymic activities measured and the responsiveness of the haemproteins to inhibition by the several compounds indicate that nitrites, azides, and hydroxylamines promote seed germination by inhibition of H2O2 decomposition by catalase. Ammonium salts showed pronounced promotive activity only for B. verna and B. vulgaris seeds, for which they served as metabolic substrates. The promotion of germination is thought to depend on coupling of peroxidase action to NADPH oxidation, which can regulate the pentose pathway of d-glucose 6-phosphate use. Pyridine nucleotide quinone reductase is the possible coupling enzyme. This enzyme and others required for the action are present in the seeds before imbibition of water. PMID:16658878

  17. NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiella oxytoca (pneumoniae) M5al.

    PubMed

    Wu, Q; Stewart, V

    1998-03-01

    Klebsiella oxytoca can use nitrate and nitrite as sole nitrogen sources. The enzymes required for nitrate and nitrite assimilation are encoded by the nasFEDCBA operon. We report here the complete nasFED sequence. Sequence comparisons indicate that the nasFED genes encode components of a conventional periplasmic binding protein-dependent transport system consisting of a periplasmic binding protein (NasF), a homodimeric intrinsic membrane protein (NasE), and a homodimeric ATP-binding cassette (ABC) protein (NasD). The NasF protein and the related NrtA and CmpA proteins of cyanobacteria contain leader (signal) sequences with the double-arginine motif that is hypothesized to direct prefolded proteins to an alternate protein export pathway. The NasE protein and the related NrtB and CmpB proteins of cyanobacteria contain unusual variants of the EAA loop sequence that defines membrane-intrinsic proteins of ABC transporters. To characterize nitrate and nitrite transport, we constructed in-frame nonpolar deletions of the chromosomal nasFED genes. Growth tests coupled with nitrate and nitrite uptake assays revealed that the nasFED genes are essential for nitrate transport and participate in nitrite transport as well. Interestingly, the delta nasF strain exhibited leaky phenotypes, particularly at elevated nitrate concentrations, suggesting that the NasED proteins are not fully dependent on the NasF protein. PMID:9495773

  18. Chemical reactivity of nitrates and nitrites towards TBP and potassium nickel ferrocyanide between 30 and 300 deg

    SciTech Connect

    Lambertin, D.; Chartier, D.; Joussot-Dubien, C. [CEA Valrho, DTCD/SPDE/L2ED, 30 - Bagnols sur Ceze (France)

    2007-07-01

    Since the late sixties, bitumen has been widely used by the nuclear industry as a matrix for the immobilization of low- and intermediate level radioactive waste originating mainly from the nuclear activities: precipitation or evaporator concentrates, ion exchange resins, incinerator ashes, and filter materials. Depending on bitumen and operating conditions, bituminization of radioactive waste can be operated between 130 and 180 deg. C, so chemical reaction can be induced with nitrate or nitrite towards elements contained in waste (TPB, potassium nickel ferrocyanide and cobalt compound) and bitumen. These reactions are mainly exothermic this is the reason why the enthalpy reaction and their temperature of initiation have to be determined independently of their concentration in waste. In this work, we have studied by Calvet Calorimetry at 0.1 deg. C/min heating rates, the behaviour of chemical elements especially oxido-reduction couples that can react at a temperature range 100- 300 deg. C (Nitrate/PPFeNi, Nitrite/PPFeNi, Nitrate/TBP, Nitrite/TBP, Nitrate/bitumen and Nitrite/bitumen). The initial temperature reaction of nitrates or nitrites towards potassium nickel ferrocyanide (PPFeNi) has been studied and is equal respectively to 225 deg. C and 175 deg. C. Because of the large scale temperature reaction of nitrate and PPFeNi, enthalpy reaction can not be calculated, although enthalpy reaction of nitrite and PPFeNi is equal to 270 kJ/mol of nitrite. Sodium Nitrate and TBP behaviour has been investigated, and an exothermic reaction at 135 deg. C until 250 deg. C is evidenced. The exothermic energy reaction is a function of TBP concentration and the enthalpy reaction has been determined. (authors)

  19. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    PubMed Central

    Venterea, Rodney T.; Clough, Timothy J.; Coulter, Jeffrey A.; Breuillin-Sessoms, Florence

    2015-01-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted ‘hot spots’ and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils (‘L’ and ‘W’) having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3?) levels than soil L, but was more resistant to nitrite (NO2?) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2? oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2? was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2?. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2? oxidization leading to greater NO2? levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2?, N2O and nitrifier genes, and the first to show how ASC can regulate NO2? levels and N2O production. PMID:26179972

  20. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production.

    PubMed

    Venterea, Rodney T; Clough, Timothy J; Coulter, Jeffrey A; Breuillin-Sessoms, Florence

    2015-01-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4(+)) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3(-)) levels than soil L, but was more resistant to nitrite (NO2(-)) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2(-) oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2(-) was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2(-). Differences between soils were explained by greater slNH3 in soil L which inhibited NO2(-) oxidization leading to greater NO2(-) levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2(-), N2O and nitrifier genes, and the first to show how ASC can regulate NO2(-) levels and N2O production. PMID:26179972

  1. Endogenous levels of nitrites and nitrates in wide consumption foodstuffs: Results of five years of official controls and monitoring.

    PubMed

    Iammarino, Marco; Di Taranto, Aurelia; Cristino, Marianna

    2013-10-15

    The massive introduction of nitrogen fertilisers, necessary to maximise the global food production, has brought about an increase of the residual amounts of nitrites and nitrates in the products. Notoriously, these compounds may exercise toxic effects. In this work the results obtained from 5years of official controls and monitoring focused on tracing quantifiable amounts of nitrites and nitrates in 1785 samples of meat, dairy, fish products and leafy vegetables are reported. A widespread presence of nitrates at low concentrations in foodstuffs was verified. High concentrations of nitrates were registered in some leafy vegetables and mussels samples, while high nitrites concentrations were registered in some spinach samples. The results confirmed the necessity to develop most controls and suggest the introduction of new legal limits related to some combinations contaminant/matrix. Such new limits may fill legislative gaps that may cause wrong interpretations of the results obtained during official controls. PMID:23692764

  2. Enriched Nitrate and Depleted Nitrite Isotopic Signatures in the OMZ off Northern Chile

    NASA Astrophysics Data System (ADS)

    Bristow, L. A.; Altabet, M. A.; Stewart, F.; Delong, E.; Ulloa, O.

    2010-12-01

    The vast majority of fixed nitrogen loss from the ocean’s water-column occurs in the O2 minimum zones of the Arabian Sea and the eastern tropical North and South Pacific (ETNP and ETSP). In these regions, subsurface O2 concentrations reach suboxic levels that favor microbial production of N2 gas from combined N sources via heterotrophic denitrification and anammox. One of the most intense oxygen minimum zones (OMZ) is found in the ETSP, especially off northern Chile, where O2 depleted waters can reach into the photic zone as a result of coastal upwelling and a narrow continental shelf. Despite the importance of these regions there still remains much uncertainty about N cycling in these regions. We present ?15N and ?18O isotope data for nitrate and ?15N data for nitrite, which along with corroborating relative gene abundances from metagenomes provide insight into N-cycling processes both within and above the OMZ. Depth profiles showed some of the highest ?15N nitrate values seen to date in an OMZ (up to 32‰), which has implications for tracing denitrification related biogeochemical signals throughout the Pacific and for downcore recording of past changes in OMZ intensity. Co-occurring nitrite ?15N in the OMZ fell in the range -6 to -20‰, resulting in a ?15N offset between co-occurring nitrate and nitrite in the range 30 to 40‰. This offset is greater than that expected from heterotrophic denitrification alone, implying either a larger isotope effect for the first enzymatic step in denitrification (NO3- reduction to NO2-) than previously estimated from field and culture studies or, more likely, that additional processes are enhancing this separation. NO3- consumption by heterotrophic denitrification has been shown to increase both ?15N and ?18O of nitrate in a 1:1 ratio. The slope for samples in the OMZ off northern Chile show a clear but surprisingly negative deviation from the expected slope of 1, again suggesting additional processes are occurring in this region of the water column. A number of processes including anammox, organic matter remineralization, and nitrification will be discussed in an attempt to explain these deviations. Complex nitrite and nitrate interactions will also be discussed with respect to the surface waters and the oxycline.

  3. Introduction Current methods to determine nitrate (NO3

    E-print Network

    Sigman, Daniel M.

    205 Introduction Current methods to determine nitrate (NO3 ­ ) nitrogen (N) and oxygen (O) isotope of nitrate versus that of nitrite in a given sample. In the case of the ammonia distillation (Cline and Kaplan 1975) and ammonia diffusion (Sigman et al. 1997) methods for nitrate N isotope analysis, both

  4. The study of abiotic reduction of nitrate and nitrite in Boom Clay

    NASA Astrophysics Data System (ADS)

    Mariën, A.; Bleyen, N.; Aerts, S.; Valcke, E.

    In Belgium, Boom Clay is studied as a reference host rock for the geological disposal of high-level and intermediate-level radioactive waste. Compatibility studies at the SCK•CEN aim at investigating a perturbation of the capacity of Boom Clay to retard the migration of radionuclides to the biosphere, after disposal of Eurobitum bituminized radioactive waste in the clay ( Valcke et al., 2009; Aertsens et al., 2009; Bleyen et al., 2010). One of the geo-chemical perturbations is the possible oxidation of Boom Clay by the large amounts of nitrate that will be released by Eurobitum. A more oxidised Boom Clay could have a lower reducing capacity towards redox sensitive radionuclides, possibly enhancing their migration. As the conditions in the Boom Clay formation around a disposal gallery for Eurobitum are far from optimal for the growth of prokaryotes (limited space in the far-field, high pH in the near-field, gamma radiation by the waste during the first ?300 years (effect limited to the primary and secondary waste package)), the impact of microbially mediated reduction of nitrate and nitrite is unclear. Therefore, batch tests are performed at the SCK•CEN to study whether nitrate and nitrite can directly oxidise the main redoxactive components of Boom Clay (dissolved organic matter, kerogen, pyrite) without the mediation of prokaryotes. In a first series of batch tests, which are reported in this paper, the activity of denitrifying and nitrate reducing prokaryotes was inhibited by the addition of NaN 3. NaN 3 revealed to be an efficient inhibitor for these prokaryotes without affecting considerably the geochemistry of Boom Clay and/or Boom Clay pore water. Neither in batch tests with the Boom Clay slurries (with NaNO 3 (0.1 and 1 M) or NaNO 2 (0.1 M)) and with Boom Clay water (with 0.05 and 0.2 M NaNO 3) a pure chemical nitrate or nitrite reduction was observed after respectively 3, 7 and 17 weeks and 1 year (Boom Clay slurries) and about 2 years (Boom Clay water). Furthermore, batch tests in which bacterial activity was allowed, demonstrated that the Boom Clay natural organic matter is a poor carbon source for (denitrifying and nitrate reducing) prokaryotes.

  5. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide

    Microsoft Academic Search

    D. J. Stuehr; M. A. Marletta

    1985-01-01

    Escherichia coli lipopolysaccharide (LPS)-induced nitrate biosynthesis was studied in LPS-sensitive C3H\\/He and LPS-resistant C3H\\/HeJ mice. Intraperitoneal injection of 15 ..mu..g of LPS led to a temporary 5- to 6-fold increase in blood nitrate concentration in the C3H\\/He strain. Levels of nitrate excreted in the urine were also increased. In contrast, no increase was observed in the C3H\\/HeJ strain with LPS

  6. Electrocatalytic reduction of nitrite and nitric oxide to ammonia with iron-substituted polyoxotungstates

    SciTech Connect

    Toth, J.E.; Anson, F.C. (California Institute of Technology, Pasadena (USA))

    1989-03-29

    Heteropolytungstates in which one of the positions normally occupied by a tungsten cation is occupied instead by an iron cation are shown to be catalysts for the electroreduction of nitrite to ammonia. The lacunary derivatives in which the empty tungsten site is unoccupied show no catalytic activity. The catalytic mechanism involves the intermediate formation of a nitrosyl complex of the Fe(II) form of the catalyst. The pH dependence of the rate of formation of the nitrosyl complex shows that nitrous acid is the reactive form of nitrite between pH 2 and 8. The catalyzed reduction does not produce hydroxylamine as an intermediate and appears to depend upon the ability of the multiply reduced heteropolytungstates to deliver electrons to the NO group bound to the iron center in a concerted, multiple-electron step. The iron-substituted heteropolytungstates are not degraded by repeated cycling between their oxidized and reduced states. A particularly valuable feature of the heteropolytungstate is the ease with which the formal potentials of the several redox couples they exhibit may be shifted by changing the identity of the central heteroatom. Exploitation of this feature provides diagnostic information that can be decisive in establishing the mechanism of electrocatalytic processes.

  7. [Changes in the levels of nitrates and nitrites in vegetables and vegetable products and vitamin C in white sauerkraut].

    PubMed

    Nabrzyski, M; Gajewska, R; Bossy, G

    1989-01-01

    The authors demonstrated that during souring nitrates disappear from the white sauerkraut as a mean rate of 42% after 7 days and 23% after 30 days (souring in spring 1987) and by 29% and 77% of the initial level after 7, 30 and 90 days (souring in winter-spring period 1988). After 7 days the level of l-ascorbic acid rose from a mean value of 52 mg/kg to 300 mg/kg, and after 90 days this level fell to one-half of the initial value. No significant changes were noted in the content of nitrites. A decrease of nitrates and increase of nitrite content was found in freshly obtained carrot juice (with a juice extractor). The effect of time and temperature of juice storage on the concent of nitrates and nitrites was studied. PMID:2634298

  8. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) or nitrate to ammonia and glass (NAG) process: Phase 2 report

    Microsoft Academic Search

    A. J. Mattus; J. F. Jr. Walker; E. L. Youngblood; L. L. Farr; D. D. Lee; T. A. Dillow; T. N. Tiegs

    1994-01-01

    Continuing benchtop studies using Hanford single-shell tank (SST) simulants and actual Oak Ridge National Laboratory (ORNL) low-level waste (LLW), employing a new denitration process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 and 99% of the nitrate can be readily converted to gaseous ammonia. In this process, aluminum powders can be used to convert

  9. Nitrite- and Nitrate-Dependent Methanotrophs - Environmental Detection and Relevance in Freshwater Ecosystems

    NASA Astrophysics Data System (ADS)

    Ettwig, K. F.

    2014-12-01

    Humans continue to have an enormous impact on global C and N cycles. While a clear stimulation of methane emissions through human activities is evident, the role of also increasingly released nitrogenous compounds as electron acceptors for microbial methane oxidation is not well constrained. We have developed diverse methods for environmental detection of nitrate(NO3-)- and - predominantly - nitrite(NO2-)-dependent methanotrophs, which have been applied to several freshwater environments. In contrast to most metabolically flexible heterotrophic denitrifiers, the microorganisms responsible for methane-dependent nitrate/nitrite reduction seem to be specialized to use methane only, grow slowly and employ pathways different from each other and from model organisms, which necessitate new approaches for the assessment of their environmental relevance. Nitrite-dependent methane oxidation is carried out by bacteria of the NC10 phylum, whereas nitrate-dependent methane oxidizers are close relatives of methanogenic archaea and sulfate-dependent anaerobic methanotrophs (ANME-2). Laboratory enrichment cultures of the nitrite-reducing methanotroph Methylomirabilis oxyfera (NC10 phylum) have formed the basis for its genetic and physiological characterization and the development of several independent methods for its sensitive detection. M. oxyfera differs from all known microorganisms by encoding an incomplete denitrification pathway, in which the last 2 steps, the reduction of NO via N2O to N2, apparently is replaced by the dismutation of NO to N2 and O2. The intracellularly produced O2 is used for methane oxidation via a methane monooxygenase, analogously to the phylogenetically unrelated proteobacterial methanotrophs. But unlike in proteobacteria, C is not assimilated from methane, but rather CO2, with important consequences for the interpretation of environmental isotope labelling studies. In addition, M. oxyfera is characterized by a distinct PLFA profile, including methylated lipids so far not found in any other organism. Case studies using specific primers together with lipid profiles and 13C-labelling in peatlands and other freshwater environments illustrate that the newly developed approaches and biomarkers enable the demonstration of M. oxyfera's role as a methane sink.

  10. Can summary nitrite+nitrate content serve as an indicator of NO synthesis intensity in body tissues?

    PubMed

    Titov, V Yu; Ivanova, A V; Petrov, V A; Serezhenkov, V A; Mikoyan, V D; Vanin, A F; Osipov, A N

    2012-10-01

    Studies with the use of a highly specific enzymatic sensor demonstrated that, contrary to the common opinion, normally nitrate is in fact not present in the most important physiological fluids. NO metabolites in the amniotic fluid and semen are mainly presented by NO donor compounds. Therefore, the intensity of NO synthesis can be evaluated by the total content of all its metabolites, but not by the widely used summary nitrite+nitrate content. PMID:23113298

  11. Electron transport-linked proton translocation at nitrite reduction in Campylobacter sputorum subspecies bubulus

    Microsoft Academic Search

    Wytske de Vries; H. G. D. Niekus; Hugerien van Berchum; A. H. Stouthamer

    1982-01-01

    Campylobacter sputorum subspeciesbubulus contains a membrane-bound nitrite reductase which catalyses the six-electron reduction of nitrite to ammonia. Formate andL-lactate are used as hydrogen donors. Cells ofC. sputorum grown with nitrate or nitrite contain cytochromes of theb-andc-type and a carbon monoxide-binding cytochromec. In addition, a special membrane-bound carbon monoxide-binding pigment is found. Nitrite reduction with formate orL-lactate as a hydrogen donor

  12. Easy oxidation and nitration of human myoglobin by nitrite and hydrogen peroxide.

    PubMed

    Nicolis, Stefania; Pennati, Andrea; Perani, Eleonora; Monzani, Enrico; Sanangelantoni, Anna Maria; Casella, Luigi

    2006-01-11

    The modification of human myoglobin (HMb) by reaction with nitrite and hydrogen peroxide has been investigated. This reaction is important because NO(2) (-) and H(2)O(2) are formed in vivo under conditions of oxidative and nitrative stress, where protein derivatization has been often observed. The abundance of HMb in tissues and in the heart makes it a potential source and target of reactive species generated in the body. The oxidant and nitrating species produced by HMb/H(2)O(2)/NO(2) (-) are nitrogen dioxide and peroxynitrite, which can react with exogenous substrates and endogenous protein residues. Tandem mass analysis of HMb modified by stoichiometric amounts of H(2)O(2) and NO(2) (-) indicated the presence of two endogenous derivatizations: oxidation of C110 to sulfinic acid (76 %) and nitration of Y103 to 3-nitrotyrosine (44 %). When higher concentrations of NO(2) (-) and H(2)O(2) were used, nitration of Y146 and of the heme were also observed. The two-dimensional gel-electrophoretic analysis of the modified HMbs showed spots more acidic than that of wild-type HMb, a result in agreement with the formation of sulfinic acid and nitrotyrosine residues. By contrast, the reaction showed no evidence for the formation of protein homodimers, as observed in the reaction of HMb with H(2)O(2) alone. Both HMb and the modified HMb are active in the H(2)O(2)/NO(2) (-)-dependent nitration of exogenous phenols. Their catalytic activity is quite similar and the endogenous modifications of HMb therefore have little effect on the reactivity of the protein intermediates. PMID:16216040

  13. Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios.

    PubMed

    Jenni, Sarina; Vlaeminck, Siegfried E; Morgenroth, Eberhard; Udert, Kai M

    2014-02-01

    The nitritation/anammox process has been mainly applied to high-strength nitrogenous wastewaters with very low biodegradable organic carbon content (<0.5 g COD?g N(-1)). However, several wastewaters have biodegradable organic carbon to nitrogen (COD/N) ratios between 0.5 and 1.7 g COD?g N(-1) and thus, contain elevated amounts of organic carbon but not enough for heterotrophic denitrification. In this study, the influence of elevated COD/N ratios was studied on a nitritation/anammox process with suspended sludge. In a step-wise manner, the influent COD/N ratio was increased to 1.4 g COD?g N(-1) by supplementing digester supernatant with acetate. The increasing availability of COD led to an increase of the nitrogen removal efficiency from around 85% with pure digester supernatant to >95% with added acetate while the nitrogen elimination rate stayed constant (275 ± 40 mg N?L(-1)?d(-1)). Anammox activity and abundance of anammox bacteria (AMX) were strongly correlated, and with increasing influent COD/N ratio both decreased steadily. At the same time, heterotrophic denitrification with nitrite and the activity of ammonia oxidising bacteria (AOB) gradually increased. Simultaneously, the sludge retention time (SRT) decreased significantly with increasing COD loading to about 15 d and reached critical values for the slowly growing AMX. When the SRT was increased by reducing biomass loss with the effluent, AMX activity and abundance started to rise again, while the AOB activity remained unaltered. Fluorescent in-situ hybridisation (FISH) showed that the initial AMX community shifted within only 40 d from a mixed AMX community to "Candidatus Brocadia fulgida" as the dominant AMX type with an influent COD/N ratio of 0.8 g COD?g N(-1) and higher. "Ca. Brocadia fulgida" is known to oxidise acetate, and its ability to outcompete other types of AMX indicates that AMX participated in acetate oxidation. In a later phase, glucose was added to the influent instead of acetate. The new substrate composition did not significantly influence the nitrogen removal nor the AMX activity, and "Ca. Brocadia fulgida" remained the dominant type of AMX. Overall, this study showed that AMX can coexist with heterotrophic bacteria at elevated influent COD/N ratios if a sufficiently high SRT is maintained. PMID:24355291

  14. Ammonia and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System

    Microsoft Academic Search

    John M. Regan; Gregory W. Harrington; Daniel R. Noguera

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite- oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA (rDNA))

  15. Development of estimates of dietary nitrates, nitrites, and nitrosamines for use with the short willet food frequency questionnaire

    PubMed Central

    Griesenbeck, John S; Steck, Michelle D; Huber, John C; Sharkey, Joseph R; Rene, Antonio A; Brender, Jean D

    2009-01-01

    Background Studies have suggested that nitrates, nitrites, and nitrosamines have an etiologic role in adverse pregnancy outcomes and chronic diseases such as cancer. Although an extensive body of literature exists on estimates of these compounds in foods, the extant data varies in quality, quantified estimates, and relevance. Methods We developed estimates of nitrates, nitrites, and nitrosamines for food items listed in the Short Willet Food Frequency Questionnaire (WFFQ) as adapted for use in the National Birth Defects Prevention Study. Multiple reference databases were searched for published literature reflecting nitrate, nitrite, and nitrosamine values in foods. Relevant published literature was reviewed; only publications reporting results for items listed on the WFFQ were selected for inclusion. The references selected were prioritized according to relevance to the U.S. population. Results Based on our estimates, vegetable products contain the highest levels of nitrate, contributing as much as 189 mg/serving. Meat and bean products contain the highest levels of nitrites with values up to 1.84 mg/serving. Alcohol, meat and dairy products contain the highest values of nitrosamines with a maximum value of 0.531 ?g/serving. The estimates of dietary nitrates, nitrites, and nitrosamines generated in this study are based on the published values currently available. Conclusion To our knowledge, these are the only estimates specifically designed for use with the adapted WFFQ and generated to represent food items available to the U.S. population. The estimates provided may be useful in other research studies, specifically in those exploring the relation between exposure to these compounds in foods and adverse health outcomes. PMID:19348679

  16. Identification and structure of the nasR gene encoding a nitrate- and nitrite-responsive positive regulator of nasFEDCBA (nitrate assimilation) operon expression in Klebsiella pneumoniae M5al.

    PubMed Central

    Goldman, B S; Lin, J T; Stewart, V

    1994-01-01

    Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilatory pathway. The structural genes for assimilatory nitrate and nitrite reductases together with genes necessary for nitrate transport form an operon, nasFEDCBA. Expression of the nasF operon is regulated both by general nitrogen control and also by nitrate or nitrite induction. We have identified a gene, nasR, that is necessary for nitrate and nitrite induction. The nasR gene, located immediately upstream of the nasFEDCBA operon, encodes a 44-kDa protein. The NasR protein shares carboxyl-terminal sequence similarity with the AmiR protein of Pseudomonas aeruginosa, the positive regulator of amiE (aliphatic amidase) gene expression. In addition, we present evidence that the nasF operon is not autogenously regulated. Images PMID:8051020

  17. DXRD studies of sodium nickel ferrocyanide reactions with equimolar nitrate/nitrite salts

    SciTech Connect

    Dodds, J.N.; Thomson, W.J. (Washington State Univ., Pullman, WA (United States))

    1994-05-01

    Dynamic X-ray diffraction (DXRD) has been used to identify and quantify the solid-state reactions that take place between sodium nickel ferrocyanide, Na[sub 2]NiFe(CN)[sub 6], and equimolar concentrations of sodium nitrate/nitrite, reactions of interest to the continued environmental safety of certain waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work that indicated that endothermic dehydration and melting of the nitrates take place prior to the occurrence of exothermic reactions, which begin about 300[degree]C. The DXRD results show that a major reaction set at these temperatures is the occurrence of a series reaction which produces sodium cyanate, NaCNO, as an intermediate in a mildly exothermic first step. In the presence of gaseous oxygen, NaCNO subsequently reacts exothermally and at a faster rate to form metal oxides. Measurements of the rate of this reaction are used to estimate the heat release, and comparisons of this with heat-transfer rates from a hypothetical [open quotes]hot spot[close quotes] show that, even in a worse case scenario, the heat-transfer rates are approximately eight times higher than the rate of energy release from the exothermic reactions. 20 refs., 7 figs., 3 tabs.

  18. Copper, zinc superoxide dismutase and nitrate reductase coimmobilized bienzymatic biosensor for the simultaneous determination of nitrite and nitrate.

    PubMed

    Madasamy, Thangamuthu; Pandiaraj, Manickam; Balamurugan, Murugesan; Bhargava, Kalpana; Sethy, Niroj Kumar; Karunakaran, Chandran

    2014-02-15

    This work presents a novel bienzymatic biosensor for the simultaneous determination of nitrite (NO2(-)) and nitrate (NO3(-)) ions using copper, zinc superoxide dismutase (SOD1) and nitrate reductase (NaR) coimmobilized on carbon nanotubes (CNT)-polypyrrole (PPy) nanocomposite modified platinum electrode. Morphological changes of the PPy and CNT modified electrodes were investigated using scanning electron microscopy. The electrochemical behavior of the bienzymatic electrode (NaR-SOD1-CNT-PPy-Pt) was characterized by cyclic voltammetry exhibiting quasi-reversible redox peak at +0.06 V and reversible redox peaks at -0.76 and -0.62V vs. Ag/AgCl, for the immobilized SOD1 and NaR respectively. The electrocatalytic activity of SOD1 towards NO2(-) oxidation observed at +0.8 V was linear from 100 nM to 1mM with a detection limit of 50 nM and sensitivity of 98.5 ± 1.7 nA µM(-1)cm(-2). Similarly, the coimmobilized NaR showed its electrocatalytic activity towards NO3(-) reduction at -0.76 V exhibiting linear response from 500 nM to 10mM NO3(-) with a detection limit of 200 nM and sensitivity of 84.5 ± 1.56 nA µM(-1)cm(-2). Further, the present bienzymatic biosensor coated with cellulose acetate membrane for the removal of non-specific proteins was used for the sensitive and selective determinations of NO2(-) and NO3(-) present in human plasma, whole blood and saliva samples. PMID:24055935

  19. Comparative induction of nitrate reductase by nitrate and nitrite in barley leaves

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Rosichan, J. L.; Huffaker, R. C.

    1987-01-01

    The comparative induction of nitrate reductase (NR) by ambient NO3- and NO2- as a function of influx, reduction (as NR was induced) and accumulation in detached leaves of 8-day-old barley (Hordeum vulgare L.) seedlings was determined. The dynamic interaction of NO3- influx, reduction and accumulation on NR induction was shown. The activity of NR, as it was induced, influenced its further induction by affecting the internal concentration of NO3-. As the ambient concentration of NO3- increased, the relative influences imposed by influx and reduction on NO3- accumulation changed with influx becoming a more predominant regulant. Significant levels of NO3- accumulated in NO2(-)-fed leaves. When the leaves were supplied cycloheximide or tungstate along with NO2-, about 60% more NO3- accumulated in the leaves than in the absence of the inhibitors. In NO3(-)-supplied leaves NR induction was observed at an ambient concentration of as low as 0.02 mM. No NR induction occurred in leaves supplied with NO2- until the ambient NO2- concentration was 0.5 mM. In fact, NR induction from NO2- solutions was not seen until NO3- was detected in the leaves. The amount of NO3- accumulating in NO2(-)-fed leaves induced similar levels of NR as did equivalent amounts of NO3- accumulating from NO3(-)-fed leaves. In all cases the internal concentration of NO3-, but not NO2-, was highly correlated with the amount of NR induced. The evidence indicated that NO3- was a more likely inducer of NR than was NO2-.

  20. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH

    Microsoft Academic Search

    Dong-Jin Kim; Dong-Ig Lee; Jürg Keller

    2006-01-01

    The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria

  1. Nitrite and nitrate can be accurately measured in samples of vegetal and animal origin using an HPLC-UV/VIS technique.

    PubMed

    Croitoru, Mircea Dumitru

    2012-12-12

    Measurements of nitrite and nitrate are used in biomedical research to estimate the endogenous formation of nitric oxide (an important biomolecule). These anions are also toxins and their concentration is regulated in certain foodstuffs. There are many published methods for detecting nitrite and nitrate but most of them fail to detect nitrite in biological samples. A new HPLC-UV/VIS method was developed which easily detects low concentrations of nitrite and nitrate present in mammal blood, urine and in vegetal samples. The method is based on a pre-column derivatization of nitrite anion using the Griess reaction and direct determination of nitrate using its UV absorbance. A chromatographic process with detection at two wavelengths allows the determination of both anions in one run (23min with column reequilibration included). The limits of quantification in mammal blood are 2ng/ml and 200ng/ml for nitrite and nitrate, respectively. As regards vegetables, due to the need of sample dilution in the preparation steps, these limits are 3 times higher. Concentrations measured in rabbit blood samples ranged from 1.09 to 42.65?g/ml for nitrate and 15.8 to 384.6ng/ml for nitrite. Concentrations in vegetables ranged from below the limit of detection to 4g/kg for nitrate and from below the limit of detection to 369.2?g/kg for nitrite. The specificity of Griess reaction toward nitrite is under discussion since substances able to mimic this reaction were found, leading to compounds with spectral properties in visible domain indistinguishable from that of nitrite related azo dye. PMID:23217319

  2. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    PubMed

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. PMID:25989520

  3. Implications of Nitrate and Nitrite Isotopic Measurements for the Mechanisms of Fixed Nitrogen Cycling and Loss from the Peru Oxygen Deficient Zone.

    NASA Astrophysics Data System (ADS)

    Casciotti, K.; Buchwald, C.

    2012-12-01

    Oceanic oxygen deficient zones (ODZs) are important for N2O production and the oceanic nitrogen (N) budget. These regions have long been recognized as hotspots for fixed N loss from the ocean. However, the processes mediating fixed N cycling and loss are not fully understood. For example, denitrification and anammox may both be involved with nitrite reduction to N2. It is generally assumed that nitrite reduction is the only sink for nitrite in the ODZ, but a variety of evidence from natural abundance isotope analyses, 15N tracer experiments, concentration profile modeling, and microbial community analyses suggest that nitrite oxidation may play an important role in recycling N and retaining it in a bioavailable form. Natural abundance stable isotope ratios of nitrate and nitrite provide an integrated record of the relative rates of these processes. In particular, the dual isotopes (?15N and ?18O) of nitrate have been used to infer the relative rates of nitrate reduction and nitrite reoxidation. Here we examine the additional constraints that nitrite ?15N and ?18O measurements can add to nitrate ?15N and ?18O in determining the rates of processes controlling N turnover and loss in the Peruvian ODZ. Nitrite is unique a unique tracer of ODZ processes because it rarely accumulates outside of oxygen deficient waters and unique isotope effects govern its oxidation and reduction. We explore the patterns of nitrate ?15N and ?18O, along with the nitrite ?15N distributions using simple 1-D and box models and find that substantial nitrite oxidation is required to explain the observed concentration and isotope patterns. The inferred importance of nitrite oxidation is surprising given the low oxygen conditions and has implications for the controls on N2 production in the ODZ.

  4. Dietary nitrate and nitrite and the risk of thyroid cancer in the NIH-AARP Diet and Health Study

    PubMed Central

    Kilfoy, Briseis A.; Zhang, Yawei; Park, Yikyung; Holford, Theodore R.; Schatzkin, Arthur; Hollenbeck, Albert; Ward, Mary H.

    2010-01-01

    During the past several decades, an increasing incidence of thyroid cancer has been observed worldwide. Nitrate inhibits iodide uptake by the thyroid, potentially disrupting thyroid function. An increased risk of thyroid cancer associated with nitrate intake was recently reported in a cohort study of older women in Iowa. We evaluated dietary nitrate and nitrite intake and thyroid cancer risk overall and for subtypes in the National Institutes of Health-American Association of Retired Persons (NIH-AARP) Diet and Health Study, a large prospective cohort of 490,194 men and women, ages 50–71 years in 1995–1996. Dietary intakes were assessed using a 124-item food frequency questionnaire. During an average of 7 years of follow-up we identified 370 incident thyroid cancer cases (170 men, 200 women) with complete dietary information. Among men, increasing nitrate intake was positively associated with thyroid cancer risk (relative risk (RR) for the highest quintile versus lowest quintile RR=2.28, 95% CI: 1.29–4.04l; p-trend <0.001); however, we observed no trend with intake among women (p-trend=0.61). Nitrite intake was not associated with risk of thyroid cancer for either men or women. We evaluated risk for the two main types of thyroid cancer. We found positive associations for nitrate intake and both papillary (RR = 2.10; 95%CI: 1.09–4.05; p-trend=0.05) and follicular thyroid cancer (RR= 3.42; 95%CI: 1.03–11.4; p-trend=0.01) among men. Nitrite intake was associated with increased risk of follicular thyroid cancer (RR= 2.74; 95%CI: 0.86–8.77; p-trend=0.04) among men. Our results support a role of nitrate in thyroid cancer risk and suggest that further studies to investigate these exposures are warranted. PMID:20824705

  5. Acute effect of nitric oxide supplement on blood nitrate/nitrite and hemodynamic variables in resistance trained men.

    PubMed

    Bloomer, Richard J; Williams, Sara A; Canale, Robert E; Farney, Tyler M; Kabir, Mohammad M

    2010-10-01

    Nitric oxide dietary supplements are extremely popular within the sport and bodybuilding community. Most products contain l-arginine, for which there is no direct evidence that oral L-arginine increases circulating nitric oxide or blood flow. A new molecule (2-[nitrooxy]thyl 2-amino-3-methylbutanoate) is being marketed as a sport supplement for purposes of delivering "real nitric oxide" to the circulation. In the present study, we measured the acute effects of this supplement on blood nitrate/nitrite and hemodynamic variables. Ten resistance trained men (26 ± 4 years old; 8 ± 6 years of resistance exercise training) reported to the laboratory in random order after a 10-hour overnight fast on 2 occasions separated by 1 week and were provided the supplement (2-[nitrooxy]ethyl 2-amino-3-methylbutanoate) or placebo. Heart rate and blood pressure were recorded, and venous blood samples were collected before and at 5, 15, 30, and 60 minutes after complete breakdown of the supplement (5 minutes post intake) or placebo. Blood samples were assayed for plasma nitrate/nitrite. No interaction (p = 0.99), condition (p = 0.18), or time (p = 0.98) effects were noted for plasma nitrate/nitrite, with values remaining nearly identical across time for placebo (?27 ?mol·L(-1)) and increasing a maximum of ?6.7% (from 32.9 to 35.1 ?mol·L(-1)) at the 15-minute collection period for the supplement. In regards to hemodynamic variables, no interaction, condition, or time effects were noted for heart rate, systolic, or diastolic blood pressure (p > 0.05), with values near identical between conditions and virtually unchanged across time. These findings indicate that 2-(nitrooxy)ethyl 2-amino-3-methylbutanoate has a small effect on increasing circulating nitrate/nitrite and does not cause any change in hemodynamic variables within the 1 hour postingestion period in a sample of resistance trained men. PMID:20885188

  6. Characterisation of the nitrite reductase gene (NII1) and the nitrate-assimilation gene cluster of Stagonospora (Septoria) nodorum

    Microsoft Academic Search

    Simon B. Cutler; Christopher E. Caten

    1999-01-01

    By sequencing downstream of the cloned nitrate reductase gene (NIA1) in the phytopathogenic fungus Stagonospora (Septoria) nodorum, a second open reading frame was found. Further analysis revealed this to be the nitrite reductase gene (NII1). Both genes are transcribed in the same direction, and are separated by an intergenic region of 829-bp. The coding sequence\\u000a of NII1 is interrupted by

  7. Ferrocyanide Safety Project Dynamic X-Ray Diffraction studies of sodium nickel ferrocyanide reactions with equimolar nitrate\\/nitrite salts

    Microsoft Academic Search

    Dodds

    1994-01-01

    Dynamic X-ray Diffraction (DXRD) has been to used to identify and quantify the solid state reactions that take place between sodium nickel ferrocyanide, NaâNiFe(CN)â, and equimolar concentrations of sodium nitrate\\/nitrite, reactions of interest to the continued environmental safety of several large underground waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work, which

  8. SHORT REPORT: TOTAL SERUM LEVELS OF THE NITRIC OXIDE DERIVATIVES NITRITE\\/NITRATE DURING MICROFILARIAL CLEARANCE IN HUMAN FILARIAL DISEASE

    Microsoft Academic Search

    STEFAN WINKLER; IBRAHIM EL MENYAWI; KEN FLORIS LINNAU; WOLFGANG GRANINGER

    Nitric oxide (NO) has recently been shown to be cytotoxic to both microfilariae and adultBrugia malayi in vitro and in a murine model, as well against Onchocerca lienalis microfilariae in vitro. We studied the kinetics of nitrite\\/nitrate, both stable end products of NO, by high-pressure liquid chromatography during microfilaricidal che- motherapy in four filariasis (three Loa loa, and one Onchocerca

  9. Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd–Cu catalysts

    Microsoft Academic Search

    F Deganello; L. F Liotta; A Macaluso; A. M Venezia; G Deganello

    2000-01-01

    Two series of pumice-supported palladium and palladium–copper catalysts, prepared by impregnation with different palladium and copper precursors, were tested for the hydrogenation of aqueous nitrate and nitrite solutions. Measurements were performed in a stirred tank reactor, operating in batch conditions, in buffered water solution at atmospheric pressure and at 293K. The activities of the catalysts were calculated in terms of

  10. Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications.

    PubMed

    d'Ischia, Marco; Napolitano, Alessandra; Manini, Paola; Panzella, Lucia

    2011-12-19

    Nitrite, the primary metabolite of nitric oxide (NO) and a widely diffused component of human diet, plays distinct and increasingly appreciated roles in human physiology. However, when exposed to acidic environments, typically in the stomach, or under oxidative stress conditions, it may be converted to a range of reactive nitrogen species (RNS) which in turn can target a variety of biomolecules. Typical consequences of toxicological relevance include protein modification, DNA base deamination and the formation of N-nitrosamines, among the most potent mutagenic and carcinogenic compounds for humans. Besides primary biomolecules, nitrite can cause structural modifications to a variety of endogenous and exogenous organic compounds, ranging from polyunsaturated fatty acids to estrogens, tocopherol, catecholamines, furans, retinoids, dietary phenols, and a range of xenobiotics. The study of the interactions between nitrite and key food components, including phenolic antioxidants, has therefore emerged as an area of great promise for delineating innovative strategies in cancer chemoprevention. Depending on substrates and conditions, diverse reaction pathways may compete to determine product features and distribution patterns. These include nitrosation and nitration but also oxidation, via electron transfer to nitrosonium ion or nitrogen dioxide. This contribution aims to provide an overview of the main classes of compounds that can be targeted by nitrite and to discuss at chemical levels the possible reaction mechanisms under conditions that model those occurring in the stomach. The toxicological implications of the nitrite-modified molecules are finally addressed, and a rational chemical approach to the design of potent antinitrosing agents is illustrated. PMID:21923154

  11. Understanding ion sensing in Zn(II) porphyrins: spectroscopic and computational studies of nitrite/nitrate binding.

    PubMed

    Whittington, Christi L; Maza, William A; Woodcock, H Lee; Larsen, Randy W

    2012-04-16

    The development of effective sensor elements relies on the ability of a chromophore to bind an analyte selectively and then study the binding through changes in spectroscopic signals. In this report the ability of Zn(II) Tetraphenyl Porphyrin (ZnTPP) to selectively bind nitrite over nitrate ions is examined. The results of Benesi-Hildebrand analysis reveals that ZnTPP binds NO(2)(-) and NO(3)(-) ions with association constants of 739 ± 70 M(-1) and 134 ± 15 M(-1), respectively. Interestingly, addition of a pyridine ligand to the fifth coordination site of the Zn(II) center enhances ion binding with the association constants increasing to 71,300 ± 8,000 M(-1) and 18,900 ± 3,000 M(-1) for nitrite and nitrate, respectively. Density functional theory calculations suggest a binding mechanism through which Zn(II)-porphyrin interactions are disrupted by ligand and base coordination to Zn(II), with Zn(II) having more favorable overlap with nitrite orbitals, which are less delocalized than nitrate orbitals. Overall, these provide new insights into the ability to tune the affinity and selectivity of porphyrin based sensors utilizing electronic factors associated with the central Zn(II) ion. PMID:22480312

  12. The Determination of Nitrate and Nitrite in Human Urine and Blood by High-Performance Liquid Chromatography and Cloud-Point Extraction.

    PubMed

    Zhao, Jiao; Wang, Jun; Yang, Yaling; Lu, Yunhui

    2015-08-01

    A simple efficient and practical separation/preconcentration coupled with HPLC method for the determination nitrate and low concentrations of nitrite in human urine and blood was investigated. The method is based on precolumn derivatization using the Griess reaction and cloud-point extraction (CPE) of nitrite anion and direct determination of nitrate using its UV absorbance by ion-pair HPLC. The chromatographic process with detection at two wavelengths (510 and 220 nm) allows the determination of nitrite and nitrate. Decolorization and protein precipitation of urine and blood was applied to overcome the interference of matrix and enhance the sensitivity. The method was validated for linearity, accuracy and precision. Under the optimum conditions, the linear range of nitrite from 10 to 1,000 ng/mL and nitrate from 0.1 to 10 µg/mL. Product recoveries ranged from 92.4 to 99.9%. The limits of detection were 1 ng/mL and 0.1 µg/mL for nitrite and nitrate, respectively. Therefore, the technique was simple and reliable, with potential application in biological sample analysis of nitrate and nitrite. PMID:25616990

  13. Effects of simulated microgravity on arterial nitric oxide synthase and nitrate and nitrite content

    NASA Technical Reports Server (NTRS)

    Ma, Jin; Kahwaji, Chadi I.; Ni, Zhenmin; Vaziri, Nosratola D.; Purdy, Ralph E.

    2003-01-01

    The aim of the present work was to investigate the alterations in nitric oxide synthase (NOS) expression and nitrate and nitrite (NOx) content of different arteries from simulated microgravity rats. Male Wistar rats were randomly assigned to either a control group or simulated microgravity group. For simulating microgravity, animals were subjected to hindlimb unweighting (HU) for 20 days. Different arterial tissues were removed for determination of NOS expression and NOx. Western blotting was used to measure endothelial NOS (eNOS) and inducible NOS (iNOS) protein content. Total concentrations of NOx, stable metabolites of nitric oxide, were determined by the chemiluminescence method. Compared with controls, isolated vessels from simulated microgravity rats showed a significant increase in both eNOS and iNOS expression in carotid arteries and thoracic aorta and a significant decrease in eNOS and iNOS expression of mesenteric arteries. The eNOS and iNOS content of cerebral arteries, as well as that of femoral arteries, showed no differences between the two groups. Concerning NOx, vessels from HU rats showed an increase in cerebral arteries, a decrease in mesenteric arteries, and no change in carotid artery, femoral artery and thoracic aorta. These data indicated that there were differential alterations in NOS expression and NOx of different arteries after hindlimb unweighting. We suggest that these changes might represent both localized adaptations to differential body fluid redistribution and other factors independent of hemodynamic shifts during simulated microgravity.

  14. Low disturbance manure incorporation effects on ammonia and nitrate losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia volatilization represents a major mechanism of nitrogen (N) loss from land-applied manure and is an air quality concern. A field study was conducted to assess ammonia emissions related to manure application method in central Pennsylvania on a Hagerstown soil (Fine, mixed semiactive, mesic Ty...

  15. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) process

    Microsoft Academic Search

    A. J. Mattus; D. D. Lee; T. A. Dillow; L. L. Farr; S. L. Loghry; W. W. Pitt; M. R. Gibson

    1994-01-01

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new, low-temperature (50 to 60C) process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 to 99% of the nitrate can be readily converted. In this process, aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum

  16. The chemistry, waste form development, and properties of the Nitrate to Ammonia and Ceramic (NAC) process

    SciTech Connect

    Mattus, A.J.; Lee, D.D.; Youngblood, E.L.; Walker, J.F. Jr.; Tiegs, T.N.

    1994-06-01

    A process for the conversion of alkaline, aqueous nitrate wastes to ammonia gas at low temperature, based upon the use of the active metal reductant aluminum, has been developed at the Oak Ridge National Laboratory (ORNL). The process is also well suited for the removal of low-level waste (LLW) radioelements and hazardous metals which report to the solid, alumina-based by-product. ne chemistry of the interaction of aluminum powders with nitrate, and other waste stream metals is presented.

  17. Kinetics of nirS Expression (Cytochrome cd 1 Nitrite Reductase) in Pseudomonas stutzeri during the Transition from Aerobic Respiration to Denitrification: Evidence for a Denitrification Specific Nitrate and Nitrite-Responsive Regulatory System

    Microsoft Academic Search

    ELISABETH HARTIG; WALTER G. ZUMFT

    1999-01-01

    After shifting an oxygen-respiring culture of Pseudomonas stutzeri to nitrate or nitrite respiration, we directly monitored the expression of the nirS gene by mRNA analysis. nirS encodes the 62-kDa subunit of the homodimeric cytochrome cd1 nitrite reductase involved in denitrification. Information was sought about the requirements for gene activation, potential regulators of such activation, and signal transduction pathways triggered by

  18. Precursor/product studies of macrophage synthesis of nitrite, nitrate and N-nitrosamines

    SciTech Connect

    Iyengar, R.; Marletta, M.A.

    1987-05-01

    Previous experiments showed that nitrite, nitrate and N-nitrosamine synthesis was carried out by both stimulated macrophages (M phi) and a number of M phi cell lines. Here the authors report the precursor to NO/sub 2//sup -/, NO/sub 3//sup -/, and the source of the nitrosating agent. Previous kinetic studies established a time lag for NO/sub 2//sup -//NO/sub 3//sup -/ synthesis during which protein synthesis required for product formation occurred. Medium change after the protein synthesis phase showed that L-arginine was the only amino acid essential for the synthesis. Other precursors were homoarginine, arginine methyl ester, arginine infinity-hydroxamate, argininamide and the peptide arginine-aspartate. Glutamine, citrulline, ornithine, hydroxylamine and D-arginine were among some of the non-precursors. Canavanine though not a precursor inhibited arginine-derived NO/sub 2/-/NO/sub 3//sup -/ synthesis while D-arginine had no effect. When /sup 15/N-arginine (guanido-/sup 15/N/sub 2/, 95%) was used, GC/MS results showed that all the NO/sub 2//sup -//NO/sub 3//sup -/ synthesized was derived exclusively from these two guanido nitrogens. Similar labeling experiments carried out in the presence of morpholine showed that the isotopic enrichment of N-nitrosomorpholine was the same as that of NO/sub 2//sup -//NO/sub 3//sup -/ synthesized, suggesting that the nitrosating agent is a common intermediate. In conclusion, NO/sub 2//sup -//NO/sub 3//sup -/ and N-nitrosomorpholine synthesis by stimulated macrophages is derived specifically from the two guanido nitrogens of arginine.

  19. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    EPA Science Inventory

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  20. Percentile Distributions of Median Nitrite Plus Nitrate as Nitrogen, Total Nitrogen, and Total Phosphorus Concentrations in Oklahoma Streams, 1973-2001

    USGS Publications Warehouse

    Haggard, Brian E.; Masoner, Jason R.; Becker, Carol J.

    2003-01-01

    Nutrients are one of the primary causes of water-quality impairments in streams, lakes, reservoirs, and estuaries in the United States. The U.S. Environmental Protection Agency has developed regional-based nutrient criteria using ecoregions to protect streams in the United States from impairment. However, nutrient criteria were based on nutrient concentrations measured in large aggregated nutrient ecoregions with little relevance to local environmental conditions in states. The Oklahoma Water Resources Board is using a dichotomous process known as Use Support Assessment Protocols to define nutrient criteria in Oklahoma streams. The Oklahoma Water Resources Board is modifying the Use Support Assessment Protocols to reflect nutrient informa-tion and environmental characteristics relevant to Oklahoma streams, while considering nutrient information grouped by geographic regions based on level III ecoregions and state boundaries. Percentile distributions of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorous concentrations were calculated from 563 sites in Oklahoma and 4 sites in Arkansas near the Oklahoma and Arkansas border to facilitate development of nutrient criteria for Oklahoma streams. Sites were grouped into four geographic regions and were categorized into eight stream categories by stream slope and stream order. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus concentrations were greater in the Ozark Highland ecoregion and were less in the Ouachita Mountains ecoregion when compared to other geographic areas used to group sites. The 50th percentiles of median concentrations of nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus were least in first, second, and third order streams. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen and total phosphorus concentrations in the Ozark Highland and Ouachita Mountains ecoregions were least in first, second, and third order streams with streams slopes greater than 17 feet per mile. Nitrite plus nitrate as nitrogen and total nitrogen criteria determined by the U.S. Environmental Protection Agency for the Ozark Highland ecoregion were less than the 25th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus concentrations in the Ozark Highland ecoregion calculated for this report. Nitrite plus nitrate as nitrogen and total nitrogen criteria developed by the U.S. Environmental Protection Agency for the Ouachita Mountains ecoregion were similar to the 25th percentiles of median nitrite plus nitrate as nitrogen and total nitrogen concentrations in the Ouachita Mountains ecoregion calculated for this report. Nitrate as nitrogen and total phosphorus concentrations currently (2002) used in the Use Support Assessment Protocols for Oklahoma were greater than the 75th percentiles of median nitrite plus nitrate as nitrogen and total phosphorus concentrations calculated for this report.

  1. Appearance of nitrite reductase in cotyledons of the mustard ( Sinapis alba L.) seedling as affected by nitrate, phytochrome and photooxidative damage of plastids

    Microsoft Academic Search

    V. K. Rajasekhar; H. Mohr

    1986-01-01

    Nitrite reductase (NIR; EC 1.7.7.1) is a central enzyme in nitrate assimilation and is localized in plastids. The present study concerns the regulation of the appearance of NIR in cotyledons of the mustard (Sinapis alba L.) seedling. It was shown that light exerts its positive control over the nitrate-mediated induction of NIR via the farred-absorbing form of phytochrome. Without nitrate

  2. Nitrite accumulation from simultaneous free-ammonia and free-nitrous-acid inhibition and oxygen limitation in a continuous-flow biofilm reactor.

    PubMed

    Park, Seongjun; Chung, Jinwook; Rittmann, Bruce E; Bae, Wookeun

    2015-01-01

    To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or should not lead to nitrite accumulation, and evaluated the effectiveness of those conditions with experiments in continuous flow biofilm reactors (CFBRs). CFBR experiments were organized into four sets with these expected outcomes based on the MSNBM as follows: (i) Control, giving full nitrification; (ii) oxygen limitation, giving modest long-term nitrite build up; (iii) FA inhibition, giving no long-term nitrite accumulation; and (iv) FA inhibition plus oxygen limitation, giving major long-term nitrite accumulation. Consistent with MSNBM predictions, the experimental results showed that nitrite accumulated in sets 2-4 in the short term, but long-term nitrite accumulation was maintained only in sets 2 and 4, which involved oxygen limitation. Furthermore, nitrite accumulation was substantially greater in set 4, which also included FA inhibition. However, FA inhibition (and accompanying FNA inhibition) alone in set 3 did not maintained long-term nitrite accumulation. Nitrite-oxidizing bacteria (NOB) activity batch tests confirmed that little NOB or only a small fraction of NOB were present in the biofilms for sets 4 and 2, respectively. The experimental data supported the previous modeling results that nitrite accumulation could be achieved with a lower ammonium concentration than had been required for a suspended-growth process. Additional findings were that the biofilm exposed to low dissolved oxygen (DO) limitation and FA inhibition was substantially denser and probably had a lower detachment rate. PMID:24981425

  3. Reduction of nitrate and nitrite in vegetable juices prior to lactic acid fermentation

    Microsoft Academic Search

    J. Emig; C. Meisel; G. Wolf; K. Gierschner; W. P. Hammes

    1990-01-01

    The reduction of the nitrate content in vegetable juices has an important effect on the total intake of nitrate by humans. Carrot puree containing 500 mg\\/1 nitrate was treated with immobilized cells of Halomonas spec, at 6°C. The nitrate was reduced within five hours quantitatively to nitrous oxide.Lactic acid fermentation by Leuconostoc mesenteroides performed after completion of the denitrification process

  4. Nitrate and nitrite anion concentration in the intact cerebral cortex of preterm and nearterm fetal sheep: indirect index of in vivo nitric oxide formation.

    PubMed

    Reynolds, J D; Zeballos, G A; Penning, D H; Kimura, K A; Atkins, B; Brien, J F

    1998-04-01

    Pregnant sheep with a microdialysis probe implanted in the fetal cerebral cortex were used to determine if nitrate and nitrite anions (nitrate/nitrite) could be quantitated in the microdialysate as an indirect index of in vivo nitric oxide formation. Pregnant ewes (term, about 147 days) were surgically instrumented at gestational day (GD) 90 (n = 3; preterm) and GD 121 (n = 3; nearterm). Three days later, following an overnight probe equilibration period, five dialysate samples were collected continuously on ice at 1-h intervals (infusion rate of 1 (microl/min). The nitrate/nitrite concentration was determined by reducing a 10-microl aliquot of each dialysate fraction with hot acidic vanadium followed by chemiluminescence quantitation of the nitric oxide product. The lower limit of quantitative sensitivity of the method is 25 picomoles. Nitrate/nitrite concentration was 16.6+/-7.3 microM for the preterm fetus and 19.7+/-1.9 microM for the nearterm fetus. The data demonstrate that nitrate/nitrite, as an index of in vivo nitric oxide formation, can be quantitated in microdialysate samples collected from the intact fetal sheep cerebral cortex. PMID:9741385

  5. Dissimilatory Nitrate Reduction in Anaerobic Sediments Leading to River Nitrite Accumulation

    PubMed Central

    Kelso, B.; Smith, R. V.; Laughlin, R. J.; Lennox, S. D.

    1997-01-01

    Recent studies on Northern Ireland rivers have shown that summer nitrite (NO(inf2)(sup-)) concentrations greatly exceed the European Union guideline of 3 (mu)g of N liter(sup-1) for rivers supporting salmonid fisheries. In fast-flowing aerobic small streams, NO(inf2)(sup-) is thought to originate from nitrification, due to the retardation of Nitrobacter strains by the presence of free ammonia. Multiple regression analyses of NO(inf2)(sup-) concentrations against water quality variables of the six major rivers of the Lough Neagh catchment in Northern Ireland, however, suggested that the high NO(inf2)(sup-) concentrations found in the summer under warm, slow-flow conditions may result from the reduction of NO(inf3)(sup-). This hypothesis was supported by field observations of weekly changes in N species. Here, reduction of NO(inf3)(sup-) was observed to occur simultaneously with elevation of NO(inf2)(sup-) levels and subsequently NH(inf4)(sup+) levels, indicating that dissimilatory NO(inf3)(sup-) reduction to NH(inf4)(sup+) (DNRA) performed by fermentative bacteria (e.g., Aeromonas and Vibrio spp.) is responsible for NO(inf2)(sup-) accumulation in these large rivers. Mechanistic studies in which (sup15)N-labelled NO(inf3)(sup-) in sediment extracts was used provided further support for this hypothesis. Maximal concentrations of NO(inf2)(sup-) accumulation (up to 1.4 mg of N liter(sup-1)) were found in sediments deeper than 6 cm associated with a high concentration of metabolizable carbon and anaerobic conditions. The (sup15)N enrichment of the NO(inf2)(sup-) was comparable to that of the NO(inf3)(sup-) pool, indicating that the NO(inf2)(sup-) was predominantly NO(inf3)(sup-) derived. There is evidence which suggests that the high NO(inf2)(sup-) concentrations observed arose from the inhibition of the DNRA NO(inf2)(sup-) reductase system by NO(inf3)(sup-). PMID:16535749

  6. Prenatal Exposure to Nitrates, Nitrites, and Nitrosatable Drugs and Preterm Births 

    E-print Network

    Vuong, Ann Minh

    2013-10-28

    Nitrosatable drugs react with nitrite in the stomach to form N-nitroso compounds, observed in animal models to result in adverse pregnancy outcomes such as birth defects and reduced fetal weight. Previous studies examining prenatal exposure...

  7. Prenatal Exposure to Nitrates, Nitrites, Nitrosatable Drugs, and Small-For-Gestational-Age Births 

    E-print Network

    Shinde, Mayura

    2013-11-27

    Certain drugs, which contain nitrosatable amines (secondary or tertiary amines) or amides can react with nitrite in the stomach to form N-nitroso compounds. Experimental data from animal studies suggest that exposure to these compounds might reduce...

  8. The nitrate to ammonia and ceramic (NAC) process -- a newly developed low-temperature technology

    SciTech Connect

    Mattus, A.J.; Lee, D.D.

    1993-06-01

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new low-temperature (50-60C) process for converting nitrate to ammonia and ceramic (NAC), showed that between 90 and 99% of the nitrate at Hanford can be readily converted to ammonia. Aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an alumina-silica-based ceramic solid. The process may utilize already contaminated aluminum scrap metal from various DOE sites to effect the conversion. The final nitrate-free ceramic product can be calcined, pressed, and sintered like any other ceramic. Based on starting volumes of 6.2 and 3.1 M sodium nitrate solution (probable supernate concentrations resulting from salt-cake/sludge removal from Hanford SSTs), volume reductions as high as 70% are currently obtained, compared with an expected 40 to 50% volume increase if the Hanford supernate were grouted. Engineering data indicate that the process will be very economical. Data were used to cost a batch facility with a production rate of 1200 kilograms of nitrate per hour for processing all the Hanford SST waste over 20 years. Process cost analysis indicates that between $2.01 and 2.66 will be required to convert each kilogram of nitrate. These costs are one-third to one-half of the processing costs for electrolytic and thermal processes. The ceramic waste form offers other cost savings associated with a smaller volume of waste as well as eliminates other process steps such as grouting. Silica added to the reactor, based upon the total sodium in the waste, permits us to actually bind the sodium in a nepheline phase of the final ceramic structure as well as bind most metals and nonmetals in the ceramic.

  9. Close genetic relationship between Nitrobacter hamburgensis nitrite oxidoreductase and Escherichia coli nitrate reductases

    Microsoft Academic Search

    Karin Kirstein; Eberhard Bock

    1993-01-01

    The nitrite oxidoreductase (NOR) from the facultative nitrite-oxidizing bacterium Nitrobacter hamburgensis X14 was investigated genetically. In order to develop a probe for the gene norB, the N-terminal amino acid sequence of the NOR ß-subunit (NorB) was determined. Based on that amino acid sequence, an oligo-nucleotide was derived that was used for the identification and cloning of gene norB. Sequence analysis

  10. Ammonia from iron(II) reduction of nitrite and the Strecker synthesis: do iron(II) and cyanide interfere with each other?

    NASA Technical Reports Server (NTRS)

    Summers, D. P.; Lerner, N.

    1998-01-01

    The question of whether the production of ammonia, from the reduction of nitrite by iron(II), is compatible with its use in the Strecker synthesis of amino acids, or whether the iron and the cyanide needed for the Strecker synthesis interfere with each other, is addressed. Results show that the presence of iron(II) appears to have little, or no, effect on the Strecker synthesis. The presence of cyanide does interfere with reduction of nitrite, but the reduction proceeds at cyanide/iron ratios of less than 4:1. At ratios of about 2:1 and less there is only a small effect. The reduction of nitrite and the Strecker can be combined to proceed in each other's presence, to yield glycine from a mixture of nitrite, Fe+2, formaldehyde, and cyanide.

  11. Negative chemical ionization GC/MS determination of nitrite and nitrate in seawater using exact matching double spike isotope dilution and derivatization with triethyloxonium tetrafluoroborate.

    PubMed

    Pagliano, Enea; Meija, Juris; Sturgeon, Ralph E; Mester, Zoltan; D'Ulivo, Alessandro

    2012-03-01

    The alkylation of nitrite and nitrate by triethyloxonium tetrafluoroborate allows determination of their ethyl esters by headspace gas chromatography/mass spectrometry (GC/MS). In the present study, significant improvement in analytical performance is achieved using negative chemical ionization providing detection limits of 150 ng/L for NO(2)(-) and 600 ng/L for NO(3)(-), an order of magnitude better than those achieved using electron impact ionization. The derivatization procedure was optimized and alkaline conditions adopted to minimize conversion of nitrite to nitrate (determined to be 0.07% at 100 mg/L NO(2)(-)) and to avoid the exchange of oxygen between the analytes and the solvent (water). Quantitation entails use of isotopically enriched standards (N(18)O(2)(-) and (15)NO(3)(-)), which also permits monitoring of potential conversion from nitrite to nitrate during the analysis (double spike isotope dilution). PMID:22320264

  12. Nitrite in feed: From Animal health to human health

    SciTech Connect

    Cockburn, Andrew [Institute for Research on Environment and Sustainability, Devonshire Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NE17RU (United Kingdom); Brambilla, Gianfranco [Istituto Superiore di Sanità, Toxicological chemistry unit, Viale Regina Elena 299, 00161 Rome (Italy); Fernández, Maria-Luisa [Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ministerio de Ciencia e Innovación, Carretera de la Coruña, 28040 Madrid (Spain); Arcella, Davide [Unit on Data Collection and Exposure, European Food Safety Authority, Largo N. Palli 5/A43100 Parma (Italy); Bordajandi, Luisa R. [Unit on Contaminants in the Food chain, European Food Safety Authority, Largo N. Palli 5/A, 43100 Parma (Italy); Cottrill, Bruce [Policy Delivery Group, Animal Health and Welfare, ADAS, Wolverhampton (United Kingdom); Peteghem, Carlos van [University of Gent, Harelbekestraat 72, 9000 Gent (Belgium); Dorne, Jean-Lou, E-mail: jean-lou.dorne@efsa.europa.eu [Unit on Contaminants in the Food chain, European Food Safety Authority, Largo N. Palli 5/A, 43100 Parma (Italy)

    2013-08-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also carried out taking into account all direct and indirect sources of nitrite from the human diet, including carry-over of nitrite in animal-based products such as milk, eggs and meat products. Human exposure was then compared with the acceptable daily intake (ADI) for nitrite of 0-0.07 mg/kg b.w. per day. Overall, the low levels of nitrite in fresh animal products represented only 2.9% of the total daily dietary exposure and thus were not considered to raise concerns for human health. It is concluded that the potential health risk to animals from the consumption of feed or to man from eating fresh animal products containing nitrite, is very low.

  13. Optimization of Conditions for Photoproduction of Ammonia from Nitrate by Anacystis nidulans

    PubMed Central

    Ramos, Juan L.; Guerrero, Miguel G.; Losada, Manuel

    1982-01-01

    The effect of several relevant environmental factors influencing the photoproduction of ammonia from nitrate by Anacystis nidulans cells treated with the glutamine synthetase inhibitor l-methionine-dl-sulfoximine has been investigated. The optimal ratio between l-methionine-dl-sulfoximine concentration (micro-molar) and cell density (micrograms of chlorophyll per milliliter) was around 1, the process taking place at maximal rate at a temperature of about 40°C, within the pH range of 7 to 10. Ammonia production was stimulated by CO2 or bicarbonate and was not affected by the accumulation of ammonia in the medium up to concentrations of 30 mM. The rate of ammonia production was found to be determined by the interaction of at least four factors, namely, irradiance and the density, depth, and turbulence of the cell suspension. Ammonia photoproduction from nitrate and water represents an interesting process for the conversion of light energy into chemical energy, which can operate at high efficiency, around 30% of its theoretical maximum. PMID:16346125

  14. Investigation of reduction and tolerance capability of lactic acid bacteria isolated from kimchi against nitrate and nitrite in fermented sausage condition.

    PubMed

    Paik, Hyun-Dong; Lee, Joo-Yeon

    2014-08-01

    Lactobacillus brevis KGR3111, Lactobacillus curvatus KGR 2103, Lactobacillus plantarum KGR 5105, and Lactobacillus sakei KGR 4108 isolated from kimchi were investigated for their potential to be used as starter culture for fermented sausages with the capability to reduce and tolerate nitrate/nitrite. The reduction capability of tested strains for nitrate was not dramatic. All tested strains, however, showed the capability to produce nitrite reductase with the reduction amount of 58.46-75.80 mg/l of NO(2)(-). L. brevis and L. plantarum showed nitrate tolerance with the highest number of 8.71 log cfu/ml and 8.81 log cfu/ml, and L. brevis and L. sakei exhibited nitrite tolerance with the highest number of 8.24 log cfu/ml and 8.25 log cfu/ml, respectively. As a result, L. brevis, L. plantarum, and L. sakei isolated from kimchi showed a tolerance against nitrate or nitrite with a good nitrite reduction capability, indicating the satisfaction of one of the selection criteria to be used as starter culture for fermented sausages. PMID:24821591

  15. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect

    Scheele, R.D. (Pacific Northwest Lab., Richland, WA (United States)); Cady, H.H. (Los Alamos National Lab., NM (United States))

    1992-01-01

    As part of the Hanford Site's evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL's thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  16. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect

    Scheele, R.D. [Pacific Northwest Lab., Richland, WA (United States); Cady, H.H. [Los Alamos National Lab., NM (United States)

    1992-01-01

    As part of the Hanford Site`s evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL`s thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  17. Highly sensitive capillary zone electrophoresis with artificial seawater as the background electrolyte and transient isotachophoresis as the on-line concentration procedure for simultaneous determination of nitrite and nitrate in seawater

    Microsoft Academic Search

    Keiichi Fukushi; Yusuke Nakayama; Jun-ichi Tsujimoto

    2003-01-01

    Transient isotachophoresis–capillary zone electrophoresis with artificial seawater as the background electrolyte (BGE) was improved to further lower the limit of detection (LOD) for determination of nitrite and nitrate in seawater. By lowering the pH of BGE, the difference between effective mobility of nitrite and that of nitrate increased, thereby permitting increased sample volumes to be tolerated and their LOD values

  18. Influence of Nitrate and Nitrite on Thyroid Hormone Responsive and Stress-Associated Gene Expression in Cultured Rana catesbeiana Tadpole Tail Fin Tissue

    PubMed Central

    Hinther, Ashley; Edwards, Thea M.; Guillette, Louis J.; Helbing, Caren C.

    2012-01-01

    Nitrate and nitrite are common aqueous pollutants that are known to disrupt the thyroid axis. In amphibians, thyroid hormone (TH)-dependent metamorphosis is affected, although whether the effect is acceleration or deceleration of this developmental process varies from study to study. One mechanism of action of these nitrogenous compounds is through alteration of TH synthesis. However, direct target tissue effects on TH signaling are hypothesized. The present study uses the recently developed cultured tail fin biopsy (C-fin) assay to study possible direct tissue effects of nitrate and nitrite. Tail biopsies obtained from premetamorphic Rana catesbeiana tadpoles were exposed to 5 and 50?mg/L nitrate (NO3–N) and 0.5 and 5?mg/L nitrite (NO2–N) in the absence and presence of 10?nM T3. Thyroid hormone receptor ? (TR?) and Rana larval keratin type I (RLKI), both of which are TH-responsive gene transcripts, were measured using quantitative real time polymerase chain reaction. To assess cellular stress which could affect TH signaling and metamorphosis, heat shock protein 30, and catalase (CAT) transcript levels were also measured. We found that nitrate and nitrite did not significantly change the level of any of the four transcripts tested. However, nitrate exposure significantly increased the heteroscedasticity in response of TR? and RLKI transcripts to T3. Alteration in population variation in such a way could contribute to the previously observed alterations of metamorphosis in frog tadpoles, but may not represent a major mechanism of action. PMID:22493607

  19. The effects of different aeration modes on ammonia removal from sludge digester liquors in the nitritation-anammox process.

    PubMed

    Sobotka, D; Czerwionka, K; Makinia, J

    2015-01-01

    The aim of this study was to determine the impact of continuous and intermittent aeration on the rate of ammonia removal in the combined nitritation-anammox process. This process was run in two parallel sequencing batch reactors (SBRs), with a working volume V = 10 L, treating sludge digester liquors from the Gdansk (Poland) wastewater treatment plant (WWTP). The ammonia oxidizing bacteria were cultivated from activated sludge from the same plant, whereas the anammox bacteria originated from the Zurich WWTP (Switzerland). Both SBRs were operated with 12-h cycles, temperature 30 °C and hydraulic residence time between 1 and 7 days depending on the operating period. The maximum specific ammonium utilization rate (sAUR) was observed in the reactor with intermittent aeration, and varied in the range of 4.4-4.7 g N kg VSS(-1) h(-1). The sAUR in the reactor with continuous aeration was slightly lower and ranged from 4.39 to 4.41 g N kg VSS(-1) h(-1). In the case of intermittent aeration, the additional measurement was performed at two different dissolved oxygen concentrations, i.e., 1 and 0.8 mg O2 L(-1), and the observed nitrogen removal rates were 4.7 and 2.7 g N kg VSS(-1) h(-1) , respectively. PMID:25860700

  20. Omeprazole and dietary nitrate independently affect levels of vitamin C and nitrite in gastric juice

    Microsoft Academic Search

    Craig Mowat; Andrew Carswell; Angela Wirz; Kenneth E. L. McColl

    1999-01-01

    Background & Aims: Hypochlorhydria is associated with an increased risk of gastric cancer. We have studied the effect of pharmacologically induced hypochlorhydria on the gastric juice ascorbate\\/nitrite ratio, which regulates the synthesis of potentially carcinogenic N-nitroso compounds. Methods: Saliva, gastric juice, and serum from 20 healthy volunteers (9 positive for Helicobacter pylori), with a mean age of 30 years (range,

  1. Diagnostic Role of Salivary and GCF Nitrite, Nitrate and Nitric Oxide to Distinguish Healthy Periodontium from Gingivitis and Periodontitis

    PubMed Central

    Poorsattar Bejeh-Mir, Arash; Parsian, Hadi; Akbari Khoram, Maryam; Ghasemi, Nafiseh; Bijani, Ali; Khosravi-Samani, Mahmoud

    2014-01-01

    Diagnosis of subclinical and early stage clinical periodontal dysfunction could prevent from further socioeconomic burden. The aim of this study was to assess the diagnostic applicability of nitric oxide and its end-metabolites in periodontal tissue health and disease. Forty-two patients were enrolled and divided into three groups according to gingivitis (GI) and clinical attachment level (CAL) indices: a healthy group (GI<1, CAL<1), b: gingivitis (GI>1, CAL>1) and c: periodontitis (CAL>1) with 14 patients in each group. Unstimulated saliva and gingival crevicular fluid (GCF) were collected. Samples were evaluated for nitrite, nitrate and total nitric oxide contents with the ELISA method. In addition, CAL, GI, plaque index (PI), decay, missing, filling (DMFT) and bleeding index (BI) scores were also recorded. Except for GCF nitrite content (P= 0.89), there was an increasing trend for measured biomarkers in both saliva and GCF (Periodontitis> gingivitis> healthy periodontium, P< 0.05). Data remained stable after simultaneous adjustment for DMFT and BI scores as confounding factors. Sensitivity, specificity, positive predictive value, negative predictive value, cut point and p- value were as the followings: GCF nitrate (0.71, 0.11, 0.29,0.43, 4.97, P= 0.04), nitric oxide GCF ( 0.64, 0.18, 0.28, 0.5, 10.12, P= 0.04), nitrite saliva (0.93, 0.96,0.93,0.96,123.48, P< 0.001), salivary nitrate (0.93, 0.96, 0.93, 0.96, 123.6, P< 0.001), salivary nitric oxide (0.93, 0.96, 0.93, 0.96, 246.65, P <0.001). Our results revealed that NO plays an important role in the process of destruction of periodontal tissues. Within the limitation of our study, detecting NO biomarker and its end metabolites in saliva is of more value to assess the periodontal health comparing to GCF. PMID:25317400

  2. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) or nitrate to ammonia and glass (NAG) process: Phase 2 report

    SciTech Connect

    Mattus, A.J.; Walker, J.F. Jr.; Youngblood, E.L.; Farr, L.L.; Lee, D.D.; Dillow, T.A.; Tiegs, T.N.

    1994-12-01

    Continuing benchtop studies using Hanford single-shell tank (SST) simulants and actual Oak Ridge National Laboratory (ORNL) low-level waste (LLW), employing a new denitration process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 and 99% of the nitrate can be readily converted to gaseous ammonia. In this process, aluminum powders can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid. The process may be able to use contaminated aluminum scrap metal from DOE sites to effect the conversion. The final, nitrate-free ceramic product can be pressed and sintered like other ceramics or silica and/or fluxing agents can be added to form a glassy ceramic or a flowable glass product. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 70% were obtained for the waste form produced. Sintered pellets produced from supernate from Melton Valley Storage Tanks (MVSTs) have been leached in accordance with the 16.1 leach test for the radioelements {sup 85}Sr and {sup 137}Cs. Despite lengthy counting times, {sup 85}Sr could not be detected in the leachates. {sup 137}Cs was only slightly above background and corresponded to a leach index of 12.2 to 13.7 after 8 months of leaching. Leach testing of unsintered and sintered reactor product spiked with hazardous metals proved that both sintered and unsintered product passed the Toxicity Characteristic Leaching Procedure (TCLP) test. Design of the equipment and flowsheet for a pilot demonstration-scale system to prove the nitrate destruction portion of the NAC process and product formation is under way.

  3. Effect of potential Hanford ferrocyanide waste constituents on the reaction between ferrocyanide and nitrates\\/nitrites

    Microsoft Academic Search

    R. D. Scheele; L. L. Burger; R. L. Sell

    1993-01-01

    During the 1950s, ferrocyanide- and nitrate-bearing wastes were produced at Hanford. A concern about continued safe storage and future treatment of these wastes has arisen because ferrocyanide and nitrate mixtures can explode when heated. Because of this concern, the Pacific Northwest Laboratory has performed experimental studies to determine the conditions needed to continue storing the wastes safely. In this paper,

  4. Occurrence of herbicides, nitrite plus nitrate, and selected trace elements in ground water from northwestern and northeastern Missouri, July 1991 and 1992

    USGS Publications Warehouse

    Wilkison, Donald H.; Maley, Randall D.

    1994-01-01

    The U.S. Geological Survey and the Missouri Department of Health collected water samples for analysis of nitrite plus nitrate and herbicides from rural domestic wells in northwestern and northeastern Missouri in 1991 and 1992. In July 1991, samples were collected from 130 wells in Caldwell, Clinton, Daviess, Gentry, and Nodaway Counties in northwestern Missouri. Nitrite plus nitrate concentrations as nitrogen ranged from less than 0.05 to 63 milligrams per liter. Nitrite plus nitrate concentrations exceeded the State drinking-water standard of 10 milligrams per liter in water samples from 28 wells. One or more of the herbicides--alachlor, atrazine, cyanazine; metribuzin, metolachlor, and trifluralin--were detected at concentrations greater than or equal to 0.05 micrograms per liter in 19 samples. Atrazine was detected in water samples from 16 wells. In July 1992, water samples were collected from 147 wells in Audrain, Clark, Lewis, Monroe, Scotland, and Shelby Counties in northeastern Missouri. Nitrite plus nitrate as nitrogen concentrations in samples ranged from less than 0.05 to 60 milligrams per liter and exceeded 10 milligrams per liter in samples from 28 wells. One or more of the herbicides-alachlor, atrazine, cyanazine, metribuzin, and metolachlor-were detected at concentrations greater than 0.10 microgram per liter in water samples from 19 of the wells sampled. Atrazine was detected in water from 18 wells.

  5. High-precision quadruple isotope dilution method for simultaneous determination of nitrite and nitrate in seawater by GCMS after derivatization with triethyloxonium tetrafluoroborate.

    PubMed

    Pagliano, Enea; Meija, Juris; Mester, Zoltán

    2014-05-01

    Quadruple isotope dilution mass spectrometry (ID(4)MS) has been applied for simultaneous determination of nitrite and nitrate in seawater. ID(4)MS allows high-precision measurements and entails the use of isotopic internal standards ((18)O-nitrite and (15)N-nitrate). We include a tutorial on ID(4)MS outlining optimal experimental design which generates results with low uncertainties and obviates the need for direct (separate) evaluation of the procedural blank. Nitrite and nitrate detection was achieved using a headspace GCMS procedure based on single-step aqueous derivatization with triethyloxonium tetrafluoroborate at room temperature. In this paper the sample preparation was revised and fundamental aspects of this chemistry are presented. The proposed method has detection limits in the low parts-per-billion for both analytes, is reliable, precise, and has been validated using a seawater certified reference material (MOOS-2). Simplicity of the experimental design, low detection limits, and the use of quadruple isotope dilution makes the present method superior to the state-of-the-art for determination of nitrite and nitrate, and an ideal candidate for reference measurements of these analytes in seawater. PMID:24759746

  6. Lack of influence of dietary nitrate/nitrite on plasma nitrotyrosine levels measured using a competitive inhibition of binding ELISA assay.

    PubMed

    Oldreive, C; Bradley, N; Bruckdorfer, R; Rice-Evans, C

    2001-10-01

    The action of peroxynitrite in vivo has been proposed to account for the involvement of nitrotyrosine in the pathogenesis of many diseases. However, it has been demonstrated that nitrite under acidic conditions, similar to those in the human stomach, also has the ability to nitrate tyrosine. Dietary nitrate is also implicated in the progression of gastritis and gastric cancer and elevated levels of nitrate are found in many disease states in which nitrotyrosine may play a role. Thus, we investigated whether the dietary nitrate intake might contribute towards the plasma protein-bound levels of nitrotyrosine. Seven healthy, non-smokers participated in a two-day study consisting of a nitrate-low control day followed by a day during which three nitrate-rich meals were consumed. Maximal urinary excretion was attained 4-6 hours after consumption of a meal and the maximum was proportional to the dose. Plasma nitrate was elevated nine-fold, 1 hour after consumption of a meal containing 128.3 mg nitrate. Plasma nitrated protein levels did not appear to alter significantly from basal 1 hour after supplementation with a nitrate-rich meal. Thus dietary nitrate does not appear to contribute to the levels of plasma nitrated proteins, as determined using a competitive inhibition of binding ELISA assay, but this does not preclude any contribution it may make to the total body burden of nitrotyrosine. PMID:11697134

  7. [Occurrence of nitrates and nitrites in certain frozen fruits, jams, stewed fruit and fruit-vegetable juices for children and in certain types of bee honey].

    PubMed

    Gajewska, R; Nabrzyski, M; Szajek, L

    1989-01-01

    Nitrates and nitrites were evaluated spectrophotometrically by the method of Griess reaction, with previous reduction of nitrates to nitrites in a column filled with cadmium dust. The content of nitrates in frozen fruit (strawberries, black and red currant and plums) ranged from 2.50 to 57.38 mg KNO3/kg, with the highest content in garden strawberries. In cherry, strawberry, black and red currant jams the concentrations were from 6.30 to 97.38 mg KNO3/kg, the highest content was in cherry jam. In plum jam nitrates were found in low amounts from 11.65 to 12.09 mg/kg. In "Bobofrut" juices the nitrate content was higher than in the above products, ranging from 26.37 to 182.75 mg KNO3/kg. Nitrite content in all these groups of products was low, not exceeding 1 mg NaNO2/kg, with the exception of plum jam where the maximal value was found 1.65 mg NaNO2/kg. In stewed fruit and herb syrups and in honey nitrates ranged from 1.0 to 94.5 mg KNO3/kg. Nitrite content ranged from 0.17 to 1.92 mg/kg in herb syrups, from 0.0 to 1.20 mg/kg in stewed fruit, and from 0.0 to 0.40 mg NaNO2/kg in honey. The study showed that higher levels of nitrates were present as a rule in vegetable juices. However, the found concentrations were not harmful to the health of children, although this is possible in the case of carrot juice, especially when kept at room temperature for 24 hours. PMID:2637478

  8. Ammonia from Iron(II) Reduction of Nitrite and the Strecker Synthesis: Do Iron(II) and Cyanide Interfere with Each Other?

    NASA Technical Reports Server (NTRS)

    Summers, David P.; Lerner, Narcinda; Chang, Sherwood (Technical Monitor)

    1996-01-01

    The question of whether the production of ammonia, from the reduction of nitrite by iron(II), is compatible with its use in the Strecker synthesis of amino acids, or whether the iron and the cyanide needed for the Strecker synthesis interfere with each other, is addressed. Results show that the presence of iron(II) appears to have little, or no, affect on the Strecker synthesis. The presence of cyanide does interfere with reduction of nitrite, but the reduction proceeds at cyanide/iron ratios of less than 4:1. At ratios of about 2:1 and less there is only a small effect. The two reactions can be combined to proceed in each other's presence, forming glycine from nitrite, Fe(+2), formaldehyde, and cyanide.

  9. NO2 adsorption on ultrathin theta-Al2O3 films: formation of nitrite and nitrate species.

    PubMed

    Ozensoy, Emrah; Peden, Charles H F; Szanyi, János

    2005-08-25

    Interaction of NO2 with an ordered theta-Al2O3/NiAl(100) model catalyst surface was investigated using temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The origin of the NO(x) uptake of the catalytic support (i.e., Al2O3) in a NO(x) storage catalyst is identified. Adsorbed NO2 is converted to strongly bound nitrites and nitrates that are stable on the model catalyst surface at temperatures as high as 300 and 650 K, respectively. The results show that alumina is not completely inert and may stabilize some form of NO(x) under certain catalytic conditions. The stability of the NO(x) formed by exposing the theta-Al2O3 model catalyst to NO2 adsorption increases in the order NO2 (physisorbed or N2O4) < NO2 (chemisorbed) < NO2- < NO3-. PMID:16853027

  10. Nitrate/nitrite chemistry in NaNO/sub 3/-KNO/sub 3/ melts

    SciTech Connect

    Nissen, D.A.; Meeker, D.E.

    1983-03-02

    By chemical analysis of samples taken under carefully controlled conditions, we have been able to show that the only reaction of any consequence that takes place in the equimolar binary NaNO/sub 3/-KNO/sub 3/ system over the temperature range 500-600/sup 0/C is represented by NO/sub 3//sup -/ ..-->..reverse arrow NO/sub 2//sup -/ + 1/2O/sub 2/. Over this temperature range there is no evidence of the formation of any anionic oxygen species such as oxide, peroxide, or superoxide at concentrations greater than 10/sup -5/ mol/kg. Equilibrium constants for the above reaction have been determined over the temperature range 500-600/sup 0/C. The standard free energy for this reaction (..delta..G/sup 0/ (kcal/mol) = 23000 + 20.6T) has been derived from the experimental data and is in good agreement with similar results for the single salts. A study of the kinetics of the oxidation of nitrite showed the rate of that reaction to be overall second order, first order with respect to both nitrite and oxygen. The rate constants have been measured from 400 to 500/sup 0/C, and from their temperature dependence the activation energy for the oxidation of nitrite was calculated: 26.4 kcal/mol.

  11. Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes

    Microsoft Academic Search

    V. Díaz; R. Ibáñez; P. Gómez; A. M. Urtiaga; I. Ortiz

    2011-01-01

    The viability of the electro-oxidation technology provided with boron doped diamond (BDD) electrodes for the treatment and reuse of the seawater used in a Recirculating Aquaculture System (RAS) was evaluated in this work.The influence of the applied current density (5–50 A m?2) in the removal of Total Ammonia Nitrogen (TAN), nitrite and chemical oxygen demand (COD) was analyzed observing that complete TAN

  12. Biotreatment of ammonia and butanal containing waste gases

    Microsoft Academic Search

    B. M. Weckhuysen; L. Vriens; H. Verachtert

    1994-01-01

    Abstract:The biological removal of ammonia and butanal in contaminated air was investigated by using, respectively, a laboratory-scale filter and a scrubber-filter combination. It was shown that ammonia can be removed with an elimination efficiency of 83% at a volumetric load of 100 m3·m–2·h–1 with 4–16?ppm of ammonia. During the experiment percolates were analysed for nitrate, nitrite, ammonium and pH. It

  13. Kinetics of nirS Expression (Cytochrome cd1 Nitrite Reductase) in Pseudomonas stutzeri during the Transition from Aerobic Respiration to Denitrification: Evidence for a Denitrification-Specific Nitrate- and Nitrite-Responsive Regulatory System

    PubMed Central

    Härtig, Elisabeth; Zumft, Walter G.

    1999-01-01

    After shifting an oxygen-respiring culture of Pseudomonas stutzeri to nitrate or nitrite respiration, we directly monitored the expression of the nirS gene by mRNA analysis. nirS encodes the 62-kDa subunit of the homodimeric cytochrome cd1 nitrite reductase involved in denitrification. Information was sought about the requirements for gene activation, potential regulators of such activation, and signal transduction pathways triggered by the alternative respiratory substrates. We found that nirS, together with nirT and nirB (which encode tetra- and diheme cytochromes, respectively), is part of a 3.4-kb operon. In addition, we found a 2-kb monocistronic transcript. The half-life of each of these messages was approximately 13 min in denitrifying cells with a doubling time of around 2.5 h. When the culture was subjected to a low oxygen tension, we observed a transient expression of nirS lasting for about 30 min. The continued transcription of the nirS operon required the presence of nitrate or nitrite. This anaerobically manifested N-oxide response was maintained in nitrate sensor (NarX) and response regulator (NarL) knockout strains. Similar mRNA stability and transition kinetics were observed for the norCB operon, encoding the NO reductase complex, and the nosZ gene, encoding nitrous oxide reductase. Our results suggest that a nitrate- and nitrite-responsive regulatory circuit independent of NarXL is necessary for the activation of denitrification genes. PMID:9864326

  14. Evidence for function overlapping of CymA and the cytochrome bc1 complex in the Shewanella oneidensis nitrate and nitrite respiration.

    PubMed

    Fu, Huihui; Jin, Miao; Ju, Lili; Mao, Yinting; Gao, Haichun

    2014-10-01

    Shewanella oneidensis is an important model organism for its versatility of anaerobic respiration. CymA, a cytoplasmic membrane-bound tetraheme c-type cytochrome, plays a central role in anaerobic respiration by transferring electrons from the quinone pool to a variety of terminal reductases. Although loss of CymA results in defect in respiration of many electron acceptors (EAs), a significant share of the capacity remains in general. In this study, we adopted a transposon random mutagenesis method in a cymA null mutant to identify substituent(s) of CymA with respect to nitrite and nitrate respiration. A total of 87 insertion mutants, whose ability to reduce nitrite was further impaired, were obtained. Among the interrupted genes, the petABC operon appeared to be the most likely candidate given the involvement of the cytochrome bc1 complex that it encodes in electron transport. Subsequent analyses not only confirmed that the complex and CymA were indeed functionally overlapping in nitrate/nitrite respiration but also revealed that both proteins were able to draw electrons from ubiquinone and menaquinone. Furthermore, we found that expression of the bc1 complex was affected by oxygen but not nitrate or nitrite and by global regulators ArcA and Crp in an indirect manner. PMID:24650148

  15. Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process

    SciTech Connect

    Muguercia, I.; Yang, G.; Ebadian, M.A. [Florida International Univ., Miami, FL (United States). Dept. of Mechanical Engineering; Lee, D.D.; Mattus, A.J.; Hunt, R.D. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.

  16. A comparison of the mutagenic effects of endogenous and exogenous nitrite on Neurospora crassa 

    E-print Network

    Chien, Yi-Ping

    1981-01-01

    electron transfer reactions, it was presumed that one or more intermediates is formed between nitrite and hydroxylamine at the +I oxidation state for the nitrogen atom. Nitroxyl (NOH), hyponitrite and nitrous oxide have been cons iaered as possible..., N-( I-Naphthyl) ethylenediamine. nitrite reductase (N! R) have been extensively studied. However, the confirmed nitrate assimilatory pathway which converts inorganic nitrogen v1a n1trate and ammonia to L-glutamate or glutamine 1s as follows: NO3...

  17. Airborne observations of ammonia and ammonium nitrate formation over Houston, Texas

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Neuman, J. A.; Bahreini, R.; Brock, C. A.; Middlebrook, A. M.; Wollny, A. G.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Fehsenfeld, F. C.

    2010-11-01

    Anthropogenic emissions of NOx (nitric oxide (NO) + nitrogen dioxide (NO2)), which in sunlight can be oxidized to form nitric acid (HNO3), can react with ammonia (NH3) to form ammonium nitrate particles. Ammonium nitrate formation was observed from the NOAA WP-3D aircraft over Houston during the 2006 Texas Air Quality Study with fast-response measurements of NH3, HNO3, particle composition, and particle size distribution. Typically, NH3 mixing ratios over the urban area ranged from 0.2 to 3 ppbv and were predominantly from area sources. No NH3 enhancements were observed in emission plumes from power plants. The few plumes with high NH3 levels from point source emissions that were sampled are analyzed in detail. While the paucity of NH3 data in emission inventories made point source identification difficult, one plume was traced to NH3 release from an industrial accident. NH3 mixing ratios in these plumes ranged from 5 to 80 ppbv. In these plumes, the NH3 enhancement correlated with a decrease in HNO3 mixing ratio and an increase in particulate NO3- concentration indicating ammonium nitrate formation. The ammonium nitrate aerosol mass budget in the plumes was analyzed to assess the quantitative agreement between the gas and aerosol phase measurements. The thermodynamic equilibrium between the gas and aerosol phase was examined for one flight by comparing the modeled dissociation constant for ammonium nitrate with NH3 and HNO3 measurements. The high levels of NH3 in these plumes shifted the equilibrium toward favorable thermodynamic conditions for the condensation of ammonium nitrate onto particles.

  18. Maternal characteristics associated with the dietary intake of nitrates, nitrites, and nitrosamines in women of child-bearing age: a cross-sectional study

    Microsoft Academic Search

    John S Griesenbeck; Jean D Brender; Joseph R Sharkey; Michelle D Steck; John C Huber Jr; Antonio A Rene; Thomas J McDonald; Paul A Romitti; Mark A Canfield; Peter H Langlois; Lucina Suarez

    2010-01-01

    BACKGROUND: Multiple N-nitroso compounds have been observed in animal studies to be both mutagenic and teratogenic. Human exposure to N-nitroso compounds and their precursors, nitrates and nitrites, can occur through exogenous sources, such as diet, drinking water, occupation, or environmental exposures, and through endogenous exposures resulting from the formation of N-nitroso compounds in the body. Very little information is available

  19. Semicarbazide-sensitive amine oxidase activity and total nitrite and nitrate concentrations in serum: novel biochemical markers for type 2 diabetes?

    Microsoft Academic Search

    Sandra Fernanda Nunes; Isabel Vitoria Figueiredo; Paulo João Soares; Nuria Espriu Costa; Maria Celeste Lopes; Maria Margarida Caramona

    2009-01-01

    The aim of this study was to evaluate the activity of semicarbazide-sensitive amine oxidase (SSAO) and the total nitrite and\\u000a nitrate (NO\\u000a x\\u000a ) concentrations in serum from type 2 diabetic patients and control subjects in order to evaluate if they could be used as\\u000a novel diabetic markers. We studied 38 type 2 diabetic patients and 35 control subjects. Serum

  20. Tumor necrosis factor-? and nitrite\\/nitrate responses during acute mastitis induced by Escherichia coli infection and endotoxin in dairy cows

    Microsoft Academic Search

    J. W Blum; H Dosogne; D Hoeben; F Vangroenweghe; H. M Hammon; R. M Bruckmaier; C Burvenich

    2000-01-01

    Concentrations of tumor necrosis factor-? (TNF-?) and of NOx (sum of nitrite and nitrate as indicators of endogenous nitric oxide production) in milk and blood plasma were measured in three mastitis models in dairy cows in early lactation. Escherichia coli P4:037 bacteria or endotoxin 0111:B4 were administered into both left quarters of 12 and 6 cows, respectively. Six of the

  1. Seasonal variation in denitrification and dissimilatory nitrate reduction to ammonia process rates and corresponding key functional genes along an estuarine nitrate gradient

    PubMed Central

    Smith, Cindy J.; Dong, Liang F.; Wilson, John; Stott, Andrew; Osborn, A. Mark; Nedwell, David B.

    2015-01-01

    This research investigated spatial-temporal variation in benthic bacterial community structure, rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes and abundances of corresponding genes and transcripts at three sites—the estuary-head, mid-estuary and the estuary mouth (EM) along the nitrate gradient of the Colne estuary over an annual cycle. Denitrification rates declined down the estuary, while DNRA rates were higher at the estuary head and middle than the EM. In four out of the six 2-monthly time-points, rates of DNRA were greater than denitrification at each site. Abundance of gene markers for nitrate-reduction (nitrate reductase narG and napA), denitrification (nitrite reductase nirS) and DNRA (DNRA nitrite reductase nrfA) declined along the estuary with significant relationships between denitrification and nirS abundance, and DNRA and nrfA abundance. Spatially, rates of denitrification, DNRA and corresponding functional gene abundances decreased along the estuary. However, temporal correlations between rate processes and functional gene and transcript abundances were not observed. PMID:26082763

  2. Fluidic automation of nitrate and nitrite bioassays in whole blood by dissolvable-film based centrifugo-pneumatic actuation.

    PubMed

    Nwankire, Charles E; Chan, Di-Sien S; Gaughran, Jennifer; Burger, Robert; Gorkin, Robert; Ducrée, Jens

    2013-01-01

    This paper demonstrates the full centrifugal microfluidic integration and automation of all liquid handling steps of a 7-step fluorescence-linked immunosorbent assay (FLISA) for quantifying nitrate and nitrite levels in whole blood within about 15 min. The assay protocol encompasses the extraction of metered plasma, the controlled release of sample and reagents (enzymes, co-factors and fluorescent labels), and incubation and detection steps. Flow control is implemented by a rotationally actuated dissolvable film (DF) valving scheme. In the valves, the burst pressure is primarily determined by the radial position, geometry and volume of the valve chamber and its inlet channel and can thus be individually tuned over an extraordinarily wide range of equivalent spin rates between 1,000 RPM and 5,500 RPM. Furthermore, the vapour barrier properties of the DF valves are investigated in this paper in order to further show the potential for commercially relevant on-board storage of liquid reagents during shelf-life of bioanalytical, ready-to-use discs. PMID:24064595

  3. Fluidic Automation of Nitrate and Nitrite Bioassays in Whole Blood by Dissolvable-Film Based Centrifugo-Pneumatic Actuation

    PubMed Central

    Nwankire, Charles E.; Chan, Di-Sien S.; Gaughran, Jennifer; Burger, Robert; Gorkin, Robert; Ducrée, Jens

    2013-01-01

    This paper demonstrates the full centrifugal microfluidic integration and automation of all liquid handling steps of a 7-step fluorescence-linked immunosorbent assay (FLISA) for quantifying nitrate and nitrite levels in whole blood within about 15 min. The assay protocol encompasses the extraction of metered plasma, the controlled release of sample and reagents (enzymes, co-factors and fluorescent labels), and incubation and detection steps. Flow control is implemented by a rotationally actuated dissolvable film (DF) valving scheme. In the valves, the burst pressure is primarily determined by the radial position, geometry and volume of the valve chamber and its inlet channel and can thus be individually tuned over an extraordinarily wide range of equivalent spin rates between 1,000 RPM and 5,500 RPM. Furthermore, the vapour barrier properties of the DF valves are investigated in this paper in order to further show the potential for commercially relevant on-board storage of liquid reagents during shelf-life of bioanalytical, ready-to-use discs. PMID:24064595

  4. Effects of dietary protein concentration on ammonia volatilization, nitrate leaching, and plant nitrogen uptake from dairy manure applied to lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This lysimeter experiment was designed to investigate the effects of dietary crude protein (CP) concentration on nitrate-N (NO3-N) and ammonia (NH3) losses from dairy manure applied to soil and manure N use for plant growth. Lactating dairy cows were fed diets with 16.7 (HighCP) or 14.8% (LowCP) cru...

  5. [An attempt to investigate the effect of magnesium ion supplements on changes in levels of nitrates and nitrites in selected pickled vegetables].

    PubMed

    Heród-Leszczy?ska, T; Miedzobrodzka, A

    1993-01-01

    The aim of this study was to examine the effect of magnesium ions on some changes in the nitrate reductase activity in the white headed cabbage as well as a practical application of the results obtained in vegetable souring. As experimental material were used: white and red headed cabbage, red beets and the same vegetable in the soured form. Vegetable souring was performed using a traditional method as well as a modified one, considering a supplement of magnesium chloride at various levels during the process of souring. The activity of nitrate reductase in the white headed cabbage was determined by the Jaworski method. In raw and soured vegetables the level of nitrates was determined by brucine method and that of nitrites by the Griess colorimetric method. A supplement of magnesium ions to the incubation mixture containing raw white cabbage resulted in an increased activity of the studied enzyme by 17.0-34.8% and was significant in all magnesium ions concentrations used. The introduction of adequate amounts of magnesium chloride to soured vegetable production resulted also in a significant decrease in the nitrate and nitrite levels. An organoleptic evaluation of soured vegetables made by a traditional method and by using a supplement high quality, although the smell of white headed cabbage and "beet acid" has slightly however, significantly deteriorated. PMID:7973399

  6. Role of nitrite in the induction of nitrate reductase activity in barley leaves

    SciTech Connect

    Aslam, M.; Huffaker, R.C.

    1986-04-01

    High levels of nitrate reductase activity (NRA) were induced in detached leaves of 8-day-old barley (Hordeum vulgare L.) seedlings when supplied with NO/sub 2//sup -/ in the induction solutions. At similar N flux, the level of the enzyme activity induced by NO/sub 2//sup -/ was about one-half of that induced by NO/sub 3//sup -/. Significant levels of NO/sub 3//sup -/ accumulated in NO/sub 2//sup -/-fed leaves. Traces of NO/sub 3//sup -/ (0.6%) were detected in solutions of reagent grade KNO/sub 2/. However, the amount of NO/sub 3//sup -/ absorbed from the NO/sub 2//sup -/ solutions was only one-tenth of that accumulated in the leaves during the induction period, showing the actual conversion of NO/sub 2//sup -/ to NO/sub 3//sup -/ within the leaf. When the NO/sub 3//sup -/ concentrations in the NO/sub 2//sup -/-fed leaves were plotted against NRA, a highly positive correlation was obtained. The results suggest that NO/sub 2//sup -/ induces NRA indirectly after being oxidized to NO/sub 3//sup -/ within the leaf.

  7. Adverse Effects of Ammonia on Nitrification Process: the Case of Chinese Shallow Freshwater Lakes

    Microsoft Academic Search

    Guoyuan Chen; Xiuyun Cao; Chunlei Song; Yiyong Zhou

    2010-01-01

    Nitrification is a process in which ammonia is oxidized to nitrite (NO2?) that is further oxidized to nitrate (NO3?). The relations between these two steps and ambient ammonia concentrations were studied in surface water of Chinese shallow\\u000a lakes with different trophic status. For the oxidations of both ammonia and NO2?, more eutrophic lakes generally showed significantly higher potential and actual

  8. Effect of nitrate and nitrite on sulfide production by two thermophilic, sulfate-reducing enrichments from an oil field in the North Sea.

    PubMed

    Kaster, Krista M; Grigoriyan, Alexander; Jenneman, Gary; Jennneman, Gary; Voordouw, Gerrit

    2007-05-01

    Thermophilic sulfate-reducing bacteria (tSRB) can be major contributors to the production of H(2)S (souring) in oil reservoirs. Two tSRB enrichments from a North Sea oil field, NS-tSRB1 and NS-tSRB2, were obtained at 58 degrees C with acetate-propionate-butyrate and with lactate as the electron donor, respectively. Analysis by rDNA sequencing indicated the presence of Thermodesulforhabdus norvegicus in NS-tSRB1 and of Archaeoglobus fulgidus in NS-tSRB2. Nitrate (10 mM) had no effect on H(2)S production by mid-log phase cultures of NS-tSRB1 and NS-tSRB2, whereas nitrite (0.25 mM or higher) inhibited sulfate reduction. NS-tSRB1 did not recover from inhibition, whereas sulfate reduction activity of NS-tSRB2 recovered after 500 h. Nitrite was also effective in souring inhibition and H(2)S removal in upflow bioreactors, whereas nitrate was similarly ineffective. Hence, nitrite may be preferable for souring prevention in some high-temperature oil fields because it reacts directly with sulfide and provides long-lasting inhibition of sulfate reduction. PMID:17245576

  9. A survey of nitrate and nitrite concentrations in conventional and organic-labeled raw vegetables at retail.

    PubMed

    Nuñez de González, Maryuri T; Osburn, Wesley N; Hardin, Margaret D; Longnecker, Michael; Garg, Harsha K; Bryan, Nathan S; Keeton, Jimmy T

    2015-05-01

    A national survey of the nitrate ( NO 3-) and nitrite ( NO 2-) concentrations in raw and highly consumed vegetables available at retail in the United States was conducted. A total of 194 samples of fresh broccoli, cabbage, celery, lettuce, and spinach categorized as conventional or organic by label were collected from 5 major cities in different geographic regions of the United States and analyzed to determine NO 3- and NO 2- concentrations. There were no differences in the mean NO 2- values of conventional compared with organic vegetables taken from the 5 metropolitan areas. However, significant differences in mean pairwise comparisons between some conventional and organic vegetables for NO 3- content were observed. The mean NO 2- concentration of both conventional and organic vegetables ranged between 0.1 and 1.2 mg/kg of fresh weight (FW) with the exception of conventional spinach that contained 8.0 mg/kg FW. Mean NO 3- contents of conventional broccoli, cabbage, celery, lettuce, and spinach were 394, 418, 1496, 851, and 2797 mg/kg FW, respectively, while their organic-labeled counterparts averaged 204, 552, 912, 844, and 1318 mg/kg FW. In most cases, organic vegetables were numerically lower in NO 3- content than their conventional counterparts. Based on survey results, the finding that low NO 3- levels were observed in some organic vegetables in different cities may warrant further study to determine if true differences exist, due to production practices, seasonal differences, and the magnitudes of those differences. Furthermore, the geographic differences in NO 3- content of vegetables may flaw estimates of daily NO 2- and NO 3- exposure. PMID:25850811

  10. Ammonia Conversion Characteristics in a Closed Recirculating Aquaculture System

    Microsoft Academic Search

    Guang-Yu Wang; Ji-xian Yang; Fang Ma; Lei Chen; Wei-Guo Li; Jingbo Guo

    2009-01-01

    Nitrification and denitrification were commonly used in the recirculating aquaculture system (RAS) to decrease the ammonia and nitrate concentration. The variation characteristics of nitrogenous compounds and microbiology in a closed RAS were studied with gradually increasing ammonia-nitrogen (NH4 +-N) concentration. The NH4 +-N was completely converted into nitrite nitrogen (NO2 --N) in 46 days, but the NO2 --N raised slowly

  11. Nitrate and Nitrite Variability at the Seafloor of an Oxygen Minimum Zone Revealed by a Novel Microfluidic In-Situ Chemical Sensor

    PubMed Central

    Yücel, Mustafa; Beaton, Alexander D.; Dengler, Marcus; Mowlem, Matthew C.; Sohl, Frank; Sommer, Stefan

    2015-01-01

    Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (?NOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ?NOx concentration, with 15.2 to 23.4 ?M (median=18.3 ?M); while at the 100 site ?NOx varied between 21.0 and 30.1 ?M over 40 hours (median = 25.1?M). The 170 m site had the highest median ?NOx level (25.8 ?M) with less variability (22.8 to 27.7 ?M). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 ?M in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics. PMID:26161958

  12. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) process

    SciTech Connect

    Mattus, A.J.; Lee, D.D.; Dillow, T.A.; Farr, L.L.; Loghry, S.L.; Pitt, W.W.; Gibson, M.R.

    1994-12-01

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new, low-temperature (50 to 60C) process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 to 99% of the nitrate can be readily converted. In this process, aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid which might function as its own waste form. The process may actually be able to utilize already contaminated aluminum scrap metal from various DOE sites to effect the conversion. The final, nearly nitrate-free ceramic-like product can be pressed and sintered like other ceramics. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 55% were obtained for the waste form produced, compared to an expected 35 to 50% volume increase if the Hanford supernate were grouted. Engineering data extracted from bench-top studies indicate that the process will be very economical to operate, and data were used to cost a batch, 1,200-kg NO{sub 3}/h plant for working off Hanford SST waste over 20 years. Their total process cost analysis presented in the appendix, indicates that between $2.01 to 2.66 per kilogram of nitrate converted will be required. Additionally, data on the fate of select radioelements present in solution are presented in this report as well as kinetic, operational, and control data for a number of experiments. Additionally, if the ceramic product functions as its own waste form, it too will offer other cost savings associated with having a smaller volume of waste form as well as eliminating other process steps such as grouting.

  13. Development of a new generation low cost treatment of ammonia for livestock effluents using anammox and nitritation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excess ammonia in livestock production is a global problem, and the use of conventional biological nitrogen (N) removal methods is expensive. We developed a new generation, low cost treatment system suitable for high ammonia livestock effluents that is based on the anaerobic ammonium oxidation (anam...

  14. Fate of Nitrate Acquired by the Tubeworm Riftia pachyptila

    PubMed Central

    Girguis, Peter R.; Lee, Raymond W.; Desaulniers, Nicole; Childress, James J.; Pospesel, Mark; Felbeck, Horst; Zal, Franck

    2000-01-01

    The hydrothermal vent tubeworm Riftia pachyptila lacks a mouth and gut and lives in association with intracellular, sulfide-oxidizing chemoautotrophic bacteria. Growth of this tubeworm requires an exogenous source of nitrogen for biosynthesis, and, as determined in previous studies, environmental ammonia and free amino acids appear to be unlikely sources of nitrogen. Nitrate, however, is present in situ (K. Johnson, J. Childress, R. Hessler, C. Sakamoto-Arnold, and C. Beehler, Deep-Sea Res. 35:1723–1744, 1988), is taken up by the host, and can be chemically reduced by the symbionts (U. Hentschel and H. Felbeck, Nature 366:338–340, 1993). Here we report that at an in situ concentration of 40 ?M, nitrate is acquired by R. pachyptila at a rate of 3.54 ?mol g?1 h?1, while elimination of nitrite and elimination of ammonia occur at much lower rates (0.017 and 0.21 ?mol g?1 h?1, respectively). We also observed reduction of nitrite (and accordingly nitrate) to ammonia in the trophosome tissue. When R. pachyptila tubeworms are exposed to constant in situ conditions for 60 h, there is a difference between the amount of nitrogen acquired via nitrate uptake and the amount of nitrogen lost via nitrite and ammonia elimination, which indicates that there is a nitrogen “sink.” Our results demonstrate that storage of nitrate does not account for the observed stoichiometric differences in the amounts of nitrogen. Nitrate uptake was not correlated with sulfide or inorganic carbon flux, suggesting that nitrate is probably not an important oxidant in metabolism of the symbionts. Accordingly, we describe a nitrogen flux model for this association, in which the product of symbiont nitrate reduction, ammonia, is the primary source of nitrogen for the host and the symbionts and fulfills the association's nitrogen needs via incorporation of ammonia into amino acids. PMID:10877768

  15. Ammonia sources and ammonium nitrate formation in the California South Coast Air Basin

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Neuman, J.; Bahreini, R.; Middlebrook, A. M.; Holloway, J. S.; Cai, C.; Kaduwela, A.; McKeen, S. A.; Parrish, D. D.; Ryerson, T. B.; Trainer, M.

    2011-12-01

    The South Coast Air Basin (SoCAB) of California is designated by the US Environmental Protection Agency (EPA) as being in non-attainment of the National Ambient Air Quality Standards (NAAQS) for both PM2.5 and PM10. Formation of fine aerosol nitrates (e.g., ammonium nitrate (NH4NO3)) from gas-phase ammonia (NH3) and nitric acid (HNO3) accounts for a significant fraction of the PM2.5 mass. Quantifying the sources of NH3 in the SoCAB is important for developing aerosol control strategies. Fast-time resolution observations of NH3, particulate ammonium (NH4+), and carbon monoxide (CO) made aboard the NOAA WP-3D aircraft during the CalNex 2010 campaign are used to quantify and compare the major NH3 sources to the SoCAB atmosphere: automobiles and dairy farms. From the automobile NH3:CO emission ratio inferred from the WP-3D observations and CO inventory data the NH3 automobile emissions in the SoCAB are estimated at 38 ± 15 metric tons day-1. Atmospheric mass fluxes are calculated for observed NH3 plumes from dairy farms to estimate the NH3 dairy farm emissions at 27 ± 14 to 120 ± 60 metric tons day-1. Comparison with two emission inventories show good agreement for the automobile NH3:CO emission ratio, however, both inventories under predict NH3 emissions from the dairy farms. The observations suggest that automobiles and dairy farms contributed similar amounts of NH3 to the SoCAB in May 2010. However, observed particle mass was greater downwind from dairy farms, where high NH3 mixing ratios from more concentrated sources shift the NH4NO3 equilibrium toward favorable thermodynamic conditions for the condensation of NH4NO3 onto particles.

  16. Occurrence of Nitrites in Soils. 

    E-print Network

    Fraps, G. S. (George Stronach); Sterges, A. J.

    1930-01-01

    in Table 5. The addition of 1 per cent of calcium carbonate to the cultures containing ammonium sulphate, caused a, decided increase in the production of both nitrous and nitric nitrogen. Addition of magnesium carbonate increased nitrite and nitrate... production as compared with ammonium sulphate alone, but compared with calcium carbonate nitrite production was less in two of the four soils, and nitrate production was less in three of the four soils. The production of nitrite nitrogen was affected...

  17. Changes in Benthic Denitrification, Nitrate Ammonification, and Anammox Process Rates and Nitrate and Nitrite Reductase Gene Abundances along an Estuarine Nutrient Gradient (the Colne Estuary, United Kingdom)

    Microsoft Academic Search

    Liang F. Dong; Cindy J. Smith; Sokratis Papaspyrou; Andrew Stott; A. Mark Osborn; David B. Nedwell

    2009-01-01

    Estuarine sediments are the location for significant bacterial removal of anthropogenically derived inorganic nitrogen, in particular nitrate, from the aquatic environment. In this study, rates of benthic denitrification (DN), dissimilatory nitrate reduction to ammonium (DNRA), and anammox (AN) at three sites along a nitrate concentration gradient in the Colne estuary, United Kingdom, were determined, and the numbers of functional genes

  18. Ammonia sources in the California South Coast Air Basin and their impact on ammonium nitrate formation

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Neuman, J. A.; Bahreini, R.; Middlebrook, A. M.; Holloway, J. S.; McKeen, S. A.; Parrish, D. D.; Ryerson, T. B.; Trainer, M.

    2012-04-01

    Observations from the NOAA WP-3D aircraft during CalNex in May and June 2010 are used to quantify ammonia (NH3) emissions from automobiles and dairy facilities in the California South Coast Air Basin (SoCAB) and assess their impact on particulate ammonium nitrate (NH4NO3) formation. These airborne measurements in the SoCAB are used to estimate automobile NH3 emissions, 62 ± 24 metric tons day-1, and dairy facility NH3 emissions, 33 ± 16 to 176 ± 88 metric tons day-1. Emission inventories agree with the observed automobile NH3:CO emission ratio, but substantially underpredict dairy facility NH3 emissions. Conditions observed downwind of the dairy facilities were always thermodynamically favorable for NH4NO3 formation due to high NH3 mixing ratios from the concentrated sources. Although automobile emissions generated lower NH3 mixing ratios, they also can thermodynamically favor NH4NO3 formation. As an aerosol control strategy, addressing the dairy NH3 source would have the larger impact on reducing SoCAB NH4NO3 formation.

  19. Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes.

    PubMed

    Díaz, V; Ibáñez, R; Gómez, P; Urtiaga, A M; Ortiz, I

    2011-01-01

    The viability of the electro-oxidation technology provided with boron doped diamond (BDD) electrodes for the treatment and reuse of the seawater used in a Recirculating Aquaculture System (RAS) was evaluated in this work. The influence of the applied current density (5-50 A m(-2)) in the removal of Total Ammonia Nitrogen (TAN), nitrite and chemical oxygen demand (COD) was analyzed observing that complete TAN removal together with important reductions of the other considered contaminants could be achieved, thus meeting the requirements for reuse of seawater in RAS systems. TAN removal, mainly due to an indirect oxidation mechanism was described by a second order kinetics while COD and nitrite removal followed zero-th order kinetics. The values of the kinetic constants for the anodic oxidation of each compound were obtained as a function of the applied current density (k(TAN) = 7.86 × 10(-5) · exp(6.30 × 10(-2) J); kNO2 = 3.43 × 10(-2) J; k(COD) = 1.35 × 10(-2) J). The formation of free chlorine and oxidation by-products, i.e., trihalomethanes (THMs) was followed along the electro-oxidation process. Although a maximum concentration of 1.7 mg l(-1) of total trihalomethanes was detected an integrated process combining electrochemical oxidation in order to eliminate TAN, nitrite and COD and adsorption onto activated carbon to remove the residual chlorine and THMs is proposed, as an efficient alternative to treat and reuse the seawater in fish culture systems. Finally, the energy consumption of the treatment has been evaluated. PMID:20832837

  20. The signal transducer P(II) and bicarbonate acquisition in Prochlorococcus marinus PCC 9511, a marine cyanobacterium naturally deficient in nitrate and nitrite assimilation.

    PubMed

    Palinska, Katarzyna A; Laloui, Wassila; Bédu, Sylvie; Loiseaux-de Goër, Susan; Castets, Anne Marie; Rippka, Rosmarie; Tandeau de Marsac, Nicole

    2002-08-01

    The amino acid sequence of the signal transducer P(II) (GlnB) of the oceanic photosynthetic prokaryote Prochlorococcus marinus strain PCC 9511 displays a typical cyanobacterial signature and is phylogenetically related to all known cyanobacterial glnB genes, but forms a distinct subclade with two other marine cyanobacteria. P(II) of P. marinus was not phosphorylated under the conditions tested, despite its highly conserved primary amino acid sequence, including the seryl residue at position 49, the site for the phosphorylation of the protein in the cyanobacterium Synechococcus PCC 7942. Moreover, P. marinus lacks nitrate and nitrite reductase activities and does not take up nitrate and nitrite. This strain, however, expresses a low- and a high-affinity transport system for inorganic carbon (C(i); K(m,app) 240 and 4 micro M, respectively), a result consistent with the unphosphorylated form of P(II) acting as a sensor for the control of C(i) acquisition, as proposed for the cyanobacterium Synechocystis PCC 6803. The present data are discussed in relation to the genetic information provided by the P. marinus MED4 genome sequence. PMID:12177334

  1. Effects on inorganic nitrogen compounds release of contaminated sediment treatment with in situ calcium nitrate injection.

    PubMed

    Liu, Tongzhou; Yuan, Jiajia; Dong, Wenyi; Wu, Huacai; Wang, Hongjie

    2015-01-01

    Notable releases of nitrate, nitrite, and ammonia are often observed in contaminated sediment treatment works implementing in situ calcium nitrate injection. In order to provide extended information for making best decision of employing this in situ sediment remediation technology, in this study the releases of nitrate, nitrite, and ammonia from the sediment after the calcium nitrate addition operation was investigated in column setups designed to simulate the scenarios of a stagnant water (e.g., a pound or small lake) and a tidal-influenced water (e.g., a river mouth), respectively. Comparison with published aquatic toxicity data or authorized criteria was conducted to assess if there is any toxic effect that might be induced. Along with the vigorous N2 emission due to the denitrification reactions which occurred in the treated sediment, external loaded nitrate, intermediately produced nitrite, and indigenous ammonia in the sediment showed being mobilized and released out. Their promoted release and fast buildup in the overlying water to an excessive level probably cause toxic effects to sensitive freshwater living species. Among them, the potential ecological risk induced by the promoted sediment ammonia release is the greatest, and cautions shall be raised for applying the calcium nitrate injection in ammonia-rich sediments. The caused impacts shall be less violent in a tidal-influenced water body, and comparatively, the continuous and fast accumulation of the released inorganic nitrogen compounds in a stagnant water body might impose severer influences to the ecosystem until being further transferred to less harmful forms. PMID:25135170

  2. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed

    Kerber, N L; Cardenas, J

    1982-06-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  3. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  4. A novel FIA configuration for the simultaneous determination of nitrate and nitrite and its use for monitoring an urban waste water treatment plant based on N\\/D criteria

    Microsoft Academic Search

    D Gabriel; J Baeza; F Valero; J Lafuente

    1998-01-01

    A novel FIA configuration for the simultaneous determination of nitrate and nitrite, and its automation for monitoring an urban waste water treatment plant (WWTP) based on nitrification\\/denitrification criteria, are proposed. The detection range achieved is 0.25–50mgl?1 for nitrate and 0.05–5mgl?1 for nitrite (0.056–11.29mg N–NO?3 l?1 and 0.015–1.52mg N–NO?2 l?1). The maximum sampling frequency is 180 samples\\/day and the Relative Standard

  5. OBSERVABLE INDICATORS OF THE SENSITIVITY OF PM 2.5 NITRATE TO EMISSION REDUCTIONS, PART II: SENSITIVITY TO ERRORS IN TOTAL AMMONIA AND TOTAL NITRATE OF THE CMAQ-PREDICTED NONLINEAR EFFECT OF SO 2 EMISSION REDUCTIONS

    EPA Science Inventory

    The inorganic aerosol system of sulfate, nitrate, and ammonium can respond nonlinearly to changes in precursor sulfur dioxide (SO2) emissions. The potential increase in nitrate, when sulfate is reduced and the associated ammonia is released, can negate the sulfate mass...

  6. AMMONIA

    EPA Science Inventory

    This document summarizes the available information on ammonia as it relates to its effects on man and his environment. Ammonia is a ubiquitous substance and is known widely as a household cleaning agent and as a fertilizer. It plays an important role in the nitrogen cycle--in the...

  7. Dairy slurry application method impacts ammonia emission and nitrate in no-till corn silage.

    PubMed

    Powell, J M; Jokela, W E; Misselbrook, T H

    2011-01-01

    Reducing ammonia (NH3) emissions through slurry incorporation or other soil management techniques may increase nitrate (NO3) leaching, so quantifying potential losses from these alternative pathways is essential to improving slurry N management. Slurry N losses, as NH3 or NO3 were evaluated over 4 yr in south-central Wisconsin. Slurry (i.e., dairy cow [Bos taurus] manure from a storage pit) was applied each spring at a single rate (-75 m3 ha(-1)) in one of three ways: surface broadcast (SURF), surface broadcast followed by partial incorporation using an aerator implement (AER-INC), and injection (INJ). Ammonia emissions were measured during the 120 h following slurry application using chambers, and NO3 leaching was monitored in drainage lysimeters. Yield and N3 uptake of oat (Avena sativa L.), corn (Zea mays L.), and winter rye (Secale cereale L.) were measured each year, and at trial's end soils were sampled in 15- to 30-cm increments to 90-cm depth. There were significant tradeoffs in slurry N loss among pathways: annual mean NH3-N emission across all treatments was 5.3, 38.3, 12.4, and 21.8 kg ha(-1) and annual mean NO3-N leaching across all treatments was 24.1, 0.9, 16.9, and 7.3 kg ha' during Years 1, 2, 3, and 4, respectively. Slurry N loss amounted to 27.1% of applied N from the SURF treatment (20.5% as NH3-N and 6.6% as NO,-N), 23.3% from AER-INC (12.0% as NH3-N and 11.3% as NO3-N), and 9.19% from INJ (4.4% as NH3-N and 4.7% as NO3-N). Although slurry incorporation decreased slurry N loss, the conserved slurry N did not significantly impact crop yield, crop N uptake or soil properties at trial's end. PMID:21520745

  8. Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at Station ALOHA

    Microsoft Academic Search

    John E. Dore

    1996-01-01

    We measured chemoautotrophic bacterial nitrification rates in the lower euphotic zone at the North Pacific Time-series Station ALOHA using low-level chemical assays and inhibitor-sensitive radiocarbon uptake experiments. These measurements were compared with independent nitrification rate estimates based on nitrous oxide distributions, nitrate assimilation rates based on nitrate changes during an in situ incubation, and historical estimates of nitrification and nitrate

  9. Diversity and Abundance of Nitrate Reductase Genes (narG and napA), Nitrite Reductase Genes (nirS and nrfA), and Their Transcripts in Estuarine Sediments?

    PubMed Central

    Smith, Cindy J.; Nedwell, David B.; Dong, Liang F.; Osborn, A. Mark

    2007-01-01

    Estuarine systems are the major conduits for the transfer of nitrate from agricultural and other terrestrial-anthropogenic sources into marine ecosystems. Within estuarine sediments some microbially driven processes (denitrification and anammox) result in the net removal of nitrogen from the environment, while others (dissimilatory nitrate reduction to ammonium) do not. In this study, molecular approaches have been used to investigate the diversity, abundance, and activity of the nitrate-reducing communities in sediments from the hypernutrified Colne estuary, United Kingdom, via analysis of nitrate and nitrite reductase genes and transcripts. Sequence analysis of cloned PCR-amplified narG, napA, and nrfA gene sequences showed the indigenous nitrate-reducing communities to be both phylogenetically diverse and also divergent from previously characterized nitrate reduction sequences in soils and offshore marine sediments and from cultured nitrate reducers. In both the narG and nrfA libraries, the majority of clones (48% and 50%, respectively) were related to corresponding sequences from delta-proteobacteria. A suite of quantitative PCR primers and TaqMan probes was then developed to quantify phylotype-specific nitrate (narG and napA) and nitrite reductase (nirS and nrfA) gene and transcript numbers in sediments from three sites along the estuarine nitrate gradient. In general, both nitrate and nitrite reductase gene copy numbers were found to decline significantly (P < 0.05) from the estuary head towards the estuary mouth. The development and application, for the first time, of quantitative reverse transcription-PCR assays to quantify mRNA sequences in sediments revealed that transcript numbers for three of the five phylotypes quantified were greatest at the estuary head. PMID:17400770

  10. Abundance of ammonia oxidizing bacteria and archaea under long-term maize cropping systems.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrification involves the oxidation of ammonium and is an important component of the overall N cycle. Nitrification occurs in two steps; first by oxidizing ammonium to nitrite, and then to nitrate. The first step is often the rate limiting step. Until recently ammonia-oxidizing bacteria were though...

  11. Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population

    Microsoft Academic Search

    T. Tamme; M. Reinik; M. Roasto; K. Juhkam; T. Tenno; A. Kiis

    2006-01-01

    The content of nitrates were determined in 1349 samples of vegetables and ready-made food in 2003–2004 as a part of the Estonian food safety monitoring programme and the Estonian Science Foundation grant research activities. The results of manufacturers’ analyses carried out for internal monitoring were included in the study. The highest mean values of nitrates were detected in dill, spinach,

  12. Catalytic Reduction of Nitrate and Nitrite on Pt–Cu\\/Al 2O 3 Catalysts in Aqueous Solution: Role of the Interaction between Copper and Platinum in the Reaction

    Microsoft Academic Search

    Florence Epron; Florence Gauthard; Carole Pinéda; Jacques Barbier

    2001-01-01

    Bimetallic platinum copper catalysts were prepared by deposition of copper on a parent monometallic platinum catalyst. Two techniques were employed favoring the deposition of copper either on the parent metal or on the support. The activity and selectivity of copper and platinum monometallic catalysts are compared to those of their bimetallic counterparts. Copper reduces nitrates and nitrites according to a

  13. Synthesis of nano-structured polypyrrole\\/copper electrodes for nitrate and nitrite electroreductionReport submitted to the 5th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN, Hanoi, 9–12 November 2010

    Microsoft Academic Search

    Thi Phuong Thoa Nguyen; Viet Thinh Nguyen; Nhat Nguyen Bui; Duong Kim Bao Do; Anh Minh Pham

    2010-01-01

    Nanostructured polypyrrole film was synthesized onto a copper electrode in solutions of oxalic and salicylic acids and their buffers. The electrooxidation of pyrrole to form polypyrrole film and the electroreduction of nitrate and nitrite ions at synthesized Ppy modified copper electrodes (Ppy\\/Cu) in potassium chloride aqueous solutions were studied using chronoamperometry. The nanoporous structure of the synthesized Ppy films was

  14. The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge.

    PubMed

    Peng, Lai; Ni, Bing-Jie; Ye, Liu; Yuan, Zhiguo

    2015-04-15

    Both nitrite [Formula: see text] and dissolved oxygen (DO) play important roles in nitrous oxide (N2O) production by ammonia oxidizing bacteria (AOB). However, few studies focused on the combined effect of them on N2O production by AOB as well as the corresponding mechanisms. In this study, N2O production by an enriched nitrifying sludge, consisting of both AOB and nitrite-oxidizing bacteria (NOB), was investigated under various [Formula: see text] and DO concentrations. At each investigated DO level, both the biomass specific N2O production rate and the N2O emission factor (the ratio between N2O nitrogen emitted and the ammonium nitrogen converted) increased as [Formula: see text] concentration increased from 3 mg N/L to 50 mg N/L. However, at each investigated [Formula: see text] level, the maximum biomass specific N2O production rate occurred at DO of 0.85 mg O2/L, while the N2O emission factor decreased as DO increased from 0.35 to 3.5 mg O2/L. The analysis of the process data using a mathematical N2O model incorporating both the AOB denitrification and hydroxylamine (NH2OH) oxidation pathways indicated that the contribution of AOB denitrification pathway increased as [Formula: see text] concentration increased, but decreased as DO concentration increased, accompanied by a corresponding change in the contribution of NH2OH oxidation pathway to N2O production. The AOB denitrification pathway was predominant in most cases, with the NH2OH oxidation pathway making a comparable contribution only at high DO level (e.g. 3.5 mg O2/L). PMID:25644626

  15. Presence of Two Different Active nirS Nitrite Reductase Genes in a Denitrifying Thauera sp. from a High-Nitrate-Removal-Rate Reactor

    PubMed Central

    Etchebehere, Claudia; Tiedje, James

    2005-01-01

    The nirS nitrite reductase genes were studied in two strains (strains 27 and 28) isolated from two denitrifying reactors and characterized as Thauera according to their 16S rRNA gene sequences. Strain 28 contains a single nirS sequence, which is related to the nirS of Thauera mechernichensis, and strain 27 contains two nirS sequences; one is similar to the nirS sequence from Thauera mechernichensis (gene 2), but the second one (gene 8) is from a separate clade with nirS from Pseudomonas stutzeri, Azoarcus species, Alcaligenes faecalis, and other Thauera species. Both genes were expressed, but gene 8 was constitutively expressed while gene 2 was positively regulated by nitrate. PMID:16151169

  16. Nitrate to ammonia and ceramic (NAC) bench scale stabilization studies. Final technical progress report, May 1995--May 1996

    SciTech Connect

    NONE

    1996-05-01

    The Department of Energy (DOE) has large quantities of sodium-nitrate based liquid wastes. Around 1 billion liters of high level waste tank supernatant are present at Hanford, Savannah River Plant, Rocky Flats Plant, Idaho National Engineering Laboratory, and Oak Ridge National Laboratory. The largest quantity of these wastes is in the 149 single shell tanks at Hanford which hold up to 1 million gallons each. These tank waste are typically 4 to 5 molar in nitrate and contain radionuclides, various salts, and heavy metals. INEL high-level waste tank supernatant contains about 0.7 and 0.6 grams per liter of chromium and mercury, respectively. SRP high-level waste tank supernatant contains about 0.2 g/L of chromium. Other heavy metals could well be present at lower levels in theses tank wastes. The major components present in these wastes are summarized in Appendix A. These wastes are currently regulated and managed by the DOE. Under the Federal Facility Compliance Act (FFCA) DOE is subject to RCRA, which would apply to these tank supernatants. Stabilization of this waste is difficult because nitrates are very mobile. Additionally, vitrification of these wastes produces large quantities of hard-to-manage NO{sub x} emissions. The conversion of sodium nitrate to ammonia is discussed.

  17. Interaction of leaves and roots of Ruppia maritima in the uptake of phosphate, ammonia and nitrate

    Microsoft Academic Search

    G. B. Thursby; M. M. Harlin

    1984-01-01

    Leafy shoots of Ruppia maritima were incubated in two-compartment chambers, with the roots in one compartment and the leaves in the other. Rates of phosphate and ammonia uptake were compared when roots and leaves were supplied with these nutrients separately and simultaneously. Uptake of phosphate and ammonia by leaves was reduced when these nutrients were supplied to the roots, but

  18. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    USGS Publications Warehouse

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in "mixed" samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant. ?? 2007 American Chemical Society.

  19. Oxygen isotopes in nitrite: analysis, calibration, and equilibration.

    PubMed

    Casciotti, Karen L; Böhlke, John Karl; McIlvin, Matthew R; Mroczkowski, Stanley J; Hannon, Janet E

    2007-03-15

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in "mixed" samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant. PMID:17295443

  20. Start-up and bacterial communities of single-stage nitrogen removal using anammox and partial nitritation (SNAP) for treatment of high strength ammonia wastewater.

    PubMed

    Zhang, Jianbing; Zhou, Jian; Han, Yi; Zhang, Xiaoguang

    2014-10-01

    In this study, a lab-scale sequencing batch biofilm reactor (SBBR) was used to start up the single-stage nitrogen removal system using anammox and partial nitritation (SNAP) process seeding from surplus activated sludge. The volumetric nitrogen loading rate (vNLR) was firstly 0.075 kg N m(-3) d(-1) and then gradually increased to 0.60 kg N m(-3) d(-1). A maximal total nitrogen (TN) removal rate of 0.54 kg N m(-3) d(-1) was achieved by the SNAP process after 132 days operation with NH4(+)-N and TN removal efficiency of 99.4% and 90.5%, respectively. This reactor may have applications for the SNAP process treating high strength ammonia wastewater. And dewatered surplus activated sludge was recommended as the seed sludge for engineering applications. The dominant bacterial strains were Xanthomonas campestris, Nitrosomonas europaea and Ignavibacterium album, corresponding to the percentage of 24%, 22% and 20%, respectively, based on the 16S rDNA amplicon pyrosequencing of the SNAP sludge. PMID:25105271

  1. Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Jiang, Hongchen; Wu, Geng; Hou, Weiguo; Sun, Yongjuan; Lai, Zhongping; Dong, Hailiang

    2012-12-01

    Nitrite-dependent anaerobic methane-oxidizing (n-damo) bacteria and anaerobic ammonia oxidizing (anammox) bacteria are two groups of microorganisms involved in global carbon and nitrogen cycling. In order to test whether the n-damo and anammox bacteria co-occur in natural saline environments, the DNA and cDNA samples obtained from the surficial sediments of two saline lakes (with salinity of 32 and 84 g/L, respectively) on the Tibetan Plateau were PCR-amplified with the use of anammox- and n-damo-specific primer sets, followed by clone library construction and phylogenetic analysis. DNA and cDNA-based clones affiliated with n-damo and anammox bacteria were successfully retrieved from the two samples, indicating that these two groups of bacteria can co-occur in natural saline environments with salinity as high as 84 g/L. Our finding has great implications for our understanding of the global carbon and nitrogen cycle in nature.

  2. Enhanced activity and selectivity of carbon nanofiber supported Pd catalysts for nitrite reduction.

    PubMed

    Shuai, Danmeng; Choe, Jong Kwon; Shapley, John R; Werth, Charles J

    2012-03-01

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. PMID:22295991

  3. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria

    E-print Network

    Konhauser, Kurt

    Reduction by Denitrifying Bacteria Nicole Klueglein,a Fabian Zeitvogel,b York-Dieter Stierhof,c Matthias and microoxic conditions. While most of the mix- otrophic nitrate-reducing Fe(II)-oxidizing bacteria become assemblage of Fe(II)-oxidizing bacteria in nature and compli- cates our ability to delineate microbial Fe

  4. Bacterial nitrate assimilation: gene distribution and regulation.

    PubMed

    Luque-Almagro, Víctor M; Gates, Andrew J; Moreno-Vivián, Conrado; Ferguson, Stuart J; Richardson, David J; Roldán, M Dolores

    2011-12-01

    In the context of the global nitrogen cycle, the importance of inorganic nitrate for the nutrition and growth of marine and freshwater autotrophic phytoplankton has long been recognized. In contrast, the utilization of nitrate by heterotrophic bacteria has historically received less attention because the primary role of these organisms has classically been considered to be the decomposition and mineralization of dissolved and particulate organic nitrogen. In the pre-genome sequence era, it was known that some, but not all, heterotrophic bacteria were capable of growth on nitrate as a sole nitrogen source. However, examination of currently available prokaryotic genome sequences suggests that assimilatory nitrate reductase (Nas) systems are widespread phylogenetically in bacterial and archaeal heterotrophs. Until now, regulation of nitrate assimilation has been mainly studied in cyanobacteria. In contrast, in heterotrophic bacterial strains, the study of nitrate assimilation regulation has been limited to Rhodobacter capsulatus, Klebsiella oxytoca, Azotobacter vinelandii and Bacillus subtilis. In Gram-negative bacteria, the nas genes are subjected to dual control: ammonia repression by the general nitrogen regulatory (Ntr) system and specific nitrate or nitrite induction. The Ntr system is widely distributed in bacteria, whereas the nitrate/nitrite-specific control is variable depending on the organism. PMID:22103536

  5. Toxicity of Nitrite to Fish: A Review

    Microsoft Academic Search

    William M. Lewis Jr; Donald P. Morris

    1986-01-01

    Nitrite, an intermediate in the oxidation of ammonium to nitrate, changes hemoglobin to methemoglobin, which does not carry oxygen; nitrite may thus cause anoxia in fish and other aquatic organisms. The published literature on nitrite toxicity to fish, which consists of about 40 papers, shows that the ratio of the 24-h LC50 (concentration lethal to half of the test organisms

  6. Approach to the atmospheric chemistry of methyl nitrate and methylperoxy nitrite. Chemical mechanisms of their formation and decomposition reactions in the gas phase.

    PubMed

    Arenas, Juan F; Avila, Francisco J; Otero, Juan C; Pelaez, Daniel; Soto, Juan

    2008-01-17

    Potential energy surfaces, minimum energy reaction paths, minima, transition states, reaction barriers, and conical intersections for the most important atmospheric reactions of methyl nitrate (CH(3)ONO(2)) and methylperoxy nitrite (C(3)HOONO) on the electronic ground state have been studied (i) with the second-order multiconfigurational perturbation theory (CASPT2) by computation of numerical energy gradients for stationary points and (ii) with the density functional theory (DFT). The proposed mechanism explains the conversion of unreactive alkyl peroxy radicals into alkoxy radicals: CH(3)O(2) + NO <=> CH(3)OONO <=> CH(3)O + NO(2) left arrow over right arrow CH(3)ONO(2). Additionally, several discrepancies found in the comparison of the results obtained from the two employed approaches are analyzed. CASPT2 predicts that all dissociation reactions into radicals occur without an extra exit energy barrier. In contrast, DFT finds transition states for the dissociations of cis- and trans-methylperoxy nitrite into CH(3)O + NO(2). Furthermore, multiconfigurational methods [CASPT2 and complete active space SCF (CAS-SCF)] predict the isomerization of CH3ONO2 to CH3OONO to occur in a two-step mechanism: (i) CH(3)ONO(2) --> CH(3)O + NO(2); and (ii) CH(3)O + NO(2) --> CH(3)OONO. The reason for this has to do with the coupling of the ground electronic state with the first excited state. Therefore, it is demonstrated that DFT methods based on single determinantal wave functions give an incorrect picture of the aforementioned reaction mechanisms. PMID:18085754

  7. Does a glycine sodium nitrite crystal exist?

    E-print Network

    Dhavskar, Kiran T

    2015-01-01

    The glycine sodium nitrite crystal reported by Khandpekar and Pati in the paper entitled, Synthesis and characterisation of glycine sodium nitrite crystals having non linear optical behaviour, Opt Commun 285, 2012 288-293 is actually gamma-glycine. In addition, we show that glycine barium ammonium nitrate, glycine sodium zinc sulfate, glycine barium calcium nitrate, glycine acetamide and glycine dimer are dubious crystals.

  8. Characterization of nitrite uptake in Arabidopsis thaliana: evidence for a nitrite-specific transporter.

    PubMed

    Kotur, Zorica; Siddiqi, Yaeesh M; Glass, Anthony D M

    2013-10-01

    Nitrite-specific plasma membrane transporters have been described in bacteria, algae and fungi, but there is no evidence of a nitrite-specific plasma membrane transporter in higher plants. We have used 13NO2(-) to characterize nitrite influx into roots of Arabidopsis thaliana. Hydroponically grown Arabidopsis mutants, defective in high-affinity nitrate transport, were used to distinguish between nitrate and nitrite uptake by means of the short-lived tracers 13NO2(-) and 13NO3(-). This approach allowed us to characterize a nitrite-specific transporter. The Atnar2.1-2 mutant, lacking a functional high-affinity nitrate transport system, is capable of nitrite influx that is constitutive and thermodynamically active. The corresponding fluxes conform to a rectangular hyperbola, exhibiting saturation at concentrations above 200 ?M (Km = 185 ?M and Vmax = 1.89 ?mol g(-1) FW h(-1)). Nitrite influx via the putative nitrite transporter is not subject to competitive inhibition by nitrate but is downregulated after 6 h exposure to ammonium. These results signify the existence of a nitrite-specific transporter in Arabidopsis. This transporter enables Atnar2.1-2 mutants, which are incapable of sustained growth on low nitrate, to maintain significant growth on low nitrite. In wild-type plants, this nitrite flux may increase nitrogen acquisition and also participate in the induction of genes specifically induced by nitrite. PMID:23763619

  9. H2O2/nitrite-induced post-translational modifications of human hemoglobin determined by mass spectrometry: redox regulation of tyrosine nitration and 3-nitrotyrosine reduction by antioxidants.

    PubMed

    Chen, Hauh-Jyun Candy; Chang, Chia-Ming; Lin, Wen-Peng; Cheng, Dar-Long; Leong, Mei-I

    2008-01-25

    Covalent modifications of proteins by endogenous reactive nitrogen oxide species lead to cytotoxic effects that are implicated in diseases associated with chronic infections and inflammation. Tyrosine nitration is a major post-translational modification of proteins by reactive nitrogen oxide species. Recent studies suggest that nitrotyrosine is not a permanent protein modification. We previously demonstrated that lipoyl dehydrogenase is capable of converting 3-nitrotyrosine into 3-aminotyrosine in the presence of certain reducing agents. In this study, we compared the abilities of various hemoproteins, hemin, and the cobalt-containing cofactor cyanocobalamin to mediate H(2)O(2)/nitrite-dependent tyrosine nitration and found that these hemoproteins and metal-containing cofactors also catalyzed the reduction of 3-nitrotyrosine to various extents in the presence of thiol reducing agents or ascorbate. The H(2)O(2)/nitrite-induced post-translational modifications of human hemoglobin identified by nanoLC/nanospray ionization tandem mass spectrometric analysis of the tryptic digest include nitration of tyrosine and tryptophan, as well as oxidation of methionine and cysteine residues. Nitration of human hemoglobin by H(2)O(2)/nitrite was detected on Tyr24 and Tyr42 (alpha-chain) and on Tyr130 and Trp15 (beta-chain) in the alphabeta-dimer. Oxidation of methionine and cysteine residues was also observed. Furthermore, hemoglobin also catalyzed nitro reduction of 3-nitrotyrosine to form 3-aminotyrosine, at Tyr24 in the alpha-chain peptide of human Hb in the presence of ascorbate. The enhanced peroxidase activity of nitrated hemoglobin can be reversed by the antioxidant ascorbate. These results suggest a possible in vivo pathway for hemoglobin contributing to denitration of nitrated proteins through redox regulation. PMID:18161731

  10. Signal-Dependent Phosphorylation of the Membrane-Bound NarX Two-Component Sensor-Transmitter Protein of Escherichia coli: Nitrate Elicits a Superior Anion Ligand Response Compared to Nitrite

    Microsoft Academic Search

    ANGELA I. LEE; ASUNCION DELGADO; ROBERT P. GUNSALUS

    1999-01-01

    The Nar two-component regulatory system, consisting of the dual sensor-transmitters NarX and NarQ and the dual response regulators NarL and NarP, controls the expression of various anaerobic respiratory pathway genes and fermentation pathway genes. Although both NarX and NarQ are known to detect the two environ- mental signals nitrate and nitrite, little is known regarding the sensitivity and selectivity of

  11. FLUJOS DE AMONIO, NITRITO, NITRATO Y FOSFATO A TRAVES DE LA INTERFASE SEDIMENTO-AGUA, EN UNA LAGUNA TROPICAL AMMONIUM, NITRITE, NITRATE AND PHOSPHATE FLUXES ACROSS THE SEDIMENT-WATER INTERFACE IN A TROPICAL LAGOON

    Microsoft Academic Search

    David Valdés; Elizabeth Real

    The sediments of Chelem Lagoon, on the coast of the Gulf of Mexico, north of the Yucatán Peninsula, were studied measuring the nutrient concentrations in the interstitial water. Ihe average values were: ammonium 459 f 281 PM, peaking up to 1,045 PM; nitrite 1.8 f 1.8 PM, with a maxi- mum of 5.3 PM; nitrate 8.2 f 10.3 PM, reaching

  12. Convective heat transfer behavior of the product slurry of the nitrate to ammonia and ceramic (NAC) process

    SciTech Connect

    Muguercia, I.; Yang, G.; Ebadian, M.A. [Florida International Univ., Miami, FL (United States). Dept. of Mechanical Engineering; Lee, D.D.; Mattus, A.J.; Hunt, R.D. [Oak Ridge National Lab., TN (United States)

    1995-12-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing liquid form low level radioactive waste (LLW). An experimental study has been conducted to measure the heat transfer properties of the NAC product slurry. The results indicate that the heat transfer coefficient for both concentration slurries is much higher than that of pure water, which may be due to the higher conductivity of the gibbsite powder. For the 20% concentration slurry, the heat transfer coefficient increased as the generalized Reynolds number and slurry temperature increased. The heat transfer coefficient of 40% is a function of the Reynolds number only. The test results also indicate that the thermal entrance region can be observed only when the generalized Reynolds number is smaller than 1,000. The correlation equation is also developed based on the experimental data in this paper.

  13. On the isotopic composition of the ammonia and the nitrate ion in rain

    Microsoft Academic Search

    Erik Eriksson

    1958-01-01

    It is pointed out that rain does not remove all the nitrogen compounds ; from the air mass. Both ammonia and nitrogen oxides occur in the gas phase in ; equilibrium with the liquid phase. If the liquid phase is removed by ; gravitational pull, there is always the gaseous phase left. A fractionation ; effect may be expected, therefore,

  14. Factors Controlling Anaerobic Ammonium Oxidation with Nitrite in

    Microsoft Academic Search

    Tage Dalsgaard; Bo Thamdrup

    Factors controlling the anaerobic oxidation of ammonium with nitrate and nitrite were explored in a marine sediment from the Skagerrak in the Baltic-North Sea transition. In anoxic incubations with the addition of nitrite, approximately 65% of the nitrogen gas formation was due to anaerobic ammonium oxidation with nitrite, with the remainder being produced by denitrification. Anaerobic ammonium oxidation with nitrite

  15. Factors Controlling Anaerobic Ammonium Oxidation with Nitrite in Marine Sediments

    Microsoft Academic Search

    Tage Dalsgaard; Bo Thamdrup

    2002-01-01

    Factors controlling the anaerobic oxidation of ammonium with nitrate and nitrite were explored in a marine sediment from the Skagerrak in the Baltic-North Sea transition. In anoxic incubations with the addition of nitrite, approximately 65% of the nitrogen gas formation was due to anaerobic ammonium oxidation with nitrite, with the remainder being produced by denitrification. Anaerobic ammonium oxidation with nitrite

  16. Isotopic analysis of N and O in nitrite and nitrate by sequential selective bacterial reduction to N2O

    USGS Publications Warehouse

    Böhlke, J.K.; Smith, R.L.; Hannon, J.E.

    2007-01-01

    Nitrite is an important intermediate species in the biogeochemical cycling of nitrogen, but its role in natural aquatic systems is poorly understood. Isotopic data can be used to study the sources and transformations of NO 2- in the environment, but methods for independent isotopic analyses of NO2- in the presence of other N species are still new and evolving. This study demonstrates that isotopic analyses of N and O in NO2- can be done by treating whole freshwater or saltwater samples with the denitrifying bacterium Stenotrophomonas nitritireducens, which selectively reduces NO2- to N 2O for isotope ratio mass spectrometry. When calibrated with solutions containing NO2- with known isotopic compositions determined independently, reproducible ??15N and ??18O values were obtained at both natural-abundance levels (??0.2-0.5??? for ??15N and ?? 0.4-1.0%o for ??18O) and moderately enriched 15N tracer levels (??20-50%o for ??15N near 5000???) for 5-20 nmol of NO2- (1-20 ??mol/L in 1-5 mL aliquots). This method is highly selective for NO2- and was used for mixed samples containing both NO2- and NO3- with little or no measurable cross-contamination. In addition, mixed samples that were analyzed with S. nitritireducens were treated subsequently with Pseudomonas aureofaciens to reduce the NO3- in the absence of NO 2-, providing isotopic analyses of NO2- and NO3- separately in the same aliquot. Sequential bacterial reduction methods like this one should be useful for a variety of isotopic studies aimed at understanding nitrogen cycling in aquatic environments. A test of these methods in an agricultural watershed in Indiana provides isotopic evidence for both nitrification and denitrification as sources of NO2- in a small stream.

  17. Analytical properties of some commercially available nitrate reductase enzymes evaluated as replacements for cadmium in automated, semiautomated, and manual colorimetric methods for determination of nitrate plus nitrite in water

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2013-01-01

    A multiyear research effort at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) evaluated several commercially available nitrate reductase (NaR) enzymes as replacements for toxic cadmium in longstanding automated colorimetric air-segmented continuous-flow analyzer (CFA) methods for determining nitrate plus nitrite (NOx) in water. This research culminated in USGS approved standard- and low-level enzymatic reduction, colorimetric automated discrete analyzer NOx methods that have been in routine operation at the NWQL since October 2011. The enzyme used in these methods (AtNaR2) is a product of recombinant expression of NaR from Arabidopsis thaliana (L.) Heynh. (mouseear cress) in the yeast Pichia pastoris. Because the scope of the validation report for these new automated discrete analyzer methods, published as U.S. Geological Survey Techniques and Methods 5–B8, was limited to performance benchmarks and operational details, extensive foundational research with different enzymes—primarily YNaR1, a product of recombinant expression of NaR from Pichia angusta in the yeast Pichia pastoris—remained unpublished until now. This report documents research and development at the NWQL that was foundational to development and validation of the discrete analyzer methods. It includes: (1) details of instrumentation used to acquire kinetics data for several NaR enzymes in the presence and absence of known or suspected inhibitors in relation to reaction temperature and reaction pH; and (2) validation results—method detection limits, precision and bias estimates, spike recoveries, and interference studies—for standard- and low-level automated colorimetric CFA-YNaR1 reduction NOx methods in relation to corresponding USGS approved CFA cadmium-reduction (CdR) NOx methods. The cornerstone of this validation is paired sample statistical and graphical analysis of NOx concentrations from more than 3,800 geographically and seasonally diverse surface-water and groundwater samples that were analyzed in parallel by CFA-CdR and CFA enzyme-reduction methods. Finally, (3) demonstration of a semiautomated batch procedure in which 2-milliliter analyzer cups or disposable spectrophotometer cuvettes serve as reaction vessels for enzymatic reduction of nitrate to nitrite prior to analytical determinations. After the reduction step, analyzer cups are loaded onto CFA, flow injection, or discrete analyzers for simple, rapid, automatic nitrite determinations. In the case of manual determinations, analysts dispense colorimetric reagents into cuvettes containing post-reduction samples, allow time for color to develop, insert cuvettes individually into a spectrophotometer, and record percent transmittance or absorbance in relation to a reagent blank. Data presented here demonstrate equivalent analytical performance of enzymatic reduction NOx methods in these various formats to that of benchmark CFA-CdR NOx methods.

  18. Measurements of nitrite production and nitrite-producing organisms in and around the primary nitrite maximum in the central California Current

    NASA Astrophysics Data System (ADS)

    Santoro, A. E.; Sakamoto, C. M.; Smith, J. M.; Plant, J. N.; Gehman, A. L.; Worden, A. Z.; Johnson, K. S.; Francis, C. A.; Casciotti, K. L.

    2013-03-01

    Nitrite (NO2-) is a substrate for both oxidative and reductive microbial metabolism. NO2- accumulates at the base of the euphotic zone in oxygenated, stratified open ocean water columns, forming a feature known as the primary nitrite maximum (PNM). Potential pathways of NO2- production include the oxidation of ammonia (NH3) by ammonia-oxidizing bacteria or archaea and assimilatory nitrate (NO3-) reduction by phytoplankton or heterotrophic bacteria. Measurements of NH3 oxidation and NO3- reduction to NO2- were conducted at two stations in the central California Current in the eastern North Pacific to determine the relative contributions of these processes to NO2- production in the PNM. Sensitive (< 10 nmol L-1), high-resolution measurements of [NH4+] and [NO2-] indicated a persistent NH4+ maximum overlying the PNM at every station, with concentrations as high as 1.5 ?mol L-1. Within and just below the PNM, NH3 oxidation was the dominant NO2- producing process with rates of NH3 oxidation of up to 50 nmol L-1 d-1, coinciding with high abundances of ammonia-oxidizing archaea. Though little NO2- production from NO3- was detected, potentially nitrate-reducing phytoplankton (photosynthetic picoeukaryotes, Synechococcus, and Prochlorococcus) were present at the depth of the PNM. Rates of NO2- production from NO3- were highest within the upper mixed layer (4.6 nmol L-1 d-1) but were either below detection limits or 10 times lower than NH3 oxidation rates around the PNM. One-dimensional modeling of water column NO2- profiles supported direct rate measurements of a net biological sink for NO2- just below the PNM. Residence time estimates of NO2- within the PNM were similar at the mesotrophic and oligotrophic stations and ranged from 150-205 d. Our results suggest the PNM is a dynamic, rather than relict, feature with a source term dominated by ammonia oxidation.

  19. DAILY NITRATES AND NITRITES INTAKE BY INHABITANTS IN BENI-MELLAL REGION (MOROCCO) INGESTA DIARIA DE NITRATOS Y NITRITOS POR LOS HABITANTES DE LA REGIÓN DE BENI-MELLAL (MARRUECOS) INXESTA DIARIA DE NITRATOS E NITRITOS POLOS HABITANTES DA REXIÓN DE BENI-MELLAL (MARRUECOS)

    Microsoft Academic Search

    T. Himmi; A. Zaki; A. Hasib; H. Elgharras; R. Bachirat; A. Aït Chaoui

    2004-01-01

    The excessive use of fertilizers leads to the ground water and agricultural product pollution by nitrates, which can affect seriously health. the objective of this work is to assess daily intake of nitrates and nitrites among inhabitants from Beni-Mellal region and to compare it with international standards. This study is carried out in three rural areas: Fkih Ben Salah (FBS),

  20. High-affinity nitrate/nitrite transporter genes (Nrt2) in Tisochrysis lutea: identification and expression analyses reveal some interesting specificities of Haptophyta microalgae.

    PubMed

    Charrier, Aurélie; Bérard, Jean-Baptiste; Bougaran, Gaël; Carrier, Grégory; Lukomska, Ewa; Schreiber, Nathalie; Fournier, Flora; Charrier, Aurélie F; Rouxel, Catherine; Garnier, Matthieu; Cadoret, Jean-Paul; Saint-Jean, Bruno

    2015-08-01

    Microalgae have a diversity of industrial applications such as feed, food ingredients, depuration processes and energy. However, microalgal production costs could be substantially improved by controlling nutrient intake. Accordingly, a better understanding of microalgal nitrogen metabolism is essential. Using in silico analysis from transcriptomic data concerning the microalgae Tisochrysis lutea, four genes encoding putative high-affinity nitrate/nitrite transporters (TlNrt2) were identified. Unlike most of the land plants and microalgae, cloning of genomic sequences and their alignment with complementary DNA (cDNA) sequences did not reveal the presence of introns in all TlNrt2 genes. The deduced TlNRT2 protein sequences showed similarities to NRT2 proteins of other phyla such as land plants and green algae. However, some interesting specificities only known among Haptophyta were also revealed, especially an additional sequence of 100 amino acids forming an atypical extracellular loop located between transmembrane domains 9 and 10 and the function of which remains to be elucidated. Analyses of individual TlNrt2 gene expression with different nitrogen sources and concentrations were performed. TlNrt2.1 and TlNrt2.3 were strongly induced by low NO3 (-) concentration and repressed by NH4 (+) substrate and were classified as inducible genes. TlNrt2.2 was characterized by a constitutive pattern whatever the substrate. Finally, TlNrt2.4 displayed an atypical response that was not reported earlier in literature. Interestingly, expression of TlNrt2.4 was rather related to internal nitrogen quota level than external nitrogen concentration. This first study on nitrogen metabolism of T. lutea opens avenues for future investigations on the function of these genes and their implication for industrial applications. PMID:25640753

  1. Annual dissolved nitrite plus nitrate and total phosphorous loads for the Susquehanna, St. Lawrence, Mississippi-Atchafalaya, and Columbia River basins, 1968-2004

    USGS Publications Warehouse

    Aulenbach, Brent T.

    2006-01-01

    Annual stream-water loads were calculated near the outlet of four of the larger river basins (Susquehanna, St. Lawrence, Mississippi-Atchafalaya, and Columbia) in the United States for dissolved nitrite plus nitrate (NO2 + NO3) and total phosphorus using LOADEST load estimation software. Loads were estimated for the period 1968-2004; although loads estimated for individual river basins and chemical constituent combinations typically were for shorter time periods due to limitations in data availability. Stream discharge and water-quality data for load estimates were obtained from the U.S. Geological Survey (USGS) with additional stream discharge data for the Mississippi-Atchafalaya River Basin from the U.S. Army Corps of Engineers. The loads were estimated to support national assessments of changes in stream nutrient loads that are periodically conducted by Federal agencies (for example, U.S. Environmental Protection Agency) and other water- and land-resource organizations. Data, methods, and results of load estimates are summarized herein; including World Wide Web links to electronic ASCII text files containing the raw data. The load estimates are compared to dissolved NO2 + NO3 loads for three of the large river basins from 1971 to 1998 that the USGS provided during 2001 to The H. John Heinz III Center for Science, Economics and the Environment (The Heinz Center) for a report The Heinz Center published during 2002. Differences in the load estimates are the result of using the most up-to-date monitoring data since the 2001 analysis, differences in how concentrations less than the reporting limit were handled by the load estimation models, and some errors and exclusions in the 2001 analysis datasets (which resulted in some inaccurate load estimates).

  2. NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA

    SciTech Connect

    Steimke, J.

    2011-02-01

    This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves literature survey of technologies to perform the nitrate to hydroxide conversion, selection of the most promising technologies, preparation of a flowsheet and design of a system. The most promising technologies are electrochemical reduction of nitrates and chemical reduction with hydrogen or ammonia. The primary reviewed technologies are listed and they aredescribed in more detail later in the report: (1) Electrochemical destruction; (2) Chemical reduction with agents such as ammonia, hydrazine or hydrogen; (3) Hydrothermal reduction process; and (4) Calcination. Only three of the technologies on the list have been demonstrated to generate usable amounts of caustic; electrochemical reduction and chemical reduction with ammonia, hydrazine or hydrogen and hydrothermal reduction. Chemical reduction with an organic reactant such as formic acid generates carbon dioxide which reacts with caustic and is thus counterproductive. Treatment of nitrate with aluminum or other active metals generates a solid product. High temperature calcination has the potential to generate sodium oxide which may be hydrated to sodium hydroxide, but this is unproven. The following criteria were developed to evaluate the most suitable option. The numbers in brackets after the criteria are relative weighting factors to account for importance: (1) Personnel exposure to radiation for installation, routine operation and maintenance; (2) Non-radioactive safety issues; (3) Whether the technology generates caustic and how many moles of caustic are generated per mole of nitrate plus nitrite decomposed; (4) Whether the technology can handle nitrate and nitrite at the concentrations encountered in waste; (5) Maturity of technology; (6) Estimated annual cost of operation (labor, depreciation, materials, utilities); (7) Capital cost; (8) Selectivity to nitrogen as decomposition product (other products are flammable and/or toxic); (9) Impact of introduced species; (10) Selectivity for destruction of nitrate vs. nitrite; and (11) Cost of deactivation and demolition. Each technology was given a score from one

  3. Some Effects of Sodium on Nitrate Assimilation and N2 Fixation in Anabaena cylindrica

    PubMed Central

    Brownell, P. F.; Nicholas, D. J. D.

    1967-01-01

    Anabaena cylindrica grown with nitrate required higher levels of sodium (0.4 meq/l NaCl) to prevent chlorosis than when grown without combined nitrogen (0.004 meq/l NaCl). Nitrite accumulated in sodium-deficient cultures containing nitrate. Amounts of nitrite similar to those found in deficient cultures when added to normal cultures resulted in a chlorosis of the cells. Thus loss of chlorophyll was caused by nitrite toxicity. A deficiency of sodium resulted in an increased incorporation of 15NO3, 15NO2, 15NH3 or 14C glutamate into protein compared with normal cells. The enzyme nitrate reductase was markedly increased in cells grown without sodium. Evidence from chloramphenicol treatment of the cells suggests that sodium may exert its control of nitrate reductase through a protein factor(s). By contrast, N2 fixation was reduced in sodium deficient cells. Since the incorporation of ammonia or glutamate into protein was increased under these conditions, it is likely that the element is required for the conversion of N2 gas into ammonia. Various nitrogenous compounds including ammonium chloride, amides and amino acids at low concentrations (0.1 mm) greatly reduced the nitrite accumulation in sodium-deficient cultures. PMID:16656597

  4. REDUCTION OF NITRATE THROUGH THE USE OF NITRATE REDUCTASE FOR THE SMARTCHEM AUTOANALYZER

    EPA Science Inventory

    The standard method for the determination of nitrate in drinking water, USEPA Method 353.2 ¿Determination of Nitrate-Nitrite by Automated Colorimetry,¿ employs cadmium as the reductant for the conversion of nitrate to nitrite. The nitrite is then analyzed colorimetrically by way ...

  5. 9- and 10-Nitro-oleic acid do not interfere with the GC–MS quantitative determination of nitrite and nitrate in biological fluids when measured as their pentafluorobenzyl derivatives

    Microsoft Academic Search

    Anja Mitschke; Frank-Mathias Gutzki; Dimitrios Tsikas

    2007-01-01

    The nitrated lipids 9-nitro-oleic acid (9-NO2-OA) and 10-nitro-oleic acid (10-NO2-OA) have been reported to be present in blood of healthy humans. Free and esterified forms of 9-NO2-OA and 10-NO2-OA have been detected in human plasma at about 600 and 300nM, respectively. These concentrations are of the same order of magnitude of circulating nitrite. In theory, 9-NO2-OA and 10-NO2-OA may interfere

  6. Variable Ammonia Production Among Smooth and Rough Strains of Pseudomonas pseudomallei: Resemblance to Bacteriocin Production

    PubMed Central

    Rogul, Marvin; Carr, Susan R.

    1972-01-01

    The colonial morphology of some strains of Pseudomonas pseudomallei was correlated with certain biochemical and physiological traits. After 3 days of growth on Wahba or heart infusion agars, smooth-colony strains generated toxic amounts of ammonia. Under the same conditions, the rough strains simultaneously produced oxalic acid which decreased the inhibitory concentration of ammonia. The ammonia-ammonium concentrations in smooth cultures exhibited certain bacteriocin-like characteristics. An unusually stable, smooth strain (strain 165) was chosen to compare and emphasize any differences with typical, rough strain 7815. Three-day-old smooth cultures grown on Wahba agar containing 3% (w/v) glycerol demonstrated ammonia toxicity. The substitution of glucose for glycerol completely obviated this toxicity. In highly aerated Wahba broth containing glucose, the amount of ammonia found in strain 165 smooth cultures and the amount of oxalic acid found in strain 7815 rough cultures were greatly reduced. In Difco nitrate broth smooth strain 165 did not form gas, and it reduced nitrate to nitrite only. Strain 7815 produced a gas and reduced both nitrate and nitrite. PMID:4562401

  7. Short-term effects of a high nitrate diet on nitrate metabolism in healthy individuals.

    PubMed

    Bondonno, Catherine P; Liu, Alex H; Croft, Kevin D; Ward, Natalie C; Puddey, Ian B; Woodman, Richard J; Hodgson, Jonathan M

    2015-03-01

    Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p < 0.001) measured at [D7]. At [+2D] plasma nitrite and nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake. PMID:25774606

  8. Nitrite in feed: From Animal health to human health

    Microsoft Academic Search

    Andrew Cockburn; Gianfranco Brambilla; Maria-Luisa Fernández; Davide Arcella; Luisa R. Bordajandi; Bruce Cottrill; Carlos van Peteghem; Jean-Lou Dorne

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have

  9. A new type of environment-friendly material and its removal efficiency for nitrate contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Guo, H.

    2014-12-01

    Recently, nitrate contaminated groundwater problem is a growing concern for scholars both at home and abroad. This study developed a new type of environment-friendly material which has the ability to remove nitrate from contaminated groundwater. The material has a certain degree of mechanical strength and uniform sphericity, with waste wood and straw as raw material, to achieve the purpose of using waste treat waste. In this study, the material and fine sand are mixed and filled in glass column, which is wrapped by black tape in order to avoid light, to test the removal ability toward nitrate nitrogen with influent nitrate nitrogen concentration of 50 mg N/L. The material surface is porous, which could facilitate the reaction between the active sites in the material and nitrate in polluted groundwater, and facilitate microbes implanting on the surface. After running for two months, the nitrate nitrogen removal rate is greater than 90%, and the nitrate nitrogen and nitrite nitrogen of effluent are lower than the EPA prescribed maximum limit concentration of nitrate in drinking water?N03--N<10mg N/L, NO2--N<1mg N/L?, while the ammonia nitrogen in the effluent is less than 1 mg N/L, lower than the maximum limit concentration of ammonia nitrogen in drinking water made by WHO(NH4+-N<1.5mg N/L), indicating its effective removal rate for nitrate and the absence of serious nitrite and ammonia accumulation. The developed material will have a good prospect in removing nitrate from polluted groundwater.

  10. The effect of dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans.

    PubMed

    Pannala, Ananth S; Mani, Ali R; Spencer, Jeremy P E; Skinner, Vernon; Bruckdorfer, K Richard; Moore, Kevin P; Rice-Evans, Catherine A

    2003-03-01

    Dietary nitrate is metabolized to nitrite by bacterial flora on the posterior surface of the tongue leading to increased salivary nitrite concentrations. In the acidic environment of the stomach, nitrite forms nitrous acid, a potent nitrating/nitrosating agent. The aim of this study was to examine the pharmacokinetics of dietary nitrate in relation to the formation of salivary, plasma, and urinary nitrite and nitrate in healthy subjects. A secondary aim was to determine whether dietary nitrate increases the formation of protein-bound 3-nitrotyrosine in plasma, and if dietary nitrate improves platelet function. The pharmacokinetic profile of urinary nitrate excretion indicates total clearance of consumed nitrate in a 24 h period. While urinary, salivary, and plasma nitrate concentrations increased between 4- and 7-fold, a significant increase in nitrite was only detected in saliva (7-fold). High dietary nitrate consumption does not cause a significant acute change in plasma concentrations of 3-nitrotyrosine or in platelet function. PMID:12614846

  11. Nitrate | Cancer Trends Progress Report

    Cancer.gov

    Nitrates and nitrites are nitrogen-oxygen chemical units that naturally occur in soil, water, and some foods. When taken into the body by drinking water and through other dietary sources, nitrate and nitrite can react with amines and amides to form N-nitroso compounds (NOC), which are known to cause cancer in animals and may cause cancer in humans.

  12. Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism.

    PubMed

    Sainz, Martha; Calvo-Begueria, Laura; Pérez-Rontomé, Carmen; Wienkoop, Stefanie; Abián, Joaquín; Staudinger, Christiana; Bartesaghi, Silvina; Radi, Rafael; Becana, Manuel

    2015-03-01

    Protein tyrosine (Tyr) nitration is a post-translational modification yielding 3-nitrotyrosine (NO2 -Tyr). Formation of NO2 -Tyr is generally considered as a marker of nitro-oxidative stress and is involved in some human pathophysiological disorders, but has been poorly studied in plants. Leghemoglobin (Lb) is an abundant hemeprotein of legume nodules that plays an essential role as an O2 transporter. Liquid chromatography coupled to tandem mass spectrometry was used for a targeted search and quantification of NO2 -Tyr in Lb. For all Lbs examined, Tyr30, located in the distal heme pocket, is the major target of nitration. Lower amounts were found for NO2 -Tyr25 and NO2 -Tyr133. Nitrated Lb and other as yet unidentified nitrated proteins were also detected in nodules of plants not receiving NO3- and were found to decrease during senescence. This demonstrates formation of nitric oxide (?NO) and NO2- by alternative means to nitrate reductase, probably via a ?NO synthase-like enzyme, and strongly suggests that nitrated proteins perform biological functions and are not merely metabolic byproducts. In vitro assays with purified Lb revealed that Tyr nitration requires NO2- + H2 O2 and that peroxynitrite is not an efficient inducer of nitration, probably because Lb isomerizes it to NO3-. Nitrated Lb is formed via oxoferryl Lb, which generates nitrogen dioxide and tyrosyl radicals. This mechanism is distinctly different from that involved in heme nitration. Formation of NO2 -Tyr in Lb is a consequence of active metabolism in functional nodules, where Lb may act as a sink of toxic peroxynitrite and may play a protective role in the symbiosis. PMID:25603991

  13. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  14. Toxicity of nitrite to fish: a review

    SciTech Connect

    Lewis, W.M. Jr.; Morris, D.P.

    1986-03-01

    Nitrite, an intermediate in the oxidation of ammonium to nitrate, changes hemoglobin to methemoglobin, which does not carry oxygen; nitrite may thus cause anoxia in fish and other aquatic organisms. The published literature on nitrite toxicity to fish, which consists of about 40 papers, shows that the ratio of the 24-h LC50 (concentration lethal to half of the test organisms in 24 h) to the 96-h LC50 has a median value of 2.0 and is fairly uniform across species; toxicity tests of differing duration can therefore be standardized to a common duration. In general, chronic effects are difficult to detect at concentrations below one-fifth of the 96-h LC50. Most fish concentrate nitrite in fresh water; chloride in the external environment offsets the toxicity of nitrite by competing with nitrite for uptake through the chloride cells of the gills. Bicarbonate also reduces the toxicity of nitrite, but it is less than 1% as effective as chloride. Calcium reduces the toxicity of nitrite, but much less than chloride; the effects of other metal cations have not been studied. Hydrogen ion concentration of the medium has not been shown to have a discrete effect on the toxicity of nitrite except at extreme concentrations uncharacteristic of the environments in which fish ordinarily live. Nitrite toxicity is exacerbated by low oxygen concentrations because nitrite reduces the oxygen-carrying capacity of the blood. Very small fish seem less sensitive to nitrite than fish of intermediate or large size. Present evidence suggests that salmonids are among the fishes most sensitive to nitrite. The least-sensitive species tested thus far are the largemouth bass Micropterus salmoides and bluegill Lepomis macrochirus; the largemouth bass does not concentrate nitrite.

  15. Thermochemical nitrate destruction

    DOEpatents

    Cox, John L. (Richland, WA); Hallen, Richard T. (Richland, WA); Lilga, Michael A. (Richland, WA)

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  16. A Review on Alternative Carbon Sources for Biological Treatment of Nitrate Waste

    NASA Astrophysics Data System (ADS)

    Dhamole, Pradip B.; D'Souza, S. F.; Lele, S. S.

    2015-04-01

    Huge amount of wastewater containing nitrogen is produced by various chemical and biological industries. Nitrogen is present in the form of ammonia, nitrate and nitrite. This review deals with treatment of nitrate based effluent using biological denitrification. Because of its adverse effect on aquatic life and human health, treatment of nitrate bearing effluents has become mandatory before discharge. Treatment of such wastes is a liability for the industries and incurs cost. However, the economics of the process can be controlled by selection of proper method and reduction in the operating cost. This paper reviews the advantages and disadvantages of different methods of nitrate removal with emphasis on biological denitrification. The cost of biological denitrification is controlled by the carbon source. Hence, use of alternative carbon sources such as agricultural wastes, industrial effluent or by products is reviewed in this paper. Policies for reducing the cost of nitrate treatment and enhancing the efficiency have been recommended.

  17. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum.

    PubMed Central

    Seifritz, C; Daniel, S L; Gössner, A; Drake, H L

    1993-01-01

    Nitrate enhanced the vanillin- and vanillate-dependent growth of Clostridium thermoaceticum. Under nitrate-enriched conditions, these aromatic substrates were subject to O demethylation. However, acetate, the normal product obtained from O demethylation, was not detected. Acetate was also not detected when methanol and CO cultures were supplemented with nitrate; glucose cultures likewise produced approximately one-third less acetate when enriched with nitrate. Reductant derived from the oxidation of these substrates was recovered in nitrite and ammonia. With an ammonia-limited medium employed to evaluate N turnover, the following stoichiometry was observed concomitantly with the consumption of 2.0 mM O-methyl groups (the recovery of nitrate-derived N approximated 89%): 3.9 mM NO3(-)-->2.8 mM NO2- +0.7 mM NH3. The results demonstrated that (i) nitrate was preferentially used as an electron sink under conditions that were otherwise acetogenic, (ii) nitrate dissimilation was energy conserving and growth supportive, and (iii) nitrate-coupled utilization of O-methyl groups conserved more energy than acetogenic O demethylation. PMID:8253688

  18. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review

    Microsoft Academic Search

    W. T. Mook; M. H. Chakrabarti; M. K. Aroua; G. M. A. Khan; B. S. Ali; M. S. Islam; M. A. Abu Hassan

    Protein rich wastes from aquaculture systems result in total ammonia nitrogen (TAN), total organic carbon (TOC) and biochemical oxygen demand (BOD). A number of conventional approaches have been adopted for the removal of these wastes in aquaculture ponds and hatcheries with varying degrees of success but they face critical problems such as membrane fouling, high cost or the generation of

  19. TEMPOL enhances the antihypertensive effects of sodium nitrite by mechanisms facilitating nitrite-derived gastric nitric oxide formation.

    PubMed

    Amaral, Jefferson H; Montenegro, Marcelo F; Pinheiro, Lucas C; Ferreira, Graziele C; Barroso, Rafael P; Costa-Filho, Antonio J; Tanus-Santos, Jose E

    2013-12-01

    Orally administered nitrite exerts antihypertensive effects associated with increased gastric nitric oxide (NO) formation. While reducing agents facilitate NO formation from nitrite, no previous study has examined whether antioxidants with reducing properties improve the antihypertensive responses to orally administered nitrite. We hypothesized that TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) could enhance the hypotensive effects of nitrite in hypertensive rats by exerting antioxidant effects (and enhancing NO bioavailability) and by promoting gastric nitrite-derived NO generation. The hypotensive effects of intravenous and oral sodium nitrite were assessed in unanesthetized freely moving rats with L-NAME (N(?)-nitro-L-arginine methyl ester; 100mg/kg; po)-induced hypertension treated with TEMPOL (18mg/kg; po) or vehicle. While TEMPOL exerted antioxidant effects in hypertensive rats, as revealed by lower plasma 8-isoprostane and vascular reactive oxygen species levels, this antioxidant did not affect the hypotensive responses to intravenous nitrite. Conversely, TEMPOL enhanced the dose-dependent hypotensive responses to orally administered nitrite, and this effect was associated with higher increases in plasma nitrite and lower increases in plasma nitrate concentrations. In vitro experiments using electrochemical and chemiluminescence NO detection under variable pH conditions showed that TEMPOL enhanced nitrite-derived NO formation, especially at low pH (2.0 to 4.0). TEMPOL signal evaluated by electron paramagnetic resonance decreased when nitrite was reduced to NO under acidic conditions. Consistent with these findings, increasing gastric pH with omeprazole (30mg/kg; po) attenuated the hypotensive responses to nitrite and blunted the enhancement in plasma nitrite concentrations and hypotensive effects induced by TEMPOL. Nitrite-derived NO formation in vivo was confirmed by using the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (C-PTIO), which blunted the responses to oral nitrite. Our results showed that TEMPOL promotes nitrite reduction to NO in the stomach and enhanced plasma nitrite concentrations and the hypotensive effects of oral sodium nitrite through mechanisms critically dependent on gastric pH. Interestingly, the effects of TEMPOL on nitrite-mediated hypotension cannot be explained by increased NO formation in the stomach alone, but rather appear more directly related to increased plasma nitrite levels and reduced nitrate levels during TEMPOL treatment. This may relate to enhanced nitrite uptake or reduced nitrate formation from NO or nitrite. PMID:23892053

  20. Kinetic Characterization of Nitrite Uptake and Reduction by Chlamydomonas reinhardtii.

    PubMed

    Córdoba, F; Cárdenas, J; Fernández, E

    1986-12-01

    Kinetics of nitrite uptake and reduction by Chlamydomonas reinhardtii cells growing phototrophically has been studied by means of progress curves and the Michaelis-Menten integrated equation. Both uptake and reduction processes exhibited hyperbolic saturation kinetics, the nitrite uptake system lacking a diffusion component. Nitrite uptake and reduction showed significant differences in K(s) for nitrite at pH 7.5 (1.6 versus 20 micromolar, respectively), optimal pH, activation energy values, and sensitivity toward reagents of sulfhydryl groups. K(s) values for nitrite uptake were halved in cells subjected to darkness or to nitrogen-starvation. Nitrate inhibited nitrite uptake by a partially competitive mechanism. The same inhibition pattern was found for nitrite uptake by C. reinhardtii mutant 305 cells incapable of nitrate assimilation. The results demonstrate that C. reinhardtii cells take up nitrite via a highly specific carrier, probably energy-dependent, kinetically responsive to environmental changes, distinguishable from the enzymic nitrite reduction and endowed with an active site for nitrite not usable for nitrate transport. PMID:16665164

  1. The nitrate to ammonia and ceramic (NAC) process for the denitration and immobilization of low-level radioactive liquid waste (LLW)

    NASA Astrophysics Data System (ADS)

    Muguercia, Ivan

    Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the lower temperature range investigated. With respect to leachability, the experimental final NAC ceramic waste form is comparable to the final product of vitrification, the technology chosen by DOE to treat these wastes. As the NAC process has the potential of reducing the volume of nitrate-based radioactive liquid waste by as much as 70 percent, it not only promises to enhance environmental remediation efforts but also effect substantial cost savings.

  2. Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox.

    PubMed

    Daigger, Glen T

    2014-03-01

    The oxygen and carbon savings associated with novel nitrogen removal processes for the treatment of high ammonia, low biodegradable organic matter waste streams such as the recycle streams from the dewatering of anaerobically digested sludges are well documented.This understanding may lead some to think that similar oxygen savings are possible if novel processes such as nitritation/ denitritation and partial nitritation-deammonification are incorporated into main liquid stream processes where influent biodegradable organic matter is used to denitrify residual oxidized nitrogen (nitrite and nitrate). It is demonstrated that the net oxygen required for nitrogen removal is 1.71 mg O2/mg ammonia-nitrogen converted to nitrogen gas as long as influent biodegradable organic matter is used to denitrify residual oxidized nitrogen. Less oxygen is required to produce oxidized nitrogen with these novel processes, but less biodegradable organic matter is also required for oxidized nitrogen reduction to nitrogen gas, resulting in reduced oxygen savings for the oxidation of biodegradable organic matter. The net oxygen requirement is the same since the net electron transfer for the conversion of ammonia-nitrogen to nitrogen gas is the same. The biodegradable organic matter required to reduce the oxidized nitrogen to nitrogen gas is estimated for these processes based on standard biological process calculations. It is estimated to be in the range of 3.5 to 4.0 mg biodegradable COD/mg ammonia-nitrogen reduced to nitrogen gas for nitrification-denitrification, 2.0 to 2.5 for nitritation-denitritation, and 0.5 for partial nitritation-deammonification. The resulting limiting influent wastewater carbon-to-nitrogen ratios are estimated and can be used to guide the appropriate selection of biological nitrogen removal process given knowledge of the biological process influent wastewater carbon-to-nitrogen ratio. Energy savings possible for mainstream processes incorporating these novel nitrogen removal processes include reduced process oxygen requirements from reduced biodegradable carbon loadings to the biological process and the potential that plant influent biodegradable carbon can be captured upstream of the biological nitrogen removal process and used to produce energy, for example, by conversion into biogas. PMID:24734468

  3. [Nitritation-ANAMMOX process for treatment of ammonium rich wastewater].

    PubMed

    Liao, De-xiang; Wu, Yong-ming; Li, Xiao-ming; Yang, Qi; Zeng, Guang-ming

    2006-09-01

    Combination of a nitritation process and anoxic ammonium oxidation (ANAMMOX) process for the treatment of ammonia rich influents is evaluated. Herein the combined process was studied with manmade synthetic wastewater. Research results show that when the hydraulic retention time (HRT) was I day, the nitritation activity was stable and the influent ammonium concentration has little effect on it. When the influent ammonium concentration is 400-600 mg/L, the effluent nitrite concentration is always between 260 mg/L and 280 mg/L, so the effluent nitrite/ammonium ratio can be adjust by control the influent ammonium concentration. The total nitrogen elimination was depended strongly on the nitrite/ammonium ratio in the inlet of the ANAMMOX reactor. When the inlet ammonium was 480 mg/L of the combined process, the nitrite/ammonium ratio of the nitritation process was about 1.2, the total nitrogen elimination was 84%. PMID:17117631

  4. A peroxynitrite complex of copper: formation from a copper–nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration

    PubMed Central

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C.; Lee, Dong-Heon; Mondal, Biplab; Sarjeant, Amy A. Narducci; del Rio, Diego; Pau, Monita Y. M.; Solomon, Edward I.; Karlin, Kenneth D.

    2010-01-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)–(·NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO?)–Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO2?) complex and 0.5 mol equiv O2. In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper–nitrosyl and copper–peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data. PMID:19662443

  5. Nitrite in saliva increases gastric mucosal blood flow and mucus thickness

    PubMed Central

    Björne, Håkan; Petersson, Joel; Phillipson, Mia; Weitzberg, Eddie; Holm, Lena; Lundberg, Jon O.

    2004-01-01

    Salivary nitrate from dietary or endogenous sources is reduced to nitrite by oral bacteria. In the acidic stomach, nitrite is further reduced to NO and related compounds, which have potential biological activity. We used an in vivo rat model as a bioassay to test effects of human saliva on gastric mucosal blood flow and mucus thickness. Gastric mucosal blood flow and mucus thickness were measured after topical administration of human saliva in HCl. The saliva was collected either after fasting (low in nitrite) or after ingestion of sodium nitrate (high in nitrite). In additional experiments, saliva was exchanged for sodium nitrite at different doses. Mucosal blood flow was increased after luminal application of nitrite-rich saliva, whereas fasting saliva had no effects. Also, mucus thickness increased in response to nitrite-rich saliva. The effects of nitrite-rich saliva were similar to those of topically applied sodium nitrite. Nitrite-mediated effects were associated with generation of NO and S-nitrosothiols. In addition, pretreatment with an inhibitor of guanylyl cyclase markedly inhibited nitrite-mediated effects on blood flow. We conclude that nitrite-containing human saliva given luminally increases gastric mucosal blood flow and mucus thickness in the rat. These effects are likely mediated through nonenzymatic generation of NO via activation of guanylyl cyclase. This supports a gastroprotective role of salivary nitrate/nitrite. PMID:14702114

  6. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor.

    PubMed

    Isanta, Eduardo; Reino, Clara; Carrera, Julián; Pérez, Julio

    2015-09-01

    Partial nitritation for a low-strength wastewater at low temperature was stably achieved in an aerobic granular reactor. A bench-scale granular sludge bioreactor was operated in continuous mode treating an influent of 70 mg N- [Formula: see text]  L(-1) to mimic pretreated municipal nitrogenous wastewater and the temperature was progressively decreased from 30 to 12.5 °C. A suitable effluent nitrite to ammonium concentrations ratio to a subsequent anammox reactor was maintained stable during 300 days at 12.5 °C. The average applied nitrogen loading rate at 12.5 °C was 0.7 ± 0.3 g N L(-1) d(-1), with an effluent nitrate concentration of only 2.5 ± 0.7 mg N- [Formula: see text]  L(-1). The biomass fraction of nitrite-oxidizing bacteria (NOB) in the granular sludge decreased from 19% to only 1% in 6 months of reactor operation at 12.5 °C. Nitrobacter spp. where found as the dominant NOB population, whereas Nitrospira spp. were not detected. Simulations indicated that: (i) NOB would only be effectively repressed when their oxygen half-saturation coefficient was higher than that of ammonia-oxidizing bacteria; and (ii) a lower specific growth rate of NOB was maintained at any point in the biofilm (even at 12.5 °C) due to the bulk ammonium concentration imposed through the control strategy. PMID:26001281

  7. Biofiltration for removal of BOM and residual ammonia following control of bromate formation.

    PubMed

    Wert, Eric C; Neemann, Jeffrey J; Rexing, David J; Zegers, Ronald E

    2008-01-01

    Nitrification was developed within a biological filter to simultaneously remove biodegradable organic matter (BOM) and residual ammonia added to control bromate formation during the ozonation of drinking water. Testing was performed at pilot-scale using three filters containing sand and anthracite filter media. BOM formed during ozonation (e.g., assimilable organic carbon (396-572 microg/L), formaldehyde (11-20 microg/L), and oxalate (83-145 microg/L)) was up to 70% removed through biofiltration. Dechlorinated backwash water was required to develop the nitrifying bacteria needed to convert the residual ammonia (0.1-0.5 mg/L NH(3)-N) to nitrite and then to nitrate. Chlorinated backwash water resulted in biofiltration without nitrification. Deep-bed filtration (empty-bed contact time (EBCT) = 8.3 min) did not enhance the development of nitrification when compared with shallow-bed filtration (EBCT = 3.2 min). Variable filtration rates between 4.8 and 14.6 m/h (2 and 6 gpm/sf) had minimal impact on BOM removal. However, conversion of ammonia to nitrite was reduced by 60% when increasing the filtration rate from 4.8 to 14.6 m/h. The results provide drinking water utilities practicing ozonation with a cost-effective alternative to remove the residual ammonia added for bromate control. PMID:17692888

  8. Mechanism of nitrogen-13-labeled ammonia formation in a cryogenic water target.

    PubMed

    Firouzbakht, M L; Schlyer, D J; Wolf, A P; Fowler, J S

    1999-05-01

    Methods for producing N-13 ammonia via the 16O(p,alpha)13N nuclear reaction utilizing a cryogenic target have been investigated. These targets included frozen carbon dioxide and pure frozen water. Results from these targets were compared with the more traditional liquid water target with and without additives. A very dramatic difference was found between the pure water target in the frozen state when compared with the liquid state. When frozen, more than 95% of the nitrogen-13 activity is in the chemical form of ammonia at all radiation doses. In contrast, the liquid water target yielded predominately nitrates and nitrites at high radiation doses. When frozen carbon dioxide was irradiated under these conditions, more than 95% of the nitrogen-13 activity was in the form of nitrate and nitrite. The nitrogen oxides remained on the surface of the target and could be easily removed from the surface with pure water. The wash solution was converted to [13N]ammonia using the DeVarda's alloy method for reduction. It was determined that levels of [13N]ammonia sufficient for diagnostic medical procedures could be produced directly using the frozen water targets or from frozen carbon dioxide with a wet chemical reduction. These results have significance particularly in the design of targetry for low-energy, high-beam current accelerators, because targets of this design can be used with either no vacuum isolation window or a very thin window. The substitution of carbon-13-enriched carbon dioxide for natural carbon dioxide gives access to the 13C(p,n)13N nuclear reaction, which allows protons energies as low as 6 MeV to be used to produce useable quantities of N-13 ammonia. The mechanism of these reactions has been explored to determine why there are such dramatic differences in the product distribution between the frozen state and the liquid or gaseous state. PMID:10382848

  9. Diversity, Physiology, and Niche Differentiation of Ammonia-Oxidizing Archaea

    PubMed Central

    2012-01-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, has been suggested to have been a central part of the global biogeochemical nitrogen cycle since the oxygenation of Earth. The cultivation of several ammonia-oxidizing archaea (AOA) as well as the discovery that archaeal ammonia monooxygenase (amo)-like gene sequences are nearly ubiquitously distributed in the environment and outnumber their bacterial counterparts in many habitats fundamentally revised our understanding of nitrification. Surprising insights into the physiological distinctiveness of AOA are mirrored by the recognition of the phylogenetic uniqueness of these microbes, which fall within a novel archaeal phylum now known as Thaumarchaeota. The relative importance of AOA in nitrification, compared to ammonia-oxidizing bacteria (AOB), is still under debate. This minireview provides a synopsis of our current knowledge of the diversity and physiology of AOA, the factors controlling their ecology, and their role in carbon cycling as well as their potential involvement in the production of the greenhouse gas nitrous oxide. It emphasizes the importance of activity-based analyses in AOA studies and formulates priorities for future research. PMID:22923400

  10. Nitrite impacts the survival of Mycobacterium tuberculosis in response to isoniazid and hydrogen peroxide

    PubMed Central

    Cunningham-Bussel, Amy; Bange, Franz C; Nathan, Carl F

    2013-01-01

    When access to molecular oxygen is restricted, Mycobacterium tuberculosis (Mtb) can respire an alternative electron acceptor, nitrate. We found that Mtb within infected primary human macrophages in vitro at physiologic tissue oxygen tensions respired nitrate, generating copious nitrite. A strain of Mtb lacking a functioning nitrate reductase was more susceptible than wild-type Mtb to treatment with isoniazid during infection of macrophages. Likewise, nitrate reductase-deficient Mtb was more susceptible to isoniazid than wild-type Mtb in axenic culture, and more resistant to hydrogen peroxide. These phenotypes were reversed by the addition of exogenous nitrite. Further investigation suggested that nitrite might inhibit the bacterial catalase. To the extent that Mtb itself is the most relevant source of nitrite acting within Mtb, these findings suggest that inhibitors of Mtb's nitrate transporter or nitrate reductase could enhance the efficacy of isoniazid. PMID:24019302

  11. Nitrite impacts the survival of Mycobacterium tuberculosis in response to isoniazid and hydrogen peroxide.

    PubMed

    Cunningham-Bussel, Amy; Bange, Franz C; Nathan, Carl F

    2013-12-01

    When access to molecular oxygen is restricted, Mycobacterium tuberculosis (Mtb) can respire an alternative electron acceptor, nitrate. We found that Mtb within infected primary human macrophages in vitro at physiologic tissue oxygen tensions respired nitrate, generating copious nitrite. A strain of Mtb lacking a functioning nitrate reductase was more susceptible than wild-type Mtb to treatment with isoniazid during infection of macrophages. Likewise, nitrate reductase-deficient Mtb was more susceptible to isoniazid than wild-type Mtb in axenic culture, and more resistant to hydrogen peroxide. These phenotypes were reversed by the addition of exogenous nitrite. Further investigation suggested that nitrite might inhibit the bacterial catalase. To the extent that Mtb itself is the most relevant source of nitrite acting within Mtb, these findings suggest that inhibitors of Mtb's nitrate transporter or nitrate reductase could enhance the efficacy of isoniazid. PMID:24019302

  12. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen.

    PubMed

    Fitzgerald, Colin M; Camejo, Pamela; Oshlag, J Zachary; Noguera, Daniel R

    2015-03-01

    Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions. PMID:25506762

  13. Dietary nitrate supplementation and exercise performance.

    PubMed

    Jones, Andrew M

    2014-05-01

    Dietary nitrate is growing in popularity as a sports nutrition supplement. This article reviews the evidence base for the potential of inorganic nitrate to enhance sports and exercise performance. Inorganic nitrate is present in numerous foodstuffs and is abundant in green leafy vegetables and beetroot. Following ingestion, nitrate is converted in the body to nitrite and stored and circulated in the blood. In conditions of low oxygen availability, nitrite can be converted into nitric oxide, which is known to play a number of important roles in vascular and metabolic control. Dietary nitrate supplementation increases plasma nitrite concentration and reduces resting blood pressure. Intriguingly, nitrate supplementation also reduces the oxygen cost of submaximal exercise and can, in some circumstances, enhance exercise tolerance and performance. The mechanisms that may be responsible for these effects are reviewed and practical guidelines for safe and efficacious dietary nitrate supplementation are provided. PMID:24791915

  14. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors.

    PubMed

    Hubert, Casey; Voordouw, Gerrit

    2007-04-01

    Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB. PMID:17308184

  15. Oil Field Souring Control by Nitrate-Reducing Sulfurospirillum spp. That Outcompete Sulfate-Reducing Bacteria for Organic Electron Donors? †

    PubMed Central

    Hubert, Casey; Voordouw, Gerrit

    2007-01-01

    Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB. PMID:17308184

  16. Losses of Ammonia and Nitrate from Agriculture and Their Effect on Nitrogen Recovery in the European Union and the United States between 1900 and 2050.

    PubMed

    van Grinsven, Hans J M; Bouwman, Lex; Cassman, Kenneth G; van Es, Harold M; McCrackin, Michelle L; Beusen, Arthur H W

    2015-03-01

    Historical trends and levels of nitrogen (N) budgets and emissions to air and water in the European Union and the United States are markedly different. Agro-environmental policy approaches also differ, with emphasis on voluntary or incentive-based schemes in the United States versus a more regulatory approach in the European Union. This paper explores the implications of these differences for attaining long-term policy targets for air and water quality. Nutrient surplus problems were more severe in the European Union than in the United States during the 1970s and 1980s. The EU Nitrates and National Emission Ceilings directives contributed to decreases in fertilizer use, N surplus, and ammonia (NH) emissions, whereas in the United States they stabilized, although NH emissions are still increasing. These differences were analyzed using statistical data for 1900-2005 and the global IMAGE model. IMAGE could reproduce NH emissions and soil N surpluses at different scales (European Union and United States, country and state) and N loads in the Rhine and Mississippi. The regulation-driven changes during the past 25 yr in the European Union have reduced public concerns and have brought agricultural N loads to the aquatic environment closer to US levels. Despite differences in agro-environmental policies and agricultural structure (more N-fixing soybean and more spatially separated feed and livestock production in the United States than in the European Union), current N use efficiency in US and EU crop production is similar. IMAGE projections for the IAASTD-baseline scenario indicate that N loading to the environment in 2050 will be similar to current levels. In the United States, environmental N loads will remain substantially smaller than in the European Union, whereas agricultural production in 2050 in the United States will increase by 30% relative to 2005, as compared with an increase of 8% in the European Union. However, in the United States, even rigorous mitigation with maximum recycling of manure N and a 25% reduction in fertilizer use will not achieve the policy target to halve the N export to the Gulf of Mexico. PMID:26023955

  17. Swimming performance of channel catfish (Ictalurus punctatus) after nitrite exposure

    SciTech Connect

    Watenpaugh, D.E.; Beitinger, T.L.

    1985-05-01

    Tests of prolonged swimming are generally considered most useful in sublethal stress assessment, as they draw on both major biochemical energy sources. No research to date has quantified either the swimming performance of I. punctatus or effects of nitrite exposure on swimming of any species. Our purpose was to determine if nitrite exposure affects the prolonged swimming performance of channel catfish, and to delineate the extent that methemoglobinemia resulting from nitrate exposure correlates with performance.

  18. Nitrate removal in closed-system aquaculture by columnar denitrification.

    PubMed Central

    Balderston, W L; Sieburth, J M

    1976-01-01

    The columnar denitrification method of nitrate-nitrogen removal from high-density, closed system, salmonid aquaculture was investigated and found to be feasible. However, adequate chemical monitoring was found to be necessary for the optimization and quality control of this method. When methanol-carbon was not balanced with inlet nitrate-nitrogen, the column effluent became unsatisfactory for closed-system fish culture due to the presence of excess amounts of nitrite, ammonia, sulfide, and dissolved organic carbon. Sulfide production was also influenced by column maturity and residence time. Methane-carbon was found to be unsatisfactory as an exogenous carbon source. Endogenous carbon could not support high removal efficiencies. Freshwater columns adpated readily to an artificial seawater with a salinity of 18% without observable inhibition. Scanning electron microscopy revealed that the bacterial flora was mainly rod forms with the Peritricha (protozoa) dominating as the primary consumers. Denitrifying bacteria isolated from freshwater columns were tentatively identified as species of Pseudomonas and Alcaligenes. A pilot plant column was found to behave in a manner similar to the laboratory columns except that nitrite production was never observed. Images PMID:1008557

  19. Studies on the oxidation of ammonia by Nitrosomonas

    PubMed Central

    Anderson, J. H.

    1965-01-01

    1. Free-energy calculations for pH7 showed that the oxidation of ammonia to hydroxylamine is endergonic and that the oxidations of hydroxylamine to nitrite and hydrazine to nitrogen are exergonic. It is suggested that the oxidation of ammonia requires the expenditure of energy. 2. The anaerobic dehydrogenation of hydrazine to nitrogen by extracts of the autotrophic nitrifying micro-organism, Nitrosomonas, in the presence of methylene blue as electron acceptor, was less rapid than the anaerobic dehydrogenation of hydroxylamine to nitric oxide. The inhibition by hydrazine of the dehydrogenation of hydroxylamine was attributed to substrate competition. 3. Whole cells in air did not produce nitrite from hydrazine. They produced nitrite from low concentrations of hydroxylamine more rapidly than from equimolar concentrations of ammonia; this result is consistent if hydroxylamine is an intermediate of the oxidation of ammonia. 4. The production of nitrite from hydroxylamine by whole cells was slightly inhibited by hydrazine, but the production of nitrite from ammonia was greatly inhibited and small amounts of hydroxylamine were formed. These results suggested that the dehydrogenation of hydroxylamine supplied energy required for the oxidation of ammonia and that hydroxylamine appeared because the energy production was replaced by that of the dehydrogenation of hydrazine. 5. The oxidation of hydroxylamine by whole cells was not inhibited by thiourea, but micromolar concentrations of the metal-binding agent markedly inhibited the oxidation of ammonia to hydroxylamine, suggesting that the oxidation of ammonia involved copper. A possible mechanism for the activation of ammonia is suggested. PMID:14342504

  20. Effect of aerobic and anaerobic conditions on the in vivo nitrate reductase assay in spinach leaves

    Microsoft Academic Search

    A. F. Mann; D. P. Hucklesby; E. J. Hewitt

    1979-01-01

    15N-labelled nitrate was used to show that nitrate reduction by leaf discs in darkness was suppressed by oxygen, whereas nitrite present within the cell could be reduced under aerobic dark conditions. In other experiments, unlabelled nitrite, allowed to accumulate in the tissue during the dark anaerobic reduction of nitrate was shown by chemical analysis to be metabolised during a subsequent

  1. Characteristics of Nitrate Reduction in a Mutant of the Blue-Green Alga Agmenellum quadruplicatum1

    PubMed Central

    Stevens, S. E.; Van Baalen, Chase

    1973-01-01

    Characteristics of nitrate reduction in terms of nitrite production in an N-methyl-N?-nitro-N-nitrosoguanidine-induced mutant of the blue-green alga Agmenellum quadruplicatum are described. Following induction of nitrate reduction a linear rate of nitrite production proportional to cell concentration was observed. Rate of nitrite production and growth rate showed similar responses to pH, temperature, and light intensity. If required, only trace amounts of carbon dioxide were necessary for nitrite production. Atmospheres of oxygen or nitrogen inhibited production of nitrite. In addition, a low but constant rate of nitrite production was observed in the dark. Nitrite production by mutant AQ-6 was studied in terms of photosynthesis. As nitrite production proceeded, rate of photosynthesis declined. Ultraviolet irradiation and 3-(3,4-dichlorophenyl)-1, 1-dimethylurea poisoning did not prevent nitrite production. The action spectrum of nitrite production was chlorophyll a-like. PMID:16658328

  2. Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor.

    PubMed

    Fajardo, Carmen; Mora, Mabel; Fernández, Isaac; Mosquera-Corral, Anuska; Campos, José Luis; Méndez, Ramón

    2014-02-01

    Autotrophic denitrification is a suitable technology to simultaneously remove oxidised nitrogen compounds and reduced sulphur compounds yielding nitrogen gas, sulphur and sulphate as the main products. In this work, several batch tests were conducted to investigate the cross effect of temperature, pH and free ammonia on the autotrophic denitrification. Denitrification efficiencies above 95% were achieved at 35°C and pH 7.5-8.0 with maximum specific autotrophic denitrifying activities up to 188mgN2g(-1)VSSd(-1). Free ammonia did not show any effect on denitrification at concentrations up to 53mg NH3-NL(-1). Different sulphide concentrations were also tested with stoichiometric nitrite and nitrate concentrations. Sulphide inhibited denitrification at concentrations higher than 200mgS(2-)L(-1). A 50% inhibition was also found at nitrite concentrations above 48mg NO2(-)-NL(-1). The maximum specific activity decreased until a value of 25mgN2g(-1) VSSd(-1) at 232mg NO2(-)-NL(-1). The Haldane model was used to describe denitrification inhibition caused by nitrite. Kinetic parameters determined from the fitting of experimental data were rmax=176mgN2g(-1)VSSd(-1), Ks=10.7mg NO2(-)-NL(-1) and Ki=34.7mg NO2(-)-NL(-1). The obtained model allowed optimising an autotrophic denitrification process by avoiding situations of inhibition and thus obtaining higher denitrification efficiencies. PMID:24216266

  3. Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone

    NASA Astrophysics Data System (ADS)

    Wen, Liang; Chen, Jianmin; Yang, Lingxiao; Wang, Xinfeng; Caihong Xu; Sui, Xiao; Yao, Lan; Zhu, Yanhong; Zhang, Junmei; Zhu, Tong; Wang, Wenxing

    2015-01-01

    Severe PM2.5 pollution was observed frequently on the North China Plain, and nitrate contributed a large fraction of the elevated PM2.5 concentrations. To obtain a comprehensive understanding of the formation pathways of these fine particulate nitrate and the key factors that affect these pathways, field measurements of fine particulate nitrate and related air pollutants were made at a rural site on the North China Plain in the summer of 2013. Extremely high concentrations of fine particulate nitrate were frequently observed at night and in the early morning. The maximum hourly concentration of fine particulate nitrate reached 87.2 ?g m-3. This concentration accounted for 29.9% of the PM2.5. The very high NH3 concentration in the early morning significantly accelerated the formation of fine particulate nitrate, as indicated by the concurrent appearance of NH3 and NO3- concentration peaks and a rising neutralization ratio (the equivalent ratio of NH4+ to the sum of SO42- and NO3-). On a number of other episode days, strong photochemical activity during daytime led to high concentrations of O3 at night. The fast secondary formation of fine particulate nitrate was mainly attributed to the hydrolysis of N2O5, which was produced from O3 and NO2. Considering the important roles of NH3 and O3 in fine particulate nitrate formation, we suggest the control of NH3 emissions and photochemical pollution to address the high levels of fine particulate nitrate and the severe PM2.5 pollution on the North China Plain.

  4. Synthesis and intracrystalline oxidation of nitrite-intercalated layered double hydroxides

    SciTech Connect

    Thomas, Nygil; Pradeep Kumar, G. [Materials Research Group, Department of Chemistry, St. Joseph's College, 36 Lalbagh Road, Bangalore 560027 (India); Rajamathi, Michael [Materials Research Group, Department of Chemistry, St. Joseph's College, 36 Lalbagh Road, Bangalore 560027 (India)], E-mail: mikerajamathi@rediffmail.com

    2009-03-15

    Nitrite-intercalated LDHs could be prepared by a two-stage process that involves coprecipitation in the presence of nitrite ions followed by stirring the product with excess of nitrite ions. The nitrite ion lies flat in these LDHs with its c{sub 2}-axis lying approximately perpendicular to the crystallographic c-axis. The interlayer nitrite ions in these LDHs could be quantitatively oxidized to nitrate ions using H{sub 2}O{sub 2} solution. In the LDHs thus obtained the nitrate ion lies flat with its c{sub 3}-axis parallel to the crystallographic c-axis (D{sub 3h} symmetry) in the interlayer region resulting in lower basal spacing. - Graphical abstract: Nitrite-intercalated LDHs could be prepared by a two-stage process that involves coprecipitation in the presence of nitrite ions followed by stirring the product with excess of nitrite ions. The interlayer nitrite ions in these LDHs could be quantitatively oxidized to nitrate ions.

  5. Nitrate as an oxidant in the cathode chamber of a microbial fuel cell for both power generation and nutrient removal purposes.

    PubMed

    Fang, Cheng; Min, Booki; Angelidaki, Irini

    2011-06-01

    Nitrate ions were used as the oxidant in the cathode chamber of a microbial fuel cell (MFC) to generate electricity from organic compounds with simultaneous nitrate removal. The MFC using nitrate as oxidant could generate a voltage of 111 mV (1,000 ?) with a plain carbon cathode. The maximum power density achieved was 7.2 mW m(-2) with a 470 ? resistor. Nitrate was reduced from an initial concentration of 49 to 25 mg (NO (3) (-) -N) L(-1) during 42-day operation. The daily removal rate was 0.57 mg (NO (3) (-) -N) L(-1) day(-1) with a voltage generation of 96 mV. In the presence of Pt catalyst dispersed on cathode, the cell voltage was significantly increased up to 450 mV and the power density was 117.7 mW m(-2), which was 16 times higher than the value without Pt catalyst. Significant nitrate removal was also observed with a daily removal rate of 2 mg (NO (3) (-) -N) L(-1) day(-1), which was 3.5 times higher compared with the operation without catalyst. Nitrate was reduced to nitrite and ammonia in the liquid phase at a ratio of 0.6% and 51.8% of the total nitrate amount. These results suggest that nitrate can be successfully used as an oxidant for power generation without aeration and also nitrate removal from water in MFC. However, control of the process would be needed to reduce nitrate to only nitrogen gas, and avoid further reduction to ammonia. PMID:21188547

  6. Analysis of cis -acting DNA elements mediating induction and repression of the spinach nitrite reductase gene

    Microsoft Academic Search

    Sobhana Sivasankar; Rajeev Rastogi; Lisa Jackman; Ann Oaks; Steven Rothstein

    1998-01-01

    .   The expression of nitrite reductase (NiR; EC 1.7.7.1), the second enzyme in the nitrate assimilatory pathway, is regulated\\u000a by nitrate as well as by end-products of nitrate assimilation, namely, glutamine (Gln) and asparagine (Asn). Nitrate induces\\u000a expression of the NiR gene. Previously, using deletion analysis of the spinach (Spinacia oleracea L.) NiR gene promoter in transgenic tobacco (Nicotiana tabacum

  7. Molecular Structure of Ammonia

    NSDL National Science Digital Library

    2006-05-02

    Ammonia is a non-ionic colorless gas at ambient temperatures and a hydrogen bonding liquid at 240 Kelvin that has the remarkable ability to dissolve alkali metals. Ammonia is a Lewis base and is readily absorbed by water to form small amounts of ammonium hydroxide (pKb = 4.74). Naturally, ammonia has its sources in the biosphere (the nitrogen cycle) and is a trace gas in air and a source of ammonium ions in rain and atmospheric aerosols. Ammonia is prepared industrially by the Haber-Bosch process in quantities exceeding 120 million metric tons per year. In this process, ammonia gas is formed when hydrogen and nitrogen (3:1) are compressed to pressures of 200 atm and passed over an iron catalyst at 380-450 degrees C. Much of the ammonia produced this way (85%) is used as fertilizers on crops, a significant portion of which leaches from croplands into streams causing nitrate pollution and eutrophication of waterways (e.g., dead-zone in the Gulf of Mexico). Other sources of ammonia include combustion (coal and biomass burning) and from bacterial decomposition of animal excreta.

  8. Drinking Water Problems: Nitrates 

    E-print Network

    Dozier, Monty; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Lesikar, Bruce J.

    2008-03-28

    three treatment methods for remov- ing nitrates/nitrites: ion exchange, reverse osmosis and electrodialysis. Reverse osmosis The most common treatment method for nitrate in a water supply is reverse osmosis (RO). This method is cost effective for a home... by passing the distilled water through a post filter. Most units will treat 5 to 11 gal- lons of water a day. Figure 4. Reverse osmosis treatment unit (Adapted from Kneen et al., 1995 and USEPA, 2003). The disadvantage of an RO unit is the small amount...

  9. Nitrate reductase in Peru current phytoplankton

    Microsoft Academic Search

    R. W. Eppley; T. T. Packard; J. J. MacIsaac

    1970-01-01

    Nitrate reductase (NR) activity was assayed by measuring the NADH-dependent formation of nitrite in phytoplankton extracts. NR specific activity increased with the nitrate concentration of the water in upwelling areas of the Peru Current. The temperature optimum for NR for natural phytoplankton was 15° to 20°C. NR activity showed diel periodicity, with maximum activity about noon and minimum activity near

  10. Electrochemical removal of nitrate using ZVI packed bed bipolar electrolytic cell.

    PubMed

    Jeong, Joo-Young; Kim, Han-Ki; Kim, Jung-Hwan; Park, Joo-Yang

    2012-09-01

    The present study investigates the performance of the zero valent iron (ZVI, Fe(0)) packed bed bipolar electrolytic cell for nitrate removal. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous column experiments for the simulated groundwater (initial nitrate and electrical conductivity of about 30 mg L(-1) as N and 300 ?S cm(-1), respectively), above 99% of nitrate was removed at the applied potential of 600 V with the main anode placed on the bottom of reactor. The influx nitrate was converted to ammonia (20% to maximum 60%) and nitrite (always less than 0.5 mg L(-1) as N in the effluent). The optimum packing ratio (v/v) of silica sand to ZVI was found to be 1:1-2:1. Magnetite was observed on the surface of the used ZVI as corrosion product. The reduction at the lower part of the reactor in acidic condition and adsorption at the upper part of the reactor in alkaline condition are the major mechanism of nitrate removal. PMID:22739545

  11. Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation-electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent.

    PubMed

    Mahvi, Amir Hossein; Ebrahimi, Seyed Jamal Al-Din; Mesdaghinia, Alireza; Gharibi, Hamed; Sowlat, Mohammad Hossein

    2011-09-15

    The present study aimed to evaluate the performance of a continuous bipolar ECEO-EF reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent. The reactor was comprised of two distinct units: electrochemical and separation. In the electrochemical unit, Al, stainless steel, and RuO(2)/Ti plates were used. All the measurements were performed according to the standard methods. Maximum efficiency of the reactor for phosphate removal was 99% at pH of 6, current density of 3A, detention time of 60 min, and influent phosphate concentration of 50mg/l. The corresponding value for ammonia removal was 99% at a pH of 7 under the same operational conditions as for phosphate removal. For both phosphate and ammonia, the removal efficiency was highest at neutral pH, with higher current densities, and with lower influent concentrations. In addition to removal of phosphate and ammonia, application of the Al(3+) plates enabled the removal of nitrite and nitrate, which may be present in wastewater effluent and are also products of the electrochemical process. The reactor was also able to decrease the concentrations of phosphate, ammonia, and COD under actual wastewater conditions by 98%, 98%, and 72%, respectively. According to the results of the present study, the reactor can be used for efficient removal of ammonia and phosphate from wastewater. PMID:21741172

  12. Suspected nitrite poisoning in pigs caused by Capsella bursa-pastoris (L.) Medik. ('herderstassie', shepherd's purse).

    PubMed

    Wiese, W J; Joubert, J P

    2001-09-01

    Nitrite poisoning in pigs was suspected when 4 of 18 pigs died in a piggery near Ellisras in the Northern Province. The pigs showed typical brownish discolouration of the blood at autopsy. It was established that they ingested vegetable tops and weeds from the adjacent garden as part of their daily ration. Of the available plants, only Capsella bursa-pastoris contained nitrites. The drinking water and some of the other plants tested positive for nitrates but not for nitrites. This is the first report of suspected nitrite poisoning in pigs caused by Capsella bursa-pastoris. PMID:11811708

  13. A Mesophilic, Autotrophic, Ammonia-Oxidizing Archaeon of Thaumarchaeal Group I.1a Cultivated from a Deep Oligotrophic Soil Horizon

    PubMed Central

    Jung, Man-Young; Park, Soo-Je; Kim, So-Jeong; Kim, Jong-Geol; Sinninghe Damsté, Jaap S.

    2014-01-01

    Soil nitrification plays an important role in the reduction of soil fertility and in nitrate enrichment of groundwater. Various ammonia-oxidizing archaea (AOA) are considered to be members of the pool of ammonia-oxidizing microorganisms in soil. This study reports the discovery of a chemolithoautotrophic ammonia oxidizer that belongs to a distinct clade of nonmarine thaumarchaeal group I.1a, which is widespread in terrestrial environments. The archaeal strain MY2 was cultivated from a deep oligotrophic soil horizon. The similarity of the 16S rRNA gene sequence of strain MY2 to those of other cultivated group I.1a thaumarchaeota members, i.e., Nitrosopumilus maritimus and “Candidatus Nitrosoarchaeum koreensis,” is 92.9% for both species. Extensive growth assays showed that strain MY2 is chemolithoautotrophic, mesophilic (optimum temperature, 30°C), and neutrophilic (optimum pH, 7 to 7.5). The accumulation of nitrite above 1 mM inhibited ammonia oxidation, while ammonia oxidation itself was not inhibited in the presence of up to 5 mM ammonia. The genome size of strain MY2 was 1.76 Mb, similar to those of N. maritimus and “Ca. Nitrosoarchaeum koreensis,” and the repertoire of genes required for ammonia oxidation and carbon fixation in thaumarchaeal group I.1a was conserved. A high level of representation of conserved orthologous genes for signal transduction and motility in the noncore genome might be implicated in niche adaptation by strain MY2. On the basis of phenotypic, phylogenetic, and genomic characteristics, we propose the name “Candidatus Nitrosotenuis chungbukensis” for the ammonia-oxidizing archaeal strain MY2. PMID:24705324

  14. Controlling the nitrite:ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process

    Microsoft Academic Search

    E. I. P. Volcke; M. C. M. van Loosdrecht; P. A. Vanrolleghem

    2006-01-01

    The combined SHARON-Anammox process for treating wastewater streams with high ammonia load is the focus of this paper. In particular, partial nitritation in the SHARON reactor should be performed to such an extent that a nitrite:ammonium ratio is generated which is optimal for full conversion in an Anammox process. In the simulation studies performed in this contribution, the nitrite:ammonium ratio

  15. The Effect of Humic Substances on the Production Rate of Alkyl Nitrates in Seawater

    NASA Astrophysics Data System (ADS)

    Heiss, E. M.; Dahl, E. E.

    2008-12-01

    Alkyl nitrates are produced photochemically in seawater by the reaction of organic peroxy radicals and nitric oxide (ROO + NO). Dissolved organic matter (DOM) is a source of organic peroxy radicals in seawater, but it is unclear as to which fraction of DOM is important for alkyl nitrate formation. Dissolved humics may be important to alkyl nitrate production. The production rates of C1-C3 alkyl nitrates were observed in 0.2 ?m filtered open ocean seawater as a function of nitrite concentration. The net production rates of methyl, ethyl, isopropyl, and n-propyl nitrate increased with increasing nitrite concentrations. Suwannee River humics were added to seawater samples and the net production rates of alkyl nitrates were determined. The production rate of ethyl nitrate increased at nitrite concentrations above 20 ?M nitrite by a factor of ~5 with the addition of humic substances. The addition of humic substances to the water samples also resulted in an increase in the ratio of isopropyl nitrate production to ethyl nitrate production by a factor of ~3 compared to nitrite only additions. The ratio of isopropyl to ethyl nitrate production with additional humics is also greater than production rates determined using open ocean water in previous studies. The ratios of methyl nitrate and n-propyl nitrate production to ethyl nitrate production did not change significantly. The minimal change in alkyl nitrate production rates at nitrite concentrations below 20 ?M indicates that NO may be the limiting reactant in this particular water sample. The effect of the humics at high nitrite concentrations shows that organic peroxy radicals are an important reactant in the production of alkyl nitrates. The difference between production rate patterns with the addition of humics compared to the nitrite only incubations indicate that humics are not the only source of organic peroxy radicals affecting open ocean water alkyl nitrate formation.

  16. Summertime PM 2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere

    Microsoft Academic Search

    R. K. Pathak; W. S. Wu; T. Wang

    2009-01-01

    Strong atmospheric photochemistry in summer can produce a significant amount of secondary aerosols, which may have a large impact on regional air quality and visibility. In the study reported herein, we analyzed sul- fate, nitrate, and ammonium in PM2.5 samples collected us- ing a 24-h filter system at suburban and rural sites near four major cities in China (Beijing, Shanghai,

  17. Coupling the 15 O of nitrate as a constraint on

    E-print Network

    Sigman, Daniel M.

    Coupling the 15 N/14 N and 18 O/16 O of nitrate as a constraint on benthic nitrogen cycling Moritz February 2004 Abstract We report 15 N/14 N and 18 O/16 O ratios of nitrate in benthic chamber incubationsÀ 2 dÀ 1 . Between 46% and 100% of the total denitrification can be explained by nitrate or nitrite

  18. Sequential Injection Determination of Nitrate in Vegetables by Spectrophotometry with Inline Cadmium Reduction

    Microsoft Academic Search

    Sara M. Oliveira; Teresa I. M. S. Lopes; António O. S. S. Rangel

    2007-01-01

    A sequential injection system for the determination of nitrate (NO3 ) in vegetables was developed to automate this determination, allowing for substantially reduced reagent consumption and generated waste using low?cost equipment. After extraction with water and filtration, the extracted nitrate is reduced inline to nitrite in a copperized cadmium (Cd) column and determined as nitrite. According to the Griess–Ilosvay reaction,

  19. Genetic basis for nitrate resistance in Desulfovibrio strains.

    PubMed

    Korte, Hannah L; Fels, Samuel R; Christensen, Geoff A; Price, Morgan N; Kuehl, Jennifer V; Zane, Grant M; Deutschbauer, Adam M; Arkin, Adam P; Wall, Judy D

    2014-01-01

    Nitrate is an inhibitor of sulfate-reducing bacteria (SRB). In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes of nitrate application. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702), as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605) that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance. PMID:24795702

  20. Seasonal changes in abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria and their nitrification in sand of an eelgrass zone.

    PubMed

    Ando, Yoshifumi; Nakagawa, Tatsunori; Takahashi, Reiji; Yoshihara, Kiyoshi; Tokuyama, Tatsuaki

    2009-01-01

    Seasonal changes in the abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) within the sand of an eelgrass (Zostera marina) zone were examined by a quantitative PCR of both crenarchaeotal and betaproteobacterial ammonia monooxygenase alpha subunit (amoA) genes together with temperature and concentrations of ammonium, nitrite, and nitrate from May 2007 to June 2008 at Tanoura Bay, Shizuoka, Japan. The abundance of both amoAs in the sand between May and June 2007 and between January and March 2008 was 1.5 to 2 orders of magnitude higher than the 10(4) copies g(-1) of estimated amoA between September and December. Archaeal amoA was more diverse than betaproteobacterial amoA. Betaproteobacterial amoA clone libraries were dominated by Nitrosospira-like sequence types. An incubation experiment was conducted with sands collected in February 2008 and community structure was analyzed based on reverse-transcribed amoAs. RNA was extracted from sand incubated for 12 days at 30°C, 17 days at 20°C, and 80 days at 10°C. Different amoA clones were detected from in situ sand and incubated sand. This study reveals clear evidence of seasonal change in the abundance of AOA and AOB within the sand of an eelgrass zone. PMID:21566349

  1. Effect of Glucose Utilization on Nitrite Excretion by the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6803

    PubMed Central

    Reyes, J. C.; Chávez, S.; Muro-Pastor, M. I.; Candau, P.; Florencio, F. J.

    1993-01-01

    Up to 1 mM nitrite was excreted by Synechocystis strain 6803 cells growing under mixotrophic or photoheterotrophic conditions. This excretion is not due to a lower ratio of nitrite and nitrate reductase activities in the presence of glucose but seems to be related to a shortage of reduced ferredoxin, their electron donor, as a result of a decrease in noncyclic photosynthetic flow observed under these circumstances. Because about 60% of the reduced nitrate is excreted, the potential utilization of cyanobacteria for removal of nitrate from contaminated waters containing high concentrations of organic compounds is questioned. PMID:16349056

  2. Haematological responses of acute nitrite exposure in walleye (Sander vitreus).

    PubMed

    Madison, Barry N; Wang, Yuxiang S

    2006-08-12

    Nitrite (NO2-) is a toxic intermediary of the bacterial oxidation of nitrogenous wastes (e.g. ammonia) in an aquatic environment. It becomes most lethal when oxygen becomes limited due to high fish densities or in the presence of high bacterial activity due to waste build-up-both situations commonly found in intensive aquaculture. To date however, little is known about how this toxin affects the physiology of walleye, an intended culture species, particularly in intensive re-circulating systems. This study aims to define threshold concentrations of nitrite that affect haemoglobin-oxygen affinity and carrying capacity in walleye. During in vivo tests, fish (N=20) were subjected to a medium effective concentration (EC50) of nitrite (0.9 mmol L(-1)) for 48 h while the effects of nitrite accumulation on blood properties were measured. The effects of oxygenation state on red blood cell (RBC) nitrite uptake and metHb formation was further investigated by in vitro tonometry. In vitro nitrite exposure to 3 mmol L(-1) resulted in a significantly higher methaemoglobin formation in 50% air saturated than 100% air saturated RBCs. Both cell water content and haematocrit decreased with time in 50% air saturated treatments, whereas total Hb remained constant, suggesting a reduction in RBC volume. Similar effects were observed during 48 h in vivo and in vitro nitrite exposure tests, indicating the reduction in RBC volume likely was not the result of a catecholamine response. Walleye were found to be tolerant to an accumulation of blood-NO2- levels similar to common carp, a highly Mean Cellular Volume (MCV) tolerant species, before succumbing to methaemoglobinemia. The elevated tolerance to nitrite of walleye is a beneficial characteristic for successful rearing in a culture setting, where reduced oxygen and elevated MCV levels are prevalent. The findings from this study may be used in developing guidelines for species-specific management of nitrogenous wastes in aquaculture. PMID:16806526

  3. Niche differentiation between ammonia-oxidizing bacteria in aquatic environments

    Microsoft Academic Search

    M. Coci

    2007-01-01

    The aim of the studies presented in this thesis was the search for niche differentiation between the ammonia-oxidizing bacteria in aquatic environments. Ammonia-oxidizing bacteria are chemolitho-autotrophic microorganisms responsible for the first, mostly rate-limiting step of the nitrification process, i.e. the conversion of ammonia into nitrite. The recent development of molecular techniques had overcome the difficulties inherent to the classic cultivation-based

  4. Horizontal Transfer of a Nitrate Assimilation Gene Cluster and Ecological Transitions in Fungi: A

    E-print Network

    Hibbett, David S.

    Horizontal Transfer of a Nitrate Assimilation Gene Cluster and Ecological Transitions in Fungi, Massachusetts, United States of America High affinity nitrate assimilation genes in fungi occur in a cluster (f nitrate transporter; euknr, which codes for nitrate reductase; and NAD(P)H- nir, which codes for nitrite

  5. FINAL REPORT. MECHANISM OF PITTING CORROSION PREVENTION BY NITRITE IN CARBON STEEL EXPOSED TO DILUTE SALT SOLUTIONS

    EPA Science Inventory

    The research has developed a broad fundamental understanding of the inhibition action of nitrite ions in preventing nitrate pitting corrosion of carbon steel tanks containing high-level radioactive waste. This fundamental understanding can be applied to specific situations during...

  6. Unique photochemistry of surface nitrate

    SciTech Connect

    Vogt, R.; Finlayson-Pitts, B.J. [Univ. of California, Irvine, CA (United States)

    1995-11-23

    Unique inorganic surface nitrate species are known to be formed by the reactions of alkali halides such as solid NaCl with gaseous NO{sub 2}, HNO{sub 3}, and N{sub 2}O{sub 5}. We report here that these surface nitrate species do not give nitrite ions upon UV photolysis, unlike stable crystalline inorganic nitrates such as NaNO{sub 3}. No infrared active products are detected in the salt while the surface nitrate photodecomposes, demonstrating that the surface nitrate species has a unique photochemistry that is distinct from that of crystalline NaNO{sub 3}. On the other hand, if the surface nitrate is transformed into microcrystallites of NaNO{sub 3} through a water-induced surface reorganization, the formation of nitrite is observed upon photolysis, as expected for the stable crystalline salt. A possible mechanism for the decomposition of the surface nitrate involves production of NO{sub 2}: NO{sub 3}{sup -}{sub surf} + hv {yields} NO{sub 2} + O{sup -}{sub surf} (8) rather than NO{sub 2}{sup -} + O or ONOO{sup -} as observed in earlier studies. The atmospheric implications of these observations are discussed. 29 refs., 4 figs.

  7. Haematological responses of acute nitrite exposure in walleye ( Sander vitreus)

    Microsoft Academic Search

    Barry N. Madison; Yuxiang S. Wang

    2006-01-01

    Nitrite (NO2?) is a toxic intermediary of the bacterial oxidation of nitrogenous wastes (e.g. ammonia) in an aquatic environment. It becomes most lethal when oxygen becomes limited due to high fish densities or in the presence of high bacterial activity due to waste build-up—both situations commonly found in intensive aquaculture. To date however, little is known about how this toxin

  8. Methemoglobinemia: nitrate toxicity in rural America

    SciTech Connect

    Kross, B.C.; Ayebo, A.D.; Fuortes, L.J. (University of Iowa College of Medicine, Iowa City (United States))

    1992-07-01

    Nitrates are frequently found in vegetables and ground water. Nitrate levels in ground water have increased over the past two decades because of the heightened use of nitrogenous fertilizers. Following ingestion, nitrates are converted to nitrites by fecal organisms. Nitrites are absorbed and form methemoglobin, which interferes with the oxygen-carrying capacity of hemoglobin. Infants are particularly susceptible to nitrate poisoning because fetal hemoglobin is more readily oxidized to methemoglobin. In infants, the most common source of nitrate exposure is well water, which is mixed with infant formula. Affected infants may present with asymptomatic cyanosis, which can progress to dyspnea and lethargy or coma. Blood methemoglobin concentrations are elevated. Treatment consists of the administration of oxygen and intravenous and oral methylene blue.24 references.

  9. Comment on Egami's concept of the evolution of nitrate respiration

    NASA Technical Reports Server (NTRS)

    Rambler, M.; Margulis, L.

    1976-01-01

    Recent results suggest that the presence of common nitrogen salts (sodium nitrite and nitrate) in the irradiation medium can markedly protect filamentous blue-green algae from potentially lethal ultraviolet irradiation. The present results as well as general biological arguments of Egami support and extend Egami's original view that anaerobic respiratory pathways using nitrite and nitrate as terminal electron acceptors evolved prior to oxygen requiring aerobic respiratory pathways.

  10. Nitrite is an alternative source of NO in vivo.

    PubMed

    Tsuchiya, Koichiro; Kanematsu, Yasuhisa; Yoshizumi, Masanori; Ohnishi, Hideki; Kirima, Kazuyoshi; Izawa, Yuki; Shikishima, Michiyo; Ishida, Tatsuhiro; Kondo, Shuji; Kagami, Shoji; Takiguchi, Yoshiharu; Tamaki, Toshiaki

    2005-05-01

    In this study, we investigated whether orally administered nitrite is changed to NO and whether nitrite attenuates hypertension in a dose-dependent manner. We utilized a stable isotope of [15N]nitrite (15NO2-) as a source of nitrite to distinguish between endogenous nitrite and that exogenously administered and measured hemoglobin (Hb)-NO as an index of circulating NO in whole blood using electron paramagnetic resonance (EPR) spectroscopy. When 1 mg/kg Na15NO2 was orally administered to rats, an apparent EPR signal derived from Hb15NO (A(Z) = 23.4 gauss) appeared in the blood. The peak blood HbNO concentration occurred at the first measurement after intake (5 min) for treatment with 1 and 3 mg/kg (HbNO: 4.93 +/- 0.52 and 10.58 +/- 0.40 microM, respectively) and at 15 min with 10 mg/kg (HbNO: 38.27 +/- 9.23 microM). In addition, coadministration of nitrite (100 mg/l drinking water) with N(omega)-nitro-L-arginine methyl ester (L-NAME; 1 g/l) for 3 wk significantly attenuated the L-NAME-induced hypertension (149 +/- 10 mmHg) compared with L-NAME alone (170 +/- 13 mmHg). Furthermore, this phenomenon was associated with an increase in circulating HbNO. Our findings clearly indicate that orally ingested nitrite can be an alternative to L-arginine as a source of NO in vivo and may explain, at least in part, the mechanism of the nitrite/nitrate-rich Dietary Approaches to Stop Hypertension diet-induced hypotensive effects. PMID:15626692

  11. Nitrite promotes the growth and decreases the lignin content of indica rice calli: a comprehensive transcriptome analysis of nitrite-responsive genes during in vitro culture of rice.

    PubMed

    Wang, Xin; Li, Yang; Fang, Gen; Zhao, Qingchuan; Zeng, Qi; Li, Xuemei; Gong, Hanyu; Li, Yangsheng

    2014-01-01

    As both major macronutrients and signal molecules, nitrogen metabolites, such as nitrate and nitrite, play an important role in plant growth and development. In this study, the callus growth of indica rice cv. 9311 was significantly enhanced by nitrite, whereas the soluble protein content remained unchanged. The deep RNA sequencing technology (RNA-seq) showed that the transcriptional profiles of cv. 9311 calli were significantly changed after adding nitrite to the nitrate-free medium, and these nitrite-responsive genes were involved in a wide range of plant processes, particularly in the secondary metabolite pathways. Interestingly, most of the genes involved in phenylpropanoid-related pathways were coordinately down-regulated by nitrite, such as four cinnamoyl-CoA reductase, and these in turn resulted in the decrease of lignin content of indica calli. Furthermore, several candidate genes related to cell growth or stress responses were identified, such as genes coding for expansins, SMALL AUXIN UP RNA (SAUR) and HSP20s, and these suggested that nitrite could probably serve as a transcriptome signal to enhance the indica calli growth by regulation of various downstream genes expression. This study contributes to a better understanding of the function of nitrite during the process of plant tissue culture and could aid in the application of this technology to improved indica genetic transformation efficiency. PMID:24740395

  12. Nitrite Promotes the Growth and Decreases the Lignin Content of indica Rice Calli: A Comprehensive Transcriptome Analysis of Nitrite-Responsive Genes during In Vitro Culture of Rice

    PubMed Central

    Fang, Gen; Zhao, Qingchuan; Zeng, Qi; Li, Xuemei; Gong, Hanyu; Li, Yangsheng

    2014-01-01

    As both major macronutrients and signal molecules, nitrogen metabolites, such as nitrate and nitrite, play an important role in plant growth and development. In this study, the callus growth of indica rice cv. 9311 was significantly enhanced by nitrite, whereas the soluble protein content remained unchanged. The deep RNA sequencing technology (RNA-seq) showed that the transcriptional profiles of cv. 9311 calli were significantly changed after adding nitrite to the nitrate-free medium, and these nitrite-responsive genes were involved in a wide range of plant processes, particularly in the secondary metabolite pathways. Interestingly, most of the genes involved in phenylpropanoid-related pathways were coordinately down-regulated by nitrite, such as four cinnamoyl-CoA reductase, and these in turn resulted in the decrease of lignin content of indica calli. Furthermore, several candidate genes related to cell growth or stress responses were identified, such as genes coding for expansins, SMALL AUXIN UP RNA (SAUR) and HSP20s, and these suggested that nitrite could probably serve as a transcriptome signal to enhance the indica calli growth by regulation of various downstream genes expression. This study contributes to a better understanding of the function of nitrite during the process of plant tissue culture and could aid in the application of this technology to improved indica genetic transformation efficiency. PMID:24740395

  13. Metabolic fates and effects of nitrite in brown trout under normoxic and hypoxic conditions: blood and tissue nitrite metabolism and interactions with branchial NOS, Na+/K+-ATPase and hsp70 expression.

    PubMed

    Jensen, Frank B; Gerber, Lucie; Hansen, Marie N; Madsen, Steffen S

    2015-07-01

    Nitrite secures essential nitric oxide (NO) bioavailability in hypoxia at low endogenous concentrations, whereas it becomes toxic at high concentrations. We exposed brown trout to normoxic and hypoxic water in the absence and presence of added ambient nitrite to decipher the cellular metabolism and effects of nitrite at basal and elevated concentrations under different oxygen regimes. We also tested hypotheses concerning the influence of nitrite on branchial nitric oxide synthase (NOS), Na(+)/K(+)-ATPase (nka) and heat shock protein (hsp70) mRNA expression. Basal plasma and erythrocyte nitrite levels were higher in hypoxia than normoxia, suggesting increased NOS activity. Nitrite exposure strongly elevated nitrite concentrations in plasma, erythrocytes, heart tissue and white muscle, which was associated with an extensive metabolism of nitrite to nitrate and to iron-nitrosylated and S-nitrosated compounds. Nitrite uptake was slightly higher in hypoxia than normoxia, and high internal nitrite levels extensively converted blood hemoglobin to methemoglobin and nitrosylhemoglobin. Hypoxia increased inducible NOS (iNOS) mRNA levels in the gills, which was overruled by a strong inhibition of iNOS expression by nitrite in both normoxia and hypoxia, suggesting negative-feedback regulation of iNOS gene expression by nitrite. A similar inhibition was absent for neuronal NOS. Branchial NKA activity stayed unchanged, but mRNA levels of the nka?1a subunit increased with hypoxia and nitrite, which may have countered an initial NKA inhibition. Nitrite also increased hsp70 gene expression, probably contributing to the cytoprotective effects of nitrite at low concentrations. Nitrite displays a concentration-dependent switch between positive and negative effects similar to other signaling molecules. PMID:25908056

  14. Validation of a method to directly and specifically measure nitrite in biological matrices.

    PubMed

    Almeida, Luis E F; Kamimura, Sayuri; Kenyon, Nicholas; Khaibullina, Alfia; Wang, Li; de Souza Batista, Celia M; Quezado, Zenaide M N

    2015-02-15

    The bioactivity of nitric oxide (NO) is influenced by chemical species generated through reactions with proteins, lipids, metals, and its conversion to nitrite and nitrate. A better understanding of the functions played by each of these species could be achieved by developing selective assays able of distinguishing nitrite from other NO species. Nagababu and Rifkind developed a method using acetic and ascorbic acids to measure nitrite-derived NO in plasma. Here, we adapted, optimized, and validated this method to assay nitrite in tissues. The method yielded linear measurements over 1-300 pmol of nitrite and was validated for tissue preserved in a nitrite stabilization solution composed of potassium ferricyanide, N-ethylmaleimide and NP-40. When samples were processed with chloroform, but not with methanol, ethanol, acetic acid or acetonitrile, reliable and reproducible nitrite measurements in up to 20 sample replicates were obtained. The method's accuracy in tissue was ? 90% and in plasma 99.9%. In mice, during basal conditions, brain, heart, lung, liver, spleen and kidney cortex had similar nitrite levels. In addition, nitrite tissue levels were similar regardless of when organs were processed: immediately upon collection, kept in stabilization solution for later analysis or frozen and later processed. After ip nitrite injections, rapidly changing nitrite concentrations in tissue and plasma could be measured and were shown to change in significantly distinct patterns. This validated method could be valuable for investigations of nitrite biology in conditions such as sickle cell disease, cardiovascular disease, and diabetes, where nitrite is thought to play a role. PMID:25445633

  15. Assessment of N2O emission from a photobioreactor treating ammonia-rich swine wastewater digestate.

    PubMed

    Mezzari, Melissa P; da Silva, Márcio L B; Nicoloso, Rodrigo S; Ibelli, Adriana M G; Bortoli, Marcelo; Viancelli, Aline; Soares, Hugo M

    2013-12-01

    This study investigated the interactions between naturally occurring bacteria and the microalgae Chlorella vulgaris within a lab scale photobioreactor treating ammonia-rich swine wastewater digestate effluent. Nitrification and denitrification were assessed by targeting ammonia monoxygenases (amoA), nitrate (narG), nitrite (nirS), nitric oxide (norB) and nitrous oxide (nosZ) reductases genes. Oxygen produced from microalgae photosynthesis stimulated nitrification. Under limiting carbon availability (i.e., <1.44 for mg TOC/mg NO2-N and 1.72 for mg TOC/mg NO3-N), incomplete denitrification led to accumulation of NO2 and NO3. Significant N2O emission (up to 118 ?g N2O-N) was linked to NO2 metabolism in Chlorella. The addition of acetate as external carbon source recovered heterotrophic denitrification activity suppressing N2O emission. Effluent methane concentrations trapped within photobioreactor was removed concomitantly with ammonia. Overall, closed photobioreactors can be built to effectively remove nitrogen and mitigate simultaneously greenhouse gases emissions that would occur otherwise in open microalgae-based wastewater treatment systems. PMID:24128394

  16. Nitrogen Removal over Nitrite by Aeration Control in Aerobic Granular Sludge Sequencing Batch Reactors

    PubMed Central

    Lochmatter, Samuel; Maillard, Julien; Holliger, Christof

    2014-01-01

    This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m?3·d?1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970

  17. Nitrite Reductase NirBD Is Induced and Plays an Important Role during In Vitro Dormancy of Mycobacterium tuberculosis

    PubMed Central

    Akhtar, Shamim; Khan, Arshad; Sohaskey, Charles D.; Jagannath, Chinnaswamy

    2013-01-01

    Mycobacterium tuberculosis is one of the strongest reducers of nitrate among all mycobacteria. Reduction of nitrate to nitrite, mediated by nitrate reductase (NarGHJI) of M. tuberculosis, is induced during the dormant stage, and the enzyme has a respiratory function in the absence of oxygen. Nitrite reductase (NirBD) is also functional during aerobic growth when nitrite is the sole nitrogen source. However, the role of NirBD-mediated nitrite reduction during the dormancy is not yet characterized. Here, we analyzed nitrite reduction during aerobic growth as well as in a hypoxic dormancy model of M. tuberculosis in vitro. When nitrite was used as the sole nitrogen source in the medium, the organism grew and the reduction of nitrite was evident in both hypoxic and aerobic cultures of M. tuberculosis. Remarkably, the hypoxic culture of M. tuberculosis, compared to the aerobic culture, showed 32- and 4-fold-increased expression of nitrite reductase (NirBD) at the transcription and protein levels, respectively. More importantly, a nirBD mutant of M. tuberculosis was unable to reduce nitrite and compared to the wild-type (WT) strain had a >2-log reduction in viability after 240 h in the Wayne model of hypoxic dormancy. Dependence of M. tuberculosis on nitrite reductase (NirBD) was also seen in a human macrophage-based dormancy model where the nirBD mutant was impaired for survival compared to the WT strain. Overall, the increased expression and essentiality of nitrite reductase in the in vitro dormancy models suggested that NirBD-mediated nitrite reduction could be critical during the persistent stage of M. tuberculosis. PMID:23935045

  18. Nitrite as regulator of hypoxic signaling in mammalian physiology

    PubMed Central

    van Faassen, Ernst E.; Bahrami, Soheyl; Feelisch, Martin; Hogg, Neil; Kelm, Malte; Kim-Shapiro, Daniel B.; Kozlov, Andrey V.; Li, Haitao; Lundberg, Jon O.; Mason, Ron; Nohl, Hans; Rassaf, Tienush; Samouilov, Alexandre; Slama-Schwok, Anny; Shiva, Sruti; Vanin, Anatoly F.; Weitzberg, Eddie; Zweier, Jay; Gladwin, Mark T.

    2009-01-01

    In this review we consider the physiological effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable intermediate in the oxidation of nitric oxide radicals to the stable metabolite nitrate. This oxidation cascade was thought to be irreversible under physiological conditions. However, a growing body of experimental observations attests that the presence of endogenous nitrite regulates a number of signaling events along the physiological and pathophysiological oxygen gradient. Hypoxic signaling events include vasodilation, modulation of mitochondrial respiration, and cytoprotection following ischemic insult. These phenomena are attributed to the reduction of nitrite anions to nitric oxide if local oxygen levels in tissues decrease. Recent research identified a growing list of enzymatic and non-enzymatic pathways for this endogenous reduction of nitrite. Additional direct signaling events not involving free nitric oxide are proposed. We here discuss the mechanisms and properties of these various pathways and the role played by the local concentration of free oxygen in the affected tissue. PMID:19219851

  19. Characterization of nitrite degradation by Lactobacillus casei subsp. rhamnosus LCR 6013.

    PubMed

    Liu, Dong-mei; Wang, Pan; Zhang, Xin-yue; Xu, Xi-lin; Wu, Hui; Li, Li

    2014-01-01

    Nitrites are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. The nitrite degradation capacity of Lactobacillus casei subsp. rhamnosus LCR 6013 was investigated in pickle fermentation. After LCR 6013 fermentation for 120 h at 37°C, the nitrite concentration in the fermentation system was significantly lower than that in the control sample without the LCR 6013 strain. The effects of NaCl and Vc on nitrite degradation by LCR 6013 in the De Man, Rogosa and Sharpe (MRS) medium were also investigated. The highest nitrite degradations, 9.29 mg/L and 9.89 mg/L, were observed when NaCl and Vc concentrations were 0.75% and 0.02%, respectively in the MRS medium, which was significantly higher than the control group (p ? 0.01). Electron capture/gas chromatography and indophenol blue staining were used to study the nitrite degradation pathway of LCR 6013. The nitrite degradation products contained N2O, but no NH4(+). The LCR 6013 strain completely degraded all NaNO2 (50.00 mg/L) after 16 h of fermentation. The enzyme activity of NiR in the periplasmic space was 2.5 times of that in the cytoplasm. Our results demonstrated that L. casei subsp. rhamnosus LCR 6013 can effectively degrade nitrites in both the pickle fermentation system and in MRS medium by NiR. Nitrites are degraded by the LCR 6013 strain, likely via the nitrate respiration pathway (NO2(-)>NO->N2O->N2), rather than the aammonium formation pathway (dissimilatory nitrate reduction to ammonium, DNRA), because the degradation products contain N2O, but not NH4(+). PMID:24755671

  20. Formation of 3-nitrotyrosine by riboflavin photosensitized oxidation of tyrosine in the presence of nitrite.

    PubMed

    Fontana, Mario; Blarzino, Carla; Pecci, Laura

    2012-05-01

    The results of the present investigation show the susceptibility of tyrosine to undergo visible light-induced photomodification to 3-nitrotyrosine in the presence of nitrite and riboflavin, as sensitizer. By changing H2O by D2O, it could be established that singlet oxygen has a minor role in the reaction. The finding that nitration of tyrosine still occurred to a large extent under anaerobic conditions indicates that the process proceeds mainly through a type I mechanism, which involves the direct interaction of the excited state of riboflavin with tyrosine and nitrite to give tyrosyl radical and nitrogen dioxide radical, respectively. The tyrosyl radicals can either dimerize to yield 3,3'-dityrosine or combine with nitrogen dioxide radical to form 3-nitrotyrosine. The formation of 3-nitrotyrosine was found to increase with the concentration of nitrite added and was accompanied by a decrease in the recovery of 3,3'-dityrosine, suggesting that tyrosine nitration competes with dimerization reaction. The riboflavin photosensitizing reaction in the presence of nitrite was also able to induce nitration of tyrosine residues in proteins as revealed by the spectral changes at 430 nm, a characteristic absorbance of 3-nitrotyrosine, and by immunoreactivity using 3-nitrotyrosine antibodies. Since riboflavin and nitrite are both present endogenously in living organism, it is suggested that this pathway of tyrosine nitration may potentially occur in tissues and organs exposed to sunlight such as skin and eye. PMID:21479936

  1. Ammonia Synthesis

    Microsoft Academic Search

    Noorhana Yahya; Poppy Puspitasari; Krzysztof Koziol; Pavia Guiseppe

    \\u000a Ammonia production is a very energy- and capital-intensive industry as it requires high temperature (400–500°C) and also high\\u000a pressure (150–300 bar) for its daily operations. Two moles of ammonia are obtained by reacting one mole of nitrogen and three\\u000a moles of hydrogen gases in the presence of conventional catalyst which is magnetite. The process to produce ammonia is known\\u000a as

  2. Ammonia Monitor

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)

    1999-01-01

    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.

  3. Vacuoles as storage compartments for nitrate in barley leaves

    Microsoft Academic Search

    Enrico Martinoia; Urs Heck; Andres Wiemken

    1981-01-01

    Nitrate, the principal nitrogen source of most plants, can accumulate in large quantities in certain crop plants, notably members of the Chenopodiaceae (spinach and beet), Gramineae, Cruciferae (radish and kale) and Compositae (lettuce). Concentrations may exceed 2% fresh weight (17-24% dry weight) in extreme physiological conditions1. This is alarming because nitrate is readily reduced in organisms to the toxic nitrite,

  4. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system.

    PubMed

    Pungrasmi, Wiboonluk; Playchoom, Cholticha; Powtongsook, Sorawit

    2013-08-01

    A bottom substrate denitrification tank for a recirculating aquaculture system was developed. The laboratory scale denitrification tank was an 8 L tank (0.04 m2 tank surface area), packed to a depth of 5 cm with a bottom substrate for natural denitrifying bacteria. An aquarium pump was used for gentle water mixing in the tank; the dissolved oxygen in the water was maintained in aerobic conditions (e.g. > 2 mg/L) while anoxic conditions predominated only at the bottom substrate layer. The results showed that, among the four substrates tested (soil, sand, pumice stone and vermiculite), pumice was the most preferable material. Comparing carbon supplementation using methanol and molasses, methanol was chosen as the carbon source because it provided a higher denitrification rate than molasses. When methanol was applied at the optimal COD:N ratio of 5:1, a nitrate removal rate of 4591 +/- 133 mg-N/m2 tank bottom area/day was achieved. Finally, nitrate removal using an 80 L denitrification tank was evaluated with a 610 L recirculating tilapia culture system. Nitrate treatment was performed by batch transferring high nitrate water from the nitrification tank into the denitrification tank and mixing with methanol at a COD:N ratio of 5:1. The results from five batches of nitrate treatment revealed that nitrate was successfully removed from water without the accumulation of nitrite and ammonia. The average nitrate removal efficiency was 85.17% and the average denitrification rate of the denitrification tank was 6311 +/- 945 mg-N/m2 tank bottom area/day or 126 +/- 18 mg-N/L of pumice packing volume/day. PMID:24520693

  5. Origin and fate of the secondary nitrite maximum in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Lam, P.; Jensen, M. M.; Kock, A.; Lettmann, K. A.; Plancherel, Y.; Lavik, G.; Bange, H. W.; Kuypers, M. M. M.

    2011-03-01

    The Arabian Sea harbours one of the three major oxygen minimum zones (OMZs) in the world's oceans, and it alone is estimated to account for ~10-20% of global oceanic nitrogen (N) loss. While actual rate measurements have been few, the consistently high accumulation of nitrite (NO2-) coinciding with suboxic conditions in the central-northeastern part of the Arabian Sea has led to the general belief that this is the region where active N-loss takes place. Most subsequent field studies on N-loss have thus been drawn almost exclusively to the central-NE. However, a recent study measured only low to undetectable N-loss activities in this region, compared to orders of magnitude higher rates measured towards the Omani shelf where little NO2- accumulated (Jensen et al., 2011). In this paper, we further explore this discrepancy by comparing the NO2- producing and consuming processes, and examining the relationship between the overall NO2- balance and active N-loss in the Arabian Sea. Based on a combination of 15N-incubation experiments, functional gene expression analyses, nutrient profiling and flux modeling, our results showed that NO2- accumulated in the Central-NE Arabian Sea due to a net production via primarily active nitrate (NO3-) reduction and to a certain extent ammonia oxidation. Meanwhile, NO2- consumption via anammox, denitrification and dissimilatory nitrate/nitrite reduction to ammonium (NH4+) were hardly detectable in this region, though some loss to NO2- oxidation was predicted from modeled NO3- changes. No significant correlation was found between NO2- and N-loss rates (p>0.05). This discrepancy between NO2- accumulation and lack of active N-loss in the Central-NE Arabian Sea is best explained by the deficiency of organic matter that is directly needed for further NO2- reduction to N2O, N2 and NH4+, and indirectly for the remineralized NH4+ required by anammox. Altogether, our data do not support the long-held view that NO2- accumulation is a direct activity indicator of N-loss in the Arabian Sea or other OMZs. Instead, NO2- accumulation more likely corresponds to long-term integrated N-loss that has passed the prime of high and/or consistent in situ activities.

  6. Origin and fate of the secondary nitrite maximum in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Lam, P.; Jensen, M. M.; Kock, A.; Lettmann, K. A.; Plancherel, Y.; Lavik, G.; Bange, H. W.; Kuypers, M. M. M.

    2011-06-01

    The Arabian Sea harbours one of the three major oxygen minimum zones (OMZs) in the world's oceans, and it alone is estimated to account for ~10-20 % of global oceanic nitrogen (N) loss. While actual rate measurements have been few, the consistently high accumulation of nitrite (NO2-) coinciding with suboxic conditions in the central-northeastern part of the Arabian Sea has led to the general belief that this is the region where active N-loss takes place. Most subsequent field studies on N-loss have thus been drawn almost exclusively to the central-NE. However, a recent study measured only low to undetectable N-loss activities in this region, compared to orders of magnitude higher rates measured towards the Omani Shelf where little NO2- accumulated (Jensen et al., 2011). In this paper, we further explore this discrepancy by comparing the NO2--producing and consuming processes, and examining the relationship between the overall NO2- balance and active N-loss in the Arabian Sea. Based on a combination of 15N-incubation experiments, functional gene expression analyses, nutrient profiling and flux modeling, our results showed that NO2- accumulated in the central-NE Arabian Sea due to a net production via primarily active nitrate (NO3-) reduction and to a certain extent ammonia oxidation. Meanwhile, NO2- consumption via anammox, denitrification and dissimilatory nitrate/nitrite reduction to ammonium (NH4+) were hardly detectable in this region, though some loss to NO2- oxidation was predicted from modeled NO3- changes. No significant correlation was found between NO2- and N-loss rates (p>0.05). This discrepancy between NO2- accumulation and lack of active N-loss in the central-NE Arabian Sea is best explained by the deficiency of labile organic matter that is directly needed for further NO2- reduction to N2O, N2 and NH4+, and indirectly for the remineralized NH4+ required by anammox. Altogether, our data do not support the long-held view that NO2- accumulation is a direct activity indicator of N-loss in the Arabian Sea or other OMZs. Instead, NO2- accumulation more likely corresponds to long-term integrated N-loss that has passed the prime of high and/or consistent in situ activities.

  7. Therapeutic potential of sustained-release sodium nitrite for critical limb ischemia in the setting of metabolic syndrome.

    PubMed

    Polhemus, David J; Bradley, Jessica M; Islam, Kazi N; Brewster, Luke P; Calvert, John W; Tao, Ya-Xiong; Chang, Carlos C; Pipinos, Iraklis I; Goodchild, Traci T; Lefer, David J

    2015-07-01

    Nitrite is a storage reservoir of nitric oxide that is readily reduced to nitric oxide under pathological conditions. Previous studies have demonstrated that nitrite levels are significantly reduced in cardiovascular disease states, including peripheral vascular disease. We investigated the cytoprotective and proangiogenic actions of a novel, sustained-release formulation of nitrite (SR-nitrite) in a clinically relevant in vivo swine model of critical limb ischemia (CLI) involving central obesity and metabolic syndrome. CLI was induced in obese Ossabaw swine (n = 18) by unilateral external iliac artery deployment of a full cross-sectional vessel occlusion device positioned within an endovascular expanded polytetrafluoroethylene-lined nitinol stent-graft. At post-CLI day 14, pigs were randomized to placebo (n = 9) or SR-nitrite (80 mg, n = 9) twice daily by mouth for 21 days. SR-nitrite therapy increased nitrite, nitrate, and S-nitrosothiol in plasma and ischemic skeletal muscle. Oxidative stress was reduced in ischemic limb tissue of SR-nitrite- compared with placebo-treated pigs. Ischemic limb tissue levels of proangiogenic growth factors were increased following SR-nitrite therapy compared with placebo. Despite the increases in cytoprotective and angiogenic signals with SR-nitrite therapy, new arterial vessel formation and enhancement of blood flow to the ischemic limb were not different from placebo. Our data clearly demonstrate cytoprotective and proangiogenic signaling in ischemic tissues following SR-nitrite therapy in a very severe model of CLI. Further studies evaluating longer-duration nitrite therapy and/or additional nitrite dosing strategies are warranted to more fully evaluate the therapeutic potential of nitrite therapy in peripheral vascular disease. PMID:25910804

  8. Citrus co-products as technological strategy to reduce residual nitrite content in meat products.

    PubMed

    Viuda-Martos, M; Fernández-López, J; Sayas-Barbera, E; Sendra, E; Navarro, C; Pérez-Alvarez, J A

    2009-10-01

    Sodium or potassium nitrite is widely used as a curing agent in cured meat products because it inhibits outgrowth and neurotoxin formation by Clostridium botulinum, delays the development of oxidative rancidity, develops the characteristic flavor of cured meats, and reacts with myoglobin and stabilizes the red meat color. As soon as nitrite is added in the meat formulation, it starts to disappear and the nitrite that has not reacted with myoglobin and it is available corresponds to residual nitrite level. Health concerns relating to the use of nitrates and nitrites in cured meats (cooked and dry cured) trend toward decreased usage to alleviate the potential risk to the consumers from formation of carcinogenic compounds. Recently, some new ingredients principally agro-industrial co-products in general and those from the citrus industry in particular (albedo [with different treatments], dietetic fiber obtained from the whole co-product, and washing water used in the process to obtain the dietetic fiber) are seen as good sources of bio-compounds that may help to reduce the residual nitrite level in meat products. From these co-products, citrus fiber shows the highest potential to reduce the residual nitrite level, followed by the albedo and finally the washing water. The aim of this article is to describe the latest advances concerning the use of citrus co-products in meat products as a potential ingredient to reduce the nitrite level. PMID:19799678

  9. Chemical pathways for the formation of ammonia in Hanford wastes

    SciTech Connect

    Stock, L.M.; Pederson, L.R.

    1997-09-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important). Reduction of nitrite ions is believed to be the most important source of ammonia. Whether by radiolytic or thermal routes, nitrite reduction reactions proceed through nitrogen dioxide, nitric oxide, the nitrosyl anion, and the hyponitrite anion. Nitrite ion is also converted into hydroxylamine, another important intermediate on the pathway to form ammonia. These reaction pathways additionally result in the formation of nitrous oxide and molecular nitrogen, whereas hydrogen formation is produced in a separate reaction sequence.

  10. Spatial distribution and abundance of ammonia-oxidizing microorganisms in deep-sea sediments of the Pacific Ocean.

    PubMed

    Luo, Zhu-Hua; Xu, Wei; Li, Meng; Gu, Ji-Dong; Zhong, Tian-Hua

    2015-08-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is performed by nitrifying microbes including ammonia-oxidizing bacteria (AOB) and archaea (AOA). In the current study, the phylogenetic diversity and abundance of AOB and AOA in deep-sea sediments of the Pacific Ocean were investigated using ammonia monooxygenase subunit A (amoA) coding genes as molecular markers. The study uncovered 3 AOB unique operational taxonomic units (OTUs, defined at sequence groups that differ by ?5 %), which indicates lower diversity than AOA (13 OTUs obtained). All AOB amoA gene sequences were phylogenetically related to amoA sequences similar to those found in marine Nitrosospira species, and all AOA amoA gene sequences were affiliated with the marine sediment clade. Quantitative PCR revealed similar archaeal amoA gene abundances [1.68 × 10(5)-1.89 × 10(6) copies/g sediment (wet weight)] among different sites. Bacterial amoA gene abundances ranged from 5.28 × 10(3) to 2.29 × 10(6) copies/g sediment (wet weight). The AOA/AOB amoA gene abundance ratios ranged from 0.012 to 162 and were negatively correlated with total C and C/N ratio. These results suggest that organic loading may be a key factor regulating the relative abundance of AOA and AOB in deep-sea environments of the Pacific Ocean. PMID:26014493

  11. Evaluation of ferrocyanide\\/nitrate explosive hazard

    Microsoft Academic Search

    Cady

    1992-01-01

    Los Alamos National Laboratory agreed to assist Pacific Northwest Laboratory in the Ferrocyanide Safety Evaluation Program by helping to evaluate the explosive hazard of several mixtures of simulated ferrocyanide waste-tank sludge containing sodium nitrite and sodium nitrate. This report is an evaluation of the small-scale safety tests used to assess the safety of these materials from an explosive point of

  12. Nitrate-N determination in leafy vegetables: Study of the effects of cooking and freezing

    Microsoft Academic Search

    Surendra Prasad; Adrian Avinesh Chetty

    2008-01-01

    Nitrate upon reduction to nitrite can cause methaemoglobinaemia or act as precursor in the endogenous formation of carcinogenic nitrosamines. The leafy vegetables are the major vehicle for the entry of nitrate into the human system. The present study was conducted to establish a flow injection analysis (FIA) technique to investigate the nitrate-N contents of four commonly consumed fresh leafy vegetables

  13. Effect of electrolyzed oxidizing water treatment on the reduction of nitrite levels in fresh spinach during storage.

    PubMed

    Hao, Jianxiong; Li, Huiying; Wan, Yangfang; Liu, Haijie

    2015-03-01

    Leafy vegetables are the major source of nitrite intake in the human diet, and technological processing to control nitrite levels in harvested vegetables is necessary. In the current work, the effect of electrolyzed oxidizing water (EOW) on the nitrite and nitrate levels in fresh spinach during storage was studied. EOW treatment, including slightly acidic electrolyzed water and acidic electrolyzed water, was found to effectively reduce nitrite levels in fresh spinach during storage; levels in the late period were 30 to 40% lower than that of the control. However, the nitrate levels in fresh spinach during storage were not influenced by EOW treatment. The reduction of nitrite levels in EOW-treated fresh spinach during storage can be attributed to the inactivation of nitrate reductase directly and to the reduction of bacterial populations. Our results suggest that treatment with slightly acidic electrolyzed water may be a better choice to control nitrite levels in fresh vegetables during storage. This study provided a useful method to reduce nitrite levels in fresh spinach. PMID:25719879

  14. Nitrate Protocol

    NSDL National Science Digital Library

    The GLOBE Program, UCAR (University Corporation for Atmospheric Research)

    2003-08-01

    The purpose of this resource is to measure the nitrate-nitrogen of water. Students will use a nitrate kit to measure the nitrate-nitrogen in the water at their hydrology site. The exact procedure depends on the instructions in the nitrate kit used.

  15. Nitrogen removal from pharmaceutical manufacturing wastewater via nitrite and the process optimization with on-line control.

    PubMed

    Li, Y Z; Peng, C Y; Peng, Y Z; Wang, P

    2004-01-01

    In this study, laboratory scale experiments were conducted to investigate the nitrogen removal from pharmaceutical manufacturing wastewater. The results indicate that by selective inhibition of free ammonia on oxidizers, nitrogen removal can be achieved by nitritation and denitritation process. The nitrite ratio was above 98% in the aerobic stage and the nitrogen removal efficiency was about 99%. The complete ammonia removal corresponded exactly to the "Ammonia Valley" in the pH versus time graphic and the anoxic reaction was completed when the "Nitrite Knee" appeared in the ORP versus time graphic. Optimization of the SBR cycle by step-feed and on-line control with pH and ORP strategy allowed the carbon and energy saving. The easy operation and the low cost make the SBR system an interesting option for the biological nitrogen removal from the pharmaceutical manufacturing wastewater. PMID:15536986

  16. Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox

    Microsoft Academic Search

    Taichi Yamamoto; Keita Takaki; Toichiro Koyama; Kenji Furukawa

    2008-01-01

    Partial nitritation using inhibition of free ammonia and free nitric acid is an effective technique for the treatment of high concentrations of ammonium in wastewaters. This technique was applied to the digester liquor of swine wastewater and the stability of its long-term operation was investigated. Partial nitritation was successfully maintained at a nitrogen loading rate (NLR) of 1.0kgNm?3d?1 for 120

  17. Phylogenomics of Mycobacterium Nitrate Reductase Operon.

    PubMed

    Huang, Qinqin; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2015-07-01

    NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker. PMID:25980349

  18. Insights into high-temperature nitrogen cycling from studies of the thermophilic ammonia-oxidizing archaeon Nitrosocaldus yellowstonii. (Invited)

    NASA Astrophysics Data System (ADS)

    de la Torre, J. R.

    2010-12-01

    Our understanding of the nitrogen cycle has advanced significantly in recent years with the discovery of new metabolic processes and the recognition that key processes such as aerobic ammonia oxidation are more broadly distributed among extant organisms and habitat ranges. Nitrification, the oxidation of ammonia to nitrite and nitrate, is a key component of the nitrogen cycle and, until recently, was thought to be mediated exclusively by the ammonia-oxidizing bacteria (AOB). The discovery that mesophilic marine archaea, some of the most abundant microorganisms on the planet, are capable of oxidizing ammonia to nitrite fundamentally changed our perception of the global nitrogen cycle. Ammonia-oxidizing archaea (AOA) are now thought to be significant drivers of nitrification in many marine and terrestrial environments. Most studies, however, have focused on the contribution of AOA to nitrogen cycling in mesophilic environments. Our recent discovery of a thermophilic AOA, Nitrosocaldus yellowstonii, has expanded the role and habitat range of AOA to include high temperature environments. Numerous studies have shown that AOA are widely distributed in geothermal habitats with a wide range of temperature and pH. The availability of multiple AOA genome sequences, combined with metagenomic studies from mesophilic and thermophilic environments gives us a better understanding of the physiology, ecology and evolution of these organisms. Recent studies have proposed that the AOA represent the most deeply branching lineage within the Archaea, the Thaumarchaeota. Furthermore, genomic comparisons between AOA and AOB reveal significant differences in the proposed pathways for ammonia oxidation. These genetic differences likely explain fundamental physiological differences such as the resistance of N. yellowstonii and other AOA to the classical nitrification inhibitors allylthiourea and acetylene. Physiological studies suggest that the marine AOA are adapted to oligotrophic environments. Our studies, however, point to a greater metabolic versatility in N. yellowstonii, including the ability to utilize alternative sources of energy. Understanding the biology of N. yellowstonii, the most deeply branching cultivated AOA to date, gives us a better understanding of the ecological and evolutionary significance of these organisms and sheds new light on nitrogen cycling at high temperature.

  19. Non-biological fixation of atmospheric nitrogen to nitrate on titanium dioxide and desert soil surfaces

    NASA Astrophysics Data System (ADS)

    Al-Taani, Ahmed A.

    Elevated nitrate levels have frequently been observed in soils and the associated groundwater in arid regions of the U.S, many of which are distant from anthropogenic sources. Although these elevated nitrate concentrations have generally been linked to atmospheric precipitation, the current study indicates that at least a portion of these nitrates may have been formed through photochemical and thermal transformation reactions on soil surfaces. Photochemical nitrogen fixation to nitrate was observed on pure TiO 2 (both anatase and rutile) and desert soil surfaces when exposed to sunlight from 2 to 80 days. The yields of nitrate were generally proportional to irradiation time and increased substantially when sodium hydroxide was added. Larger surface films of soils or TiO2 generated higher yields of nitrate. Soils with higher content of both titanium and calcium exhibit higher photoactivities, and the production rate varied slightly with particle size. Traces of nitrite and ammonia detected on irradiated TiO2 surface were similar to background levels, and are probably not intermediates in the formation of nitrate. TiO2 and soils obtained from Atacama Desert in northern Chile and Pyramid Lake, NV were irradiated with sunlight for 32 days in either 15N labeled or unlabeled nitrogen and produced nitrates enriched in 15N and that nearly all isotopic values were higher than that of atmospheric 15N. Nitrate produced photochemically on Atacama Desert soils have isotopic values that are similar to those of the subsoil nitrates of the Atacama Desert. During our experimental investigation and while preparing thin films of TiO2 by thermal evaporation of an aqueous suspension in Petri dishes, we consistently observed an increase in nitrate concentrations in all samples (even the controls) whenever TiO2 slurries came in contact with heat and air. An expanded series of experiments was carried out in a conventional oven in the absence of light; photocatalytic reactions are not involved. Nitrate was produced over the temperature range of 50-200°C following 2 hours of heating and gave yields that were linear with increases in temperature. Nitrate formation was also observed on certain arid land soils thermally treated in the normal atmosphere at 200°C for 2-50 hours or at 70°C for 15 hours or one week, although the rate of nitrate formation varied with different soils. Under the conditions employed, the yield of nitrate was a function of the area of the TiO2 or soils on the Petri dish. Formation of minor amounts of nitrite was also observed. Nitrate yields were produced in approximately equal amounts following a series of successive cycles of heating and extraction of the same soil fractions or TiO2 material indicating that the measured nitrate concentrations are not a result of soil nitrate release. Soils from Atacama Desert and Pyramid Lake have shown higher thermal activities and produced larger yields of nitrate than that measured for other soils tested. Additions of stoichiometric amounts of sodium, potassium or calcium hydroxide increased the amount of nitrate observed on both TiO 2 and on soils. Nitrates generated thermally on TiO2 or on soils from Pyramid Lake and from Atacama Desert have been enriched in 15N when heated in 5ml of 15N labeled nitrogen. The majority of d15N values of nitrate produced on TiO2 or on soil surfaces heated in air have d 15N ratios larger than that of atmospheric N. The isotopic composition of nitrate formed on heated soil surface has values similar to those observed for desert subsoil nitrates and linked to atmospheric processes. Nitrate was also detected on soils heated at 70°C suggesting that this process is likely occurring naturally on desert soils by the influence of sunlight heating. Consideration of these processes will likely raise the question on the origin of subsoil nitrate in arid and semiarid land and potentially help to explain the elevated nitrate levels observed in desert soils and groundwater which have been largely attributed to long-term atmospheric nitrate precipitation.

  20. Effect of Sodium Nitrate and Nitrate Reducing Bacteria on In vitro Methane Production and Fermentation with Buffalo Rumen Liquor.

    PubMed

    Sakthivel, Pillanatham Civalingam; Kamra, Devki Nandan; Agarwal, Neeta; Chaudhary, Lal Chandra

    2012-06-01

    Nitrate can serve as a terminal electron acceptor in place of carbon dioxide and inhibit methane emission in the rumen and nitrate reducing bacteria might help enhance the reduction of nitrate/nitrite, which depends on the type of feed offered to animals. In this study the effects of three levels of sodium nitrate (0, 5, 10 mM) on fermentation of three diets varying in their wheat straw to concentrate ratio (700:300, low concentrate, LC; 500:500, medium concentrate, MC and 300:700, high concentrate, HC diet) were investigated in vitro using buffalo rumen liquor as inoculum. Nitrate reducing bacteria, isolated from the rumen of buffalo were tested as a probiotic to study if it could help in enhancing methane inhibition in vitro. Inclusion of sodium nitrate at 5 or 10 mM reduced (p<0.01) methane production (9.56, 7.93 vs. 21.76 ml/g DM; 12.20, 10.42 vs. 25.76 ml/g DM; 15.49, 12.33 vs. 26.86 ml/g DM) in LC, MC and HC diets, respectively. Inclusion of nitrate at both 5 and 10 mM also reduced (p<0.01) gas production in all the diets, but in vitro true digestibility (IVTD) of feed reduced (p<0.05) only in LC and MC diets. In the medium at 10 mM sodium nitrate level, there was 0.76 to 1.18 mM of residual nitrate and nitrite (p<0.01) also accumulated. In an attempt to eliminate residual nitrate and nitrite in the medium, the nitrate reducing bacteria were isolated from buffalo adapted to nitrate feeding and introduced individually (3 ml containing 1.2 to 2.3×10(6) cfu/ml) into in vitro incubations containing the MC diet with 10 mM sodium nitrate. Addition of live culture of NRBB 57 resulted in complete removal of nitrate and nitrite from the medium with a further reduction in methane and no effect on IVTD compared to the control treatments containing nitrate with autoclaved cultures or nitrate without any culture. The data revealed that nitrate reducing bacteria can be used as probiotic to prevent the accumulation of nitrite when sodium nitrate is used to reduce in vitro methane emissions. PMID:25049631

  1. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  2. [Influence of silver/silicon dioxide on infrared absorption spectroscopy of sodium nitrate].

    PubMed

    Yang, Shi-Ling; Yue, Li; Jia, Zhi-Jun

    2014-09-01

    Quickly detecting of ocean nutrient was one important task in marine pollution monitoring. We discovered the application of surface-enhanced infrared absorption spectroscopy in the detection of ocean nutrient through researching the evaporation of sodium nitrate solution. The silicon dioxide (SiO2) with highly dispersion was prepared by Stober method, The silver/silica (Ag/SiO2) composite materials were prepared by mixing ammonia solution and silicon dioxide aqueous solution. Three kinds of composite materials with different surface morphology were fabricated through optimizing the experimental parameter and changing the experimental process. The surface morphology, crystal orientation and surface plasmon resonance were investigated by means of the scanning electronic microscope (SEM), X-ray diffraction (XRD), UV-Visible absorption spectrum and infrared ab- sorption spectroscopy. The SEM images showed that the sample A was purified SiO2, sample B and sample C were mixture of silver nanoparticle and silicon dioxide, while sample D was completed nanoshell structure. The absorption spectroscopy showed that there was surface plasmon resonance in the UV-visible region, while there was possibility of surface plasmon resonance in the Infrared absorption region. The effect of Ag/SiO2 composite material on the infrared absorption spectra of sodium nitrite solution was investigated through systematically analyzing the infrared absorption spectroscopy of sodium nitrate solution during its evaporation, i. e. the peak integration area of nitrate and the peak integration area of water molecule. The experimental results show that the integration area of nitrate was enhanced greatly during the evaporation process while the integration area of water molecule decreased continuously. The integration area of nitrate comes from the anti-symmetric stretch vibration and the enhancement of the vibration is attributed to the interface effect of Ag/SiO2 which is consistent with Jensen T.R's result. PMID:25532335

  3. Consistent antioxidant and antihypertensive effects of oral sodium nitrite in DOCA-salt hypertension

    PubMed Central

    Amaral, Jefferson H.; Ferreira, Graziele C.; Pinheiro, Lucas C.; Montenegro, Marcelo F.; Tanus-Santos, Jose E.

    2015-01-01

    Hypertension is a common disease that includes oxidative stress as a major feature, and oxidative stress impairs physiological nitric oxide (NO) activity promoting cardiovascular pathophysiological mechanisms. While inorganic nitrite and nitrate are now recognized as relevant sources of NO after their bioactivation by enzymatic and non-enzymatic pathways, thus lowering blood pressure, mounting evidence suggests that sodium nitrite also exerts antioxidant effects. Here we show for the first time that sodium nitrite exerts consistent systemic and vascular antioxidant and antihypertensive effects in the deoxycorticosterone-salt (DOCA-salt) hypertension model. This is particularly important because increased oxidative stress plays a major role in the DOCA-salt hypertension model, which is less dependent on activation of the renin-angiotensin system than other hypertension models. Indeed, antihypertensive effects of oral nitrite were associated with increased plasma nitrite and nitrate concentrations, and completely blunted hypertension-induced increases in plasma 8-isoprostane and lipid peroxide levels, in vascular reactive oxygen species, in vascular NADPH oxidase activity, and in vascular xanthine oxidoreductase activity. Together, these findings provide evidence that the oral administration of sodium nitrite consistently decreases the blood pressure in association with major antioxidant effects in experimental hypertension. PMID:26119848

  4. The Fate of Nitrate During an In-Situ Biostimulation Experiment in a Coastal Plain Aquifer

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Devlin, S.; Onstott, T. C.; Sigman, D. M.; Hall, J.; Fuller, M. E.; Deflaun, M. F.; Streger, S. H.; Williams, K. H.; Hubbard, S. S.; McCarthy, J.

    2002-12-01

    Sixty push-pull experiments were conducted in a shallow coastal plain aquifer to determine the fate of nitrate under stimulated and in situ conditions. The experiments were conducted in 5 wells equipped with multi-level samplers (MLS's), each with 12 ports equally spaced over 3.6 m. The injections included: 1) Br, and nitrate, 2) Br, nitrate, and lactate, 3) Br, nitrate, lactate, and bacteria, 3) Br, nitrate, and humic acids, and 4) Br, nitrate, humic acids, and lactate. Br was added as a conservative tracer, lactate was added as a carbon source, and humic acids isolated from a shallow aquifer near Kitty Hawk, North Carolina were added as a carbon source and an electron shuttle. Injection took approximately 3 hours followed by three weeks of monitoring. The zone of influence around each MLS was expected to have a radius of approximately 0.45m. In the wells stimulated with lactate, complete denitrification occurred within the first week. In some of the sampling ports, the nitrate sorbed to the sediment and then desorbed before denitrification occurred. In the control wells with no lactate, autotrophic denitrification occurred as evidenced by minimal CO2 production and a decrease in pH at a rate slower than the stimulated wells. The calculated zero- and first-order denitrification rates were not correlated with the heterogeneous aquifer properties and were relatively uniform across the 12 ports of each MLS. Little enrichment of the ?15N of nitrate was observed in the zones amended with lactate, ?=-0.6‰ , with more in the control zones ? = -11.6‰ , and along the natural flow path, ?= -5.8‰ . Little nitrite or ammonia was formed with the principle end product being N2. Geophysical tomographic data indicated that the N2 formed a gas phase in the aquifer, and that the radius of influence of the stimulation was on the order of meters in the lateral direction. This gas phase could potentially alter transport and geochemical reactions within the aquifer. Understanding and successful monitoring of both nitrate sorption and gas phase formation, which were the two dominant processes during our experiment, may be crucial for effective contaminant remediation at many sites.

  5. Ammonia Test

    MedlinePLUS

    ... diagnose the cause of a coma of unknown origin or to help support the diagnosis of Reye's ... clearing them. Normal concentrations of ammonia do not rule out hepatic encephalopathy . Other wastes can contribute to ...

  6. Ammonia - blood

    MedlinePLUS

    ... is most commonly used to diagnose and monitor hepatic encephalopathy , a severe liver disease. Ammonia (NH3) is ... Elsevier; 2011:chap 149. Nevah MI, Fallon MB. Hepatic encephalopathy, hepatorenal syndrome, hepatopulmonary syndrome, and systemic complications ...

  7. Nitrite intensity explains N management effects on N2O emissions in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is typically assumed that the dependence of nitrous oxide (N2O) emissions on soil nitrogen (N) availability is best quantified in terms of ammonium (NH4+) and/or nitrate (NO3-) concentrations. In contrast, nitrite (NO2-) is seldom measured separately from NO3- despite its role as a central substr...

  8. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N 2 production in coastal marine sediments

    Microsoft Academic Search

    Pia Engström; Tage Dalsgaard; Stefan Hulth; Robert C. Aller

    2005-01-01

    The respiratory reduction of nitrate (denitrification) is acknowledged as the most important process that converts biologically available nitrogen to gaseous dinitrogen (N2) in marine ecosystems. Recent findings, however, indicate that anaerobic ammonium oxidation by nitrite (anammox) may be an important pathway for N2 formation and N removal in coastal marine sediments and in anoxic water columns of the oceans. In

  9. Nitrifying biofilm acclimation to free ammonia in submerged biofilters. Start-up influence

    Microsoft Academic Search

    S. Villaverde; F. Fdz-Polanco; P. A. Garc??a

    2000-01-01

    Biofilms grown in two submerged nitrifying biofilters developed the capability to overcome inhibition caused by free ammonia during a 6month period. The biofilters were started with different start-up protocols, fed with the same synthetic waste-water and further operated under the same conditions for 6months. The threshold value of free ammonia concentration over which ammonia and nitrite oxidisers experienced inhibition was

  10. The purification and properties of a cd-cytochrome nitrite reductase from Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Cronin, S.; Hochstein, L. I.

    1986-01-01

    Paracoccus halodenitrificans, grown anaerobically in the presence of nitrite, contained membrane and cytoplasmic nitrite reductases. When assayed in the presence of phenazine methosulfate and ascorbate, the membrane-bound enzyme produced nitrous oxide whereas the cytoplasmic enzyme produced nitric oxide. When both enzymes were assayed in the presence of methyl viologen and dithionite, the cytoplasmic enzyme produced ammonia. Following solubilization, the membrane-bound enzyme behaved like the cytoplasmic enzyme, producing nitric oxide in the presence of phenazine methosulfate and ascorbate, and ammonia when assayed in the presence of methyl viologen and dithionite. The cytoplasmic and membrane-bound enzymes were purified to essentially the same specific activity. Only a single nitrite-reductase activity was detected on electrophoretic gels and the electrophoretic behavior of both enzymes suggested they were identical. The spectral properties of both enzymes suggested they were cd-type cytochromes. These data suggest that the products of nitrite reduction by the cd-cytochrome nitrite reductase are determined by the location of the enzyme and the redox potential of the electron donor.

  11. Regulation of ntcA Expression and Nitrite Uptake in the Marine Synechococcus sp. Strain WH 7803

    PubMed Central

    Lindell, Debbie; Padan, Etana; Post, Anton F.

    1998-01-01

    NtcA is a transcriptional activator involved in global nitrogen control in cyanobacteria. In the absence of ammonium it regulates the transcription of a series of genes encoding proteins required for the uptake and assimilation of alternative nitrogen sources (I. Luque, E. Flores, and A. Herrero, EMBO J. 13:2862–2869, 1994). ntcA, present in a single copy in the marine Synechococcus sp. strain WH 7803, was cloned and sequenced. The putative amino acid sequence shows a high degree of identity to NtcA from freshwater cyanobacteria in two functional domains. The expression of ntcA was negatively regulated by ammonium from a putative transcription start point located downstream of an NtcA consensus recognition sequence. Addition of either rifampin or ammonium led to a rapid decline in ntcA transcript levels with half-lives of less than 2 min in both cases. Nitrate-grown cells showed high ntcA transcript levels, as well as the capacity for active nitrite uptake. However, ammonium-grown cells showed low levels of the ntcA transcript and did not utilize nitrite. The addition of ammonium to nitrite uptake-active cells resulted in a gradual decline in the rate of uptake over a 24-h period. Active nitrite uptake was not induced in cells transferred to medium lacking a nitrogen source despite evidence of elevated expression of ntcA, indicating that ntcA expression is not sufficient for uptake capacity to develop. Nitrate and nitrite addition led to the development of nitrite uptake, whereas the addition of leucine did not. Furthermore, nitrite addition triggered the de novo protein synthesis required for uptake capacity to develop. These data suggest that nitrite and nitrate act as specific inducers for the synthesis of proteins required for nitrite uptake. PMID:9537388

  12. The NreA protein functions as a nitrate receptor in the staphylococcal nitrate regulation system.

    PubMed

    Niemann, Volker; Koch-Singenstreu, Mareike; Neu, Ancilla; Nilkens, Stephanie; Götz, Friedrich; Unden, Gottfried; Stehle, Thilo

    2014-04-01

    Staphylococci are able to use nitrate as an alternative electron acceptor during anaerobic respiration. The regulation of energy metabolism is dependent on the presence of oxygen and nitrate. Under anaerobic conditions, staphylococci employ the nitrate regulatory element (Nre) for transcriptional activation of genes involved in reduction and transport of nitrate and nitrite. Of the three proteins that constitute the Nre system, NreB has been characterized as an oxygen sensor kinase and NreC has been characterized as its cognate response regulator. Here, we present structural and functional data that establish NreA as a new type of nitrate receptor. The structure of NreA with bound nitrate was solved at 2.35Å resolution, revealing a GAF domain fold. Isothermal titration calorimetry experiments showed that NreA binds nitrate with low micromolar affinity (KD=22?M). Two crystal forms for NreA were obtained, with either bound nitrate or iodide. While the binding site is hydrophobic, two helix dipoles and polar interactions contribute to specific binding of the ions. The expression of nitrate reductase (NarGHI) was examined using a narG-lip (lipase) reporter gene assay in vivo. Expression was regulated by the presence of NreA and nitrate. Structure-guided mutations of NreA reduced its nitrate binding affinity and also affected the gene expression, thus providing support for the function of NreA as a nitrate receptor. PMID:24389349

  13. A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water

    PubMed Central

    Haaijer, Suzanne C. M.; Ji, Ke; van Niftrik, Laura; Hoischen, Alexander; Speth, Daan; Jetten, Mike S. M.; Damsté, Jaap S. Sinninghe; Op den Camp, Huub J. M.

    2013-01-01

    Marine microorganisms are important for the global nitrogen cycle, but marine nitrifiers, especially aerobic nitrite oxidizers, remain largely unexplored. To increase the number of cultured representatives of marine nitrite-oxidizing bacteria (NOB), a bioreactor cultivation approach was adopted to first enrich nitrifiers and ultimately nitrite oxidizers from Dutch coastal North Sea water. With solely ammonia as the substrate an active nitrifying community consisting of novel marine Nitrosomonas aerobic ammonia oxidizers (ammonia-oxidizing bacteria) and Nitrospina and Nitrospira NOB was obtained which converted a maximum of 2 mmol of ammonia per liter per day. Switching the feed of the culture to nitrite as a sole substrate resulted in a Nitrospira NOB dominated community (approximately 80% of the total microbial community based on fluorescence in situ hybridization and metagenomic data) converting a maximum of 3 mmol of nitrite per liter per day. Phylogenetic analyses based on the 16S rRNA gene indicated that the Nitrospira enriched from the North Sea is a novel Nitrospira species with Nitrospira marina as the next taxonomically described relative (94% 16S rRNA sequence identity). Transmission electron microscopy analysis revealed a cell plan typical for Nitrospira species. The cytoplasm contained electron light particles that might represent glycogen storage. A large periplasmic space was present which was filled with electron dense particles. Nitrospira-targeted polymerase chain reaction analyses demonstrated the presence of the enriched Nitrospira species in a time series of North Sea genomic DNA samples. The availability of this new Nitrospira species enrichment culture facilitates further in-depth studies such as determination of physiological constraints, and comparison to other NOB species. PMID:23515432

  14. Stoichiometry and kinetics of the reaction of nitrite with free chlorine in aqueous solutions

    SciTech Connect

    Diyamandoglu, V.; Marinas, B.J.; Selleck, R.E. (Univ. of California, Berkeley (USA))

    1990-11-01

    The reaction of nitrite with free chlorine in dilute aqueous solution (3.4 < pH < 11.5) was studied under continuous-flow mixing conditions. Chlorine, chloride, nitrite, and nitrate were all measured analytically. Stoichiometric balances demonstrated that nitrate was oxidized to nitrate, and chlorine was reduced to chloride, without the significant production of any other chemical species. The kinetic studies demonstrated that the reaction is very fast at neutral or acidic pH with the rate decreasing with increasing pH. The reaction was strictly bimolecular in the pH range of 9.5-11.6, whereas it was sufficiently slow to be followed with time. The reaction appears to proceed between nitrous and hypochlorous acid molecules, or HNO{sub 2} + HOCl {yields} 2H{sup +} + NO{sub 3}{sup {minus}} + Cl{sup {minus}}.

  15. The acute effect of flavonoid-rich apples and nitrate-rich spinach on cognitive performance and mood in healthy men and women.

    PubMed

    Bondonno, Catherine P; Downey, Luke A; Croft, Kevin D; Scholey, Andrew; Stough, Con; Yang, Xingbin; Considine, Michael J; Ward, Natalie C; Puddey, Ian B; Swinny, Ewald; Mubarak, Aidilla; Hodgson, Jonathan M

    2014-05-01

    Flavonoids and nitrate in a fruit and vegetable diet may be protective against cardiovascular disease and cognitive decline through effects on nitric oxide (NO) status. The circulating NO pool is increased via distinct pathways by dietary flavonoids and nitrate. Our aim was to investigate the acute effects of apples, rich in flavonoids, and spinach, rich in nitrate, independently and in combination on NO status, cognitive function and mood in a randomised, controlled, cross-over trial with healthy men and women (n = 30). The acute effects of four energy-matched treatments (control, apple, spinach and apple + spinach) were compared. Endpoints included plasma nitric oxide status (determined by measuring S-nitrosothiols + other nitroso species (RXNO)), plasma nitrate and nitrite, salivary nitrate and nitrite, urinary nitrate and nitrite as well as cognitive function (determined using the Cognitive Drug Research (CDR) computerized cognitive assessment battery) and mood. Relative to control, all treatments resulted in higher plasma RXNO. A significant increase in plasma nitrate and nitrite, salivary nitrate and nitrite as well as urinary nitrate and nitrite was observed with spinach and apple + spinach compared to control. No significant effect was observed on cognitive function or mood. In conclusion, flavonoid-rich apples and nitrate-rich spinach augmented NO status acutely with no concomitant improvements or deterioration in cognitive function and mood. PMID:24676365

  16. Numerical modeling of nitrogen removal processes in biofilters with simultaneous nitritation and anammox.

    PubMed

    Shi, Shun; Tao, Wendong

    2013-01-01

    This study developed a simple numerical model for nitrogen removal in biofilters, which was designed to enhance simultaneous nitritation and anaerobic ammonium oxidation (anammox). It is the first attempt to simulate anammox together with two-step nitrification in natural treatment systems, which may have different kinetic parameters and temperature effects from conventional bioreactors. Prediction accuracy was improved by adjusting kinetic coefficients over the startup period of the biofilters. The maximum rates of nitritation and nitrite oxidation increased linearly over time during the startup period. Simulations confirmed successful enhancement of simultaneous nitritation and anammox (SNA) in the biofilters, with anammox contributing 35% of ammonium removal. Effluent ammonium concentration was affected by influent ammonium concentration and the maximum nitritation rate, and was insensitive to the maximum nitrite oxidation rate and anammox substrate factor. Ammonium removal via SNA was likely limited by biomass of aerobic ammonia oxidizing bacteria in the biofilters. The developed model is a promising tool for studying the dynamics of nitrogen removal processes including SNA in natural treatment systems. PMID:23202559

  17. Characterization of a Nitrite Reductase Involved in Nitrifier Denitrification*

    PubMed Central

    Lawton, Thomas J.; Bowen, Kimberly E.; Sayavedra-Soto, Luis A.; Arp, Daniel J.; Rosenzweig, Amy C.

    2013-01-01

    Nitrifier denitrification is the conversion of nitrite to nitrous oxide by ammonia-oxidizing organisms. This process, which is distinct from denitrification, is active under aerobic conditions in the model nitrifier Nitrosomonas europaea. The central enzyme of the nitrifier dentrification pathway is a copper nitrite reductase (CuNIR). To understand how a CuNIR, typically inactivated by oxygen, functions in this pathway, the enzyme isolated directly from N. europaea (NeNIR) was biochemically and structurally characterized. NeNIR reduces nitrite at a similar rate to other CuNIRs but appears to be oxygen tolerant. Crystal structures of oxidized and reduced NeNIR reveal a substrate channel to the active site that is much more restricted than channels in typical CuNIRs. In addition, there is a second fully hydrated channel leading to the active site that likely acts a water exit pathway. The structure is minimally affected by changes in pH. Taken together, these findings provide insight into the molecular basis for NeNIR oxygen tolerance. PMID:23857587

  18. Nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria with C2/C3 fatty acid in upflow anaerobic sludge blanket reactors.

    PubMed

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Yin; Zhang, Jie

    2015-10-01

    In anaerobic ammonium oxidation (Anammox) process, a harsh ratio of nitrite to ammonia in influent was demanded, and the max nitrogen removal efficiency could only achieve to 89%, both of which limited the development of Anammox. The aim of this work was to study the nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria (AAOB) with C2/C3 fatty acid in upflow anaerobic sludge blanket (UASB) reactors. In this study, organotrophic AAOB was successfully enriched by adding acetate and propionate with the total organic carbon to nitrogen (TOC/N) ratio of 0.1. In the condition of low substrate, the TN removal efficiency reached 90%, with the effluent TN of around 11.8mgL(-1). After the addition of acetate and propionate, the predominant species in Anammox granular sludge transformed to Candidatus Jettenia that belonging to organotrophic AAOB from the Candidatus Kuenenia relating to general AAOB. PMID:26151852

  19. Nitric oxide metabolites (nitrite and nitrate) in several clinical condition.

    PubMed

    Caimi, G; Hopps, E; Montana, M; Carollo, C; Calandrino, V; Incalcaterra, E; Canino, B; Lo Presti, R

    2014-01-01

    We determined the concentration of nitric oxide metabolites (NO2-+NO3-), expressed as NOx, in several clinical conditions. Regarding this, we have examined 25 subjects with arterial hypertension, 41 subjects with chronic kidney disease in conservative treatment, 106 subjects with metabolic syndrome subdivided according to the presence (n = 43) or not (n = 63) of diabetes mellitus, 48 subjects with obstructive sleep apnea syndrome (OSAS), 14 women with systemic sclerosis complicated with Raynaud's phenomenon, 42 dialyzed subjects and 105 young subjects with acute myocardial infarction (AMI). In subjects with arterial hypertension, chronic kidney disease, metabolic syndrome, systemic sclerosis, as well as, in dialyzed and AMI subjects, we found at baseline a NOx increase. In dyalized subjects after a standard dialysis session, we observed a decrease in NOx. The increase in NOx in juvenile AMI was significantly influenced by cigarette smoking and less by cardiovascular risk factors and the extent of coronary lesions; at 3 and 12 months later than the initial event, we observed a decrease of NOx that remains significantly higher than the control group. In subjects with OSAS no difference in NOx was noted in comparison with normal controls, although their subdivision according to the apnea/hypopnea index operates a clear distinction regarding NOx concentration. PMID:24004551

  20. A Mechanism for the Aqueous Phase Production of Alkyl Nitrates

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Saltzman, E. S.; DeBruyn, W. J.

    2002-05-01

    Measurements of alkyl nitrates in the surface ocean and marine boundary layer indicate that there is an oceanic source of alkyl nitrates to the marine troposphere. Alkyl nitrates make up a portion of the total reactive nitrogen in the troposphere. They can contribute significantly to the NOx budget in the remote marine atmosphere, affecting regional ozone formation. The origin of the alkyl nitrate in the surface ocean is unknown. One possible mechanism for aqueous alkyl nitrate formation is the reaction of alkyl peroxy radicals with NO (ROO + NO -> RONO2). Peroxy radicals and NO have been observed in seawater at levels that make this a viable reaction (Blough 1997) (Zafiriou and McFarland 1981). In this project, steady state irradiations of nitrite and alkane solutions were used to determine the yield of alkyl nitrates from this reaction. The yield for ethyl nitrate has been determined to be 101+/-12% and 102+/-8% total yield for propyl nitrates (n-propyl and iso-propyl) with no evident temperature dependence between 5 and 30° C. Alkyl nitrates were also generated by the irradiation of natural seawater and nitrite-spiked seawater. These results indicate that the proposed mechanism may be a viable source of alkyl nitrates in surface waters.

  1. Photochemistry of Nitrate Adsorbed on Mineral Dust

    NASA Astrophysics Data System (ADS)

    Gankanda, A.; Grassian, V. H.

    2013-12-01

    Mineral dust particles in the atmosphere are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides including HNO3 and NO2. Although nitrate ion is a well-studied chromophore in natural waters, the photochemistry of adsorbed nitrate on mineral dust particles is yet to be fully explored. In this study, wavelength dependence of the photochemistry of adsorbed nitrate on different model components of mineral dust aerosol has been investigated using transmission FTIR spectroscopy. Al2O3, TiO2 and NaY zeolite were used as model systems to represent non-photoactive oxides, photoactive semiconductor oxides and porous materials respectively, present in mineral dust aerosol. In this study, adsorbed nitrate is irradiated with 254 nm, 310 nm and 350 nm narrow band light. In the irradiation with narrow band light, NO2 is the only detectable gas-phase product formed from nitrate adsorbed on Al2O3 and TiO2. The NO2 yield is highest at 310 nm for both Al2O3 and TiO2. Unlike Al2O3 and TiO2, in zeolite, adsorbed nitrate photolysis to nitrite is observed only at 310 nm during narrow band irradiation. Moreover gas phase products were not detected during nitrate photolysis in zeolite at all three wavelengths. The significance of these differences as related to nitrate photochemistry on different mineral dust components will be highlighted.

  2. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    PubMed

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO?-N/L, aerobic P-uptake and oxidation of intercellular poly-?-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO?-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite. PMID:23771179

  3. Oxidative and nitrosative stress in ammonia neurotoxicity.

    PubMed

    Skowro?ska, Marta; Albrecht, Jan

    2013-04-01

    Increased ammonia accumulation in the brain due to liver dysfunction is a major contributor to the pathogenesis of hepatic encephalopathy (HE). Fatal outcome of rapidly progressing (acute) HE is mainly related to cytotoxic brain edema associated with astrocytic swelling. An increase of brain ammonia in experimental animals or treatment of cultured astrocytes with ammonia generates reactive oxygen and nitrogen species in the target tissues, leading to oxidative/nitrosative stress (ONS). In cultured astrocytes, ammonia-induced ONS is invariably associated with the increase of the astrocytic cell volume. Interrelated mechanisms underlying this response include increased nitric oxide (NO) synthesis which is partly coupled to the activation of NMDA receptors and increased generation of reactive oxygen species by NADPH oxidase. ONS and astrocytic swelling are further augmented by excessive synthesis of glutamine (Gln) which impairs mitochondrial function following its accumulation in there and degradation back to ammonia ("the Trojan horse" hypothesis). Ammonia also induces ONS in other cell types of the CNS: neurons, microglia and the brain capillary endothelial cells (BCEC). ONS in microglia contributes to the central inflammatory response, while its metabolic and pathophysiological consequences in the BCEC evolve to the vasogenic brain edema associated with HE. Ammonia-induced ONS results in the oxidation of mRNA and nitration/nitrosylation of proteins which impact intracellular metabolism and potentiate the neurotoxic effects. Simultaneously, ammonia facilitates the antioxidant response of the brain, by activating astrocytic transport and export of glutathione, in this way increasing the availability of precursors of neuronal glutathione synthesis. PMID:23142151

  4. Complete autotrophic denitrification in a single reactor using nitritation and anammox gel carriers.

    PubMed

    Isaka, Kazuichi; Kimura, Yuya; Yamamoto, Tomoko; Osaka, Toshifumi; Tsuneda, Satoshi

    2013-11-01

    A novel aerobic denitrification reactor, aerobic denitrification using nitrifying and anoxic ammonium-oxidizing (anammox) bacteria immobilized on gel carriers in a single stage (AIGES), was developed. Two types of gel carriers, a nitritation gel carrier and an anammox gel carrier, were installed in single reactor, and the denitrification performance of simultaneous nitritation and anammox was evaluated. The denitrification performance increased gradually with increased aeration rate, reaching a denitrification rate of 1.4 kg N m(-3) d(-1) 2 weeks after the nitritation and anammox gel carriers were mixed. A high average denitrification efficiency of 82% was confirmed. Stable aerobic denitrification performance was observed for more than half a year. In the startup period of AIGES operation, ammonia-oxidizing bacteria were shown by fluorescence in situ hybridization analysis to grow on the surface layer of anammox gel cubes. These results indicated that anammox gel carriers promptly adapted to an aerobic environment by altering the microbial ecosystem. PMID:23994309

  5. Release of ammonia from HAN-type PHA

    SciTech Connect

    Zamecnik, J.R.

    1992-06-10

    A preliminary design basis for ammonia scrubbers in the DWPF has been issued. This design basis is based on a theoretical model of ammonia evolution from the SRAT, SME and RCT. It is desirable to acquire actual process data on ammonia evolution prior to performing detailed design of scrubbers for DWPF. The evolution of ammonia from the SRAT and SME in the Integrated DWPF Melter System (IDMS) was investigated during the HM4 run. In this run, Precipitate Hydrolysis Aqueous (PHA), which was made in the Precipitate Hydrolysis Experimental Facility (PHEF) using the HAN (hydroxylamine nitrate) process was used, thus resulting in PHA with a high concentration of ammonium ion.

  6. The reaction of nitrite with the haemocyanin of the Roman snail (Helix pomatia).

    PubMed

    Tahon, J P; Maes, G; Vinckier, C; Witters, R; Zeegers-Huyskens, T; De Ley, M; Lontie, R

    1990-11-01

    The reaction of nitrite at pH 5.0-7.0 with the deoxyhaemocyanin of a mollusc, the Roman snail (Helix pomatia), yielded nitrosylhaemocyanin (CuIA.NO+ CuIIB), in contrast with the formation of methaemocyanin with the deoxyhaemocyanin of the crustacean Astacus leptodactylus (mud crayfish). With Helix haemocyanin 1 NO was thereby liberated per active site, as shown by m.s., as against 2 NO with Astacus haemocyanin. Helix nitrosylhaemocyanin was characterized in c.d. by the negative extremum at 336 nm (CuIA.NO+) and by the mononuclear e.p.r. signal at g = 2 (CuIIB). Binuclear e.p.r. signals have been observed after the addition of nitrite to methaemocyanins. With Astacus methaemocyanin, no further reaction occurred, whereas with Helix methaemocyanin the mononuclear e.p.r. signal, characteristic for nitrosylhaemocyanin gradually appeared. This formation of Helix nitrosylhaemocyanin implicates the binding, most likely on CuIIA, of a second nitrite besides a bridging nitrite, so that a dismutation into NO and NO2 can occur there. A further dismutation of NO2 yields nitrite and nitrate. The formation of the latter was demonstrated by Raman spectrometry. The reaction rate of Helix methaemocyanin with nitrite decreased with increasing pH according to the Henderson-Hasselbalch equation with a pKa value of 6.77, attributed to a mu-aquo bridging ligand, which can be exchanged for nitrite, in equilibrium with a mu-hydroxo ligand which cannot. These data also favour the formulation of the final reaction product as nitrosylhaemocyanin instead of semi-methaemocyanin, with or without bound nitrite. PMID:2244878

  7. Stable performance of non?aerated two?stage partial nitritation/anammox (PANAM) with minimal process control

    PubMed Central

    Bagchi, Samik; Biswas, Rima; Vlaeminck, Siegfried E.; Roychoudhury, Kunal; Nandy, Tapas

    2012-01-01

    Summary Partial nitritation/anammox (PANAM) technologies have rapidly developed over the last decade, but still considerable amounts of energy are required for active aeration. In this study, a non?aerated two?stage PANAM process was investigated. In the first?stage upflow fixed?film bioreactor, nitratation could not be prevented at ammonium loading rates up to 186?mg?N?l?1?d?1 and low influent dissolved oxygen (0.1?mg?O2?l?1). Yet, increasing the loading rate to 416 and 747?mg?N?l?1?d?1 by decreasing the hydraulic retention time to 8 and 5?h, respectively, resulted in partial nitritation with the desired nitrite to ammonium nitrogen ratio for the subsequent anammox stage (0.71–1.05). The second?stage anammox reactor was established with a synthetic feeding based on ammonium and nitrite. After establishing anammox at low biomass content (0.5?g VSS l?1), the anammox influent was switched to partial nitritation effluent at a loading rate of 71?mg?N?l?1?d?1, of which 78% was removed at the stoichiometrically expected nitrite to ammonium consumption ratios (1.19) and nitrate production to ammonium consumption ratio (0.24). The combined PANAM reactors were operated for 3 months at a stable performance. Overall, PANAM appeals economically, saving about 50% of the energy costs, as well as technically, given straightforward operational principles. PMID:22414169

  8. Nitrite toxicity to crayfish, Astacus leptodactylus, the effects of sublethal nitrite exposure on hemolymph nitrite, total hemocyte counts, and hemolymph glucose.

    PubMed

    Yildiz, Hijran Yavuzcan; Benli, A Caglan Karasu

    2004-11-01

    The 48-h acute toxicity range of nitrite to narrow-clawed crayfish, Astacus leptodactylus was within 22 and 70 mg L(-1) (mean 29.43 mg L(-1)). Environmental chloride (100 mg L(-1) chloride) increased the 48-h toxicity of nitrite to a range of 31 and 80 mg L(-1) (mean 49.20 mg L(-1)). Hemolymph nitrite, total hemocyte counts (THCs), and hemolymph glucose were examined in A. leptodactylus exposed to different sublethal nitrite concentrations. The same parameters were also determined for A. leptodactylus exposed to different sublethal nitrite concentrations with additional environmental chloride. Additionally, hemolymph nitrite and THCs were analyzed for crayfish exposed to nitrite-free water after 24 h following a 48-h exposure to nitrite. In the nitrite-exposed tests, hemolymph nitrite increased directly with water nitrite; however, after recovery, nitrite in hemolymph decreased. In the nitrite plus chloride-exposed tests, the accumulation of nitrite in hemolymph was relatively low compared to the nitrite-exposed tests. Thus, hemolymph to environment ratios of nitrite in the nitrite-exposed tests were higher than those of nitrite plus chloride-exposed tests. THCs decreased following nitrite exposure and, in general, increased after recovery. In the nitrite with chloride exposed and recovery from nitrite tests, THCs increased. Hemolymph glucose levels elevated following nitrite exposure, independent of water nitrite concentrations. However, with environmental chloride nitrite exposure did not cause elevation of hemolymph glucose. Hemolymph nitrite accumulation was found to be closely related to the decrease in THCs and increase in hemolymph glucose. PMID:15388276

  9. Separation, detection and occurrence of (C2–C8)-alkyl- and phenyl-alkyl nitrates as trace compounds in clean and polluted air

    Microsoft Academic Search

    Oliver Luxenhofer; Ellen Schneider; Karlheinz Ballschmiter

    1994-01-01

    Nitric acid, HNO3, and nitrous acid, HNO2, are forming stable esters with alcohols, the alkyl nitrates and alkyl nitrites. Both groups of compounds are used as fuel additives, explosives and pharmaceuticals. Alkyl nitrates are also formed as complex mixtures during incomplete combustion and the abiotic transformation of alkanes, alkenes and aldehydes in air. Organic nitrates can be assigned to anthropogenic

  10. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression

    PubMed Central

    Cunningham-Bussel, Amy; Zhang, Tuo; Nathan, Carl F.

    2013-01-01

    In high enough concentrations, such as produced by inducible nitric oxide synthase (iNOS), reactive nitrogen species (RNS) can kill Mycobacterium tuberculosis (Mtb). Lesional macrophages in macaques and humans with tuberculosis express iNOS, and mice need iNOS to avoid succumbing rapidly to tuberculosis. However, Mtb’s own ability to produce RNS is rarely considered, perhaps because nitrate reduction to nitrite is only prominent in axenic Mtb cultures at oxygen tensions ?1%. Here we found that cultures of Mtb-infected human macrophages cultured at physiologic oxygen tensions produced copious nitrite. Surprisingly, the nitrite arose from the Mtb, not the macrophages. Mtb responded to nitrite by ceasing growth; elevating levels of ATP through reduced consumption; and altering the expression of 120 genes associated with adaptation to acid, hypoxia, nitric oxide, oxidative stress, and iron deprivation. The transcriptomic effect of endogenous nitrite was distinct from that of nitric oxide. Thus, whether or not Mtb is hypoxic, the host expresses iNOS, or hypoxia impairs the action of iNOS, Mtb in vivo is likely to encounter RNS by producing nitrite. Endogenous nitrite may slow Mtb’s growth and prepare it to resist host stresses while the pathogen waits for immunopathology to promote its transmission. PMID:24145454

  11. Distribution of nitrate in ground water, Redlands, California

    USGS Publications Warehouse

    Eccles, Lawrence A.; Bradford, Wesley L.

    1977-01-01

    Wells producing water with nitrate as nitrogen concentrations in excess of 10 milligrams per liter are common throughout the Redlands, Calif., area. Nitrite as nitrogen concentrations in water from the saturated part of the aquifer ranged from much greater than 20 milligrams per liter at the water table to less than 5 milligrams per liter at depths of 300 feet below the water table. This depth dependence suggests that the major source of nitrate is a generalized area-wide infiltration of high-nitrate water downward from the surface through the unsaturated zone. The nitrate concentration in water from individual wells is dependent primarily upon depth and well construction--particularly aquifer seal and aquifer penetration--and secondarily upon well location. Nitrate concentrations of water in wells are increased by heavy pumping which causes high-nitrate water near the water table to be pulled deeper. (Woodard-USGS)

  12. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  13. Nitrite, a Reactive Nitrogen Species, Protects Human Alpha2Macroglobulin from Halogenated Oxidant, HOCl

    Microsoft Academic Search

    M. Wasim Khan; Ashreeb Naqshbandi; Haseeb Zubair; Haseeb Ahsan; Shakil A. Khan; Fahim H. Khan

    2010-01-01

    Reactive nitrogen species have been implicated in the pathogenesis of over 40 human diseases, including inflammation. Evidences\\u000a suggest that reactive nitrogen species such as nitrite\\/nitrate and halogenated oxidant-HOCl accumulate at the site of inflammation.\\u000a At physiologically attainable concentrations, HOCl was found to significantly damage the antiproteolytic potential of human\\u000a ?2M and induce subtle changes in conformation as judged by fluorescence

  14. Mechanism of Pitting Corrosion Prevention by Nitrite in Carbon Steel Exposed to Dilute Salt Solutions

    SciTech Connect

    Philip E. Zapp; John W. Van Zee

    2002-02-01

    The research has developed a broad fundamental understanding of the inhibition action of nitrite ions in preventing nitrate pitting corrosion of carbon steel tanks containing high-level radioactive waste. This fundamental understanding can be applied to specific situations during waste removal for permanent disposition and waste tank closure to ensure that the tanks are maintained safely. The results of the research provide the insight necessary to develop solutions that prevent further degradation.

  15. Photochemical Production of Alkyl Nitrates in the Tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Yvon-Lewis, S. A.; Saltzman, E. S.

    2005-12-01

    Alkyl nitrates are important to the tropospheric NOx/ozone cycle because they represent a significant fraction of the reactive nitrogen (NOy). Previous work has shown that there is an oceanic source of alkyl nitrates. A photochemical mechanism for the formation of alkyl nitrates in seawater has been proposed. This mechanism involves the reaction of ROO and NO, where ROO is an alkyl peroxy radical. ROO and NO radicals in seawater are derived from the photolysis of DOM and nitrite, respectively. In this study, the photochemical production of low molecular weight alkyl nitrates (C1-C3) was observed in shipboard incubation experiments in the tropical Pacific during the PHASE 1 cruise. Seawater samples from several regions, including high and low-chlorophyll areas, were collected and incubated. Alkyl nitrate production rates as high as 2 nM/hour were observed. The production rate of alkyl nitrates was clearly dependent upon the initial concentration of nitrite, most likely as the source for NO radicals. While the magnitude of production varied between sample locations, the ratios of the production rates of the various alkyl nitrates remained relatively constant. The observed production ratios of methyl, ethyl, isopropyl, and n-propyl nitrate were 5.9:1.0:0.1:0.2. These ratios presumably reflect the speciation of peroxy radicals formed in seawater, and the yield of alkyl nitrates from the ROO+NO reaction. The observed production rate ratios are similar to the concentration ratios of alkyl nitrates observed in ambient seawater and the overlying atmosphere during the study. A comparison of the measured production rates and the observed concentrations, suggests that photochemically produced alkyl nitrates are a major source of atmospheric alkyl nitrates in the surface ocean and marine atmosphere.

  16. Electrochemical processing of nitrate waste solutions. Phase 2, Final report

    SciTech Connect

    Genders, D.; Weinberg, N.; Hartsough, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (US)

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F{sup {minus}} ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions.

  17. Spinach nitrite reductase. Purification and properties of a siroheme-containing iron-sulfur enzyme.

    PubMed

    Vega, J M; Kamin, H

    1977-02-10

    Ferredoxin-nitrite reductase (EC 1.7.7.1.) from spinach has been purified to homogeneity with a specific activity of 110 units/mg of protein. The enzyme, Mr = 61,000 has 3 iron atoms (of which one is in siroheme) and 2 labile sulfides, i.e. 1 (Fe2-S2) per molecule, with absorption maxima at 276, 386 (Soret), 573 (alpha), and 690 nm, with an E386 of 3.97 X 10(4) M-1-cm-1, and A276/A386 absorptivity ratio of 1.8. Anaerobic addition of dithionite results in the loss of the 690 nm peak and the splitting of the 573 nm absorption band into two broad peaks at 545 and 585 nm. Reduction by dithionite is enhanced by cyanide (Fig. 7) and requires about 3 electron eq per mol of enzyme. With nitrite or hydroxylamine (substrates of the enzyme), cyanide (a competitive inhibitor with respect to nitrite), or sulfite, the 690 nm absorption band of substrate-free enzyme disappears and the absorbance in the Soret and alpha region are altered. The high spin EPR signals disappear (J. M. Vega, H. Kamin, N. R. Orme-Johnson, and W. H. Orme-Johnson, unpublished observations). Titration permits calculation of 1 mol of nitrite bound/mol of enzyme with a Kdiss of 3.2 X 10(-6) M. Dithionite-reduced enzyme also forms complexes with added nitrite, hydroxylamine, or cyanide, characterized by marked alterations in the 573 (alpha) absorption band. THus, substrates or competitive inhibitors can be bound to the oxidized or reduced enzyme forms. CO inhibits nitrite reductase and forms a complex with reduced enzyme (epsilonmax at 395, 543, and 585 nm). Formation or dissociation of the spectrophotometrically detectable CO complex correlates with inhibition or inhibition-reversal of nitrite reduction catalysis. During steady state turnover with dithionite and nitrite, the enzyme forms a complex with added nitrite with absorption difference maxima at 445, 538, and 580 nm with respect to reduced enzyme. When nearly all substrate is depleted the spectrum of a new species appears, indicating that nitrite reductase may form complexes with nitrogen compounds of more than one oxidation state. Nitrite is stoichiometrically reduced to ammonia without detectable free nitrogen compounds of intermediate reduction state. p-Chloromercuribenzoate (pCMB) inhibits nitrite reductase activity and nitrite partially protects against this inhibition. Titration of native enzyme with the mercurial shows that 6 mol of pCMB can be bound/mol or nitrite reductase. The Soret absorption band of the native nitrite reductase is altered and partially bleached in the pCMB-treated enzyme, and the 573 (alpha) band disappears. PMID:838704

  18. [Nitrite denitrification characteristics with redox mediator].

    PubMed

    Zhao, Li-jun; Ma, Zhi-yuan; Guo, Yan-kai; Xi, Zhen-hua; Du, Hai-feng; Liu, Xiao-yu; Guo, Jian-bo

    2013-09-01

    This study optimized the nitrite degradation conditions and explored the characteristics of nitrite degradation with redox mediators and nitrite denitrifying bacteria. The results suggested that the optimal condition of nitrite denitrification was 35 degrees C, pH = 8.0, sodium succinate as the carbon source, the C/N rate of 4 and the initial nitrite concentration of 100 mg x L(-1); the optimal AQS concentration was 0. 16 mmol x L(-1); ORP values stabilized around -400 mV to -500 mV with AQS, which were lower than that of controls during the denitrification process; the pH changed with nitrite removal and stabilized at 9 to 10; through the analysis of denitrifying intermediate metabolites, the impact of AQS on nitrite denitrifying process presumably not only played a coenzyme CoQ role but also accelerated the cytochrome transfer electronic process. This study provides the optimal parameters for practical application of the nitrite biodegradation with redox mediator. PMID:24288999

  19. Microbiology of a Nitrite-Oxidizing Bioreactor

    Microsoft Academic Search

    PAUL C. BURRELL; JURG KELLER; LINDA L. BLACKALL

    1998-01-01

    The microbiology of the biomass from a nitrite-oxidizing sequencing batch reactor (NOSBR) fed with an inorganic salts solution and nitrite as the sole energy source that had been operating for 6 months was investigated by microscopy, by culture-dependent methods, and by molecular biological methods, and the seed sludge that was used to inoculate the NOSBR was investigated by molecular biological

  20. Studies on nitrite reductase in barley

    Microsoft Academic Search

    W. F. Bourne; B. J. Miflin

    1973-01-01

    Nitrite reductase from barley seedlings was purified 50–60 fold by ammonium sulphate precipitation and gel filtration. No differences were established in the characteristics of nitrite reductases isolated in this way from either leaf or root tissues. The root enzyme accepted electrons from reduced methyl viologen, ferredoxin, or an unidentified endogenous cofactor. Enzyme activity in both tissues was markedly increased by

  1. Nitrite and nitrosyl compounds in food preservation

    Microsoft Academic Search

    Richard Cammack; C. L Joannou; Xiao-Yuan Cui; Claudia Torres Martinez; Shaun R Maraj; Martin N Hughes

    1999-01-01

    Nitrite is consumed in the diet, through vegetables and drinking water. It is also added to meat products as a preservative. The potential risks of this practice are balanced against the unique protective effect against toxin-forming bacteria such as Clostridium botulinum. The chemistry of nitrite, and compounds derived from it, in food systems and bacterial cells are complex. It is

  2. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems

    Microsoft Academic Search

    James M. Ebeling; Michael B. Timmons; J. J. Bisogni

    2006-01-01

    In intensive aquaculture systems, ammonia–nitrogen buildup from the metabolism of feed is usually the second limiting factor to increase production levels after dissolved oxygen. The three nitrogen conversion pathways traditionally used for the removal of ammonia–nitrogen in aquaculture systems are photoautotrophic removal by algae, autotrophic bacterial conversion of ammonia–nitrogen to nitrate–nitrogen, and heterotrophic bacterial conversion of ammonia–nitrogen directly to microbial

  3. Biological treatment of ammonia gas at high loading.

    PubMed

    Kanagawa, T; Qi, H W; Okubo, T; Tokura, N

    2004-01-01

    The exhaust gas from compost processing plants contains a large amount of ammonia. To treat ammonia gas at high loads, bench-scale experiments were carried out. First, nitrifying bacteria were enriched from soil and immobilized on porous ceramics. The ceramics were packed in an acrylic cylinder (diameter, 100 mm; packed height, 190 mm) and ammonia gas was introduced to the top of the cylinder. The concentration and flow rate of ammonia gas were gradually increased and finally 85 ppm was introduced at a space velocity of 800 h(-1) (empty bed residence time (EBRT), 4.5 sec). The ammonia load was 1.0 kg N/m3 day(-1). The exhaust contained 1.5-2 ppm of ammonia. Then the packed ceramics were transferred to another acrylic cylinder (diameter, 50 mm; packed height, 800 mm). A high concentration of ammonia gas (1,000 ppm) was introduced at a space velocity of 96 h(-1) (ammonia loading, 1.44 kg N/m3 day(-1); EBRT, 37.5 sec). The exhaust contained 2 ppm of ammonia (removal rate, 99.8%). The packed bed was washed with water intermittently or continuously, and the wastewater from the cylinder contained a large amount of ammonium and nitrate ions of at a 1:1 ratio. Stoichiometric analysis showed that half of the introduced ammonia was oxidized to nitrate, and the rest was converted to ammonium ion. Thus, ammonia gas was effectively treated at a high load by biofiltration with nitrifying bacteria. PMID:15484772

  4. Electrochemical processing of nitrate waste solutions

    SciTech Connect

    Genders, D.; Weinberg, N.; Hartsough, D. (Electrosynthesis Co., Inc., Cheektowaga, NY (United States))

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F[sup [minus

  5. Electrolytic production of uranous nitrate

    SciTech Connect

    Orebaugh, E.G.; Propst, R.C.

    1980-04-01

    Efficient production of uranous nitrate is important in nuclear fuel reprocessing because U(IV) acts as a plutonium reductant in solvent extraction and can be coprecipitated with plutonium and/or throium as oxalates during fuel reprocessing. Experimental conditions are described for the efficient electrolytic production of uranous nitrate for use as a reductant in the SRP Purex process. The bench-scale, continuous-flow, electrolysis cell exhibits a current efficiency approaching 100% in combination with high conversion rates of U(VI) to U(IV) in simulated and actual SRP Purex solutions. High current efficiency is achieved with a voltage-controlled mercury-plated platinum electrode and the use of hydrazine as a nitrite scavenger. Conversion of U(VI) to U(IV) proceeds at 100% efficiency. Cathodic gas generation is minimal. The low rate of gas generation permits a long residence time within the cathode, a necessary condition for high conversions on a continuous basis. Design proposals are given for a plant-scale, continuous-flow unit to meet SRP production requirements. Results from the bench-scale tests indicate that an 8-kW unit can supply sufficient uranous nitrate reductant to meet the needs of the Purex process at SRP.

  6. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255

    SciTech Connect

    Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Larimer, Frank W [ORNL; Arp, D J [Oregon State University; Hickey, W J [University of Wisconsin, Madison

    2006-03-01

    The alphaproteobacterium Nitrobacter winogradskyi (ATCC 25391) is a gram-negative facultative chemolithoautotroph capable of extracting energy from the oxidation of nitrite to nitrate. Sequencing and analysis of its genome revealed a single circular chromosome of 3,402,093 bp encoding 3,143 predicted proteins. There were extensive similarities to genes in two alphaproteobacteria, Bradyrhizobium japonicum USDA110 (1,300 genes) and Rhodopseudomonas palustris CGA009 CG (815 genes). Genes encoding pathways for known modes of chemolithotrophic and chemoorganotrophic growth were identified. Genes encoding multiple enzymes involved in anapleurotic reactions centered on C2 to C4 metabolism, including a glyoxylate bypass, were annotated. The inability of N. winogradskyi to grow on C6 molecules is consistent with the genome sequence, which lacks genes for complete Embden-Meyerhof and Entner-Doudoroff pathways, and active uptake of sugars. Two gene copies of the nitrite oxidoreductase, type I ribulose-1,5-bisphosphate carboxylase/oxygenase, cytochrome c oxidase, and gene homologs encoding an aerobic-type carbon monoxide dehydrogenase were present. Similarity of nitrite oxidoreductases to respiratory nitrate reductases was confirmed. Approximately 10% of the N. winogradskyi genome codes for genes involved in transport and secretion, including the presence of transporters for various organic-nitrogen molecules. The N. winogradskyi genome provides new insight into the phylogenetic identity and physiological capabilities of nitrite-oxidizing bacteria. The genome will serve as a model to study the cellular and molecular processes that control nitrite oxidation and its interaction with other nitrogen-cycling processes.

  7. Genome Sequence of the Chemolithoautotrophic Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Nb-255

    PubMed Central

    Starkenburg, Shawn R.; Chain, Patrick S. G.; Sayavedra-Soto, Luis A.; Hauser, Loren; Land, Miriam L.; Larimer, Frank W.; Malfatti, Stephanie A.; Klotz, Martin G.; Bottomley, Peter J.; Arp, Daniel J.; Hickey, William J.

    2006-01-01

    The alphaproteobacterium Nitrobacter winogradskyi (ATCC 25391) is a gram-negative facultative chemolithoautotroph capable of extracting energy from the oxidation of nitrite to nitrate. Sequencing and analysis of its genome revealed a single circular chromosome of 3,402,093 bp encoding 3,143 predicted proteins. There were extensive similarities to genes in two alphaproteobacteria, Bradyrhizobium japonicum USDA110 (1,300 genes) and Rhodopseudomonas palustris CGA009 CG (815 genes). Genes encoding pathways for known modes of chemolithotrophic and chemoorganotrophic growth were identified. Genes encoding multiple enzymes involved in anapleurotic reactions centered on C2 to C4 metabolism, including a glyoxylate bypass, were annotated. The inability of N. winogradskyi to grow on C6 molecules is consistent with the genome sequence, which lacks genes for complete Embden-Meyerhof and Entner-Doudoroff pathways, and active uptake of sugars. Two gene copies of the nitrite oxidoreductase, type I ribulose-1,5-bisphosphate carboxylase/oxygenase, cytochrome c oxidase, and gene homologs encoding an aerobic-type carbon monoxide dehydrogenase were present. Similarity of nitrite oxidoreductases to respiratory nitrate reductases was confirmed. Approximately 10% of the N. winogradskyi genome codes for genes involved in transport and secretion, including the presence of transporters for various organic-nitrogen molecules. The N. winogradskyi genome provides new insight into the phylogenetic identity and physiological capabilities of nitrite-oxidizing bacteria. The genome will serve as a model to study the cellular and molecular processes that control nitrite oxidation and its interaction with other nitrogen-cycling processes. PMID:16517654

  8. Isotope fractionation and isotope decoupling during nitrate reduction in marine sediments

    NASA Astrophysics Data System (ADS)

    Dähnke, Kirstin; Thamdrup, Bo

    2015-04-01

    In summer 2010, we sampled marine sediments in the Skagerrak, covering a gradient of reactivity, oxygen consumption, and manganese concentration in the sediment. Along this gradient, we aimed to evaluate links between nitrogen cycling and sediment properties. The focus of the study was the interplay of nitrate and nitrite reduction rates and concomitant nitrate and nitrite isotope changes in sediment incubations. As expected, nitrate reduction was fastest in sediments with highest sediment reactivity and oxygen consumption. At the shallower sampling sites, denitrification was the main removal pathway of nitrate and nitrite, but acetylene inhibition experiments pointed towards significant importance of anammox at the deepest site in the Skagerrak. The N-isotope of denitrification effect varied with depth, with stronger N-isotope fractionation at deeper, and less reactive, sites, and ranged from -12 to -16o. At the deepest site in the Skagerrak, anammox was the dominant N2 production pathway. For this site, we calculated the intrinsic isotope effect of anammox in marine sediments, and found that it is ~-15o, which is in accordance with recent culture studies. The isotope effect of oxygen, however, was not consistent pattern along the gradient of sediment reactivity. The oxygen isotope effect of nitrate reduction was entirely decoupled from the nitrogen isotope effect. Surprisingly, this variability in oxygen isotope fractionation was not linked to the occurrence of anammox, but rather to intermediate nitrite accumulation in the anoxic incubations. Consequently, the ratio of 18? / 15? was highly variable in all sediments we investigated. We presume that such decoupling of oxygen and nitrogen isotopes is due to anoxic nitrite oxidation, which rises in turn with nitrite accumulation in the sediment incubations. These findings suggest that the ratio of 18? / 15? in marine environments is highly flexible, and might, especially in regions with considerable nitrite accumulation, not be a reliable indicator of nitrogen turnover processes in anoxic environments.

  9. Partial nitritation ANAMMOX in submerged attached growth bioreactors with smart aeration at 20 °C.

    PubMed

    Shannon, James M; Hauser, Lee W; Liu, Xikun; Parkin, Gene F; Mattes, Timothy E; Just, Craig L

    2015-01-01

    Submerged attached growth bioreactors (SAGBs) were operated at 20 °C for 30 weeks in smart-aerated, partial nitritation ANAMMOX mode and in a timer-controlled, cyclic aeration mode. The smart-aerated SAGBs removed 48-53% of total nitrogen (TN) compared to 45% for SAGBs with timed aeration. Low dissolved oxygen concentrations and cyclic pH patterns in the smart-aerated SAGBs suggested conditions favorable to partial nitritation ANAMMOX and stoichiometrically-derived and numerically modeled estimations attributed 63-68% and 14-44% of TN removal to partial nitritation ANAMMOX in these bioreactors, respectively. Ammonia removals of 36-67% in the smart-aerated SAGBs, with measured oxygen and organic carbon limitations, further suggest partial nitritation ANAMMOX. The smart-aerated SAGBs required substantially less aeration to achieve TN removals similar to SAGBs with timer-controlled aeration. Genomic DNA testing confirmed that the dominant ANAMMOX seed bacteria, received from a treatment plant utilizing the DEMON® sidestream deammonification process, was a Candidatus Brocadia sp. (of the Planctomycetales order). The DNA from these bacteria was also present in the SAGBs at the conclusion of the study providing evidence for attached growth and limited biomass washout. PMID:25406684

  10. The effect of stocking rate on soil solution nitrate concentrations beneath a free-draining dairy production system in Ireland.

    PubMed

    McCarthy, J; Delaby, L; Hennessy, D; McCarthy, B; Ryan, W; Pierce, K M; Brennan, A; Horan, B

    2015-06-01

    Economically viable and productive farming systems are required to meet the growing worldwide need for agricultural produce while at the same time reducing environmental impact. Within grazing systems of animal production, increasing concern exists as to the effect of intensive farming on potential N losses to ground and surface waters, which demands an appraisal of N flows within complete grass-based dairy farming systems. A 3-yr (2011 to 2013) whole-farm system study was conducted on a free-draining soil type that is highly susceptible to N loss under temperate maritime conditions. Soil solution concentrations of N from 3 spring-calving, grass-based systems designed to represent 3 alternative whole-farm stocking rate (SR) treatments in a post-milk quota situation in the European Union were compared: low (2.51 cows/ha), medium (2.92 cows/ha), and high SR (3.28 cows/ha). Each SR had its own farmlet containing 18 paddocks and 23 cows. Nitrogen loss from each treatment was measured using ceramic cups installed to a depth of 1m to sample the soil water. The annual and monthly average nitrate, nitrite, ammonia, and total N concentrations in soil solution collected were analyzed for each year using a repeated measures analysis. Subsequently, and based on the biological data collated from each farm system treatment within each year, the efficiency of N use was evaluated using an N balance model. Based on similar N inputs, increasing SR resulted in increased grazing efficiency and milk production per hectare. Stocking rate had no significant effect on soil solution concentrations of nitrate, nitrite, ammonia, or total N (26.0, 0.2, 2.4, and 32.3mg/L, respectively). An N balance model evaluation of each treatment incorporating input and output data indicated that the increased grass utilization and milk production per hectare at higher SR resulted in a reduction in N surplus and increased N use efficiency. The results highlight the possibility for the sustainable intensification of grass-based dairy systems and suggest that, at the same level of N inputs, increasing SR has little effect on N loss in pastoral systems with limited imported feed. These results suggest that greater emphasis should be attributed to increased grass production and utilization under grazing to further improve the environmental impact of grazing systems. PMID:25841970

  11. Nitrite-mediated renal vasodilatation is increased during ischemic conditions via cGMP-independent signaling.

    PubMed

    Liu, Ming; Zollbrecht, Christa; Peleli, Maria; Lundberg, Jon O; Weitzberg, Eddie; Carlström, Mattias

    2015-07-01

    The kidney is vulnerable to hypoxia, and substantial efforts have been made to ameliorate renal ischemic injury secondary to pathological conditions. Stimulation of the nitrate-nitrite-nitric oxide pathway is associated with renal and cardiovascular protection in disease models, but less is known about the vascular effects during renal ischemia. This study was aimed at investigating the vascular effects of nitrite in the kidney during normoxic and ischemic conditions. Using a multiwire myograph system, we assessed nitrite-mediated relaxation (10(-9)-10(-4)mol/L) in isolated and preconstricted renal interlobar arteries from C57BL/6 mice under normal conditions (pO2 13kPa; pH 7.4) and with low oxygen tension and low pH to mimic ischemia (pO2 3kPa; pH 6.6). Xanthine oxidoreductase expression was analyzed by quantitative PCR, and production of reactive nitrogen species was measured by DAF-FM DA fluorescence. During normoxia significant vasodilatation (15±3%) was observed only at the highest concentration of nitrite, which was dependent on NO-sGC-cGMP signaling. The vasodilatory responses to nitrite were greatly sensitized and enhanced during hypoxia with low pH, demonstrating significant dilatation (11±1%) already in the physiological range (10(-8)mol/L), with a maximum response of 27±2% at 10(-4) mol/L. In contrast to normoxia, and to that observed with a classical NO donor (DEA NONOate), this sensitization was independent of sGC-cGMP signaling. Moreover, inhibition of various enzymatic systems reported to reduce nitrite in other vascular beds, i.e., aldehyde oxidase (raloxifene), aldehyde dehydrogenase (cyanamide), and NO synthase (L-NAME), had no effect on the nitrite response. However, inhibition of xanthine oxidoreductase (XOR; febuxostat or allopurinol) abolished the sensitized response to nitrite during hypoxia and acidosis. In conclusion, in contrast to normoxia, nitrite exerted potent vasorelaxation during ischemic conditions already at physiological concentrations. This effect was dependent on functional XOR but independent of classical downstream signaling by sGC-cGMP. PMID:25841777

  12. Fate of process solution cyanide and nitrate at three nevada gold mines inferred from stable carbon and nitrogen isotope measurements

    USGS Publications Warehouse

    Johnson, C.A.; Grimes, D.J.; Rye, R.O.

    2000-01-01

    Stable isotope methods have been used to identify the mechanisms responsible for cyanide consumption at three heap-leach operations that process Carlin-type gold ores in Nevada, U.S.A. The reagent cyanide had ??15N values ranging from -5 to -2??? and ??13C values from -60 to -35???. The wide ??13C range reflects the use by different suppliers of isotopically distinct natural-gas feedstocks and indicates that isotopes may be useful in environmental studies where there is a need to trace cyanide sources. In heap-leach circuits displaying from 5 to 98% consumption of cyanide, barren-solution and pregnant-solution cyanide were isotopically indistinguishable. The similarity is inconsistent with cyanide loss predominantly by HCN offgassing (a process that in laboratory experiments caused substantial isotopic changes), but it is consistent with cyanide retention within the heaps as solids, a process that caused minimal isotopic changes in laboratory simulations, or with cyanide oxidation, which also appears to cause minimal changes. In many pregnant solutions cyanide was carried entirely as metal complexes, which is consistent with ferrocyanides having precipitated or cyanocomplexes having been adsorbed within the heaps. It is inferred that gaseous cyanide emissions from operations of this type are less important than has generally been thought and that the dissolution or desorption kinetics of solid species is an important control on cyanide elution when the spent heaps undergo rinsing. Nitrate, nitrite and ammonium had ??15N values of 1-16???. The data reflect isotopic fractionation during ammonia offgassing or denitrification of nitrate - particularly in reclaim ponds - but do not indicate the extent to which nitrate is derived from cyanide or from explosive residues. ?? The Institution of Mining and Metallurgy 2000.

  13. A Nitrite Biosensor Based on Co-immobilization of Nitrite Reductase and Viologen-modified Chitosan on a Glassy Carbon Electrode

    PubMed Central

    Quan, De; Shin, Woonsup

    2010-01-01

    An electrochemical nitrite biosensor based on co-immobilization of copper- containing nitrite reductase (Cu-NiR, from Rhodopseudomonas sphaeroides forma sp. denitrificans) and viologen-modified chitosan (CHIT-V) on a glassy carbon electrode (GCE) is presented. Electron transfer (ET) between a conventional GCE and immobilized Cu-NiR was mediated by the co-immobilized CHIT-V. Redox-active viologen was covalently linked to a chitosan backbone, and the thus produced CHIT-V was co-immobilized with Cu-NiR on the GCE surface by drop-coating of hydrophilic polyurethane (HPU). The electrode responded to nitrite with a limit of detection (LOD) of 40 nM (S/N = 3). The sensitivity, linear response range, and response time (t90%) were 14.9 nA/?M, 0.04?11 ?M (r2 = 0.999) and 15 s, respectively. The corresponding Lineweaver-Burk plot showed that the apparent Michaelis-Menten constant (KMapp) was 65 ?M. Storage stability of the biosensor (retaining 80% of initial activity) was 65 days under ambient air and room temperature storage conditions. Reproducibility of the sensor showed a relative standard deviation (RSD) of 2.8% (n = 5) for detection of 1 ?M of nitrite. An interference study showed that anions commonlyfound in water samples such as chlorate, chloride, sulfate and sulfite did not interfere with the nitrite detection. However, nitrate interfered with a relative sensitivity of 64% and this interference effect was due to the intrinsic character of the NiR employed in this study. PMID:22219710

  14. Analysis of ammonia, ammonium aerosols and acid gases in the atmosphere at a commercial hog farm in eastern North Carolina, USA

    Microsoft Academic Search

    Ronald B. McCulloch; G. Stephen Fewa; George C. Murray; Viney P. Anejab

    1998-01-01

    Measurements of atmospheric ammonia, acid gases, and ammonium aerosols were made at a commercial hog farm in Eastern North Carolina, USA, during September through December of 1997. Annular denuder systems (ADS) were used to sample gaseous (hydrogen chloride, nitrous acid, nitric acid, sulfur dioxide and ammonia) and fine aerosol (ammonium, chloride, nitrate, and sulfate) species. Ammonia and ammonium concentrations were

  15. Is inhaled ammonia

    Microsoft Academic Search

    Kaye H. Kilburn

    Describes how a large ammonia release exposed about 150 nearby residents to this irritating gas and sent seven to hospital emergency rooms. Six weeks later the 41 most symptomatic people completed questionnaires and had physical examinations. The 12 most impaired had subsequent neurobehavioral testing to see if exogenous ammonia was toxic to the brain as is endogenous ammonia in hepatic

  16. Chemical pathways for the formation of ammonia in Hanford wastes

    SciTech Connect

    Stock, L.M.; Pederson, L.R.

    1997-12-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important).

  17. Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods

    Microsoft Academic Search

    João M Dias; Manuel E Than; Andreas Humm; Robert Huber; Gleb P Bourenkov; Hans D Bartunik; Sergey Bursakov; Juan Calvete; Jorge Caldeira; Carla Carneiro; José JG Moura; Isabel Moura; Maria J Romão

    1999-01-01

    Background: The periplasmic nitrate reductase (NAP) from the sulphate reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is induced by growth on nitrate and catalyses the reduction of nitrate to nitrite for respiration. NAP is a molybdenum-containing enzyme with one bis-molybdopterin guanine dinucleotide (MGD) cofactor and one [4Fe–4S] cluster in a single polypeptide chain of 723 amino acid residues. To date, there

  18. Comparison of Nitrate Levels in Raw Water and Finished Water from Historical Monitoring Data on Iowa Municipal Drinking Water Supplies

    Microsoft Academic Search

    Peter J. Weyer; Brian J. Smith; Zhen-Fang Feng; Jiji R. Kantamneni; David G. Riley

    2006-01-01

    Nitrate contamination of water sources is a concern where large amounts of nitrogen fertilizers are regularly applied to soils.\\u000a Ingested nitrate from dietary sources and drinking water can be converted to nitrite and ultimately to N-nitroso compounds,\\u000a many of which are known carcinogens. Epidemiologic studies of drinking water nitrate and cancer report mixed findings; a criticism\\u000a is the use of

  19. [Inhibition of the activity of sulfate-reducing bacteria in produced water from oil reservoir by nitrate].

    PubMed

    Yang, De-Yu; Zhang, Ying; Shi, Rong-Jiu; Han, Si-Qin; Li, Guang-Zhe; Li, Guo-Qiao; Zhao, Jin-Yi

    2014-01-01

    Growth and metabolic activity of sulfate-reducing bacteria (SRB) can result in souring of oil reservoirs, leading to various problems in aspects of environmental pollution and corrosion. Nitrate addition and management of nitrate-reducing bacteria (NRB) offer potential solutions to controlling souring in oil reservoirs. In this paper, a facultive chemolithotrophic NRB, designated as DNB-8, was isolated from the produced fluid of a water-flooded oil reservoir at Daqing oilfield. Then the efficacies and mechanisms of various concentrations of nitrate in combination with DNB-8 in the inhibition of the activity of SRB enriched culture were compared. Results showed that 1.0 mmol x L(-1) of nitrate or 0.45 mmol x L(-1) of nitrite inhibited the sulfate-reducing activity of SRB enrichments; the competitive reduction of nitrate by DNB-8 and the nitrite produced were responsible for the suppression. Besides, the SRB enrichment cultures showed a metabolic pathway of dissimilatory nitrate reduction to ammonium (DNRA) via nitrite. The SRB cultures could possibly alleviate the nitrite inhibition by DNRA when they were subjected to high-strength nitrate. PMID:24720222

  20. Nitrite complexes of uranium and thorium.

    PubMed

    Dulong, Florian; Pouessel, Jacky; Thuéry, Pierre; Berthet, Jean-Claude; Ephritikhine, Michel; Cantat, Thibault

    2013-03-25

    The first examples of inorganic nitrite complexes of the natural actinides are described, including the structures of the homoleptic thorium(IV) [PPh(4)](2)[Th(NO(2))(6)] and the uranyl(VI) [PPh(4)](2)[UO(2)(NO(2))(4)] complexes; the nitrite ligand can adopt two different coordination modes in the coordination sphere of the uranyl ion and is unstable towards reduction. PMID:23416542

  1. Glomeruli synthesize nitrite in experimental nephrotoxic nephritis

    Microsoft Academic Search

    Victoria Cattell; Terence Cook; Salvador Moncada

    1990-01-01

    Glomeruli synthesize nitrite in experimental nephrotoxic nephritis. Activated macrophages synthesize nitric oxide (NO) from L-arginine. In culture, the major stable end product is nitrite (NO2?). Activated macrophages accumulate in glomeruli and are responsible for injury in experimental immune complex glomerulonephritis. We examined NO2? production by isolated glomeruli and urinary NO2? in accelerated nephrotoxic nephritis in the rat. Normal glomeruli did

  2. Biological nitrate removal processes from drinking water supply-a review

    PubMed Central

    2013-01-01

    This paper reviews both heterotrophic and autotrophic processes for the removal of nitrate from water supplies. The most commonly used carbon sources in heterotrophic denitrification are methanol, ethanol and acetic acid. Process performance for each feed stock is compared with particular reference nitrate and nitrite residual and to toxicity potential. Autotrophic nitrate removal has the advantages of not requiring an organic carbon source; however the slow growth rate of autotrophic bacteria and low nitrate removal rate have contributed to the fact that relatively few full scale plants are in operation at the present time. PMID:24355262

  3. Vertical distribution of ammonia-oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu (Rwanda-Democratic Republic of the Congo).

    PubMed

    Llirós, Marc; Gich, Frederic; Plasencia, Anna; Auguet, Jean-Christophe; Darchambeau, François; Casamayor, Emilio O; Descy, Jean-Pierre; Borrego, Carles

    2010-10-01

    Four stratified basins in Lake Kivu (Rwanda-Democratic Republic of the Congo) were sampled in March 2007 to investigate the abundance, distribution, and potential biogeochemical role of planktonic archaea. We used fluorescence in situ hybridization with catalyzed-reported deposition microscopic counts (CARD-FISH), denaturing gradient gel electrophoresis (DGGE) fingerprinting, and quantitative PCR (qPCR) of signature genes for ammonia-oxidizing archaea (16S rRNA for marine Crenarchaeota group 1.1a [MCG1] and ammonia monooxygenase subunit A [amoA]). Abundance of archaea ranged from 1 to 4.5% of total DAPI (4',6-diamidino-2-phenylindole) counts with maximal concentrations at the oxic-anoxic transition zone (?50-m depth). Phylogenetic analysis of the archaeal planktonic community revealed a higher level of richness of crenarchaeal 16S rRNA gene sequences (21 of the 28 operational taxonomic units [OTUs] identified [75%]) over euryarchaeotal ones (7 OTUs). Sequences affiliated with the kingdom Euryarchaeota were mainly recovered from the anoxic water compartment and mostly grouped into methanogenic lineages (Methanosarcinales and Methanocellales). In turn, crenarchaeal phylotypes were recovered throughout the sampled epipelagic waters (0- to 100-m depth), with clear phylogenetic segregation along the transition from oxic to anoxic water masses. Thus, whereas in the anoxic hypolimnion crenarchaeotal OTUs were mainly assigned to the miscellaneous crenarchaeotic group, the OTUs from the oxic-anoxic transition and above belonged to Crenarchaeota groups 1.1a and 1.1b, two lineages containing most of the ammonia-oxidizing representatives known so far. The concomitant vertical distribution of both nitrite and nitrate maxima and the copy numbers of both MCG1 16S rRNA and amoA genes suggest the potential implication of Crenarchaeota in nitrification processes occurring in the epilimnetic waters of the lake. PMID:20802065

  4. Effect of Tungstate on Nitrate Reduction by the Hyperthermophilic Archaeon Pyrobaculum aerophilum

    PubMed Central

    Afshar, Sepideh; Kim, Christopher; Monbouquette, Harold G.; Schröder, Imke

    1998-01-01

    Pyrobaculum aerophilum, a hyperthermophilic archaeon, can respire either with low amounts of oxygen or anaerobically with nitrate as the electron acceptor. Under anaerobic growth conditions, nitrate is reduced via the denitrification pathway to molecular nitrogen. This study demonstrates that P. aerophilum requires the metal oxyanion WO42? for its anaerobic growth on yeast extract, peptone, and nitrate as carbon and energy sources. The addition of 1 ?M MoO42? did not replace WO42? for the growth of P. aerophilum. However, cell growth was completely inhibited by the addition of 100 ?M MoO42? to the culture medium. At lower tungstate concentrations (0.3 ?M and less), nitrite was accumulated in the culture medium. The accumulation of nitrite was abolished at higher WO42? concentrations (<0.7 ?M). High-temperature enzyme assays for the nitrate, nitrite, and nitric oxide reductases were performed. The majority of all three denitrification pathway enzyme activities was localized to the cytoplasmic membrane, suggesting their involvement in the energy metabolism of the cell. While nitrite and nitric oxide specific activities were relatively constant at different tungstate concentrations, the activity of nitrate reductase was decreased fourfold at WO42? levels of 0.7 ?M or higher. The high specific activity of the nitrate reductase enzyme observed at low WO42? levels (0.3 ?M or less) coincided with the accumulation of nitrite in the culture medium. This study documents the first example of the effect of tungstate on the denitrification process of an extremely thermophilic archaeon. We demonstrate here that nitrate reductase synthesis in P. aerophilum occurs in the presence of high concentrations of tungstate. PMID:9687464

  5. Nitrogen Oxyanion-dependent Dissociation of a Two-component Complex That Regulates Bacterial Nitrate Assimilation*

    PubMed Central

    Luque-Almagro, Victor M.; Lyall, Verity J.; Ferguson, Stuart J.; Roldán, M. Dolores; Richardson, David J.; Gates, Andrew J.

    2013-01-01

    Nitrogen is an essential nutrient for growth and is readily available to microbes in many environments in the form of ammonium and nitrate. Both ions are of environmental significance due to sustained use of inorganic fertilizers on agricultural soils. Diverse species of bacteria that have an assimilatory nitrate/nitrite reductase system (NAS) can use nitrate or nitrite as the sole nitrogen source for growth when ammonium is limited. In Paracoccus denitrificans, the pathway-specific two-component regulator for NAS expression is encoded by the nasT and nasS genes. Here, we show that the putative RNA-binding protein NasT is a positive regulator essential for expression of the nas gene cluster (i.e. nasABGHC). By contrast, a nitrogen oxyanion-binding sensor (NasS) is required for nitrate/nitrite-responsive control of nas gene expression. The NasS and NasT proteins co-purify as a stable heterotetrameric regulatory complex, NasS-NasT. This protein-protein interaction is sensitive to nitrate and nitrite, which cause dissociation of the NasS-NasT complex into monomeric NasS and an oligomeric form of NasT. NasT has been shown to bind the leader RNA for nasA. Thus, upon liberation from the complex, the positive regulator NasT is free to up-regulate nas gene expression. PMID:24005668

  6. Nitrogen oxyanion-dependent dissociation of a two-component complex that regulates bacterial nitrate assimilation.

    PubMed

    Luque-Almagro, Victor M; Lyall, Verity J; Ferguson, Stuart J; Roldán, M Dolores; Richardson, David J; Gates, Andrew J

    2013-10-11

    Nitrogen is an essential nutrient for growth and is readily available to microbes in many environments in the form of ammonium and nitrate. Both ions are of environmental significance due to sustained use of inorganic fertilizers on agricultural soils. Diverse species of bacteria that have an assimilatory nitrate/nitrite reductase system (NAS) can use nitrate or nitrite as the sole nitrogen source for growth when ammonium is limited. In Paracoccus denitrificans, the pathway-specific two-component regulator for NAS expression is encoded by the nasT and nasS genes. Here, we show that the putative RNA-binding protein NasT is a positive regulator essential for expression of the nas gene cluster (i.e. nasABGHC). By contrast, a nitrogen oxyanion-binding sensor (NasS) is required for nitrate/nitrite-responsive control of nas gene expression. The NasS and NasT proteins co-purify as a stable heterotetrameric regulatory complex, NasS-NasT. This protein-protein interaction is sensitive to nitrate and nitrite, which cause dissociation of the NasS-NasT complex into monomeric NasS and an oligomeric form of NasT. NasT has been shown to bind the leader RNA for nasA. Thus, upon liberation from the complex, the positive regulator NasT is free to up-regulate nas gene expression. PMID:24005668

  7. Evaluation of ferrocyanide/nitrate explosive hazard

    SciTech Connect

    Cady, H.H.

    1992-06-01

    Los Alamos National Laboratory agreed to assist Pacific Northwest Laboratory in the Ferrocyanide Safety Evaluation Program by helping to evaluate the explosive hazard of several mixtures of simulated ferrocyanide waste-tank sludge containing sodium nitrite and sodium nitrate. This report is an evaluation of the small-scale safety tests used to assess the safety of these materials from an explosive point of view. These tests show that these materials are not initiated by mechanical insult, and they require an external heat source before any exothermic chemical reaction can be observed.

  8. Nitrite Reductase NirS Is Required for Type III Secretion System Expression and Virulence in the Human Monocyte Cell Line THP-1 by Pseudomonas aeruginosa?

    PubMed Central

    Van Alst, Nadine E.; Wellington, Melanie; Clark, Virginia L.; Haidaris, Constantine G.; Iglewski, Barbara H.

    2009-01-01

    The nitrate dissimilation pathway is important for anaerobic growth in Pseudomonas aeruginosa. In addition, this pathway contributes to P. aeruginosa virulence by using the nematode Caenorhabditis elegans as a model host, as well as biofilm formation and motility. We used a set of nitrate dissimilation pathway mutants to evaluate the virulence of P. aeruginosa PA14 in a model of P. aeruginosa-phagocyte interaction by using the human monocytic cell line THP-1. Both membrane nitrate reductase and nitrite reductase enzyme complexes were important for cytotoxicity during the interaction of P. aeruginosa PA14 with THP-1 cells. Furthermore, deletion mutations in genes encoding membrane nitrate reductase (?narGH) and nitrite reductase (?nirS) produced defects in the expression of type III secretion system (T3SS) components, extracellular protease, and elastase. Interestingly, exotoxin A expression was unaffected in these mutants. Addition of exogenous nitric oxide (NO)-generating compounds to ?nirS mutant cultures restored the production of T3SS phospholipase ExoU, whereas nitrite addition had no effect. These data suggest that NO generated via nitrite reductase NirS contributes to the regulation of expression of selected virulence factors in P. aeruginosa PA14. PMID:19651860

  9. Anaerobic ammonia oxidation by cell-free extracts of Nitrosomonas eutropha.

    PubMed

    Schmidt, I; Bock, E

    1998-04-01

    Cell-free extracts of Nitrosomonas eutropha oxidized ammonia to nitrite with NO2 (N2O4) as electron acceptor. The ammonia oxidation activity was shown to be sensitive against oxygen. In the absence of oxygen ammonia and NO2 were consumed in a ratio of approximately 1:2 and hydroxylamine occurred as an intermediate. NO was released in amounts equimolar to the consumption of NO2. After passing the cell suspension through a French pressure cell and fractionating it by density gradient centrifugation using a linear sucrose gradient, two soluble and two membrane fractions were detectable. Highest ammonia oxidation activity was measured in the membrane fractions and highest hydroxylamine oxidation activity in the soluble fractions. The KS values of the ammonia oxidizing system in cell-free extracts was about 20 microns NH3 and remained unchanged between pH 7.25 to 8.25. PMID:9801772

  10. Control of H2S emission from swine manure using Na-nitrite and Na-molybdate.

    PubMed

    Predicala, Bernardo; Nemati, Mehdi; Stade, Sarah; Laguë, Claude

    2008-06-15

    Biogenic production of hydrogen sulphide (H2S) in oil reservoirs (souring) has been shown to be controlled effectively using nitrite and molybdate salts. In the present work the effects of addition of nitrite and molybdate on reducing the emission of H2S from swine manure slurry was investigated in the laboratory and semi-pilot scale systems. Addition of 80 mM nitrite or 2 mM molybdate (final concentration in the manure slurry) to fresh manure in the laboratory scale closed systems (125 mL and 4 L) reduced the concentration of H2S in the headspace gas from 1500 microL L(-1) to 10 microL L(-1) which maintained during the remaining period of trials (40-60 days). With aged manure, similar results were achieved with a lower level of nitrite (10 mM). Simultaneous or sequential additions of nitrite and molybdate to fresh manure had similar effects. Contrary to the systems simulating biological conditions in oil reservoirs in which simultaneous addition of nitrite and molybdate has been reported to have a synergistic effect, no synergism was observed when nitrite and molybdate were added to the manure simultaneously. Experiments with fresh manure slurry in the semi-pilot scale systems (200 L) confirmed the effectiveness of this approach in which addition of 80 mM nitrite or 2 mM molybdate or a combination of 80 mM nitrite and 2 mM molybdate decreased the concentration of the H2S in the headspace gas from an initial value of 500 microL L(-1) to a low level in the range 2-25 microL L(-1) and maintained these low levels during the remaining period of trials (16 days). The concentration of ammonia (NH3) in the headspace gas of the treated systems was similar to that observed in the control system (untreated), indicating that the treatment did not have an effect on the level of present NH3. Although the addition of nitrite or molybdate reduced emissions of H2S from swine manure and the associated health and safety concerns, it had little impact on the intensity of odour in the headspace gas samples from the semi-pilot scale system. PMID:18023529

  11. The L-Arginine: Nitric Oxide Pathway Is the Major Source of Plasma Nitrite in Fasted Humans

    Microsoft Academic Search

    P. M. Rhodes; A. M. Leone; P. L. Francis; A. D. Struthers; S. Moncada

    1995-01-01

    15N guanidino-labelled L-arginine was infused into fasted human volunteers giving, at equilibrium, a stable 1:10 ratio of 15N to 14N arginine in the plasma. Separate GC-MS assays were used to compare the degree of enrichment of plasma arginine, nitrite and nitrate and thus define the quantitative relationship between the L-arginine:nitric oxide (NO) pathway and the formation of these oxides of

  12. 15N Tracing Studies on In Vitro Reactions of Ferredoxin-Dependent Nitrite Reductase and Glutamate Synthase Using Reconstituted Electron Donation Systems.

    PubMed

    Yoneyama, Tadakatsu; Fujimori, Tamaki; Yanagisawa, Shuichi; Hase, Toshiharu; Suzuki, Akira

    2015-06-01

    It is known that plants contain ferredoxin (Fd)-dependent nitrite reductase (NiR) and glutamate synthase (GOGAT). The Fd-NiR reaction produces ammonia from nitrite, and the activity is usually measured by nitrite disappearance. The Fd-GOGAT reaction forms two glutamates of different origin, from glutamine and 2-oxoglutarate, and the activity is measured by the oxidation of reductant (NADPH) or by formation of total glutamate. Here, a quantitative probe of the products and efficiency of the process was conducted using (15)N tracing techniques on these reactions in vitro. We quantified the reduction of (15)N-labeled [Formula: see text] to [Formula: see text] and the formation of [(15)N]glutamate and [(14)N]glutamate from [5-(15)N-amide]glutamine plus 2-oxoglutarate by NiR and GOGAT, respectively, with the reductant-Fd-NADP(+) oxidoreductase (FNR)-Fd system as the sequential electron donors. The supply of dithionite or NADPH to recombinant cyanobacterial NiR led to electron donation system-dependent formation of [(15)N]ammonium from [(15)N]nitrite. Addition of 20 mM NaCl and 20 mM Na-ascorbate accelerated nitrite reduction under high concentrations of NADPH. A sufficient supply of NADPH to recombinant Zea mays Fd-GOGAT generated complete GOGAT activity (transferring the [5-(15)N]amide of glutamine to 2-oxoglutarate to form [(15)N]glutamate), whereas a shortage of NADPH resulted in glutaminase activity only, which removed the amide from glutamine and released ammonia and [(14)N]glutamate. We conclude that although the recombinant Fd-GOGAT enzyme has two forms of glutamate synthesis, the first by glutaminase (ammonia release by glutamine amidotransferase) and the second by glutamate synthase (coupling of the ammonia and exogenously applied 2-oxoglutarate), the first works without NADPH, while the second is strictly dependent on NADPH availability. PMID:25745028

  13. Improving ammonia emissions in air quality modelling for France

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Meleux, Frédérik; Beekmann, Matthias; Bessagnet, Bertrand; Génermont, Sophie; Cellier, Pierre; Létinois, Laurent

    2014-08-01

    We have implemented a new module to improve the representation of ammonia emissions from agricultural activities in France with the objective to evaluate the impact of such emissions on the formation of particulate matter modelled with the air quality model CHIMERE. A novel method has been set up for the part of ammonia emissions originating from mineral fertilizer spreading. They are calculated using the one dimensional 1D mechanistic model “VOLT'AIR” which has been coupled with data on agricultural practices, meteorology and soil properties obtained at high spatial resolution (cantonal level). These emissions display high spatiotemporal variations depending on soil pH, rates and dates of fertilization and meteorological variables, especially soil temperature. The emissions from other agricultural sources (animal housing, manure storage and organic manure spreading) are calculated using the national spatialised inventory (INS) recently developed in France. The comparison of the total ammonia emissions estimated with the new approach VOLT'AIR_INS with the standard emissions provided by EMEP (European Monitoring and Evaluation Programme) used currently in the CHIMERE model shows significant differences in the spatiotemporal distributions. The implementation of new ammonia emissions in the CHIMERE model has a limited impact on ammonium nitrate aerosol concentrations which only increase at most by 10% on the average for the considered spring period but this impact can be more significant for specific pollution episodes. The comparison of modelled PM10 (particulate matter with aerodynamic diameter smaller than 10 ?m) and ammonium nitrate aerosol with observations shows that the use of the new ammonia emission method slightly improves the spatiotemporal correlation in certain regions and reduces the negative bias on average by 1 ?g m-3. The formation of ammonium nitrate aerosol depends not only on ammonia concentrations but also on nitric acid availability, which is often a limiting factor in rural regions in France, and on meteorological conditions. The presented approach of ammonia emission calculation seems suitable for use in chemistry-transport models.

  14. Electrochemical Destruction of Nitrates and Organics FY1995 Progress Report

    SciTech Connect

    Hobbs, D.T. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-05-30

    Production of nuclear materials within the DOE complex has yielded large volumes of high-level waste containing hazardous species such as nitrate, nitrite, chromium, and mercury. Processes being developed for the permanent disposal of these wastes are aimed at separating the bulk of the radioactivity, primarily 137-Cs and 90-Sr, into a small volume for incorporation into a vitrified wasteform, with the remainder being incorporated into a low-level wasteform.

  15. Energy conservation during nitrate respiration in Paracoccus denitrificans

    Microsoft Academic Search

    H. W. Verseveld; E. M. Meijer; A. H. Stouthamer

    1977-01-01

    P\\/2e ratios were calculated from anaerobic chemostat cultures of Paracoccus denitrificans with nitrogenous oxides as electron acceptor. P\\/2e ratios were calculated, using the YATPmaxvalues determined for aerobic cultures. When succinate was the carbon and energy source the average P\\/2e values of the sulphate-and succinate-limited cultures with nitrate as electron acceptor were 0.5 and 0.7, respectively, and of the nitrite-limited culture

  16. Purification of nitrate-rich agricultural runoff by a hydroponic system

    Microsoft Academic Search

    Zhifeng Yang; Shaokui Zheng; Jinjun Chen; Mei Sun

    2008-01-01

    The purification of nitrate-rich agricultural runoff by a floating-raft (FR) hydroponic system was investigated at 3-, 2- and 1-d hydraulic retention times (HRTs) with particular emphasis on nitrogen conversion and removal through the system. The FR system has a dissolved oxygen (DO) environment similar to the horizontal subsurface flow system, generally 0.00mgL?1, that facilitates denitrification. An efficient nitrate–nitrite–nitrogen (NOx–N) removal,

  17. High Nitrate Content in Drinking Water: Cytogenetic Effects in Exposed Children

    Microsoft Academic Search

    Aspasia Tsezou; S. Kitsiou-Tzeli; A. Calla; D. Gourgiotis; J. Papageorgiou; S. Mitrou; P. A. Molybdas; C. Sinaniotis

    1996-01-01

    The potential genotoxicity of nitrates and nitrites—contaminants of drinking water that have been implicated in carcinogenesis—was investigated in this study. Sister chromatid exchanges and frequency of chromatid\\/hromosome aberrations were studied in peripheral blood lymphocytes of 70 children who were 12–15 y of age. These children were permanent residents in geographical areas of Greece, where elevated concentrations of nitrates (i.e., 55.70–87.98

  18. Effect of Sodium Nitrite on Ischaemia and Reperfusion-Induced Arrhythmias in Anaesthetized Dogs: Is Protein S-Nitrosylation Involved?

    PubMed Central

    Seprényi, György; Kaszaki, József; Murphy, Elizabeth; Végh, Ágnes

    2015-01-01

    Background and Purpose To provide evidence for the protective role of inorganic nitrite against acute ischaemia and reperfusion-induced ventricular arrhythmias in a large animal model. Experimental Approach Dogs, anaesthetized with chloralose and urethane, were administered intravenously with sodium nitrite (0.2 µmolkg-1min-1) in two protocols. In protocol 1 nitrite was infused 10 min prior to and during a 25 min occlusion of the left anterior descending (LAD) coronary artery (NaNO2-PO; n = 14), whereas in protocol 2 the infusion was started 10 min prior to reperfusion of the occluded vessel (NaNO2-PR; n = 12). Control dogs (n = 15) were infused with saline and subjected to the same period of ischaemia and reperfusion. Severities of ischaemia and ventricular arrhythmias, as well as changes in plasma nitrate/nitrite (NOx) levels in the coronary sinus blood, were assessed throughout the experiment. Myocardial superoxide and nitrotyrosine (NT) levels were determined during reperfusion. Changes in protein S-nitrosylation (SNO) and S-glutathionylation were also examined. Key Results Compared with controls, sodium nitrite administered either pre-occlusion or pre-reperfusion markedly suppressed the number and severity of ventricular arrhythmias during occlusion and increased survival (0% vs. 50 and 92%) upon reperfusion. There were also significant decreases in superoxide and NT levels in the nitrite treated dogs. Compared with controls, increased SNO was found only in NaNO2-PR dogs, whereas S-glutathionylation occurred primarily in NaNO2-PO dogs. Conclusions Intravenous infusion of nitrite profoundly reduced the severity of ventricular arrhythmias resulting from acute ischaemia and reperfusion in anaesthetized dogs. This effect, among several others, may result from an NO-mediated reduction in oxidative stress, perhaps through protein SNO and/or S-glutathionylation. PMID:25909651

  19. Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor

    Microsoft Academic Search

    Xin Yuan; Amit Kumar; Ashish K. Sahu; Sarina J. Ergas

    2011-01-01

    Spirulina platensis was cultivated in a bench-scale airlift photobioreactor using synthetic wastewater (total nitrogen 412mgL?1, total phosphorous 90mgL?1, pH 9–10) with varying ammonia\\/total nitrogen ratios (50–100% ammonia with balance nitrate) and hydraulic residence times (15–25d). High average biomass density (3500–3800mgL?1) and productivity (5.1gm?2d?1) were achieved when ammonia was maintained at 50% of the total nitrogen. Both high ammonia concentrations and

  20. Fine-tuned regulation of the dissimilatory nitrite reductase gene by oxygen and nitric oxide in Pseudomonas aeruginosa.

    PubMed

    Kuroki, Miho; Igarashi, Yasuo; Ishii, Masaharu; Arai, Hiroyuki

    2014-12-01

    Nitrite reductase (NIR) catalyses the reduction of nitrite to nitric oxide (NO) in the denitrification pathway. In Pseudomonas aeruginosa, expression of the gene encoding NIR (nirS) is induced by NO and is under control of the NO-sensing regulator DNR (dissimilatory nitrate respiration regulator). Because DNR is under control of the oxygen-sensing regulator ANR (anaerobic regulator of arginine deiminase and nitrate reductase), nirS is expressed only under low oxygen and anaerobic conditions. Both ANR and DNR are FNR (fumarate and nitrate reductase regulator)-type regulators and recognize the consensus FNR-binding motif. The motif of the nirS promoter is thought to be recognized only by DNR, and not by ANR. Here, mutant strains expressing either ANR or DNR were constructed and used to analyse the role of ANR and DNR in the activation of nirS expression. Analysis of transcriptional activity by microarray and quantitative reverse transcription polymerase chain reaction revealed that nirS is transcribed under low oxygen conditions in an ANR-dependent manner, although the expression level was 10-fold lower than that of the DNR-dependent expression. An artificial promoter containing the FNR-binding motif of the nirS promoter was also twofold upregulated by ANR. These results indicate that low-level expression of NIR in the presence of nitrite may provide NO as a trigger for the full expression of denitrification genes when oxygen is depleted. PMID:25186017

  1. Development of ammonia synthesis

    Microsoft Academic Search

    Poppy Puspitasari; Noorhana Yahya

    2011-01-01

    Ammonia production is a high energy and capital-intensive industry as it obliges high temperature (400–500°C) and also high pressure (150–300 bar) for its daily processes. Two moles of ammonia are obtained by reacting one mole of nitrogen and three moles of hydrogen gases in the existence of conventional catalyst which are magnetite (Fe3O4). The process to produce ammonia is known

  2. Reexamining the Risks of Drinking-Water Nitrates on Public Health

    PubMed Central

    Richard, Alyce M.; Diaz, James H.; Kaye, Alan David

    2014-01-01

    Background Nitrates in drinking water are generally considered the sole source of nitrite poisoning with methemoglobinemia in infantile methomoglobinemia (IM). However, IM, which occurs during the first 4 months of life, is actually a constellation of cyanosis and hypoxia associated with methemoglobinemia that can result from several other causes. Methods This review reexamines the role of nitrate levels in drinking water as a cause of IM and identifies other sources of nitrates that can affect public health and cause chronic diseases. Results Causes of IM include nitrites in foods, environmental chemical exposures, commonly prescribed pharmaceuticals, and the endogenous generation of oxides of nitrogen. Infants with congenital enzyme deficiencies in glucose-6-phosphate dehydrogenase and methemoglobin reductase are at greater risk of nitrite-induced methemoglobinemia from nitrates in water and food and from exposures to hemoglobin oxidizers. Conclusion Early epidemiological studies demonstrated significant associations between high groundwater nitrate levels and elevated methemoglobin levels in infants fed drinking water–diluted formulas. However, more recent epidemiological investigations suggest other sources of nitrogenous substance exposures in infants, including protein-based formulas and foods and the production of nitrate precursors (nitric acid) by bacterial action in the infant gut in response to inflammation and infection. PMID:25249806

  3. Acute effect of a high nitrate diet on brain perfusion in older adults

    PubMed Central

    Presley, Tennille D.; Morgan, Ashley R.; Bechtold, Erika; Clodfelter, William; Dove, Robin W.; Jennings, Janine M.; Kraft, Robert A.; King, S. Bruce; Laurienti, Paul J.; Rejeski, W. Jack; Burdette, Jonathan H.; Kim-Shapiro, Daniel B.; Miller, Gary D.

    2010-01-01

    Aims Poor blood flow and hypoxia/ischemia contribute to many disease states and may also be a factor in the decline of physical and cognitive function in aging. Nitrite has been discovered to be a vasodilator that is preferentially harnessed in hypoxia. Thus, both infused and inhaled nitrite are being studied as therapeutic agents for a variety of diseases. In addition, nitrite derived from nitrate in the diet has been shown to decrease blood pressure and improve exercise performance. Thus, dietary nitrate may also be important when increased blood flow in hypoxic or ischemic areas is indicated. These conditions could include age-associated dementia and cognitive decline. The goal of this study was to determine if dietary nitrate would increase cerebral blood flow in older adults. Methods and Results In this investigation we administered a high vs. low nitrate diet to older adults (74.7 ± 6.9 years) and measured cerebral perfusion using arterial spin labeling magnetic resonance imaging. We found that the high nitrate diet did not alter global cerebral perfusion, but did lead to increased regional cerebral perfusion in frontal lobe white matter, especially between the dorsolateral prefrontal cortex and anterior cingulate cortex. Conclusion These results suggest that dietary nitrate may be useful in improving regional brain perfusion in older adults in critical brain areas known to be involved in executive functioning. PMID:20951824

  4. Optimization of the cathode material for nitrate removal by a paired electrolysis process

    Microsoft Academic Search

    David Reyter; Daniel Bélanger; Lionel Roué

    2011-01-01

    Ni, Cu, Cu90Ni10 and Cu70Ni30 were evaluated as cathode materials for the conversion of nitrate to nitrogen by a paired electrolysis process using an undivided flow-through electrolyzer. Firstly, corrosion measurements revealed that Ni and Cu70Ni30 electrodes have a much better corrosion resistance than Cu and Cu90Ni10 in the presence of chloride, nitrate and ammonia. Secondly, nitrate electroreduction experiments showed that

  5. Mechanisms of nitrite addition for simultaneous sludge fermentation/nitrite removal (SFNR).

    PubMed

    Wu, Chengcheng; Peng, Yongzhen; Wang, Shuying; Li, Baikun; Zhang, Liang; Cao, Shenbin; Du, Rui

    2014-11-01

    Simultaneous sludge fermentation and nitrite removal (SFNR) was investigated as a novel sludge/wastewater treatment process with high nitrogen concentrations. The results showed that introducing nitrite improved the primary sludge (PS) fermentation system by improving the chemical oxygen demand (COD) yields and the volatile suspend solid (VSS) reduction. At a nitrite dosage of 0.2 g g SS(-1), the COD production was 1.02 g g VSS(-1) and the VSS reduction was 63.4% within 7-day fermentation, while the COD production was only 0.17 g g VSS(-1) and the VSS reduction was only 4.9% in the blank test. Nitrite contained in wastewater was removed through denitrification process in the SFNR system. The solubility of carbohydrate and protein was substantially enhanced, and their contents reached the peak once nitrite was consumed. In addition, the nutrient release and methane generation were inhibited in the SFNR system, which alleviated the environmental pollution. Unlike traditional fermentation systems, neither alkaline condition nor high free nitrite acid (FNA) concentration affected the PS fermentation in the SFNR system. Molecular weight distribution (MWD) and Live/Dead cell analysis indicated that the sludge disruption by nitrite and the consumption of soluble organic substances in sludge might play important roles in SFNR. PMID:25025177

  6. Electrochemical processing of nitrate waste solutions

    SciTech Connect

    Not Available

    1990-10-12

    Nitrate and nitrite have been almost completely removed from the synthetic effluent steam with good efficiency by affecting a separation across a pair of ion exchange membranes. In addition to recovering acid and base in this process, the volume of the remaining effluent is reduced considerably by transport of water across the membrane. One of the problems that remains with this process, however, is the stability of the membranes and particularly the stability of the anion exchange membrane. This membrane is exposed to both nitric acid and strongly alkaline solutions in the cell and to date long term stability has been a problem with the membranes tested. It is recommended that further work should evaluate other newly available membranes as well as study the effects of radiation on the performance of the membranes. The direct reduction of nitrate and nitrite has been studied at several different electrode materials and it has been demonstrated that cathode material has a large effect on both the efficiency and the gas product distribution. Highest current efficiencies for the reduction process are seen at those electrode materials that are known to show high hydrogen overpotentials. Flow cell studies have demonstrated that temperature and current density are also important parameters in the system. The reduction process has been run efficiently at high current densities (600 mAcm{sup {minus}2}) at 80{degrees}C at a lead cathode.

  7. Ammonium nitrate wastewaters treatment by an electromembrane process

    Microsoft Academic Search

    E. Gain; S. Laborie; Ph. Viers; M. Rakib; D. Hartmann; G. Durand

    2002-01-01

    A process is set up to treat ammonium nitrate wastewaters. It couples membrane electrolysis and electrodialysis. Membrane electrolysis regenerates nitric acid and ammonia while electrodialysis is suitable to extract a depleted stream from the salt circuit and to recycle a concentrated stream. The membrane electrolysis current efficiency of acid production decreases when acid concentration in the anolyte increases and does

  8. Long term partial nitritation of anaerobically treated black water and the emission of nitrous oxide.

    PubMed

    de Graaff, M S; Zeeman, G; Temmink, H; van Loosdrecht, M C M; Buisman, C J N

    2010-04-01

    Black water (toilet water) contains half the load of organic material and the major fraction of the nutrients nitrogen and phosphorus in a household and is 25 times more concentrated, when collected with a vacuum toilet, than the total wastewater stream from a Dutch household. This research focuses on the partial nitritation of anaerobically treated black water to produce an effluent suitable to feed to the anammox process. Successful partial nitritation was achieved at 34 degrees C and 25 degrees C and for a long period (almost 400 days in the second period at 25 degrees C) without strict process control a stable effluent at a ratio of 1.3 NO(2)-N/NH(4)-N was produced which is suitable to feed to the anammox process. Nitrite oxidizers were successfully outcompeted due to inhibition by free ammonia and nitrous acid and due to fluctuating conditions in SRT (1.0-17 days) and pH (from 6.3 to 7.7) in the reactor. Microbial analysis of the sludge confirmed the presence of mainly ammonium oxidizers. The emission of nitrous oxide (N(2)O) is of growing concern and it corresponded to 0.6-2.6% (average 1.9%) of the total nitrogen load. PMID:20106499

  9. Fiber optic interrogator based on colorimetry technique for in-situ nitrate detection in groundwa ter

    Microsoft Academic Search

    NAVNEET SINGH AULAKH; RAJINDER SINGH KALER

    2008-01-01

    Nitrate poisoning occurs when nitrite is absorbed into the blood, w here it changes the red-colored blood pigment, called hemoglobin, to methemoglobin. Hemoglobin carries oxygen from the lungs to the other tissues, but methemoglobin cannot carry oxygen. Poisoning occur s when the methemoglo- bin concentration in the blood stream is so high that the oxygen c arrying capacity of the

  10. Sampling of atmospheric nitrogen dioxide using triethanolamine: Interference from peroxyacetyl nitrate

    NASA Astrophysics Data System (ADS)

    Hisham, Mohamed W. M.; Grosjean, Daniel

    Peroxyacetyl nitrate (PAN), a pollutant ubiquitous in outdoor air, is quantitatively retained on cartridges coated with triethanolamine (TEA) and is determined as nitrite by liquid chromatography with u.v. detection. PAN is therefore a severe interferent in the widely used method involving passive and active sampling on TEA-coated substrates to measure nitrogen dioxide in indoor and outdoor air.

  11. THE INCIDENCE OF NITRATES CONTAMINATION IN VEGETABLES DURING 2002-2008 IN THE BIHOR COUNTY

    Microsoft Academic Search

    Adriana Monica

    The paper presents a synthesis regarding the Bihor county about the contamination with nitrites and nitrates of some vegetal products under sanitary veterinary surveillance in the last six years. It refers to the comparative situation of the Bihor county in respect of the Ardeal geographic area both from the point of view of the number of samples submitted to verification

  12. Nitrite-free Asian hot dog sausages reformulated with nitrite replacers.

    PubMed

    Ruiz-Capillas, C; Tahmouzi, S; Triki, M; Rodríguez-Salas, L; Jiménez-Colmenero, F; Herrero, A M

    2015-07-01

    This research deals with the application of a global strategy designed to produce a nitrite-free Asian hot dog. Different ingredients such as annatto, cochineal, orange dietary fibre, vitamins E and C, lactate and celery were combined in order to study the appearance (colour), lipid oxidation stability and microbial stability of the nitrite-free formulations. The control sample contained much more (P?nitrite (88.7 mg/kg) than the samples without added nitrite (23-24 mg/kg). Generally, no formulation-dependent variations were observed in fat and water binding properties. Control sample had the highest L* and a* values, while the product with annatto (RA) had the lowest a* values. Lipid oxidation levels were similar irrespective of formulation. The hot dog reformulated with cochineal (RC) scored higher for overall acceptability than RA, mainly due to its colour. PMID:26139898

  13. Nitrite dismutase reaction mechanism: kinetic and spectroscopic investigation of the interaction between nitrophorin and nitrite.

    PubMed

    He, Chunmao; Howes, Barry D; Smulevich, Giulietta; Rumpel, Sigrun; Reijerse, Edward J; Lubitz, Wolfgang; Cox, Nicholas; Knipp, Markus

    2015-04-01

    Nitrite is an important metabolite in the physiological pathways of NO and other nitrogen oxides in both enzymatic and nonenzymatic reactions. The ferric heme b protein nitrophorin 4 (NP4) is capable of catalyzing nitrite disproportionation at neutral pH, producing NO. Here we attempt to resolve its disproportionation mechanism. Isothermal titration calorimetry of a gallium(III) derivative of NP4 demonstrates that the heme iron coordinates the first substrate nitrite. Contrary to previous low-temperature EPR measurements, which assigned the NP4-nitrite complex electronic configuration solely to a low-spin (S = 1/2) species, electronic absorption and resonance Raman spectroscopy presented here demonstrate that the NP4-NO2(-) cofactor exists in a high-spin/low-spin equilibrium of 7:3 which is in fast exchange in solution. Spin-state interchange is taken as evidence for dynamic NO2(-) coordination, with the high-spin configuration (S = 5/2) representing the reactive species. Subsequent kinetic measurements reveal that the dismutation reaction proceeds in two discrete steps and identify an {FeNO}(7) intermediate species. The first reaction step, generating the {FeNO}(7) intermediate, represents an oxygen atom transfer from the iron bound nitrite to a second nitrite molecule in the protein pocket. In the second step this intermediate reduces a third nitrite substrate yielding two NO molecules. A nearby aspartic acid residue side-chain transiently stores protons required for the reaction, which is crucial for NPs' function as nitrite dismutase. PMID:25751738

  14. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    PubMed

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity. PMID:19290520

  15. Cytochrome cd1 Nitrite Reductase NirS Is Involved in Anaerobic Magnetite Biomineralization in Magnetospirillum gryphiswaldense and Requires NirN for Proper d1 Heme Assembly

    PubMed Central

    Li, Yingjie; Bali, Shilpa; Borg, Sarah; Katzmann, Emanuel

    2013-01-01

    The alphaproteobacterium Magnetospirillum gryphiswaldense synthesizes magnetosomes, which are membrane-enveloped crystals of magnetite. Here we show that nitrite reduction is involved in redox control during anaerobic biomineralization of the mixed-valence iron oxide magnetite. The cytochrome cd1-type nitrite reductase NirS shares conspicuous sequence similarity with NirN, which is also encoded within a larger nir cluster. Deletion of any one of these two nir genes resulted in impaired growth and smaller, fewer, and aberrantly shaped magnetite crystals during nitrate reduction. However, whereas nitrite reduction was completely abolished in the ?nirS mutant, attenuated but significant nitrite reduction occurred in the ?nirN mutant, indicating that only NirS is a nitrite reductase in M. gryphiswaldense. However, the ?nirN mutant produced a different form of periplasmic d1 heme that was not noncovalently bound to NirS, indicating that NirN is required for full reductase activity by maintaining a proper form of d1 heme for holo-cytochrome cd1 assembly. In conclusion, we assign for the first time a physiological function to NirN and demonstrate that effective nitrite reduction is required for biomineralization of wild-type crystals, probably by contributing to oxidation of ferrous iron under oxygen-limited conditions. PMID:23893106

  16. Construction of effective disposable biosensors for point of care testing of nitrite.

    PubMed

    Monteiro, Tiago; Rodrigues, Patrícia R; Gonçalves, Ana Luisa; Moura, José J G; Jubete, Elena; Añorga, Larraitz; Piknova, Barbora; Schechter, Alan N; Silveira, Célia M; Almeida, M Gabriela

    2015-09-01

    In this paper we aim to demonstrate, as a proof-of-concept, the feasibility of the mass production of effective point of care tests for nitrite quantification in environmental, food and clinical samples. Following our previous work on the development of third generation electrochemical biosensors based on the ammonia forming nitrite reductase (ccNiR), herein we reduced the size of the electrodes' system to a miniaturized format, solved the problem of oxygen interference and performed simple quantification assays in real samples. In particular, carbon paste screen printed electrodes (SPE) were coated with a ccNiR/carbon ink composite homogenized in organic solvents and cured at low temperatures. The biocompatibility of these chemical and thermal treatments was evaluated by cyclic voltammetry showing that the catalytic performance was higher with the combination acetone and a 40°C curing temperature. The successful incorporation of the protein in the carbon ink/solvent composite, while remaining catalytically competent, attests for ccNiR's robustness and suitability for application in screen printed based biosensors. Because the direct electrochemical reduction of molecular oxygen occurs when electroanalytical measurements are performed at the negative potentials required to activate ccNiR (ca.-0.4V vs Ag/AgCl), an oxygen scavenging system based on the coupling of glucose oxidase and catalase activities was successfully used. This enabled the quantification of nitrite in different samples (milk, water, plasma and urine) in a straightforward way and with small error (1-6%). The sensitivity of the biosensor towards nitrite reduction under optimized conditions was 0.55AM(-1)cm(-2) with a linear response range 0.7-370?M. PMID:26003719

  17. L-Arginine Supplementation Influenced Nitrite but Not Nitrate and Total Nitrite in Rabbit Model of Hypercholesterolemia

    Microsoft Academic Search

    Shaghayegh Haghjooy Javanmard; Mehdi Nematbakhsh; Alireza Monajemi

    2008-01-01

    Background: The assessment of altered nitric oxide (NO) availability is of potentially important diagnostic and prognostic significance. The present study is aimed to investigate the effect of L-arginine (as a natural NO donor) supplementation on NO metabolite in a rabbit model of hypercholesterolemia to find a reliable marker for endothelial NO production. Methods: White male rabbits (n = 30) randomly

  18. ACUTE TOXICITY OF NITRITE TO RAINBOW TROUT (SALMO GAIRDNERI): EFFECTS OF PH, NITRITE SPECIES, AND ANION SPECIES

    EPA Science Inventory

    The toxicity of nitrite to rainbow trout is pH-dependent within the range considered acceptable to most freshwater aquatic life (pH 6.5-9.0). Both of the nitrite species, NO2(-) and HNO2, are toxic. It is recommended that nitrite criteria to protect freshwater aquatic life be bas...

  19. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge.

    PubMed

    Luesken, Francisca A; van Alen, Theo A; van der Biezen, Erwin; Frijters, Carla; Toonen, Ger; Kampman, Christel; Hendrickx, Tim L G; Zeeman, Grietje; Temmink, Hardy; Strous, Marc; Op den Camp, Huub J M; Jetten, Mike S M

    2011-11-01

    Recently discovered microorganisms affiliated to the bacterial phylum NC10, named "Candidatus Methylomirabilis oxyfera", perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands were screened for the endogenous presence of M. oxyfera using molecular diagnostic methods. We could identify NC10 bacteria with 98% similarity to M. oxyfera in nine out of ten WWTPs tested. Sludge from one selected WWTP was used to start a new enrichment culture of NC10 bacteria. This enrichment was monitored using specific pmoA primers and M. oxyfera cells were visualized with fluorescence oligonucleotide probes. After 112 days, the enrichment consumed up to 0.4 mM NO(2)(-) per day. The results of this study show that appropriate sources of biomass, enrichment strategies, and diagnostic tools existed to start and monitor pilot scale tests for the implementation of nitrite-dependent methane oxidation in wastewater treatment at ambient temperature. PMID:21667086

  20. Molecular characterization of nitrate uptake and assimilatory pathway in Arthrospira platensis reveals nitrate induction and differential regulation.

    PubMed

    Lochab, Sunila; Kumar, Polumetla Ananda; Raghuram, Nandula

    2014-06-01

    The nitrate assimilation pathway and its regulation in the high-protein neutraceutical cyanobacterium, Arthrospira (Spirulina), were studied. A complete characterization of the genes of the nitrate uptake and assimilatory pathway in Arthrospira platensis strain PCC 7345 was done including cloning, sequencing, phylogenetic analysis and expression studies. Genomic localization studies revealed that their clustering is different from the operons known in other cyanobacteria; only nrtP and narB are organized together, while nirA, glnA and gltS exist in separate genomic locations. The presence of both types of nitrate transporters (nrtP/ABC types) in A. platensis is rare, as their occurrence is usually specific to marine and freshwater microorganisms, respectively. The positive effect of nitrate on transcript accumulation of narB, nirA and nrtP genes in N-depleted and N-restored cultures confirmed nitrate induction, which is abolished by the addition of ammonium ions into the medium. Gene expression studies in response to nitrate, nitrite, ammonium and glutamine provided the first evidence of differential regulation of multiple genes of nitrate assimilatory pathway in Arthrospira. PMID:24643448

  1. Nitrite toxicity to fathead minnows: effect of fish weight

    SciTech Connect

    Palachek, R.M.; Tomasso, J.R.

    1984-02-01

    Nitrite is an intermediate product of nitrification that sometimes reaches toxic levels in aquatic ecosystems and aquaculture environments. Toxic levels of nitrite to several species of fishes have been reported. Some investigators have suggested that smaller fish and sac fry are more tolerant to nitrite than larger fish of the same species. Recent observations of fathead minnows (Pimephales promelas) in our laboratory suggested that smaller fathead minnows were more tolerant to nitrite than larger fish. The purpose of this study was to determine if nitrite toxicity is related to fish weight in the fathead minnow.

  2. The structure of the NasR transcription antiterminator reveals a one-component system with a NIT nitrate receptor coupled to an ANTAR RNA-binding effector.

    PubMed

    Boudes, Marion; Lazar, Noureddine; Graille, Marc; Durand, Dominique; Gaidenko, Tatiana A; Stewart, Valley; van Tilbeurgh, Herman

    2012-08-01

    The nitrate- and nitrite-sensing NIT domain is present in diverse signal-transduction proteins across a wide range of bacterial species. NIT domain function was established through analysis of the Klebsiella oxytoca NasR protein, which controls expression of the nasF operon encoding enzymes for nitrite and nitrate assimilation. In the presence of nitrate or nitrite, the NasR protein inhibits transcription termination at the factor-independent terminator site in the nasF operon transcribed leader region. We present here the crystal structure of the intact NasR protein in the apo state. The dimeric all-helical protein contains a large amino-terminal NIT domain that associates two four-helix bundles, and a carboxyl-terminal ANTAR (AmiR and NasR transcription antitermination regulator) domain. The analysis reveals unexpectedly that the NIT domain is structurally similar to the periplasmic input domain of the NarX two-component sensor that regulates nitrate and nitrite respiration. This similarity suggests that the NIT domain binds nitrate and nitrite between two invariant arginyl residues located on adjacent alpha helices, and results from site-specific mutagenesis showed that these residues are critical for NasR function. The resulting structural movements in the NIT domain would provoke an active configuration of the ANTAR domains necessary for specific leader mRNA binding. PMID:22690729

  3. Gut reactions of radioactive nitrite after intratracheal administration in mice

    SciTech Connect

    Thayer, J.R.; Chasko, J.H.; Swartz, L.A.; Parks, N.J.

    1982-07-09

    Intratracheal administration to mice of radioactive nitrite labeled with (/sup 13/NO/sub 2/-) (half-life, 9.96 minutes) in dosages that do not cause pharmacological perturbation reveals that oxidative and reductive reactions occur in different organs. Oxidation of /sup 13/NO/sub 2/- to radioactive nitrate (/sup 13/NO/sub 3/-) predominates in the blood and liver. Reduction of /sup 13/NO/sub 2/- occurs in those mice that harbor intestinal microflora; this reduction does not occur in germ-free mice. The intestinal reduction products include ammonium, glutamate, glutamine, and urea. With a detection limit of about 0.01 percent of the instilled /sup 13/N, no labeled nitrosamines were detected within 30 minutes. Reduced /sup 13/N is transported out of the intensive into the circulatory system and appears in the urine along with /sup 13/NO/sub 3/-. The biological half-period for /sup 13/NO/sub 2/- destruction is about 7 minutes, and both oxidation and reduction products are formed.

  4. A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes.

    PubMed

    Simon, J; Gross, R; Einsle, O; Kroneck, P M; Kröger, A; Klimmek, O

    2000-02-01

    Wolinella succinogenes can grow by anaerobic respiration with nitrate or nitrite using formate as electron donor. Two forms of nitrite reductase were isolated from the membrane fraction of W. succinogenes. One form consisted of a 58 kDa polypeptide (NrfA) that was identical to the periplasmic nitrite reductase. The other form consisted of NrfA and a 22 kDa polypeptide (NrfH). Both forms catalysed nitrite reduction by reduced benzyl viologen, but only the dimeric form catalysed nitrite reduction by dimethylnaphthoquinol. Liposomes containing heterodimeric nitrite reductase, formate dehydrogenase and menaquinone catalysed the electron transport from formate to nitrite; this was coupled to the generation of an electrochemical proton potential (positive outside) across the liposomal membrane. It is concluded that the electron transfer from menaquinol to the catalytic subunit (NrfA) of W. succinogenes nitrite reductase is mediated by NrfH. The structural genes nrfA and nrfH were identified in an apparent operon (nrfHAIJ) with two additional genes. The gene nrfA encodes the precursor of NrfA carrying an N-terminal signal peptide (22 residues). NrfA (485 residues) is predicted to be a hydrophilic protein that is similar to the NrfA proteins of Sulfurospirillum deleyianum and of Escherichia coli. NrfH (177 residues) is predicted to be a membrane-bound tetrahaem cytochrome c belonging to the NapC/NirT family. The products of nrfI and nrfJ resemble proteins involved in cytochrome c biogenesis. The C-terminal third of NrfI (902 amino acid residues) is similar to CcsA proteins from Gram-positive bacteria, cyanobacteria and chloroplasts. The residual N-terminal part of NrfI resembles Ccs1 proteins. The deduced NrfJ protein resembles the thioredoxin-like proteins (ResA) of Helicobacter pylori and of Bacillus subtilis, but lacks the common motif CxxC of ResA. The properties of three deletion mutants of W. succinogenes (DeltanrfJ, DeltanrfIJ and DeltanrfAIJ) were studied. Mutants DeltanrfAIJ and DeltanrfIJ did not grow with nitrite as terminal electron acceptor or with nitrate in the absence of NH4+ and lacked nitrite reductase activity, whereas mutant DeltanrfJ showed wild-type properties. The NrfA protein formed by mutant DeltanrfIJ seemed to lack part of the haem C, suggesting that NrfI is involved in NrfA maturation. PMID:10672190

  5. Nitrate-dependent anaerobic methane oxidation in a freshwater sediment

    NASA Astrophysics Data System (ADS)

    Norði, Katrin á.; Thamdrup, Bo

    2014-05-01

    Anaerobic oxidation of methane coupled to denitrification (DAOM) is a novel process of potential importance to the regulation of methane emissions from freshwater environments. We established nitrate-enriched microcosms of sediment from a freshwater pond in order to quantify the role of this process in a simulated natural redox zonation. The microcosms were allowed to acclimate to nitrate levels of 1-2 mmol L-1 in the overlying water for 16 months leading to a nitrate penetration of 4 cm. The nitrate enrichment significantly stimulated AOM relative to controls, and based on the similar concentrations of sulfate and reactive Fe(III) in the control sediment we conclude that the observed AOM was coupled to denitrification. DAOM occurred at rates that were two orders of magnitude lower than aerobic methane oxidation rates reported in freshwater sediments, and the process appeared to be limited by nitrate or nitrite even at millimolar nitrate concentrations. By contrast, ammonium was efficiently consumed at the base of the nitrate zone, presumably by the anammox process. Although DAOM was stimulated by nitrate enrichment, there were no significant differences between the methane emission from the control and nitrate-enriched microcosms. Our results provide the first experimental evaluation of the kinetics of DAOM in whole sediment cores and indicate that AOM coupled to denitrification can consume a substantial part of the methane flux in nitrate-rich environments. Because it is much less efficient in scavenging methane than its aerobic counterpart, the anaerobic process will, however, mainly be of significance in the regulation of methane emission from oxygen-depleted systems.

  6. Production of Copper-Based Rare Earth Composite Metal Materials by Coprecipitation and Applications for Gaseous Ammonia Removal

    Microsoft Academic Search

    Chang-Mao Hung

    2011-01-01

    This study addresses the oxidation of ammonia (NH3) at temperatures between 423 and 673 K by selective catalytic oxidation (SCO) over a copper-based, rare earth composite metal material that was prepared by coprecipitating copper nitrate, lanthanum nitrate, and cerium nitrate at various molar ratios. The catalysts were characterized using Brunner, Emmett, and Teller spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, ultraviolet–visible

  7. Modification of membrane sulfhydryl groups in bacteriostatic action of nitrite

    SciTech Connect

    Buchman, G.W. III; Hansen, J.N.

    1987-01-01

    The mechanism by which nitrite inhibits outgrowing spores of bacillus cereus T was examined by using techniques developed earlier for nitrite analogs. The morphological stage of inhibition, cooperativity effects, effect of pH on inhibition, kinetics of protection against tritiated iodoacetate incorporation into membrane sulfhydryl groups, and protection against the bacteriocidal effect of carboxymethylation of iodoacetate indicate that nitrite acts as a membrane-directed sulfhydryl agent. The mechanism by which nitrite modifies the chemical reactivity of the sulfhyrdyl group could be either direct covalent modification or inactivation through communication with another modified membrane component. Profiles of pH effects suggest that the active agent is the protonated form of nitrite. The nitrite concentrations which modify membrane sulfhydryl activity coincide with those which have a bacteriostatic effect. These results are consistent with membrane sulfhydryl modification as a component of the mechanism of nitrite-induced bacteriostasis in this aerobic sporeformer.

  8. Influence of long-term diesel fuel pollution on nitrite-oxidising activity and population size of nitrobacter spp in soil.

    PubMed

    Deni, Jamal; Penninckx, Michel J

    2004-01-01

    Previous investigations have shown that ammonia oxidation is not inhibited by diesel fuel in a soil with a long history of contamination contrary to a non-contaminated soil. As a consequence, ammonia oxidation does not constitute a Limited step in nitrification process (Appl. Environ. Microbiol. 65 (1999) 4008). Moreover, this type of soil also has had the opportunity to develop an abundant microbial population able to metabolise the diesel hydrocarbons. Whether the properties of soil with a long history of diesel fuel contamination may affect the activity of nitrite-oxidising bacteria was investigated. It was observed that re-exposure of soil to diesel fuel apparently stimulated the proliferation of nitrite-oxidising bacteria, as determined by most probable number (MPN) culture technique and MPN-polymerase chain reaction technique. The potential of nitrite-oxidising activity in soil treated with diesel fuel was about 4 times higher than in the control without addition. In the presence of diesel fuel and ammonium, the potential nitrite-oxidising activity was 40% higher than in presence of ammonium only. However, in the presence of hydrocarbon only, low proliferation of Nitrobacter was observed, probably because the heterotrophic bacteria were strongly limited by lack of nitrogen and did not produce sufficient organic metabolites that could be used by the Nitrobacter cells. PMID:15646378

  9. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  10. Application of classification-tree methods to identify nitrate sources in ground water

    USGS Publications Warehouse

    Spruill, T.B.; Showers, W.J.; Howe, S.S.

    2002-01-01

    A study was conducted to determine if nitrate sources in ground water (fertilizer on crops, fertilizer on golf courses, irrigation spray from hog (Sus scrofa) wastes, and leachate from poultry litter and septic systems) could be classified with 80% or greater success. Two statistical classification-tree models were devised from 48 water samples containing nitrate from five source categories. Model I was constructed by evaluating 32 variables and selecting four primary predictor variables (??15N, nitrate to ammonia ratio, sodium to potassium ratio, and zinc) to identify nitrate sources. A ??15N value of nitrate plus potassium 18.2 indicated inorganic or soil organic N. A nitrate to ammonia ratio 575 indicated nitrate from golf courses. A sodium to potassium ratio 3.2 indicated spray or poultry wastes. A value for zinc 2.8 indicated poultry wastes. Model 2 was devised by using all variables except ??15N. This model also included four variables (sodium plus potassium, nitrate to ammonia ratio, calcium to magnesium ratio, and sodium to potassium ratio) to distinguish categories. Both models were able to distinguish all five source categories with better than 80% overall success and with 71 to 100% success in individual categories using the learning samples. Seventeen water samples that were not used in model development were tested using Model 2 for three categories, and all were correctly classified. Classification-tree models show great potential in identifying sources of contamination and variables important in the source-identification process.

  11. Nitrite toxicity to crayfish, Astacus leptodactylus, the effects of sublethal nitrite exposure on hemolymph nitrite, total hemocyte counts, and hemolymph glucose

    Microsoft Academic Search

    Hijran Yavuzcan Yildiz; A. Caglan Karasu Benli

    2004-01-01

    The 48-h acute toxicity range of nitrite to narrow-clawed crayfish, Astacus leptodactylus was within 22 and 70mgL?1 (mean 29.43mgL?1). Environmental chloride (100mgL?1 chloride) increased the 48-h toxicity of nitrite to a range of 31 and 80mgL?1 (mean 49.20mgL?1). Hemolymph nitrite, total hemocyte counts (THCs), and hemolymph glucose were examined in A. leptodactylus exposed to different sublethal nitrite concentrations. The same

  12. Hydroxylamine oxidation and subsequent nitrous oxide production by the heterotrophic ammonia oxidizer Alcaligenes faecalis

    Microsoft Academic Search

    S. Otte; J. Schalk; J. G. Kuenen; M. S. M. Jetten

    1999-01-01

    Nitrous oxide (N2O), a greenhouse gas, is emitted during autotrophic and heterotrophic ammonia oxidation. This emission may result from either\\u000a coupling to aerobic denitrification, or it may be formed in the oxidation of hydroxylamine (NH2OH) to nitrite (NO2\\u000a ?). Therefore, the N2O production during NH2OH oxidation was studied with Alcaligenes faecalis strain TUD. Continuous cultures of A. faecalis showed increased

  13. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    PubMed Central

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  14. Nitrate dry deposition measurements with surrogate surfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Xiang

    Nitrate dry deposition is one of the most important topics in the study of the dry deposition of acidic and acidifying substances. This study measured nitrate dry deposition to (1) a water surface sampler (WSS) which was recently developed in the Department of Chemical and Environmental Engineering at Illinois Institute of Technology, (2) a Nylasorb filter on a knife-edge surrogate surface and (3) a greased strip on a knife-edge surrogate surface. Airborne nitric acid (HNO3), nitrous acid (HNO2), and nitrogen dioxide (NO2) concentrations were also measured concurrently with the flux measurements. These measurements were then used to evaluate the utility of using surrogate surfaces, and in particular the WSS, to measure nitrate dry deposition. The nitrogen containing species that may be responsible for nitrate dry deposition to the WSS include nitrogen monoxide (NO), NO2, peroxyacetyl nitrate (PAN), ammonia (NH3) and ammonium (NH4+), HNO2,/ HNO3, and particulate nitrate. Theoretical calculations and experiments showed that HNO3 and particulate nitrate appear to be the major nitrate contributors to the water surface sampler. Nitrate dry deposition to the water surface, Nylasorb filter and the greased strip were measured during the daytime in June and July 1995 and during both the day and night time in September and October 1995. The results showed that during the daytime in June and July the average nitrate dry deposition to the WSS (36.28 mg/m2-day) was much higher than that to the Nylasorb filter (14.04 mg/m2-day). However, during September and October there is no statistically significant difference in nitrate deposition flux between the WSS (average 4.59 mg/m2-day for the nighttime and 10.58 mg/m2-day for the daytime) and the Nylasorb filter (average 4.53 mg/m2-day for the nighttime and 8.87 mg/m2-day). A set of three experiments showed that particulate nitrate fluxes measured with the greased strip were underestimated due to the loss of volatile particulate nitrate. These experiments included a comparison of nitrate fluxes from greased strip samples extracted immediately after sampling and extracted later, a heating experiment with the greased strip samples, and a comparison between short-term and long-term greased strip samples. After precautions were taken to prevent particulate nitrate loss during sampling, a new set of samples was taken in November of 1996. The results showed that there is no statistically significant difference between the mass transfer coefficient of HNO3 (average 1.68 cm/sec) and that of sulfur dioxide (SO2) (average 1.41 cm/sec) as expected from theory. The mass transfer coefficient of HNO3 was obtained by dividing HNO3 flux (obtained by subtracting the particulate nitrate flux measured with greased strip from total nitrate flux measured with the WSS) by HNO3 concentration.

  15. Ammonia Release on ISS

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2009-01-01

    Crew: Approximately 53% metabolic load Product of protein metabolism Limit production of ammonia by external regulation NOT possbile Payloads Potential source Scientific experiments Thorough safety review ensures sufficient levels of containment

  16. Nitrification and degradation of halogenated hydrocarbons—a tenuous balance for ammonia-oxidizing bacteria

    Microsoft Academic Search

    Luis A. Sayavedra-Soto; Barbara Gvakharia; Peter J. Bottomley; Daniel J. Arp; Mark E. Dolan

    2010-01-01

    The process of nitrification has the potential for the in situ bioremediation of halogenated compounds provided a number of\\u000a challenges can be overcome. In nitrification, the microbial process where ammonia is oxidized to nitrate, ammonia-oxidizing\\u000a bacteria (AOB) are key players and are capable of carrying out the biodegradation of recalcitrant halogenated compounds. Through\\u000a industrial uses, halogenated compounds often find their

  17. Ammonia and sediment toxicity

    SciTech Connect

    Ogle, R.S.; Hansen, S.R. [S.R. Hansen and Associates, Concord, CA (United States)

    1994-12-31

    Ammonia toxicity to aquatic organisms has received considerable study, with most of these studies focusing on water column organisms. However, with the development and implementation of sediment (and pore water) toxicity tests, the toxicity of ammonia to benthic infauna and other sediment toxicity test organisms has become important, especially since sediment/porewater ammonia occurs at higher concentrations than in the water column. Unfortunately, there has been very little of this type information, especially for marine/estuarine organisms. This laboratory determined the toxicity of ammonia to three key marine/estuarine test organisms: the amphipod Eohaustorius estuarius, the bivalve Mytilus edulis, and the echinoderm Strongylocentrotus purpuratus. Because sediment/porewater pH can differ substantially from typical seawater pH, the toxicity evaluations covered a range of pH levels (6, 7, 8, and 9). Eohaustorius results indicate that while Total Ammonia increased in toxicity (measured as EC50) as pH increased (from 460 mg/L at pH 6, to 13 mg/L at pH 9), unionized ammonia toxicity decreased from 0.13 mg/L at pH 6 to 2.8 mg/L at pH 9. The amphipod was much less sensitive to ammonia than were the bivalve and echinoderm, with an unionized ammonia EC50 at pH 8 of 2.14 mg/L relative to 0.43 mg/L for the mussel and 0.13 mg/L for the purple urchin. These results are discussed with respect to design and interpretation of sediment toxicity test results, including an interpretation approach based on partitioning of Toxic Units (TU).

  18. Ammonia Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter

    In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.

  19. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  20. Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use.

    E-print Network

    Ward, Bess

    archaea (AOA) produce nitrite from ammonium, and nitrite-oxidizing bacteria (NOB) perform the final oxidation of nitrite to nitrate. No organism in culture is known to oxidize both ammonium and nitrite of Nitrification Rates in the Oceans B. B. Ward Contents 1. Introduction 308 1.1. Ammonia-oxidizing microorganisms

  1. Characterization and inhibition of nitrite uptake in shortnose sturgeon fingerlings

    USGS Publications Warehouse

    Fontenot, Q.C.; Isely, J.J.; Tomasso, J.R.

    1999-01-01

    Efforts are underway to culture the endangered shortnose sturgeon Acipenser brevirostrum for possible reintroduction. As part of a larger project to develop culture techniques for this species, the uptake of nitrite was evaluated in fingerlings (16.5 ?? 4.85 g; mean ?? SD). Plasma nitrite concentrations increased significantly with exposure time (0-5 d) and dose (0-4 mg nitrite-N/L). Shortnose sturgeon fingerlings were able to concentrate nitrite in their plasma to more than 63 times the environmental concentration. Chloride, as either sodium chloride or calcium chloride, partially inhibited nitrite uptake. However, calcium chloride was a better inhibitor. After previous exposure (2 d at 2.13 ?? 0.080 mg nitrite-N/L) plasma nitrite-N decreased from 165.5 to 36.7 mg/L during a 3-d simultaneous exposure to 2.13 ?? 0.080 mg nitrite-N/L and treatment with 40 mg chloride/L as calcium chloride. The addition of calcium chloride to the water appeared to be an effective means of preventing nitrite uptake and treating nitrite toxicity in hatchery-reared shortnose sturgeon fingerlings.

  2. Short-term effects of nitrate-rich green leafy vegetables on blood pressure and arterial stiffness in individuals with high-normal blood pressure.

    PubMed

    Bondonno, Catherine P; Liu, Alex H; Croft, Kevin D; Ward, Natalie C; Yang, Xingbin; Considine, Michael J; Puddey, Ian B; Woodman, Richard J; Hodgson, Jonathan M

    2014-12-01

    Evidence for a beneficial effect of dietary nitrate, through the nitrate-nitrite-NO pathway, on measures of cardiovascular function in healthy individuals is accumulating. It is less clear whether increased dietary nitrate intake from green leafy vegetables would have similar beneficial vascular effects in those at increased risk of developing hypertension. Our aim was to assess the effects of short-term regular consumption of increased nitrate from green leafy vegetables on blood pressure and arterial stiffness in individuals with high-normal blood pressure. Thirty-eight men and women ages 30-70 years with systolic blood pressure 120 to 139 mm Hg were recruited to a randomized controlled crossover trial. The effects of a 7-day high-nitrate diet intervention (increased nitrate intake by at least 300 mg/day from green leafy vegetables) were compared to a 7-day low-nitrate diet intervention. Outcome measures included pre- and postintervention salivary and plasma nitrate and nitrite concentrations; ambulatory, home, and office blood pressure; augmentation index; and carotid-femoral pulse wave velocity. The high-nitrate diet intervention resulted in at least a fourfold increase in salivary and plasma nitrate and nitrite (P<0.001). Ambulatory, home, and office blood pressure and arterial stiffness were not different between the high-nitrate diet and the low-nitrate diet. Increasing dietary nitrate intake in those with high-normal blood pressure and at increased risk of hypertension may not be an effective short-term strategy to lower blood pressure. PMID:25261227

  3. Nitrogen removal and microbial characteristics in CANON biofilters fed with different ammonia levels.

    PubMed

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Zhuo; Cui, Shaoming; Zhang, Jie

    2014-11-01

    The nitrogen removal performance and microbial characteristics of four completely autotrophic nitrogen removal over nitrite (CANON) biofilters were investigated. These four reactors were simultaneously seeded from a stable CANON biofilter with a seeding ratio of 1:1, which were fed with different ammonia levels. Results suggested that with the ammonia of 200-400 mg L(-1), aerobic ammonia-oxidizing bacteria (AerAOB) and anaerobic ammonia-oxidizing bacteria (AnAOB) could perform harmonious work. The bioactivity and population of the two groups of bacteria were both high, which then resulted in excellent nitrogen removal, while too low or too high ammonia would both lead to worse performance. When ammonia was too high, the bioactivity, biodiversity and population of AerAOB all decreased and then resulted in the lowest nitrogen removal. Nitrosomonas and Candidatus Brocadia were detected as predominant functional microbes in all the four reactors. Finally, strategies for treating sewage with different ammonia levels were proposed. PMID:25194266

  4. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Lang, F.

    1991-01-01

    A membrane-bound nitrate reductase (nitrite:(acceptor) oxidoreductase, EC 1.7.99.4) from the extremely halophilic bacterium Haloferax denitrificans was solubilized by incubating membranes in buffer lacking NaCl and purified by DEAE, hydroxylapatite, and Sepharose 6B gel filtration chromatography. The purified nitrate reductase reduced chlorate and was inhibited by azide and cyanide. Preincubating the enzyme with cyanide increased the extent of inhibition which in turn was intensified when dithionite was present. Although cyanide was a noncompetitive inhibitor with respect to nitrate, nitrate protected against inhibition. The enzyme, as isolated, was composed of two subunits (Mr 116,000 and 60,000) and behaved as a dimer during gel filtration (Mr 380,000). Unlike other halobacterial enzymes, this nitrate reductase was most active, as well as stable, in the absence of salt.

  5. Stable Isotope Systematics of Abiotic Nitrite Reduction Coupled with Anaerobic Iron Oxidation: The Role of Reduced Clays and Fe-bearing Minerals

    NASA Astrophysics Data System (ADS)

    Grabb, K. C.; Buchwald, C.; Hansel, C. M.; Wankel, S. D.

    2014-12-01

    Under anaerobic conditions, it is widely assumed that nitrate (NO3-) and nitrite (NO2-) reduction is primarily the result of microbial respiration. However, it has also been shown that abiotic reduction of nitrate and nitrite by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under certain environmentally relevant conditions. With a range of experimental conditions, we investigated the nitrogen and oxygen stable isotope systematics of abiotic nitrite reduction by Fe(II) in an effort to characterize biotic and abiotic processes in the environment. While homogenous reactions between NO2- and Fe(II) in artificial seawater showed little reduction, heterogeneous reactions involving Fe-containing minerals showed considerable nitrite loss. Specifically, rapid nitrite reduction was observed in experiments that included reduced clays (illite, Na-montmorillonite, and nontronite) and those that exhibited iron oxide formation (ferrihydrite, magnetite and/or green rust). While these iron oxides and clay minerals offer both a source of reduced iron in the mineral matrix as well as a surface for Fe(II) activation, control experiments with corundum as a non-Fe containing mineral surface showed little NO2- loss, implicating a more dominant role of structural Fe in the clays during nitrite reduction. The isotope effects for 15N and 18O (15? and 18?) ranged from 5 to 14‰ for 15? and 5 to 17‰ for 18? and were typically coupled such that 15? ~ 18?. Reactions below pH 7 were slower and the 18? was affected by oxygen atom exchange with water. Although little data exist for comparison with the dual isotopes of microbial NO2- reduction, these data serve as a benchmark for evaluating the role of abiotic processes in N reduction, particularly in sediment systems low in organic carbon and high in iron.

  6. [Modifying effect of nitrites on pulmonary blastogenesis and viral leukogenesis in mice: role of nitric oxide and dioxide].

    PubMed

    Il'nitski?, A P; Reutov, V P; Ryzhova, N I; Kolpakova, A S; Deriagina, V P; Nekrasova, E A; Savluchinskaia, L A; Travkin, A G

    2000-01-01

    The long-term effects of sodium nitrite (NaNO2) on carcinogenesis induced by urethane (total dose 1.0 mg/g body weight) in low-grade cancer F1 (C57BLxCBA) and high-grade A/Snell mice and on viral (Rausher leukemia virus) leukomogenesis in Balb/c mice. The murine intake of NaNO2 with water (50 mg/l) causes a statistically significant increase in the number of adenomas in the lung. Examining the mechanism of conversion of NO2- to NO led to the assumption that the free radical compounds NO and NO2 are involved in the potentiating action of NO2 on blastomogenesis. The use of the oxidant emoxypine (3-hydroxypyridine) confirmed the above. The role of NO and NO2 in the intracellular processes under the modifying effects of nitrites and nitrates on blastomogenesis is analyzed. PMID:10961141

  7. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate.

    PubMed

    Law, Yingyu; Ni, Bing-Jie; Lant, Paul; Yuan, Zhiguo

    2012-06-15

    The relationship between the ammonia oxidation rate (AOR) and nitrous oxide production rate (N(2)OR) of an enriched ammonia-oxidising bacteria (AOB) culture was investigated. The AOB culture was enriched in a nitritation system fed with synthetic anaerobic digester liquor. The AOR was controlled by adjusting the dissolved oxygen (DO) and pH levels and also by varying the initial ammonium (NH(4)(+)) concentration in batch experiments. Tests were also performed directly on the parent reactor where a stepwise decrease/increase in DO was implemented to alter AOR. The experimental data indicated a clear exponential relationship between the biomass specific N(2)OR and AOR. Four metabolic models were used to analyse the experimental data. The metabolic model formulated based on aerobic N(2)O production from the decomposition of nitrosyl radical (NOH) predicted the exponential correlation observed experimentally. The experimental data could not be reproduced by models developed on the basis of N(2)O production through nitrite (NO(2)(-)) and nitric oxide (NO) reduction by AOB. PMID:22520859

  8. Interactions between methanogenic and nitrate reducing bacteria during the anaerobic digestion of an industrial sulfate rich wastewater

    Microsoft Academic Search

    Gilles Percheron; Nicolas Bernet; René Moletta

    1999-01-01

    The effect of nitrate addition on the anaerobic digestion of an industrial sulfate rich wastewater was investigated using batch cultures. A high chemical oxygen demand\\/NO3-N ratio did not favor the dissimilatory nitrate reduction to ammonia. Denitrification was the main nitrate reduction pathway at all chemical oxygen demand\\/NO3-N ratios tested. A lag phase, presumably caused by a high initial sulfide content,

  9. Characterization of Sodium Nitrate as Phase Change Material

    NASA Astrophysics Data System (ADS)

    Bauer, Thomas; Laing, Doerte; Tamme, Rainer

    2012-01-01

    In this article the results of material investigations of sodium nitrate (NaNO3) with a melting temperature of 306 °C as a phase change material (PCM) are presented. The thermal stability was examined by kinetic experiments and longduration oven tests. In these experiments the nitrite formation was monitored. Although some nitrite formation in the melt was detected, results show that the thermal stability of NaNO3 is sufficient for PCM applications. Various measurements of thermophysical properties of NaNO3 are reported. These properties include the thermal diffusivity by the laser-flash, the thermal conductivity by the transient hot wire, and the heat capacity by the differential scanning calorimeter method. The current measurements and literature values are compared. In this article comprehensive temperature-dependent thermophysical values of the density, heat capacity, thermal diffusivity, and thermal conductivity in the liquid and solid phases are reported.

  10. Microstructural Characterization of Colloid-Derived Bimetallic Pd-Cu Nanocatalysts Supported on -Al2O3 for Nitrate Reduction

    E-print Network

    Frenkel, Anatoly

    and Center of Advanced Materials for the Purification of Water with Systems, University of Illinois at Urbana of Advanced Materials for Purification of Water with Systems, University of Illinois at Urbana to develop heterogeneous catalysts as a viable water purification method. The rates of nitrate and nitrite

  11. In situ stimulation of groundwater denitrification with formate to remediate nitrate contamination

    USGS Publications Warehouse

    Smith, R.L.; Miller, D.N.; Brooks, M.H.; Widdowson, M.A.; Killingstad, M.W.

    2001-01-01

    In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn, amended with formate and bromide, and pumped back into the aquifer. Concentrations of groundwater constituents were monitored in multilevel samplers after up to 15 m of transport by natural gradient flow. Nitrate and formate concentrations were decreased 80-100% and 60-70%, respectively, with time and subsequent travel distance, while nitrite concentrations inversely increased. The field experiment breakthrough curves were simulated with a two-dimensional site-specific model that included transport, denitrification, and microbial growth. Initial values for model parameters were obtained from laboratory incubations with aquifer core material and then refined to fit field breakthrough curves. The model and the lab results indicated that formate-enhanced nitrite reduction was nearly 4-fold slower than nitrate reduction, but in the lab, nitrite was completely consumed with sufficient exposure time. Results of this study suggest that a long-term injection of formate is necessary to test the remediation potential of this approach for nitrate contamination and that adaptation to nitrite accumulation will be a key determinative factor.In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn, amended with formate and bromide, and pumped back into the aquifer. Concentrations of groundwater constituents were monitored in multilevel samplers after up to 15 m of transport by natural gradient flow. Nitrate and formate concentrations were decreased 80-100% and 60-70%, respectively, with time and subsequent travel distance, while nitrite concentrations inversely increased. The field experiment breakthrough curves were simulated with a two-dimensional site-specific model that included transport, denitrification, and microbial growth. Initial values for model parameters were obtained from laboratory incubations with aquifer core material and then refined to fit field breakthrough curves. The model and the lab results indicated that formate-enhanced nitrite reduction was nearly 4-fold slower than nitrate reduction, but in the lab, nitrite was completely consumed with sufficient exposure time. Results of this study suggest that a long-term injection of formate is necessary to test the remediation potential of this approach for nitrate contamination and that adaptation to nitrite accumulation will be a key determinative factor.

  12. Functional dissection and site-directed mutagenesis of the structural gene for NAD(P)H-nitrite reductase in Neurospora crassa.

    PubMed

    Colandene, J D; Garrett, R H

    1996-09-27

    Neurospora crassa NAD(P)H-nitrite reductase, encoded by the nit-6 gene, is a soluble, alpha2-type homodimeric protein composed of 127-kDa polypeptide subunits. This multicenter oxidation-reduction enzyme utilizes either NADH or NADPH as electron donor and possesses as prosthetic groups two iron-sulfur (Fe4S4) clusters, two siroheme groups, and two FAD molecules. The native activity of the enzyme is the NAD(P)H-dependent reduction of nitrite to ammonia. In addition, N. crassa nitrite reductase displays several partial activities in vitro, including a siroheme-independent NAD(P)H-cytochrome c reductase activity and an FAD-independent dithionite-nitrite reductase activity. These partial activities are presumed to be manifestations of discrete functional domains within the protein. A full-length nit-6 cDNA was constructed and used in developing an expression system within E. coli capable of yielding high levels of NADPH-nitrite reductase activity. Maximal expression was obtained in nirB- E. coli cells grown anaerobically at 22 +/- 1 degrees C, in conjunction with co-expression of a plasmid-borne cysG gene (encoding the rate-limiting enzyme in siroheme synthesis) and co-transformation with plasmid pGroESL (encoding bacterial chaperonins GroES and GroEL). Dissection of gene segments encoding putative functional domains within the nit-6 gene was performed. Expression of a partial cDNA construct encoding the FAD-/NAD-binding domain yielded extracts with NADPH-cytochrome c reductase activity but no NADPH-nitrite reductase activity or dithionite-nitrite reductase activity. Expression of a cDNA construct encoding the (Fe4S4)-siroheme-binding domain resulted in extracts possessing dithionite-nitrite reductase activity but no NADPH-nitrite reductase or NADPH-cytochrome c reductase activity. Analysis of site-directed mutations altering amino acid residues Cys-331 within the FAD-/NAD-binding domain and Ser-755 within the (Fe4S4)-siroheme-binding domain of the nitrite reductase demonstrated that these residues were not essential for native or partial enzyme activity. Cys-757 within the (Fe4S4)-siroheme-binding domain was essential for native enzyme activity. PMID:8798648

  13. Effects of nitrite inhibition on anaerobic ammonium oxidation

    Microsoft Academic Search

    Yuya Kimura; Kazuichi Isaka; Futaba Kazama; Tatsuo Sumino

    2010-01-01

    In order to assess the stability of nitrogen removal systems utilizing anaerobic ammonium oxidation (anammox), it is necessary\\u000a to study the toxic effects of nitrite on these biochemical reactions. In this study, the effects of nitrite on anammox bacteria\\u000a entrapped in gel carriers were investigated using batch and continuous feeding tests. The results showed that the nitrite\\u000a concentration in a

  14. Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia

    PubMed Central

    Vanhatalo, Anni; Fulford, Jonathan; Bailey, Stephen J; Blackwell, James R; Winyard, Paul G; Jones, Andrew M

    2011-01-01

    Abstract Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (Tlim), once in normoxia (20.9% O2; CON) and twice in hypoxia (14.5% O2). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated 31P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). Tlim was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [Pi] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate–nitrite–NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia. PMID:21911616

  15. 21 CFR 862.1510 - Nitrite (nonquantitative) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1510 Nitrite (nonquantitative) test system. (a)...

  16. 21 CFR 862.1510 - Nitrite (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1510 Nitrite (nonquantitative) test system. (a)...

  17. 21 CFR 862.1510 - Nitrite (nonquantitative) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1510 Nitrite (nonquantitative) test system. (a)...

  18. Nitrates in SNCs: Implications for the nitrogen cycle on Mars

    NASA Technical Reports Server (NTRS)

    Grady, Monica M.; Wright, I. P.; Franchi, I. A.; Pillinger, C. T.

    1993-01-01

    Nitrogen is the second most abundant constituent of the Martian atmosphere, after CO2, present at a level of ca. 2.7 percent. Several authors have hypothesized that earlier in the planet's history, nitrogen was more abundant, but has been removed by processes such as exospheric loss from the atmosphere. However, an alternative sink for atmospheric nitrogen is the regolith; model calculations have predicted that, via the formation of NOx, HNO2 and HNO3 in the lower layers of the Martian atmosphere, the regolith might trap nitrite and nitrate anions, leading to the build-up of involatile nitrates. Integrated over 4.5 x 10(exp 9) yr, such a mechanism would contribute the equivalent of a layer of nitrates up to 0.3 cm thick distributed across the Martian surface. Features in thermal emission spectra of the surface of Mars have been interpreted tentatively as emanating from various anions (carbonates, bicarbonates, sulphates, etc.), and the presence of nitrates has also been addressed as a possibility. The identification of carbonates in SCN meteorites has allowed inferences to be drawn concerning the composition and evolution of the Martian atmosphere in terms of its carbon isotope systematics; if nitrites, nitrates, or other nitrogen-bearing salts could be isolated from SNC's, similar conclusions might be possible for an analogous nitrogen cycle. Nitrates are unstable, being readily soluble in water, and decomposed at temperatures between 50 C and 600 C, depending on composition. Any nitrates present in SNC's might be removed during ejection from the planet's surface, passage to Earth, or during the sample's terrestrial history, by weathering etc. The same might have been said for carbonates, but pockets of shock-produced glass (lithology C) from within the EET A79001 shergottite and bulk samples of other SNC contain this mineral, which did apparently survive. Nitrates occurring within the glassy melt pockets of lithology C in EET A79001 might likewise be protected. Lithology C glass was therefore selected for nitrate analysis, first by non-destructive infra red spectroscopy, and then by stepped combustion.

  19. Dietary nitrite induces nitrosation of the gastric mucosa: the protective action of the mucus and the modulatory effect of red wine.

    PubMed

    Pereira, Cassilda; Barbosa, Rui M; Laranjinha, João

    2015-05-01

    The stomach chemical environment promotes the production of new molecules that can induce post-translational modifications of endogenous proteins with physiological impact. The nitrate-nitrite-nitric oxide pathway is relevant in this process via production of nitric oxide ((•)NO) and nitric oxide-derived nitrogen oxides (NOx) at high concentrations. Using a highly sensitive and selective chemiluminescence approach, we found that exposure the stomach of rats to nitrite yielded S- and N-nitroso derivatives in gastric mucus cysteine-rich glycoproteins (mucins). To lesser extent, the underlying epithelial cell layers also suffered nitrite-driven S- and N-nitroso modifications which increased upon mucus removal, indicating that, under normal nitrite load, (•)NO and NOx can reach inner layers of the stomach wall and locally modify proteins. S-nitrosation was by large the predominant modification. In vitro and ex vivo experiments indicated that the gastric nitrosation pattern is triggered by dietary nitrite in a concentration dependent manner, encompassing the intermediary formation of (•)NO and is susceptible to modulation by dietary reductants, notably red wine polyphenols. Collectively, these results suggest a protective action of the mucus and potential (•)NO-dependent biochemical effects at deeper cells layers of the mucosa. PMID:25701398

  20. Ammonium Nitrate Formation near the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Bahreini, R.; Brock, C. A.; Brown, S. S.; Cozic, J.; Frost, G. J.; Langford, A. O.; Lerner, B. M.; Matthew, B.; McKeen, S. A.; Neuman, J.; Nowak, J. B.; Peischl, J. W.; Quinn, P.; Ryerson, T. B.; Schultz, K.; Stark, H.; Trainer, M.; Wagner, N.; Williams, E. J.; Wollny, A. G.

    2009-12-01

    A significant air quality issue during wintertime temperature inversions along the Colorado Front Range urban corridor is the infamous “Brown Cloud” which is dominated by ammonium nitrate particles. Aerosol composition, size distribution, and gas phase measurements were obtained along with meteorology in Boulder-based ground studies during the winters of 2005 and 2009 and in an airborne survey over the Colorado Front Range urban corridor and northeastern Colorado on April 1, 2008. New in these campaigns was the fast time response data which showed that nitric acid was partitioned mainly into the aerosol phase as ammonium nitrate. During the survey flight, ammonium nitrate mass concentrations were highest on the west side of the urban corridor whereas nitrogen oxide concentrations were highest directly west and south of Denver. Nitric acid concentrations were highest south of the city. The calculated equilibrium gas phase ammonia was highest close to the ground directly around large feed lots near Brush and west of Greeley. These differences are consistent with what is known about the locations of emission sources, the predominant flow during the experiments, and the chemistry. Indeed, the ammonia emissions in the northern part of the region are sufficiently high to cause ammonium nitrate formation to be limited by nitric acid whereas in the southern part of the region ammonium nitrate formation was limited by low ammonia emissions. Although NOx (NO + NO2) emissions in the region are much larger than those for ammonia, NOx must be converted into nitric acid in order for ammonium nitrate to form. In the survey data, aerosol nitrate was correlated with the daytime nitric acid production rate but with higher slopes in the northern parts of the region. In the longer Boulder datasets, the calculated daytime production rate was slow and comparable to nighttime heterogeneous production via N2O5 hydrolysis. During periods of low aerosol surface area, daytime and nighttime production of nitric acid resulted in freshly formed ammonium nitrate particles. These results suggest that reductions in NOx emissions along the northern part of the region are likely to decrease the prevalence of the Brown Cloud.