Science.gov

Sample records for ammonia nitrite nitrate

  1. Toxicity of ammonia, nitrite, and nitrate to fishes. Book chapter

    SciTech Connect

    Russo, R.C.; Thurston, R.V.

    1991-01-01

    Ammonia and nitrite are highly toxic to fishes, with ammonia occurring in surface waters more commonly than nitrite. Nitrate is a related compound but is not significantly toxic to fishes. The acute toxicity of ammonia to aquatic organisms is affected by water pH, dissolved oxygen, temperature, concentration fluctuations, degree of salinity, presence of other chemicals, and prior acclimation. The acute toxicity of nitrite is known to be affected by water pH and the presence of chloride and calcium. More research is needed on the effects of these and other variables on the acute toxicity of both ammonia and nitrite, as well as the chronic effects of both of these toxins.

  2. TOXICITY OF AMMONIA, NITRITE AND NITRATE TO FISHES

    EPA Science Inventory

    Ammonia and nitrite are highly toxic to fishes, wig ammonia occurring in urface waters more commonly than nitrite. itrate is a related compound but is not ignificantly toxic to fishes. he acute toxicity of ammonia to aquatic organisms s affected by water pH, dissolved oxygen, tem...

  3. Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions

    PubMed Central

    Tiso, Mauro; Schechter, Alan N.

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome

  4. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    PubMed

    Tiso, Mauro; Schechter, Alan N

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome

  5. Utilization of urea, ammonia, nitrite, and nitrate by crop plants in a Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Rains, D. W.; Qualset, C. O.

    1982-01-01

    The utilization of nitrogen compounds by crop plants is studied. The selection of crop varieties for efficient production using urea, ammonia, nitrite, and nitrate, and the assimilation of mixed nitrogen sources by cereal leaves and roots are discussed.

  6. Short-term toxicity of ammonia, nitrite, and nitrate to early life stages of the rare minnow (Gobiocypris rarus).

    PubMed

    Luo, Si; Wu, Benli; Xiong, Xiaoqin; Wang, Jianwei

    2016-06-01

    Nitrogenous pollutants including ammonia, nitrite, and nitrate are a widespread concern in natural waters and aquaculture. In the present study, the toxicity of ammonia, nitrite, and nitrate to rare minnow (Gobiocypris rarus) in the early life stage were evaluated by 2 short-term toxicity tests. In the short-term toxicity test, conducted on embryo and sac-fry stages, 30 fertilized eggs with 3 replicates were randomly exposed to varying levels of ammonia, nitrite, and nitrate until 3 d posthatch (dph). In the 7-d larval subchronic toxicity test, 30 newly hatched larvae with 3 replicates were randomly exposed to varying levels of ammonia, nitrite, and nitrate until 7 dph. The results showed that the 7-d larval subchronic toxicity test was more sensitive than the short-term toxicity test on embryo and sac-fry stages. Both toxicity tests revealed that ammonia was most toxic to rare minnows, followed by nitrite and nitrate. High levels of ammonia, nitrite, and nitrate decreased growth, retarded development, and increased mortality. The no-observed-effect concentrations of ammonia, nitrite, and nitrate for larval growth were 2.49 mg L(-1) , 13.33 mg L(-1) , and 19.95 mg L(-1) nitrogen, respectively. The present study's results demonstrate that nitrogenous pollutants pose a threat to wild populations of rare minnows and provide useful information for establishing water quality criteria for this laboratory fish. Environ Toxicol Chem 2016;35:1422-1427. © 2015 SETAC. PMID:26472009

  7. Ammonia Formation by the Reduction of Nitrite/Nitrate by FeS: Ammonia Formation Under Acidic Conditions

    NASA Technical Reports Server (NTRS)

    Summers, David P.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    FeS reduces nitrite to, ammonia at pHs lower than the corresponding reduction by aqueous Fe+2. The reduction follows a reasonable first order decay, in nitrite concentration, with a half life of about 150 min (room temperature, CO2, pH 6.25). The highest ammonia product yield measured was 53%. Under CO2, the product yield decreases from pH 5.0 to pH 6.9. The increasing concentration of bicarbonate at higher pH interferes with the reaction. Bicarbonate interference is shown by comparing runs under N2 and CO2. The reaction proceeds well in the presence of such species as chloride, sulfate, and phosphate though the yield drops significantly with phosphate. FeS also reduces nitrate and, unlike with Fe+2, the reduction shows more reproducibility. Again, the product yield decreases with increasing pH, from 7% at pH 4.7 to 0% at pH 6.9. It appears as if nitrate is much more sensitive to the presence of added species, perhaps not competing as well for binding sites on the FeS surface. This may be the cause of the lack of reproducibility of nitrate reduction by Fe+2 (which also can be sensitive to binding by certain species).

  8. [Spatial Variation of Ammonia-N, Nitrate-N and Nitrite-N in Groundwater of Dongshan Island].

    PubMed

    Wiu, Hai-yan; Fu, Shi-feng; Cai, Xiao-qiong; Tang, Kun-xian; Cao, Chao; Chen, Qing-hui; Liang, Xiu-yu

    2015-09-01

    In Dongshan Island, groundwater is the main resource of the local residents' drinking water, domestic water, agriculture irrigation and freshwater aquaculture. This study aimed to investigate the spatial distribution characteristic and its variation pattern of ammonia-N, nitrate-N and nitrite-N in groundwater, as well as its pollution source and influence factors. It is very important to understand the pollution level of ammonia-N, nitrate-N and nitrite-N in groundwater of Dongshan Island, the control and prevention of ammonia-N, nitrate-N and nitrite-N pollution, which is of great significance to the residents' health. In this study, the spatial variability characteristics of ammonia-N, nitrate-N and nitrite-N concentration in groundwater of Dongshan Island was analysed by geo- statistic method, the values of the non-observation points were determined by Kriging method, and the pollution characteristics of ammonia-N, nitrate-N and nitrite-N in groundwater of Dongshan Island was also analyzed. Our results showed that the ammonia-N and nitrite-N concentration in groundwater of Dongshan Island were at low levels, but their spatial variability were high, and their autocorrelation were poor; however, the nitrate-N concentration was general high, its spatial variability was moderate, and the autocorrelation was much good. The distribution characteristics of ammonia-N, nitrate-N and nitrite-N in groundwater of Dongshan Island were similar that the high concentration areas were all located in the coastal land. The domestic pollutants and human and animal wastes from towns and villages were the main sources of nitrogen pollution, which would be the first step to control the nitrogen pollution of Dongshan Island. Land use pattern, soil type, groundwater depth, pH, dissolved oxygen, season, and the existence of Fe2+, were the impact factors that influence the distribution and transformation of ammonia-N, nitrate-N and nitrite-N in groundwater, which could be the considerable

  9. DEAMOX--new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite.

    PubMed

    Kalyuzhnyi, Sergey; Gladchenko, Marina; Mulder, Arnold; Versprille, Bram

    2006-11-01

    This paper reports about the successful laboratory testing of a new nitrogen removal process called DEAMOX (DEnitrifying AMmonium OXidation) for treatment of typical strong nitrogenous wastewater such as baker's yeast effluent. The concept of this process combines the recently discovered anammox (anaerobic ammonium oxidation) reaction with autotrophic denitrifying conditions using sulphide as an electron donor for the production of nitrite from nitrate within an anaerobic biofilm. To generate sulphide and ammonia, a Upflow Anaerobic Sludge Bed (UASB) reactor was used as a pre-treatment step. The UASB effluent was split and partially fed to a nitrifying reactor (to generate nitrate) and the remaining part was directly fed to the DEAMOX reactor where this stream was mixed with the nitrified effluent. Stable process performance and volumetric nitrogen loading rates of the DEAMOX reactor well above 1000 mgN/l/d with total nitrogen removal efficiencies of around 90% were obtained after long-term (410 days) optimisation of the process. Important prerequisites for this performance are appropriate influent ratios of the key species fed to the DEAMOX reactor, namely influent N-NO(x)/N-NH(4) ratios >1.2 (stoichiometry of the anammox reaction) and influent S-H(2)S/N-NO(3) ratios >0.57 mgS/mgN (stoichiometry of the sulphide-driven denitrification of nitrate to nitrite). The paper further describes some characteristics of the DEAMOX sludge as well as the preliminary results of its microbiological characterisation. PMID:16893559

  10. [Characteristics and Transport Patterns of Ammonia, Nitrites, Nitrates and Inorganic Nitrogen Flux at Epikarst Springs and a Subterranean Stream in Nanshan, Chongqing].

    PubMed

    Zhang, Yuan-zhu; He, Qiu-fang; Jiang, Yong-jun; Li, Yong

    2016-04-15

    In a karst groundwater system, it develops complex multiple flows because of its special geological structure and unique physical patterns of aquifers. In order to investigate the characteristics and transport patterns of ammonia, nitrite and nitrate in epikarst water and subterranean stream, the water samples were collected monthly in a fast-urbanizing karst region. The results showed distinctive characteristics of three forms of inorganic nitrogen. The concentration of inorganic nitrogen was stable in the epikarst water while it was fluctuant in the subterranean stream. Epikarst water was less affected by rainfall and sewage compared with subterranean stream. In epikarst water, the nitrate concentration was much higher than the ammonia concentration. Dissolved inorganic nitrogen, mainly from non-point source pollution related to agricultural activities, passed in and out of the epikarst water based on a series of physical; chemical and biological processes in the epikarst zone, such as ammonification, adsorption and nitrification. On the contrary, subterranean stream showed a result of NH₄⁺-N > NO₃⁻-N in dry seasons and NO₃⁻-N > NH₄⁺-N in rainy seasons. This can be due to the fact that sanitary and industrial sewage flowed into subterranean river through sinkholes, fissures and grikes in dry season. Dissolved inorganic nitrogen in subterranean river was mainly from the non-point source pollution in wet season. Non-point source pollutants entered into subterranean water by two transport ways, one by penetration along with vadose flow through fissures and grikes, and the other by conduit flow through sinkholes from the surface runoff, soil water flow and epikarst flow. The export flux of DIN was 56.05 kg · (hm² · a)⁻¹, and NH₄⁺-N and NO₃⁻-N accounted for 46.03% and 52.51%, respectively. The contributions of point-source pollution and non point-source pollution to the export flux of DIN were 25.08% and 74.92%, respectively, based on run

  11. Nitrates, Nitrites, and Health. Bulletin 750.

    ERIC Educational Resources Information Center

    Deeb, Barbara S.; Sloan, Kenneth W.

    This review is intended to assess available literature in order to define the range of nitrate/nitrite effects on animals. Though the literature deals primarily with livestock and experimental animals, much of the contemporary research is concerned with human nitrite intoxication. Thus, the effects on man are discussed where appropriate. Some of…

  12. The abiotic fixation of nitrogen on mars and other terrestrial planets: conversion of nitrogen, through NO, into nitrate, nitrite, ammonia, and nitrous oxide.

    NASA Astrophysics Data System (ADS)

    Summers, David; Basa, Ranor; Khare, Bishun; Rodoni, David

    The abiotic fixation of nitrogen is critical to understanding habitability, planetary evolution and the potential origin of life on terrestrial planets such as Mars. A non-biological source of biochemically accessible nitrogen is necessary for the origin and early evolution of life. The Martian surface has become uninhabitable, in part due to loss of atmospheric gases, such as nitrogen, resulting in an incapacity to sustain liquid surface water. Chemical sequestration in the crust is one possible mechanism for such loss. The products of nitrogen fixation also impact the climate and geochemistry of the planet. Shock heating of a non-reducing atmosphere will produce NO. This process has been well studied. We have been experimentally studying the pathways possible from NO to more stable forms in the atmosphere and crust. Our work has observed that there are multiple pathways for the fixation. One pathway observed is consistent with the theoretically predicted route via photochemical formation of HNO. Inter-estingly, this pathway is coupled to the formation of formaldehyde from CO. With liquid water, this pathway leads to nitrate and nitrite. In the presence of just water vapor, HNO appears to mostly dimerize to form N2 O. A second pathway involves the formation of NO2 from CO2 and NO. This pathway becomes more dominant without water, but the reaction of NO2 with any form of water, even just adsorbed water, can lead to nitric acid. Finally, with FeS suspended in liquid water, the direct reduction of NO to ammonia is observed. This last pathway represents the most efficient way to reduced nitrogen, with product yields in excess of 50 % in a single step. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface, converting NO to NO2 and N2 O, providing an abiotic source of nitrous oxide. This chemistry has implications for a number epochs in Martian history. For example, chemistry in the presence of water is relevant to

  13. Nitrate Reduction to Nitrite, a Possible Source of Nitrite for Growth of Nitrite-Oxidizing Bacteria

    PubMed Central

    Belser, L. W.

    1977-01-01

    Growth yields and other parameters characterizing the kinetics of growth of nitrite-oxidizing bacteria are presented. These parameters were measured during laboratory enrichments of soil samples with added nitrite. They were then used to reanalyze data for nitrite oxidizer growth in a previously reported field study (M. G. Volz, L. W. Belser, M. S. Ardakani, and A. D. McLaren, J. Environ. Qual. 4:179-182, 1975), where nitrate, but not nitrite or ammonium, was added. In that report, analysis of the field data indicated that in unsaturated soils, the reduction of nitrate to nitrite may be a significant source of nitrite for the growth of nitrite oxidizers. A yield of 1.23 × 104 cells per μg of N was determined to be most appropriate for application to the field. It was determined that if nitrite came only from mineralized organic nitrogen via ammonium oxidation, 35 to 90% of the organic nitrogen would have had to have been mineralized to produce the growth observed. However, it is estimated that only about 2% of the organic nitrogen could have been mineralized during the growth period. Thus, it appears that another source of nitrite is required, the most likely being the reduction of nitrate to nitrite coupled to the oxidation of organic matter. PMID:921264

  14. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be...

  15. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be...

  16. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be...

  17. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be...

  18. 9 CFR 319.2 - Products and nitrates and nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be...

  19. Sources and sinks for ammonia and nitrite on the early Earth and the reaction of nitrite with ammonia

    NASA Technical Reports Server (NTRS)

    Summers, D. P.

    1999-01-01

    An analysis of sources and sinks for ammonia and nitrite on the early Earth was conducted. Rates of formation and destruction, and steady state concentrations of both species were determined by steady state kinetics. The importance of the reaction of nitrite with ammonia on the feasibility of ammonia formation from nitrite was evaluated. The analysis considered conditions such as temperature, ferrous iron concentration, and pH. For sinks we considered the reduction of nitrite to ammonia, reaction between nitrite and ammonia, photochemical destruction of both species, and destruction at hydrothermal vents. Under most environmental conditions, the primary sink for nitrite is reduction to ammonia. The reaction between ammonia and nitrite is not an important sink for either nitrite or ammonia. Destruction at hydrothermal vents is important at acidic pH's and at low ferrous iron concentrations. Photochemical destruction, even in a worst case scenario, is unimportant under many conditions except possibly under acidic, low iron concentration, or low temperature conditions. The primary sink for ammonia is photochemical destruction in the atmosphere. Under acidic conditions, more of the ammonia is tied up as ammonium (reducing its vapor pressure and keeping it in solution) and hydrothermal destruction becomes more important.

  20. Molecular Components of Nitrate and Nitrite Efflux in Yeast

    PubMed Central

    Cabrera, Elisa; González-Montelongo, Rafaela; Giraldez, Teresa; de la Rosa, Diego Alvarez

    2014-01-01

    Some eukaryotes, such as plant and fungi, are capable of utilizing nitrate as the sole nitrogen source. Once transported into the cell, nitrate is reduced to ammonium by the consecutive action of nitrate and nitrite reductase. How nitrate assimilation is balanced with nitrate and nitrite efflux is unknown, as are the proteins involved. The nitrate assimilatory yeast Hansenula polymorpha was used as a model to dissect these efflux systems. We identified the sulfite transporters Ssu1 and Ssu2 as effective nitrate exporters, Ssu2 being quantitatively more important, and we characterize the Nar1 protein as a nitrate/nitrite exporter. The use of strains lacking either SSU2 or NAR1 along with the nitrate reductase gene YNR1 showed that nitrate reductase activity is not required for net nitrate uptake. Growth test experiments indicated that Ssu2 and Nar1 exporters allow yeast to cope with nitrite toxicity. We also have shown that the well-known Saccharomyces cerevisiae sulfite efflux permease Ssu1 is also able to excrete nitrite and nitrate. These results characterize for the first time essential components of the nitrate/nitrite efflux system and their impact on net nitrate uptake and its regulation. PMID:24363367

  1. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific

    NASA Astrophysics Data System (ADS)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Oleynik, Sergey; Martens-Habbena, Willm; Devol, Allan H.; Ward, Bess B.

    2015-12-01

    Nitrification plays a key role in the marine nitrogen (N) cycle, including in oceanic oxygen minimum zones (OMZs), which are hot spots for denitrification and anaerobic ammonia oxidation (anammox). Recent evidence suggests that nitrification links the source (remineralized organic matter) and sink (denitrification and anammox) of fixed N directly in the steep oxycline in the OMZs. We performed shipboard incubations with 15N tracers to characterize the depth distribution of nitrification in the Eastern Tropical North Pacific (ETNP). Additional experiments were conducted to investigate photoinhibition. Allylthiourea (ATU) was used to distinguish the contribution of archaeal and bacterial ammonia oxidation. The abundance of archaeal and β-proteobacterial ammonia monooxygenase gene subunit A (amoA) was determined by quantitative polymerase chain reaction. The rates of ammonia and nitrite oxidation showed distinct subsurface maxima, with the latter slightly deeper than the former. The ammonia oxidation maximum coincided with the primary nitrite concentration maximum, archaeal amoA gene maximum, and the subsurface nitrous oxide maximum. Negligible rates of ammonia oxidation were found at anoxic depths, where high rates of nitrite oxidation were measured. Archaeal amoA gene abundance was generally 1 to 2 orders of magnitude higher than bacterial amoA gene abundance, and inhibition of ammonia-oxidizing bacteria with 10 μM ATU did not affect ammonia oxidation rates, indicating the dominance of archaea in ammonia oxidation. These results depict highly dynamic activities of ammonia and nitrite oxidation in the oxycline of the ETNP OMZ.

  2. Selection of denitrifying phosphorous accumulating organisms in IFAS systems: comparison of nitrite with nitrate as an electron acceptor.

    PubMed

    Jabari, Pouria; Munz, Giulio; Oleszkiewicz, Jan A

    2014-08-01

    Nitrite and nitrate were compared as electron acceptors to select for denitrifying phosphorous accumulating organisms (DPAO) in two integrated fixed film activated sludge (IFAS 1 and IFAS 2) systems operated as sequencing batch reactors. The bench-scale experiment lasted one year and synthetic wastewater was used as feed. During anoxic conditions 20mgNO3(-)-NL(-1) were dosed into IFAS-1 and 20mgNO2(-)-NL(-1) were dosed into IFAS-2. Long term phosphorous and ammonia removal via nitritation were achieved in both systems and both attached and suspended biomass contributed to phosphorous and ammonia removal. DPAO showed no specific adaptation to the electron acceptor as evidenced by short term switch of feeding with nitrate or nitrite. Anoxic phosphorus uptake rate was significantly higher with nitrite than with nitrate. Results showed that DPAO activity with nitrite could be integrated into attached and suspended biomass of IFAS systems in long term operation. PMID:24873702

  3. ACUTE TOXICITY OF AMMONIA AND NITRITE TO CUTTHROAT TROUT FRY

    EPA Science Inventory

    The toxicity of ammonia and of nitrite was tested on cutthroat trout (Salmo clarki) fry (1-3 g) for periods up to a month in eight laboratory flow-through bioassays. Median lethal concentration (LC50) values for ammonia (mg/liter un-ionized NH3) were 0.5-0.8 for 96 hours, and 0.3...

  4. Crystal Structure of a Nitrate/Nitrite Exchanger

    PubMed Central

    Zheng, Hongjin; Wisedchaisri, Goragot; Gonen, Tamir

    2013-01-01

    Summary Mineral nitrogen in nature is often found in the form of nitrate (NO3-). Numerous microorganisms evolved to assimilate nitrate and use it as a major source of mineral nitrogen uptake1. Nitrate, which is central in nitrogen metabolism, is first reduced to nitrite (NO2-) through a two-electron reduction reaction2,3. The accumulation of cellular nitrite can be harmful because nitrite can be reduced to the cytotoxic nitric oxide. Instead, nitrite is rapidly removed from the cell by channels and transporters, or reduced to ammonium or dinitrogen through the action of assimilatory enzymes3. Despite decades of effort no structure is currently available for any nitrate transport protein and the mechanism by which nitrate is transported remains largely obscure. Here we report the structure of a bacterial nitrate/nitrite transport protein, NarK, from Escherichia coli, with and without substrate. The structures reveal a positively charged substrate-translocation pathway lacking protonatable residues, suggesting that NarK functions as a nitrate/nitrite exchanger and that H+s are unlikely to be co-transported. Conserved arginine residues form the substrate-binding pocket, which is formed by association of helices from the two halves of NarK. Key residues that are important for substrate recognition and transport are identified and related to extensive mutagenesis and functional studies. We propose that NarK exchanges nitrate for nitrite by a rocker-switch mechanism facilitated by inter-domain H-bond networks. PMID:23665960

  5. Reduction of Nitrite and Nitrate to Ammonium on Pyrite

    NASA Astrophysics Data System (ADS)

    Singireddy, Soujanya; Gordon, Alexander D.; Smirnov, Alexander; Vance, Michael A.; Schoonen, Martin A. A.; Szilagyi, Robert K.; Strongin, Daniel R.

    2012-08-01

    An important constraint on the formation of the building blocks of life in the Hadean is the availability of small, activated compounds such as ammonia (NH3) relative to its inert dinitrogen source. Iron-sulfur particles and/or mineral surfaces have been implicated to provide the catalytic active sites for the reduction of dinitrogen. Here we provide a combined kinetic, spectroscopic, and computational modeling study for an alternative source of ammonia from water soluble nitrogen oxide ions. The adsorption of aqueous nitrite (NO{2/-}) and nitrate (NO{3/-}) on pyrite (FeS2) and subsequent reduction chemistry to ammonia was investigated at 22°C, 70°C, and 120°C. Batch geochemical and in situ Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectroscopy experiments were used to determine the reduction kinetics to NH3 and to elucidate the identity of the surface complexes, respectively, during the reaction chemistry of NO{2/-} and NO{3/-}. Density functional theory (DFT) calculations aided the interpretation of the vibrational data for a representative set of surface species. Under the experimental conditions used in this study, we detected the adsorption of nitric oxide (NO) intermediate on the pyrite surface. NH3 production from NO{2/-} occurred at 70 and 120°C and from NO{3/-} occurred only at 120°C.

  6. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions.

    PubMed

    Bedale, Wendy; Sindelar, Jeffrey J; Milkowski, Andrew L

    2016-10-01

    Consumers have an illogical relationship with nitrite (and its precursor, nitrate) in food. Despite a long history of use, nitrite was nearly banned from use in foods in the 1970s due to health concerns related to the potential for carcinogenic nitrosamine formation. Changes in meat processing methods reduced those potential risks, and nitrite continued to be used in foods. Since then, two opposing movements continue to shape how consumers view dietary nitrate and nitrite. The discovery of the profound physiological importance of nitric oxide led to the realization that dietary nitrate contributes significantly to the nitrogen reservoir for nitric oxide formation. Numerous clinical studies have also demonstrated beneficial effects from dietary nitrate consumption, especially in vascular and metabolic health. However, the latest wave of consumer sentiment against food additives, the clean-label movement, has renewed consumer fear and avoidance of preservatives, including nitrite. Education is necessary but may not be sufficient to resolve this disconnect in consumer perception. PMID:26994928

  7. Modulation of nitrate-nitrite conversion in the oral cavity.

    PubMed

    van Maanen, J M; van Geel, A A; Kleinjans, J C

    1996-01-01

    The formation of nitrite from ingested nitrate can give rise to the induction of methemoglobinemia and endogenous nitrosation resulting in the formation of carcinogenic N-nitroso compounds. We investigated the possibility of modulation of the conversion of nitrate into nitrite in the oral cavity in order to seek ways of reducing the formation of the deleterious nitrite. We investigated the effectiveness of several mouthwash solutions with antibacterial constituents on the reduction of nitrate into nitrite in the oral cavity. In 15 studied subjects, the mean percentage of salivary nitrate reduced to nitrite after ingestion of 235 mg (3.8 mmol) nitrate was found to be 16.1 +/- 6.2%. The use of an antiseptic mouthwash with active antibacterial constituent chlorhexidine resulted in an almost complete decrease of the mean percentage of reduced nitrate, to 0.9 +/- 0.8%. Mouthwash solutions with antibacterial component triclosan or antimicrobial enzymes amyloglucosidase and glucose oxidase did not affect the reduction of nitrate into nitrite. A toothpaste with active components triclosan and zinc citrate with synergistic antiplaque activity was also without effect. Use of a pH-regulating chewing gum resulted in a rise in the pH in the oral cavity from 6.8 to 7.3. At 30 min after nitrate ingestion, this rise was accompanied by a significant increase in the salivary nitrite concentration, which might be explained by the pH being close to the optimal pH for nitrate reductase of 8. In conclusion, a limited number of possibilities of modulation of the conversion of nitrate into nitrite in the oral cavity are available. PMID:8939344

  8. Sugar-driven prebiotic synthesis of ammonia from nitrite.

    PubMed

    Weber, Arthur L

    2010-06-01

    Reaction of 3-5 carbon sugars, glycolaldehyde, and alpha-ketoaldehydes with nitrite under mild anaerobic aqueous conditions yielded ammonia, an essential substrate for the synthesis of nitrogen-containing molecules during abiogenesis. Under the same conditions, ammonia synthesis was not driven by formaldehyde, glyoxylate, 2-deoxyribose, and glucose, a result indicating that the reduction process requires an organic reductant containing either an accessible alpha-hydroxycarbonyl group or an alpha-dicarbonyl group. Small amounts of aqueous Fe(+3) catalyzed the sugar-driven synthesis of ammonia. The glyceraldehyde concentration dependence of ammonia synthesis, and control studies of ammonia's reaction with glyceraldehyde, indicated that ammonia formation is accompanied by incorporation of part of the synthesized ammonia into sugar-derived organic products. The ability of sugars to drive the synthesis of ammonia is considered important to abiogenesis because it provides a way to generate photochemically unstable ammonia at sites of sugar-based origin-of-life processes from nitrite, a plausible prebiotic nitrogen species. PMID:20213158

  9. Sugar-Driven Prebiotic Synthesis of Ammonia from Nitrite

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2010-03-01

    Reaction of 3-5 carbon sugars, glycolaldehyde, and α-ketoaldehydes with nitrite under mild anaerobic aqueous conditions yielded ammonia, an essential substrate for the synthesis of nitrogen-containing molecules during abiogenesis. Under the same conditions, ammonia synthesis was not driven by formaldehyde, glyoxylate, 2-deoxyribose, and glucose, a result indicating that the reduction process requires an organic reductant containing either an accessible α-hydroxycarbonyl group or an α-dicarbonyl group. Small amounts of aqueous Fe+3 catalyzed the sugar-driven synthesis of ammonia. The glyceraldehyde concentration dependence of ammonia synthesis, and control studies of ammonia’s reaction with glyceraldehyde, indicated that ammonia formation is accompanied by incorporation of part of the synthesized ammonia into sugar-derived organic products. The ability of sugars to drive the synthesis of ammonia is considered important to abiogenesis because it provides a way to generate photochemically unstable ammonia at sites of sugar-based origin-of-life processes from nitrite, a plausible prebiotic nitrogen species.

  10. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    PubMed

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils. PMID:25784903

  11. Ultrasonic Treatment Enhanced Ammonia-Oxidizing Bacterial (AOB) Activity for Nitritation Process.

    PubMed

    Zheng, Min; Liu, Yan-Chen; Xin, Jia; Zuo, Hao; Wang, Cheng-Wen; Wu, Wei-Min

    2016-01-19

    Oxidation of ammonia to nitrite rather than nitrate is critical for nitritation process for wastewater treatment. We proposed a promising approach by using controlled ultrasonic treatment to enhance the activity of ammonia-oxidizing bacteria (AOB) and suppress that of nitrite-oxidizing bacteria (NOB). Batch activity assays indicated that when ultrasound was applied, AOB activity reached a peak level and then declined but NOB activity deteriorated continuously as the power intensity of ultrasound increased. Kinetic analysis of relative microbial activity versus ultrasonic energy density was performed to investigate the effect of operational factors (power, sludge concentration, and aeration) on AOB and NOB activities and the test parameters were selected for reactor tests. Laboratory sequential batch reactor (SBR) was further used to test the ultrasonic stimulus with 8 h per day operational cycle and synthetic waste urine as influent. With specific ultrasonic energy density of 0.09 kJ/mg VSS and continuously fed influent containing above 200 mg NH3-N/L, high AOB reproductive activity was achieved and nearly complete conversion of ammonia-N to nitrite was maintained. Microbial structure analysis confirmed that the treatment changed community of AOB, NOB, and heterotrophs. Known AOB Nitrosomonas genus remained at similar level in the biomass while typical NOB Nitrospira genus disappeared in the SBR under ultrasonic treatment and after the treatment was off for 30 days. PMID:26678011

  12. Increased Salivary Nitrite and Nitrate Excretion in Rats with Cirrhosis.

    PubMed

    Mahmoodi, Somayeh; Rahmatollahi, Mahdieh; Shahsavari, Fatemeh; Shafaroodi, Hamed; Grayesh-Nejad, Siyavash; Dehpour, Ahmad R

    2015-11-01

    Increased nitric oxide (NO) formation is mechanistically linked to pathophysiology of the extrahepatic complications of cirrhosis. NO is formed by either enzymatic or non-enzymatic pathways. Enzymatic production is catalyzed by NO synthase (NOS) while entero-salivary circulation of nitrate and nitrite is linked to non-enzymatic formation of NO under acidic pH in the stomach. There is no data on salivary excretion of nitrate and nitrite in cirrhosis. This study was aimed to investigate salivary levels of nitrate and nitrite in a rat model of biliary cirrhosis. Cirrhosis was induced by bile duct ligation (BDL). Four weeks after the operation, submandibular ducts of anesthetized BDL and control rats were cannulated with polyethylene microtube for saliva collection. Assessment of pH, nitrite and nitrate levels was performed in our research. We also investigated NOS expression by real time RT-PCR to estimate eNOS, nNOS and iNOS mRNA levels in the submandibular glands. Salivary pH was significantly lower in BDL rats in comparison to control animals. We also observed a statistically significant increase in salivary levels of nitrite as well as nitrate in BDL rats while there was no elevation in the mRNA expression of nNOS, eNOS, and iNOS in submandibular glands of cirrhotic groups. This indicates that an increased salivary level of nitrite/nitrate is less likely to be linked to increased enzymatic production of NO in the salivary epithelium. It appears that nitrate/nitrite can be transported from the blood stream by submandibular glands and excreted into saliva as entero-salivary circulation, and this mechanism may have been exaggerated during cirrhosis. PMID:26786986

  13. Nitrite reduction in paracoccus halodenitrificans: Evidence for the role of a cd-type cytochrome in ammonia formation

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Cronin, S. E.

    1984-01-01

    Cell-free extracts prepared from Paracoccus halodenitrificans catalyzed the reduction of nitrate to ammonia in the presence of dithionite and methyl viologen. Enzyme activity was located in the soluble fraction and was associated with a cytochrome whose spectral properties resembled those of a cd-type cytochrome. Unlike the sissimilatory cd-cytochrome nitrate reductase associated with the membrane fraction of P. halodenitrificans, this soluble cd-cytochrome did not reduce nitrite to nitrous oxide.

  14. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    PubMed Central

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (p<0.001 and =0.017 for nitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  15. Impacts of Nitrate and Nitrite on Physiology of Shewanella oneidensis

    PubMed Central

    Zhang, Haiyan; Fu, Huihui; Wang, Jixuan; Sun, Linlin; Jiang, Yaoming; Zhang, Lili; Gao, Haichun

    2013-01-01

    Shewanella oneidensis exhibits a remarkable versatility in anaerobic respiration, which largely relies on its diverse respiratory pathways. Some of these are expressed in response to the existence of their corresponding electron acceptors (EAs) under aerobic conditions. However, little is known about respiration and the impact of non-oxygen EAs on the physiology of the microorganism when oxygen is present. Here we undertook a study to elucidate the basis for nitrate and nitrite inhibition of growth under aerobic conditions. We discovered that nitrate in the form of NaNO3 exerts its inhibitory effects as a precursor to nitrite at low concentrations and as an osmotic-stress provider (Na+) at high concentrations. In contrast, nitrite is extremely toxic, with 25 mM abolishing growth completely. We subsequently found that oxygen represses utilization of all EAs but nitrate. To order to utilize EAs with less positive redox potential, such as nitrite and fumarate, S. oneidensis must enter the stationary phase, when oxygen respiration becomes unfavorable. In addition, we demonstrated that during aerobic respiration the cytochrome bd oxidase confers S. oneidensis resistance to nitrite, which likely functions via nitric oxide (NO). PMID:23626841

  16. Acute toxicity of ammonia and nitrite to shortnose sturgeon fingerlings

    USGS Publications Warehouse

    Fontenot, Q.C.; Isely, J.J.; Tomasso, J.R.

    1998-01-01

    The 96-h median-lethal concentration (96-h LC50) of total ammonia nitrogen (ammonia-N) to fingerling shortnose sturgeon Acipenser brevirostrum was 149.8 ?? 55.20 mg/L (mean ?? SD, 17.9 ?? 0.62??C, pH = 6.8-7.3). Calculated 96-h LC50 for un-ionized ammonia-N was 0.58 ?? 0.213 mg/L. The 96-h LC50 of nitrite nitrogen to shortnose sturgeon fingerlings was 11.3 ?? 8.17 mg/L (17.9 ?? 0.31??C, <1.0 mg chloride/L, <1.0 mg magnesium/L, 1.8 mg calcium/L, 7.7 mg sodium/L).

  17. Ultraviolet irradiation effects incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2012-01-01

    One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, 15N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of 15N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of 15N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290–300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.

  18. Spectrophotometric determination of nitrite and nitrate using phosphomolybdenum blue complex.

    PubMed

    Zatar, N A; Abu-Eid, M A; Eid, A F

    1999-11-15

    A method for spectrophotometric determination of nitrite and nitrate is described. This method is based on the reduction of phosphomolybdic acid to phosphomolybdenum blue complex by sodium sulfide. The obtained phosphomolybdenum blue complex is oxidized by the addition of nitrite and this causes a reduction in intensity of the blue color. The absolute decrease in the absorbance of the blue color or the rate of its decrease is found to be directly proportional to the amount of nitrite added. The absorbance of the phosphomolybdenum blue complex is monitored spectrophotometrically at 814 nm and related to the concentration of nitrite present. The effect of different factors such as acidity, stability of the complex, time, temperature, phosphate concentration, molybdenum concentration, sodium sulfide concentration and the tolerance amount of other ions have been reported. Maximum absorbance is at 814 nm. The range of linearity using the conventional method is 0.5-2.0 ppm with molar absorptivity of 1.1 x 10(4) l mol(-1) cm(-1). and a relative standard deviation of 2.6% for five measurements. The range of linearity using the reaction rate method is 0.2-3.6 ppm with a relative standard deviation of 2.4% for five measurements. The method is applied for determination of nitrite and nitrate in water, meat products and vegetables. PMID:18967772

  19. Ammonia on the prebiotic Earth: Iron(II) reduction of nitrite. [Abstract only

    NASA Technical Reports Server (NTRS)

    Summers, David P.; Chang, Sherwood

    1994-01-01

    Theories for the origin of life require the availability of reduced nitrogen. In the non-reducing atmosphere suggested by geochemical evidence, production in the atmosphere and survival of NH3 against photochemical destruction are problematic. Electric discharges and impact shocks would produce NO rather than HCN or NH3. Conversion of NO to nitrous and nitric acid (by way of HNO) and precipitation in acid rain would provide a source of fixed nitrogen to the early ocean. One solution to the NH3 problem may have been the reduction of nitrite/nitrate in the ocean with aqueous ferrous iron, Fe(2+): 6Fe(+2) + 7 H2O + NO2(-) yields 3Fe2O3 + 11 H(+) + NH3. We have measured the kinetics of this reaction as a function of temperature, pH, and concentrations of salts, Fe(+2), and NO2(-). Cations (Na(+), Mg(2+), K(+)) and anions (Cl(-), Br(-), SO4(2-)) increase the rate by factors of 4 to 8. Although a competing pathway yields N2, the efficiency of the conversion of nitrite to ammonia ranges from 25% to 85%. Nitrate reduction was not consistently reproducible; however, when it was observed, its rate was slower by at least 8X than that of nitrite reduction. If the prebiotic atmosphere contained 0.2 to 10 atmospheres CO2 as suggested by Walker (1985), the Fe(+2) concentration and the rate would have been limited by siderite (FeCO3) solubility.

  20. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants. PMID:26447683

  1. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    NASA Technical Reports Server (NTRS)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  2. The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis.

    PubMed Central

    Ogawa, K; Akagawa, E; Yamane, K; Sun, Z W; LaCelle, M; Zuber, P; Nakano, M M

    1995-01-01

    Bacillus subtilis can use either nitrate or nitrite as a sole source of nitrogen. The isolation of the nasABCDEF genes of B. subtilis, which are required for nitrate/nitrite assimilation, is reported. The probable gene products include subunits of nitrate/nitrite reductases and an enzyme involved in the synthesis of siroheme, a cofactor for nitrite reductase. PMID:7868621

  3. Self-powered denitration of landfill leachate through ammonia/nitrate coupled redox fuel cell reactor.

    PubMed

    Zhang, Huimin; Xu, Wei; Feng, Daolun; Liu, Zhanmeng; Wu, Zucheng

    2016-03-01

    In order to explore the feasibility of energy-free denitrifying N-rich wastewater, a self-powered device was uniquely assembled, in which ammonia/nitrate coupled redox fuel cell (CRFC) reactor was served as removing nitrogen and harvesting electric energy simultaneously. Ammonia is oxidized at anodic compartment and nitrate is reduced at cathodic compartment spontaneously by electrocatalysis. In 7.14 mM ammonia+0.2M KOH anolyte and 4.29 mM KNO3+0.1M H2SO4 catholyte, the nitrate removal efficiency was 46.9% after 18 h. Meanwhile, a maximum power density of 170 mW m(-2) was achieved when applying Pd/C cathode. When NH4Cl/nitrate and ammonia/nitrite CRFCs were tested, 26.2% N-NH4Cl and 91.4% N-NO2(-) were removed respectively. Nitrogen removal efficiency for real leachate at the same initial NH3-N concentration is 22.9% and nitrification of ammonia in leachate can be used as nitrate source. This work demonstrated a new way for N-rich wastewater remediation with electricity generation. PMID:26720140

  4. Nitrite and nitrate as electron acceptors for biological sulphide oxidation.

    PubMed

    Munz, G; Mannucci, A; Arreola-Vargas, J; Alatriste-Mondragon, F; Giaccherini, F; Mori, G

    2015-01-01

    Autotrophic denitrification with sulphide using nitrate (R1) and nitrite (R2) as electron acceptor was investigated at bench scale. Different solids retention times (SRT) (5 and 20 d) have been tested in R1 while R2 was operated at SRT=13 d. The results indicated that the process allows complete sulphide removal to be achieved in all tested conditions. Tested sulphide loads were estimated from the H2S produced in a pilot-scale anaerobic digester treating vegetable tannery primary sludge; nitrogen loads originated from the nitrification of the supernatant. Average nitrogen removal efficiencies higher than 80% were observed in all the tested conditions once steady state was reached. A maximum specific nitrate removal rate equal to 0.35 g N-NO3- g VSS(-1) d(-1) was reached in R1. Due to sulphide limitation, incomplete denitrification was observed and nitrite and thiosulphate tend to accumulate especially in the presence of variable environmental conditions in both R1 and R2. Lower SRT caused higher NO2accumulated/NO3reduced ratios (0.22 and 0.24, with SRT of 5 d and 20 d, respectively) using nitrate as electron acceptor in steady-state condition. Temperature decrease caused sudden NO2accumulated/NO3reduced ratio increase in R1 and NO2- removal decrease in R2. PMID:26247758

  5. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide.

    PubMed Central

    Stuehr, D J; Marletta, M A

    1985-01-01

    Escherichia coli lipopolysaccharide (LPS)-induced nitrate biosynthesis was studied in LPS-sensitive C3H/He and LPS-resistant C3H/HeJ mice. Intraperitoneal injection of 15 micrograms of LPS led to a temporary 5- to 6-fold increase in blood nitrate concentration in the C3H/He strain. Levels of nitrate excreted in the urine were also increased. In contrast, no increase was observed in the C3H/HeJ strain with LPS injections up to 175 micrograms. Furthermore, thioglycolate-elicited peritoneal macrophages from C3H/He, but not from C3H/HeJ mice, produced nitrite (60%) and nitrate (40%) when cultured with LPS (10 micrograms/ml). T-lymphocyte addition/depletion experiments showed the presence of T cells enhanced this response. However, LPS did not cause nitrite or nitrate production in cultures of spleen lymphocytes from either strain. LPS-induced nitrate synthesis was also observed with nude mice and CBA/N mice, indicating that neither functional T lymphocytes nor LPS-responsive B lymphocytes were required for the response in vivo. This was consistent with the in vitro results showing macrophages alone were competent. Mycobacterium bovis infection of C3H/He and C3H/HeJ mice resulted in a large increase in nitrate production over the course of the infection for both strains, suggesting T-lymphocyte-mediated activation of macrophages as a potent stimulus for nitrate biosynthesis. The synthesis of nitrite is significant in that it can directly participate in the endogenous formation of nitrosamines and may also be involved in some aspect of the chemistry of cytotoxicity. PMID:3906650

  6. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide

    SciTech Connect

    Stuehr, D.J.; Marletta, M.A.

    1985-11-01

    Escherichia coli lipopolysaccharide (LPS)-induced nitrate biosynthesis was studied in LPS-sensitive C3H/He and LPS-resistant C3H/HeJ mice. Intraperitoneal injection of 15 ..mu..g of LPS led to a temporary 5- to 6-fold increase in blood nitrate concentration in the C3H/He strain. Levels of nitrate excreted in the urine were also increased. In contrast, no increase was observed in the C3H/HeJ strain with LPS injections up to 175 ..mu..g. Furthermore, thioglycolate-elicited peritoneal macrophages from C3H/He, but not from C3H/HeJ mice, produced nitrite (60%) and nitrate (40%) when cultured with LPS (10 ..mu..g/ml). T-lymphocyte addition/depletion experiments showed the presence of T cells enhanced this response. However, LPS did not cause nitrite or nitrate production in cultures of spleen lymphocytes from either strain. LPS-induced nitrate synthesis was also observed with nude mice and CBA/N mice, indicating that neither functional T lymphocytes nor LPS-responsive B lymphocytes were required for the response in vivo. This was consistent with the in vitro results showing macrophages alone were competent. Mycobacterium bovis infection of C3H/He and C3H/HeJ mice resulted in a large increase in nitrate production over the course of the infection for both strains, suggesting T-lymphocyte-mediated activation of macrophages as a potent stimulus for nitrate biosynthesis. The synthesis of nitrite is significant in that it can directly participate in the endogenous formation of nitrosamines and may also be involved in some aspect of the chemistry of cytotoxicity.

  7. Toluene nitration in irradiated nitric acid and nitrite solution

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the •NO2 radical.

  8. A composite biochemical system for bacterial nitrate and nitrite assimilation as exemplified by Paracoccus denitrificans.

    PubMed

    Gates, Andrew J; Luque-Almagro, Victor M; Goddard, Alan D; Ferguson, Stuart J; Roldán, M Dolores; Richardson, David J

    2011-05-01

    The denitrifying bacterium Paracoccus denitrificans can grow aerobically or anaerobically using nitrate or nitrite as the sole nitrogen source. The biochemical pathway responsible is expressed from a gene cluster comprising a nitrate/nitrite transporter (NasA), nitrite transporter (NasH), nitrite reductase (NasB), ferredoxin (NasG) and nitrate reductase (NasC). NasB and NasG are essential for growth with nitrate or nitrite as the nitrogen source. NADH serves as the electron donor for nitrate and nitrite reduction, but only NasB has a NADH-oxidizing domain. Nitrate and nitrite reductase activities show the same Km for NADH and can be separated by anion-exchange chromatography, but only fractions containing NasB retain the ability to oxidize NADH. This implies that NasG mediates electron flux from the NADH-oxidizing site in NasB to the sites of nitrate and nitrite reduction in NasC and NasB respectively. Delivery of extracellular nitrate to NasBGC is mediated by NasA, but both NasA and NasH contribute to nitrite uptake. The roles of NasA and NasC can be substituted during anaerobic growth by the biochemically distinct membrane-bound respiratory nitrate reductase (Nar), demonstrating functional overlap. nasG is highly conserved in nitrate/nitrite assimilation gene clusters, which is consistent with a key role for the NasG ferredoxin, as part of a phylogenetically widespread composite nitrate and nitrite reductase system. PMID:21348864

  9. Nitrate to ammonia ceramic (NAC) bench scale stabilization study

    SciTech Connect

    Caime, W.J.; Hoeffner, S.L.

    1995-10-01

    Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. A process to reduce the nitrates to ammonia has been developed at ORNL. This technology creates a sludge lower in nitrates. This report describes stabilization possibilities of the sludge.

  10. 75 FR 29534 - Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... AGENCY Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft... draft ecological risk assessment for the registration review of inorganic nitrates - nitrites, carbon and carbon dioxide, and gas cartridge uses of sulfur, and opens a public comment period on...

  11. Uptake of Nitrite by Neurospora crassa

    PubMed Central

    Schloemer, Robert H.; Garrett, Reginald H.

    1974-01-01

    Like the nitrate transport system, the nitrite uptake system in Neurospora crassa is induced by either nitrate or nitrite. This induction is prevented by cycloheximide, puromycin, or 6-methyl purine. The Km for nitrite of the induced nitrite uptake system is 86 μM, and the Vmax is 100 μmol of nitrite per g (wet weight) per h. Nitrite uptake is inhibited by metabolic poisons such as arsenate, dinitrophenol, cyanide, and antimycin A. No repression or inhibition of the nitrite transport system by ammonia, nitrate, or Casamino Acids was observed. PMID:4274458

  12. A novel control method for nitritation: The domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor.

    PubMed

    Tokutomi, Takaaki; Shibayama, Chizu; Soda, Satoshi; Ike, Michihiko

    2010-07-01

    A novel nitritation method based on the addition of inorganic carbon (IC) was verified using an airlift-fluidized bed reactor packed with sponge cubes. A continuous-treatment experiment demonstrated that the type of nitrification-nitrite or nitrate accumulation-could be controlled by the addition of different alkalinity sources (NaHCO(3) or NaOH, respectively). The maximum rate of ammonia oxidation at 30 degrees C was 2.47kg-N/(m(3) d), with nitrate formation of less than 0.5% of the converted ammonia. Nitrite accumulation of over 90% was maintained stably over 250 days at 30 degrees C and was achieved even at 19 degrees C. Qualitative and quantitative shifts of nitrifying bacteria in the biofilm were monitored by real-time PCR and T-RFLP analysis. Ammonia-oxidizing bacteria (AOB) were dominant but nitrite-oxidizing bacteria (NOB) were eliminated in the reactor when NaHCO(3) was used as the alkalinity source. From the kinetic data, we inferred that high IC concentrations drive stable nitritation by promoting a higher growth rate for AOB than for NOB. PMID:20554306

  13. Effects of agriculture production systems on nitrate and nitrite accumulation on baby-leaf salads

    PubMed Central

    Aires, Alfredo; Carvalho, Rosa; Rosa, Eduardo A S; Saavedra, Maria J

    2013-01-01

    Nitrate and nitrite are widespread contaminants of vegetables, fruits, and waters. The levels of these compounds are increased as a result of using organic wastes from chemical industries, domestic wastes, effluents, nitrogenous fertilizers, and herbicides in agriculture. Therefore, determining the nitrate and nitrite levels in biological, food, and environmental samples is important to protect human health and the environment. In this context, we set this study, in which we report the effect of production system (conventional and organic) on the accumulation of nitrates and nitrites in fresh baby-leaf samples. The average levels of the nitrate () and nitrite () contents in six different baby-leaf salads of a single species (green lettuce, red lettuce, watercress, rucola, chard, and corn salad) produced in organic and conventional agriculture system were evaluated. Spectrophotometric analytical method recently published was validated and used. Nitrates and nitrites were detected in all samples. The nitrates levels from organic production varied between 1.45 and 6.40 mg/kg fresh weight (FW), whereas those from conventional production ranged from 10.5 to 45.19 mg/kg FW. The nitrites content was lower than nitrates and ranged from 0.32 to 1.89 mg/kg FW in organic production system and between 0.14 and 1.41 mg/kg FW in conventional production system. Our results showed that the nitrate content was dependent on the agricultural production system, while for nitrites, this dependency was less pronounced. PMID:24804008

  14. Automated, colorimetric methods for determination of nitrate plus nitrite, nitrite, ammonium and orthophosphate ions in natural water samples

    USGS Publications Warehouse

    Antweiler, Ronald C.; Patton, Charles J.; Taylor, Howard E.

    1996-01-01

    The apparatus and methods used for the automatic, colorimetric determinations of dissolved nutrients (nitrate plus nitrite, nitrite, ammonium and orthophosphate) in natural waters are described. These techniques allow for the determination of nitrate plus nitrite for the concentration range 0.02 to 8 mg/L (milligrams per liter) as N (nitrogen); for nitrite, the range is 0.002 to 1.0 mg/L as N; for ammonium, the range is 0.006 to 2.0 mg/L as N; and for orthophosphate, the range is 0.002 to 1.0 mg/L as P (phosphorus). Data are presented that demonstrate the accuracy, precision and quality control of the methods.

  15. Electrochemical reduction of nitrate and nitrite in simulated liquid nuclear wastes.

    PubMed

    Katsounaros, I; Dortsiou, M; Kyriacou, G

    2009-11-15

    The electrochemical reduction of nitrate and nitrite in simulated low-level nuclear wastes containing 1.8 M NaNO(3)+0.55 M NaNO(2)+1.16 M NaOH was studied under galvanostatic polarization on tin and bismuth cathodes. The rate of the reduction of nitrate was about the same on both metals. The selectivity (%S) to ammonia was similar on the two metals (12% at 450 mA/cm(2)) and that to nitrogen 82% on Sn and 72% on Bi. On the other hand, the %S to nitrous oxide was lower on Sn (8%) than that on Bi (18%) under the same conditions. The current efficiency (%CE) on both metals was 80% when the 99% of the initial nitrogen was removed. The %CE gradually decreases as the concentration of the nitrogen containing species in the solution decreases during the electrolysis. The energy consumption for the removal of 1g of N was 100 Wh at 450 mA/cm(2) but it can be significantly reduced by a better design of the electrolysis cell.The presence of chromate in the electrolyte, which is a known inhibitor of the cathodic reduction of nitrate, has no influence on the rate of the reduction and the distribution of the products. PMID:19559523

  16. Anisole Nitration During Gamma-Irradiation of Aqueous Nitrite and Nitrate Solutions: Free Radical Versus Ionic Mechanisms

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Leigh R. Martin; Stephen P. Mezyk; Thomas D. Cullen

    2010-04-01

    The nitration of aromatic compounds in the condensed phase is of interest to nuclear waste treatment applications. This chapter discusses our investigation of radiolytic aromatic nitration mechanisms in the condensed phase toward understanding the nitration products created during nuclear fuel reprocessing. The nitration reactions of anisole, a model aromatic compound, were studied in ?-irradiated acidic nitrate, neutral nitrate, and neutral nitrite solutions. The nitrated anisole product distributions were the same with and without radiation in acidic solution, although more products were formed with radiation. In the irradiated acidic condensed phase, radiation-enhanced nitrous acid-catalyzed nitrosonium ion electrophilic aromatic substitution followed by oxidation reactions dominated over radical addition reactions. Neutral nitrate anisole solutions were dominated by mixed nitrosonium/nitronium ion electrophilic aromatic substitution reactions, but with lower product yields. Irradiation of neutral nitrite anisole solution resulted in a statistical substitution pattern for nitroanisole products, suggesting non-electrophilic free radical reactions involving the •NO2 radical.

  17. Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during...

  18. Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during ...

  19. Plasma nitrate and nitrite are increased by a high-nitrate supplement but not by high-nitrate foods in older adults.

    PubMed

    Miller, Gary D; Marsh, Anthony P; Dove, Robin W; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S Bruce; Kim-Shapiro, Daniel

    2012-03-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/nitric oxide cycle in older adults. We examined the effect of a 3-day control diet vs high-nitrate diet, with and without a high-nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics and blood pressure using a randomized 4-period crossover controlled design. We hypothesized that the high-nitrate diet would show higher levels of plasma nitrate/nitrite and lower blood pressure compared with the control diet, which would be potentiated by the supplement. Participants were 8 normotensive older men and women (5 female, 3 male, 72.5 ± 4.7 years old) with no overt disease or medications that affect nitric oxide metabolism. Plasma nitrate and nitrite levels and blood pressure were measured before and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet + supplement (P < .001 and P = .017 for nitrate and nitrite, respectively) and high-nitrate diet + supplement (P = .001 and P = .002), but not for control diet (P = .713 and P = .741) or high-nitrate diet (P = .852 and P = .500). Blood pressure decreased from the morning baseline measure to the three 2-hour postmeal follow-up time points for all treatments, but there was no main effect for treatment. In healthy older adults, a high-nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  20. Nitrate and nitrite levels of potable water supply in Warri, Nigeria: a public health concern.

    PubMed

    Nduka, John Kanayochukwu; Orisakwe, Orish Ebere; Ezenweke, Linus Obi

    2010-01-01

    In this study, the authors investigated the nitrate and nitrite in different water sources (surface water, shallow well water, and borehole water) in the market and industrialized areas of Warri in the Niger Delta area of Nigeria. The authors' goal was to find the comparative levels of nitrates and nitrites from these two parts of the community. They selected five sampling sites from industrialized areas and another five from market areas. Nitrate and nitrites were determined using a DR/4000 UV-Vis spectrophotometer. The appreciable quantities of nitrates and nitrites found in these investigations have some public health implications. This study suggests that indiscriminate disposal of waste and poor sanitation may be additional contributing factors in the nitrate pollution of the water supply in the Niger Delta area of Nigeria. PMID:20104831

  1. Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases.

    PubMed

    Omar, S A; Webb, A J; Lundberg, J O; Weitzberg, E

    2016-04-01

    Nitric oxide (NO) is generated endogenously by NO synthases to regulate a number of physiological processes including cardiovascular and metabolic functions. A decrease in the production and bioavailability of NO is a hallmark of many major chronic diseases including hypertension, ischaemia-reperfusion injury, atherosclerosis and diabetes. This NO deficiency is mainly caused by dysfunctional NO synthases and increased scavenging of NO by the formation of reactive oxygen species. Inorganic nitrate and nitrite are emerging as substrates for in vivo NO synthase-independent formation of NO bioactivity. These anions are oxidation products of endogenous NO generation and are also present in the diet, with green leafy vegetables having a high nitrate content. The effects of nitrate and nitrite are diverse and include vasodilatation, improved endothelial function, enhanced mitochondrial efficiency and reduced generation of reactive oxygen species. Administration of nitrate or nitrite in animal models of cardiovascular disease shows promising results, and clinical trials are currently ongoing to investigate the therapeutic potential of nitrate and nitrite in hypertension, pulmonary hypertension, peripheral artery disease and myocardial infarction. In addition, the nutritional aspects of the nitrate-nitrite-NO pathway are interesting as diets suggested to protect against cardiovascular disease, such as the Mediterranean diet, are especially high in nitrate. Here, we discuss the potential therapeutic opportunities for nitrate and nitrite in prevention and treatment of cardiovascular and metabolic diseases. PMID:26522443

  2. Ion chromatographic determination of nitrate and nitrite in vegetable and fruit baby foods.

    PubMed

    McMullen, Sarah E; Casanova, John A; Gross, Lois K; Schenck, Frank J

    2005-01-01

    An ion chromatographic method was developed for the determination of nitrate and nitrite in vegetable and fruit baby foods. The introduction of nitrate or nitrite to food may be natural or artificial as a preservative. Because of the higher pH found in babies' stomachs, nitrate can act as a reservoir for the production of nitrite by nitrate-reducing bacteria that can be harbored in the intestinal tract. This problem does not exist in adults because of the lower pH of the adult stomach. Exposure to nitrite by infants can result in methemoglobinemia (blue baby syndrome). There are also indications that carcinogenic nitrosamines can be formed from nitrates at the higher pH. These gastric conditions disappear at approximately 6 months of age. In this method, nitrate and nitrite were separated on a hydroxide-selective anion exchange column using online electrolytically generated high-purity hydroxide eluant and detected using suppressed conductivity detection. Average recoveries of spiked nitrite residue ranged from 91 to 104% and spiked nitrate residue ranged from 87 to 104%. This method and the AOAC Official Method yield comparable results for samples containing incurred nitrate residue. In addition, this method eliminates the hazardous waste associated with the use of cadmium found in the AOAC Official Method. PMID:16526464

  3. Determining Nitrate and Nitrite Content in Beverages, Fruits, Vegetables, and Stews Marketed in Arak, Iran

    PubMed Central

    Rezaei, Mohammad; Fani, Ali; Moini, A. Latif; Mirzajani, Parisa; Malekirad, Ali Akbar; Rafiei, Mohammad

    2014-01-01

    Background and Objectives. Presence of excessive nitrite and nitrate in foodstuff can have toxic and carcinogenic effects on humans. This study is aimed at measuring nitrate and nitrite in different foodstuffs available in Arak city market, Iran, in 2013. Methods. Totally 323 samples including stew (102 samples), beverage (116 samples), fruit (55 samples), and vegetables (50 samples) were randomly collected and analyzed according to official AOAC method 973 and ISO 6635 through spectrophotometric method. Results. Average concentration of nitrate and nitrite in the samples was 6.58–136.76, 1.52–38.22 mg kg−1 or liter, respectively. Presence of nitrate and nitrite was confirmed in all samples. High levels of nitrate and nitrite were observed in celery and ghormeh stew; and lower level of nitrate and nitrite was found in traditionally produced vinegar, verjuice, and tomato. Conclusions. It was found that the mean values for nitrite in investigated products were higher than ADI levels of WHO. PMID:27379270

  4. Prevalence of nitrite and nitrate contents and its effect on edible bird nest's color.

    PubMed

    Paydar, Mohammadjavad; Wong, Yi Li; Wong, Won Fen; Hamdi, Omer Abdalla Ahmed; Kadir, Noraniza Abd; Looi, Chung Yeng

    2013-12-01

    Edible bird nests (EBNs) are important ethnomedicinal commodity in the Chinese community. Recently, But and others showed that the white EBNs could turn red by vapors from sodium nitrite (NaNO2) in acidic condition or from bird soil, but this color-changing agent remained elusive. The aim of this study was to determine the prevalence of nitrite and nitrate contents and its affects on EBN's color. EBNs were collected from swiftlet houses or caves in Southeast Asia. White EBNs were exposed to vapor from NaNO2 in 2% HCl, or bird soil. The levels of nitrite (NO2-) and nitrate (NO3-) in EBNs were determined through ion chromatography analysis. Vapors from NaNO2 in 2% HCl or bird soil stained white bird nests to brown/red colors, which correlated with increase nitrite and nitrate levels. Moreover, naturally formed cave-EBNs (darker in color) also contained higher nitrite and nitrate levels compared to white house-EBNs, suggesting a relationship between nitrite and nitrate with EBN's color. Of note, we detected no presence of hemoglobin in red "blood" nest. Using infrared spectra analysis, we demonstrated that red/brown cave-EBNs contained higher intensities of C-N and N-O bonds compared to white house-EBNs. Together, our study suggested that the color of EBNs was associated with the prevalence of the nitrite and nitrate contents. PMID:24279333

  5. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  6. Nitrite and Nitrate Concentrations and Metabolism in Breast Milk, Infant Formula, and Parenteral Nutrition

    PubMed Central

    Jones, Jesica A.; Ninnis, Janet R.; Hopper, Andrew O.; Ibrahim, Yomna; Merritt, T. Allen; Wan, Kim-Wah; Power, Gordon G.; Blood, Arlin B.

    2015-01-01

    Dietary nitrate and nitrite are sources of gastric NO, which modulates blood flow, mucus production, and microbial flora. However, the intake and importance of these anions in infants is largely unknown. Nitrate and nitrite levels were measured in breast milk of mothers of preterm and term infants, infant formulas, and parenteral nutrition. Nitrite metabolism in breast milk was measured after freeze-thawing, at different temperatures, varying oxygen tensions, and after inhibition of potential nitrite-metabolizing enzymes. Nitrite concentrations averaged 0.07 ± 0.01 μM in milk of mothers of preterm infants, less than that of term infants (0.13 ± 0.02 μM) (P < .01). Nitrate concentrations averaged 13.6 ± 3.7 μM and 12.7 ± 4.9 μM, respectively. Nitrite and nitrate concentrations in infant formulas varied from undetectable to many-fold more than breast milk. Concentrations in parenteral nutrition were equivalent to or lower than those of breast milk. Freeze-thawing decreased nitrite concentration ∼64%, falling with a half-life of 32 minutes at 37°C. The disappearance of nitrite was oxygen-dependent and prevented by ferricyanide and 3 inhibitors of lactoperoxidase. Nitrite concentrations in breast milk decrease with storage and freeze-thawing, a decline likely mediated by lactoperoxidase. Compared to adults, infants ingest relatively little nitrite and nitrate, which may be of importance in the modulation of blood flow and the bacterial flora of the infant GI tract, especially given the protective effects of swallowed nitrite. PMID:23894175

  7. Method 353.4 Determination of Nitrate and Nitrite in Estuarine and Coastal Waters by Gas Segmented Continuous Flow Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for determining nitrate and nitrite concentrations in estuarine and coastal waters. Nitrate is reduced to nitrite by cadmium,1-3 and the resulting nitrite determined by formation of an azo dye.4-6

  8. Green Alternatives to Nitrates and Nitrites in Meat-based Products-A Review.

    PubMed

    Gassara, Fatma; Kouassi, Anne Patricia; Brar, Satinder Kaur; Belkacemi, Khaled

    2016-10-01

    Several food additives are added in food for their preservation to maintain the freshness of food (antioxidants) or to slow down or stop the growth of microorganisms (preservative agents). Nitrites and nitrates are used as preservative agents in meat. Nitrites give a smoked taste, a pinkish color in the meat and protect the consumers against the risk of bacterial deterioration. Their addition is however very limited as, in high dose, it can have risks on human health and the environment. Nitrites may also combine with secondary or tertiary amines to form N-nitroso derivatives. Certain N-nitroso compounds have been shown to produce cancers in a wide range of laboratory animals. Thus, alternatives of nitrates and nitrites are the object of numerous research studies. Alternatives, such as the addition of vitamins, fruits, chemicals products, natural products containing nitrite or spices, which have similar properties of nitrites, are in evaluation. In fact, spices are considered to have several organoleptic and anti-microbial properties which would be interesting to study. Several spices and combinations of spices are being progressively evaluated. This review discusses the sources of nitrites and nitrates, their use as additives in food products, their physicochemical properties, their negatives effects and the use of alternatives of nitrites and nitrates in preserving meat products. PMID:25750989

  9. Oxidation efficiencies of nitrite to nitrate by freezing of field rain samples

    SciTech Connect

    Takenaka, Norimichi; Daimon, Tohru; Sato, Keiichi

    1996-12-31

    Nitrite is known to be oxidized to nitrate by freezing much more rapidly than in solution. Furthermore, the oxidation efficiency of nitrite to nitrate by freezing is varied by pH or kinds and concentration of coexistences. We report here the oxidation efficiencies of nitrite to nitrate by freezing of field rain samples. The field rain samples were collected at Mt. Ikoma, which is located at about 20 km east of Osaka city, and Osaka Prefecture University. Concentration of nitrite was usually sub to a few {mu}mol/L order in rain and {mu}mol/L order in fog and less than 1 {mu}mol/L in snow. The highest value of nitrite concentration was 43 {mu}mol/L in rain and 620 {mu}mol/L in fog. Nitrite was oxidized immediately to nitrate by freezing at pH lower than 5.2, even when the sample droplet (about 1 mm diameter) was frozen very quickly in liquid nitrogen (77K). The oxidation efficiency was higher at lower pH. However, the efficiency varied from sample to sample. This is probably due to that kinds and concentration of coexistences were difference between samples. The effect of solutes will be also reported. Freezing of rain droplets are observed in freezing of super cooled droplets, growing of graupel and hail, growing of cumulonimbus, and so on. Ratio of nitrate to nitrite was higher in snow than that in rain or fog.

  10. Effects of Certain Herbicides and Their Combinations on Nitrate and Nitrite Reduction 1

    PubMed Central

    Klepper, Lowell A.

    1979-01-01

    A study was made concerning the effect of various herbicides, when used alone or in combination, on nitrite accumulation in excised leaves of wheat (Triticum aestivum L., var. `Centurk'). Treatment of leaves with photosynthetic inhibitor herbicides, known to interfere with the transfer of light energy, caused accumulation of nitrite under illuminated, aerobic conditions. When certain other herbicides, which do not interfere with the photosynthetic process, were applied to leaves and incubated under dark, aerobic conditions, nitrite accumulations were enhanced over those treated with photosynthetic inhibitors or the controls. The combination of photosynthetic inhibitor herbicides and certain other “nonphotosynthetic inhibitor” herbicides caused relatively large amounts of nitrite to accumulate in light or in darkness. Nitrite accumulation occurs when nitrate and nitrite reduction are not in balance. The proposed actions of the herbicides used in this study are discussed. This discussion provides a rationale for the accumulation of nitrite by the herbicide-treated leaves. PMID:16660947

  11. Short-term nitrate (nitrite) inhibition of nitrogen fixation in Azotobacter chroococcum

    SciTech Connect

    Cejudo, F.J.; Paneque, A.

    1986-01-01

    Nitrate-grown Azotobacter chroococcum ATCC 4412 cells lack the ability to fix N/sub 2/. Nitrogenase activity developed after the cells were suspended in a combined nitrogen-free medium and was paralleled by a concomitant decrease in nitrate assimilation capacity. In such treated cells exhibiting transitory nitrate assimilation and N/sub 2/-fixation capacity, nitrate or nitrite caused a short-term inhibitory effect on nitrogenase activity which ceased once the anion was exhausted from the medium. The glutamate analog L-methionine-DL-sulfoximine, an inhibitor of glutamine synthetase, prevented inhibition of nitrogenase activity by nitrate or nitrite without affecting the uptake of these anions, which were reduced and stoichiometrically released into the external medium as ammonium. Inhibition of nitrogenase by nitrate (nitrite) did not take place in A. chroococcum MCD1, which is unable to assimilate either. The authors conclude that the short-term inhibitory effect of nitrate (nitrite) on nitrogenase activity is due to some organic product(s) formed during the assimilation of the ammonium resulting from nitrate (nitrite) reduction.

  12. Interdependence of two NarK domains in a fused nitrate/nitrite transporter.

    PubMed

    Goddard, Alan D; Moir, James W B; Richardson, David J; Ferguson, Stuart J

    2008-11-01

    Nitrate uptake is essential for various bacterial processes and combines with nitrite export to form the usual initial steps of denitrification, a process that reduces nitrate to dinitrogen gas. Although many bacterial species contain NarK-like transporters that are proposed to function as either nitrate/proton symporters or nitrate/nitrite antiporters based on sequence homology, these transporters remain, in general, poorly characterized. Several bacteria appear to contain a transporter that is a fusion of two NarK-like proteins, although the significance of this arrangement remains elusive. We demonstrate that NarK from Paracoccus denitrificans is expressed as a fusion of two NarK-like transporters. NarK1 and NarK2 are separately capable of supporting anaerobic denitrifying growth but with growth defects that are partially mitigated by coexpression of the two domains. NarK1 appears to be a nitrate/proton symporter with high affinity for nitrate and NarK2 a nitrate/nitrite antiporter with lower affinity for nitrate. Each transporter requires two conserved arginine residues for activity. A transporter consisting of inactivated NarK1 fused to active NarK2 has a dramatically increased affinity for nitrate compared with NarK2 alone, implying a functional interaction between the two domains. A potential model for nitrate and nitrite transport in P. denitrificans is proposed. PMID:18823285

  13. Sensitivity to nitrate and nitrite in pond-breeding amphibians from the Pacific Northwest, USA

    SciTech Connect

    Marco, A.; Quilchano, C.; Blaustein, A.R.

    1999-12-01

    In static experiments, the authors studied the effects of nitrate and nitrate solutions on newly hatched larvae of five species of amphibians, namely Rana pretiosa, Rana aurora, Bufo boreas, Hyla regilla, and Ambystoma gracile. When nitrate or nitrite ions were added to the water, some larvae of some species reduced feeding activity, swam less vigorously, showed disequilibrium and paralysis, suffered abnormalities and edemas, and eventually died. The observed effects increased with both concentration and time, and there were significant differences in sensitivity among species. Ambrystoma gracile displayed the highest acute effect in water with nitrate and nitrite. The three ranid species had acute effects in water with nitrite. In chronic exposures, R. pretiosa was the most sensitive species to nitrates and nitrites. All species showed 15-d LC50s lower than 2 mg N-NO{sub 2{sup {minus}}}/L. For both N ions, B. boreas was the least sensitive amphibian. All species showed a high morality at the US Environmental Protection Agency-recommended limits of nitrite for warm-water fishes and a significant larval mortality at the recommended limits of nitrite concentration for drinking water. The recommended levels of nitrate for warm-water fishes were highly toxic for R. pretiosa and A. gracile larvae.

  14. Tolerance of ciliated protozoan Paramecium bursaria (Protozoa, Ciliophora) to ammonia and nitrites

    NASA Astrophysics Data System (ADS)

    Xu, Henglong; Song, Weibo; Lu, Lu; Alan, Warren

    2005-09-01

    The tolerance to ammonia and nitrites in freshwater ciliate Paramecium bursaria was measured in a conventional open system. The ciliate was exposed to different concentrations of ammonia and nitrites for 2h and 12h in order to determine the lethal concentrations. Linear regression analysis revealed that the 2h-LC50 value for ammonia was 95.94 mg/L and for nitrite 27.35 mg/L using probit scale method (with 95% confidence intervals). There was a linear correlation between the mortality probit scale and logarithmic concentration of ammonia which fit by a regression equation y=7.32 x 9.51 ( R 2=0.98; y, mortality probit scale; x, logarithmic concentration of ammonia), by which 2 h-LC50 value for ammonia was found to be 95.50 mg/L. A linear correlation between mortality probit scales and logarithmic concentration of nitrite is also followed the regression equation y=2.86 x+0.89 ( R 2=0.95; y, mortality probit scale; x, logarithmic concentration of nitrite). The regression analysis of toxicity curves showed that the linear correlation between exposed time of ammonia-N LC50 value and ammonia-N LC50 value followed the regression equation y=2 862.85 e -0.08 x ( R 2=0.95; y, duration of exposure to LC50 value; x, LC50 value), and that between exposed time of nitrite-N LC50 value and nitrite-N LC50 value followed the regression equation y=127.15 e -0.13 x ( R 2=0.91; y, exposed time of LC50 value; x, LC50 value). The results demonstrate that the tolerance to ammonia in P. bursaria is considerably higher than that of the larvae or juveniles of some metozoa, e.g. cultured prawns and oysters. In addition, ciliates, as bacterial predators, are likely to play a positive role in maintaining and improving water quality in aquatic environments with high-level ammonium, such as sewage treatment systems.

  15. Nitrate as a source of nitrite and nitric oxide during exercise hyperemia in rat skeletal muscle.

    PubMed

    Piknova, Barbora; Park, Ji Won; Kwan Jeff Lam, Kai; Schechter, Alan N

    2016-05-01

    The presence of nitric oxide (NO) synthase enzymes, mainly the NOS1 isoform, in skeletal muscle had been well established; however in the last decade it has been realized that NO may also be produced by reduction of nitrate and tissue nitrite. We have recently shown that rodent skeletal muscle contains unusually high concentrations of nitrate, compared to blood and other tissues, likely produced by oxidation of NOS1-produced NO. In the present study we measured nitrate and nitrite levels in Wistar rat leg tissue before and after acute and chronic exercise of the animals on a treadmill. We found a very large decrease of muscle nitrate levels immediately after exercise accompanied by a transient increase of nitrite levels. A significant decrease in blood nitrate levels accompanied the changes in muscle levels. Using skeletal muscle tissue homogenates we established that xanthine oxidoreductase (XOR) is at least partially responsible for the generation of nitrite and/or NO from nitrate and that this effect is increased by slight lowering of pH and by other processes related to the exercise itself. We hypothesize that the skeletal muscle nitrate reservoir contributes significantly to the generation of nitrite and then, probably via formation of NO, exercise-induced functional hyperemia. A model for these metabolic interconversions in mammals is presented. These reactions could explain the muscle-generated vasodilator causing increased blood flow, with induced contraction, exercise, or hypoxia, postulated more than 100 years ago. PMID:27000467

  16. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Smith, Jacob W.; Lam, Royce K.; Shih, Orion; Rizzuto, Anthony M.; Prendergast, David; Saykally, Richard J.

    2015-08-01

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO3- and NO2-. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  17. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    SciTech Connect

    Smith, Jacob W.; Lam, Royce K.; Saykally, Richard J.; Shih, Orion; Rizzuto, Anthony M.; Prendergast, David

    2015-08-28

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO{sub 3}{sup −} and NO{sub 2}{sup −}. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  18. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.; Mao, J.; Naik, V.; Horowitz, L. W.

    2015-09-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for present-day fine nitrate optical depth at 550 nm is 0.006 (0.005-0.008). We only find a modest increase of nitrate optical depth (< 30 %) in response to the projected changes in the emissions of SO2 (-40 %) and ammonia (+38 %) from 2010 to 2050. Nitrate burden is projected to increase in the tropics and in the free troposphere, but to decrease at the surface in the midlatitudes because of lower nitric acid concentrations. Our results suggest that better constraints on the heterogeneous chemistry of nitric acid on dust, on tropical ammonia emissions, and on the transport of ammonia to the free troposphere are needed to improve projections of aerosol optical depth.

  19. Effects of agriculture production systems on nitrate and nitrite accumulation on baby-leaf salads.

    PubMed

    Aires, Alfredo; Carvalho, Rosa; Rosa, Eduardo A S; Saavedra, Maria J

    2013-01-01

    Nitrate and nitrite are widespread contaminants of vegetables, fruits, and waters. The levels of these compounds are increased as a result of using organic wastes from chemical industries, domestic wastes, effluents, nitrogenous fertilizers, and herbicides in agriculture. Therefore, determining the nitrate and nitrite levels in biological, food, and environmental samples is important to protect human health and the environment. In this context, we set this study, in which we report the effect of production system (conventional and organic) on the accumulation of nitrates and nitrites in fresh baby-leaf samples. The average levels of the nitrate ([Formula: see text]) and nitrite ([Formula: see text]) contents in six different baby-leaf salads of a single species (green lettuce, red lettuce, watercress, rucola, chard, and corn salad) produced in organic and conventional agriculture system were evaluated. Spectrophotometric analytical method recently published was validated and used. Nitrates and nitrites were detected in all samples. The nitrates levels from organic production varied between 1.45 and 6.40 mg/kg fresh weight (FW), whereas those from conventional production ranged from 10.5 to 45.19 mg/kg FW. The nitrites content was lower than nitrates and ranged from 0.32 to 1.89 mg/kg FW in organic production system and between 0.14 and 1.41 mg/kg FW in conventional production system. Our results showed that the nitrate content was dependent on the agricultural production system, while for nitrites, this dependency was less pronounced. PMID:24804008

  20. Dietary intake of polyphenols, nitrate and nitrite and gastric cancer risk in Mexico City

    PubMed Central

    Hernández-Ramírez, Raúl U.; Galván-Portillo, Marcia V.; Ward, Mary H.; Agudo, Antonio; González, Carlos A.; Oñate-Ocaña, Luis F.; Herrera-Goepfert, Roberto; Palma-Coca, Oswaldo; López-Carrillo, Lizbeth

    2009-01-01

    N-Nitroso compounds (NOC) are potent animal carcinogens and potential human carcinogens. The primary source of exposure for most individuals may be endogenous formation, a process that can be inhibited by dietary polyphenols. To estimate the risk of gastric cancer (GC) in relation to the individual and combined consumption of polyphenols and NOC precursors (nitrate and nitrite), a population-based case–control study was carried out in Mexico City from 2004 to 2005 including 257 histologically confirmed GC cases and 478 controls. Intake of polyphenols, nitrate and nitrite were estimated using a food frequency questionnaire. High intakes of cinnamic acids, secoisolariciresinol and coumestrol were associated with an ~50% reduction in GC risk. A high intake of total nitrite as well as nitrate and nitrite from animal sources doubled the GC risk. Odds ratios around 2-fold were observed among individuals with both low intake of cinnamic acids, secoisolariciresinol or coumestrol and high intake of animal-derived nitrate or nitrite, compared to high intake of the polyphenols and low animal nitrate or nitrite intake, respectively. Results were similar for both the intestinal and diffuse types of GC. Our results show, for the first time, a protective effect for GC because of higher intake of cinnamic acids, secoisolariciresinol and coumestrol, and suggest that these polyphenols reduce GC risk through inhibition of endogenous nitrosation. The main sources of these polyphenols were pears, mangos and beans for cinnamic acids; beans, carrots and squash for secoisolariciresinol and legumes for coumestrol. PMID:19449378

  1. Inorganic nitrite and nitrate: evidence to support consideration as dietary nutrients.

    PubMed

    Bryan, Nathan S; Ivy, John L

    2015-08-01

    There are now indisputable health benefits of nitrite and nitrate derived from food sources or when administered in a clinical setting for specific diseases. Most of the published reports identify the production of nitric oxide (NO) as the mechanism of action for nitrite and nitrate. Basic science as well as clinical studies demonstrates that nitrite and/or nitrate can restore NO homeostasis as an endothelium-independent source of NO that may be a redundant system for endogenous NO production. Nitrate must first be reduced to nitrite by oral commensal bacteria and then nitrite must be further reduced to NO along the physiological oxygen gradient. The purpose of this review is to define their role as indispensable nutrients needed for maintaining NO homeostasis and describe the daily intake required to achieve a threshold of activation as well as define the upper tolerable limits based on published literature in PubMed databases. Optimal ranges of intake will be discussed to maximize the benefits while mitigating any potential risks of overexposure to these naturally occurring anions. This information will allow for future research using safe and effective doses of nitrite and nitrate in long-term clinical trials to effectively test their roles in disease prevention or treatment. PMID:26189149

  2. Progress report on the evaluation of porous cathode for the electrochemical reduction of nitrates and nitrites in liquid wastes

    SciTech Connect

    Hobbs, D.T.; Jha, K.; Weidner, J.W.; White, R.E.

    1995-12-27

    This report describes the experimental and modeling work performed to evaluate porous cathodes for the electrochemical reduction of nitrites in liquid wastes. The experiments were done using the MP{dagger} cell with two different porous cathodes: nickel foam and TySAR{trademark}SB{double_dagger}. The experimental results are compared with each other and to those obtained with a planar nickel cathode. The results show that the ammonia production reaction is the dominant cathodic reaction ({approximately}80% efficiency) for all three electrodes. The temperature range used in this study was 29-37 {circ}C while the catholyte feed was either 0.6M NaNO{sub 2} or 1.9M NaNO{sub 3}, both supported by a 1.33 M NaOH solution. All experiments used a constant current density of 0.25 A/cm{sup 2}. The experimental results suggest that the porous nickel electrode at lower temperatures ({approximately}31{circ}C) is the most efficient of the three electrodes for the reduction of nitrates and nitrites. The porous nickel electrode exhibited the highest conversion of nitrates and nitrites, and the lowest overpotential for a given current density. The partial current fractions at known catholyte concentrations were used to extract the exchange-current densities for the five cathodic reactions. Using these kinetic parameters, dynamic simulations of the four hour experiments were performed. Agreement was found between the model and experimental results for changes in the moles of the nitrate and nitrite and the cell overpotential with time. Future work will determine the effects of temperature and current densities on the exchange-current densities and reaction product distributions. The performance of other porous cathode materials (TySAR{trademark}EP{section}, TySAR{trademark}IM) will also be evaluated.

  3. Quantitative analysis of nitrate and nitrite contents in vegetables commonly consumed in Delta State, Nigeria.

    PubMed

    Onyesom, I; Okoh, P N

    2006-11-01

    Plasma thiocyanate has been reported to be high among cassava-eating populations such as that in Nigeria because of the cyanide content of cassava. Thiocyanate, which is secreted into the stomach contents of animals, has been demonstrated to catalyse the formation of nitrosamines (potent carcinogens) in the stomach from secondary amines and nitrite. The main source of the nitrite precursor in this environment is vegetables, primarily eaten as the chief supplier of proteins. The present study attempts to analyse the levels of nitrate and nitrite in vegetables commonly grown and consumed in Delta State, Nigeria. The nitrate and nitrite contents in green vegetable (Amaranthus spp.), bitter leaf (Vernonia amygdalina), pumpkin (Telfaria occidentalis) and water leaf (Talinum triangulare) grown in different localities of the state were determined by standard analytical procedures. The results show that those vegetables grown in the industrialised urban centres of the state had higher nitrate (223 (SD 71) mg/kg dry weight; P<0.05) and nitrite (12.6 (SD 1.7) mg/kg dry weight; P>0.05) levels when compared with the same species (188 (SD 77) mg nitrate/kg dry weight and 10.9 (SD 1.1) mg nitrite/kg dry weight) cultivated in less industrialised suburbs. We conclude that frequent consumption of such vegetables whose nitrate and nitrite contents are high by cassava-eating individuals might put them at risk of developing stomach cancer and other possible results of nitrate and/or nitrite toxicity. In order to avoid an outbreak in our communities, appropriate agencies should monitor and regulate the release of chemicals into the environment. In the meantime, the cultivation and consumption of vegetables grown in industrialised areas of the state should be discouraged. PMID:17092380

  4. Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Huffaker, R. C.

    1989-01-01

    The role of NO3- and NO2- in the induction of nitrite reductase (NiR) activity in detached leaves of 8-day-old barley (Hordeum vulgare L.) seedlings was investigated. Barley leaves contained 6 to 8 micromoles NO2-/gram fresh weight x hour of endogenous NiR activity when grown in N-free solutions. Supply of both NO2- and NO3- induced the enzyme activity above the endogenous levels (5 and 10 times, respectively at 10 millimolar NO2- and NO3- over a 24 hour period). In NO3(-)-supplied leaves, NiR induction occurred at an ambient NO3- concentration of as low as 0.05 millimolar; however, no NiR induction was found in leaves supplied with NO2- until the ambient NO2- concentration was 0.5 millimolar. Nitrate accumulated in NO2(-)-fed leaves. The amount of NO3- accumulating in NO2(-)-fed leaves induced similar levels of NiR as did equivalent amounts of NO3- accumulating in NO3(-)-fed leaves. Induction of NiR in NO2(-)-fed leaves was not seen until NO3- was detectable (30 nanomoles/gram fresh weight) in the leaves. The internal concentrations of NO3-, irrespective of N source, were highly correlated with the levels of NiR induced. When the reduction of NO3- to NO2- was inhibited by WO4(2-), the induction of NiR was inhibited only partially. The results indicate that in barley leaves in NiR is induced by NO3- directly, i.e. without being reduced to NO2-, and that absorbed NO2- induces the enzyme activity indirectly after being oxidized to NO3- within the leaf.

  5. A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake.

    PubMed

    Jia, Wenjing; Tovell, Nicholas; Clegg, Stephanie; Trimmer, Mark; Cole, Jeffrey

    2009-01-01

    Two related polytopic membrane proteins of the major facilitator family, NarK and NarU, catalyse nitrate uptake, nitrite export and nitrite uptake across the Escherichia coli cytoplasmic membrane by an unknown mechanism. A 12-helix model of NarU was constructed based upon six alkaline phosphatase and beta-galactosidase fusions to NarK and the predicted hydropathy for the NarK family. Fifteen residues conserved in the NarK-NarU protein family were substituted by site-directed mutagenesis, including four residues that are essential for nitrate uptake by Aspergillus nidulans: arginines Arg(87) and Arg(303) in helices 2 and 8, and two glycines in a nitrate signature motif. Despite the wide range of substitutions studied, in no case did mutation result in loss of one biochemical function without simultaneous loss of all other functions. A NarU+ NirC+ strain grew more rapidly and accumulated nitrite more rapidly than the isogenic NarU+ NirC(-) strain. Only the NirC+ strain consumed nitrite rapidly during the later stages of growth. Under conditions in which the rate of nitrite reduction was limited by the rate of nitrite uptake, NirC+ strains reduced nitrite up to 10 times more rapidly than isogenic NarU+ strains, indicating that both nitrite efflux and nitrite uptake are largely dependent on NirC. Isotope tracer experiments with [15N]nitrate and [14N]nitrite revealed that [15N]nitrite accumulated in the extracellular medium even when there was a net rate of nitrite uptake and reduction. We propose that NarU functions as a single channel for nitrate uptake and nitrite expulsion, either as a nitrate-nitrite antiporter, or more likely as a nitrate/H+ or nitrite/H+ channel. PMID:18691156

  6. Corrosion risk associated with microbial souring control using nitrate or nitrite.

    PubMed

    Hubert, Casey; Nemati, Mehdi; Jenneman, Gary; Voordouw, Gerrit

    2005-08-01

    Souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB) in oil reservoirs, can be controlled through nitrate or nitrite addition. To assess the effects of this containment approach on corrosion, metal coupons were installed in up-flow packed-bed bioreactors fed with medium containing 8 mM sulfate and 25 mM lactate. Following inoculation with produced water to establish biogenic H(2)S production, some bioreactors were treated with 17.5 mM nitrate or up to 20 mM nitrite, eliminating souring. Corrosion rates were highest near the outlet of untreated bioreactors (up to 0.4 mm year(-1)). Nitrate (17.5 mM) eliminated sulfide but gave pitting corrosion near the inlet of the bioreactor, whereas a high nitrite dose (20 mM) completely eliminated microbial activity and associated corrosion. More gradual, step-wise addition of nitrite up to 20 mM resulted in the retention of microbial activity and localized pitting corrosion, especially near the bioreactor inlet. We conclude that: (1) SRB control by nitrate or nitrite reduction shifts the corrosion risk from the bioreactor outlet to the inlet (i.e. from production to injection wells) and (2) souring treatment by continuous addition of a high inhibitory nitrite dose is preferable from a corrosion-prevention point of view. PMID:15711941

  7. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.-Y.; Mao, J.; Naik, V.; Horowitz, L. W.

    2016-02-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for fine nitrate optical depth at 550 nm in 2010 is 0.006 (0.005-0.008). In wintertime, nitrate aerosols are simulated to account for over 30 % of the aerosol optical depth over western Europe and North America. Simulated nitrate optical depth increases by less than 30 % (0.0061-0.010) in response to projected changes in anthropogenic emissions from 2010 to 2050 (e.g., -40 % for SO2 and +38 % for ammonia). This increase is primarily driven by greater concentrations of nitrate in the free troposphere, while surface nitrate concentrations decrease in the midlatitudes following lower concentrations of nitric acid. With the projected increase of ammonia emissions, we show that better constraints on the vertical distribution of ammonia (e.g., convective transport and biomass burning injection) and on the sources and sinks of nitric acid (e.g., heterogeneous reaction on dust) are needed to improve estimates of future nitrate optical depth.

  8. Diversity and Abundance of Ammonia-Oxidizing Archaeal Nitrite Reductase (nirK) Genes in Estuarine Sediments of San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Reji, L.; Lee, J. A.; Damashek, J.; Francis, C. A.

    2013-12-01

    Nitrification, the microbially-mediated aerobic oxidation of ammonia to nitrate via nitrite, is an integral component of the global biogeochemical nitrogen cycle. The first and rate-limiting step of nitrification, ammonia oxidation, is carried out by two distinct microbial groups: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Molecular ecological studies targeting the amoA gene have revealed the abundance and ubiquity of AOA in terrestrial as well as aquatic environments. In addition to the ammonia oxidation machinery that includes the amoA gene, AOA also encode a gene for copper-containing nitrite reductase (nirK). The distribution patterns and functional role of nirK in AOA remain mostly unknown; proposed functions include the indirect involvement in ammonia oxidation through the production of nitric oxide during nitrite reduction, and (2) nitrite detoxification. In the present study, the diversity and abundance of archaeal nirK genes in estuarine sediments were investigated using quantitative polymerase chain reaction, cloning and sequencing approaches. In sediment samples collected from the San Francisco Bay estuary, two archaeal nirK variants (AnirKa and AnirKb) were amplified using specific primer sets. Overall, AnirKa was observed to be significantly more abundant than AnirKb in the sediment samples, with variation in relative abundance spanning two to three orders of magnitude between sampling sites. Phylogenetic analysis revealed a number of unique archaeal nirK sequence types, as well as many that clustered with sequences from previous estuarine studies and cultured AOA isolates, such as Nitrosopumilus maritimus. This study yielded new insights into the diversity and abundance of archaeal nirK genes in estuarine sediments, and highlights the importance of further investigating the physiological role of this gene in AOA, as well as its suitability as a marker gene for studying AOA in the environment.

  9. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    SciTech Connect

    Metcalf, S.G.

    1998-06-11

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10.

  10. Reduction of nitrite and nitrate on nano-dimensioned FeS.

    PubMed

    Gordon, Alexander D; Smirnov, Alexander; Shumlas, Samantha L; Singireddy, Soujanya; DeCesare, Matthew; Schoonen, Martin A A; Strongin, Daniel R

    2013-10-01

    The reaction of nitrite (NO2(-)) and nitrate (NO3(-)) on nanometer-sized FeS particles was investigated in alkaline (initial pH = 10.3) solutions at reaction temperatures of 22, 70, and 120 °C using in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and fluorescence spectroscopy that allowed an analysis of adsorbate complexation on the FeS and reaction product in the aqueous phase, respectively. ATR-FTIR showed that NO was a surface-bound intermediate on FeS during its exposure to NO2(-) at all three reaction temperatures. Ammonia/ammonium (NH3/NH4(+)) product was also produced when FeS was exposed to NO2(-) at the 70 °C and 120 °C reaction temperatures. Activation of NO3(-) to form surface-bound NO was experimentally observed to occur at 120 °C on FeS, but not at the lower reaction temperatures. Furthermore, NH3/NH4(+) product in the aqueous phase was only present during the reaction of FeS with NO3(-) at the highest temperature used in this study. PMID:23955667

  11. The nasFEDCBA operon for nitrate and nitrite assimilation in Klebsiella pneumoniae M5al.

    PubMed

    Lin, J T; Goldman, B S; Stewart, V

    1994-05-01

    Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilation pathway. We previously identified structural genes for assimilatory nitrate and nitrite reductases, nasA and nasB, respectively. We report here our further identification of four genes, nasFEDC, upstream of the nasBA genes. The nasFEDCBA genes probably form an operon. Mutational and complementation analyses indicated that both the nasC and nasA genes are required for nitrate assimilation. The predicted NASC protein is homologous to a variety of NADH-dependent oxidoreductases. Thus, the NASC protein probably mediates electron transfer from NADH to the NASA protein, which contains the active site for nitrate reduction. The deduced NASF, NASE, and NASD proteins are homologous to the NRTA, NRTB, and NRTD proteins, respectively, that are involved in nitrate uptake in Synechococcus sp. (T. Omata, X. Andriesse, and A. Hirano, Mol. Gen. Genet. 236:193-202, 1993). Mutational and complementation studies indicated that the nasD gene is required for nitrate but not nitrite assimilation. By analogy with the Synechococcus nrt genes, we propose that the nasFED genes are involved in nitrate transport in K. pneumoniae. PMID:8169203

  12. The nasFEDCBA operon for nitrate and nitrite assimilation in Klebsiella pneumoniae M5al.

    PubMed Central

    Lin, J T; Goldman, B S; Stewart, V

    1994-01-01

    Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilation pathway. We previously identified structural genes for assimilatory nitrate and nitrite reductases, nasA and nasB, respectively. We report here our further identification of four genes, nasFEDC, upstream of the nasBA genes. The nasFEDCBA genes probably form an operon. Mutational and complementation analyses indicated that both the nasC and nasA genes are required for nitrate assimilation. The predicted NASC protein is homologous to a variety of NADH-dependent oxidoreductases. Thus, the NASC protein probably mediates electron transfer from NADH to the NASA protein, which contains the active site for nitrate reduction. The deduced NASF, NASE, and NASD proteins are homologous to the NRTA, NRTB, and NRTD proteins, respectively, that are involved in nitrate uptake in Synechococcus sp. (T. Omata, X. Andriesse, and A. Hirano, Mol. Gen. Genet. 236:193-202, 1993). Mutational and complementation studies indicated that the nasD gene is required for nitrate but not nitrite assimilation. By analogy with the Synechococcus nrt genes, we propose that the nasFED genes are involved in nitrate transport in K. pneumoniae. PMID:8169203

  13. Six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase: insights from density functional theory studies.

    PubMed

    Bykov, Dmytro; Neese, Frank

    2015-10-01

    In this Forum Article, an extensive discussion of the mechanism of six-electron, seven-proton nitrite reduction by the cytochrome c nitrite reductase enzyme is presented. On the basis of previous studies, the entire mechanism is summarized and a unified picture of the most plausible sequence of elementary steps is presented. According to this scheme, the mechanism can be divided into five functional stages. The first phase of the reaction consists of substrate binding and N-O bond cleavage. Here His277 plays a crucial role as a proton donor. In this step, the N-O bond is cleaved heterolytically through double protonation of the substrate. The second phase of the mechanism consists of two proton-coupled electron-transfer events, leading to an HNO intermediate. The third phase involves the formation of hydroxylamine, where Arg114 provides the necessary proton for the reaction. The second N-O bond is cleaved in the fourth phase of the mechanism, again triggered by proton transfer from His277. The Tyr218 side chain governs the fifth and last phase of the mechanism. It consists of radical transfer and ammonia formation. Thus, this mechanism implies that all conserved active-site side chains work in a concerted way in order to achieve this complex chemical transformation from nitrite to ammonia. The Forum Article also provides a detailed discussion of the density functional theory based cluster model approach to bioinorganic reactivity. A variety of questions are considered: the resting state of enzyme and substrate binding modes, interaction with the metal site and with active-site side chains, electron- and proton-transfer events, substrate dissociation, etc. PMID:26237518

  14. Nitrate and nitrite-mediated transcription antitermination control of nasF (nitrate assimilation) operon expression in Klebsiella pheumoniae M5al.

    PubMed

    Lin, J T; Stewart, V

    1996-03-01

    Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources during aerobic growth. Nitrate is converted through nitrite to ammonium by assimilatory nitrate and nitrite reductase, respectively. Enzymes required for nitrate assimilation are encoded by the nasFEDCBA operon of K. pneumoniae; nasF operon expression is subject to both general nitrogen control and pathway-specific nitrate/nitrite induction, mediated by the NtrC and NasR proteins, respectively. Sequence inspection revealed a presumptive sigmaN (sigma54)-dependent promoter as well as two presumptive upstream NtrC protein binding sites. Site-specific mutational and primer extension analyses confirmed the identity of the sigmaN-dependent promoter. Deletions removing the apparent NtrC protein binding sites greatly reduced NtrC-dependent regulation, indicating that these sites are involved in general nitrogen control. However, deletions removing most of the sequence upstream of the promoter had little effect on nitrate/nitrite regulation, suggesting that the nasF leader region is involved in nitrate/nitrite regulation. The 119 nucleotide long transcribed leader region contains an apparent factor-independent transcription terminator. Promoter replacement experiments demonstrated that the leader region is involved in nitrate/nitrite regulation of nasF operon expression. Deletions removing the transcription terminator structure resulted in a nitrate-blind constitutive phenotype, indicating that the transcription terminator structure serves a negative function. Other deletions, removing proximal portions of the leader region, resulted in an uninducible phenotype, indicating that this region serves a positive function. These results indicate that nitrate/nitrite regulation of nasF operon expression is determined by a transcription attenuation mechanism. We hypothesize that in the absence of nitrate or nitrite, the terminator structure abrogates transcription readthrough into the nasF operon. In the

  15. The reactivity of cesium nickel ferrocyanide towards nitrate and nitrite salts

    SciTech Connect

    Burger, L.L.; Scheele, R.D.

    1991-09-01

    Beginning in late 1988, the Pacific Northwest Laboratory (PNL) began an experimental program at the request of Westinghouse Hanford Company (WHC) to investigate the effects of temperature on the oxidation reaction between synthetic nickel cesium ferrocyanide (FeCN) and nitrates and nitrites representative of materials present in some of the Hanford single-shell tanks (SSTs). After completing a preliminary series of experiments in 1988, the program was expanded to include five tasks to evaluate the effect of selected compositional and operational parameters on the reaction and explosion temperatures of FeCN and nitrate and/or nitrite mixtures. 10 refs., 4 figs., 6 tabs.

  16. [Influence of thermal processing and storage on the content of nitrates and nitrites in chosen vegetables from the Podlasie province].

    PubMed

    Roszczenko, A; Rogalska, J; Potapczuk, L; Kleczyńska, A

    2001-01-01

    The dangerous for health nitrate and nitrite can penetrate with food human organism for this reason in study the influence of thermal processing and storage on the level of these compounds in the vegetables was determined. The content of nitrates and nitrites was determined in such vegetables as carrot, parsley-root, celery and potatoes growing by farmers in the Podlasie province. Nitrates and nitrites were assessed in fresh and boiled vegetables as well as in the stock and in carrot juice. These compounds were also determined after storage of vegetables at +4 degrees C for 2 weeks and at -15 degrees C for 1 and 3 months. Nitrates and nitrites concentrations were assayed colorimetrically by the Griess method modified to food investigation. Boiling reduced nitrate content in the vegetables. Considerable part (about 50%) of these compounds passed into stock during boiling. Storage of these vegetables at +4 degrees C resulted in slight lowering of nitrate content in carrot and parsley-root and marked elevation in celery. Cold storage of vegetables through 1 and 3 months had no important influence on nitrate content. Boiling decreased the content of nitrites similarly as nitrates. Storage of the vegetables at +4 degrees C through 2 weeks led to an increase in nitrite content in carrot and parsley-root while in celery the content of nitrites was reduced. Storage of vegetables at -15 degrees C resulted in lowering content of nitrite. The study revealed that the vegetable-roots (carrot, parsley and celery) and potatoes cultivated in the Podlasie province as well as in the other provinces were excessively contaminated by nitrates and nitrites. Moreover, it has been shown that thermal processing such as boiling considerably reduced the content of nitrates and nitrites in these vegetables while freezing changed mainly nitrite content. PMID:11957780

  17. Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK

    PubMed Central

    Fukuda, Masahiro; Takeda, Hironori; Kato, Hideaki E.; Doki, Shintaro; Ito, Koichi; Maturana, Andrés D.; Ishitani, Ryuichiro; Nureki, Osamu

    2015-01-01

    NarK belongs to the nitrate/nitrite porter (NNP) family in the major facilitator superfamily (MFS) and plays a central role in nitrate uptake across the membrane in diverse organisms, including archaea, bacteria, fungi and plants. Although previous studies provided insight into the overall structure and the substrate recognition of NarK, its molecular mechanism, including the driving force for nitrate transport, remained elusive. Here we demonstrate that NarK is a nitrate/nitrite antiporter, using an in vitro reconstituted system. Furthermore, we present the high-resolution crystal structures of NarK from Escherichia coli in the nitrate-bound occluded, nitrate-bound inward-open and apo inward-open states. The integrated structural, functional and computational analyses reveal the nitrate/nitrite antiport mechanism of NarK, in which substrate recognition is coupled to the transport cycle by the concomitant movement of the transmembrane helices and the key tyrosine and arginine residues in the substrate-binding site. PMID:25959928

  18. Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK

    NASA Astrophysics Data System (ADS)

    Fukuda, Masahiro; Takeda, Hironori; Kato, Hideaki E.; Doki, Shintaro; Ito, Koichi; Maturana, Andrés D.; Ishitani, Ryuichiro; Nureki, Osamu

    2015-05-01

    NarK belongs to the nitrate/nitrite porter (NNP) family in the major facilitator superfamily (MFS) and plays a central role in nitrate uptake across the membrane in diverse organisms, including archaea, bacteria, fungi and plants. Although previous studies provided insight into the overall structure and the substrate recognition of NarK, its molecular mechanism, including the driving force for nitrate transport, remained elusive. Here we demonstrate that NarK is a nitrate/nitrite antiporter, using an in vitro reconstituted system. Furthermore, we present the high-resolution crystal structures of NarK from Escherichia coli in the nitrate-bound occluded, nitrate-bound inward-open and apo inward-open states. The integrated structural, functional and computational analyses reveal the nitrate/nitrite antiport mechanism of NarK, in which substrate recognition is coupled to the transport cycle by the concomitant movement of the transmembrane helices and the key tyrosine and arginine residues in the substrate-binding site.

  19. High sensitivity analysis of nitrite and nitrate in biological samples by capillary zone electrophoresis with transient isotachophoretic sample stacking.

    PubMed

    Szöko, Eva; Tábi, Tamás; Halász, Attila S; Pálfi, Melinda; Magyar, Kálmán

    2004-10-01

    Tissue level of nitrate and nitrite are established indicators of altered nitric oxide metabolism under various pathological conditions. Determination of these anions in biological samples, in the presence of high chloride concentration, using capillary zone electrophoresis suffers from poor detection sensitivity. Separation conditions providing excellent resolution and submicromolar detection sensitivity of nitrate and nitrite have been developed and validated. Simple sample preparation was applied that maintains nitrite stability in tissue extracts and at the same time allows transient isotachophoresis stacking of the analytes. Nitrate and nitrite concentrations in rat brain and liver tissue samples were determined in control and lipopolysaccharide treated animals. PMID:15532571

  20. Pancreatic Cancer and Exposure to Dietary Nitrate and Nitrite in the NIH-AARP Diet and Health Study

    PubMed Central

    Aschebrook-Kilfoy, Briseis; Cross, Amanda J.; Stolzenberg-Solomon, Rachael Z.; Schatzkin, Arthur; Hollenbeck, Albert R.; Sinha, Rashmi; Ward, Mary H.

    2011-01-01

    Nitrate and nitrite are precursors of N-nitroso compounds, which induce tumors of the pancreas in animals. The authors evaluated the relation of dietary nitrate and nitrite to pancreatic cancer risk in the NIH-AARP Diet and Health Study. Nitrate and nitrite intakes were assessed at baseline using a 124-item food frequency questionnaire. During approximately 10 years of follow-up between 1995 and 2006, 1,728 incident pancreatic cancer cases were identified. There was no association between total nitrate or nitrite intake and pancreatic cancer in men or women. However, men in the highest quintile of summed nitrate/nitrite intake from processed meat had a nonsignificantly elevated risk of pancreatic cancer (hazard ratio = 1.18, 95% confidence interval: 0.95, 1.47; P-trend = 0.11). The authors observed a stronger increase in risk among men for nitrate/nitrite intake from processed meat at ages 12–13 years (highest quintile vs. lowest: hazard ratio = 1.32, 95% confidence interval: 0.99, 1.76; P-trend = 0.11), though the relation did not achieve statistical significance. The authors found no associations between adult or adolescent nitrate or nitrite intake from processed meats and pancreatic cancer among women. These results provide modest evidence that processed meat sources of dietary nitrate and nitrite may be associated with pancreatic cancer among men and provide no support for the hypothesis in women. PMID:21685410

  1. A Crp-Dependent Two-Component System Regulates Nitrate and Nitrite Respiration in Shewanella oneidensis

    PubMed Central

    Dong, Yangyang; Wang, Jixuan; Fu, Huihui; Zhou, Guangqi; Shi, Miaomiao; Gao, Haichun

    2012-01-01

    We have previously illustrated the nitrate/nitrite respiratory pathway of Shewanella oneidensis, which is renowned for its remarkable versatility in respiration. Here we investigated the systems regulating the pathway with a reliable approach which enables characterization of mutants impaired in nitrate/nitrite respiration by guaranteeing biomass. The S. oneidensis genome encodes an Escherichia coli NarQ/NarX homolog SO3981 and two E. coli NarP/NarL homologs SO1860 and SO3982. Results of physiological characterization and mutational analyses demonstrated that S. oneidensis possesses a single two-component system (TCS) for regulation of nitrate/nitrite respiration, consisting of the sensor kinase SO3981(NarQ) and the response regulator SO3982(NarP). The TCS directly controls the transcription of nap and nrfA (genes encoding nitrate and nitrite reductases, respectively) but regulates the former less tightly than the latter. Additionally, phosphorylation at residue 57 of SO3982 is essential for its DNA-binding capacity. At the global control level, Crp is found to regulate expression of narQP as well as nap and nrfA. In contrast to NarP-NarQ, Crp is more essential for nap rather than nrfA. PMID:23240049

  2. 21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... guanylate, hydrolysates of animal or plant origin (such as hydrolyzed vegetable protein), oleoresins of... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Nitrites and/or nitrates in curing premixes. 170.60 Section 170.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  3. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium.

    PubMed

    Kartal, Boran; Kuypers, Marcel M M; Lavik, Gaute; Schalk, Jos; Op den Camp, Huub J M; Jetten, Mike S M; Strous, Marc

    2007-03-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite and produce N(2). They reside in many natural ecosystems and contribute significantly to the cycling of marine nitrogen. Anammox bacteria generally live under ammonium limitation, and it was assumed that in nature anammox bacteria depend on other biochemical processes for ammonium. In this study we investigated the possibility of dissimilatory nitrate reduction to ammonium by anammox bacteria. Physically purified Kuenenia stuttgartiensis cells reduced (15)NO(3) (-) to (15)NH(4) (+) via (15)NO(2) (-) as the intermediate. This was followed by the anaerobic oxidation of the produced ammonium and nitrite. The overall end-product of this metabolism of anammox bacteria was (15)N(15)N dinitrogen gas. The nitrate reduction to nitrite proceeds at a rate of 0.3 +/- 0.02 fmol cell(-1) day(-1) (10% of the 'normal' anammox rate). A calcium-dependent cytochrome c protein with a high (305 mumol min(-1) mg protein(-1)) rate of nitrite reduction to ammonium was partially purified. We present evidence that dissimilatory nitrate reduction to ammonium occurs in Benguela upwelling system at the same site where anammox bacteria were previously detected. This indicates that anammox bacteria could be mediating dissimilatory nitrate reduction to ammonium in natural ecosystems. PMID:17298364

  4. Cardioprotective effects of inorganic nitrate/nitrite in chronic anthracycline cardiotoxicity: Comparison with dexrazoxane.

    PubMed

    Lenčová-Popelová, Olga; Jirkovský, Eduard; Jansová, Hana; Jirkovská-Vávrová, Anna; Vostatková-Tichotová, Lucie; Mazurová, Yvona; Adamcová, Michaela; Chládek, Jaroslav; Hroch, Miloš; Pokorná, Zuzana; Geršl, Vladimír; Šimůnek, Tomáš; Štěrba, Martin

    2016-02-01

    Dexrazoxane (DEX) is a clinically available cardioprotectant that reduces the toxicity induced by anthracycline (ANT) anticancer drugs; however, DEX is seldom used and its action is poorly understood. Inorganic nitrate/nitrite has shown promising results in myocardial ischemia-reperfusion injury and recently in acute high-dose ANT cardiotoxicity. However, the utility of this approach for overcoming clinically more relevant chronic forms of cardiotoxicity remains elusive. Hence, in this study, the protective potential of inorganic nitrate and nitrite against chronic ANT cardiotoxicity was investigated, and the results were compared to those using DEX. Chronic cardiotoxicity was induced in rabbits with daunorubicin (DAU). Sodium nitrate (1g/L) was administered daily in drinking water, while sodium nitrite (0.15 or 5mg/kg) or DEX (60mg/kg) was administered parenterally before each DAU dose. Although oral nitrate induced a marked increase in plasma NOx, it showed no improvement in DAU-induced mortality, myocardial damage or heart failure. Instead, the higher nitrite dose reduced the incidence of end-stage cardiotoxicity, prevented related premature deaths and significantly ameliorated several molecular and cellular perturbations induced by DAU, particularly those concerning mitochondria. The latter result was also confirmed in vitro. Nevertheless, inorganic nitrite failed to prevent DAU-induced cardiac dysfunction and molecular remodeling in vivo and failed to overcome the cytotoxicity of DAU to cardiomyocytes in vitro. In contrast, DEX completely prevented all of the investigated molecular, cellular and functional perturbations that were induced by DAU. Our data suggest that the difference in cardioprotective efficacy between DEX and inorganic nitrite may be related to their different abilities to address a recently proposed upstream target for ANT in the heart - topoisomerase IIβ. PMID:26724189

  5. Using Salivary Nitrite and Nitrate Levels as a Biomarker for Drug-Induced Gingival Overgrowth

    PubMed Central

    Sukuroglu, Erkan; Güncü, Güliz N.; Kilinc, Kamer; Caglayan, Feriha

    2015-01-01

    Aim: Drug-induced gingival overgrowth has a multifactorial nature and the pathogenesis is still uncertain. It has been suggested that Nitric Oxide (NO) might play a role in the pathogenesis of drug-induced gingival overgrowth due to the contribution of NO to immune response and matrix degradation. NO levels in biological fluids have been used as a diagnostic biomarker in many diseases. The aim of this study is to determine whether NO levels in plasma, saliva, and gingival crevicular fluid (GCF) can serve as a potential biomarker for the evaluation of drug-induced gingival overgrowth risk. Materials and Methods: A total of 104 patients, receiving cyclosporine A (n = 35), phenytoin (n = 25), nifedipine (n = 26), or diltiazem (n = 18) participated in the study. The amount of gingival overgrowth was evaluated with two indices and was given as percentage. Periodontal clinical parameters including plaque index (PI), gingival index (GI), gingival bleeding time index (GBTI), and probing depth (PD) were also assessed. Saliva, GCF, and plasma samples were obtained from each participants. Nitrite and nitrate levels in saliva, GCF, and plasma were analyzed by Griess reagent. Results: Salivary nitrite and nitrate levels in responders were significantly higher than those in non-responders in only phenytoin group (p < 0.05). Nitrite and nitrate levels of gingival crevicular fluid and plasma did not significantly differ between responders and non-responders in all study groups (p > 0.05). Salivary nitrite levels exhibited a significant correlation with PD, GBTI, severity of gingival overgrowth (%GO), and GCF volume (p < 0.05). Additionally, a strong positive correlation was detected between saliva and plasma nitrate levels (p < 0.005). However, both nitrite and nitrate levels in GCF and plasma demonstrated no significant correlation with clinical parameters, GO severity, and GCF volume (p > 0.05). Conclusion: Salivary nitrite and nitrate levels could be used as periodontal disease

  6. Nitrate and nitrite ingestion and risk of ovarian cancer among postmenopausal women in Iowa.

    PubMed

    Inoue-Choi, Maki; Jones, Rena R; Anderson, Kristin E; Cantor, Kenneth P; Cerhan, James R; Krasner, Stuart; Robien, Kim; Weyer, Peter J; Ward, Mary H

    2015-07-01

    Nitrate and nitrite are precursors in the endogenous formation of N-nitroso compounds (NOC), potential human carcinogens. We evaluated the association of nitrate and nitrite ingestion with postmenopausal ovarian cancer risk in the Iowa Women's Health Study. Among 28,555 postmenopausal women, we identified 315 incident epithelial ovarian cancers from 1986 to 2010. Dietary nitrate and nitrite intakes were assessed at baseline using food frequency questionnaire data. Drinking water source at home was obtained in a 1989 follow-up survey. Nitrate-nitrogen (NO3 -N) and total trihalomethane (TTHM) levels for Iowa public water utilities were linked to residences and average levels were computed based on each woman's duration at the residence. We computed multivariable-adjusted hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards regression. We tested interactions of nitrate with TTHMs and dietary factors known to influence NOC formation. Ovarian cancer risk was 2.03 times higher (CI = 1.22-3.38, ptrend  = 0.003) in the highest quartile (≥2.98 mg/L) compared with the lowest quartile (≤0.47 mg/L; reference) of NO3 -N in public water, regardless of TTHM levels. Risk among private well users was also elevated (HR = 1.53, CI = 0.93-2.54) compared with the same reference group. Associations were stronger when vitamin C intake was nitrate was inversely associated with ovarian cancer risk (ptrend  = 0.02); whereas, dietary nitrite from processed meats was positively associated with the risk (ptrend  = 0.04). Our findings indicate that high nitrate levels in public drinking water and private well use may increase ovarian cancer risk among postmenopausal women. PMID:25430487

  7. Nitrate and nitrite ingestion and risk of ovarian cancer among postmenopausal women in Iowa

    PubMed Central

    Inoue-Choi, Maki; Jones, Rena R.; Anderson, Kristin E.; Cantor, Kenneth P.; Cerhan, James R.; Krasner, Stuart; Robien, Kim; Weyer, Peter J.; Ward, Mary H.

    2014-01-01

    Nitrate and nitrite are precursors in the endogenous formation of N-nitroso compounds (NOC), potential human carcinogens. We evaluated the association of nitrate and nitrite ingestion with postmenopausal ovarian cancer risk in the Iowa Women’s Health Study. Among 28,555 postmenopausal women, we identified 315 incident epithelial ovarian cancers from 1986 to 2010. Dietary nitrate and nitrite intakes were assessed at baseline using food frequency questionnaire data. Drinking water source at home was obtained in a 1989 follow-up survey. Nitrate-nitrogen (NO3-N) and total trihalomethane (TTHM) levels for Iowa public water utilities were linked to residences and average levels were computed based on each woman’s duration at the residence. We computed multivariable-adjusted hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards regression. We tested interactions of nitrate with TTHMs and dietary factors known to influence NOC formation. Ovarian cancer risk was 2.03 times higher (CI=1.22–3.38, ptrend=0.003) in the highest quartile (≥2.98 mg/L) compared with the lowest quartile (≤0.47 mg/L; reference) of NO3-N in public water, regardless of TTHM levels. Risk among private well users was also elevated (HR=1.53, CI=0.93–2.54) compared with the same reference group. Associations were stronger when vitamin C intake was nitrate was inversely associated with ovarian cancer risk (ptrend=0.02); whereas, dietary nitrite from processed meats was positively associated with the risk (ptrend=0.04). Our findings indicate that high nitrate levels in public drinking water and private well use may increase ovarian cancer risk among postmenopausal women. PMID:25430487

  8. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis

    PubMed Central

    Song, Peng; Wu, Lei; Guan, Wenxian

    2015-01-01

    The potential associations between dietary consumption of nitrates, nitrites, and nitrosamines and gastric cancer risk have been investigated by several studies, but yielded inconclusive results. We conducted a meta-analysis to provide a quantitative assessment of their relationships. Relevant articles were identified by a systematic literature searching of PubMed and Embase databases prior to August 2015. Random-effects models were employed to pool the relative risks. A total of 22 articles consisting of 49 studies—19 studies for nitrates, 19 studies for nitrites, and 11 studies for N-nitrosodimethylamine (NDMA)—were included. The summary relative risk of stomach cancer for the highest categories, compared with the lowest, was 0.80 (95% confidence interval (CI), 0.69–0.93) for dietary nitrates intake, 1.31 (95% CI, 1.13–1.52) for nitrites, and 1.34 (95% CI, 1.02–1.76) for NDMA (p for heterogeneity was 0.015, 0.013 and <0.001, respectively). The study type was found as the main source of heterogeneity for nitrates and nitrites. The heterogeneity for NDMA could not be eliminated completely through stratified analysis. Although significant associations were all observed in case-control studies, the cohort studies still showed a slight trend. The dose-response analysis indicated similar results as well. High nitrates intake was associated with a weak but statistically significant reduced risk of gastric cancer. Whereas increased consumption of nitrites and NDMA seemed to be risk factors for cancer. Due to the lack of uniformity for exposure assessment across studies, further prospective researches are warranted to verify these findings. PMID:26633477

  9. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis.

    PubMed

    Song, Peng; Wu, Lei; Guan, Wenxian

    2015-12-01

    The potential associations between dietary consumption of nitrates, nitrites, and nitrosamines and gastric cancer risk have been investigated by several studies, but yielded inconclusive results. We conducted a meta-analysis to provide a quantitative assessment of their relationships. Relevant articles were identified by a systematic literature searching of PubMed and Embase databases prior to August 2015. Random-effects models were employed to pool the relative risks. A total of 22 articles consisting of 49 studies-19 studies for nitrates, 19 studies for nitrites, and 11 studies for N-nitrosodimethylamine (NDMA)-were included. The summary relative risk of stomach cancer for the highest categories, compared with the lowest, was 0.80 (95% confidence interval (CI), 0.69-0.93) for dietary nitrates intake, 1.31 (95% CI, 1.13-1.52) for nitrites, and 1.34 (95% CI, 1.02-1.76) for NDMA (p for heterogeneity was 0.015, 0.013 and <0.001, respectively). The study type was found as the main source of heterogeneity for nitrates and nitrites. The heterogeneity for NDMA could not be eliminated completely through stratified analysis. Although significant associations were all observed in case-control studies, the cohort studies still showed a slight trend. The dose-response analysis indicated similar results as well. High nitrates intake was associated with a weak but statistically significant reduced risk of gastric cancer. Whereas increased consumption of nitrites and NDMA seemed to be risk factors for cancer. Due to the lack of uniformity for exposure assessment across studies, further prospective researches are warranted to verify these findings. PMID:26633477

  10. Determination of nitrate and nitrite in freshwaters using flow-injection with luminol chemiluminescence detection.

    PubMed

    Yaqoob, Mohammad; Folgado Biot, Beatriz; Nabi, Abdul; Worsfold, Paul J

    2012-01-01

    A simple and sensitive flow-injection (FI) method for the determination of nitrate and nitrite in natural waters, based on luminol chemiluminescence (CL) detection, is reported. Nitrate was reduced online to nitrite via a copperized cadmium (Cu-Cd) column and then reacted with acidic hydrogen peroxide to form peroxynitrous acid. CL emission was observed from the oxidation of luminol in an alkaline medium in the presence of the peroxynitrite anion. The limits of detection (S:N = 3) were 0.02 and 0.01 µg N/L, with sample throughputs of 40 and 90 /h for nitrate and nitrite, respectively. Calibration graphs were linear over the range 0.02-50 and 0.01-50 µg N/L [R2  = 0.9984 (n = 8) and R2  = 0.9965 (n = 7)] for nitrate and nitrite, respectively, with relative standard deviations (RSDs; n = 3) in the range 1.8-4.6%. The key chemical and physical variables (reagent concentrations, buffer pH, flow rates, sample volume, Cu-Cd reductor column length) were optimized and potential interferences investigated. The effect of cations [Ca(II), Mg(II), Co(II), Fe(II) and Cu(II)] was masked online with EDTA. Common anions (PO4(3-) , SO4(2-) and HCO3-) did not interfere at their maximum admissible concentrations in freshwaters. The effect of salinity on the luminol CL reaction with and without nitrate and nitrite (2 and 0.5 µg N/L, respectively) was also investigated. The method was successfully applied to freshwaters and the results obtained were in good agreement with those obtained by an automated segmented flow analyser reference method. PMID:23044772

  11. Chemoselective Nitration of Phenols with tert-Butyl Nitrite in Solution and on Solid Support

    PubMed Central

    Koley, Dipankar; Colón, Olvia C.; Savinov, Sergey N

    2009-01-01

    tert-Butyl nitrite was identified as a safe and chemoselective nitrating agent that provides preferentially mononitro derivatives of phenolic substrates in the presence of potentially competitive functional groups. On the basis of our control experiments, we propose that the reaction proceeds through the formation of O-nitrosyl intermediates prior to C-nitration via homolysis and oxidation. The reported nitration method is compatible with tyrosine-containing peptides on solid support in the synthesis of fluorogenic substrates for characterization of proteases. PMID:19697919

  12. Flow injection analysis of nitrate and nitrite in commercial baby foods.

    PubMed

    Chetty, Adrian A; Prasad, Surendra

    2016-04-15

    Commercial baby foods are an easy alternative to home-made meals especially for working parents in a nuclear family therefore it is imperative to determine the nitrate and nitrite content in commercially available baby foods varieties marketed in Fiji. A total of 108 baby food samples were analyzed for nitrate and nitrite using our standardized flow injection analysis (FIA) technique with colorimetric detection technique employing sulfanilamide and N-(1-naphthyl)ethylenediamine dihydrochloride as color reagents where the samples throughput was 38 h(-1). The commercial baby food varieties chosen comprised of vegetables, cereals, fruits and milk. The study shows that the nitrate content of the baby foods studied ranges from 2.10 to 220.67 mg kg(-1) whereas the nitrite content ranges from 0.44 to 3.67 mg kg(-1). Typical recoveries of spiked nitrate residues ranged from 92% to 106%. The study shows that the average nitrate content of commercially available baby foods in Fiji descends below the maximum level proposed by the European Union Legislation. PMID:26616981

  13. Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2011-01-01

    In addition to operational details and performance benchmarks for these new DA-AtNaR2 nitrate + nitrite assays, this report also provides results of interference studies for common inorganic and organic matrix constituents at 1, 10, and 100 times their median concentrations in surface-water and groundwater samples submitted annually to the NWQL for nitrate + nitrite analyses. Paired t-test and Wilcoxon signed-rank statistical analyses of results determined by CFA-CdR methods and DA-AtNaR2 methods indicate that nitrate concentration differences between population means or sign ranks were either statistically equivalent to zero at the 95 percent confidence level (p ≥ 0.05) or analytically equivalent to zero-that is, when p < 0.05, concentration differences between population means or medians were less than MDLs.

  14. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst

    SciTech Connect

    Iyengar, R.; Stuehr, D.J.; Marletta, M.A.

    1987-09-01

    The macrophage cell line RAW 264.7 when activated with Escherichia coli lipopolysaccharide and interferon-..gamma.. synthesized nitrite (NO/sub 2//sup -/) and nitrate (NO/sub 3//sup -/). Medium change after the activation showed that L-arginine was the only amino acid essential for this synthesis. D-Arginine would not substitute for L-arginine. Other analogues that could replace L-arginine were L-homoarginine, L-arginine methyl ester, L-arginamide, and the peptide L-arginyl-L-aspartate. L-Argininic acid, L-agmatine, L-ornithine, urea, L-citrulline, and ammonia were among the nonprecursors, while L-canavanine inhibited this L-arginine-derived NO/sub 2//sup -//NO/sub 3//sup -/ synthesis. When morpholine was added to the culture medium of the activated RAW 264.7 macrophages, N-nitrosation took place, generating N-nitrosomorpholine. GC/MS experiments using L-(guanido-/sup 15/N/sub 2/)arginine established that the NO/sub 2//sup -//NO/sub 3//sup -/ and the nitrosyl group of N-nitrosomorpholine were derived exclusively from one or both of the terminal guanido nitrogens of arginine. Chromatographic analysis showed that the other product of the L-arginine synthesis of NO/sub 2//sup -//NO/sub 3//sup -/ was L-citrulline. The role of the respiratory burst in NO/sub 2//sup -//NO/sub 3//sup -/ synthesis was examined using the macrophage cell lines J774.16 and J774 C3C. Both cell lines synthesized similar amounts of NO/sub 2//sup -//NO/sub 3//sup -/. However, J774 C3C cells do not produce superoxide and hence do not exhibit the respiratory burst. Additional experiments also ruled out the involvement of the respiratory burst in NO/sub 2//sup -//NO/sub 3//sup -/ synthesis.

  15. Simultaneous Nitrite/Nitrate Imagery at Millimeter Scale through the Water-Sediment Interface.

    PubMed

    Metzger, E; Thibault de Chanvalon, A; Cesbron, F; Barbe, A; Launeau, P; Jézéquel, D; Mouret, A

    2016-08-01

    The present study describes new procedures to obtain at millimeter resolution the spatial distribution of nitrite and nitrate in porewaters, combining diffusive equilibrium in thin films (DET), colorimetry and hyperspectral imagery. Nitrite distribution can be easily achieved by adapting the well-known colorimetric method from Griess (1879) and using a common flatbed scanner with a limit of detection about 1.7 μmol L(-1). Nitrate distribution can be obtained after reduction into nitrite by a vanadium chloride reagent. However, the concentration of vanadium chloride used in this protocol brings coloration with a wide spectral signature that creates interference only deconvolvable by imaging treatment from an entire visible spectrum for each pixel (spectral analysis). This can be achieved by hyperspectral imaging. The protocol retained in the present study allows obtaining a nitrite/nitrate image with micromolar limit of detection. The methods were applied in sediments from the Loire Estuary after different treatments and allowed to precisely describe two-dimensional millimeter features. The present technique adds to the combination of gel-colorimetry and hyperspectral imagery a very promising new application of wide interest for environmental issues in the context of early diagenesis and benthic fluxes. PMID:27351274

  16. [Nitrate and nitrite in prepared meals in relation to the nitrate concentration of drinking water (author's transl)].

    PubMed

    Selenka, F; Brand, E

    1975-12-01

    The nitrate and nitrite content of prepared foods was investigated in four areas in Rhineland Palatinate. The nitrate content of the drinking water was different in each area, the first region always having less than 1 mg NO-3/litre, the second an average of 19.5 mg NO-3/litre, the third an average of 35.6 mg NO-3/litre and the fourth 130 mg NO-3/litre. The samples were restaurant food which had been served without previously informing the maker. They were separately analysed according to soup, meat and gravy, carbohydrate accompaniments, vegetables and salad. It was shown that, in the four areas (in the above order) an average of 46, 67, 45 and 65 mg NO-3/main meal was ingested, which corresponds to a ratio of 1:1.5:1:1.4. For nitrites, the figures were 1.4, 2.0, 1.5, and 2.8 mg NO-2/main meal, corresponding to a ratio of 1:1.4:1.1:2. The nitrate excess consumed by the population in the principal meals in areas with a drinking water concentration of 130 mg/1 is consequently only 1.4 times higher than in an area where the water supply is free from nitrate. Under the same conditions the nitrite content is doubled. However, the levels at 2 and 1 mg NO-2/kg are altogether very low and are not likely to be of any importance hygienically for the public at large. The concentrations of nitrate in potatoes and carbohydrate accompaniments (94 mg NO-3/kg), vegetables (99 mg NO-3/kg) and salads (109 mg NO-3/kg) show average levels which are double those of soups (50 mg NO-3/kg) and meat dishes (58 mg NO-3kg). An effect of the nitrate content of drinking water on these figures is only seen in soups and meat, an increase by a factor of 4 occurring between the area with nitrate-gree drinking water and the area with 130 mg NO-3/1). Contrary to expectation, the nitrite levels show the reverse relationship. They are highest in soups (4.7 mg NO-2/kg) and meat dishes (3.5 mg NO-2/kg) to salads (1.4 mg NO-3/kg). The values obtained may be considered representative for the average

  17. Synthesis of nano-structured polypyrrole/copper electrodes for nitrate and nitrite electroreduction

    NASA Astrophysics Data System (ADS)

    Phuong Thoa Nguyen, Thi; Thinh Nguyen, Viet; Nguyen Bui, Nhat; Do, Duong Kim Bao; Pham, Anh Minh

    2010-09-01

    Nanostructured polypyrrole film was synthesized onto a copper electrode in solutions of oxalic and salicylic acids and their buffers. The electrooxidation of pyrrole to form polypyrrole film and the electroreduction of nitrate and nitrite ions at synthesized Ppy modified copper electrodes (Ppy/Cu) in potassium chloride aqueous solutions were studied using chronoamperometry. The nanoporous structure of the synthesized Ppy films was characterized by scanning electron microscopy (SEM). Nitrate and nitrite reduction were performed by an electrochemical method under potentiostatic conditions. The Ppy/Cu electrodes prepared in the oxalate buffer and salicylic acid solutions perform more stable catalytic activity for nitrate reduction; their service life is about ten times longer than that for the electrodes prepared in oxalic acid solution. After 20 h of electrolysis, the nitrite was reduced completely with 100% efficiency and the nitrate was reduced with 35% efficiency. Report submitted to the 5th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN, Hanoi, 9–12 November 2010.

  18. Comparison of endogenous metabolism during long-term anaerobic starvation of nitrite/nitrate cultivated denitrifying phosphorus removal sludges.

    PubMed

    Wang, Yayi; Zhou, Shuai; Wang, Hong; Ye, Liu; Qin, Jian; Lin, Ximao

    2015-01-01

    Denitrifying phosphorus removal (DPR) by denitrifying phosphorus-accumulating organisms (DPAOs) is a promising approach for reducing energy and carbon usage. However, influent fluctuations or interruptions frequently expose the DPAOs biomass to starvation conditions, reducing biomass activity and amount, and ultimately degrading the performance of DPR. Therefore, a better understanding of the endogenous metabolism and recovery ability of DPAOs is urgently required. In the present study, anaerobic starvation (12 days) and recovery were investigated in nitrite- and nitrate-cultivated DPAOs at 20 ± 1 °C. The cell decay rates in nitrite-DPAOs sludges from the end of the anaerobic and aerobic phase were 0.008 day⁻¹ and 0.007 day⁻¹, respectively, being 64% and 68% lower than those of nitrate-DPAOs sludges. Nitrite-DPAOs sludges also recovered more rapidly than nitrate-DPAOs sludge after 12 days of starvation. The maintenance energy of nitrite-DPAOs sludges from the end of the anaerobic and aerobic phase were approximately 31% and 34% lower, respectively, than those of nitrate-DPAOs sludges. Glycogen and polyphosphate (poly-P) sequentially served as the main maintenance energy sources in both nitrite-and nitrate-DPAOs sludges. However, the transformation pathway of the intracellular polymers during starvation differed between them. Nitrate-DPAOs sludge used extracellular polymeric substances (EPS) (mainly polysaccharides) as an additional maintenance energy source during the first 3 days of starvation. During this phase, EPS appeared to contribute to 19-27% of the ATP production in nitrate-DPAOs, but considerably less to the cell maintenance of nitrite-DPAOs. The high resistance of nitrite-DPAOs to starvation might be attributable to frequent short-term starvation and exposure to toxic substances such as nitrite/free nitrous acids in the parent nitrite-fed reactor. The strong resistance of nitrite-DPAOs sludge to anaerobic starvation may be exploited in P removal

  19. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils

    PubMed Central

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-01-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3−-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly

  20. Plasma nitrate plus nitrite changes during continuous intravenous infusion interleukin 2.

    PubMed Central

    Citterio, G.; Pellegatta, F.; Lucca, G. D.; Fragasso, G.; Scaglietti, U.; Pini, D.; Fortis, C.; Tresoldi, M.; Rugarli, C.

    1996-01-01

    Nitric oxide (NO), a biologically active mediator generated in many cell types by the enzyme NO synthase, may play an important role in cardiovascular toxicity that is frequently observed in cancer patients during intravenous (i.v.) interleukin 2 (IL-2) therapy. The induction of NO synthase and the production of NO seem to be involved in the pathogenesis of the vascular leakage syndrome, as well as in the regulation of myocardial contractility. In the present study, we evaluated the pattern of plasmatic NO changes during multiple cycles of continuous i.v. infusion (CIVI) of IL-2 in ten advanced cancer patients (five males, five females, median age 59 years, range 33-67 years; eight affected by renal cell cancer and two affected by malignant melanoma). The patients received IL-2 at 18 MIU m-2 day-1 (14 cycles) or 9 MIU m-2 day-1 (seven cycles) for 96 h, repeated every 3 weeks. Interferon alpha (IFN alpha) was also administered subcutaneously (s.c) during the 3 week interval between IL-2 cycles. For each cycle, plasma samples were collected before treatment (t0), 24 h (t1), 48 h (t2), 72 h (t3) and 96 h (t4) after the start of IL-2 infusion, and 24 h after the end of the cycle. NO concentration was determined spectrophotometrically by measuring the accumulation of both nitrite and nitrate (after reduction to nitrite). The following observations may be drawn from data analysis: (1) plasma nitrate + nitrite significantly raised during treatment (P = 0.0226 for t0 vs t3), but statistical significance was retained only when cycles administered with IL-2 18 MIU m-2 day-1 are considered (P = 0.0329 for t0 vs t3; P = 0.0354 for t0 vs t2 vs t4) (dose-dependent pattern); (2) during subsequent cycles a significant trend toward a progressive increase of plasma nitrate + nitrite levels, with increasing cumulative dose of IL-2, was observed (linear regression coefficient r = 0.62, P = 0.0141 for t0; r = 0.80, P = 0.0003 for t1; r = 0.62, P = 0.013 for t2; r = 0.69, P = 0.045 for

  1. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    PubMed Central

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  2. Nitrite and nitrate content in meat products and estimated intake in Denmark from 1998 to 2006.

    PubMed

    Leth, T; Fagt, S; Nielsen, S; Andersen, R

    2008-10-01

    The content of nitrite and nitrate in cured meat products has been monitored in Denmark seven times between 1995 and 2006. The maximum permitted added amounts of sodium nitrite in Denmark (60 mg kg(-1) for most products up to 150 mg kg(-1) for special products) have not been exceeded, except for a few samples back in 2002. The intake, mean and intake distribution of sodium nitrite have been calculated from 1998 to 2006 with data from the Danish dietary survey conducted in 2000-02 on Danes from four to 75 years of age. The amounts used by industry have been relatively stable through the whole period with levels varying between 6 and 20 mg sodium nitrite kg(-1) with sausages, meat for open sandwiches and salami-type sausages being the greatest contributors. The mean intake of sodium nitrate was around 1 mg day(-1), which is very low compared with the total intake of 61 mg day(-1). The mean intake of sodium nitrite was 0.017 and 0.014, 0.009 and 0.008, and 0.007 and 0.003 mg kg(-1) body weight day(-1) for men and women in the age groups 4-5, 6-14 and 15-75 years, respectively, which was much lower than the acceptable daily intake (ADI) of 0.09 mg kg(-1) body weight day(-1). The 99th percentile for the group of 4-year-olds was 0.107 and 0.123 mg kg(-1) body weight day(-1) for boys and girls, respectively, and the 95th percentile was 0.057 and 0.073 mg kg(-1) body weight day(-1) for boys and girls, respectively, highest for the girls. With fewer than 100 boys and girls in the 4-5-year age group, only very few persons were responsible for the high intake. The conversion of nitrate to nitrite in the saliva and the degradation of nitrite during production and storage must also be considered when evaluating the intake of nitrite. PMID:18608491

  3. The napF and narG Nitrate Reductase Operons in Escherichia coli Are Differentially Expressed in Response to Submicromolar Concentrations of Nitrate but Not Nitrite

    PubMed Central

    Wang, Henian; Tseng, Ching-Ping; Gunsalus, Robert P.

    1999-01-01

    Escherichia coli synthesizes two biochemically distinct nitrate reductase enzymes, a membrane-bound enzyme encoded by the narGHJI operon and a periplasmic cytochrome c-linked nitrate reductase encoded by the napFDAGHBC operon. To address why the cell makes these two enzymes, continuous cell culture techniques were used to examine napF and narG gene expression in response to different concentrations of nitrate and/or nitrite. Expression of the napF-lacZ and narG-lacZ reporter fusions in strains grown at different steady-state levels of nitrate revealed that the two nitrate reductase operons are differentially expressed in a complementary pattern. The napF operon apparently encodes a “low-substrate-induced” reductase that is maximally expressed only at low levels of nitrate. Expression is suppressed under high-nitrate conditions. In contrast, the narGHJI operon is only weakly expressed at low nitrate levels but is maximally expressed when nitrate is elevated. The narGHJI operon is therefore a “high-substrate-induced” operon that somehow provides a second and distinct role in nitrate metabolism by the cell. Interestingly, nitrite, the end product of each enzyme, had only a minor effect on the expression of either operon. Finally, nitrate, but not nitrite, was essential for repression of napF gene expression. These studies reveal that nitrate rather than nitrite is the primary signal that controls the expression of these two nitrate reductase operons in a differential and complementary fashion. In light of these findings, prior models for the roles of nitrate and nitrite in control of narG and napF expression must be reconsidered. PMID:10464201

  4. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor.

    PubMed

    Chung, Jinwook; Amin, Khurram; Kim, Seungjin; Yoon, Seungjoon; Kwon, Kiwook; Bae, Wookeun

    2014-07-01

    This study was carried out to determine the possibility of autotrophic denitritation using thiosulfate as an electron donor, compare the kinetics of autotrophic denitrification and denitritation, and to study the effects of pH and sulfur/nitrogen (S/N) ratio on the denitrification rate of nitrite. Both nitrate and nitrite were removed by autotrophic denitrification using thiosulfate as an electron donor at concentrations up to 800 mg-N/L. Denitrification required a S/N ratio of 5.1 for complete denitrification, but denitritation was complete at a S/N ratio of 2.5, which indicated an electron donor cost savings of 50%. Also, pH during denitrification decreased but increased with nitrite, implying additional alkalinity savings. Finally, the highest specific substrate utilization rate of nitrite was slightly higher than that of nitrate reduction, and biomass yield for denitrification was relatively higher than that of denitritation, showing less sludge production and resulting in lower sludge handling costs. PMID:24755301

  5. Simultaneous ammonia and nitrate removal in an airlift reactor using poly(butylene succinate) as carbon source and biofilm carrier.

    PubMed

    Ruan, Yun-Jie; Deng, Ya-Le; Guo, Xi-Shan; Timmons, Michael B; Lu, Hui-Feng; Han, Zhi-Ying; Ye, Zhang-Ying; Shi, Ming-Ming; Zhu, Song-Ming

    2016-09-01

    In this study, an airlift inner-loop sequencing batch reactor using poly(butylene succinate) as the biofilm carrier and carbon source was operated under an alternant aerobic/anoxic strategy for nitrogen removal in recirculating aquaculture system. The average TAN and nitrate removal rates of 47.35±15.62gNH4-Nm(-3)d(-1) and 0.64±0.14kgNO3-Nm(-3)d(-1) were achieved with no obvious nitrite accumulation (0.70±0.76mg/L) and the dissolved organic carbon in effluents was maintained at 148.38±39.06mg/L. Besides, the activities of dissimilatory nitrate reduction to ammonium and sulfate reduction activities were successfully inhibited. The proteome KEGG analysis illustrated that ammonia might be removed through heterotrophic nitrification, while the activities of nitrate and nitrite reductases were enhanced through aeration treatment. The microbial community analysis revealed that denitrifiers of Azoarcus and Simplicispira occupied the dominate abundance which accounted for the high nitrate removal performance. Overall, this study broadened our understanding of simultaneous nitrification and denitrification using biodegradable material as biofilm carrier. PMID:27343453

  6. Susceptibility of Clostridium difficile to the food preservatives sodium nitrite, sodium nitrate and sodium metabisulphite.

    PubMed

    Lim, Su-Chen; Foster, Niki F; Riley, Thomas V

    2016-02-01

    Clostridium difficile is an important enteric pathogen of humans and food animals. Recently it has been isolated from retail foods with prevalences up to 42%, prompting concern that contaminated foods may be one of the reasons for increased community-acquired C. difficile infection (CA-CDI). A number of studies have examined the prevalence of C. difficile in raw meats and fresh vegetables; however, fewer studies have examined the prevalence of C. difficile in ready-to-eat meat. The aim of this study was to investigate the in vitro susceptibility of 11 C. difficile isolates of food animal and retail food origins to food preservatives commonly used in ready-to-eat meats. The broth microdilution method was used to determine the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for sodium nitrite, sodium nitrate and sodium metabisulphite against C. difficile. Checkerboard assays were used to investigate the combined effect of sodium nitrite and sodium nitrate, commonly used in combination in meats. Modal MIC values for sodium nitrite, sodium nitrate and sodium metabisulphite were 250 μg/ml, >4000 μg/ml and 1000 μg/ml, respectively. No bactericidal activity was observed for all three food preservatives. The checkerboard assays showed indifferent interaction between sodium nitrite and sodium nitrate. This study demonstrated that C. difficile can survive in the presence of food preservatives at concentrations higher than the current maximum permitted levels allowed in ready-to-eat meats. The possibility of retail ready-to-eat meats contaminated with C. difficile acting as a source of CDI needs to be investigated. PMID:26700884

  7. Industrial use of molten nitrate/nitrite salts

    SciTech Connect

    Carling, R.W.; Mar, R.W.

    1981-12-01

    Nitrate salts have been used for years as a high-temperature heat transfer medium in the chemical and metal industries. This experience is often cited as an argument for the use of these salts in large-scale solar energy systems. However, this industrial experience has not been well documented and a study was carried out to provide such information to the solar community and to determine the applicability of this data base. Seven different industrial plants were visited and the plant operators were interviewed with regard to operating history and experience. In all cases the molten salt systems operate without problems. However, it is not possible to apply the base of industrial experience directly to solar thermal energy applications because of differences in operating temperature, salt composition, alloys used, and thermal/mechanical conditions.

  8. Inhibition of Listeria monocytogenes using natural antimicrobials in no-nitrate-or-nitrite-added ham.

    PubMed

    Sullivan, Gary A; Jackson-Davis, Armitra L; Niebuhr, Steven E; Xi, Yuan; Schrader, Kohl D; Sebranek, Joseph G; Dickson, James S

    2012-06-01

    Consumer demand for foods manufactured without the direct addition of chemical preservatives, such as sodium nitrite and organic acid salts, has resulted in a unique class of "naturally" cured meat products. Formulation with a natural nitrate source and nitrate-reducing bacteria results in naturally cured processed meats that possess traits similar to conventionally cured meats. However, previous research has shown that the naturally cured products are more susceptible to pathogen growth. This study evaluated Listeria monocytogenes growth on ham manufactured with natural curing methods and with commercially available clean-label antimicrobials (cultured sugar and vinegar blend; lemon, cherry, and vinegar powder blend) and assessed impacts on physicochemical characteristics of the product. Hams made with either of the antimicrobials supported L. monocytogenes growth similar to that in the traditionally cured control (P > 0.05). Hams made with prefermented celery juice powder had the lowest residual nitrite concentrations (P < 0.05), and when no antimicrobial was added, L. monocytogenes growth was similar to that of the uncured control (P > 0.05). Aside from residual nitrite and nitrate concentrations, few physicochemical differences were identified. These findings show that ham can be produced with natural curing methods and antimicrobials to provide similar L. monocytogenes inhibition and physicochemical traits as in traditionally cured ham. PMID:22691474

  9. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors.

    PubMed

    Wang, Yayi; Zhou, Shuai; Ye, Liu; Wang, Hong; Stephenson, Tom; Jiang, Xuxin

    2014-12-15

    Nitrite-based phosphorus (P) removal could be useful for innovative biological P removal systems where energy and carbon savings are a priority. However, using nitrite for denitrification may cause nitrous oxide (N2O) accumulation and emissions. A denitrifying nitrite-fed P removal system [Formula: see text] was successfully set up in a sequencing batch reactor (SBR) and was run for 210 days. The maximum pulse addition of nitrite to [Formula: see text] was 11 mg NO2(-)-N/L in the bulk, and a total of 34 mg NO2(-)-N/L of nitrite was added over three additions. Fluorescent in situ hybridization results indicated that the P-accumulating organisms (PAOs) abundance was 75 ± 1.1% in [Formula: see text] , approximately 13.6% higher than that in a parallel P removal SBR using nitrate [Formula: see text] . Type II Accumulibacter (PAOII) (unable to use nitrate as an electron acceptor) was the main PAOs species in [Formula: see text] , contributing 72% to total PAOs. Compared with [Formula: see text] , [Formula: see text] biomass had enhanced nitrite/free nitrous acid (FNA) endurance, as demonstrated by its higher nitrite denitrification and P uptake rates. N2O accumulated temporarily in [Formula: see text] after each pulse of nitrite. Peak N2O concentrations in the bulk for [Formula: see text] were generally 6-11 times higher than that in [Formula: see text] ; these accumulations were rapidly denitrified to nitrogen gases. N2O concentration increased rapidly in nitrate-cultivated biomass when 5 or 10 mg NO2(-)-N/L per pulse was added. Whereas, N2O accumulation did not occur in nitrite-cultivated biomass until up to 30 mg NO2(-)-N/L per pulse was added. Long-term acclimation to nitrite and pulse addition of nitrite in [Formula: see text] reduced the risk of nitrite accumulation, and mitigated N2O accumulation and emissions from denitrifying P removal by nitrite. PMID:25261626

  10. Control of hydrogen sulfide production in oil fields by managing microbial communities through nitrate or nitrite addition

    NASA Astrophysics Data System (ADS)

    Hubert, Casey R. J.

    Nitrate or nitrite injection into oil reservoirs during water flooding has the potential to control biological souring, the production of hydrogen sulfide (H2S) by sulfate-reducing bacteria (SRB). Souring control is essential because sulfide is toxic, sulfide precipitates can plug reservoir formations, souring lowers crude oil value, and SRB induce corrosion. Nitrate and nitrite can stimulate heterotrophic nitrate- or nitrite-reducing bacteria (hNRB) and nitrate- or nitrite-reducing, sulfide oxidizing bacteria (NRSOB). Nitrite also inhibits SRB activity by blocking the sulfate reduction pathway. Continuous up-flow packed-bed bioreactors were inoculated with produced water from the Coleville oil field to establish sulfide-producing biofilms similar to those found in sour reservoirs. Nitrate or nitrite addition to bioreactors indicated that the dose required for hNRB or NR-SOB to control souring depended on the concentration of oil organics. Either mechanism mediates the net removal of oil organics (lactate) with nitrate or nitrite, with lower doses of nitrate required due to its greater oxidative power. Microbial community analysis by reverse sample genome probing (RSGP) revealed that NR-SOB mediated sulfide removal at low nitrate or nitrite concentrations when lactate was still available to SRB and the redox potential was low. At high nitrate doses hNRB oxidized lactate directly, produced nitrite and maintained a high redox potential, thus excluding SRB activity. Facultatively chemolithotrophic Campylobacter sp. strains were isolated from the bioreactors and incorporated into RSGP analyses, revealing their dominance in both NR-SOB- and hNRB-containing communities. The metabolic flexibility of these strains may confer a competitive advantage over obligate chemolithotrophs like Thiomicrospira sp. strain CVO or hNRB that do not have NR-SOB activity like newly isolated Thauera sp. and Rhodobacter sp. strains. A single high dose of nitrite resulted in immediate

  11. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    NASA Astrophysics Data System (ADS)

    Venterea, R. T.; Sadowsky, M.; Breuillin-Sessoms, F.; Wang, P.; Clough, T. J.; Coulter, J. A.

    2015-12-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3-) levels than soil L, but was more resistant to nitrite (NO2-) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2- oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2- was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2-. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2- oxidization leading to greater NO2- levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2-, N2O and nitrifier genes, and the first to show how ASC can regulate NO2- levels and N2O production.

  12. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    NASA Astrophysics Data System (ADS)

    Venterea, Rodney T.; Clough, Timothy J.; Coulter, Jeffrey A.; Breuillin-Sessoms, Florence

    2015-07-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted ‘hot spots’ and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils (‘L’ and ‘W’) having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3-) levels than soil L, but was more resistant to nitrite (NO2-) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2- oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2- was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2-. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2- oxidization leading to greater NO2- levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2-, N2O and nitrifier genes, and the first to show how ASC can regulate NO2- levels and N2O production.

  13. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production.

    PubMed

    Venterea, Rodney T; Clough, Timothy J; Coulter, Jeffrey A; Breuillin-Sessoms, Florence; Wang, Ping; Sadowsky, Michael J

    2015-01-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4(+)) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3(-)) levels than soil L, but was more resistant to nitrite (NO2(-)) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2(-) oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2(-) was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2(-). Differences between soils were explained by greater slNH3 in soil L which inhibited NO2(-) oxidization leading to greater NO2(-) levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2(-), N2O and nitrifier genes, and the first to show how ASC can regulate NO2(-) levels and N2O production. PMID:26179972

  14. Development of a method to manufacture uncured, no-nitrate/nitrite-added whole muscle jerky.

    PubMed

    Sindelar, Jeffrey J; Terns, Matthew J; Meyn, Elizabeth; Boles, Jane A

    2010-10-01

    "Natural curing" is accomplished by use of vegetable juice/powder high in naturally occurring nitrates combined with a nitrate reducing starter culture to result in indirectly "cured" products. Since the starter culture used is not water soluble, making "naturally cured" whole muscle jerky with current manufacturing techniques has been found ineffective. The objective was to investigate processes for whole muscle beef jerky that might provide cured meat characteristics similar to those of a nitrite-added control. Treatments where jerky was placed in a barrier bag during incubation were found to be the least similar to the nitrite-added control. Jerky placed in a 40.6 degrees C smokehouse during incubation resulted in significantly more (P<0.05) converted cured pigment than the barrier bag treatments but less (P<0.05) than the control. The processing methods investigated to manufacture "naturally cured" whole muscle jerky in this study were ineffective in resulting in products similar to those cured with sodium nitrite. PMID:20510525

  15. NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiella oxytoca (pneumoniae) M5al.

    PubMed

    Wu, Q; Stewart, V

    1998-03-01

    Klebsiella oxytoca can use nitrate and nitrite as sole nitrogen sources. The enzymes required for nitrate and nitrite assimilation are encoded by the nasFEDCBA operon. We report here the complete nasFED sequence. Sequence comparisons indicate that the nasFED genes encode components of a conventional periplasmic binding protein-dependent transport system consisting of a periplasmic binding protein (NasF), a homodimeric intrinsic membrane protein (NasE), and a homodimeric ATP-binding cassette (ABC) protein (NasD). The NasF protein and the related NrtA and CmpA proteins of cyanobacteria contain leader (signal) sequences with the double-arginine motif that is hypothesized to direct prefolded proteins to an alternate protein export pathway. The NasE protein and the related NrtB and CmpB proteins of cyanobacteria contain unusual variants of the EAA loop sequence that defines membrane-intrinsic proteins of ABC transporters. To characterize nitrate and nitrite transport, we constructed in-frame nonpolar deletions of the chromosomal nasFED genes. Growth tests coupled with nitrate and nitrite uptake assays revealed that the nasFED genes are essential for nitrate transport and participate in nitrite transport as well. Interestingly, the delta nasF strain exhibited leaky phenotypes, particularly at elevated nitrate concentrations, suggesting that the NasED proteins are not fully dependent on the NasF protein. PMID:9495773

  16. NasFED Proteins Mediate Assimilatory Nitrate and Nitrite Transport in Klebsiella oxytoca (pneumoniae) M5al

    PubMed Central

    Wu, Qitu; Stewart, Valley

    1998-01-01

    Klebsiella oxytoca can use nitrate and nitrite as sole nitrogen sources. The enzymes required for nitrate and nitrite assimilation are encoded by the nasFEDCBA operon. We report here the complete nasFED sequence. Sequence comparisons indicate that the nasFED genes encode components of a conventional periplasmic binding protein-dependent transport system consisting of a periplasmic binding protein (NasF), a homodimeric intrinsic membrane protein (NasE), and a homodimeric ATP-binding cassette (ABC) protein (NasD). The NasF protein and the related NrtA and CmpA proteins of cyanobacteria contain leader (signal) sequences with the double-arginine motif that is hypothesized to direct prefolded proteins to an alternate protein export pathway. The NasE protein and the related NrtB and CmpB proteins of cyanobacteria contain unusual variants of the EAA loop sequence that defines membrane-intrinsic proteins of ABC transporters. To characterize nitrate and nitrite transport, we constructed in-frame nonpolar deletions of the chromosomal nasFED genes. Growth tests coupled with nitrate and nitrite uptake assays revealed that the nasFED genes are essential for nitrate transport and participate in nitrite transport as well. Interestingly, the ΔnasF strain exhibited leaky phenotypes, particularly at elevated nitrate concentrations, suggesting that the NasED proteins are not fully dependent on the NasF protein. PMID:9495773

  17. Nitrite

    Integrated Risk Information System (IRIS)

    Nitrite ; CASRN 14797 - 65 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  18. A high-throughput assay format for determination of nitrate reductase and nitrite reductase enzyme activities

    SciTech Connect

    McNally, N.; Liu, Xiang Yang; Choudary, P.V.

    1997-01-01

    The authors describe a microplate-based high-throughput procedure for rapid assay of the enzyme activities of nitrate reductase and nitrite reductase, using extremely small volumes of reagents. The new procedure offers the advantages of rapidity, small sample size-nanoliter volumes, low cost, and a dramatic increase in the throughput sample number that can be analyzed simultaneously. Additional advantages can be accessed by using microplate reader application software packages that permit assigning a group type to the wells, recording of the data on exportable data files and exercising the option of using the kinetic or endpoint reading modes. The assay can also be used independently for detecting nitrite residues/contamination in environmental/food samples. 10 refs., 2 figs.

  19. Dynamics of corrosion rates associated with nitrite or nitrate mediated control of souring under biological conditions simulating an oil reservoir.

    PubMed

    Rempel, C L; Evitts, R W; Nemati, M

    2006-10-01

    Representative microbial cultures from an oil reservoir and electrochemical techniques including potentiodynamic scan and linear polarization were used to investigate the time dependent corrosion rate associated with control of biogenic sulphide production through addition of nitrite, nitrate and a combination of nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB) and nitrate. The addition of nitrate alone did not prevent the biogenic production of sulphide but the produced sulphide was eventually oxidized and removed from the system. The addition of nitrate and NR-SOB had a similar effect on oxidation and removal of sulphide present in the system. However, as the addition of nitrate and NR-SOB was performed towards the end of sulphide production phase, the assessment of immediate impact was not possible. The addition of nitrite inhibited the biogenic production of sulphide immediately and led to removal of sulphide through nitrite mediated chemical oxidation of sulphide. The real time corrosion rate measurement revealed that in all three cases an acceleration in the corrosion rate occurred during the oxidation and removal of sulphide. Amendments of nitrate and NR-SOB or nitrate alone both gave rise to localized corrosion in the form of pits, with the maximum observed corrosion rates of 0.72 and 1.4 mm year(-1), respectively. The addition of nitrite also accelerated the corrosion rate but the maximum corrosion rate observed following nitrite addition was 0.3 mm year(-1). Furthermore, in the presence of nitrite the extent of pitting was not as high as those observed with other control methods. PMID:16758172

  20. The study of abiotic reduction of nitrate and nitrite in Boom Clay

    NASA Astrophysics Data System (ADS)

    Mariën, A.; Bleyen, N.; Aerts, S.; Valcke, E.

    In Belgium, Boom Clay is studied as a reference host rock for the geological disposal of high-level and intermediate-level radioactive waste. Compatibility studies at the SCK•CEN aim at investigating a perturbation of the capacity of Boom Clay to retard the migration of radionuclides to the biosphere, after disposal of Eurobitum bituminized radioactive waste in the clay ( Valcke et al., 2009; Aertsens et al., 2009; Bleyen et al., 2010). One of the geo-chemical perturbations is the possible oxidation of Boom Clay by the large amounts of nitrate that will be released by Eurobitum. A more oxidised Boom Clay could have a lower reducing capacity towards redox sensitive radionuclides, possibly enhancing their migration. As the conditions in the Boom Clay formation around a disposal gallery for Eurobitum are far from optimal for the growth of prokaryotes (limited space in the far-field, high pH in the near-field, gamma radiation by the waste during the first ∼300 years (effect limited to the primary and secondary waste package)), the impact of microbially mediated reduction of nitrate and nitrite is unclear. Therefore, batch tests are performed at the SCK•CEN to study whether nitrate and nitrite can directly oxidise the main redoxactive components of Boom Clay (dissolved organic matter, kerogen, pyrite) without the mediation of prokaryotes. In a first series of batch tests, which are reported in this paper, the activity of denitrifying and nitrate reducing prokaryotes was inhibited by the addition of NaN 3. NaN 3 revealed to be an efficient inhibitor for these prokaryotes without affecting considerably the geochemistry of Boom Clay and/or Boom Clay pore water. Neither in batch tests with the Boom Clay slurries (with NaNO 3 (0.1 and 1 M) or NaNO 2 (0.1 M)) and with Boom Clay water (with 0.05 and 0.2 M NaNO 3) a pure chemical nitrate or nitrite reduction was observed after respectively 3, 7 and 17 weeks and 1 year (Boom Clay slurries) and about 2 years (Boom Clay

  1. Nitrite oxidation in the Namibian oxygen minimum zone

    PubMed Central

    Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel MM

    2012-01-01

    Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2− d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3− was re-oxidized back to NO3− via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways. PMID:22170426

  2. Thyroid cancer risk and dietary nitrate and nitrite intake in the Shanghai Women’s Health Study

    PubMed Central

    Aschebrook-Kilfoy, Briseis; Shu, Xiao-Ou; Gao, Yu-Tang; Ji, Bu-Tian; Yang, Gong; Li, Hong Lan; Rothman, Nathaniel; Chow, Wong-Ho; Zheng, Wei; Ward, Mary H.

    2012-01-01

    Nitrate and nitrite are precursors in the endogenous formation of N-nitroso compounds and nitrate can disrupt thyroid homeostasis by inhibiting iodide uptake. We evaluated nitrate and nitrite intake and risk of thyroid cancer in the Shanghai Women’s Health Study that included 73,317 women, aged 40–70 years enrolled in 1996–2000. Dietary intake was assessed at baseline using a food frequency questionnaire. During approximately 11 years of follow-up, 164 incident thyroid cancer cases with complete dietary information were identified. We used Cox proportional hazards regression to estimate relatives risks (RRs). We determined the nitrate and nitrite contents of foods using values from the published literature and focusing on regional values for Chinese foods. Nitrate intake was not associated with thyroid cancer risk (RRQ4 = 0.93; 95%CI: 0.42–2.07; p for trend = 0.40). Compared with the lowest quartile, women with the highest dietary nitrite intake had about a two-fold risk of thyroid cancer (RRQ4 = 2.05; 95%CI: 1.20–3.51;) but there was not a monotonic trend with increasing intake (p for trend= 0.36). The trend with increasing nitrite intake from animal sources was significant (p for trend = 0.02) and was stronger for nitrite from processed meats (RRQ4 = 1.96; 95%CI: 1.28–2.99; p for trend <0.01). Although we did not observe an association for nitrate as hypothesized, our results suggest that women consuming higher levels of nitrite from animal sources, particularly from processed meat, may have an increased risk of thyroid cancer. PMID:22674227

  3. Z-Selective Ruthenium Metathesis Catalysts: Comparison of Nitrate and Nitrite X-type Ligands

    PubMed Central

    Pribisko, Melanie A.; Ahmed, Tonia S.; Grubbs, Robert H.

    2014-01-01

    Two new Ru-based metathesis catalysts, 3 and 4, have been synthesized for the purpose of comparing their catalytic properties to those of their cis-selective nitrate analogues, 1 and 2. Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2, they maintained high cis-selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite catalysts displayed higher cis-selectivity than 2 for ring-opening metathesis polymerizations, and 4 delivered higher yields of polymer. PMID:25484484

  4. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    PubMed Central

    Kaspar, H F; Tiedje, J M

    1981-01-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat. PMID:7224631

  5. Nitrite- and Nitrate-Dependent Methanotrophs - Environmental Detection and Relevance in Freshwater Ecosystems

    NASA Astrophysics Data System (ADS)

    Ettwig, K. F.

    2014-12-01

    Humans continue to have an enormous impact on global C and N cycles. While a clear stimulation of methane emissions through human activities is evident, the role of also increasingly released nitrogenous compounds as electron acceptors for microbial methane oxidation is not well constrained. We have developed diverse methods for environmental detection of nitrate(NO3-)- and - predominantly - nitrite(NO2-)-dependent methanotrophs, which have been applied to several freshwater environments. In contrast to most metabolically flexible heterotrophic denitrifiers, the microorganisms responsible for methane-dependent nitrate/nitrite reduction seem to be specialized to use methane only, grow slowly and employ pathways different from each other and from model organisms, which necessitate new approaches for the assessment of their environmental relevance. Nitrite-dependent methane oxidation is carried out by bacteria of the NC10 phylum, whereas nitrate-dependent methane oxidizers are close relatives of methanogenic archaea and sulfate-dependent anaerobic methanotrophs (ANME-2). Laboratory enrichment cultures of the nitrite-reducing methanotroph Methylomirabilis oxyfera (NC10 phylum) have formed the basis for its genetic and physiological characterization and the development of several independent methods for its sensitive detection. M. oxyfera differs from all known microorganisms by encoding an incomplete denitrification pathway, in which the last 2 steps, the reduction of NO via N2O to N2, apparently is replaced by the dismutation of NO to N2 and O2. The intracellularly produced O2 is used for methane oxidation via a methane monooxygenase, analogously to the phylogenetically unrelated proteobacterial methanotrophs. But unlike in proteobacteria, C is not assimilated from methane, but rather CO2, with important consequences for the interpretation of environmental isotope labelling studies. In addition, M. oxyfera is characterized by a distinct PLFA profile, including

  6. Hydrogen Bonding Networks Tune Proton-Coupled Redox Steps during the Enzymatic Six-Electron Conversion of Nitrite to Ammonia

    PubMed Central

    2015-01-01

    Multielectron multiproton reactions play an important role in both biological systems and chemical reactions involved in energy storage and manipulation. A key strategy employed by nature in achieving such complex chemistry is the use of proton-coupled redox steps. Cytochrome c nitrite reductase (ccNiR) catalyzes the six-electron seven-proton reduction of nitrite to ammonia. While a catalytic mechanism for ccNiR has been proposed on the basis of studies combining computation and crystallography, there have been few studies directly addressing the nature of the proton-coupled events that are predicted to occur along the nitrite reduction pathway. Here we use protein film voltammetry to directly interrogate the proton-coupled steps that occur during nitrite reduction by ccNiR. We find that conversion of nitrite to ammonia by ccNiR adsorbed to graphite electrodes is defined by two distinct phases; one is proton-coupled, and the other is not. Mutation of key active site residues (H257, R103, and Y206) modulates these phases and specifically alters the properties of the detected proton-dependent step but does not inhibit the ability of ccNiR to conduct the full reduction of nitrite to ammonia. We conclude that the active site residues examined are responsible for tuning the protonation steps that occur during catalysis, likely through an extensive hydrogen bonding network, but are not necessarily required for the reaction to proceed. These results provide important insight into how enzymes can specifically tune proton- and electron transfer steps to achieve high turnover numbers in a physiological pH range. PMID:25137350

  7. Plasma arginine and urinary nitrate and nitrite excretion in bronchopulmonary dysplasia.

    PubMed

    Heckmann, M; Kreuder, J; Riechers, K; Tsikas, D; Boedeker, R-H; Reiss, I; Gortner, L

    2004-01-01

    The aim of this prospective study was to determine whether preterm infants with bronchopulmonary dysplasia (BPD) and signs of increased pulmonary artery pressure have a deficiency of plasma arginine (ARG) and systemic nitric oxide (NO) synthesis. Plasma amino acid concentrations, Doppler pulmonary systolic time intervals (ratio of acceleration time and ejection time corrected for heart rate: AT/ET(C)) and urinary nitrate and nitrite concentrations were determined at the 28th day postnatal age and at 36 weeks postmenstrual age in 73 preterm infants less than 30 weeks gestational age. The AT/ET(C) ratios were significantly lower in infants with BPD (n = 32) compared to controls. However, total amino acid concentrations, ARG intake as well as plasma ARG concentrations were not different between groups (median (interquartile-range) micromol/l): control: 58 (42.5-75.5) and 54.5 (42-71) at day 28 and 36 weeks; BPD: 54.5 (31.5-70.5) and 43 (35-62), respectively. Urinary nitrate and nitrite concentrations, were not different between groups at day 28, but significantly higher in infants with BPD at 36 weeks (p = 0.014). In conclusion, plasma ARG concentrations and systemic NO synthesis were not deficient in preterm infants with BPD and signs of elevated pulmonary artery pressure. PMID:14671435

  8. Effect of Nitrite and Nitrate Concentrations on the Performance of AFB-MFC Enriched with High-Strength Synthetic Wastewater

    PubMed Central

    Huang, Jian-sheng; Yang, Ping; Li, Chong-ming; Guo, Yong; Lai, Bo; Wang, Ye; Feng, Li; Zhang, Yun

    2015-01-01

    In order to study the effect of nitrite and nitrate on the performance of microbial fuel cell, a system combining an anaerobic fluidized bed (AFB) and a microbial fuel cell (MFC) was employed for high-strength nitrogen-containing synthetic wastewater treatment. Before this study, the AFB-MFC had been used to treat high-strength organic wastewater for about one year in a continuous flow mode. The results showed that when the concentrations of nitrite nitrogen and nitrate nitrogen were increased from 1700 mg/L to 4045 mg/L and 545 mg/L to 1427 mg/L, respectively, the nitrite nitrogen and nitrate nitrogen removal efficiencies were both above 99%; the COD removal efficiency went up from 60.00% to 88.95%; the voltage was about 375 ± 15 mV while the power density was at 70 ± 5 mW/m2. However, when the concentrations of nitrite nitrogen and nitrate nitrogen were above 4045 mg/L and 1427 mg/L, respectively, the removal of nitrite nitrogen, nitrate nitrogen, COD, voltage, and power density were decreased to be 86%, 88%, 77%, 180 mV, and 17 mW/m2 when nitrite nitrogen and nitrate nitrogen were increased to 4265 mg/L and 1661 mg/L. In addition, the composition of biogas generated in the anode chamber was analyzed by a gas chromatograph. Nitrogen gas, methane, and carbon dioxide were obtained. The results indicated that denitrification happened in anode chamber. PMID:26495144

  9. Correlation of plasma nitrite/nitrate levels and inducible nitric oxide gene expression among women with cervical abnormalities and cancer.

    PubMed

    Sowjanya, A Pavani; Rao, Meera; Vedantham, Haripriya; Kalpana, Basany; Poli, Usha Rani; Marks, Morgan A; Sujatha, M

    2016-01-30

    Cervical cancer is caused by infection with high risk human papillomavirus (HR-HPV). Inducible nitric oxide synthase (iNOS), a soluble factor involved in chronic inflammation, may modulate cervical cancer risk among HPV infected women. The aim of the study was to measure and correlate plasma nitrite/nitrate levels with tissue specific expression of iNOS mRNA among women with different grades of cervical lesions and cervical cancer. Tissue biopsy and plasma specimens were collected from 120 women with cervical neoplasia or cancer (ASCUS, LSIL, HSIL and invasive cancer) and 35 women without cervical abnormalities. Inducible nitric oxide synthase (iNOS) mRNA from biopsy and plasma nitrite/nitrate levels of the same study subjects were measured. Single nucleotide polymorphism (SNP) analysis was performed on the promoter region and Ser608Leu (rs2297518) in exon 16 of the iNOS gene. Differences in iNOS gene expression and plasma nitrite/nitrate levels were compared across disease stage using linear and logistic regression analysis. Compared to normal controls, women diagnosed with HSIL or invasive cancer had a significantly higher concentration of plasma nitrite/nitrate and a higher median fold-change in iNOS mRNA gene expression. Genotyping of the promoter region showed three different variations: A pentanucleotide repeat (CCTTT) n, -1026T > G (rs2779249) and a novel variant -1153T > A. These variants were associated with increased levels of plasma nitrite/nitrate across all disease stages. The higher expression of iNOS mRNA and plasma nitrite/nitrate among women with pre-cancerous lesions suggests a role for nitric oxide in the natural history of cervical cancer. PMID:26435258

  10. Gastric S-nitrosothiol formation drives the antihypertensive effects of oral sodium nitrite and nitrate in a rat model of renovascular hypertension.

    PubMed

    Pinheiro, Lucas C; Amaral, Jefferson H; Ferreira, Graziele C; Portella, Rafael L; Ceron, Carla S; Montenegro, Marcelo F; Toledo, Jose Carlos; Tanus-Santos, Jose E

    2015-10-01

    Many effects of nitrite and nitrate are attributed to increased circulating concentrations of nitrite, ultimately converted into nitric oxide (NO(•)) in the circulation or in tissues by mechanisms associated with nitrite reductase activity. However, nitrite generates NO(•) , nitrous anhydride, and other nitrosating species at low pH, and these reactions promote S-nitrosothiol formation when nitrites are in the stomach. We hypothesized that the antihypertensive effects of orally administered nitrite or nitrate involve the formation of S-nitrosothiols, and that those effects depend on gastric pH. The chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats treated with omeprazole (or vehicle). Oral nitrite lowered blood pressure and increased plasma S-nitrosothiol concentrations independently of circulating nitrite levels. Increasing gastric pH with omeprazole did not affect the increases in plasma nitrite and nitrate levels found after treatment with nitrite. However, treatment with omeprazole severely attenuated the increases in plasma S-nitrosothiol concentrations and completely blunted the antihypertensive effects of nitrite. Confirming these findings, very similar results were found with oral nitrate. To further confirm the role of gastric S-nitrosothiol formation, we studied the effects of oral nitrite in hypertensive rats treated with the glutathione synthase inhibitor buthionine sulfoximine (BSO) to induce partial thiol depletion. BSO treatment attenuated the increases in S-nitrosothiol concentrations and antihypertensive effects of oral nitrite. These data show that gastric S-nitrosothiol formation drives the antihypertensive effects of oral nitrite or nitrate and has major implications, particularly to patients taking proton pump inhibitors. PMID:26159506

  11. Isolated and combined exposure to ammonia and nitrite in giant freshwater pawn (Macrobrachium rosenbergii): effects on the oxidative stress, antioxidant enzymatic activities and apoptosis in haemocytes.

    PubMed

    Zhang, Yufan; Ye, Chaoxia; Wang, Anli; Zhu, Xuan; Chen, Changhong; Xian, Jianan; Sun, Zhenzhu

    2015-10-01

    The residual contaminators such as ammonia and nitrite are widely considered as relevant sources of aquatic environmental pollutants, posing a great threat to shrimp survival. To study the toxicological effects of ammonia and nitrite exposure on the innate immune response in invertebrates, we investigated the oxidative stress and apoptosis in haemocytes of freshwater prawn (Macrobrachium rosenbergii) under isolated and combined exposure to ammonia and nitrite in order to provide useful information about adult prawn immune responses. M. rosenbergii (13.44 ± 2.75 g) were exposed to 0, 5, and 25 mg/L total ammonia-N (TAN) and 0, 5, and 20 mg/L nitrite-N for 24 h. All ammonia concentrations were combined with all nitrite concentrations, making a total of nine treatments studied. Following the exposure treatment, antioxidant enzyme activity, reactive oxygen species (ROS) generation, nitric oxide (NO) generation, and apoptotic cell ratio of haemocytes were measured using flow cytometry. Results indicated that ROS generation was sensitive to the combined effect of ammonia and nitrite, which subsequently affected the Cu-Zn SOD activity. In addition, CAT showed the highest activity at 5 mg/L TAN while GPx decreased at 5 mg/L TAN and returned towards baseline at 25 mg/L. NO generation synchronized with the apoptotic cell ratio in haemocytes, indicating that NO production was closely associated with programmed cell death. Both NO production and apoptotic ratios significantly decreased following 25 mg/L TAN, which may be due to the antagonistic regulation of NO and GPx. We hypothesized that the toxicological effect of nitrite exhibited less change in physiological changes compared to that of ammonia, because of the high tolerance to nitrite exposure in mature M. rosenbergii and/or the competitive effects of chloride ions. Taken together, these results showed that ammonia and nitrite caused a series of combined oxidative stress and apoptosis in M. rosenbergi, but further

  12. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    PubMed Central

    Venterea, Rodney T.; Clough, Timothy J.; Coulter, Jeffrey A.; Breuillin-Sessoms, Florence

    2015-01-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted ‘hot spots’ and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils (‘L’ and ‘W’) having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3−) levels than soil L, but was more resistant to nitrite (NO2−) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2− oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2− was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2−. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2− oxidization leading to greater NO2− levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2−, N2O and nitrifier genes, and the first to show how ASC can regulate NO2− levels and N2O production. PMID:26179972

  13. Determination of nitrate and nitrite in Hanford defense waste(HDW) by reverse polarity capillary zone electrophoresis (RPCE)method

    SciTech Connect

    Metcalf, S.G.

    1998-06-10

    This paper describes the first application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in Hanford Defense Waste (HDW). The method development was carried out by using Synthetic Hanford Waste (SHW), followed by the analysis of 4 real HDW samples. Hexamethonium bromide (HMB) was used as electroosmotic flow modifier in borate buffer at pH 9.2 to decrease the electroosmotic flow (EOF) in order to enhance the speed of analysis and the resolution of nitrate and nitrite in high ionic strength HDW samples. The application of this capillary zone electrophoresis method, when compared with ion chromatography for two major components of HDW, nitrate and nitrite slightly reduced analysis time, eliminated most pre-analysis handling of the highly radioactive sample, and cut analysis wastes by more than 2 orders of magnitude. The analysis of real HDW samples that were validated by using sample spikes showed a concentration range of 1.03 to 1.42 M for both nitrate. The migration times of the real HDW and the spiked HDW samples were within a precision of less than 3% relative standard deviation. The selectivity ratio test used for peak confirmation of the spiked samples was within 96% of the real sample. Method reliability was tested by spiking the matrix with 72.4 mM nitrate and nitrite. Recoveries for these spiked samples were 93-103%.

  14. Effect of omeprazole on intragastric bacterial counts, nitrates, nitrites, and N-nitroso compounds.

    PubMed Central

    Verdu, E; Viani, F; Armstrong, D; Fraser, R; Siegrist, H H; Pignatelli, B; Idström, J P; Cederberg, C; Blum, A L; Fried, M

    1994-01-01

    Previous studies have suggested that profound inhibition of gastric acid secretion may increase exposure to potentially carcinogenic N-nitroso compounds. The aim of this study was to find out if the proton pump inhibitor omeprazole (20 mg daily) is associated with increased concentrations of potentially carcinogenic N-nitroso compounds in gastric juice. The volume of gastric contents, number of bacteria, and concentrations of nitrates, nitrites, and N-nitroso compounds was determined in gastric aspirates obtained after an overnight fast in 14 healthy volunteers (7M:7F) after one week of treatment with placebo, and one and two weeks' treatment with omeprazole. Median bacterial concentrations were 1.0 x 10(4) (range 5.0 x 10(3)-5.0 x 10(6)) colony forming units (CFU)/ml after one weeks' treatment with placebo and increased significantly to 4.0 x 10(5) (0-3.3 x 10(7)) CFU/ml after two weeks' treatment with omeprazole (p < 0.05). A similar increase was seen in the concentration of nitrate reducing bacteria. There was no difference in the volume of gastric aspirates after treatment with omeprazole when compared with placebo (65 (29-155) ml v 42 (19-194) ml). The concentration of N-nitroso compounds was 0.13 (0-1.0) mumol/l after two weeks of omeprazole, which was not significantly different from that seen with placebo (0.15 (0-0.61) mumol/l). There was also no increase in the concentrations of nitrates or nitrites. It is concluded that omeprazole (20 mg once daily) for two weeks in healthy volunteers is associated with gastric bacterial proliferation but does not increase concentrations of N-nitroso compounds. PMID:8174980

  15. Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios.

    PubMed

    Jenni, Sarina; Vlaeminck, Siegfried E; Morgenroth, Eberhard; Udert, Kai M

    2014-02-01

    The nitritation/anammox process has been mainly applied to high-strength nitrogenous wastewaters with very low biodegradable organic carbon content (<0.5 g COD∙g N(-1)). However, several wastewaters have biodegradable organic carbon to nitrogen (COD/N) ratios between 0.5 and 1.7 g COD∙g N(-1) and thus, contain elevated amounts of organic carbon but not enough for heterotrophic denitrification. In this study, the influence of elevated COD/N ratios was studied on a nitritation/anammox process with suspended sludge. In a step-wise manner, the influent COD/N ratio was increased to 1.4 g COD∙g N(-1) by supplementing digester supernatant with acetate. The increasing availability of COD led to an increase of the nitrogen removal efficiency from around 85% with pure digester supernatant to >95% with added acetate while the nitrogen elimination rate stayed constant (275 ± 40 mg N∙L(-1)∙d(-1)). Anammox activity and abundance of anammox bacteria (AMX) were strongly correlated, and with increasing influent COD/N ratio both decreased steadily. At the same time, heterotrophic denitrification with nitrite and the activity of ammonia oxidising bacteria (AOB) gradually increased. Simultaneously, the sludge retention time (SRT) decreased significantly with increasing COD loading to about 15 d and reached critical values for the slowly growing AMX. When the SRT was increased by reducing biomass loss with the effluent, AMX activity and abundance started to rise again, while the AOB activity remained unaltered. Fluorescent in-situ hybridisation (FISH) showed that the initial AMX community shifted within only 40 d from a mixed AMX community to "Candidatus Brocadia fulgida" as the dominant AMX type with an influent COD/N ratio of 0.8 g COD∙g N(-1) and higher. "Ca. Brocadia fulgida" is known to oxidise acetate, and its ability to outcompete other types of AMX indicates that AMX participated in acetate oxidation. In a later phase, glucose was added to the influent

  16. Epithelial ovarian cancer and exposure to dietary nitrate and nitrite in the NIH-AARP Diet and Health Study

    PubMed Central

    Aschebrook-Kilfoy, Briseis; Ward, Mary H.; Gierach, Gretchen L.; Schatzkin, Arthur; Hollenbeck, Albert R.; Sinha, Rashmi; Cross, Amanda J.

    2012-01-01

    Ovarian cancer is a leading cause of cancer death among women in the United States and it has the highest mortality rate of all gynecologic cancers. Internationally, there is a five-fold variation in incidence and mortality of ovarian cancer, which suggests a role for environmental factors, including diet. Nitrate and nitrite are found in various food items and they are precursors of N-nitroso compounds, which are known carcinogens in animal models. We evaluated dietary nitrate and nitrite intake and epithelial ovarian cancer in the National Institutes of Health (NIH)-AARP Diet and Health Study, including 151 316 women aged 50–71 years at the time of the baseline questionnaire in 1995–1996. The nitrate and nitrite intake was assessed using a 124-item validated food frequency questionnaire. Through 31 December 2006, 709 incident epithelial ovarian cancer cases with complete dietary information were identified. Using Cox proportional hazards regression to estimate hazard ratios and 95% confidence intervals (CIs), women in the highest intake quintile of dietary nitrate had a 31% increased risk (95% CI: 1.01–1.68) of epithelial ovarian cancer, compared with those in the lowest intake quintile. Although there was no association for total dietary nitrite, those in the highest intake category of animal sources of nitrite had a 34% increased risk (95% CI: 1.05–1.69) of ovarian cancer. There were no clear differences in risk by histologic subtype of ovarian cancer. Our findings suggest that a role of dietary nitrate and nitrite in ovarian cancer risk should be followed in other large cohort studies. PMID:21934624

  17. Urinary nitrite/nitrate ratio measured by isotope-dilution LC-MS/MS as a tool to screen for urinary tract infections.

    PubMed

    Chao, Mu-Rong; Shih, Ying-Ming; Hsu, Yu-Wen; Liu, Hung-Hsin; Chang, Yuan-Jhe; Lin, Bo-Huei; Hu, Chiung-Wen

    2016-04-01

    Urinary tract infections (UTIs) are the most common type of nosocomial infection. Traditionally, the presence of white blood cells and microorganisms in the urine provides objective evidence for UTI diagnosis. Here, we describe the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure the nitrite and nitrate levels in urine and investigate the potential of this method for UTI diagnosis. LC-MS/MS analysis was performed in positive electrospray ionization mode. After adding (15)N-labeled internal standards and derivatizing with 2,3-diaminonaphthalene (DAN), the urinary nitrite content was directly analyzed by LC-MS/MS, whereas the urinary nitrate was first reduced to nitrite before derivatization and LC-MS/MS analysis. The derivatization of nitrite and enzymatic reduction of nitrate were optimized. This method was then applied to 241 healthy subjects and 73 UTI patients. Optimization tests revealed that 1 mL of crude urine required at least 6.25 μmol of DAN to completely derivatize nitrite and 2.5 U of nitrate reductase to completely reduce nitrate to nitrite. Urinary analysis showed that the urinary concentration of nitrite and the nitrite/nitrate ratio were higher in UTI patients than in healthy subjects. Compared with the dipstick-based urinary nitrite test and using LC-MS/MS to determine the nitrite concentration (sensitivity: 23-25%), the nitrite/nitrate ratio was significantly more sensitive (95%) and exhibited a satisfactory specificity (91%) in the screening of UTIs. Taken together, the nitrite/nitrate ratio, which reflects the reducing ability of pathogenic bacteria, could be a better method for the diagnosis of UTIs that is not subject to variations in urine specimen quality. PMID:26829019

  18. Effects of Nitrite, Chlorate, and Chlorite on Nitrate Uptake and Nitrate Reductase Activity 1

    PubMed Central

    Siddiqi, M. Yaeesh; King, Bryan J.; Glass, Anthony D. M.

    1992-01-01

    Effects of NO2−, ClO3−, and ClO2− on the induction of nitrate transport and nitrate reductase activity (NRA) as well as their effects on NO3− influx into roots of intact barley (Hordeum vulgare cv Klondike) seedlings were investigated. A 24-h pretreatment with 0.1 mol m−3 NO2− fully induced NO3− transport but failed to induce NRA. Similar pretreatments with ClO3− and ClO2− induced neither NO3− transport nor NRA. Net ClO3− uptake was induced by NO3− but not by ClO3− itself, indicating that NO3− and ClO3− transport occur via the NO3− carrier. At the uptake step, NO2− and ClO2− strongly inhibited NO3− influx; the former exhibited classical competitive kinetics, whereas the latter exhibited complex mixed-type kinetics. ClO3− proved to be a weak inhibitor of NO3− influx (Ki = 16 mol m−3) in a noncompetitive manner. The implications of these findings are discussed in the context of the suitability of these NO3− analogs as screening agents for the isolation of mutants defective in NO3− transport. PMID:16653041

  19. Dissociation Enthalpies of Chloride Adducts of Nitrate and Nitrite Explosives Determined by Ion Mobility Spectrometry.

    PubMed

    Rajapakse, Maneeshin Y; Fowler, Peter E; Eiceman, Gary A; Stone, John A

    2016-02-11

    The kinetics for thermal dissociations of the chloride adducts of the nitrate explosives 1,3-dinitroglycerin (1,3-NG), 1,2-dinitroglycerin (1,2-NG), the nitrite explosive 3,4-dinitrotoluene (3,4-DNT), and the explosive taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB) have been studied by atmospheric pressure ion mobility spectrometry. Both 1,3-NG·Cl(-) and1,2-NG·Cl(-) decompose in a gas-phase SN2 reaction in which Cl(-) displaces NO3(-) while 3,4-DNT·Cl(-) and DMNB·Cl(-) decompose by loss of Cl(-). The determined activation energy (kJ mol(-1)) and pre-exponential factor (s(-1)) values for the dissociations respectively are 1,3-NG·Cl(-), 86 ± 2 and 2.2 × 10(12); 1,2-NG·Cl(-), 97 ± 2 and 3.5 × 10(12); 3,4-DNT·Cl(-), 81 ± 2 and 4.8 × 10(13); and DMNB·Cl(-), 68 ± 2 and 9.7 × 10(11). Calculations by density functional theory show the structures of the nitrate ester adducts involve three hydrogen bonds: one from the hydroxyl group and the other two from the two nitrated carbons. The relative Cl(-) dissociation energies of the nitrates together with the previously reported smaller value for glycerol trinitrate and the calculated highest value for glycerol 1-mononitrate are explicable in terms of the number of hydroxyl hydrogen bond participants. The theoretical enthalpy changes for the nitrate ester displacement reactions are in agreement with those derived from the experimental activation energies but considerably higher for the nitro compounds. PMID:26777731

  20. Development of a cost-effective method for nitrate and nitrite determination in leafy plants and nitrate and nitrite contents of some green leafy vegetables grown in the Aegean region of Turkey.

    PubMed

    Ozdestan, Ozgül; Uren, Ali

    2010-05-12

    An accurate, fast, easily applicable, and cost-effective method for the determination of nitrate and nitrite was developed. This method was much more reliable than the cadmium column reduction method, which is a tedious and time-consuming procedure and not easily applicable. The principle of the method was reduction of nitrate to nitrite with cadmium acetate solution and zinc powder and then treatment with Griess reagent. Recovery of the method changed from 92.9 to 102.8%, and detection limit was found as 31.4 mg/kg. Coefficient of variation was 3.16% for intraday precision. Nitrate and nitrite contents of 10 types of leafy vegetables native to the Aegean region of Turkey were determined. Wild radish, chicory, fennel, blessed thistle, blue mallow, and chard were analyzed for the first time. Nitrate contents were found between 354.8 mg/kg for iceberg lettuce and 4653 mg/kg for wild radish. Tested vegetables contained <26.33 mg/kg nitrite. PMID:20384339

  1. Denitrification of high concentrations of nitrites and nitrates in synthetic medium with different sources of organic carbon. III. Methanol.

    PubMed

    Błaszczyk, M; Gałka, E; Sakowicz, E; Mycielski, R

    1985-01-01

    The denitrification of nitrites and nitrates (1000 mg N/l) in medium containing methanol as a source of organic carbon was studied. Continuous cultures of mixed population of autochtonic microflora from bottom sludge of nitrogenous wastewater reservoir were set up in a chemostat-type column and packed bed reactor. The efficiency of denitrification of nitrates in packed bed reactor was 506.7 mg N/l/h whereas denitrification of nitrites was from 8.7 to 16.0 mg N/l/h depending on the granulation of the filing material. In the latter case 83% nitrogen was removed from the medium. One of the factors causing low efficiency of denitrification of nitrites is excessive alkalization of the medium in the bed. The use of a three-step bed with adjusted pH resulted in complete denitrification of nitrites with efficiency 60 mg N/l/h. The bacteria inside the bed were dominated by Paracoccus denitrificans and by Pseudomonas aeruginosa when nitrates were present. The sensitivity of P. denitrificans to high concentrations of nitrites seems to be the second factor contributing to low efficiency of denitrification with methanol as organic substrate. PMID:2412408

  2. Achieving nitritation at low temperatures using free ammonia inhibition on Nitrobacter and real-time control in an SBR treating landfill leachate.

    PubMed

    Sun, Hongwei; Peng, Yongzhen; Wang, Shuying; Ma, Juan

    2015-04-01

    Free ammonia (FA) inhibition on nitrite-oxidized bacteria (NOB) and real-time control are used to achieve nitrogen removal from landfill leachate via nitrite pathway at low temperatures in sequencing batch reactor. The inhibition of FA on NOB activity during the aerobic period was prolonged using real-time control. The degree of nitrite accumulation was monitored along with variations of the ammonia-oxidizing bacteria and NOB population using fluorescence in situ hybridization techniques. It is demonstrated that the end-point of ammonia oxidization is detected from the on-line measured dissolved oxygen, oxidization-reduction potential, and pH signals, which could avoid the loss the FA inhibition on NOB caused by excess aeration. At low temperature (13.0-17.6°C), the level of nitrite pathway rapidly increased from 19.8% to 90%, suggesting that nitritation was successfully started up at low temperature by applying syntrophic association of the FA inhibition and real-time control, and then this high level of nitrite pathway was stably maintained for as long as 233 days. Mechanism analysis shows that the establishment of nitritation was primarily the result of predominant ammonia-oxidizing bacteria developed in the nitrifying bacteria population compared to NOB. This was mainly due to a gradual reduction of nitrite amount that is available to provide energy for the growth of NOB, eventually leading to the elimination of NOB from the bacterial clusters in sequencing batch reactor sludge system. PMID:25872722

  3. Effect of chlorine demand on the ammonia breakpoint curve: model development, validation with nitrite, and application to municipal wastewater.

    PubMed

    Chen, W L; Jensen, J N

    2001-01-01

    Chlorine added during wastewater disinfection may be consumed through reactions with chlorine-demanding chemical species. In this study, a mechanistically based kinetic model for chlorine demand in the presence of ammonia was developed and validated with laboratory studies on ammonia-nitrite systems, and then applied to breakpoint curves obtained with wastewater samples. The model is a modification of kinetic models for chlorine-ammonia systems to include hypochlorous acid-demand and monochloramine-demand reactions. The model accurately describes both laboratory-generated breakpoint curves with added nitrite and literature data. In a plant thought to be undergoing partial nitrification, breakpoint curves were consistent with high chlorine demand (i.e., small initial slopes and large doses to achieve the total chlorine maximum and breakpoint). A simplified kinetic model was also developed. Chlorine demand calculated from the simplified model was similar to chlorine demand from plant data. The simplified model was used to generate operating guidelines to calculate chlorine doses needed to overcome demand from nitrite or other sources. PMID:11833766

  4. Transcriptomic analysis of Staphylococcus xylosus in the presence of nitrate and nitrite in meat reveals its response to nitrosative stress

    PubMed Central

    Vermassen, Aurore; de la Foye, Anne; Loux, Valentin; Talon, Régine; Leroy, Sabine

    2014-01-01

    Staphylococcus xylosus is one of the major starter cultures used for meat fermentation because of its crucial role in the reduction of nitrate to nitrite which contributes to color and flavor development. Despite longstanding use of these additives, their impact on the physiology of S. xylosus has not yet been explored. We present the first in situ global gene expression profile of S. xylosus in meat supplemented with nitrate and nitrite at the levels used in the meat industry. More than 600 genes of S. xylosus were differentially expressed at 24 or 72 h of incubation. They represent more than 20% of the total genes and let us to suppose that addition of nitrate and nitrite to meat leads to a global change in gene expression. This profile revealed that S. xylosus is subject to nitrosative stress caused by reactive nitrogen species (RNS) generated from nitrate and nitrite. To overcome this stress, S. xylosus has developed several oxidative stress resistance mechanisms, such as modulation of the expression of several genes involved in iron homeostasis and in antioxidant defense. Most of which belong to the Fur and PerR regulons, respectively. S. xylosus has also counteracted this stress by developing DNA and protein repair. Furthermore, it has adapted its metabolic response—carbon and nitrogen metabolism, energy production and cell wall biogenesis—to the alterations produced by nitrosative stress. PMID:25566208

  5. Formation of zinc protoporphyrin IX in Parma-like ham without nitrate or nitrite.

    PubMed

    Wakamatsu, Jun-ichi; Uemura, Juichi; Odagiri, Hiroko; Okui, Jun; Hayashi, Nobutaka; Hioki, Shoji; Nishimura, Takanori; Hattori, Akihito

    2009-04-01

    Zinc protoporphyrin IX (ZPP) is a characteristic red pigment in meat products that are manufactured without the addition of a curing agent such as nitrate or nitrite. To examine the effects of impurities such as mineral components in sea salt on the formation of ZPP, we manufactured Parmatype dry-cured hams that were salted with refined salt or sea salt and examined the involvement of oxidation-reduction potential (ORP) in the formation of ZPP. The content of ZPP was increased drastically after 40 weeks. Microscopic observation showed strong fluorescence caused by ZPP muscle fiber after 40 weeks. Conversely, heme content varied considerably during processing. ORP increased during processing. However, there was no obvious difference between ham salted with refined salt and that salted with sea salt. Therefore, it was concluded that impurities in sea salt were not involved in the formation of ZPP. PMID:20163591

  6. Nitrogen-13-labeled nitrite and nitrate: distribution and metabolism after intratracheal administration

    SciTech Connect

    Parks, N.J.; Krohn, K.A.; Mathis, C.A.; Chasko, J.H.; Geiger, K.R.; Gregor, M.E.; Peek, N.F.

    1981-04-03

    Radioactive nitrogen-13 from nitrite (NO/sub 2//sup -/) or nitrate (NO/sub 3//sup -/) administered intratracheally or intravenously without added carrier to mice or rabbits was distributed evenly throughout most organs and tissues regardless of the entry route or the anion administered. Nitrogen-13 from both anions was distributed uniformly between plasma and blood cells. Rapid in vivo oxidation of NO/sub 2//sup -/ to NO/sub 3//sup -/ at concentrations of 2 to 3 nanomoles per liter in blood was found. No reduction of /sup 13/NO/sub 3//sup -/ to /sup 13/NO/sub 2//sup -/ was observed. A mechanistic hypothesis invoking oxidation of /sup 13/NO/sub 2//sup -/ by a catalase-hydrogen peroxide complex accounts for the results.

  7. [Nitrate and nitrite levels in daily food rations of children from the rural Puławy regions].

    PubMed

    Bilczuk, L; Gowin, A; Ebertowska, Z; Mach, H

    1991-01-01

    In the region of Puławy where the operation of the Nitrogen-Compound Manufacturing Plant has lead to an increase in nitrogen compound emission to the environment, nitrate and nitrite contents in daily food rations of children were determined. Daily food rations of children aged 8-9 and 12-13 years were collected from individual farms in four villages situated in the vicinity of the Nitrogen Plant, as well as--for control--from individual farms in Janowiec, a village distant from this Plant. Nitrate and nitrite contents were assayed in 300 daily food rations taken in spring and autumn. Nitrate was reduced to nitrite on a cadmium column whereupon it was determined colorimetrically using sulphanilic acid and N-1-napthyl-ethylenediamine. It was found that in the group of younger children as many as 70%, on the average, of the examined food rations displayed nitrate contents exceeding the admissible levels. In the group of the 12-13 years old children, the percentage of daily food rations whose nitrate content exceeded the admissible level was lower, averaging ca. 30% of all rations examined. The percentage of the daily food rations in which the nitrite content was higher than admissible level was closely similar in both groups of children, averaging ca. 30% of all rations examined. Food rations collected in spring, as compared with those taken in autumn, contained significantly greater amount of nitrate. In both periods of studies, nitrate contents were greater in the food rations from the farms situated near the Nitrogen Plant than in the food rations from farms in Janowiec.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1803441

  8. Development of estimates of dietary nitrates, nitrites, and nitrosamines for use with the short willet food frequency questionnaire

    PubMed Central

    Griesenbeck, John S; Steck, Michelle D; Huber, John C; Sharkey, Joseph R; Rene, Antonio A; Brender, Jean D

    2009-01-01

    Background Studies have suggested that nitrates, nitrites, and nitrosamines have an etiologic role in adverse pregnancy outcomes and chronic diseases such as cancer. Although an extensive body of literature exists on estimates of these compounds in foods, the extant data varies in quality, quantified estimates, and relevance. Methods We developed estimates of nitrates, nitrites, and nitrosamines for food items listed in the Short Willet Food Frequency Questionnaire (WFFQ) as adapted for use in the National Birth Defects Prevention Study. Multiple reference databases were searched for published literature reflecting nitrate, nitrite, and nitrosamine values in foods. Relevant published literature was reviewed; only publications reporting results for items listed on the WFFQ were selected for inclusion. The references selected were prioritized according to relevance to the U.S. population. Results Based on our estimates, vegetable products contain the highest levels of nitrate, contributing as much as 189 mg/serving. Meat and bean products contain the highest levels of nitrites with values up to 1.84 mg/serving. Alcohol, meat and dairy products contain the highest values of nitrosamines with a maximum value of 0.531 μg/serving. The estimates of dietary nitrates, nitrites, and nitrosamines generated in this study are based on the published values currently available. Conclusion To our knowledge, these are the only estimates specifically designed for use with the adapted WFFQ and generated to represent food items available to the U.S. population. The estimates provided may be useful in other research studies, specifically in those exploring the relation between exposure to these compounds in foods and adverse health outcomes. PMID:19348679

  9. Comparative induction of nitrate reductase by nitrate and nitrite in barley leaves

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Rosichan, J. L.; Huffaker, R. C.

    1987-01-01

    The comparative induction of nitrate reductase (NR) by ambient NO3- and NO2- as a function of influx, reduction (as NR was induced) and accumulation in detached leaves of 8-day-old barley (Hordeum vulgare L.) seedlings was determined. The dynamic interaction of NO3- influx, reduction and accumulation on NR induction was shown. The activity of NR, as it was induced, influenced its further induction by affecting the internal concentration of NO3-. As the ambient concentration of NO3- increased, the relative influences imposed by influx and reduction on NO3- accumulation changed with influx becoming a more predominant regulant. Significant levels of NO3- accumulated in NO2(-)-fed leaves. When the leaves were supplied cycloheximide or tungstate along with NO2-, about 60% more NO3- accumulated in the leaves than in the absence of the inhibitors. In NO3(-)-supplied leaves NR induction was observed at an ambient concentration of as low as 0.02 mM. No NR induction occurred in leaves supplied with NO2- until the ambient NO2- concentration was 0.5 mM. In fact, NR induction from NO2- solutions was not seen until NO3- was detected in the leaves. The amount of NO3- accumulating in NO2(-)-fed leaves induced similar levels of NR as did equivalent amounts of NO3- accumulating from NO3(-)-fed leaves. In all cases the internal concentration of NO3-, but not NO2-, was highly correlated with the amount of NR induced. The evidence indicated that NO3- was a more likely inducer of NR than was NO2-.

  10. Low disturbance manure incorporation effects on ammonia and nitrate losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia volatilization represents a major mechanism of nitrogen (N) loss from land-applied manure and is an air quality concern. A field study was conducted to assess ammonia emissions related to manure application method in central Pennsylvania on a Hagerstown soil (Fine, mixed semiactive, mesic Ty...

  11. Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women’s Health Study

    PubMed Central

    DellaValle, Curt T.; Xiao, Qian; Yang, Gong; Shu, Xiao Ou; Aschebrook-Kilfoy, Briseis; Zheng, Wei; Li, Hong Lan; Ji, Bu-Tian; Rothman, Nathaniel; Chow, Wong-Ho; Gao, Yu-Tang; Ward, Mary H.

    2014-01-01

    Nitrate and nitrite are precursors of endogenously formed N-nitroso compounds (NOC), known animal carcinogens. Nitrosation reactions forming NOCs can be inhibited by vitamin C and other antioxidants. We prospectively investigated the association between dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women’s Health Study, a cohort of 73,118 women ages 40 to 70 residing in Shanghai. We evaluated effect modification by factors that affect endogenous formation of NOCs: vitamin C (at or above/below median) and red meat intake (at or above/below median). Nitrate, nitrite and other dietary intakes were estimated from a 77-item food frequency questionnaire administered at baseline. Over a mean of 11 years of follow-up, we identified 619 colorectal cancer cases (n=383, colon; n=236, rectum). Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox proportional hazard regression. Overall, nitrate intake was not associated with colorectal cancer risk (HR = 1.08; 95% CI: 0.73–1.59). However, among women with vitamin C intake below the median (83.9 mg/day) and hence higher potential exposure to NOCs, risk of colorectal cancer increased with increasing quintiles of nitrate intake (highest vs. lowest quintile HR = 2.45; 95% CI: 1.15–5.18; p-trend = 0.02). There was no association among women with higher vitamin C intake. We found no association between nitrite intake and risk of colorectal cancer overall or by intake level of vitamin C. Our findings suggest that high dietary nitrate intake among subgroups expected to have higher exposure to endogenously-formed NOCs increases risk of colorectal cancer. PMID:24242755

  12. Coupling Between and Among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply.

    PubMed

    Simonin, Marie; Le Roux, Xavier; Poly, Franck; Lerondelle, Catherine; Hungate, Bruce A; Nunan, Naoise; Niboyet, Audrey

    2015-10-01

    Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO2 or N deposition alone and more rarely in combination. However, the effects of elevated CO2 and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO2 and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira. AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements. PMID:25877793

  13. A study on the toxigenesis by Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages.

    PubMed

    Hospital, Xavier F; Hierro, Eva; Stringer, Sandra; Fernández, Manuela

    2016-02-01

    Nitrite has been traditionally used to control Clostridium botulinum in cured meat products. However, in the case of dry fermented sausages, environmental factors such as pH, aw and the competitive microbiota may exert a more relevant role than nitrite in the inhibition of the growth and toxin production by C. botulinum. In this challenge test study, two varieties of Mediterranean dry sausages (salchichón and fuet) were inoculated with spores of C. botulinum Group I (proteolytic) and C. botulinum Group II (nonproteolytic). Sausages were prepared with 150 mg/kg of NaNO3 and 150 mg/kg of NaNO2 (maximum ingoing amounts allowed by the European Union regulation), with a 25% and 50% reduction, and without nitrate/nitrite. The initial pH in both products was 5.6, and decreased to values below 5.0 in salchichón and to 5.2 in fuet. Lactic acid bacteria counts reached 8-9 log cfu/g after fermentation. The aw decreased from initial values of 0.96 to about 0.88-0.90 at the end of ripening. Botulinum neurotoxin was not detected in any of the sausages, including those manufactured without nitrate and nitrite. Despite the environmental conditions were within the range for germination and growth of C. botulinum Group I during the first 8 days of the ripening process in fuet and 10-12 days in salchichón, acidity, aw and incubation temperature combined to inhibit the production of toxin, independently of the concentration of curing agents. Although decreasing or even removing nitrate/nitrite from the formula did not compromise safety regarding C. botulinum in the conditions tested in this study, their antimicrobial role should not be underestimated in the case that other hurdles could fail or other ripening conditions were used, and also considering the effect of nitrite on other pathogens. PMID:26619314

  14. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Frías, José E.

    2015-01-01

    ABSTRACT Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. IMPORTANCE Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many

  15. Identification and structure of the nasR gene encoding a nitrate- and nitrite-responsive positive regulator of nasFEDCBA (nitrate assimilation) operon expression in Klebsiella pneumoniae M5al.

    PubMed Central

    Goldman, B S; Lin, J T; Stewart, V

    1994-01-01

    Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilatory pathway. The structural genes for assimilatory nitrate and nitrite reductases together with genes necessary for nitrate transport form an operon, nasFEDCBA. Expression of the nasF operon is regulated both by general nitrogen control and also by nitrate or nitrite induction. We have identified a gene, nasR, that is necessary for nitrate and nitrite induction. The nasR gene, located immediately upstream of the nasFEDCBA operon, encodes a 44-kDa protein. The NasR protein shares carboxyl-terminal sequence similarity with the AmiR protein of Pseudomonas aeruginosa, the positive regulator of amiE (aliphatic amidase) gene expression. In addition, we present evidence that the nasF operon is not autogenously regulated. Images PMID:8051020

  16. Identification and structure of the nasR gene encoding a nitrate- and nitrite-responsive positive regulator of nasFEDCBA (nitrate assimilation) operon expression in Klebsiella pneumoniae M5al.

    PubMed

    Goldman, B S; Lin, J T; Stewart, V

    1994-08-01

    Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilatory pathway. The structural genes for assimilatory nitrate and nitrite reductases together with genes necessary for nitrate transport form an operon, nasFEDCBA. Expression of the nasF operon is regulated both by general nitrogen control and also by nitrate or nitrite induction. We have identified a gene, nasR, that is necessary for nitrate and nitrite induction. The nasR gene, located immediately upstream of the nasFEDCBA operon, encodes a 44-kDa protein. The NasR protein shares carboxyl-terminal sequence similarity with the AmiR protein of Pseudomonas aeruginosa, the positive regulator of amiE (aliphatic amidase) gene expression. In addition, we present evidence that the nasF operon is not autogenously regulated. PMID:8051020

  17. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    PubMed

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. PMID:25989520

  18. Response of nitrite accumulation and microbial community to free ammonia and dissolved oxygen treatment of high ammonium wastewater.

    PubMed

    Sui, Qianwen; Liu, Chong; Zhang, Junya; Dong, Hongmin; Zhu, Zhiping; Wang, Yi

    2016-05-01

    The effects of free ammonia (FA) and dissolved oxygen (DO) on nitrite accumulation in the treatment of high ammonium wastewater and on the evolution of the microbial community were investigated. Under high DO conditions (3.75 ± 0.49 mg/L), FA as high as 10.61 ± 2.89 mg NH3/L maintained stable nitrite accumulation rate (NAR) of 84 % with NH4 (+)-N load of 2.05 kg N/(m(3) day) at sludge retention time (SRT) of 15-18 days. After 56 days of operation, Proteobacteria and Nitrosomonas were the dominant phylum and genus, respectively; Nitrosomonas increased from 21.14 to 54.57 %. By contrast, under relative low DO and low FA, nitrite-oxidizing bacteria (NOB) were nearly eliminated (NOB/AOB of 0; ammonium-oxidizing bacteria (AOB)), and NAR of 94 % was achieved with lower NH4 (+)-N load of 0.48 kg N/(m(3) day). DO correlated with AOB and NOB abundance, and FA decreased NOB activity and the NOB/AOB ratio. In conclusion, high FA and high DO conditions are optimal for efficient nitrite accumulation. PMID:26743659

  19. The chemistry, waste form development, and properties of the Nitrate to Ammonia and Ceramic (NAC) process

    SciTech Connect

    Mattus, A.J.; Lee, D.D.; Youngblood, E.L.; Walker, J.F. Jr.; Tiegs, T.N.

    1994-06-01

    A process for the conversion of alkaline, aqueous nitrate wastes to ammonia gas at low temperature, based upon the use of the active metal reductant aluminum, has been developed at the Oak Ridge National Laboratory (ORNL). The process is also well suited for the removal of low-level waste (LLW) radioelements and hazardous metals which report to the solid, alumina-based by-product. ne chemistry of the interaction of aluminum powders with nitrate, and other waste stream metals is presented.

  20. Long-term effect of linseed plus nitrate fed to dairy cows on enteric methane emission and nitrate and nitrite residuals in milk.

    PubMed

    Guyader, J; Doreau, M; Morgavi, D P; Gérard, C; Loncke, C; Martin, C

    2016-07-01

    A previous study showed the additive methane (CH4)-mitigating effect of nitrate and linseed fed to non-lactating cows. Before practical application, the use of this new strategy in dairy cows requires further investigation in terms of persistency of methanogenesis reduction and absence of residuals in milk products. The objective of this experiment was to study the long-term effect of linseed plus nitrate on enteric CH4 emission and performance in dairy cows. We also assessed the effect of this feeding strategy on the presence of nitrate residuals in milk products, total tract digestibility, nitrogen (N) balance and rumen fermentation. A total of 16 lactating Holstein cows were allocated to two groups in a randomised design conducted in parallel for 17 weeks. Diets were on a dry matter (DM) basis: (1) control (54% maize silage, 6% hay and 40% concentrate; CON) or (2) control plus 3.5% added fat from linseed and 1.8% nitrate (LIN+NIT). Diets were equivalent in terms of CP (16%), starch (28%) and NDF (33%), and were offered twice daily. Cows were fed ad libitum, except during weeks 5, 16 and 17 in which feed was restricted to 95% of dry matter intake (DMI) to ensure complete consumption of meals during measurement periods. Milk production and DMI were measured weekly. Nitrate and nitrite concentrations in milk and milk products were determined monthly. Daily CH4 emission was quantified in open circuit respiration chambers (weeks 5 and 16). Total tract apparent digestibility, N balance and rumen fermentation parameters were determined in week 17. Daily DMI tended to be lower with LIN+NIT from week 4 to 16 (-5.1 kg/day on average). The LIN+NIT diet decreased milk production during 6 non-consecutive weeks (-2.5 kg/day on average). Nitrate or nitrite residuals were not detected in milk and associated products. The LIN+NIT diet reduced CH4 emission to a similar extent at the beginning and end of the trial (-47%, g/day; -30%, g/kg DMI; -33%, g/kg fat- and protein

  1. A high fat diet induces sex-specific differences in hepatic lipid metabolism and nitrite/nitrate in rats.

    PubMed

    Stanimirovic, Julijana; Obradovic, Milan; Jovanovic, Aleksandra; Sudar-Milovanovic, Emina; Zafirovic, Sonja; Pitt, Samantha J; Stewart, Alan J; Isenovic, Esma R

    2016-04-01

    Men and women differ substantially with regard to the severity of insulin resistance (IR) but the underlying mechanism(s) of how this occurs is poorly characterized. We investigated whether a high fat (HF) diet resulted in sex-specific differences in nitrite/nitrate production and lipid metabolism and whether these variances may contribute to altered obesity-induced IR. Male and female Wistar rats were fed a standard laboratory diet or a HF diet for 10 weeks. The level of plasma nitrite/nitrate, as well as free fatty acid (FFA), in both plasma and liver lysates were assessed. The levels of inducible nitric oxide (NO) synthase (iNOS), p65 subunit of NFκB, total and phosphorylated forms of Akt, mTOR and PDK-1 in lysates, and the levels of glucose transporter 2 (Glut-2) and fatty acid translocase/cluster of differentiation 36 (FAT/CD36) in plasma membrane fractions of liver were assessed. HF-fed male rats exhibited a significant increase in plasma nitrite/nitrate, and hepatic FFA and FAT/CD36 levels compared with controls. They also displayed a relative decrease in iNOS and Glut-2 levels in the liver. Phosphorylation of Akt (at Ser(473) and Thr(308)), mTOR and PDK-1 was also reduced. HF-fed female rats exhibited increased levels of NFκB-p65 in liver compared with controls, while levels of Glut-2, FAT/CD36 and Akt phosphorylation at Thr(308) and PDK-1 were decreased. Our results reveal that altered lipid and glucose metabolism in obesity, lead to altered iNOS expression and nitrite/nitrate production. It is likely that this mechanism contributes to sex-specific differences in the development of IR. PMID:26924725

  2. Detection of nitrite and nitrate ions in water by graphene oxide as a potential fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Tang, Ing Hua; Sundari, Rita; Lintang, Hendrik O.; Yuliati, Leny

    2016-02-01

    In this study, graphene oxide (GO) was used as a new fluorescence sensor for detection of nitrite (NO2-) and nitrate (NO3-) ions. The GO was synthesized via an improved Hummers’ method, and the properties of GO were examined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscope (TEM). The XRD pattern showed the presence of (002) plane at 2θ of 9.5o while the FTIR spectrum showed the presence of C-OH, C=O, C=C, C-O chemical bonds in the GO. The layer structure of the GO was confirmed from the TEM image. The sensing performance of the GO for NO2- and NO3- was evaluated by monitoring the emission sites of the GO at 567 nm, which was corresponded to the oxygen functional groups. Fluorescence quenching was observed, suggesting that the GO interacted well with both NO2- and NO3- ions. The linear Stern-Volmer plots were obtained in the concentration range of 1-10 mM, indicating the potential ability of the GO as the fluorescence sensor. The quenching constants for the detections of NO2- and NO3- were 4.8 × 10-2 and 1.2 × 10-2 mM-1, respectively, suggesting that the GO has greater sensitivity towards the NO2- than the NO3- ion.

  3. Effects of simulated microgravity on arterial nitric oxide synthase and nitrate and nitrite content

    NASA Technical Reports Server (NTRS)

    Ma, Jin; Kahwaji, Chadi I.; Ni, Zhenmin; Vaziri, Nosratola D.; Purdy, Ralph E.

    2003-01-01

    The aim of the present work was to investigate the alterations in nitric oxide synthase (NOS) expression and nitrate and nitrite (NOx) content of different arteries from simulated microgravity rats. Male Wistar rats were randomly assigned to either a control group or simulated microgravity group. For simulating microgravity, animals were subjected to hindlimb unweighting (HU) for 20 days. Different arterial tissues were removed for determination of NOS expression and NOx. Western blotting was used to measure endothelial NOS (eNOS) and inducible NOS (iNOS) protein content. Total concentrations of NOx, stable metabolites of nitric oxide, were determined by the chemiluminescence method. Compared with controls, isolated vessels from simulated microgravity rats showed a significant increase in both eNOS and iNOS expression in carotid arteries and thoracic aorta and a significant decrease in eNOS and iNOS expression of mesenteric arteries. The eNOS and iNOS content of cerebral arteries, as well as that of femoral arteries, showed no differences between the two groups. Concerning NOx, vessels from HU rats showed an increase in cerebral arteries, a decrease in mesenteric arteries, and no change in carotid artery, femoral artery and thoracic aorta. These data indicated that there were differential alterations in NOS expression and NOx of different arteries after hindlimb unweighting. We suggest that these changes might represent both localized adaptations to differential body fluid redistribution and other factors independent of hemodynamic shifts during simulated microgravity.

  4. Comparative bioavailability of ammonium, nitrate, nitrite and urea to typically harmful cyanobacterium Microcystis aeruginosa.

    PubMed

    Li, Jihua; Zhang, Jibiao; Huang, Wei; Kong, Fanlong; Li, Yue; Xi, Min; Zheng, Zheng

    2016-09-15

    Phosphorus is generally considered as the prime limiting nutrient responsible for cyanobacterial blooms. However, recent research is drawing attention to the importance of bioavailable nitrogen (N) in freshwater eutrophication. This study investigated the bioavailability of NO3(-)-N, NO2(-)-N, NH4(+)-N and Urea-N under different concentrations of 1.2, 3.6 and 6.0mgL(-1) to Microcystis aeruginosa. Overall, Urea-N ranked the first in promoting M. aeruginosa growth, followed by NO3(-)-N and NO2(-)-N. However, the algal growth cultured in NH4(+)-N was depressed under test N levels. The bioavailability of N to M. aeruginosa was seriously influenced by both N forms and N concentrations (p<0.01). Total N concentrations in Urea-N treatment decreased the fastest, which were corresponding with the μ values of M. aeruginosa. The high enzymic activities of nitrate reductase, nitrite reductase and glutamine synthetase indicated that the decomposition process for urea is effective, which contributed in N assimilation and utilization in M. aeruginosa cells. PMID:27357916

  5. A stepwise reduction in plasma and salivary nitrite with increasing strengths of mouthwash following a dietary nitrate load.

    PubMed

    Woessner, Mary; Smoliga, James M; Tarzia, Brendan; Stabler, Thomas; Van Bruggen, Mitch; Allen, Jason D

    2016-04-01

    Nitric Oxide (NO) bioavailability is essential for vascular health. Dietary supplementation with inorganic nitrate, which is abundant in vegetables and roots, has been identified as an effective means of increasing vascular NO bioavailability. Recent studies have shown a reduction in resting blood pressures in both normotensive and hypertensive subjects following ingestion of inorganic nitrate. Oral bacteria play a key role in this process and the use of strong antibacterial mouthwash rinses can disable this mechanism. Hence, mouthwash usage, a $1.4 billion market in the US, may potentially be detrimental to cardiovascular health. The purpose of this study was to examine the effects of different strengths of commercially available mouthwash products on salivary and plasma nitrate and nitrite concentrations following 8.4 mmol inorganic nitrate load (beetroot juice). Specifically, we examined the effects of Listerine antiseptic mouthwash, Cepacol antibacterial mouthwash, and Chlorhexidine mouthwash versus control (water). Twelve apparently healthy normotensive males (36 ± 11 yrs) completed four testing visits in a randomized order, separated by one week. Testing consisted of blood pressure (BP), and saliva and venous blood collection at baseline and each hour for 4 h. Following baseline-testing participants consumed 140 ml of beet juice and then 15 min later gargled with 5 mL of assigned mouthwash. Testing and mouthwash rinse was repeated every hour for 4 h. Linear mixed effects models, followed by pairwise comparisons where appropriate, were used to determine the influence of treatment and time on plasma and saliva nitrate and nitrite, and BP. Plasma and salivary nitrate increased above baseline (time effect) for all conditions (p ≤ 0.01). There were time (p ≤ 0.01), treatment (p ≤ 0.01), and interaction (p ≤ 0.05) effects for plasma and salivary nitrite. There was a treatment effect on systolic BP (p ≤ 0.05). Further examination revealed a

  6. Nitrate and ammonia as nitrogen sources for deep subsurface microorganisms.

    PubMed

    Kutvonen, Heini; Rajala, Pauliina; Carpén, Leena; Bomberg, Malin

    2015-01-01

    We investigated the N-utilizing bacterial community in anoxic brackish groundwater of the low and intermediate level nuclear waste repository cave in Olkiluoto, Finland, at 100 m depth using (15)N-based stable isotope probing (SIP) and enrichment with (14∕15)N-ammonium or (14∕15)N-nitrate complemented with methane. Twenty-eight days of incubation at 12°C increased the concentration of bacterial 16S rRNA and nitrate reductase (narG) gene copies in the substrate amended microcosms simultaneously with a radical drop in the overall bacterial diversity and OTU richness. Hydrogenophaga/Malikia were enriched in all substrate amended microcosms and Methylobacter in the ammonium and ammonium+methane supplemented microcosms. Sulfuricurvum was especially abundant in the nitrate+methane treatment and the unamended incubation control. Membrane-bound nitrate reductase genes (narG) from Polarimonas sp. were detected in the original groundwater, while Burkholderia, Methylibium, and Pseudomonas narG genes were enriched due to substrate supplements. Identified amoA genes belonged to Nitrosomonas sp. (15)N-SIP revealed that Burkholderiales and Rhizobiales clades belonging to the minority groups in the original groundwater used (15)N from ammonium and nitrate as N source indicating an important ecological function of these bacteria, despite their low number, in the groundwater N cycle in Olkiluoto bedrock system. PMID:26528251

  7. Nitrate and ammonia as nitrogen sources for deep subsurface microorganisms

    PubMed Central

    Kutvonen, Heini; Rajala, Pauliina; Carpén, Leena; Bomberg, Malin

    2015-01-01

    We investigated the N-utilizing bacterial community in anoxic brackish groundwater of the low and intermediate level nuclear waste repository cave in Olkiluoto, Finland, at 100 m depth using 15N-based stable isotope probing (SIP) and enrichment with 14∕15N-ammonium or 14∕15N-nitrate complemented with methane. Twenty-eight days of incubation at 12°C increased the concentration of bacterial 16S rRNA and nitrate reductase (narG) gene copies in the substrate amended microcosms simultaneously with a radical drop in the overall bacterial diversity and OTU richness. Hydrogenophaga/Malikia were enriched in all substrate amended microcosms and Methylobacter in the ammonium and ammonium+methane supplemented microcosms. Sulfuricurvum was especially abundant in the nitrate+methane treatment and the unamended incubation control. Membrane-bound nitrate reductase genes (narG) from Polarimonas sp. were detected in the original groundwater, while Burkholderia, Methylibium, and Pseudomonas narG genes were enriched due to substrate supplements. Identified amoA genes belonged to Nitrosomonas sp. 15N-SIP revealed that Burkholderiales and Rhizobiales clades belonging to the minority groups in the original groundwater used 15N from ammonium and nitrate as N source indicating an important ecological function of these bacteria, despite their low number, in the groundwater N cycle in Olkiluoto bedrock system. PMID:26528251

  8. Nitrogen removal via nitrite from municipal landfill leachate.

    PubMed

    Wu, Lina; Peng, Chengyao; Zhang, Shujun; Peng, Yongzhen

    2009-01-01

    A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB), an anoxic/aerobic (A/O) reactor and a sequencing batch reactor (SBR), was used to treat landfill leachate. During operation, denitrification and methanogenesis took place simultaneously in the first stage UASB, and the effluent chemical oxygen demand (COD) was further removed in the second stage UASB. Then the denitrification of nitrite and nitrate in the returned sludge by using the residual COD was accomplished in the A/O reactor, and ammonia was removed via nitrite in it. Last but not least, the residual ammonia was removed in SBR as well as nitrite and nitrate which were produced by nitrification. The results over 120 d (60 d for phase I and 60 d for phase II) were as follows: when the total nitrogen (TN) concentration of influent leachate was about 2500 mg/L and the ammonia nitrogen concentration was about 2000 mg/L, the short-cut nitrification with 85%-90% nitrite accumulation was achieved stably in the A/O reactor. The TN and ammonia nitrogen removal efficiencies of the system were 98% and 97%, respectively. The residual ammonia, nitrite and nitrate produced during nitrification in the A/O reactor could be washed out almost completely in SBR. The TN and ammonia nitrogen concentrations of final effluent were about 39 mg/L and 12 mg/L, respectively. PMID:20108678

  9. The Determination of Nitrate and Nitrite in Human Urine and Blood by High-Performance Liquid Chromatography and Cloud-Point Extraction.

    PubMed

    Zhao, Jiao; Wang, Jun; Yang, Yaling; Lu, Yunhui

    2015-08-01

    A simple efficient and practical separation/preconcentration coupled with HPLC method for the determination nitrate and low concentrations of nitrite in human urine and blood was investigated. The method is based on precolumn derivatization using the Griess reaction and cloud-point extraction (CPE) of nitrite anion and direct determination of nitrate using its UV absorbance by ion-pair HPLC. The chromatographic process with detection at two wavelengths (510 and 220 nm) allows the determination of nitrite and nitrate. Decolorization and protein precipitation of urine and blood was applied to overcome the interference of matrix and enhance the sensitivity. The method was validated for linearity, accuracy and precision. Under the optimum conditions, the linear range of nitrite from 10 to 1,000 ng/mL and nitrate from 0.1 to 10 µg/mL. Product recoveries ranged from 92.4 to 99.9%. The limits of detection were 1 ng/mL and 0.1 µg/mL for nitrite and nitrate, respectively. Therefore, the technique was simple and reliable, with potential application in biological sample analysis of nitrate and nitrite. PMID:25616990

  10. Spatial Interaction of Archaeal Ammonia-Oxidizers and Nitrite-Oxidizing Bacteria in an Unfertilized Grassland Soil

    PubMed Central

    Stempfhuber, Barbara; Richter-Heitmann, Tim; Regan, Kathleen M.; Kölbl, Angelika; Wüst, Pia K.; Marhan, Sven; Sikorski, Johannes; Overmann, Jörg; Friedrich, Michael W.; Kandeler, Ellen; Schloter, Michael

    2016-01-01

    Interrelated successive transformation steps of nitrification are performed by distinct microbial groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m2. Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira) selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onward, indicating its important role in nitrite oxidation. PMID:26834718

  11. Precursor/product studies of macrophage synthesis of nitrite, nitrate and N-nitrosamines

    SciTech Connect

    Iyengar, R.; Marletta, M.A.

    1987-05-01

    Previous experiments showed that nitrite, nitrate and N-nitrosamine synthesis was carried out by both stimulated macrophages (M phi) and a number of M phi cell lines. Here the authors report the precursor to NO/sub 2//sup -/, NO/sub 3//sup -/, and the source of the nitrosating agent. Previous kinetic studies established a time lag for NO/sub 2//sup -//NO/sub 3//sup -/ synthesis during which protein synthesis required for product formation occurred. Medium change after the protein synthesis phase showed that L-arginine was the only amino acid essential for the synthesis. Other precursors were homoarginine, arginine methyl ester, arginine infinity-hydroxamate, argininamide and the peptide arginine-aspartate. Glutamine, citrulline, ornithine, hydroxylamine and D-arginine were among some of the non-precursors. Canavanine though not a precursor inhibited arginine-derived NO/sub 2/-/NO/sub 3//sup -/ synthesis while D-arginine had no effect. When /sup 15/N-arginine (guanido-/sup 15/N/sub 2/, 95%) was used, GC/MS results showed that all the NO/sub 2//sup -//NO/sub 3//sup -/ synthesized was derived exclusively from these two guanido nitrogens. Similar labeling experiments carried out in the presence of morpholine showed that the isotopic enrichment of N-nitrosomorpholine was the same as that of NO/sub 2//sup -//NO/sub 3//sup -/ synthesized, suggesting that the nitrosating agent is a common intermediate. In conclusion, NO/sub 2//sup -//NO/sub 3//sup -/ and N-nitrosomorpholine synthesis by stimulated macrophages is derived specifically from the two guanido nitrogens of arginine.

  12. Automated determination of nitrate plus nitrite in aqueous samples with flow injection analysis using vanadium (III) chloride as reductant.

    PubMed

    Wang, Shu; Lin, Kunning; Chen, Nengwang; Yuan, Dongxing; Ma, Jian

    2016-01-01

    Determination of nitrate in aqueous samples is an important analytical objective for environmental monitoring and assessment. Here we report the first automatic flow injection analysis (FIA) of nitrate (plus nitrite) using VCl3 as reductant instead of the well-known but toxic cadmium column for reducing nitrate to nitrite. The reduced nitrate plus the nitrite originally present in the sample react with the Griess reagent (sulfanilamide and N-1-naphthylethylenediamine dihydrochloride) under acidic condition. The resulting pink azo dye can be detected at 540 nm. The Griess reagent and VCl3 are used as a single mixed reagent solution to simplify the system. The various parameters of the FIA procedure including reagent composition, temperature, volume of the injection loop, and flow rate were carefully investigated and optimized via univariate experimental design. Under the optimized conditions, the linear range and detection limit of this method are 0-100 µM (R(2)=0.9995) and 0.1 µM, respectively. The targeted analytical range can be easily extended to higher concentrations by selecting alternative detection wavelengths or increasing flow rate. The FIA system provides a sample throughput of 20 h(-1), which is much higher than that of previously reported manual methods based on the same chemistry. National reference solutions and different kinds of aqueous samples were analyzed with our method as well as the cadmium column reduction method. The results from our method agree well with both the certified value and the results from the cadmium column reduction method (no significant difference with P=0.95). The spiked recovery varies from 89% to 108% for samples with different matrices, showing insignificant matrix interference in this method. PMID:26695325

  13. Oxidation of Fe(II)-EDTA by nitrite and by two nitrate-reducing Fe(II)-oxidizing Acidovorax strains.

    PubMed

    Klueglein, N; Picardal, F; Zedda, M; Zwiener, C; Kappler, A

    2015-03-01

    The enzymatic oxidation of Fe(II) by nitrate-reducing bacteria was first suggested about two decades ago. It has since been found that most strains are mixotrophic and need an additional organic co-substrate for complete and prolonged Fe(II) oxidation. Research during the last few years has tried to determine to what extent the observed Fe(II) oxidation is driven enzymatically, or abiotically by nitrite produced during heterotrophic denitrification. A recent study reported that nitrite was not able to oxidize Fe(II)-EDTA abiotically, but the addition of the mixotrophic nitrate-reducing Fe(II)-oxidizer, Acidovorax sp. strain 2AN, led to Fe(II) oxidation (Chakraborty & Picardal, 2013). This, along with other results of that study, was used to argue that Fe(II) oxidation in strain 2AN was enzymatically catalyzed. However, the absence of abiotic Fe(II)-EDTA oxidation by nitrite reported in that study contrasts with previously published data. We have repeated the abiotic and biotic experiments and observed rapid abiotic oxidation of Fe(II)-EDTA by nitrite, resulting in the formation of Fe(III)-EDTA and the green Fe(II)-EDTA-NO complex. Additionally, we found that cultivating the Acidovorax strains BoFeN1 and 2AN with 10 mM nitrate, 5 mm acetate, and approximately 10 mM Fe(II)-EDTA resulted only in incomplete Fe(II)-EDTA oxidation of 47-71%. Cultures of strain BoFeN1 turned green (due to the presence of Fe(II)-EDTA-NO) and the green color persisted over the course of the experiments, whereas strain 2AN was able to further oxidize the Fe(II)-EDTA-NO complex. Our work shows that the two used Acidovorax strains behave very differently in their ability to deal with toxic effects of Fe-EDTA species and the further reduction of the Fe(II)-EDTA-NO nitrosyl complex. Although the enzymatic oxidation of Fe(II) cannot be ruled out, this study underlines the importance of nitrite in nitrate-reducing Fe(II)- and Fe(II)-EDTA-oxidizing cultures and demonstrates that Fe(II)-EDTA cannot

  14. Intracellular Conversion of Environmental Nitrate and Nitrite to Nitric Oxide with Resulting Developmental Toxicity to the Crustacean Daphnia magna

    PubMed Central

    Hannas, Bethany R.; Das, Parikshit C.; Li, Hong; LeBlanc, Gerald A.

    2010-01-01

    Background Nitrate and nitrite (jointly referred to herein as NOx) are ubiquitous environmental contaminants to which aquatic organisms are at particularly high risk of exposure. We tested the hypothesis that NOx undergo intracellular conversion to the potent signaling molecule nitric oxide resulting in the disruption of endocrine-regulated processes. Methodology/Principal Findings These experiments were performed with insect cells (Drosophila S2) and whole organisms Daphnia magna. We first evaluated the ability of cells to convert nitrate (NO3−) and nitrite (NO2−) to nitric oxide using amperometric real-time nitric oxide detection. Both NO3− and NO2− were converted to nitric oxide in a substrate concentration-dependent manner. Further, nitric oxide trapping and fluorescent visualization studies revealed that perinatal daphnids readily convert NO2− to nitric oxide. Next, daphnids were continuously exposed to concentrations of the nitric oxide-donor sodium nitroprusside (positive control) and to concentrations of NO3− and NO2−. All three compounds interfered with normal embryo development and reduced daphnid fecundity. Developmental abnormalities were characteristic of those elicited by compounds that interfere with ecdysteroid signaling. However, no compelling evidence was generated to indicate that nitric oxide reduced ecdysteroid titers. Conclusions/Significance Results demonstrate that nitrite elicits developmental and reproductive toxicity at environmentally relevant concentrations due likely to its intracellular conversion to nitric oxide. PMID:20805993

  15. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrite and potassium nitrite. 181.34... nitrite and potassium nitrite. Sodium nitrite and potassium nitrite are subject to prior sanctions issued... without sodium or potassium nitrate, in the curing of red meat and poultry products....

  16. Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system.

    PubMed

    Brown, Monisha N; Briones, Aurelio; Diana, James; Raskin, Lutgarde

    2013-01-01

    This study analysed the nitrifier community in the biofilter of a zero discharge, recirculating aquaculture system (RAS) for the production of marine shrimp in a low density (low ammonium production) system. The ammonia-oxidizing populations were examined by targeting 16S rRNA and amoA genes of ammonia-oxidizing bacteria (AOB) and archaea (AOA). The nitrite-oxidizing bacteria (NOB) were investigated by targeting the 16S rRNA gene. Archaeal amoA genes were more abundant in all compartments of the RAS than bacterial amoA genes. Analysis of bacterial and archaeal amoA gene sequences revealed that most ammonia oxidizers were related to Nitrosomonas marina and Nitrosopumilus maritimus. The NOB detected were related to Nitrospira marina and Nitrospira moscoviensis, and Nitrospira marina-type NOB were more abundant than N. moscoviensis-type NOB. Water quality and biofilm attachment media played a role in the competitiveness of AOA over AOB and Nitrospira marina-over N. moscoviensis-type NOB. PMID:22775980

  17. Percentile Distributions of Median Nitrite Plus Nitrate as Nitrogen, Total Nitrogen, and Total Phosphorus Concentrations in Oklahoma Streams, 1973-2001

    USGS Publications Warehouse

    Haggard, Brian E.; Masoner, Jason R.; Becker, Carol J.

    2003-01-01

    Nutrients are one of the primary causes of water-quality impairments in streams, lakes, reservoirs, and estuaries in the United States. The U.S. Environmental Protection Agency has developed regional-based nutrient criteria using ecoregions to protect streams in the United States from impairment. However, nutrient criteria were based on nutrient concentrations measured in large aggregated nutrient ecoregions with little relevance to local environmental conditions in states. The Oklahoma Water Resources Board is using a dichotomous process known as Use Support Assessment Protocols to define nutrient criteria in Oklahoma streams. The Oklahoma Water Resources Board is modifying the Use Support Assessment Protocols to reflect nutrient informa-tion and environmental characteristics relevant to Oklahoma streams, while considering nutrient information grouped by geographic regions based on level III ecoregions and state boundaries. Percentile distributions of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorous concentrations were calculated from 563 sites in Oklahoma and 4 sites in Arkansas near the Oklahoma and Arkansas border to facilitate development of nutrient criteria for Oklahoma streams. Sites were grouped into four geographic regions and were categorized into eight stream categories by stream slope and stream order. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus concentrations were greater in the Ozark Highland ecoregion and were less in the Ouachita Mountains ecoregion when compared to other geographic areas used to group sites. The 50th percentiles of median concentrations of nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus were least in first, second, and third order streams. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen and total phosphorus concentrations in the Ozark Highland and Ouachita Mountains ecoregions were least in

  18. Nitrite and nitrate formation on model NOx storage materials: on the influence of particle size and composition.

    PubMed

    Desikusumastuti, A; Qin, Z; Happel, M; Staudt, T; Lykhach, Y; Laurin, M; Rohr, F; Shaikhutdinov, S; Libuda, J

    2009-04-14

    A well-defined model-catalyst approach has been utilized to study the formation and decomposition of nitrite and nitrate species on a model NO(x) storage material. The model system comprises BaAl(2x)O(1+3x) particles of different size and stoichiometry, prepared under ultrahigh-vacuum (UHV) conditions on Al(2)O(3)/NiAl(110). Adsorption and reaction of NO(2) has been investigated by molecular beam (MB) methods and time-resolved IR reflection absorption spectroscopy (TR-IRAS) in combination with structural characterization by scanning tunneling microscopy (STM). The growth behavior and chemical composition of the BaAl(2x)O(1+3x) particles has been investigated previously. In this work we focus on the effect of particle size and stoichiometry on the reaction with NO(2). Particles of different size and of different Ba(2+) : Al(3+) surface ion ratio are prepared by varying the preparation conditions. It is shown that at 300 K the reaction mechanism is independent of particle size and composition, involving initial nitrite formation and subsequent transformation of nitrites into surface nitrates. The coordination geometry of the surface nitrates, however, changes characteristically with particle size. For small BaAl(2x)O(1+3x) particles high temperature (800 K) oxygen treatment gives rise to particle ripening, which has a minor effect on the NO(2) uptake behavior, however. STM shows that the morphology of the particle system is largely conserved during NO(2) exposure at 300 K. The reaction is limited to the formation of surface nitrites and nitrates, which are characterized by low thermal stability and completely decompose below 500 K. As no further sintering occurs before decomposition, NO(2) uptake and release is a fully reversible process. For large BaAl(2x)O(1+3x) particles, aggregates with different Ba(2+) : Al(3+) surface ion ratio were prepared. It was shown that the stoichiometry has a major effect on the kinetics of NO(2) uptake. For barium

  19. Incubation of curing brines for the production of ready-to-eat, uncured, no-nitrite-or-nitrate-added, ground, cooked and sliced ham.

    PubMed

    Krause, B L; Sebranek, J G; Rust, R E; Mendonca, A

    2011-12-01

    Salt concentration, vegetable juice powder (VJP) concentration and temperature were investigated to determine necessary conditions for incubation of curing brines including VJP and a starter culture containing Staphylococcus carnosus prior to production of naturally cured, no-nitrate/nitrite-added meat products. Subsequently, incubated brines were utilized to produce no-nitrate/nitrite-added sliced ham in which quality characteristics and residual nitrite concentrations were measured to determine feasibility of brine incubation for nitrate conversion prior to injection. Two ham treatments (one with VJP and starter culture; one with pre-converted VJP) and a nitrite-added control were used. No differences (P>0.05) were found for color in the VJP treatments. Control sliced ham was redder after 42 days of storage, retaining significantly (P<0.05) greater a* (redness) than either of the VJP treatments. Residual nitrite concentration was greater (P<0.05) in the control hams during the first week of storage. While the nitrite-added control retained greater red color and initially had more residual nitrite than the VJP treatments, the two VJP treatments did not differ from each other. PMID:21664056

  20. THE NONLINEAR RESPONSE OF NITRATE REPLACEMENT THAT MITIGATES SULFATE REDUCTIONS: THE GAS RATIO AS AN INDICATOR AND SENSITIVITY TO ERRORS IN TOTAL AMMONIA AND TOTAL NITRATE

    EPA Science Inventory

    The poster presents an assessment, using the CMAQ air quality model, showing the inorganic gas ratio (the ratio of free ammonia to total nitrate) can function as a screening indicator of the winter replacement of sulfate by nitrate when sulfate is reduced. It also presents an as...

  1. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria

    PubMed Central

    Klueglein, Nicole; Zeitvogel, Fabian; Stierhof, York-Dieter; Floetenmeyer, Matthias; Konhauser, Kurt O.; Obst, Martin

    2014-01-01

    Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record. PMID:24271182

  2. Reflectance spectroscopy of low atomic weight and Na-rich minerals: Borates, hydroxides, nitrates, nitrites, and peroxides

    NASA Astrophysics Data System (ADS)

    Cloutis, E.; Berg, B.; Mann, P.; Applin, D.

    2016-01-01

    We have measured reflectance spectra (0.35-20 μm) of a suite of minerals and synthetic compounds that contain low-Z (⩽Na) elements as the major cation and/or the major anion in oxides/oxyhydroxides, and are relevant to planetary geology and astrobiology. The suite comprises Na-borates, Na-, K-, Ca-hydroxides, nitrates, nitrites, and peroxides. Na-borate spectra exhibit B-O fundamental vibrations between 7 and 14 μm, and overtones/combinations of these bands in the 1.55, 1.75, 2.15, and 2.25 μm regions. Na-, K-, and Ca-hydroxide reflectance spectra are characterized by OH and metal-OH fundamental vibrations near 3, 8, and 18 μm, and a number of overtone and combination absorption bands at shorter wavelengths, and a characteristic metal-OH band near 2.35 μm. The nitrate and nitrite spectra exhibit fundamental N-O vibrations in the 7-14 μm region and numerous combinations and overtones that are still detectable to as low as ∼1.8 μm. Na-peroxide is largely spectrally featureless below 24 μm, making its detection problematic, while H-peroxide has many OH-related absorption features below 2.5 μm that differ in position from those of H2O ice and liquid. The results of this study indicate that the borates, hydroxides, nitrates, nitrite, and hydrogen peroxide can all be uniquely identified using characteristic absorption features that are present below 2.5 μm. However, some of these features are weak, and their detectability will depend on the types and abundances of any accessory phases that may be present.

  3. Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria.

    PubMed

    Li, Guangbin; Vilcherrez, David; Carvajal-Arroyo, Jose Maria; Sierra-Alvarez, Reyes; Field, Jim A

    2016-02-01

    Anaerobic ammonium oxidizing bacteria (anammox) can be severely inhibited by one of its main substrates, nitrite (NO2(-)). At present, there is limited information on the processes by which anammox bacteria are able to tolerate toxic NO2(-). Intracellular consumption or electrochemically driven (transmembrane proton motive force) NO2(-) export are considered the main mechanisms of NO2(-) detoxification. In this work, we evaluated the potential of exogenous nitrate (NO3(-)) on relieving NO2(-) toxicity, putatively facilitated by NarK, a NO3(-)/NO2(-) transporter encoded in the anammox genome. The relative contribution of NO3(-) to NO2(-) detoxification was found to be pH dependent. Exposure of anammox cells to NO2(-) in absence of their electron donating substrate, ammonium (NH4(+)), causes NO2(-) stress. At pH 6.7 and 7.0, the activity of NO2(-) stressed cells was respectively 0 and 27% of the non-stressed control activity (NO2(-) and NH4(+) fed simultaneously). Exogenous NO3(-) addition caused the recovery to 42% and 80% of the control activity at pH 6.7 and 7.0, respectively. The recovery of the activity of NO2(-) stressed cells improved with increasing NO3(-) concentration, the maximum recovery being achieved at 0.85 mM. The NO3(-) pre-incubation time is less significant at pH 7.0 than at pH 6.7 due to a more severe NO2(-) toxicity at lower pH. Additionally, NO3(-) caused almost complete attenuation of NO2(-) toxicity in cells exposed to the proton gradient disruptor carbonyl cyanide m-chlorophenyl hydrazone at pH 7.5, providing evidence that the NO3(-) attenuation is independent of the proton motive force. The absence of a measurable NO3(-) consumption (or NO3(-) dependent N2 production) during the batch tests leaves NO3(-) dependent active transport of NO2(-) as the only plausible explanation for the relief of NO2(-) inhibition. We suggest that anammox cells can use a secondary transport system facilitated by exogenous NO3(-) to alleviate NO2(-) toxicity. PMID

  4. Nitrate and nitrite anion concentration in the intact cerebral cortex of preterm and nearterm fetal sheep: indirect index of in vivo nitric oxide formation.

    PubMed

    Reynolds, J D; Zeballos, G A; Penning, D H; Kimura, K A; Atkins, B; Brien, J F

    1998-04-01

    Pregnant sheep with a microdialysis probe implanted in the fetal cerebral cortex were used to determine if nitrate and nitrite anions (nitrate/nitrite) could be quantitated in the microdialysate as an indirect index of in vivo nitric oxide formation. Pregnant ewes (term, about 147 days) were surgically instrumented at gestational day (GD) 90 (n = 3; preterm) and GD 121 (n = 3; nearterm). Three days later, following an overnight probe equilibration period, five dialysate samples were collected continuously on ice at 1-h intervals (infusion rate of 1 (microl/min). The nitrate/nitrite concentration was determined by reducing a 10-microl aliquot of each dialysate fraction with hot acidic vanadium followed by chemiluminescence quantitation of the nitric oxide product. The lower limit of quantitative sensitivity of the method is 25 picomoles. Nitrate/nitrite concentration was 16.6+/-7.3 microM for the preterm fetus and 19.7+/-1.9 microM for the nearterm fetus. The data demonstrate that nitrate/nitrite, as an index of in vivo nitric oxide formation, can be quantitated in microdialysate samples collected from the intact fetal sheep cerebral cortex. PMID:9741385

  5. Ammonia from iron(II) reduction of nitrite and the Strecker synthesis: do iron(II) and cyanide interfere with each other?

    NASA Technical Reports Server (NTRS)

    Summers, D. P.; Lerner, N.

    1998-01-01

    The question of whether the production of ammonia, from the reduction of nitrite by iron(II), is compatible with its use in the Strecker synthesis of amino acids, or whether the iron and the cyanide needed for the Strecker synthesis interfere with each other, is addressed. Results show that the presence of iron(II) appears to have little, or no, effect on the Strecker synthesis. The presence of cyanide does interfere with reduction of nitrite, but the reduction proceeds at cyanide/iron ratios of less than 4:1. At ratios of about 2:1 and less there is only a small effect. The reduction of nitrite and the Strecker can be combined to proceed in each other's presence, to yield glycine from a mixture of nitrite, Fe+2, formaldehyde, and cyanide.

  6. Nitrate reduction by organotrophic Anammox bacteria in a nitritation/anammox granular sludge and a moving bed biofilm reactor.

    PubMed

    Winkler, Mari K H; Yang, Jingjing; Kleerebezem, Robbert; Plaza, Elzbieta; Trela, Jozef; Hultman, Bengt; van Loosdrecht, Mark C M

    2012-06-01

    The effects of volatile fatty acids (VFAs) on nitrogen removal and microbial community structure in nitritation/anammox process were compared within a granular sludge reactor and a moving bed biofilm reactor. Nitrate productions in both systems were lower by 40-68% in comparison with expected nitrate production. Expected sludge production on VFAs was estimated to be 67-77% higher if heterotrophs were the main acetate degraders suggesting that Anammox bacteria used its organotrophic capability and successfully competed with general heterotrophs for organic carbon, which led to a reduced sludge production. FISH measurements showed a population consisting of mainly Anammox and AOB in both reactors and oxygen uptake rate (OUR) tests also confirmed that flocculent biomass consisted of a minor proportion of heterotrophs with a large proportion of AOBs. The dominant Anammox bacterium was Candidatus "Brocadia fulgida" with a minor fraction of Candidatus "Anammoxoglobus propionicus", both known to be capable of oxidizing VFAs. PMID:22520220

  7. Reversible intercalation of ammonia molecules into a layered double hydroxide structure without exchanging nitrate counter-ions

    SciTech Connect

    Carbajal Arizaga, Gregorio Guadalupe; Wypych, Fernando; Castillon Barraza, Felipe; Contreras Lopez, Oscar Edel

    2010-10-15

    A zinc/aluminum LDH was precipitated with recycled ammonia from a chemical vapor deposition reaction. The LDH presented a crystalline phase with basal distance of 8.9 A, typical for nitrate-containing LDHs, and another phase with a basal distance of 13.9 A. Thermal treatment at 150 {sup o}C eliminated the phase with the bigger basal distance leaving only the anhydrous nitrate-intercalated LDH structure with 8.9 A. Intense N-H stretching modes in the FTIR spectra suggested that the expansion was due to intercalation of ammonia in the form of [NH{sub 4}(NH{sub 3}){sub n}]{sup +} species. When additional samples were precipitated with pure ammonia, the conventional LDH nitrate structure was obtained (8.9 A basal distance) at pH=7, as well as a pure crystalline phase with 13.9 A basal distance at pH=10 due to ammonia intercalation that can be removed by heating at 150 {sup o}C or by stirring in acetone, confirming a unusual sensu stricto intercalation process into a LDH without exchanging nitrate ions. - Graphical abstract: LDH-nitrate precipitated with ammonia expands the interlayer space if ammonia is bubbled up to pH 10. The basal distance decreased when the compound was heated at 150 {sup o}C or stirred in acetone. Nitrate ions are not exchanged.

  8. Thermal fluids for CSP systems: Alkaline nitrates/nitrites thermodynamics modelling method

    NASA Astrophysics Data System (ADS)

    Tizzoni, A. C.; Sau, S.; Corsaro, N.; Giaconia, A.; D'Ottavi, C.; Licoccia, S.

    2016-05-01

    Molten salt (MS) mixtures are used for the transport (HTF-heat transfer fluid) and storage of heat (HSM-heat storage material) in Concentration Solar Plants (CSP). In general, alkaline and earth-alkaline nitrate/nitrite mixtures are employed. Along with its upper stability temperature, the melting point (liquidus point) of a MS mixture is one of the main parameters which defines its usefulness as a HTF and HSM medium. As a result, we would like to develop a predictive model which will allow us to forecast freezing points for different MS mixture compositions; thus circumventing the need to determine experimentally the phase diagram for each MS mixture. To model ternary/quaternary phase diagram, parameters for the binary subsystems are to be determined, which is the purpose of the concerned work. In a binary system with components A and B, in phase equilibrium conditions (e.g. liquid and solid) the chemical potentials (partial molar Gibbs energy) for each component in each phase are equal. For an ideal solution it is possible to calculate the mixing (A+B) Gibbs energy:ΔG = ΔH - TΔS = RT(xAlnxA + xBlnxB) In case of non-ideal solid/liquid mixtures, such as the nitrates/nitrites compositions investigated in this work, the actual value will differ from the ideal one by an amount defined as the "mixing" (mix) Gibbs free energy. If the resulting mixtures is assumed, as indicated in the previous literature, to follow a "regular solution" model, where all the non-ideality is considered included in the enthalpy of mixing value and considering, for instance, the A component:Δ G ≡0 =(Δ HA-T Δ SA)+(ΔH¯ m i x AL-T ΔS¯ m i x AL)-(ΔH¯ m i x AS-T ΔS¯ m i x AS)where the molar partial amounts can be calculated from the total value by the Gibbs Duhem equation: (ΔH¯m i x AL=ΔHm i x-XB Ld/Δ Hm i x d XB L ) L;(ΔH¯m i x AS=ΔHm i x-XB Sd/Δ Hm i x d XB S ) S and, in general, it is possible to express the mixing enthalpy for solids and liquids as a function of the mol

  9. Nitrate and ammonia contaminations in drinking water and the affecting factors in Hailun, northeast China.

    PubMed

    Zhao, Xinfeng; Chen, Liding; Zhang, Haiping

    2013-03-01

    Drinking water samples (N = 228) from domestic tube wells (DTWs) and seven samples from public water supply wells (PWSWs) were collected and tested in Hailun, northeast China. The percentage of samples with nitrate and ammonia concentrations above the maximum acceptable concentration of nitrate, 10 mg N/L, and the maximum ensure concentration of ammonia, 1.5 mg/L, for the DTWs were significantly higher than for the PWSWs. Of the DTWs, an important observation was that the occurrence of groundwater nitrate contamination was directly related to well tube material with different joint pathways. Nitrate in seamless-tube wells was lower statistically significantly than those in multiple-section-tube wells (p < .001). Furthermore, well depth and hydrogeological setting might have some impacts on nitrogen contamination and the major sources of inorganic nitrogen contamination may be nitrogenous chemical fertilizer. Therefore, PWSWs built for all families are the best way to ensure the drinking water safety in villages. For DTWs it is necessary to use seamless tubes and to dig deep enough according to the depth of groundwater level. Improving the efficiency of chemical fertilizer use would also reduce the risk of groundwater contamination. PMID:23505772

  10. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) or nitrate to ammonia and glass (NAG) process: Phase 2 report

    SciTech Connect

    Mattus, A.J.; Walker, J.F. Jr.; Youngblood, E.L.; Farr, L.L.; Lee, D.D.; Dillow, T.A.; Tiegs, T.N.

    1994-12-01

    Continuing benchtop studies using Hanford single-shell tank (SST) simulants and actual Oak Ridge National Laboratory (ORNL) low-level waste (LLW), employing a new denitration process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 and 99% of the nitrate can be readily converted to gaseous ammonia. In this process, aluminum powders can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid. The process may be able to use contaminated aluminum scrap metal from DOE sites to effect the conversion. The final, nitrate-free ceramic product can be pressed and sintered like other ceramics or silica and/or fluxing agents can be added to form a glassy ceramic or a flowable glass product. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 70% were obtained for the waste form produced. Sintered pellets produced from supernate from Melton Valley Storage Tanks (MVSTs) have been leached in accordance with the 16.1 leach test for the radioelements {sup 85}Sr and {sup 137}Cs. Despite lengthy counting times, {sup 85}Sr could not be detected in the leachates. {sup 137}Cs was only slightly above background and corresponded to a leach index of 12.2 to 13.7 after 8 months of leaching. Leach testing of unsintered and sintered reactor product spiked with hazardous metals proved that both sintered and unsintered product passed the Toxicity Characteristic Leaching Procedure (TCLP) test. Design of the equipment and flowsheet for a pilot demonstration-scale system to prove the nitrate destruction portion of the NAC process and product formation is under way.

  11. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect

    Scheele, R.D. ); Cady, H.H. )

    1992-01-01

    As part of the Hanford Site's evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL's thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  12. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect

    Scheele, R.D.; Cady, H.H.

    1992-01-01

    As part of the Hanford Site`s evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL`s thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  13. [Abundance and Community Composition of Ammonia-Oxidizing Archaea in Two Completely Autotrophic Nitrogen Removal over Nitrite Systems].

    PubMed

    Gao, Jing-feng; Li, Ting; Zhang, Shu-jun; Fan, Xiao-yan; Pan, Kai-ling; Ma, Qian; Yuan, Ya-lin

    2015-08-01

    Ammonia oxidation is the first and rate-limiting step of nitrification, which was thought to be only performed by ammonia-oxidizing bacteria (AOB). In recent years, ammonia-oxidizing archaea (AOA) was also confirmed to take part in ammonia oxidation. The diversity and abundance of AOA have been investigated in various environments, however, little is known regarding the AOA in the completely autotrophic nitrogen removal over nitrite (CANON) wastewater treatment process. In this study, the abundance and diversity of AOA were investigated in the biofilm and flocculent activated sludge collected in a lab-scale (L) CANON system and a pilot-scale (P) CANON systems, respectively. The quantitative real time PCR (qPCR) was applied to investigate the abundance of AOA and the diversity of AOA was determined by polymerase chain reaction (PCR), cloning and sequencing. The qPCR results showed that the average abundance of AOA amoA gene of L and P was 2.42 x 10(6) copies x g(-1) dry sludge and 6.51 x 10(6) copies x g(-1) dry sludge, respectively. The abundance of AOA in biofilm was 10.1-14.1 times higher than that in flocculent activated sludge. For P system, the abundance of AOA in flocculent activated sludge was 1.8 times higher than that in biofilm. The results indicated that the abundance of AOA might be affected by different sludge morphology. The diversity of AOA in P system was extremely limited, only one OTU was observed, which was classified into Nitrosopumilus subcluster 5.2. The diversity of AOA in L system was higher, eight OTUs were observed, which were classified into five genera: Nitrososphaera subcluster 9, subcluster 8.1, subcluster 4.1, subcluster 1.1 and Nitrosopumilus subcluster 5.2. The diversity and abundance of AOA were different in CANON systems with different sludge morphology. AOA may play an important role in ammonia oxidation in CANON system. PMID:26592025

  14. Maternal characteristics associated with the dietary intake of nitrates, nitrites, and nitrosamines in women of child-bearing age: a cross-sectional study

    PubMed Central

    2010-01-01

    Background Multiple N-nitroso compounds have been observed in animal studies to be both mutagenic and teratogenic. Human exposure to N-nitroso compounds and their precursors, nitrates and nitrites, can occur through exogenous sources, such as diet, drinking water, occupation, or environmental exposures, and through endogenous exposures resulting from the formation of N-nitroso compounds in the body. Very little information is available on intake of nitrates, nitrites, and nitrosamines and factors related to increased consumption of these compounds. Methods Using survey and dietary intake information from control women (with deliveries of live births without major congenital malformations during 1997-2004) who participated in the National Birth Defects Prevention Study (NBDPS), we examined the relation between various maternal characteristics and intake of nitrates, nitrites, and nitrosamines from dietary sources. Estimated intake of these compounds was obtained from the Willet Food Frequency Questionnaire as adapted for the NBDPS. Multinomial logistic regression models were used to estimate odds ratios and 95% confidence intervals for the consumption of these compounds by self-reported race/ethnicity and other maternal characteristics. Results Median intake per day for nitrates, nitrites, total nitrites (nitrites + 5% nitrates), and nitrosamines was estimated at 40.48 mg, 1.53 mg, 3.69 mg, and 0.472 μg respectively. With the lowest quartile of intake as the referent category and controlling for daily caloric intake, factors predicting intake of these compounds included maternal race/ethnicity, education, body mass index, household income, area of residence, folate intake, and percent of daily calories from dietary fat. Non-Hispanic White participants were less likely to consume nitrates, nitrites, and total nitrites per day, but more likely to consume dietary nitrosamines than other participants that participated in the NBDPS. Primary food sources of these

  15. Investigation of reduction and tolerance capability of lactic acid bacteria isolated from kimchi against nitrate and nitrite in fermented sausage condition.

    PubMed

    Paik, Hyun-Dong; Lee, Joo-Yeon

    2014-08-01

    Lactobacillus brevis KGR3111, Lactobacillus curvatus KGR 2103, Lactobacillus plantarum KGR 5105, and Lactobacillus sakei KGR 4108 isolated from kimchi were investigated for their potential to be used as starter culture for fermented sausages with the capability to reduce and tolerate nitrate/nitrite. The reduction capability of tested strains for nitrate was not dramatic. All tested strains, however, showed the capability to produce nitrite reductase with the reduction amount of 58.46-75.80 mg/l of NO(2)(-). L. brevis and L. plantarum showed nitrate tolerance with the highest number of 8.71 log cfu/ml and 8.81 log cfu/ml, and L. brevis and L. sakei exhibited nitrite tolerance with the highest number of 8.24 log cfu/ml and 8.25 log cfu/ml, respectively. As a result, L. brevis, L. plantarum, and L. sakei isolated from kimchi showed a tolerance against nitrate or nitrite with a good nitrite reduction capability, indicating the satisfaction of one of the selection criteria to be used as starter culture for fermented sausages. PMID:24821591

  16. Development of a simple method for the determination of nitrite and nitrate in groundwater by high-resolution continuum source electrothermal molecular absorption spectrometry.

    PubMed

    Brandao, Geovani C; Matos, Geraldo D; Pereira, Raimundo N; Ferreira, Sergio L C

    2014-01-01

    In this work, it was developed a method for the determination of nitrite and nitrate in groundwater by high-resolution continuum source electrothermal molecular absorption spectrometry of NO produced by thermal decomposition of nitrate in a graphite furnace. The NO line at 215.360 nm was used for all analytical measurements and the signal obtained by integrated absorbance of three pixels. A volume of 20 μL of standard solution or groundwater sample was injected into graphite furnace and 5 μL of a 1% (m/v) Ca solution was co-injected as chemical modifier. The pyrolisis and vaporization temperatures established were of 150 and 1300°C, respectively. Under these conditions, it was observed a difference of thermal stability among the two nitrogen species in the presence of hydrochloric acid co-injected. While that the nitrite signal was totally suppressed, nitrate signal remained nearly stable. This way, nitrogen can be quantified only as nitrate. The addition of hydrogen peroxide provided the oxidation of nitrite to nitrate, which allowed the total quantification of the species and nitrite obtained by difference. A volume of 5 μL of 0.3% (v/v) hydrochloric acid was co-injected for the elimination of nitrite, whereas that hydrogen peroxide in the concentration of 0.75% (v/v) was added to samples or standards for the oxidation of nitrite to nitrate. Analytical curve was established using standard solution of nitrate. The method described has limits of detection and quantification of 0.10 and 0.33 μg mL(-1) of nitrogen, respectively. The precision, estimated as relative standard deviation (RSD), was of 7.5 and 3.8% (n=10) for groundwater samples containing nitrate-N concentrations of 1.9 and 15.2 μg mL(-1), respectively. The proposed method was applied to the analysis of 10 groundwater samples and the results were compared with those obtained by ion chromatography method. In all samples analyzed, the concentration of nitrite-N was always below of the limit of

  17. Members of the NPF3 transporter subfamily encode pathogen-inducible nitrate/nitrite transporters in grapevine and Arabidopsis.

    PubMed

    Pike, Sharon; Gao, Fei; Kim, Min Jung; Kim, Sang Hee; Schachtman, Daniel P; Gassmann, Walter

    2014-01-01

    Vitis vinifera, the major grapevine species cultivated for wine production, is very susceptible to Erysiphe necator, the causal agent of powdery mildew (PM). This obligate biotrophic fungal pathogen attacks both leaf and berry, greatly affecting yield and quality. To investigate possible mechanisms of nutrient acquisition by successful biotrophs, we characterized a candidate NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER FAMILY (NPF, formerly NRT1/PTR) member, grapevine NFP3.2, that was up-regulated in E. necator-inoculated susceptible V. vinifera Cabernet Sauvignon leaves, but not in resistant V. aestivalis Norton. Expression in Xenopus laevis oocytes and two-electrode voltage clamp measurements showed that VvNPF3.2 is a low-affinity transporter for both nitrate and nitrite and displays characteristics of NPF members from other plants. We also cloned the Arabidopsis ortholog, AtNPF3.1, and showed that AtNPF3.1 similarly transported nitrate and nitrite with low affinity. With an Arabidopsis triple mutant that is susceptible to E. necator, we found that AtNPF3.1 is up-regulated in the leaves of infected Arabidopsis similarly to VvNPF3.2 in susceptible grapevine leaves. Expression of the reporter β-glucuronidase (GUS) driven by the promoter of VvNPF3.2 or AtNPF3.1 in Arabidopsis indicated that both transporters are expressed in vascular tissue, with expression in major and minor veins, respectively. Interestingly, the promoter of VvNPF3.2 allowed induced expression of GUS in minor veins in PM-infected leaves. Our experiments lay the groundwork for investigating the manipulation of host nutrient distribution by biotrophic pathogens and characterizing physiological variables in the pathogenesis of this difficult to study grapevine disease. PMID:24259683

  18. Nitrite in feed: From Animal health to human health

    SciTech Connect

    Cockburn, Andrew; Brambilla, Gianfranco; Fernández, Maria-Luisa; Arcella, Davide; Peteghem, Carlos van; Dorne, Jean-Lou

    2013-08-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also

  19. Nitrite in feed: from animal health to human health.

    PubMed

    Cockburn, Andrew; Brambilla, Gianfranco; Fernández, Maria-Luisa; Arcella, Davide; Bordajandi, Luisa R; Cottrill, Bruce; van Peteghem, Carlos; Dorne, Jean-Lou

    2013-08-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also

  20. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  1. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  2. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  3. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  4. Effect of various sources of organic carbon and high nitrite and nitrate concentrations on the selection of denitrifying bacteria. II. Continuous cultures in packed bed reactors.

    PubMed

    Błaszczyk, M

    1983-01-01

    The effect of different organic compounds, nitrites and nitrates at the concentration of 1,000 mg N/l on the quantitative and strain-specific selection of denitrifying bacteria was determined in anaerobic packed bed reactors. Both the source of carbon and nitrogen form influenced strain specificity and the frequency of occurrence of denitrifying bacteria. The frequency of denitrifying bacteria within packed bed reactor ranged in different media from 11% (glucose and nitrates) to 100% (methanol and ethanol with nitrates). A single species selection was observed in the presence of nitrites within packed bed reactor: Pseudomonas aeruginosa in medium with acetate. Pseudomonas stutzeri in medium with ethanol, Pseudomonas mendocina in medium with methanol and Pseudomonas fluorescens in medium with glucose. When nitrates were present in packed bed reactor, the dominating bacteria were: P. stutzeri in medium with acetate, P. fluorescens in medium with ethanol, Paracoccus denitrificans in medium with methanol and Alcaligenes faecalis in medium with glucose. PMID:6194668

  5. Diagnostic Role of Salivary and GCF Nitrite, Nitrate and Nitric Oxide to Distinguish Healthy Periodontium from Gingivitis and Periodontitis.

    PubMed

    Poorsattar Bejeh-Mir, Arash; Parsian, Hadi; Akbari Khoram, Maryam; Ghasemi, Nafiseh; Bijani, Ali; Khosravi-Samani, Mahmoud

    2014-01-01

    Diagnosis of subclinical and early stage clinical periodontal dysfunction could prevent from further socioeconomic burden. The aim of this study was to assess the diagnostic applicability of nitric oxide and its end-metabolites in periodontal tissue health and disease. Forty-two patients were enrolled and divided into three groups according to gingivitis (GI) and clinical attachment level (CAL) indices: a healthy group (GI<1, CAL<1), b: gingivitis (GI>1, CAL>1) and c: periodontitis (CAL>1) with 14 patients in each group. Unstimulated saliva and gingival crevicular fluid (GCF) were collected. Samples were evaluated for nitrite, nitrate and total nitric oxide contents with the ELISA method. In addition, CAL, GI, plaque index (PI), decay, missing, filling (DMFT) and bleeding index (BI) scores were also recorded. Except for GCF nitrite content (P= 0.89), there was an increasing trend for measured biomarkers in both saliva and GCF (Periodontitis> gingivitis> healthy periodontium, P< 0.05). Data remained stable after simultaneous adjustment for DMFT and BI scores as confounding factors. Sensitivity, specificity, positive predictive value, negative predictive value, cut point and p- value were as the followings: GCF nitrate (0.71, 0.11, 0.29,0.43, 4.97, P= 0.04), nitric oxide GCF ( 0.64, 0.18, 0.28, 0.5, 10.12, P= 0.04), nitrite saliva (0.93, 0.96,0.93,0.96,123.48, P< 0.001), salivary nitrate (0.93, 0.96, 0.93, 0.96, 123.6, P< 0.001), salivary nitric oxide (0.93, 0.96, 0.93, 0.96, 246.65, P <0.001). Our results revealed that NO plays an important role in the process of destruction of periodontal tissues. Within the limitation of our study, detecting NO biomarker and its end metabolites in saliva is of more value to assess the periodontal health comparing to GCF. PMID:25317400

  6. Monitoring of nitrite, nitrate, chloride and sulfate in environmental samples using electrophoresis microchips coupled with contactless conductivity detection.

    PubMed

    Freitas, Camilla Benevides; Moreira, Roger Cardoso; de Oliveira Tavares, Maria Gizelda; Coltro, Wendell K T

    2016-01-15

    This report describes the development of an analytical methodology on microchip electrophoresis (ME) devices coupled with capacitively coupled contactless conductivity detection (C(4)D) to monitor inorganic anions in environmental samples. The buffer composition as well as detection operating parameters were optimized to achieve the best separation selectivity and detector sensitivity, respectively. Electrophoretic separations of Cl(-), NO3(-), SO4(2-) and NO2(-) were successfully performed within 60s using a running buffer composed of 30mmol L(-1) latic acid and 15mmol L(-1)l-histidine (His). The best detectability levels were found applying a sinusoidal wave with 1100-kHz-frequency and 60-Vpp amplitude. Quantitative analyzes of inorganic anions were carried out in the presence of Cr2O7(2-) ion as internal standard (IS), which ensured great repeatability in terms of migration times (<1%) and peak areas (6.2-7.6%) for thirty consecutive injections. The analytical performance revealed a linear behavior for concentration ranges between 0-120μmol L(-1) (Cl(-), NO2(-) and NO3(-)) and 0-60μmol L(-1) (SO4(2-)) and limits of detection (LODs) varying from 2.0 to 4.9μmol L(-1). The concentration levels of anionic species were determined in aquarium, river and biofertilizer samples with recovery values between 91% and 105%. The nitrification steps associated with conversion of ammonium to nitrite followed by the conversion of nitrite to nitrate were successfully monitored in a simulated environment without fishes during a period of twelve weeks. Lastly, the monitoring of anionic species was carried out during eight weeks in an aquarium environment containing ten fishes from Danio rerio (Ciprynidae). The recorded data revealed the absence of nitrite and a gradual increase on the ammonium and nitrate concentration levels during eight weeks, thus suggesting the direct conversion of ammonium to nitrate. Based on the data herein reported, the proposed analytical methodology

  7. Ammonia from Iron(II) Reduction of Nitrite and the Strecker Synthesis: Do Iron(II) and Cyanide Interfere with Each Other?

    NASA Technical Reports Server (NTRS)

    Summers, David P.; Lerner, Narcinda; Chang, Sherwood (Technical Monitor)

    1996-01-01

    The question of whether the production of ammonia, from the reduction of nitrite by iron(II), is compatible with its use in the Strecker synthesis of amino acids, or whether the iron and the cyanide needed for the Strecker synthesis interfere with each other, is addressed. Results show that the presence of iron(II) appears to have little, or no, affect on the Strecker synthesis. The presence of cyanide does interfere with reduction of nitrite, but the reduction proceeds at cyanide/iron ratios of less than 4:1. At ratios of about 2:1 and less there is only a small effect. The two reactions can be combined to proceed in each other's presence, forming glycine from nitrite, Fe(+2), formaldehyde, and cyanide.

  8. Selection of Crop Varieties for Efficient Production Using Urea, Ammonia, Nitrite, and Nitrate in Celss

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.

    1982-01-01

    The presence of NO2(-) in the external solution increased the overall efficiency of the mixed N sources by cereal leaves. The NH4(+) in the substrate solution decreased the efficiency of NO3(-) reduction, while NO3(-) in the substrate solution increased the efficiency of NH4(+) assimilation.

  9. Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process

    SciTech Connect

    Muguercia, I.; Yang, G.; Ebadian, M.A.; Lee, D.D.; Mattus, A.J.; Hunt, R.D.

    1995-03-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.

  10. Nitrate/nitrite chemistry in NaNO/sub 3/-KNO/sub 3/ melts

    SciTech Connect

    Nissen, D.A.; Meeker, D.E.

    1983-03-02

    By chemical analysis of samples taken under carefully controlled conditions, we have been able to show that the only reaction of any consequence that takes place in the equimolar binary NaNO/sub 3/-KNO/sub 3/ system over the temperature range 500-600/sup 0/C is represented by NO/sub 3//sup -/ ..-->..reverse arrow NO/sub 2//sup -/ + 1/2O/sub 2/. Over this temperature range there is no evidence of the formation of any anionic oxygen species such as oxide, peroxide, or superoxide at concentrations greater than 10/sup -5/ mol/kg. Equilibrium constants for the above reaction have been determined over the temperature range 500-600/sup 0/C. The standard free energy for this reaction (..delta..G/sup 0/ (kcal/mol) = 23000 + 20.6T) has been derived from the experimental data and is in good agreement with similar results for the single salts. A study of the kinetics of the oxidation of nitrite showed the rate of that reaction to be overall second order, first order with respect to both nitrite and oxygen. The rate constants have been measured from 400 to 500/sup 0/C, and from their temperature dependence the activation energy for the oxidation of nitrite was calculated: 26.4 kcal/mol.

  11. Occurrence of herbicides, nitrite plus nitrate, and selected trace elements in ground water from northwestern and northeastern Missouri, July 1991 and 1992

    USGS Publications Warehouse

    Wilkison, Donald H.; Maley, Randall D.

    1994-01-01

    The U.S. Geological Survey and the Missouri Department of Health collected water samples for analysis of nitrite plus nitrate and herbicides from rural domestic wells in northwestern and northeastern Missouri in 1991 and 1992. In July 1991, samples were collected from 130 wells in Caldwell, Clinton, Daviess, Gentry, and Nodaway Counties in northwestern Missouri. Nitrite plus nitrate concentrations as nitrogen ranged from less than 0.05 to 63 milligrams per liter. Nitrite plus nitrate concentrations exceeded the State drinking-water standard of 10 milligrams per liter in water samples from 28 wells. One or more of the herbicides--alachlor, atrazine, cyanazine; metribuzin, metolachlor, and trifluralin--were detected at concentrations greater than or equal to 0.05 micrograms per liter in 19 samples. Atrazine was detected in water samples from 16 wells. In July 1992, water samples were collected from 147 wells in Audrain, Clark, Lewis, Monroe, Scotland, and Shelby Counties in northeastern Missouri. Nitrite plus nitrate as nitrogen concentrations in samples ranged from less than 0.05 to 60 milligrams per liter and exceeded 10 milligrams per liter in samples from 28 wells. One or more of the herbicides-alachlor, atrazine, cyanazine, metribuzin, and metolachlor-were detected at concentrations greater than 0.10 microgram per liter in water samples from 19 of the wells sampled. Atrazine was detected in water from 18 wells.

  12. Development and validation of an ionic chromatography method for the determination of nitrate, nitrite and chloride in meat.

    PubMed

    Lopez-Moreno, Cristina; Perez, Isabel Viera; Urbano, Ana M

    2016-03-01

    The purpose of this study is to develop the validation of a method for the analysis of certain preservatives in meat and to obtain a suitable Certified Reference Material (CRM) to achieve this task. The preservatives studied were NO3(-), NO2(-) and Cl(-) as they serve as important antimicrobial agents in meat to inhibit the growth of bacteria spoilage. The meat samples were prepared using a treatment that allowed the production of a known CRM concentration that is highly homogeneous and stable in time. The matrix effects were also studied to evaluate the influence on the analytical signal for the ions of interest, showing that the matrix influence does not affect the final result. An assessment of the signal variation in time was carried out for the ions. In this regard, although the chloride and nitrate signal remained stable for the duration of the study, the nitrite signal decreased appreciably with time. A mathematical treatment of the data gave a stable nitrite signal, obtaining a method suitable for the validation of these anions in meat. A statistical study was needed for the validation of the method, where the precision, accuracy, uncertainty and other mathematical parameters were evaluated obtaining satisfactory results. PMID:26471608

  13. A sub-minute CZE method to determine nitrate and nitrite in meat products: An alternative for routine analysis.

    PubMed

    Della Betta, Fabiana; Pereira, Lais Morilla; Siqueira, Mariana Araújo; Valese, Andressa Camargo; Daguer, Heitor; Fett, Roseane; Vitali, Luciano; Costa, Ana Carolina Oliveira

    2016-09-01

    A sub-minute capillary zone electrophoresis (CZE) method was optimized and a simple sample preparation procedure based on the extraction of the analytes with water and sodium tetraborate was developed for the simultaneous determination of nitrate and nitrite levels in meat products. The background electrolyte (BGE) was composed of 20mmolL(-1) perchloric acid and 65mmolL(-1) β-alanine at pH3.83. Thiocyanate was used as the internal standard. The proposed method was validated and the uncertainty estimated according to Eurachem guidelines. The run time was only 30s, allowing analyzing more than 25samples/h, the good analytical performance confirms the suitability of the method for the analysis of meat products. One sample presented residual nitrite levels above the limit established by MERCOSUL legislation (150mgkg(-1)). The use of a fast method in association with a simple sample preparation step means that this procedure represents a possible alternative to fulfill the demand for high throughput in routine laboratory analysis. PMID:27132205

  14. Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol. Role of acetyl CoA synthetase in anaerobic ATP synthesis.

    PubMed

    Takasaki, Kazuto; Shoun, Hirofumi; Yamaguchi, Masashi; Takeo, Kanji; Nakamura, Akira; Hoshino, Takayuki; Takaya, Naoki

    2004-03-26

    Fungal ammonia fermentation is a novel dissimilatory metabolic mechanism that supplies energy under anoxic conditions. The fungus Fusarium oxysporum reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP (Zhou, Z., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., and Shoun, H. (2002) J. Biol. Chem. 277, 1892-1896). We identified the Aspergillus nidulans genes involved in ammonia fermentation by analyzing fungal mutants. The results showed that assimilatory nitrate and nitrite reductases (the gene products of niaD and niiA) were essential for reducing nitrate and for anaerobic cell growth during ammonia fermentation. We also found that ethanol oxidation is coupled with nitrate reduction and catalyzed by alcohol dehydrogenase, coenzyme A (CoA)-acylating aldehyde dehydrogenase, and acetyl-CoA synthetase (Acs). This is similar to the mechanism suggested in F. oxysporum except A. nidulans uses Acs to produce ATP instead of the ADP-dependent acetate kinase of F. oxysporum. The production of Acs requires a functional facA gene that encodes Acs and that is involved in ethanol assimilation and other metabolic processes. We purified the gene product of facA (FacA) from the fungus to show that the fungus acetylates FacA on its lysine residue(s) specifically under conditions of ammonia fermentation to regulate its substrate affinity. Acetylated FacA had higher affinity for acetyl-CoA than for acetate, whereas non-acetylated FacA had more affinity for acetate. Thus, the acetylated variant of the FacA protein is responsible for ATP synthesis during fungal ammonia fermentation. These results showed that the fungus ferments ammonium via coupled dissimilatory and assimilatory mechanisms. PMID:14722082

  15. nasST, two genes involved in the induction of the assimilatory nitrite-nitrate reductase operon (nasAB) of Azotobacter vinelandii.

    PubMed

    Gutierrez, J C; Ramos, F; Ortner, L; Tortolero, M

    1995-11-01

    An operon including two new genes (nasS and nasT) has been defined, cloned and sequenced. The deduced NASS protein is homologous to NRTA from Synechococcus sp. and to NASF from Klebsiella pneumoniae, two proteins involved in nitrate uptake. The predicted NAST polypeptide is homologous to the regulator proteins of the two-component regulatory systems. NASS plays a negative regulatory role in the synthesis of the nitrate and nitrite reductase. NAST is required for the expression of the nitrite-nitrate reductase operon (nasAB). Expression of the nasST operon is not under the control of the NTR system and is not regulated by the nitrogen source. A Phi(nasA-lacZ) fusion has been used to analyse expression of the nasAB operon in three different genetic backgrounds with altered nitrate reductase activity. Beta-galactosidase activity in two of them was independent of nitrate but in a mutant unable to reduce nitrate, nas-4, it was normally induced by nitrate. PMID:8748040

  16. Seasonal variation in denitrification and dissimilatory nitrate reduction to ammonia process rates and corresponding key functional genes along an estuarine nitrate gradient

    PubMed Central

    Smith, Cindy J.; Dong, Liang F.; Wilson, John; Stott, Andrew; Osborn, A. Mark; Nedwell, David B.

    2015-01-01

    This research investigated spatial-temporal variation in benthic bacterial community structure, rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes and abundances of corresponding genes and transcripts at three sites—the estuary-head, mid-estuary and the estuary mouth (EM) along the nitrate gradient of the Colne estuary over an annual cycle. Denitrification rates declined down the estuary, while DNRA rates were higher at the estuary head and middle than the EM. In four out of the six 2-monthly time-points, rates of DNRA were greater than denitrification at each site. Abundance of gene markers for nitrate-reduction (nitrate reductase narG and napA), denitrification (nitrite reductase nirS) and DNRA (DNRA nitrite reductase nrfA) declined along the estuary with significant relationships between denitrification and nirS abundance, and DNRA and nrfA abundance. Spatially, rates of denitrification, DNRA and corresponding functional gene abundances decreased along the estuary. However, temporal correlations between rate processes and functional gene and transcript abundances were not observed. PMID:26082763

  17. Purification and characterization of assimilatory nitrite reductase from Candida utilis.

    PubMed Central

    Sengupta, S; Shaila, M S; Rao, G R

    1996-01-01

    Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems. PMID:8694757

  18. Dairy Slurry Application Method Effects on Ammonia Emission and Nitrate Leaching in No-till Corn Silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To reduce odors and conserve dairy slurry nitrogen (N) for subsequent crop use, various slurry application techniques have been tested. Reductions in ammonia (NH3) emissions through slurry incorporation or other soil management techniques may, however, increase nitrate (NO3) leaching. Possible trade...

  19. Effects of dietary protein concentration on ammonia volatilization, nitrate leaching, and plant nitrogen uptake from dairy manure applied to lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This lysimeter experiment was designed to investigate the effects of dietary crude protein (CP) concentration on nitrate-N (NO3-N) and ammonia (NH3) losses from dairy manure applied to soil and manure N use for plant growth. Lactating dairy cows were fed diets with 16.7 (HighCP) or 14.8% (LowCP) cru...

  20. Nitrite in organ protection

    PubMed Central

    Rassaf, Tienush; Ferdinandy, Peter; Schulz, Rainer

    2014-01-01

    In the last decade, the nitrate-nitrite-nitric oxide pathway has emerged to therapeutical importance. Modulation of endogenous nitrate and nitrite levels with the subsequent S-nitros(yl)ation of the downstream signalling cascade open the way for novel cytoprotective strategies. In the following, we summarize the actual literature and give a short overview on the potential of nitrite in organ protection. PMID:23826831

  1. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei.

    PubMed

    Feng, Guofang; Sun, Wei; Zhang, Fengli; Karthik, Loganathan; Li, Zhiyong

    2016-01-01

    Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-based analyses were performed to reveal the composition and transcriptional activity of the nitrifiers in T. swinhoei from the South China Sea. Transcriptional activity of ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in this sponge were confirmed by targeting their nitrifying genes,16S rRNA genes and their transcripts. Phylogenetic analysis coupled with RDP rRNA classification indicated that archaeal 16S rRNA genes, amoA (the subunit of ammonia monooxygenase) genes and their transcripts were closely related to Nitrosopumilus-like AOA; whereas nitrifying bacterial 16S rRNA genes, nxrB (the subunit of nitrite oxidoreductase) genes and their transcripts were closely related to Nitrospira NOB. Quantitative assessment demonstrated relative higher abundances of nitrifying genes and transcripts of Nitrosopumilus-like AOA than those of Nitrospira NOB in this sponge. This study illustrated the transcriptional potentials of Nitrosopumilus-like archaea and Nitrospira bacteria that would predominantly contribute to the nitrification functionality in the South China Sea T. swinhoei. PMID:27113140

  2. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei

    PubMed Central

    Feng, Guofang; Sun, Wei; Zhang, Fengli; Karthik, Loganathan; Li, Zhiyong

    2016-01-01

    Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-based analyses were performed to reveal the composition and transcriptional activity of the nitrifiers in T. swinhoei from the South China Sea. Transcriptional activity of ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in this sponge were confirmed by targeting their nitrifying genes,16S rRNA genes and their transcripts. Phylogenetic analysis coupled with RDP rRNA classification indicated that archaeal 16S rRNA genes, amoA (the subunit of ammonia monooxygenase) genes and their transcripts were closely related to Nitrosopumilus-like AOA; whereas nitrifying bacterial 16S rRNA genes, nxrB (the subunit of nitrite oxidoreductase) genes and their transcripts were closely related to Nitrospira NOB. Quantitative assessment demonstrated relative higher abundances of nitrifying genes and transcripts of Nitrosopumilus-like AOA than those of Nitrospira NOB in this sponge. This study illustrated the transcriptional potentials of Nitrosopumilus-like archaea and Nitrospira bacteria that would predominantly contribute to the nitrification functionality in the South China Sea T. swinhoei. PMID:27113140

  3. Low-disturbance manure incorporation effects on ammonia and nitrate loss.

    PubMed

    Dell, Curtis J; Kleinman, Peter J A; Schmidt, John P; Beegle, Douglas B

    2012-01-01

    Low-disturbance manure application methods can provide the benefits of manure incorporation, including reducing ammonia (NH3) emissions, in production systems where tillage is not possible. However, incorporation can exacerbate nitrate (NO3⁻) leaching. We sought to assess the trade-offs in NH3 and NO3⁻ losses caused by alternative manure application methods. Dairy slurry (2006-2007) and liquid swine manure (2008-2009) were applied to no-till corn by (i) shallow (<10 cm) disk injection, (ii) surface banding with soil aeration, (iii) broadcasting, and (iv) broadcasting with tillage incorporation. Ammonia emissions were monitored for 72 h after application using ventilated chambers and passive diffusion samplers, and NO3⁻ leaching to 80 cm was monitored with buried column lysimeters. The greatest NH3 emissions occurred with broadcasting (35-63 kg NH3-N ha⁻), and the lowest emissions were from unamended soil (<1 kg NH-N ha⁻¹). Injection decreased NH-N emissions by 91 to 99% compared with broadcasting and resulted in lower emissions than tillage incorporation 1 h after broadcasting. Ammonia-nitrogen emissions from banding manure with aeration were inconsistent between years, averaging 0 to 71% that of broadcasting. Annual NO3⁻ leaching losses were small (<25 kg NO3-N ha⁻¹) and similar between treatments, except for the first winter when NO3⁻ leaching was fivefold greater with injection. Because NO3⁻ leaching with injection was substantially lower over subsequent seasons, we hypothesize that the elevated losses during the first winter were through preferential flow paths inadvertently created during lysimeter installation. Overall, shallow disk injection yielded the lowest NH3 emissions without consistently increasing NO3⁻ leaching, whereas manure banding with soil aeration conserved inconsistent amounts of N. PMID:22565274

  4. Organic tank safety project: Preliminary results of energetics and thermal behavior studies of model organic nitrate and/or nitrite mixtures and a simulated organic waste

    SciTech Connect

    Scheele, R.D.; Sell, R.L.; Sobolik, J.L.; Burger, L.L.

    1995-08-01

    As a result of years of production and recovery of nuclear defense materials and subsequent waste management at the Hanford Site, organic-bearing radioactive high-level wastes (HLW) are currently stored in large (up to 3. ML) single-shell storage tanks (SSTs). Because these wastes contain both fuels (organics) and the oxidants nitrate and nitrite, rapid energetic reactions at certain conditions could occur. In support of Westinghouse Hanford Company`s (WHC) efforts to ensure continued safe storage of these organic- and oxidant-bearing wastes and to define the conditions necessary for reactions to occur, we measured the thermal sensitivities and thermochemical and thermokinetic properties of mixtures of selected organics and sodium nitrate and/or nitrite and a simulated Hanford organic-bearing waste using thermoanalytical technologies. These thermoanalytical technologies are used by chemical reactivity hazards evaluation organizations within the chemical industry to assess chemical reaction hazards.

  5. Fluidic Automation of Nitrate and Nitrite Bioassays in Whole Blood by Dissolvable-Film Based Centrifugo-Pneumatic Actuation

    PubMed Central

    Nwankire, Charles E.; Chan, Di-Sien S.; Gaughran, Jennifer; Burger, Robert; Gorkin, Robert; Ducrée, Jens

    2013-01-01

    This paper demonstrates the full centrifugal microfluidic integration and automation of all liquid handling steps of a 7-step fluorescence-linked immunosorbent assay (FLISA) for quantifying nitrate and nitrite levels in whole blood within about 15 min. The assay protocol encompasses the extraction of metered plasma, the controlled release of sample and reagents (enzymes, co-factors and fluorescent labels), and incubation and detection steps. Flow control is implemented by a rotationally actuated dissolvable film (DF) valving scheme. In the valves, the burst pressure is primarily determined by the radial position, geometry and volume of the valve chamber and its inlet channel and can thus be individually tuned over an extraordinarily wide range of equivalent spin rates between 1,000 RPM and 5,500 RPM. Furthermore, the vapour barrier properties of the DF valves are investigated in this paper in order to further show the potential for commercially relevant on-board storage of liquid reagents during shelf-life of bioanalytical, ready-to-use discs. PMID:24064595

  6. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings.

    PubMed

    Balotf, Sadegh; Kavoosi, Gholamreza; Kholdebarin, Bahman

    2016-03-01

    The objective of this study was to examine the expression and activity of nitrate reductase (NR, EC 1.7.1.1), nitrite reductase (NiR, EC 1.7.2.2), glutamine synthetase (GS, EC 6.3.1.2), and glutamate synthase (GOGAT, EC 1.4.7.1) in response to potassium nitrate, ammonium chloride, and ammonium nitrate in nitrogen-starved wheat seedlings. Plants were grown in standard nutrient solution for 17 days and then subjected to nitrogen starvation for 7 days. The starved plants were supplied with potassium nitrate ammonium nitrate and ammonium chloride (50 mM) for 4 days and the leaves were harvested. The relative expression of NR, NiR, GS, and GOGAT as well as the enzyme activities were investigated. Nitrogen starvation caused a significant decrease both in transcript levels and in NR, NiR, GS, and GOGAT activities. Potassium nitrate and ammonium nitrate treatments restored NR, NiR, GS, and GOGAT expressions and activities. Ammonium chloride increased only the expressions and activities of GS and GOGAT in a dose-dependent manner. The results of our study highlight the differential effects between the type and the amount of nitrogen salts on NR, NiR, GS, and GOGAT activities in wheat seedlings while potassium nitrate being more effective. PMID:25676153

  7. Involvement of NarK1 and NarK2 Proteins in Transport of Nitrate and Nitrite in the Denitrifying Bacterium Pseudomonas aeruginosa PAO1

    PubMed Central

    Sharma, Vandana; Noriega, Chris E.; Rowe, John J.

    2006-01-01

    Two transmembrane proteins were tentatively classified as NarK1 and NarK2 in the Pseudomonas genome project and hypothesized to play an important physiological role in nitrate/nitrite transport in Pseudomonas aeruginosa. The narK1 and narK2 genes are located in a cluster along with the structural genes for the nitrate reductase complex. Our studies indicate that the transcription of all these genes is initiated from a single promoter and that the gene complex narK1K2GHJI constitutes an operon. Utilizing an isogenic narK1 mutant, a narK2 mutant, and a narK1K2 double mutant, we explored their effect on growth under denitrifying conditions. While the ΔnarK1::Gm mutant was only slightly affected in its ability to grow under denitrification conditions, both the ΔnarK2::Gm and ΔnarK1K2::Gm mutants were found to be severely restricted in nitrate-dependent, anaerobic growth. All three strains demonstrated wild-type levels of nitrate reductase activity. Nitrate uptake by whole-cell suspensions demonstrated both the ΔnarK2::Gm and ΔnarK1K2::Gm mutants to have very low yet different nitrate uptake rates, while the ΔnarK1::Gm mutant exhibited wild-type levels of nitrate uptake. Finally, Escherichia coli narK rescued both the ΔnarK2::Gm and ΔnarK1K2::Gm mutants with respect to anaerobic respiratory growth. Our results indicate that only the NarK2 protein is required as a nitrate/nitrite transporter by Pseudomonas aeruginosa under denitrifying conditions. PMID:16391109

  8. A new method for the determination of the nitrogen content of nitrocellulose based on the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis.

    PubMed

    Alinat, Elodie; Delaunay, Nathalie; Archer, Xavier; Mallet, Jean-Maurice; Gareil, Pierre

    2015-04-01

    A new method was proposed to determine the nitrogen content of nitrocelluloses (NCs). It is based on the finding of a linear relationship between the nitrogen content and the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. Capillary electrophoresis was used to monitor the concentration of nitrite and nitrate ions. The influences of hydrolysis time and molar mass of NC on the molar ratio of nitrite-to-nitrate ions were investigated, and new insights into the understanding of the alkaline denitration mechanism of NCs, underlying this analytical strategy is provided. The method was then tested successfully with various explosive and non-explosive NC-containing samples such as various daily products and smokeless gunpowders. Inherently to its principle exploiting a concentration ratio, this method shows very good repeatability in the determination of nitrogen content in real samples with relative standard deviation (n = 3) inferior to 1.5%, and also provides very significant advantages with respect to sample extraction, analysis time (1h for alkaline hydrolysis, 3 min for electrophoretic separation), which was about 5 times shorter than for the classical Devarda's method, currently used in industry, and safety conditions (no need for preliminary drying NC samples, mild hydrolysis conditions with 1M sodium hydroxide for 1h at 60 °C). PMID:25562808

  9. Role of nitrite in the induction of nitrate reductase activity in barley leaves

    SciTech Connect

    Aslam, M.; Huffaker, R.C.

    1986-04-01

    High levels of nitrate reductase activity (NRA) were induced in detached leaves of 8-day-old barley (Hordeum vulgare L.) seedlings when supplied with NO/sub 2//sup -/ in the induction solutions. At similar N flux, the level of the enzyme activity induced by NO/sub 2//sup -/ was about one-half of that induced by NO/sub 3//sup -/. Significant levels of NO/sub 3//sup -/ accumulated in NO/sub 2//sup -/-fed leaves. Traces of NO/sub 3//sup -/ (0.6%) were detected in solutions of reagent grade KNO/sub 2/. However, the amount of NO/sub 3//sup -/ absorbed from the NO/sub 2//sup -/ solutions was only one-tenth of that accumulated in the leaves during the induction period, showing the actual conversion of NO/sub 2//sup -/ to NO/sub 3//sup -/ within the leaf. When the NO/sub 3//sup -/ concentrations in the NO/sub 2//sup -/-fed leaves were plotted against NRA, a highly positive correlation was obtained. The results suggest that NO/sub 2//sup -/ induces NRA indirectly after being oxidized to NO/sub 3//sup -/ within the leaf.

  10. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens.

    PubMed

    Vázquez-Torres, Andrés; Bäumler, Andreas J

    2016-02-01

    The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4(+), but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome c oxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and -negative pathogens during their associations with invertebrate and vertebrate hosts. PMID:26426528

  11. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm.

    PubMed

    Foesel, Bärbel U; Gieseke, Armin; Schwermer, Carsten; Stief, Peter; Koch, Liat; Cytryn, Eddie; de la Torré, José R; van Rijn, Jaap; Minz, Dror; Drake, Harold L; Schramm, Andreas

    2008-02-01

    Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated with a recirculating marine aquaculture system are presented. Repeated rounds of the full-cycle rRNA approach were necessary to optimize DNA extraction and the probe set for FISH to obtain a reliable and comprehensive picture of the ammonia-oxidizing community. Analysis of the ammonia monooxygenase gene (amoA) confirmed the results. The most abundant ammonia-oxidizing bacteria (AOB) were members of the Nitrosomonas sp. Nm143-lineage (6.7% of the bacterial biovolume), followed by Nitrosomonas marina-like AOB (2.2% of the bacterial biovolume). Both were outnumbered by nitrite-oxidizing bacteria of the Nitrospira marina-lineage (15.7% of the bacterial biovolume). Although more than eight other nitrifying populations were detected, including Crenarchaeota closely related to the ammonia-oxidizer 'Nitrosopumilus maritimus', their collective abundance was below 1% of the total biofilm volume; their contribution to nitrification in the biofilter is therefore likely to be negligible. PMID:18093145

  12. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) process

    SciTech Connect

    Mattus, A.J.; Lee, D.D.; Dillow, T.A.; Farr, L.L.; Loghry, S.L.; Pitt, W.W.; Gibson, M.R.

    1994-12-01

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new, low-temperature (50 to 60C) process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 to 99% of the nitrate can be readily converted. In this process, aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid which might function as its own waste form. The process may actually be able to utilize already contaminated aluminum scrap metal from various DOE sites to effect the conversion. The final, nearly nitrate-free ceramic-like product can be pressed and sintered like other ceramics. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 55% were obtained for the waste form produced, compared to an expected 35 to 50% volume increase if the Hanford supernate were grouted. Engineering data extracted from bench-top studies indicate that the process will be very economical to operate, and data were used to cost a batch, 1,200-kg NO{sub 3}/h plant for working off Hanford SST waste over 20 years. Their total process cost analysis presented in the appendix, indicates that between $2.01 to 2.66 per kilogram of nitrate converted will be required. Additionally, data on the fate of select radioelements present in solution are presented in this report as well as kinetic, operational, and control data for a number of experiments. Additionally, if the ceramic product functions as its own waste form, it too will offer other cost savings associated with having a smaller volume of waste form as well as eliminating other process steps such as grouting.

  13. Ammonia sources and ammonium nitrate formation in the California South Coast Air Basin

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Neuman, J.; Bahreini, R.; Middlebrook, A. M.; Holloway, J. S.; Cai, C.; Kaduwela, A.; McKeen, S. A.; Parrish, D. D.; Ryerson, T. B.; Trainer, M.

    2011-12-01

    The South Coast Air Basin (SoCAB) of California is designated by the US Environmental Protection Agency (EPA) as being in non-attainment of the National Ambient Air Quality Standards (NAAQS) for both PM2.5 and PM10. Formation of fine aerosol nitrates (e.g., ammonium nitrate (NH4NO3)) from gas-phase ammonia (NH3) and nitric acid (HNO3) accounts for a significant fraction of the PM2.5 mass. Quantifying the sources of NH3 in the SoCAB is important for developing aerosol control strategies. Fast-time resolution observations of NH3, particulate ammonium (NH4+), and carbon monoxide (CO) made aboard the NOAA WP-3D aircraft during the CalNex 2010 campaign are used to quantify and compare the major NH3 sources to the SoCAB atmosphere: automobiles and dairy farms. From the automobile NH3:CO emission ratio inferred from the WP-3D observations and CO inventory data the NH3 automobile emissions in the SoCAB are estimated at 38 ± 15 metric tons day-1. Atmospheric mass fluxes are calculated for observed NH3 plumes from dairy farms to estimate the NH3 dairy farm emissions at 27 ± 14 to 120 ± 60 metric tons day-1. Comparison with two emission inventories show good agreement for the automobile NH3:CO emission ratio, however, both inventories under predict NH3 emissions from the dairy farms. The observations suggest that automobiles and dairy farms contributed similar amounts of NH3 to the SoCAB in May 2010. However, observed particle mass was greater downwind from dairy farms, where high NH3 mixing ratios from more concentrated sources shift the NH4NO3 equilibrium toward favorable thermodynamic conditions for the condensation of NH4NO3 onto particles.

  14. A survey of nitrate and nitrite concentrations in conventional and organic-labeled raw vegetables at retail.

    PubMed

    Nuñez de González, Maryuri T; Osburn, Wesley N; Hardin, Margaret D; Longnecker, Michael; Garg, Harsha K; Bryan, Nathan S; Keeton, Jimmy T

    2015-05-01

    A national survey of the nitrate ( NO3(-)) and nitrite ( NO2(-)) concentrations in raw and highly consumed vegetables available at retail in the United States was conducted. A total of 194 samples of fresh broccoli, cabbage, celery, lettuce, and spinach categorized as conventional or organic by label were collected from 5 major cities in different geographic regions of the United States and analyzed to determine NO3(-) and NO2(-) concentrations. There were no differences in the mean NO2(-) values of conventional compared with organic vegetables taken from the 5 metropolitan areas. However, significant differences in mean pairwise comparisons between some conventional and organic vegetables for NO3(-) content were observed. The mean NO2(-) concentration of both conventional and organic vegetables ranged between 0.1 and 1.2 mg/kg of fresh weight (FW) with the exception of conventional spinach that contained 8.0 mg/kg FW. Mean NO3(-) contents of conventional broccoli, cabbage, celery, lettuce, and spinach were 394, 418, 1496, 851, and 2797 mg/kg FW, respectively, while their organic-labeled counterparts averaged 204, 552, 912, 844, and 1318 mg/kg FW. In most cases, organic vegetables were numerically lower in NO3(-) content than their conventional counterparts. Based on survey results, the finding that low NO3(-) levels were observed in some organic vegetables in different cities may warrant further study to determine if true differences exist, due to production practices, seasonal differences, and the magnitudes of those differences. Furthermore, the geographic differences in NO3(-) content of vegetables may flaw estimates of daily NO2(-) and NO3(-) exposure. PMID:25850811

  15. Nitrogen cycling in shallow low-oxygen coastal waters off Peru from nitrite and nitrate nitrogen and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Hu, Happy; Bourbonnais, Annie; Larkum, Jennifer; Bange, Hermann W.; Altabet, Mark A.

    2016-03-01

    O2 deficient zones (ODZs) of the world's oceans are important locations for microbial dissimilatory nitrate (NO3-) reduction and subsequent loss of combined nitrogen (N) to biogenic N2 gas. ODZs are generally coupled to regions of high productivity leading to high rates of N-loss as found in the coastal upwelling region off Peru. Stable N and O isotope ratios can be used as natural tracers of ODZ N-cycling because of distinct kinetic isotope effects associated with microbially mediated N-cycle transformations. Here we present NO3- and nitrite (NO2-) stable isotope data from the nearshore upwelling region off Callao, Peru. Subsurface oxygen was generally depleted below about 30 m depth with concentrations less than 10 µM, while NO2- concentrations were high, ranging from 6 to 10 µM, and NO3- was in places strongly depleted to near 0 µM. We observed for the first time a positive linear relationship between NO2-δ15N and δ18O at our coastal stations, analogous to that of NO3- N and O isotopes during NO3- uptake and dissimilatory reduction. This relationship is likely the result of rapid NO2- turnover due to higher organic matter flux in these coastal upwelling waters. No such relationship was observed at offshore stations where slower turnover of NO2- facilitates dominance of isotope exchange with water. We also evaluate the overall isotope fractionation effect for N-loss in this system using several approaches that vary in their underlying assumptions. While there are differences in apparent fractionation factor (ɛ) for N-loss as calculated from the δ15N of NO3-, dissolved inorganic N, or biogenic N2, values for ɛ are generally much lower than previously reported, reaching as low as 6.5 ‰. A possible explanation is the influence of sedimentary N-loss at our inshore stations which incurs highly suppressed isotope fractionation.

  16. Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen minimum zone cause an imbalance of benthic nitrogen fluxes

    NASA Astrophysics Data System (ADS)

    Sommer, S.; Gier, J.; Treude, T.; Lomnitz, U.; Dengler, M.; Cardich, J.; Dale, A. W.

    2016-06-01

    Oxygen minimum zones (OMZ) are key regions for fixed nitrogen loss in both the sediments and the water column. During this study, the benthic contribution to N cycling was investigated at ten sites along a depth transect (74-989 m) across the Peruvian OMZ at 12°S. O2 levels were below detection limit down to ~500 m. Benthic fluxes of N2, NO3-, NO2-, NH4+, H2S and O2 were measured using benthic landers. Flux measurements on the shelf were made under extreme geochemical conditions consisting of a lack of O2, NO3- and NO2- in the bottom water and elevated seafloor sulphide release. These particular conditions were associated with a large imbalance in the benthic nitrogen cycle. The sediments on the shelf were densely covered by filamentous sulphur bacteria Thioploca, and were identified as major recycling sites for DIN releasing high amounts of NH4+up to 21.2 mmol m-2 d-1 that were far in excess of NH4+ release by ammonification. This difference was attributed to dissimilatory nitrate (or nitrite) reduction to ammonium (DNRA) that was partly being sustained by NO3- stored within the sulphur oxidizing bacteria. Sediments within the core of the OMZ (ca. 200-400 m) also displayed an excess flux of N of 3.5 mmol m-2 d-1 mainly as N2. Benthic nitrogen and sulphur cycling in the Peruvian OMZ appears to be particularly susceptible to bottom water fluctuations in O2, NO3- and NO2-, and may accelerate the onset of pelagic euxinia when NO3- and NO2- become depleted.

  17. Ammonia sources in the California South Coast Air Basin and their impact on ammonium nitrate formation

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Neuman, J. A.; Bahreini, R.; Middlebrook, A. M.; Holloway, J. S.; McKeen, S. A.; Parrish, D. D.; Ryerson, T. B.; Trainer, M.

    2012-04-01

    Observations from the NOAA WP-3D aircraft during CalNex in May and June 2010 are used to quantify ammonia (NH3) emissions from automobiles and dairy facilities in the California South Coast Air Basin (SoCAB) and assess their impact on particulate ammonium nitrate (NH4NO3) formation. These airborne measurements in the SoCAB are used to estimate automobile NH3 emissions, 62 ± 24 metric tons day-1, and dairy facility NH3 emissions, 33 ± 16 to 176 ± 88 metric tons day-1. Emission inventories agree with the observed automobile NH3:CO emission ratio, but substantially underpredict dairy facility NH3 emissions. Conditions observed downwind of the dairy facilities were always thermodynamically favorable for NH4NO3 formation due to high NH3 mixing ratios from the concentrated sources. Although automobile emissions generated lower NH3 mixing ratios, they also can thermodynamically favor NH4NO3 formation. As an aerosol control strategy, addressing the dairy NH3 source would have the larger impact on reducing SoCAB NH4NO3 formation.

  18. Development of a new generation low cost treatment of ammonia for livestock effluents using anammox and nitritation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excess ammonia in livestock production is a global problem, and the use of conventional biological nitrogen (N) removal methods is expensive. We developed a new generation, low cost treatment system suitable for high ammonia livestock effluents that is based on the anaerobic ammonium oxidation (anam...

  19. An experimental investigation of the thermal/fluid properties of the nitrate to ammonia and ceramic (NAC) product slurry

    SciTech Connect

    Muguercia, I.; Lagos, L.; Yang, G.; Li, W.; Ebadian, M.A.; Mattus, A.J.; Lee, D.D.; Walker, J.W.; Hunt, R.D.

    1994-12-31

    Recently, a new immobilization technique for LLW, the Nitrate to Ammonia and Ceramic (NAC) process, has been developed. Instead of mixing the liquid waste form directly with the cement to make concrete blocks, the NAC process eliminates the nitrate from the LLW by converting it to ammonia gas. Aluminum particles are used as a reductant to complete this conversion. The final product of the NAC process is gibbsite, which can be further sintered to a ceramic waste form. Experimental tests are conducted to measure the apparent viscosity, the pressure drop, and the heat transfer coefficient of the pipe flow of the Nitrate to Ammonia and Ceramic (NAC) process product slurry. The tests indicate that the NAC product slurry exhibits a typical pseudoplastic fluid behavior. The pressure drop in the pipe flow is a function of the Reynolds number and the slurry temperature. The results also indicate that at a low slurry temperature, the slurry is uniformly heated peripherally. At a high slurry temperature, however, the slurry may be thermally stratified. In a straight pipe, the Nusselt number is reduced as the slurry temperature increases.

  20. Changes in Benthic Denitrification, Nitrate Ammonification, and Anammox Process Rates and Nitrate and Nitrite Reductase Gene Abundances along an Estuarine Nutrient Gradient (the Colne Estuary, United Kingdom)▿ †

    PubMed Central

    Dong, Liang F.; Smith, Cindy J.; Papaspyrou, Sokratis; Stott, Andrew; Osborn, A. Mark; Nedwell, David B.

    2009-01-01

    Estuarine sediments are the location for significant bacterial removal of anthropogenically derived inorganic nitrogen, in particular nitrate, from the aquatic environment. In this study, rates of benthic denitrification (DN), dissimilatory nitrate reduction to ammonium (DNRA), and anammox (AN) at three sites along a nitrate concentration gradient in the Colne estuary, United Kingdom, were determined, and the numbers of functional genes (narG, napA, nirS, and nrfA) and corresponding transcripts encoding enzymes mediating nitrate reduction were determined by reverse transcription-quantitative PCR. In situ rates of DN and DNRA decreased toward the estuary mouth, with the findings from slurry experiments suggesting that the potential for DNRA increased while the DN potential decreased as nitrate concentrations declined. AN was detected only at the estuary head, accounting for ∼30% of N2 formation, with 16S rRNA genes from anammox-related bacteria also detected only at this site. Numbers of narG genes declined along the estuary, while napA gene numbers were stable, suggesting that NAP-mediated nitrate reduction remained important at low nitrate concentrations. nirS gene numbers (as indicators of DN) also decreased along the estuary, whereas nrfA (an indicator for DNRA) was detected only at the two uppermost sites. Similarly, nitrate and nitrite reductase gene transcripts were detected only at the top two sites. A regression analysis of log(n + 1) process rate data and log(n + 1) mean gene abundances showed significant relationships between DN and nirS and between DNRA and nrfA. Although these log-log relationships indicate an underlying relationship between the genetic potential for nitrate reduction and the corresponding process activity, fine-scale environmentally induced changes in rates of nitrate reduction are likely to be controlled at cellular and protein levels. PMID:19304834

  1. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  2. Intracellular Isotope Localization in Ammonia sp. (Foraminifera) of Oxygen-Depleted Environments: Results of Nitrate and Sulfate Labeling Experiments.

    PubMed

    Nomaki, Hidetaka; Bernhard, Joan M; Ishida, Akizumi; Tsuchiya, Masashi; Uematsu, Katsuyuki; Tame, Akihiro; Kitahashi, Tomo; Takahata, Naoto; Sano, Yuji; Toyofuku, Takashi

    2016-01-01

    Some benthic foraminiferal species are reportedly capable of nitrate storage and denitrification, however, little is known about nitrate incorporation and subsequent utilization of nitrate within their cell. In this study, we investigated where and how much (15)N or (34)S were assimilated into foraminiferal cells or possible endobionts after incubation with isotopically labeled nitrate and sulfate in dysoxic or anoxic conditions. After 2 weeks of incubation, foraminiferal specimens were fixed and prepared for Transmission Electron Microscopy (TEM) and correlative nanometer-scale secondary ion mass spectrometry (NanoSIMS) analyses. TEM observations revealed that there were characteristic ultrastructural features typically near the cell periphery in the youngest two or three chambers of the foraminifera exposed to anoxic conditions. These structures, which are electron dense and ~200-500 nm in diameter and co-occurred with possible endobionts, were labeled with (15)N originated from (15)N-labeled nitrate under anoxia and were labeled with both (15)N and (34)S under dysoxia. The labeling with (15)N was more apparent in specimens from the dysoxic incubation, suggesting higher foraminiferal activity or increased availability of the label during exposure to oxygen depletion than to anoxia. Our results suggest that the electron dense bodies in Ammonia sp. play a significant role in nitrate incorporation and/or subsequent nitrogen assimilation during exposure to dysoxic to anoxic conditions. PMID:26925038

  3. Intracellular Isotope Localization in Ammonia sp. (Foraminifera) of Oxygen-Depleted Environments: Results of Nitrate and Sulfate Labeling Experiments

    PubMed Central

    Nomaki, Hidetaka; Bernhard, Joan M.; Ishida, Akizumi; Tsuchiya, Masashi; Uematsu, Katsuyuki; Tame, Akihiro; Kitahashi, Tomo; Takahata, Naoto; Sano, Yuji; Toyofuku, Takashi

    2016-01-01

    Some benthic foraminiferal species are reportedly capable of nitrate storage and denitrification, however, little is known about nitrate incorporation and subsequent utilization of nitrate within their cell. In this study, we investigated where and how much 15N or 34S were assimilated into foraminiferal cells or possible endobionts after incubation with isotopically labeled nitrate and sulfate in dysoxic or anoxic conditions. After 2 weeks of incubation, foraminiferal specimens were fixed and prepared for Transmission Electron Microscopy (TEM) and correlative nanometer-scale secondary ion mass spectrometry (NanoSIMS) analyses. TEM observations revealed that there were characteristic ultrastructural features typically near the cell periphery in the youngest two or three chambers of the foraminifera exposed to anoxic conditions. These structures, which are electron dense and ~200–500 nm in diameter and co-occurred with possible endobionts, were labeled with 15N originated from 15N-labeled nitrate under anoxia and were labeled with both 15N and 34S under dysoxia. The labeling with 15N was more apparent in specimens from the dysoxic incubation, suggesting higher foraminiferal activity or increased availability of the label during exposure to oxygen depletion than to anoxia. Our results suggest that the electron dense bodies in Ammonia sp. play a significant role in nitrate incorporation and/or subsequent nitrogen assimilation during exposure to dysoxic to anoxic conditions. PMID:26925038

  4. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE.

    PubMed

    Nakano, M M; Hoffmann, T; Zhu, Y; Jahn, D

    1998-10-01

    The nitrate and nitrite reductases of Bacillus subtilis have two different physiological functions. Under conditions of nitrogen limitation, these enzymes catalyze the reduction of nitrate via nitrite to ammonia for the anabolic incorporation of nitrogen into biomolecules. They also function catabolically in anaerobic respiration, which involves the use of nitrate and nitrite as terminal electron acceptors. Two distinct nitrate reductases, encoded by narGHI and nasBC, function in anabolic and catabolic nitrogen metabolism, respectively. However, as reported herein, a single NADH-dependent, soluble nitrite reductase encoded by the nasDE genes is required for both catabolic and anabolic processes. The nasDE genes, together with nasBC (encoding assimilatory nitrate reductase) and nasF (required for nitrite reductase siroheme cofactor formation), constitute the nas operon. Data presented show that transcription of nasDEF is driven not only by the previously characterized nas operon promoter but also from an internal promoter residing between the nasC and nasD genes. Transcription from both promoters is activated by nitrogen limitation during aerobic growth by the nitrogen regulator, TnrA. However, under conditions of oxygen limitation, nasDEF expression and nitrite reductase activity were significantly induced. Anaerobic induction of nasDEF required the ResDE two-component regulatory system and the presence of nitrite, indicating partial coregulation of NasDEF with the respiratory nitrate reductase NarGHI during nitrate respiration. PMID:9765565

  5. Nitrogen and Oxygen Regulation of Bacillus subtilis nasDEF Encoding NADH-Dependent Nitrite Reductase by TnrA and ResDE

    PubMed Central

    Nakano, Michiko M.; Hoffmann, Tamara; Zhu, Yi; Jahn, Dieter

    1998-01-01

    The nitrate and nitrite reductases of Bacillus subtilis have two different physiological functions. Under conditions of nitrogen limitation, these enzymes catalyze the reduction of nitrate via nitrite to ammonia for the anabolic incorporation of nitrogen into biomolecules. They also function catabolically in anaerobic respiration, which involves the use of nitrate and nitrite as terminal electron acceptors. Two distinct nitrate reductases, encoded by narGHI and nasBC, function in anabolic and catabolic nitrogen metabolism, respectively. However, as reported herein, a single NADH-dependent, soluble nitrite reductase encoded by the nasDE genes is required for both catabolic and anabolic processes. The nasDE genes, together with nasBC (encoding assimilatory nitrate reductase) and nasF (required for nitrite reductase siroheme cofactor formation), constitute the nas operon. Data presented show that transcription of nasDEF is driven not only by the previously characterized nas operon promoter but also from an internal promoter residing between the nasC and nasD genes. Transcription from both promoters is activated by nitrogen limitation during aerobic growth by the nitrogen regulator, TnrA. However, under conditions of oxygen limitation, nasDEF expression and nitrite reductase activity were significantly induced. Anaerobic induction of nasDEF required the ResDE two-component regulatory system and the presence of nitrite, indicating partial coregulation of NasDEF with the respiratory nitrate reductase NarGHI during nitrate respiration. PMID:9765565

  6. (PRESENTED AT CMAS) THE NONLINEAR RESPONSE OF NITRATE REPLACEMENT THAT MITIGATES SULFATE REDUCTION: THE GAS RATION AS AN INDICTOR AND SENSITIVITY TO ERRORS IN TOTAL AMMONIA AND TOTAL NITRATE

    EPA Science Inventory

    The poster presents an assessment, using the CMAQ air quality model, showing the inorganic gas ratio (the ratio of free ammonia to total nitrate) can function as a screening indicator of the winter replacement of sulfate by nitrate when sulfate is reduced. It also presents an as...

  7. OBSERVABLE INDICATORS OF THE SENSITIVITY OF PM 2.5 NITRATE TO EMISSION REDUCTIONS, PART II: SENSITIVITY TO ERRORS IN TOTAL AMMONIA AND TOTAL NITRATE OF THE CMAQ-PREDICTED NONLINEAR EFFECT OF SO 2 EMISSION REDUCTIONS

    EPA Science Inventory

    The inorganic aerosol system of sulfate, nitrate, and ammonium can respond nonlinearly to changes in precursor sulfur dioxide (SO2) emissions. The potential increase in nitrate, when sulfate is reduced and the associated ammonia is released, can negate the sulfate mass...

  8. Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes.

    PubMed

    Díaz, V; Ibáñez, R; Gómez, P; Urtiaga, A M; Ortiz, I

    2011-01-01

    The viability of the electro-oxidation technology provided with boron doped diamond (BDD) electrodes for the treatment and reuse of the seawater used in a Recirculating Aquaculture System (RAS) was evaluated in this work. The influence of the applied current density (5-50 A m(-2)) in the removal of Total Ammonia Nitrogen (TAN), nitrite and chemical oxygen demand (COD) was analyzed observing that complete TAN removal together with important reductions of the other considered contaminants could be achieved, thus meeting the requirements for reuse of seawater in RAS systems. TAN removal, mainly due to an indirect oxidation mechanism was described by a second order kinetics while COD and nitrite removal followed zero-th order kinetics. The values of the kinetic constants for the anodic oxidation of each compound were obtained as a function of the applied current density (k(TAN) = 7.86 × 10(-5) · exp(6.30 × 10(-2) J); kNO2 = 3.43 × 10(-2) J; k(COD) = 1.35 × 10(-2) J). The formation of free chlorine and oxidation by-products, i.e., trihalomethanes (THMs) was followed along the electro-oxidation process. Although a maximum concentration of 1.7 mg l(-1) of total trihalomethanes was detected an integrated process combining electrochemical oxidation in order to eliminate TAN, nitrite and COD and adsorption onto activated carbon to remove the residual chlorine and THMs is proposed, as an efficient alternative to treat and reuse the seawater in fish culture systems. Finally, the energy consumption of the treatment has been evaluated. PMID:20832837

  9. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira

    PubMed Central

    Koch, Hanna; Lücker, Sebastian; Albertsen, Mads; Kitzinger, Katharina; Herbold, Craig; Spieck, Eva; Nielsen, Per Halkjaer; Wagner, Michael; Daims, Holger

    2015-01-01

    Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II, we identified ecophysiological traits that contribute to the ecological success of Nitrospira. Unexpectedly, N. moscoviensis possesses genes coding for a urease and cleaves urea to ammonia and CO2. Ureolysis was not observed yet in nitrite oxidizers and enables N. moscoviensis to supply ammonia oxidizers lacking urease with ammonia from urea, which is fully nitrified by this consortium through reciprocal feeding. The presence of highly similar urease genes in Nitrospira lenta from activated sludge, in metagenomes from soils and freshwater habitats, and of other ureases in marine nitrite oxidizers, suggests a wide distribution of this extended interaction between ammonia and nitrite oxidizers, which enables nitrite-oxidizing bacteria to indirectly use urea as a source of energy. A soluble formate dehydrogenase lends additional ecophysiological flexibility and allows N. moscoviensis to use formate, with or without concomitant nitrite oxidation, using oxygen, nitrate, or both compounds as terminal electron acceptors. Compared with Nitrospira defluvii from lineage I, N. moscoviensis shares the Nitrospira core metabolism but shows substantial genomic dissimilarity including genes for adaptations to elevated oxygen concentrations. Reciprocal feeding and metabolic versatility, including the participation in different nitrogen cycling processes, likely are key factors for the niche partitioning, the ubiquity, and the high diversity of Nitrospira in natural and engineered ecosystems. PMID:26305944

  10. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira.

    PubMed

    Koch, Hanna; Lücker, Sebastian; Albertsen, Mads; Kitzinger, Katharina; Herbold, Craig; Spieck, Eva; Nielsen, Per Halkjaer; Wagner, Michael; Daims, Holger

    2015-09-01

    Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II, we identified ecophysiological traits that contribute to the ecological success of Nitrospira. Unexpectedly, N. moscoviensis possesses genes coding for a urease and cleaves urea to ammonia and CO2. Ureolysis was not observed yet in nitrite oxidizers and enables N. moscoviensis to supply ammonia oxidizers lacking urease with ammonia from urea, which is fully nitrified by this consortium through reciprocal feeding. The presence of highly similar urease genes in Nitrospira lenta from activated sludge, in metagenomes from soils and freshwater habitats, and of other ureases in marine nitrite oxidizers, suggests a wide distribution of this extended interaction between ammonia and nitrite oxidizers, which enables nitrite-oxidizing bacteria to indirectly use urea as a source of energy. A soluble formate dehydrogenase lends additional ecophysiological flexibility and allows N. moscoviensis to use formate, with or without concomitant nitrite oxidation, using oxygen, nitrate, or both compounds as terminal electron acceptors. Compared with Nitrospira defluvii from lineage I, N. moscoviensis shares the Nitrospira core metabolism but shows substantial genomic dissimilarity including genes for adaptations to elevated oxygen concentrations. Reciprocal feeding and metabolic versatility, including the participation in different nitrogen cycling processes, likely are key factors for the niche partitioning, the ubiquity, and the high diversity of Nitrospira in natural and engineered ecosystems. PMID:26305944

  11. Nitrogen polishing in a fully anoxic anammox MBBR treating mainstream nitritation-denitritation effluent.

    PubMed

    Regmi, Pusker; Holgate, Becky; Miller, Mark W; Park, Hongkeun; Chandran, Kartik; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B

    2016-03-01

    As nitrogen discharge limits are becoming more stringent, short-cut nitrogen systems and tertiary nitrogen polishing steps are gaining popularity. For partial nitritation or nitritation-denitritation systems, anaerobic ammonia oxidation (anammox) polishing may be feasible to remove residual ammonia and nitrite from the effluent. Nitrogen polishing of mainstream nitritation-denitritation system effluent via anammox was studied at 25°C in a fully anoxic moving bed bioreactor (MBBR) (V = 0.45 m(3) ) over 385 days. Unlike other anammox based processes, a very fast startup of anammox MBBR was demonstrated, despite nitrite limited feeding conditions (influent nitrite = 0.7 ± 0.59 mgN/L, ammonia = 6.13 ± 2.86 mgN/L, nitrate = 3.41 ± 1.92 mgN/L). The nitrogen removal performance was very stable within a wide range of nitrogen inputs. Anammox bacteria (AMX) activity up to 1 gN/m(2) /d was observed which is comparable to other biofilm-based systems. It is generally believed that nitrate production limits nitrogen removal through AMX metabolism. However, in this study, anammox MBBR demonstrated ammonia, nitrite, and nitrate removal at limited chemical oxygen demand (COD) availability. AMX and heterotrophs contributed to 0.68 ± 0.17 and 0.32 ± 0.17 of TIN removal, respectively. It was speculated that nitrogen removal might be aided by denitratation which could be due to heterotrophs or the recently discovered ability for AMX to use short-chain fatty acids to reduce nitrate to nitrite. This study demonstrates the feasibility of anammox nitrogen polishing in an MBBR is possible for nitritation-denitration systems. PMID:26333200

  12. Removal of ammonia from contaminated air in a biotrickling filter - denitrifying bioreactor combination system.

    PubMed

    Sakuma, Takeyuki; Jinsiriwanit, Siriwat; Hattori, Toshihiro; Deshusses, Marc A

    2008-11-01

    The removal of gaseous ammonia in a system consisting of a biotrickling filter, a denitrification reactor and a polishing bioreactor for the trickling liquid was investigated. The system allowed sustained treatment of ammonia while preventing biological inhibition by accumulating nitrate and nitrite and avoiding generation of contaminated water. All bioreactors were packed with cattle bone composite ceramics, a porous support with a large interfacial area. Excellent removal of ammonia gas was obtained. The critical loading ranged from 60 to 120 gm(-3)h(-1) depending on the conditions, and loadings below 56 gm(-3)h(-1) resulted in essentially complete removal of ammonia. In addition, concentrations of ammonia, nitrite, nitrate and COD in the recycle liquid of the inlet and outlet of each reactor were measured to determine the fate of nitrogen in the reactor, close nitrogen balances and calculate nitrogen to COD ratios. Ammonia absorption and nitrification occurred in the biotrickling filter; nitrate and nitrite were biologically removed in the denitrification reactor and excess dissolved COD and ammonia were treated in the polishing bioreactor. Overall, ammonia gas was very successfully removed in the bioreactor system and steady state operation with respect to nitrogen species was achieved. PMID:18823641

  13. Plasma levels of aminothiols, nitrite, nitrate, and malondialdehyde in myelodysplastic syndromes in the context of clinical outcomes and as a consequence of iron overload.

    PubMed

    Pimková, Kristýna; Chrastinová, Leona; Suttnar, Jiří; Štikarová, Jana; Kotlín, Roman; Čermák, Jaroslav; Dyr, Jan Evangelista

    2014-01-01

    The role of oxidative stress in the initiation and progression of myelodysplastic syndromes (MDS) as a consequence of iron overload remains unclear. In this study we have simultaneously quantified plasma low-molecular-weight aminothiols, malondialdehyde, nitrite, and nitrate and have studied their correlation with serum iron/ferritin levels, patient treatment (chelation therapy), and clinical outcomes. We found significantly elevated plasma levels of total, oxidized, and reduced forms of cysteine (P < 0.001), homocysteine (P < 0.001), and cysteinylglycine (P < 0.006) and significantly depressed levels of total and oxidized forms of glutathione (P < 0.03) and nitrite (P < 0.001) in MDS patients compared to healthy donors. Moreover, total (P < 0.032) and oxidized cysteinylglycine (P = 0.029) and nitrite (P = 0.021) differed significantly between the analyzed MDS subgroups with different clinical classifications. Malondialdehyde levels in plasma correlated moderately with both serum ferritin levels (r = 0.78, P = 0.001) and serum free iron levels (r = 0.60, P = 0.001) and were significantly higher in patients with iron overload. The other analyzed compounds lacked correlation with iron overload (represented by serum iron/ferritin levels). For the first time our results have revealed significant differences in the concentrations of plasma aminothiols in MDS patients, when compared to healthy donors. We found no correlation of these parameters with iron overload and suggest the role of oxidative stress in the development of MDS disease. PMID:24669287

  14. Survey of residual nitrite and nitrate in conventional and organic/natural/uncured/indirectly cured meats available at retail in the United States.

    PubMed

    Nuñez De González, Maryuri T; Osburn, Wesley N; Hardin, Margaret D; Longnecker, Michael; Garg, Harsha K; Bryan, Nathan S; Keeton, Jimmy T

    2012-04-18

    A survey of residual nitrite (NO(2)(-)) and nitrate (NO(3)(-)) in cured meats available at retail was conducted to verify concentrations in conventional (C) products and establish a baseline for organic/natural/uncured/indirectly cured (ONC) products. In this study, 470 cured meat products representing six major categories were taken from retail outlets in five major metropolitan cities across the United States. Random samples representing both C and ONC type products were analyzed for NO(2)(-) and NO(3)(-) content (ppm) using an ENO-20 high-performance liquid chromatography system equipped with a reverse phase column. Generally, there were no differences in NO(2)(-) concentrations between C and ONC meat categories, but a few ONC products surveyed in certain cities were lower in NO(3)(-) content. Pairwise comparisons between cities indicated that NO(2)(-) and NO(3)(-) contents of all C type products were not appreciably different, and the same was true for most ONC products. Numerical NO(2)(-) values were less variable than NO(3)(-) concentrations within each meat product category. NO(2)(-) concentrations were similar to those previously reported by Cassens ( Cassens , R. G. Residual nitrite in cured meat . Food Technol. 1997a , 51 , 53 - 55 ) in 1997. Residual NO(2)(-) and NO(3)(-) values in this study were numerically lower than those reported by NAS ( National Academy of Sciences . The Health Effects of Nitrate, Nitrite, and N-Nitroso Compounds ; National Academy Press : Washington, DC , 1981 ) in 1981. Data from this survey provide a benchmark of NO(2)(-) and NO(3)(-) concentrations for ONC products available at retail. PMID:22414374

  15. The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase

    SciTech Connect

    Liu, M.-C.; Peck, H.D., Jr.

    1981-12-01

    Desulfovibrio desulfuricans (ATCC 27774), a strictly anaerobic sulfate-reducing bacteria, is able to perform anaerobic nitrate respiration in which nitrate is first reduced to nitrite by the action of nitrate reductase, and nitrite reductase then catalyzes the six-electron reduction of nitrite to ammonia. The nitrite reductase was found to be a membrane-bound enzyme and has been purified to electrophoretic homogeneity. The purified enzyme has a minimal M/sub r/=66,000 as judged by sodium dodecyl sulfate gel electrophoresis and contains 6 c-type heme groups/molecule. Pure nitrite reductase exhibits a typical c-type cytochrome absorption spectrum with reduced..cap alpha..-band at 552.5 nm. NADH and NADPH do not function as direct electron donors for the nitrite reductase. Desulfovibrio vulgaris hydrogenase,however, is able to transfer electrons from H/sub 2/ to the nitrite reductase using FAD as the electron transfer mediator. The dithionite-reduced nitrite reductase was demonstrated to be auto-oxidizable even in the presence of potassium cyanide. On addition of nitrite, the dithionite-reduced enzyme is re-oxidized immediately. Hydroxylamine, however, can only partially reoxidize the reduced enzyme. Ascorbate reduces the enzyme to a limited extent and the partially reduced enzyme is neither auto-oxidizable by nitrite or hydroxylamine. Purified nitrite reductase has a pH optimum in the range of 8.0-9.5 and optimal activity at 57/sup o/C. Purified nitrite reductase also has hydroxylamine reductase activity, and the K/sub m/ for nitrite was determined to be 1.14 mM.

  16. Ammonia

    Integrated Risk Information System (IRIS)

    Ammonia ; CASRN 7664 - 41 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  17. Dietary nitrate supplementation: effects on plasma nitrite and pulmonary O2 uptake dynamics during exercise in hypoxia and normoxia.

    PubMed

    Kelly, James; Vanhatalo, Anni; Bailey, Stephen J; Wylie, Lee J; Tucker, Christopher; List, Stephen; Winyard, Paul G; Jones, Andrew M

    2014-10-01

    We investigated the effects of dietary nitrate (NO3 (-)) supplementation on the concentration of plasma nitrite ([NO2 (-)]), oxygen uptake (V̇o2) kinetics, and exercise tolerance in normoxia (N) and hypoxia (H). In a double-blind, crossover study, 12 healthy subjects completed cycle exercise tests, twice in N (20.9% O2) and twice in H (13.1% O2). Subjects ingested either 140 ml/day of NO3 (-)-rich beetroot juice (8.4 mmol NO3; BR) or NO3 (-)-depleted beetroot juice (PL) for 3 days prior to moderate-intensity and severe-intensity exercise tests in H and N. Preexercise plasma [NO2 (-)] was significantly elevated in H-BR and N-BR compared with H-PL (P < 0.01) and N-PL (P < 0.01). The rate of decline in plasma [NO2 (-)] was greater during severe-intensity exercise in H-BR [-30 ± 22 nM/min, 95% confidence interval (CI); -44, -16] compared with H-PL (-7 ± 10 nM/min, 95% CI; -13, -1; P < 0.01) and in N-BR (-26 ± 19 nM/min, 95% CI; -38, -14) compared with N-PL (-1 ± 6 nM/min, 95% CI; -5, 2; P < 0.01). During moderate-intensity exercise, steady-state pulmonary V̇o2 was lower in H-BR (1.91 ± 0.28 l/min, 95% CI; 1.77, 2.13) compared with H-PL (2.05 ± 0.25 l/min, 95% CI; 1.93, 2.26; P = 0.02), and V̇o2 kinetics was faster in H-BR (τ: 24 ± 13 s, 95% CI; 15, 32) compared with H-PL (31 ± 11 s, 95% CI; 23, 38; P = 0.04). NO3 (-) supplementation had no significant effect on V̇o2 kinetics during severe-intensity exercise in hypoxia, or during moderate-intensity or severe-intensity exercise in normoxia. Tolerance to severe-intensity exercise was improved by NO3 (-) in hypoxia (H-PL: 197 ± 28; 95% CI; 173, 220 vs. H-BR: 214 ± 43 s, 95% CI; 177, 249; P = 0.04) but not normoxia. The metabolism of NO2 (-) during exercise is altered by NO3 (-) supplementation, exercise, and to a lesser extent, hypoxia. In hypoxia, NO3 (-) supplementation enhances V̇o2 kinetics during moderate-intensity exercise and improves severe-intensity exercise tolerance. These findings may have

  18. Signal-Dependent Phosphorylation of the Membrane-Bound NarX Two-Component Sensor-Transmitter Protein of Escherichia coli: Nitrate Elicits a Superior Anion Ligand Response Compared to Nitrite

    PubMed Central

    Lee, Angela I.; Delgado, Asunción; Gunsalus, Robert P.

    1999-01-01

    The Nar two-component regulatory system, consisting of the dual sensor-transmitters NarX and NarQ and the dual response regulators NarL and NarP, controls the expression of various anaerobic respiratory pathway genes and fermentation pathway genes. Although both NarX and NarQ are known to detect the two environmental signals nitrate and nitrite, little is known regarding the sensitivity and selectivity of ligand for detection or activation of the sensor-transmitters. In this study, we have developed a sensitive anion-specific in vitro assay for NarX autophosphorylation by using Escherichia coli membranes highly enriched in the full-length NarX protein. In this ATP- and magnesium-dependent reaction, nitrate elicited a greater signal output (i.e., NarX autophosphorylation) than did nitrite. Nitrate stimulation occurred at concentrations as low as 5 μM, and the half-maximal level of NarX autophosphorylation occurred at approximately 35 μM nitrate. In contrast, nitrite-dependent stimulation was detected only at 500 μM, while 3.5 mM nitrite was needed to achieve half-maximal NarX autophosphorylation. Maximal nitrate- and nitrite-stimulated levels of NarX phosphorylation were five and two times, respectively, over the basal level of NarX autophosphorylation. The presence of Triton X-100 eliminated the nitrate-stimulated kinase activity and lowered the basal level of activity, suggesting that the membrane environment plays a crucial role in nitrate detection and/or regulation of kinase activity. These results provide in vitro evidence for the differential detection of dual signaling ligands by the NarX sensor-transmitter protein, which modulates the cytoplasmic NarX autokinase activity and phosphotransfer to NarL, the cognate response regulator. PMID:10464202

  19. Nitrate to ammonia and ceramic (NAC) bench scale stabilization studies. Final technical progress report, May 1995--May 1996

    SciTech Connect

    1996-05-01

    The Department of Energy (DOE) has large quantities of sodium-nitrate based liquid wastes. Around 1 billion liters of high level waste tank supernatant are present at Hanford, Savannah River Plant, Rocky Flats Plant, Idaho National Engineering Laboratory, and Oak Ridge National Laboratory. The largest quantity of these wastes is in the 149 single shell tanks at Hanford which hold up to 1 million gallons each. These tank waste are typically 4 to 5 molar in nitrate and contain radionuclides, various salts, and heavy metals. INEL high-level waste tank supernatant contains about 0.7 and 0.6 grams per liter of chromium and mercury, respectively. SRP high-level waste tank supernatant contains about 0.2 g/L of chromium. Other heavy metals could well be present at lower levels in theses tank wastes. The major components present in these wastes are summarized in Appendix A. These wastes are currently regulated and managed by the DOE. Under the Federal Facility Compliance Act (FFCA) DOE is subject to RCRA, which would apply to these tank supernatants. Stabilization of this waste is difficult because nitrates are very mobile. Additionally, vitrification of these wastes produces large quantities of hard-to-manage NO{sub x} emissions. The conversion of sodium nitrate to ammonia is discussed.

  20. Nitrate and Nitrite Variability at the Seafloor of an Oxygen Minimum Zone Revealed by a Novel Microfluidic In-Situ Chemical Sensor.

    PubMed

    Yücel, Mustafa; Beaton, Alexander D; Dengler, Marcus; Mowlem, Matthew C; Sohl, Frank; Sommer, Stefan

    2015-01-01

    Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1 μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics. PMID:26161958

  1. Nitrate and Nitrite Variability at the Seafloor of an Oxygen Minimum Zone Revealed by a Novel Microfluidic In-Situ Chemical Sensor

    PubMed Central

    Yücel, Mustafa; Beaton, Alexander D.; Dengler, Marcus; Mowlem, Matthew C.; Sohl, Frank; Sommer, Stefan

    2015-01-01

    Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics. PMID:26161958

  2. The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge.

    PubMed

    Peng, Lai; Ni, Bing-Jie; Ye, Liu; Yuan, Zhiguo

    2015-04-15

    Both nitrite [Formula: see text] and dissolved oxygen (DO) play important roles in nitrous oxide (N2O) production by ammonia oxidizing bacteria (AOB). However, few studies focused on the combined effect of them on N2O production by AOB as well as the corresponding mechanisms. In this study, N2O production by an enriched nitrifying sludge, consisting of both AOB and nitrite-oxidizing bacteria (NOB), was investigated under various [Formula: see text] and DO concentrations. At each investigated DO level, both the biomass specific N2O production rate and the N2O emission factor (the ratio between N2O nitrogen emitted and the ammonium nitrogen converted) increased as [Formula: see text] concentration increased from 3 mg N/L to 50 mg N/L. However, at each investigated [Formula: see text] level, the maximum biomass specific N2O production rate occurred at DO of 0.85 mg O2/L, while the N2O emission factor decreased as DO increased from 0.35 to 3.5 mg O2/L. The analysis of the process data using a mathematical N2O model incorporating both the AOB denitrification and hydroxylamine (NH2OH) oxidation pathways indicated that the contribution of AOB denitrification pathway increased as [Formula: see text] concentration increased, but decreased as DO concentration increased, accompanied by a corresponding change in the contribution of NH2OH oxidation pathway to N2O production. The AOB denitrification pathway was predominant in most cases, with the NH2OH oxidation pathway making a comparable contribution only at high DO level (e.g. 3.5 mg O2/L). PMID:25644626

  3. Kinetic and analytical study of the photo-induced degradation of monuron by nitrates and nitrites under irradiation or in the dark.

    PubMed

    Boucheloukh, Hadjira; Sehili, Tahar; Kouachi, Nadia; Djebbar, Kamel

    2012-08-01

    The photo-induced transformation of monuron (3-(4-chlorophenyl)-1,1 dimethylurea) was investigated in an aqueous solution containing nitrates and nitrites at 310 nm and 365 nm, respectively. In both NO(3)(-) and NO(2)(-) conditions, the degradation of monuron followed pseudo-first order kinetics. The intermediate products were identified by GC-MS, and the nitration, hydroxylation and coupling reactions were determined. In addition, the oxidation of the N-terminus group, the substitution of chlorine by ˙OH and the nitration by ˙NO(2) radical onto the phenyl ring were observed. The photo-induced transformation of monuron was studied under variable conditions of pH, inducer concentration, substrate concentration, humic acids, oxygen content and salts used as hydroxyl radical scavengers. The photodegradation rates were strongly influenced by all the above parameters. The degradation of monuron was also studied in the dark and in the presence of NO(2)(-) as well as in an aqueous solution with the addition of hydrogen peroxide. PMID:22659944

  4. Ammonia Nitrogen Transformations in a Reactor with Aggregate made of Sewage Sludge Combustion Fly Ash.

    PubMed

    Rodziewicz, Joanna; Mielcarek, Artur; Janczukowicz, Wojciech; Białowiec, Andrzej; Gotkowska-Płachta, Anna; Proniewicz, Marcin

    2016-08-01

    The influence of light weight aggregate made of fly ash from sewage sludge thermal treatment (FASSTT LWA) on ammonia nitrogen metabolism, and on quantitative and qualitative changes of microorganisms colonizing the filling, was investigated. Two reactors were used in the experiment. The first was filled with gravel, the other with FASSTT LWA. The reactors were operated with a wastewater hydraulic loading rate of 5 mm(3) mm(-2) d(-1). During the eleven-week experiment, high efficiency of ammonia removal was observed. The lower concentrations of nitrites and nitrates in the effluent indicate that ammonia nitrogen removal resulted not just from nitrification. Nitrate concentration increase was reflected in a decrease in nitrogen removal efficiency. One possible explanation for this phenomenon is that in the period when ammonia nitrogen and nitrites were present in the reactor's FASSTT LWA filling, facilitating conditions occurred for the deammonification process. PMID:27456142

  5. Abundance of ammonia oxidizing bacteria and archaea under long-term maize cropping systems.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrification involves the oxidation of ammonium and is an important component of the overall N cycle. Nitrification occurs in two steps; first by oxidizing ammonium to nitrite, and then to nitrate. The first step is often the rate limiting step. Until recently ammonia-oxidizing bacteria were though...

  6. Serum and cerebrospinal fluid concentrations of homoarginine, arginine, asymmetric and symmetric dimethylarginine, nitrite and nitrate in patients with multiple sclerosis and neuromyelitis optica.

    PubMed

    Haghikia, Aiden; Kayacelebi, Arslan Arinc; Beckmann, Bibiana; Hanff, Erik; Gold, Ralf; Haghikia, Arash; Tsikas, Dimitrios

    2015-09-01

    The pathogenic hallmarks of multiple sclerosis (MS) and neuromyelitis optica (NMO) are cellular and humoral inflammatory infiltrates and subsequent demyelination, or astrocytic cell death in NMO, respectively. These processes are accompanied by disruption of the blood-brain barrier as regularly observed by gadolinium enhancement on magnetic resonance imaging. The role of the L-arginine/nitric oxide (NO) pathway in the pathophysiology of neuroinflammatory diseases, such as MS and NMO, remains unclear. In the present study, we measured the concentrations of the nitric oxide (NO) metabolites nitrate and nitrite, the endogenous substrates of NO synthase (NOS) L-arginine (Arg) and L-homoarginine (hArg), and asymmetric dimethylarginine (ADMA), the endogenous inhibitor of NOS activity, in the serum and cerebrospinal fluid (CSF) of patients with MS, NMO or other neurologic diseases (OND). MS (551 ± 23 nM, P = 0.004) and NMO (608 ± 51 nM, P = 0.006) patients have higher ADMA concentrations in serum than healthy controls (HC; 430 ± 24 nM). For MS, this finding was confirmed in CSF (685 ± 100 nM in relapsing-remitting multiple sclerosis, RRMS; 597 ± 51 nM in secondary progressive multiple sclerosis, SPMS) compared with OND (514 ± 37 nM; P = 0.003). Serum concentrations of Arg (61.1 ± 9.7 vs. 63.6 ± 4.9 µM, P = 0.760), hArg (2.62 ± 0.26 vs. 2.52 ± 0.23 µM, P = 0.891), nitrate (38.1 ± 2.2 vs. 38.1 ± 3.0 µM) and nitrite (1.37 ± 0.09 vs. 1.55 ± 0.03 µM) did not differ between MS and OND. Also, CSF concentrations of hArg (0.685 ± 0.100 µM in RRMS, 0.597 ± 0.051 µM in SPMS, 0.514 ± 0.037 µM in OND), nitrate (11.3 ± 0.6 vs. 10.5 ± 0.3 µM) and nitrite (2.84 ± 0.32 vs. 2.41 ± 0.11 µM) did not differ between the groups. In NMO patients, however, serum Arg (117 ± 11 vs. 64 ± 4.9 μM, P = 0.004), nitrate (29 ± 2.1 vs. 38 ± 3 μM, P = 0.03), and nitrite (1.09 ± 0.02 vs. 1.55 ± 0.033 µM, P < 0.0001) were significantly different as compared to OND

  7. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  8. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  9. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  10. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  11. The nitritation performance of biofilm reactor for treating domestic wastewater under high dissolved oxygen.

    PubMed

    Zheng, Zhaoming; Li, Zebing; Ma, Jing; Du, Jia; Chen, Guanghui; Bian, Wei; Li, Jun; Zhao, Baihang

    2016-04-01

    The objective of this study was to investigate the nitritation performance in a biofilm reactor for treating domestic wastewater. The reactor was operated in continuous feed mode from phases 1 to 3. The dissolved oxygen (DO) was controlled at 3.5-7 mg/L throughout the experiment. The biofilm reactor showed excellent nitritation performance after the inoculation of nitrifying sludge, with the hydraulic retention time being reduced from 24 to 7 hr. Above 90% nitrite accumulation ratio (NAR) was maintained in phase 1. Afterwards, nitratation occurred with the low NH4(+)-N concentration in the reactor. The improvement of NH4(+)-N concentration to 20-35 mg/L had a limited effect on the recovery of nitritation. However, nitritation recovered rapidly when sequencing batch feed mode was adopted in phase 4, with the effluent NH4(+)-N concentration above 7 mg/L. The improvement of ammonia oxidizing bacteria (AOB) activity and the combined inhibition effect of free ammonia (FA) and free nitrous acid (FNA) on the nitrite oxidizing bacteria (NOB) were two key factors for the rapid recovery of nitritation. Sludge activity was obtained in batch tests. The results of batch tests had a good relationship with the long term operation performance of the biofilm reactor. PMID:27090719

  12. Start-up and bacterial communities of single-stage nitrogen removal using anammox and partial nitritation (SNAP) for treatment of high strength ammonia wastewater.

    PubMed

    Zhang, Jianbing; Zhou, Jian; Han, Yi; Zhang, Xiaoguang

    2014-10-01

    In this study, a lab-scale sequencing batch biofilm reactor (SBBR) was used to start up the single-stage nitrogen removal system using anammox and partial nitritation (SNAP) process seeding from surplus activated sludge. The volumetric nitrogen loading rate (vNLR) was firstly 0.075 kg N m(-3) d(-1) and then gradually increased to 0.60 kg N m(-3) d(-1). A maximal total nitrogen (TN) removal rate of 0.54 kg N m(-3) d(-1) was achieved by the SNAP process after 132 days operation with NH4(+)-N and TN removal efficiency of 99.4% and 90.5%, respectively. This reactor may have applications for the SNAP process treating high strength ammonia wastewater. And dewatered surplus activated sludge was recommended as the seed sludge for engineering applications. The dominant bacterial strains were Xanthomonas campestris, Nitrosomonas europaea and Ignavibacterium album, corresponding to the percentage of 24%, 22% and 20%, respectively, based on the 16S rDNA amplicon pyrosequencing of the SNAP sludge. PMID:25105271

  13. Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action.

    PubMed

    Lauer, T; Preik, M; Rassaf, T; Strauer, B E; Deussen, A; Feelisch, M; Kelm, M

    2001-10-23

    The plasma level of NO(x), i.e., the sum of NO(2)- and NO(3)-, is frequently used to assess NO bioavailability in vivo. However, little is known about the kinetics of NO conversion to these metabolites under physiological conditions. Moreover, plasma nitrite recently has been proposed to represent a delivery source for intravascular NO. We therefore sought to investigate in humans whether changes in NO(x) concentration are a reliable marker for endothelial NO production and whether physiological concentrations of nitrite are vasoactive. NO(2)- and NO(3)- concentrations were measured in blood sampled from the antecubital vein and brachial artery of 24 healthy volunteers. No significant arterial-venous gradient was observed for either NO(2)- or NO(3)-. Endothelial NO synthase (eNOS) stimulation with acetylcholine (1-10 microg/min) dose-dependently augmented venous NO(2)- levels by maximally 71%. This effect was paralleled by an almost 4-fold increase in forearm blood flow (FBF), whereas an equieffective dose of papaverine produced no change in venous NO(2)-. Intraarterial infusion of NO(2)- had no effect on FBF. NOS inhibition (N(G)-monomethyl-l-arginine; 4-12 micromol/min) dose-dependently reduced basal NO(2)- and FBF and blunted acetylcholine-induced vasodilation and NO release by more than 80% and 90%, respectively. In contrast, venous NO(3)- and total NO(x) remained unchanged as did systemic arterial NO(2)- and NO(3)- levels during all these interventions. FBF and NO release showed a positive association (r = 0.85; P < 0.001). These results contradict the current paradigm that plasma NO(3)- and/or total NO(x) are generally useful markers of endogenous NO production and demonstrate that only NO(2)- reflects acute changes in regional eNOS activity. Our results further demonstrate that physiological levels of nitrite are vasodilator-inactive. PMID:11606734

  14. Corn yield and nitrate loss in subsurface drainage affected by timing of anhydrous ammonia application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surprisingly little research has examined the corn yield, N use efficiency, and water quality implications of N fertilizer timing. We applied anhydrous ammonia either in the fall after harvest (F) at 196 kg ha-1, or in the spring before planting (PP) or as an early sidedress (SD) at rates of 168 kg ...

  15. Novel process of bio-chemical ammonia removal from air streams using a water reflux system and zeolite as filter media.

    PubMed

    Vitzthum von Eckstaedt, Sebastian; Charles, Wipa; Ho, Goen; Cord-Ruwisch, Ralf

    2016-02-01

    A novel biofilter that removes ammonia from air streams and converts it to nitrogen gas has been developed and operated continuously for 300 days. The ammonia from the incoming up-flow air stream is first absorbed into water and the carrier material, zeolite. A continuous gravity reflux of condensed water from the exit of the biofilter provides moisture for nitrifying bacteria to develop and convert dissolved ammonia (ammonium) to nitrite/nitrate. The down-flow of the condensed water reflux washes down nitrite/nitrate preventing ammonium and nitrite/nitrate accumulation at the top region of the biofilter. The evaporation caused by the inflow air leads to the accumulation of nitrite to extremely high concentrations in the bottom of the biofilter. The high nitrite concentrations favour the spontaneous chemical oxidation of ammonium by nitrite to nitrogen (N2). Tests showed that this chemical reaction was catalysed by the zeolite filter medium and allowed it to take place at room temperature. This study shows that ammonia can be removed from air streams and converted to N2 in a fully aerated single step biofilter. The process also overcomes the problem of microorganism-inhibition and resulted in zero leachate production. PMID:26363328

  16. Convective heat transfer behavior of the product slurry of the nitrate to ammonia and ceramic (NAC) process

    SciTech Connect

    Muguercia, I.; Yang, G.; Ebadian, M.A.; Lee, D.D.; Mattus, A.J.; Hunt, R.D.

    1995-12-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing liquid form low level radioactive waste (LLW). An experimental study has been conducted to measure the heat transfer properties of the NAC product slurry. The results indicate that the heat transfer coefficient for both concentration slurries is much higher than that of pure water, which may be due to the higher conductivity of the gibbsite powder. For the 20% concentration slurry, the heat transfer coefficient increased as the generalized Reynolds number and slurry temperature increased. The heat transfer coefficient of 40% is a function of the Reynolds number only. The test results also indicate that the thermal entrance region can be observed only when the generalized Reynolds number is smaller than 1,000. The correlation equation is also developed based on the experimental data in this paper.

  17. Measurement of nitrite and nitrate in plasma, serum and urine of humans by high-performance liquid chromatography, the Griess assay, chemiluminescence and gas chromatography-mass spectrometry: interferences by biogenic amines and N(G)-nitro-L-arginine analogs.

    PubMed

    Tsikas, D; Fuchs, I; Gutzki, F M; Frölich, J C

    1998-09-18

    In this paper, the HPLC method for the measurement of nitrite and nitrate in serum of humans newly reported by E1 Menyawi et al. is discussed, especially in regard to the extremely low nitrate levels measured in serum of healthy humans. From the discussion, it is concluded that: (1) Biogenic amines at physiological concentrations do not significantly interfere with the batch Griess assay. (2) The HPLC method of E1 Menyawi et al. does not reveal accurate levels for serum nitrate. (3) In serum and plasma of healthy humans, nitrate ranges within 15-70 microM. (4) Exogenous NG-nitro-L-arginine analogs can interfere with the measurement of nitrate in human plasma and urine by the batch Griess assay, chemiluminescence and GC-MS; interferences can be effectively eliminated by solid-phase extraction on cation-exchangers. PMID:9792532

  18. Boosting the Quantitative Inorganic Surface-Enhanced Raman Scattering Sensing to the Limit: The Case of Nitrite/Nitrate Detection.

    PubMed

    Correa-Duarte, Miguel A; Pazos Perez, Nicolas; Guerrini, Luca; Giannini, Vincenzo; Alvarez-Puebla, Ramon A

    2015-03-01

    A high-performance ionic-sensing platform has been developed by an interdisciplinary approach, combining the classical colorimetric Griess reaction and new concepts of nanotechnology, such as plasmonic coupling of nanoparticles and surface-enhanced Raman scattering (SERS) spectroscopy. This approach exploits the advantages of combined SERS/surface-enhanced resonant Raman Scattering (SERRS) by inducing the formation of homogeneous hot spots and a colored complex in resonance with the laser line, to yield detection limits for nitrite down to the subpicomolar level. The performance of this new method was compared with the classical Griess reaction and ionic chromatography showing detection limits about 6 and 3 orders of magnitude lower, respectively. PMID:26262665

  19. [Simultaneous Biotransformation of Ammonium and Nitrate via Zero-Valent Iron on Anaerobic Conditions].

    PubMed

    Zhou, Jian; Huang, Yong; Yuan, Yi; Liu, Xin; Li, Xiang; Shen, Jie; Yang, Peng-bing

    2015-12-01

    Zero-valent iron (ZVI) was used to improve the biological autotrophic denitrification process between nitrate and ammonia by anaerobic ammonia oxidation ( ANAMMOX) bacteria. With the addition of ZVI, the biological autotrophic denitrification process could be reacted in the influent condition of pH was 7-8, at 35°C ±0.5°C, the concentration of ammonia was 50-100 mg · L⁻¹ and the concentration of nitrate was 50-100 mg · L⁻¹. The highest conversion rate could be reached to 17.2 mg · (L·h) ⁻¹. With the change of reaction time and the molar ratio of nitrate and ammonia in influent, the final molar conversion ratio of nitrate and ammonia in effluent fluctuated between 1.2-3. 5. The result showed that this autotrophic denitrification process was not belonged to elementary reaction. The mechanism of this autotrophic denitrification process could be summarized that with the reduction of ZVI, the nitrate could be reduced to nitrite. Hereafter, the ANAMMOX process reacted between the nitrite and ammonia. PMID:27011992

  20. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    USGS Publications Warehouse

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in "mixed" samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant. ?? 2007 American Chemical Society.

  1. Effect of Photosynthetic Inhibitors and Uncouplers of Oxidative Phosphorylation on Nitrate and Nitrite Reduction in Barley Leaves 1

    PubMed Central

    Ben-Shalom, Noah; Huffaker, Ray C.; Rappaport, Lawrence

    1983-01-01

    The effects of several photosynthetic inhibitors and uncouplers of oxidative phosphorylation on NO3− and NO2− assimilation were studied using detached barley (Hordeum vulgare L. cv Numar) leaves in which only endogenous NO3− or NO2− were available for reduction. Uncouplers of oxidative phosphorylation greatly increased NO3− reduction in both light and darkness, while photosynthetic inhibitors did not. The NO2− concentration in the control leaves was very low in both light and darkness; 98% or more of the NO2− formed from NO3− was further assimilated in control leaves. More NO2− accumulated in the leaves in light and darkness in the presence of photosynthetic inhibitors. Of this NO2−, 94% or more was further assimilated. It appears that metabolites, either external or internal to the chloroplast, capable of reducing NADP (which, in turn, could reduce ferredoxin via NADP reductase) might support NO2− reduction in darkness and light when photosynthetic electron flow is inhibited by photosynthetic inhibitors. Nitrite assimilation was much more sensitive to uncouplers in darkness than in light: in darkness, 74% or more of NO2− formed from NO3− was further assimilated, whereas in light, 95% or more of the NO2− was further assimilated. PMID:16662799

  2. Effect of photosynthetic inhibitors and uncouplers of oxidative phosphorylation on nitrate and nitrite reduction in barley leaves.

    PubMed

    Ben-Shalom, N; Huffaker, R C; Rappaport, L

    1983-01-01

    The effects of several photosynthetic inhibitors and uncouplers of oxidative phosphorylation on NO(3) (-) and NO(2) (-) assimilation were studied using detached barley (Hordeum vulgare L. cv Numar) leaves in which only endogenous NO(3) (-) or NO(2) (-) were available for reduction. Uncouplers of oxidative phosphorylation greatly increased NO(3) (-) reduction in both light and darkness, while photosynthetic inhibitors did not.The NO(2) (-) concentration in the control leaves was very low in both light and darkness; 98% or more of the NO(2) (-) formed from NO(3) (-) was further assimilated in control leaves. More NO(2) (-) accumulated in the leaves in light and darkness in the presence of photosynthetic inhibitors. Of this NO(2) (-), 94% or more was further assimilated. It appears that metabolites, either external or internal to the chloroplast, capable of reducing NADP (which, in turn, could reduce ferredoxin via NADP reductase) might support NO(2) (-) reduction in darkness and light when photosynthetic electron flow is inhibited by photosynthetic inhibitors.NITRITE ASSIMILATION WAS MUCH MORE SENSITIVE TO UNCOUPLERS IN DARKNESS THAN IN LIGHT: in darkness, 74% or more of NO(2) (-) formed from NO(3) (-) was further assimilated, whereas in light, 95% or more of the NO(2) (-) was further assimilated. PMID:16662799

  3. A mixture of nitrite-oxidizing and denitrifying microorganisms affects the δ18O of dissolved nitrate during anaerobic microbial denitrification depending on the δ18O of ambient water

    NASA Astrophysics Data System (ADS)

    Wunderlich, Anja; Meckenstock, Rainer U.; Einsiedl, Florian

    2013-10-01

    The stable isotopes 15N/14N and 18O/16O of nitrate are frequently used to determine sources of nitrate and to assess denitrification processes in the environment. Nitrate isotope ratios are thought to be conservative unless involved in (bio-) chemical conversion processes. Thus, stable isotopes are considered to be a reliable tool to determine sources of nitrate in aquatic habitats even after transport and dilution has occurred. Denitrification is known to shift both isotope ratios towards higher δ-values. A fixed ratio of 0.5 for Δδ18O/Δδ15N has been proposed and has been widely used to detect denitrification in terrestrial environments, predominantly in aquifers. However, it is observed in environmental and laboratory studies that this ratio actually varies between less than 0.5 and 1 for uncertain reasons with laboratory studies usually describing a ratio close to 1. Here we report results of anoxic incubation experiments with natural populations of nitrate-reducing microorganisms using sediments from three different environments. In our experiments we used water with a δ18O in excess of 500‰ and found a microbially mediated influence of the oxygen isotopic composition of ambient water on the isotopic composition of the residual dissolved nitrate. We found up to 5.7 ± 2.3% of the oxygen-atoms in the residual dissolved nitrate was exchanged by oxygen-atoms from ambient water within the limited timeframe of the experiments. The fastest incorporation of oxygen-atoms from water into dissolved nitrate correlated with the highest intermittent nitrite concentrations observed in our experiments. In a second series of batch experiments we also found that pure cultures of the nitrite-oxidizing bacterium Nitrobacter vulgaris promoted the incorporation of oxygen atoms from ambient water into dissolved nitrate under anoxic conditions. Presumably this happens via a reoxidation of intermediary formed nitrite by the enzyme "nitrite oxidoreductase" (NXR) in concurrence

  4. Nitritation versus full nitrification of ammonium-rich wastewater: comparison in terms of nitrous and nitric oxides emissions.

    PubMed

    Rodriguez-Caballero, A; Ribera, A; Balcázar, J L; Pijuan, M

    2013-07-01

    The processes of nitritation and full nitrification of synthetic reject wastewater were compared in terms of N2O and NO emissions. Two lab-scale sequencing batch reactors (SBR1 and SBR2) were enriched with Nitrosomonas (ammonia-oxidizing bacteria) and Nitrobacter (nitrite-oxidizing bacteria), as shown by fluorescence in situ hybridization (FISH) and high-resolution 16S rRNA tag pyrosequencing. Stable conversion of ammonium to nitrite and nitrite to nitrate was achieved in SBR1 and SBR2 respectively. Biomass from SBR2 was added in SBR1 in order to achieve full nitrification. Under nitritation, 1.22% of the converted-N was emitted as N2O, and 0.066% as NO. During the transition from nitritation to full nitrification, effluent nitrite concentrations decreased but nitrogen oxides were emitted at levels similar to the nitritation period. Gas emissions decreased sharply under full nitrification conditions (0.54% N2O-N/converted-N; 0.021% NO-N/converted-N), probably as a result of the combined effect of lower nitrite and ammonium concentrations in the bioreactor. PMID:23665516

  5. The Effects of Chronic Nitrate Supplementation and the Use of Strong and Weak Antibacterial Agents on Plasma Nitrite Concentration and Exercise Blood Pressure.

    PubMed

    McDonagh, S T J; Wylie, L J; Winyard, P G; Vanhatalo, A; Jones, A M

    2015-12-01

    Chlorhexidine-containing mouthwash (STRONG), which disturbs oral microflora, has been shown to diminish the rise in plasma nitrite concentration ([NO2-]) and attenuate the reduction in resting blood pressure (BP) typically seen after acute nitrate (NO3-) ingestion. We aimed to determine whether STRONG and weaker antiseptic agents attenuate the physiological effects of chronic NO3- supplementation using beetroot juice (BR). 12 healthy volunteers mouth-rinsed with STRONG, non-chlorhexidine mouthwash (WEAK) and deionised water (CON) 3 times a day, and ingested 70 mL BR (6.2 mmol NO3-), twice a day, for 6 days. BP (at rest and during 10 min of treadmill walking) and plasma and salivary [NO3-] and [NO2-] were measured prior to and on day 6 of supplementation. The change in salivary [NO3-] 4 h post final ingestion was higher (P<0.05) in STRONG (8.7±3.0 mM) compared to CON (6.3±0.9 mM) and WEAK (6.0±3.0 mM). In addition, the rise in plasma [NO2-] at 2 h was lower in STRONG compared with WEAK (by 89±112 nM) and CON (by 200±174 nM) and in WEAK compared with CON (all P<0.05). Changes in resting BP were not different between conditions (P>0.05). However, during treadmill walking, the increase in systolic and mean arterial BP was higher 4 h after the final nitrate bolus in STRONG compared with CON (P<0.05) but not WEAK. The results indicate that both strong and weak antibacterial agents suppress the rise in plasma [NO2-] observed following the consumption of a high NO3- diet and the former can influence the BP response during low-intensity exercise. PMID:26332900

  6. Isotopic analysis of N and O in nitrite and nitrate by sequential selective bacterial reduction to N2O

    USGS Publications Warehouse

    Böhlke, J.K.; Smith, R.L.; Hannon, J.E.

    2007-01-01

    Nitrite is an important intermediate species in the biogeochemical cycling of nitrogen, but its role in natural aquatic systems is poorly understood. Isotopic data can be used to study the sources and transformations of NO 2- in the environment, but methods for independent isotopic analyses of NO2- in the presence of other N species are still new and evolving. This study demonstrates that isotopic analyses of N and O in NO2- can be done by treating whole freshwater or saltwater samples with the denitrifying bacterium Stenotrophomonas nitritireducens, which selectively reduces NO2- to N 2O for isotope ratio mass spectrometry. When calibrated with solutions containing NO2- with known isotopic compositions determined independently, reproducible ??15N and ??18O values were obtained at both natural-abundance levels (??0.2-0.5??? for ??15N and ?? 0.4-1.0%o for ??18O) and moderately enriched 15N tracer levels (??20-50%o for ??15N near 5000???) for 5-20 nmol of NO2- (1-20 ??mol/L in 1-5 mL aliquots). This method is highly selective for NO2- and was used for mixed samples containing both NO2- and NO3- with little or no measurable cross-contamination. In addition, mixed samples that were analyzed with S. nitritireducens were treated subsequently with Pseudomonas aureofaciens to reduce the NO3- in the absence of NO 2-, providing isotopic analyses of NO2- and NO3- separately in the same aliquot. Sequential bacterial reduction methods like this one should be useful for a variety of isotopic studies aimed at understanding nitrogen cycling in aquatic environments. A test of these methods in an agricultural watershed in Indiana provides isotopic evidence for both nitrification and denitrification as sources of NO2- in a small stream.

  7. Isotopic analysis of N and o in nitrite and nitrate by sequential selective bacterial reduction to N2O.

    PubMed

    Böhlke, John Karl; Smith, Richard L; Hannon, Janet E

    2007-08-01

    Nitrite is an important intermediate species in the biogeochemical cycling of nitrogen, but its role in natural aquatic systems is poorly understood. Isotopic data can be used to study the sources and transformations of NO2- in the environment, but methods for independent isotopic analyses of NO2- in the presence of other N species are still new and evolving. This study demonstrates that isotopic analyses of N and O in NO2- can be done by treating whole freshwater or saltwater samples with the denitrifying bacterium Stenotrophomonas nitritireducens, which selectively reduces NO2- to N2O for isotope ratio mass spectrometry. When calibrated with solutions containing NO2- with known isotopic compositions determined independently, reproducible delta15N and delta18O values were obtained at both natural-abundance levels (+/-0.2-0.5 per thousand for delta15N and +/-0.4-1.0 per thousand for delta18O) and moderately enriched 15N tracer levels (+/-20-50 per thousand for delta15N near 5000 per thousand) for 5-20 nmol of NO2- (1-20 micromol/L in 1-5 mL aliquots). This method is highly selective for NO2- and was used for mixed samples containing both NO2- and NO3- with little or no measurable cross-contamination. In addition, mixed samples that were analyzed with S. nitritireducens were treated subsequently with Pseudomonas aureofaciens to reduce the NO3- in the absence of NO2-, providing isotopic analyses of NO2- and NO3- separately in the same aliquot. Sequential bacterial reduction methods like this one should be useful for a variety of isotopic studies aimed at understanding nitrogen cycling in aquatic environments. A test of these methods in an agricultural watershed in Indiana provides isotopic evidence for both nitrification and denitrification as sources of NO2- in a small stream. PMID:17580983

  8. Optimization of a mainstream nitritation-denitritation process and anammox polishing.

    PubMed

    Regmi, Pusker; Holgate, Becky; Fredericks, Dana; Miller, Mark W; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B

    2015-01-01

    This paper deals with an almost 1-year long pilot study of a nitritation-denitritation process that was followed by anammox polishing. The pilot plant treated real municipal wastewater at ambient temperatures. The effluent of high-rate activated sludge process (hydraulic retention time, HRT=30 min, solids retention time=0.25 d) was fed to the pilot plant described in this paper, where a constant temperature of 23 °C was maintained. The nitritation-denitritation process was operated to promote nitrite oxidizing bacteria out-selection in an intermittently aerated reactor. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia and nitrate+nitrite concentrations. The unique feature of this aeration control was that fixed dissolved oxygen set-point was used and the length of aerobic and anoxic durations were changed based on the effluent ammonia and nitrate+nitrite concentrations. The anaerobic ammonia oxidation (anammox) bacteria were adapted in mainstream conditions by allowing the growth on the moving bed bioreactor plastic media in a fully anoxic reactor. The total inorganic nitrogen (TIN) removal performance of the entire system was 75±15% during the study at a modest influent chemical oxygen demand (COD)/NH4+-N ratio of 8.9±1.8 within the HRT range of 3.1-9.4 h. Anammox polishing contributed 11% of overall TIN removal. Therefore, this pilot-scale study demonstrates that application of the proposed nitritation-denitritation system followed by anammox polishing is capable of relatively high nitrogen removal without supplemental carbon and alkalinity at a low HRT. PMID:26247763

  9. Analytical properties of some commercially available nitrate reductase enzymes evaluated as replacements for cadmium in automated, semiautomated, and manual colorimetric methods for determination of nitrate plus nitrite in water

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2013-01-01

    A multiyear research effort at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) evaluated several commercially available nitrate reductase (NaR) enzymes as replacements for toxic cadmium in longstanding automated colorimetric air-segmented continuous-flow analyzer (CFA) methods for determining nitrate plus nitrite (NOx) in water. This research culminated in USGS approved standard- and low-level enzymatic reduction, colorimetric automated discrete analyzer NOx methods that have been in routine operation at the NWQL since October 2011. The enzyme used in these methods (AtNaR2) is a product of recombinant expression of NaR from Arabidopsis thaliana (L.) Heynh. (mouseear cress) in the yeast Pichia pastoris. Because the scope of the validation report for these new automated discrete analyzer methods, published as U.S. Geological Survey Techniques and Methods 5–B8, was limited to performance benchmarks and operational details, extensive foundational research with different enzymes—primarily YNaR1, a product of recombinant expression of NaR from Pichia angusta in the yeast Pichia pastoris—remained unpublished until now. This report documents research and development at the NWQL that was foundational to development and validation of the discrete analyzer methods. It includes: (1) details of instrumentation used to acquire kinetics data for several NaR enzymes in the presence and absence of known or suspected inhibitors in relation to reaction temperature and reaction pH; and (2) validation results—method detection limits, precision and bias estimates, spike recoveries, and interference studies—for standard- and low-level automated colorimetric CFA-YNaR1 reduction NOx methods in relation to corresponding USGS approved CFA cadmium-reduction (CdR) NOx methods. The cornerstone of this validation is paired sample statistical and graphical analysis of NOx concentrations from more than 3,800 geographically and seasonally diverse surface

  10. Characterization of nitrite uptake in Arabidopsis thaliana: evidence for a nitrite-specific transporter.

    PubMed

    Kotur, Zorica; Siddiqi, Yaeesh M; Glass, Anthony D M

    2013-10-01

    Nitrite-specific plasma membrane transporters have been described in bacteria, algae and fungi, but there is no evidence of a nitrite-specific plasma membrane transporter in higher plants. We have used 13NO2(-) to characterize nitrite influx into roots of Arabidopsis thaliana. Hydroponically grown Arabidopsis mutants, defective in high-affinity nitrate transport, were used to distinguish between nitrate and nitrite uptake by means of the short-lived tracers 13NO2(-) and 13NO3(-). This approach allowed us to characterize a nitrite-specific transporter. The Atnar2.1-2 mutant, lacking a functional high-affinity nitrate transport system, is capable of nitrite influx that is constitutive and thermodynamically active. The corresponding fluxes conform to a rectangular hyperbola, exhibiting saturation at concentrations above 200 μM (Km = 185 μM and Vmax = 1.89 μmol g(-1) FW h(-1)). Nitrite influx via the putative nitrite transporter is not subject to competitive inhibition by nitrate but is downregulated after 6 h exposure to ammonium. These results signify the existence of a nitrite-specific transporter in Arabidopsis. This transporter enables Atnar2.1-2 mutants, which are incapable of sustained growth on low nitrate, to maintain significant growth on low nitrite. In wild-type plants, this nitrite flux may increase nitrogen acquisition and also participate in the induction of genes specifically induced by nitrite. PMID:23763619

  11. Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado

    USGS Publications Warehouse

    Rattray, G.; Sievering, H.

    2001-01-01

    Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3-, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70ngNm-3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August-September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100-200ngNm-3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to have been at or below about 20ngNm-3. Large deposition velocities (>2cms-1) were determined for nitrate and ammonium and may result from reactions with surface-derived aerosols. Copyright (C) 2001 Elsevier Science B.V.Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3-, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70 ng N m-3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August-September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100-200 ng N m-3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to

  12. Coordinate Regulation of the Escherichia coli Formate Dehydrogenase fdnGHI and fdhF Genes in Response to Nitrate, Nitrite, and Formate: Roles for NarL and NarP

    PubMed Central

    Wang, Henian; Gunsalus, Robert P.

    2003-01-01

    Escherichia coli possesses three distinct formate dehydrogenase enzymes encoded by the fdnGHI, fdhF, and fdoGHI operons. To examine how two of the formate dehyrogenase operons (fdnGHI and fdhF) are expressed anaerobically in the presence of low, intermediate, and high levels of nitrate, nitrite, and formate, chemostat culture techniques were employed with fdnG-lacZ and fdhF-lacZ reporter fusions. Complementary patterns of gene expression were seen. Optimal fdhF-lacZ expression occurred only at low to intermediate levels of nitrate, while high nitrate levels caused up to 10-fold inhibition of gene expression. In contrast, fdnG-lacZ expression was induced 25-fold in the presence of intermediate to high nitrate concentrations. Consistent with prior reports, NarL was able to induce fdnG-lacZ expression. However, NarP could not induce expression; rather, it functioned as an antagonist of fdnG-lacZ expression under low-nitrate conditions (i.e., it was a negative regulator). Nitrite, a reported signal for the Nar sensory system, was unable to stimulate or suppress expression of either formate dehydrogenase operon via NarL and NarP. The different gene expression profiles of the alternative formate dehydrogenase operons suggest that the two enzymes have complementary physiological roles under environmental conditions when nitrate and formate levels are changing. Revised regulatory schemes for NarL- and NarP-dependent nitrate control are presented for each operon. PMID:12923080

  13. Nitrate

    Integrated Risk Information System (IRIS)

    Nitrate ; CASRN 14797 - 55 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  14. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate and potassium nitrate. 181.33... nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued... potassium nitrite, in the production of cured red meat products and cured poultry products....

  15. Annual dissolved nitrite plus nitrate and total phosphorous loads for the Susquehanna, St. Lawrence, Mississippi-Atchafalaya, and Columbia River basins, 1968-2004

    USGS Publications Warehouse

    Aulenbach, Brent T.

    2006-01-01

    Annual stream-water loads were calculated near the outlet of four of the larger river basins (Susquehanna, St. Lawrence, Mississippi-Atchafalaya, and Columbia) in the United States for dissolved nitrite plus nitrate (NO2 + NO3) and total phosphorus using LOADEST load estimation software. Loads were estimated for the period 1968-2004; although loads estimated for individual river basins and chemical constituent combinations typically were for shorter time periods due to limitations in data availability. Stream discharge and water-quality data for load estimates were obtained from the U.S. Geological Survey (USGS) with additional stream discharge data for the Mississippi-Atchafalaya River Basin from the U.S. Army Corps of Engineers. The loads were estimated to support national assessments of changes in stream nutrient loads that are periodically conducted by Federal agencies (for example, U.S. Environmental Protection Agency) and other water- and land-resource organizations. Data, methods, and results of load estimates are summarized herein; including World Wide Web links to electronic ASCII text files containing the raw data. The load estimates are compared to dissolved NO2 + NO3 loads for three of the large river basins from 1971 to 1998 that the USGS provided during 2001 to The H. John Heinz III Center for Science, Economics and the Environment (The Heinz Center) for a report The Heinz Center published during 2002. Differences in the load estimates are the result of using the most up-to-date monitoring data since the 2001 analysis, differences in how concentrations less than the reporting limit were handled by the load estimation models, and some errors and exclusions in the 2001 analysis datasets (which resulted in some inaccurate load estimates).

  16. High-affinity nitrate/nitrite transporter genes (Nrt2) in Tisochrysis lutea: identification and expression analyses reveal some interesting specificities of Haptophyta microalgae.

    PubMed

    Charrier, Aurélie; Bérard, Jean-Baptiste; Bougaran, Gaël; Carrier, Grégory; Lukomska, Ewa; Schreiber, Nathalie; Fournier, Flora; Charrier, Aurélie F; Rouxel, Catherine; Garnier, Matthieu; Cadoret, Jean-Paul; Saint-Jean, Bruno

    2015-08-01

    Microalgae have a diversity of industrial applications such as feed, food ingredients, depuration processes and energy. However, microalgal production costs could be substantially improved by controlling nutrient intake. Accordingly, a better understanding of microalgal nitrogen metabolism is essential. Using in silico analysis from transcriptomic data concerning the microalgae Tisochrysis lutea, four genes encoding putative high-affinity nitrate/nitrite transporters (TlNrt2) were identified. Unlike most of the land plants and microalgae, cloning of genomic sequences and their alignment with complementary DNA (cDNA) sequences did not reveal the presence of introns in all TlNrt2 genes. The deduced TlNRT2 protein sequences showed similarities to NRT2 proteins of other phyla such as land plants and green algae. However, some interesting specificities only known among Haptophyta were also revealed, especially an additional sequence of 100 amino acids forming an atypical extracellular loop located between transmembrane domains 9 and 10 and the function of which remains to be elucidated. Analyses of individual TlNrt2 gene expression with different nitrogen sources and concentrations were performed. TlNrt2.1 and TlNrt2.3 were strongly induced by low NO3 (-) concentration and repressed by NH4 (+) substrate and were classified as inducible genes. TlNrt2.2 was characterized by a constitutive pattern whatever the substrate. Finally, TlNrt2.4 displayed an atypical response that was not reported earlier in literature. Interestingly, expression of TlNrt2.4 was rather related to internal nitrogen quota level than external nitrogen concentration. This first study on nitrogen metabolism of T. lutea opens avenues for future investigations on the function of these genes and their implication for industrial applications. PMID:25640753

  17. Metabolism of nitrate in fermented meats: the characteristic feature of a specific group of fermented foods.

    PubMed

    Hammes, Walter P

    2012-04-01

    Within the universe of food fermentation processes the multi-purpose use of nitrate and/or nitrite is a unique characteristic of meat fermentations. These curing agents play a decisive role in obtaining the specific sensory properties, stability and hygienic safety of products such as fermented sausages, ham and, more recently, emulsion type of sausages. The use of nitrate is the traditional method in curing processes and requires its reduction to reactive nitrite. Thus, nitrate reduction is the key event that is exclusively performed by microorganisms. Under controlled fermentation conditions starter cultures are used that contain staphylococci and/or Kocuria varians, which in addition to strongly affecting sensory properties exhibit efficient nitrate reductase activity. To obtain clean label products some plant sources of nitrate have been in use. When producing thermally treated sausages (e.g. of emulsion type), starter cultures are used that form nitrite before cooking takes place. Staphylococci reduce nitrite to ammonia after nitrate has been consumed. K. varians is devoid of nitrite reductase activity. Nitrate and nitrite reductases are also present in certain strains of lactobacilli. It was shown that their application as starter cultures warrants efficient activity in sausages made with either nitrate or nitrite. NO is formed from nitrite in numerous chemical reactions among which disproportionation and reaction with reductants either added or endogenous in meat are of practical importance. Numerous nitrosation and nitrosylation reactions take place in the meat matrix among which the formation of nitrosomyoglobin is of major sensory importance. Safety considerations in meat fermentation relate to the safe nature of the starter organisms and to the use of nitrate/nitrite. Staphylococci ("micrococci") in fermented meat have a long tradition in food use but have not received the QPS status from the EFSA. They require, therefore, thorough assessment with

  18. Model-based evaluation on the conversion ratio of ammonium to nitrite in a nitritation process for ammonium-rich wastewater treatment.

    PubMed

    Li, Xiao-Ming; Yang, Qi; Zeng, Guang-Ming; Cornelius, A; Rosenwinkel, K H; Kunst, S; Weichgrebe, D

    2004-01-01

    Modeling for nitritation process was discussed and analyzed quantitatively for the factors that influence nitrite accumulation. The results indicated that pH, inorganic carbon source and Hydraulic Retention Time (HRT) as well as biomass concentration are the main factors that influenced the conversion ratio of ammonium to nitrite. A constant high pH can lead to a high nitritation rate and results in high conversion ratio on condition that free ammonia inhibition do not happen. In a CSTR system, without pH control, this conversion ratio can be monitored by pH variation in the reactor. The pH goes down far from the inlet level means a strongly nitrite accumulation. High concentration of alkalinity can promoted the conversion ratio by means of accelerating the nitritation rate through providing sufficient inorganic carbon source(carbon dioxide). When inorganic carbon source was depleted, the nitritation process stopped. HRT adjustment could be an efficient way to make the nitritation system run more flexible, which to some extent can meet the requirements of the fluctuant of inlet parameters such as ammonium concentration, pH, and temperature and so on. Biomass concentration is the key point, especially for a CSTR system in steady state, which was normally circumscribed by the characteristics of bacteria and may also affected by aeration mode and can be increased by prolonging the HRT on the condition of no nitrate accumulation when no recirculation available. The higher the biomass concentration is, the better the nitrite accumulation can be obtained. PMID:15900739

  19. Nitrite Reduction to Nitrous Oxide and Ammonia by TiO2 Electrons in a Colloid Solution via Consecutive One-Electron Transfer Reactions.

    PubMed

    Goldstein, Sara; Behar, David; Rajh, Tijana; Rabani, Joseph

    2016-04-21

    The mechanism of nitrite reduction by excess electrons on TiO2 nanoparticles (eTiO2(-)) was studied under anaerobic conditions. TiO2 was loaded with up to 75 electrons per particle, induced by γ-irradiation of acidic TiO2 colloid solutions containing 2-propanol. Time-resolved kinetics and material analysis were performed, mostly at 1.66 g L(-1) TiO2. At relatively low nitrite concentrations (R = [eTiO2(-)]o/[nitrite]o > 1.5), eTiO2(-) decays via two consecutive processes; at higher concentrations, only one decay step is observed. The stoichiometric ratio Δ[eTiO2(-)]/[nitrite]o of the faster process is about 2. This process involves the one-electron reduction of nitrite, forming the nitrite radical (k1 = (2.0 ± 0.2) × 10(6) M(-1) s(-1)), which further reacts with eTiO2(-) (k2) in competition with its dehydration to nitric oxide (NO) (k3). The ratios k2/k3 = (3.0 ± 0.5) × 10(3) M(-1) and k2 > 1 × 10(6) M(-1) s(-1) were derived from kinetic simulations and product analysis. The major product of this process is NO. The slower stage of the kinetics involves the reduction of NO by eTiO2(-), and the detailed mechanism of this process has been discussed in our earlier publication. The results reported in this study suggest that several intermediates, including NO and NH2OH, are adsorbed on the titanium nanoparticles and give rise to inverse dependency of the respective reaction rates on the TiO2 concentration. It is demonstrated that the reduction of nitrite by eTiO2(-) yields mainly N2O and NH3 via consecutive one-electron transfer reactions. PMID:27050805

  20. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation.

    PubMed

    Regmi, Pusker; Miller, Mark W; Holgate, Becky; Bunce, Ryder; Park, Hongkeun; Chandran, Kartik; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B

    2014-06-15

    This work describes the development of an intermittently aerated pilot-scale process (V = 0.34 m(3)) operated without oxidized nitrogen recycle and supplemental carbon addition optimized for nitrogen removal via nitritation/denitritation. The aeration pattern was controlled using a novel aeration strategy based on set-points for reactor ammonia, nitrite and nitrate concentrations with the aim of maintaining equal effluent ammonia and nitrate + nitrite (NOx) concentrations. Further, unique operational and process control strategies were developed to facilitate the out-selection of nitrite oxidizing bacteria (NOB) based on optimizing the chemical oxygen demand (COD) input, imposing transient anoxia, aggressive solids retention time (SRT) operation towards ammonia oxidizing bacteria (AOB) washout and high dissolved oxygen (DO) (>1.5 mg/L). Sustained nitrite accumulation (NO2-N/NOx-N = 0.36 ± 0.27) was observed while AOB activity was greater than NOB activity (AOB: 391 ± 124 mgN/L/d, NOB: 233 ± 151 mgN/L/d, p < 0.001) during the entire study. The reactor demonstrated total inorganic nitrogen (TIN) removal rate of 151 ± 74 mgN/L/d at an influent COD/ [Formula: see text] -N ratio of 10.4 ± 1.9 at 25 °C. The TIN removal efficiency was 57  ±  25% within the hydraulic retention time (HRT) of 3 h and within an SRT of 4-8 days. Therefore, this pilot-scale study demonstrates that application of the proposed online aeration control is able to out-select NOB in mainstream conditions providing relatively high nitrogen removal without supplemental carbon and alkalinity at a low HRT. PMID:24721663

  1. A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria.

    PubMed

    Daims, Holger; Lücker, Sebastian; Wagner, Michael

    2016-09-01

    Nitrite-oxidizing bacteria (NOB) catalyze the second step of nitrification, nitrite oxidation to nitrate, which is an important process of the biogeochemical nitrogen cycle. NOB were traditionally perceived as physiologically restricted organisms and were less intensively studied than other nitrogen-cycling microorganisms. This picture is in contrast to new discoveries of an unexpected high diversity of mostly uncultured NOB and a great physiological versatility, which includes complex microbe-microbe interactions and lifestyles outside the nitrogen cycle. Most surprisingly, close relatives to NOB perform complete nitrification (ammonia oxidation to nitrate) and this finding will have far-reaching implications for nitrification research. We review recent work that has changed our perspective on NOB and provides a new basis for future studies on these enigmatic organisms. PMID:27283264

  2. Airborne Measurements of Ammonia and Implications for Ammonium Nitrate Formation in the Central Valley and the South Coast Air Basin of California

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Neuman, J.; Bahreini, R.; Middlebrook, A. M.; Brock, C. A.; Frost, G. J.; Holloway, J. S.; McKeen, S. A.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Trainer, M.; Parrish, D. D.

    2010-12-01

    Ammonia (NH3) is the dominant gas-phase base in the troposphere. As a consequence, NH3 abundance influences aerosol formation and composition. Ammonium nitrate aerosol is formed from the reaction of gas phase NH3 and nitric acid (HNO3). Anthropogenic emissions of NH3 and NOx (NO + NO2), which in sunlight can be oxidized to form HNO3, can react to form ammonium nitrate aerosol. Agricultural activity (i.e., dairy farms), and urban centers (i.e., Fresno, Los Angeles) are sources of ammonium nitrate gas-phase precursors in both the Central Valley and the South Coast Air Basin. Airborne measurements of NH3, HNO3, particle composition, and particle size distribution were made aboard the NOAA WP-3D research aircraft during May and June 2010 in the Central Valley and the South Coast Air Basin of California, as part of CalNex 2010 (California Research at the Nexus of Air Quality and Climate Change). The highest mixing ratios of NH3, well over 100 parts-per-billion by volume (ppbv), were measured downwind of dairy farms. The high NH3 mixing ratios were highly anti-correlated with HNO3 mixing ratios on fast time scales (~1 s) that correspond to short flight distances (~100 m). During these periods particulate nitrate (NO3-) concentrations increased, indicating ammonium nitrate formation. The meteorological and chemical environments during these periods will be studied to determine the factors driving or limiting ammonium nitrate formation and the resulting regional differences. Finally, the relationship between the NH3 observations and NH3 sources will be examined to assess the emissions and their contribution to ammonium nitrate abundance.

  3. REDUCTION OF NITRATE THROUGH THE USE OF NITRATE REDUCTASE FOR THE SMARTCHEM AUTOANALYZER

    EPA Science Inventory

    The standard method for the determination of nitrate in drinking water, USEPA Method 353.2 “Determination of Nitrate-Nitrite by Automated Colorimetry,” employs cadmium as the reductant for the conversion of nitrate to nitrite. The nitrite is then analyzed colorimetrically by way ...

  4. Determination of nitric oxide metabolites, nitrate and nitrite, in Anopheles culicifacies mosquito midgut and haemolymph by anion exchange high-performance liquid chromatography: plausible mechanism of refractoriness

    PubMed Central

    Sharma, Arun; Raghavendra, Kamaraju; Adak, Tridibesh; Dash, Aditya P

    2008-01-01

    Background The diverse physiological and pathological role of nitric oxide in innate immune defenses against many intra and extracellular pathogens, have led to the development of various methods for determining nitric oxide (NO) synthesis. NO metabolites, nitrite (NO2-) and nitrate (NO3-) are produced by the action of an inducible Anopheles culicifacies NO synthase (AcNOS) in mosquito mid-guts and may be central to anti-parasitic arsenal of these mosquitoes. Method While exploring a plausible mechanism of refractoriness based on nitric oxide synthase physiology among the sibling species of An. culicifacies, a sensitive, specific and cost effective high performance liquid chromatography (HPLC) method was developed, which is not influenced by the presence of biogenic amines, for the determination of NO2- and NO3- from mosquito mid-guts and haemolymph. Results This method is based on extraction, efficiency, assay reproducibility and contaminant minimization. It entails de-proteinization by centrifugal ultra filtration through ultracel 3 K filter and analysis by high performance anion exchange liquid chromatography (Sphereclone, 5 μ SAX column) with UV detection at 214 nm. The lower detection limit of the assay procedure is 50 pmoles in all midgut and haemolymph samples. Retention times for NO2- and NO3- in standards and in mid-gut samples were 3.42 and 4.53 min. respectively. Assay linearity for standards ranged between 50 nM and 1 mM. Recoveries of NO2- and NO3- from spiked samples (1–100 μM) and from the extracted standards (1–100 μM) were calculated to be 100%. Intra-assay and inter assay variations and relative standard deviations (RSDs) for NO2- and NO3- in spiked and un-spiked midgut samples were 5.7% or less. Increased levels NO2- and NO3- in midguts and haemolymph of An. culicifacies sibling species B in comparison to species A reflect towards a mechanism of refractoriness based on AcNOS physiology. Conclusion HPLC is a sensitive and accurate technique

  5. High-rate nitrogen removal from livestock manure digester liquor by combined partial nitritation-anammox process.

    PubMed

    Qiao, Sen; Yamamoto, Taichi; Misaka, Motoki; Isaka, Kazuichi; Sumino, Tatsuo; Bhatti, Zafar; Furukawa, Kenji

    2010-02-01

    In this study, combination of a partial nitritation reactor, using immobilized polyethylene glycol (PEG) gel carriers, and a continuous stirred granular anammox reactor was investigated for nitrogen removal from livestock manure digester liquor. Successful nitrite accumulation in the partial nitritation reactor was observed as the nitrite production rate reached 2.1 kg-N/m(3)/day under aerobic nitrogen loading rate of 3.8 kg-N/m(3)/day. Simultaneously, relatively high free ammonia concentrations (average 50 mg-NH(3)/l) depressed the activity of nitrite oxidizing bacteria with nitrate concentration never exceeding 3% of TN concentration in the effluent of the partial nitritation reactor (maximum 35.2 mg/l). High nitrogen removal rates were achieved in the granular anammox reactor with the highest removal rate being 3.12 kg-N/m(3)/day under anaerobic nitrogen loading rate of 4.1 kg-N/m(3)/day. Recalcitrant organic compounds in the digester liquor did not impair anammox reaction and the SS accumulation in the granular anammox reactor was minimal. The results of this study demonstrated that partial nitritation-anammox combination has the potential to successfully remove nitrogen from livestock manure digester liquor. PMID:19578828

  6. Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS.

    PubMed

    Summers, David P; Basa, Ranor C B; Khare, Bishun; Rodoni, David

    2012-02-01

    Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO₂ and N₂O. The NO₂ is then converted to ammonia, while the N₂O is released back in the gas phase, which provides an abiotic source of nitrous oxide. PMID:22283408

  7. Microbial Reduction of Chromate in the Presence of Nitrate by Three Nitrate Respiring Organisms

    PubMed Central

    Chovanec, Peter; Sparacino-Watkins, Courtney; Zhang, Ning; Basu, Partha; Stolz, John F.

    2012-01-01

    A major challenge for the bioremediation of toxic metals is the co-occurrence of nitrate, as it can inhibit metal transformation. Geobacter metallireducens, Desulfovibrio desulfuricans, and Sulfurospirillum barnesii are three soil bacteria that can reduce chromate [Cr(VI)] and nitrate, and may be beneficial for developing bioremediation strategies. All three organisms respire through dissimilatory nitrate reduction to ammonia (DNRA), employing different nitrate reductases but similar nitrite reductase (Nrf). G. metallireducens reduces nitrate to nitrite via the membrane bound nitrate reductase (Nar), while S. barnesii and D. desulfuricans strain 27774 have slightly different forms of periplasmic nitrate reductase (Nap). We investigated the effect of DNRA growth in the presence of Cr(VI) in these three organisms and the ability of each to reduce Cr(VI) to Cr(III), and found that each organisms responded differently. Growth of G. metallireducens on nitrate was completely inhibited by Cr(VI). Cultures of D. desulfuricans on nitrate media was initially delayed (48 h) in the presence of Cr(VI), but ultimately reached comparable cell yields to the non-treated control. This prolonged lag phase accompanied the transformation of Cr(VI) to Cr(III). Viable G. metallireducens cells could reduce Cr(VI), whereas Cr(VI) reduction by D. desulfuricans during growth, was mediated by a filterable and heat stable extracellular metabolite. S. barnesii growth on nitrate was not affected by Cr(VI), and Cr(VI) was reduced to Cr(III). However, Cr(VI) reduction activity in S. barnesii, was detected in both the cell free spent medium and cells, indicating both extracellular and cell associated mechanisms. Taken together, these results have demonstrated that Cr(VI) affects DNRA in the three organisms differently, and that each have a unique mechanism for Cr(VI) reduction. PMID:23251135

  8. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  9. Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: evidence from a mass balance study.

    PubMed

    Sun, Guangzhi; Austin, David

    2007-06-01

    A mass-balance study was carried out to investigate the transformation of nitrogenous pollutants in vertical flow wetlands. Landfill leachate containing low BOD, but a high concentration of ammonia, was treated in four wetland columns under predominately aerobic conditions. Influent total nitrogen in the leachate consisted mainly of ammonia with less than 1% nitrate and nitrite, and negligible organic nitrogen. There was a substantial loss of total nitrogen (52%) in one column, whereas other columns exhibited zero to minor losses (<12%). Net nitrogen loss under study conditions was unexpected. Correlations between pH, nitrite and nitrate concentrations indicated the removal of nitrogen under study conditions did not follow the conventional, simplistic, chemistry of autotrophic nitrification. Through mass-balance analysis, it was found that CANON (Completely Autotrophic Nitrogen-removal Over Nitrite) was responsible for the transformation of nitrogen into gaseous form, thereby causing the loss of nitrogen mass. The results show that CANON can be native to aerobic engineered wetland systems treating wastewater that contains high ammonia and low BOD. PMID:17349669

  10. Short-Term Effects of a High Nitrate Diet on Nitrate Metabolism in Healthy Individuals

    PubMed Central

    Bondonno, Catherine P.; Liu, Alex H.; Croft, Kevin D.; Ward, Natalie C.; Puddey, Ian B.; Woodman, Richard J.; Hodgson, Jonathan M.

    2015-01-01

    Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p < 0.001) measured at [D7]. At [+2D] plasma nitrite and nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake. PMID:25774606

  11. Thermochemical nitrate destruction

    DOEpatents

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  12. A new type of environment-friendly material and its removal efficiency for nitrate contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Guo, H.

    2014-12-01

    Recently, nitrate contaminated groundwater problem is a growing concern for scholars both at home and abroad. This study developed a new type of environment-friendly material which has the ability to remove nitrate from contaminated groundwater. The material has a certain degree of mechanical strength and uniform sphericity, with waste wood and straw as raw material, to achieve the purpose of using waste treat waste. In this study, the material and fine sand are mixed and filled in glass column, which is wrapped by black tape in order to avoid light, to test the removal ability toward nitrate nitrogen with influent nitrate nitrogen concentration of 50 mg N/L. The material surface is porous, which could facilitate the reaction between the active sites in the material and nitrate in polluted groundwater, and facilitate microbes implanting on the surface. After running for two months, the nitrate nitrogen removal rate is greater than 90%, and the nitrate nitrogen and nitrite nitrogen of effluent are lower than the EPA prescribed maximum limit concentration of nitrate in drinking water(N03--N<10mg N/L, NO2--N<1mg N/L), while the ammonia nitrogen in the effluent is less than 1 mg N/L, lower than the maximum limit concentration of ammonia nitrogen in drinking water made by WHO(NH4+-N<1.5mg N/L), indicating its effective removal rate for nitrate and the absence of serious nitrite and ammonia accumulation. The developed material will have a good prospect in removing nitrate from polluted groundwater.

  13. Nitrite Production Mechanisms in the Primary Nitrite Maximum of the Tropical South Pacific Inferred from Nitrite Isotopes Collected during the Geotraces 2013 Cruise

    NASA Astrophysics Data System (ADS)

    Peters, B. D.; Casciotti, K. L.

    2014-12-01

    Nitrite has been observed to accumulate near the bottom of the euphotic zone in many regions of the world ocean. This recurring feature is referred to as the primary nitrite maximum (PNM). The production of nitrite in the PNM has been attributed to both nitrate reduction and ammonium oxidation, depending on the location. However, the factors driving nitrite accumulation are not well understood. We use nitrite isotope data collected during the GEOTRACES 2013 Eastern Pacific Zonal Transect (EPZT) to examine differences in nitrite production mechanisms in the PNM of a gradient from coastal to oligotrophic offshore waters in the tropical south Pacific. Large differences in the nitrogen and oxygen isotopic composition of nitrite (reported as δ15N vs air N2 and δ18O vs VSMOW in units of ‰, respectively) were found between eastern and western parts of the transect (eastern and central south Pacific, respectively). δ15N of nitrite ranged between -5 and -54‰ in the in the eastern PNM, while ranging between 1 and 7‰ in the central PNM. δ18O of nitrite was between 10 and 45‰ in the eastern PNM, and 10 to 14‰ the central PNM. These differences in δ15N and δ18O of nitrite in the eastern versus central PNM may be related to differences in nitrite production mechanisms, namely nitrate reduction and ammonium oxidation. We hypothesize that nitrate reduction may be the more important nitrite-producing process in the eastern PNM, while ammonium oxidation is likely to be more important in the central PNM. Furthermore, since nitrite oxidation has been observed to exhibit an inverse kinetic isotope effect, the strongly negative δ15N values of nitrite in the eastern PNM suggest that nitrite oxidation may be an important nitrite sink there. Analysis of nitrate isotopes will allow us to further constrain the contributions of these processes, and this is currently underway.

  14. Partial nitritation treatment of underground brine waste with high ammonium and salt content.

    PubMed

    Shinohara, Takehiko; Qiao, Sen; Yamamoto, Taichi; Nishiyama, Takashi; Fujii, Takao; Kaiho, Tatsuo; Bhatti, Zafar; Furukawa, Kenji

    2009-10-01

    Underground brine waste containing high concentrations of ammonium and with a salinity of 3% is usually generated during the production of methane gas and iodine in the gas field of Chiba Prefecture, Japan. In this study, one swim-bed reactor, packed with a novel acrylic fiber biomass carrier (Biofringe), was applied to the partial nitritation treatment of this kind of underground brine waste. A stable nitrite production rate of 1.6 kg NO(2)-N m(-3) d(-1) was obtained under a nitrogen loading rate of 3.0 kg-N m(-3) d(-1), at a pH of 7.5 and a temperature of 25 degrees C. Nitrate production was negligible and the effluent NO(2)-N/NO(x)-N ratio was above 98% due to the successful inhibition of nitrite-oxidizing bacterial activity. Free ammonia was considered to be the main factor for inhibiting the activity of nitrite-oxidizing bacteria. A microbial community shift was demonstrated by 16S rRNA analysis, and it was shown that the ammonium-oxidizing bacteria became the predominant species after successful nitrite accumulation was observed. PMID:19716524

  15. High-affinity nitrate/nitrite transporters NrtA and NrtB of Aspergillus nidulans exhibit high specificity and different inhibitor sensitivity.

    PubMed

    Akhtar, Naureen; Karabika, Eugenia; Kinghorn, James R; Glass, Anthony D M; Unkles, Shiela E; Rouch, Duncan A

    2015-07-01

    The NrtA and NrtB nitrate transporters are paralogous members of the major facilitator superfamily in Aspergillus nidulans. The availability of loss-of-function mutations allowed individual investigation of the specificity and inhibitor sensitivity of both NrtA and NrtB. In this study, growth response tests were carried out at a growth-limiting concentration of nitrate (1 mM) as the sole nitrogen source, in the presence of a number of potential nitrate analogues at various concentrations, to evaluate their effect on nitrate transport. Both chlorate and chlorite inhibited fungal growth, with chlorite exerting the greater inhibition. The main transporter of nitrate, NrtA, proved to be more sensitive to chlorate than the minor transporter, NrtB. Similarly, the cation caesium was shown to exert differential effects, strongly inhibiting the activity of NrtB, but not NrtA. In contrast, no inhibition of nitrate uptake by NrtA or NrtB transporters was observed in either growth tests or uptake assays in the presence of bicarbonate, formate, malonate or oxalate (sulphite could not be tested in uptake assays owing to its reaction with nitrate), indicating significant specificity of nitrate transport. Kinetic analyses of nitrate uptake revealed that both chlorate and chlorite inhibited NrtA competitively, while these same inhibitors inhibited NrtB in a non-competitive fashion. The caesium ion appeared to inhibit NrtA in a non-competitive fashion, while NrtB was inhibited uncompetitively. The results provide further evidence of the distinctly different characteristics as well as the high specificity of nitrate uptake by these two transporters. PMID:25855763

  16. High-affinity nitrate/nitrite transporters NrtA and NrtB of Aspergillus nidulans exhibit high specificity and different inhibitor sensitivity

    PubMed Central

    Akhtar, Naureen; Karabika, Eugenia; Kinghorn, James R.; Glass, Anthony D.M.; Unkles, Shiela E.

    2015-01-01

    The NrtA and NrtB nitrate transporters are paralogous members of the major facilitator superfamily in Aspergillus nidulans. The availability of loss-of-function mutations allowed individual investigation of the specificity and inhibitor sensitivity of both NrtA and NrtB. In this study, growth response tests were carried out at a growth-limiting concentration of nitrate (1 mM) as the sole nitrogen source, in the presence of a number of potential nitrate analogues at various concentrations, to evaluate their effect on nitrate transport. Both chlorate and chlorite inhibited fungal growth, with chlorite exerting the greater inhibition. The main transporter of nitrate, NrtA, proved to be more sensitive to chlorate than the minor transporter, NrtB. Similarly, the cation caesium was shown to exert differential effects, strongly inhibiting the activity of NrtB, but not NrtA. In contrast, no inhibition of nitrate uptake by NrtA or NrtB transporters was observed in either growth tests or uptake assays in the presence of bicarbonate, formate, malonate or oxalate (sulphite could not be tested in uptake assays owing to its reaction with nitrate), indicating significant specificity of nitrate transport. Kinetic analyses of nitrate uptake revealed that both chlorate and chlorite inhibited NrtA competitively, while these same inhibitors inhibited NrtB in a non-competitive fashion. The caesium ion appeared to inhibit NrtA in a non-competitive fashion, while NrtB was inhibited uncompetitively. The results provide further evidence of the distinctly different characteristics as well as the high specificity of nitrate uptake by these two transporters. PMID:25855763

  17. Autotrophic nitrite removal in the cathode of microbial fuel cells.

    PubMed

    Puig, Sebastià; Serra, Marc; Vilar-Sanz, Ariadna; Cabré, Marina; Bañeras, Lluís; Colprim, Jesús; Balaguer, M Dolors

    2011-03-01

    Nitrification to nitrite (nitritation process) followed by reduction to dinitrogen gas decreases the energy demand and the carbon requirements of the overall process of nitrogen removal. This work studies autotrophic nitrite removal in the cathode of microbial fuel cells (MFCs). Special attention was paid to determining whether nitrite is used as the electron acceptor by exoelectrogenic bacteria (biologic reaction) or by graphite electrodes (abiotic reaction). The results demonstrated that, after a nitrate pulse at the cathode, nitrite was initially accumulated; subsequently, nitrite was removed. Nitrite and nitrate can be used interchangeably as an electron acceptor by exoelectrogenic bacteria for nitrogen reduction from wastewater while producing bioelectricity. However, if oxygen is present in the cathode chamber, nitrite is oxidised via biological or electrochemical processes. The identification of a dominant bacterial member similar to Oligotropha carboxidovorans confirms that autotrophic denitrification is the main metabolism mechanism in the cathode of an MFC. PMID:21262566

  18. Thermochemical nitrate destruction

    DOEpatents

    Cox, John L.; Hallen, Richard T.; Lilga, Michael A.

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  19. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  20. Simultaneous nitritation and p-nitrophenol removal using aerobic granular biomass in a continuous airlift reactor.

    PubMed

    Jemaat, Zulkifly; Suárez-Ojeda, María Eugenia; Pérez, Julio; Carrera, Julián

    2013-12-01

    The chemical and petrochemical industries produce wastewaters containing ammonium and phenolic compounds. Biological treatment of these wastewaters could be problematic due to the possible inhibitory effects exerted by phenolic compounds. The feasibility of performing simultaneous nitritation and p-nitrophenol (PNP) biodegradation using a continuous aerobic granular reactor was evaluated. A nitrifying granular sludge was bioaugmented with a PNP-degrading floccular sludge, while PNP was progressively added to the feed containing a high ammonium concentration. Nitritation was sustained throughout the operational period with ca. 85% of ammonium oxidation and less than 0.3% of nitrate in the effluent. PNP biodegradation was unstable and the oxygen limiting condition was found to be the main explanation for this unsteadiness. An increase in dissolved oxygen concentration from 2.0 to 4.5 mg O2 L(-1) significantly enhanced PNP removal, achieving total elimination. Acinetobacter genus and ammonia-oxidising bacteria were the predominant bacteria species in the granular biomass. PMID:24177164

  1. Liquid and atmospheric ammonia concentrations from a dairy lagoon during an aeration experiment

    NASA Astrophysics Data System (ADS)

    Rumburg, Brian; Neger, Manjit; Mount, George H.; Yonge, David; Filipy, Jenny; Swain, John; Kincaid, Ron; Johnson, Kristen

    Ammonia emissions from agriculture are an environmental and human health concern, and there is increasing pressure to reduce emissions. Animal agriculture is the largest global source of ammonia emissions and on a per cow basis dairy operations are the largest emitters. The storage and disposal of the dairy waste is one area where emissions can be reduced, aerobic biological treatment of wastewater being a common and effective way of reducing ammonia emissions. An aeration experiment in a dairy lagoon with two commercial aerators was performed for 1 month. Liquid concentrations of ammonia, total nitrogen, nitrite and nitrate were monitored before, during and after the experiment and atmospheric ammonia was measured downwind of the lagoon using a short-path differential optical absorption spectroscopy (DOAS) instrument with 1 ppbv sensitivity. No changes in either liquid or atmospheric ammonia concentrations were detected throughout the experiment, and neither dissolved oxygen, nitrite nor nitrate could be detected in the lagoon at any time. The average ammonia concentration at 10 sampling sites in the lagoon at a depth of 0.15 m was 650 mg l -1 and at 0.90 m it was 700 mg l -1 NH 3-N. The average atmospheric ammonia concentration 50 m downwind was about 300 ppbv. The 0.90 m depth total nitrogen concentrations and total and volatile solids concentrations decreased during the experiment due to some mixing of the lagoon but the 0.15 m depth concentrations did not decrease indicating that the aerators were not strong enough to mix the sludge off the bottom into the whole water column.

  2. A Review on Alternative Carbon Sources for Biological Treatment of Nitrate Waste

    NASA Astrophysics Data System (ADS)

    Dhamole, Pradip B.; D'Souza, S. F.; Lele, S. S.

    2015-04-01

    Huge amount of wastewater containing nitrogen is produced by various chemical and biological industries. Nitrogen is present in the form of ammonia, nitrate and nitrite. This review deals with treatment of nitrate based effluent using biological denitrification. Because of its adverse effect on aquatic life and human health, treatment of nitrate bearing effluents has become mandatory before discharge. Treatment of such wastes is a liability for the industries and incurs cost. However, the economics of the process can be controlled by selection of proper method and reduction in the operating cost. This paper reviews the advantages and disadvantages of different methods of nitrate removal with emphasis on biological denitrification. The cost of biological denitrification is controlled by the carbon source. Hence, use of alternative carbon sources such as agricultural wastes, industrial effluent or by products is reviewed in this paper. Policies for reducing the cost of nitrate treatment and enhancing the efficiency have been recommended.

  3. Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds.

    PubMed

    Latham, Elizabeth A; Anderson, Robin C; Pinchak, William E; Nisbet, David J

    2016-01-01

    Nitrate and certain short chain nitrocompounds and nitro-oxy compounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of methanogenesis during dissimilatory reduction to an intermediate, nitrite, which is primarily reduced to ammonia although small quantities of nitrous oxide may also be produced. Short chain nitrocompounds act as direct inhibitors of methanogenic bacteria although certain of these compounds may also consume electrons at the expense of methanogenesis and are effective inhibitors of important foodborne pathogens. Microbial and nutritional consequences of incorporating nitrate into ruminant diets typically results in increased acetate production. Unlike most other methane-inhibiting supplements, nitrate decreases or has no effect on propionate production. The type of nitrate salt added influences rates of nitrate reduction, rates of nitrite accumulation and efficacy of methane reduction, with sodium and potassium salts being more potent than calcium nitrate salts. Digestive consequences of adding nitrocompounds to ruminant diets are more variable and may in some cases increase propionate production. Concerns about the toxicity of nitrate's intermediate product, nitrite, to ruminants necessitate management, as animal poisoning may occur via methemoglobinemia. Certain of the naturally occurring nitrocompounds, such as 3-nitro-1-propionate or 3-nitro-1-propanol also cause poisoning but via inhibition of succinate dehydrogenase. Typical risk management procedures to avoid nitrite toxicity involve gradually adapting the animals to higher concentrations of nitrate and nitrite, which could possibly be used with the nitrocompounds as well. A number of organisms responsible for nitrate metabolism in the rumen have been characterized. To date a single rumen bacterium

  4. Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds

    PubMed Central

    Latham, Elizabeth A.; Anderson, Robin C.; Pinchak, William E.; Nisbet, David J.

    2016-01-01

    Nitrate and certain short chain nitrocompounds and nitro-oxy compounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of methanogenesis during dissimilatory reduction to an intermediate, nitrite, which is primarily reduced to ammonia although small quantities of nitrous oxide may also be produced. Short chain nitrocompounds act as direct inhibitors of methanogenic bacteria although certain of these compounds may also consume electrons at the expense of methanogenesis and are effective inhibitors of important foodborne pathogens. Microbial and nutritional consequences of incorporating nitrate into ruminant diets typically results in increased acetate production. Unlike most other methane-inhibiting supplements, nitrate decreases or has no effect on propionate production. The type of nitrate salt added influences rates of nitrate reduction, rates of nitrite accumulation and efficacy of methane reduction, with sodium and potassium salts being more potent than calcium nitrate salts. Digestive consequences of adding nitrocompounds to ruminant diets are more variable and may in some cases increase propionate production. Concerns about the toxicity of nitrate's intermediate product, nitrite, to ruminants necessitate management, as animal poisoning may occur via methemoglobinemia. Certain of the naturally occurring nitrocompounds, such as 3-nitro-1-propionate or 3-nitro-1-propanol also cause poisoning but via inhibition of succinate dehydrogenase. Typical risk management procedures to avoid nitrite toxicity involve gradually adapting the animals to higher concentrations of nitrate and nitrite, which could possibly be used with the nitrocompounds as well. A number of organisms responsible for nitrate metabolism in the rumen have been characterized. To date a single rumen bacterium

  5. The nitrate to ammonia and ceramic (NAC) process for the denitration and immobilization of low-level radioactive liquid waste (LLW)

    NASA Astrophysics Data System (ADS)

    Muguercia, Ivan

    Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the

  6. ¹⁸O-Labeled nitrous acid and nitrite: Synthesis, characterization, and oxyhemoglobin-catalyzed oxidation to ¹⁸O-labeled nitrate.

    PubMed

    Böhmer, Anke; Mitschke, Anja; Reib, Anna; Gutzki, Frank-Mathias; Tsikas, Dimitrios

    2012-02-15

    We describe a simple laboratory method for specific labeling of nitrite with ¹⁸O for use in chemical and biochemical studies in the area of nitric oxide research. NaNO₂ (0.1 mmol) is diluted in H₂¹⁸O (45 μl) and acidified with HCl (1 μl, 5 M), and the solution is allowed to equilibrate. Subsequently, the sample is mixed by vortexing with ethyl acetate (500 μl), and the organic phase is dried over anhydrous Na₂SO(4). Ethyl acetate is evaporated to dryness, and the residue is reconstituted in phosphate-buffered saline. In human blood hemolysate, oxyhemoglobin (HbFe¹⁶O₂) was shown to oxidize N¹⁸O₂⁻ to ¹⁶ON¹⁸O₂⁻. PMID:22206936

  7. Influence of Nitrate on the Hanford 100D Area In Situ Redox Manipulation Barrier Longevity

    SciTech Connect

    Szecsody, Jim E.; Phillips, Jerry L.; Vermeul, Vince R.; Fruchter, Jonathan S.; Williams, Mark D.

    2005-07-15

    The purpose of this laboratory study is to determine the influence of nitrate on the Hanford 100D Area in situ redox manipulation (ISRM) barrier longevity. There is a wide spread groundwater plume of 60 mg/L nitrate upgradient of the ISRM barrier with lower nitrate concentrations downgradient, suggestive of nitrate reduction occurring. Batch and 1-D column experiments showed that nitrate is being slowly reduced to nitrite and ammonia. These nitrate reduction reactions are predominantly abiotic, as experiments with and without bactericides present showed no difference in nitrate degradation rates. Nitrogen species transformation rates determined in experiments covered a range of ferrous iron/nitrate ratios such that the data can be used to predict rates in field scale conditions. Field scale reaction rate estimates for 100% reduced sediment (16 C) are: (a) nitrate degradation = 202 {+-} 50 h (half-life), (b) nitrite production = 850 {+-} 300 h, and (c) ammonia production = 650 {+-} 300 h. Calculation of the influence of nitrate reduction on the 100D Area reductive capacity requires consideration of mass balance and reaction rate effects. While dissolved oxygen and chromate reduction rates are rapid and essentially at equilibrium in the aquifer, nitrate transformation reactions are slow (100s of hours). In the limited (20-40 day) residence time in the ISRM barrier, only a portion of the nitrate will be reduced, whereas dissolved oxygen and chromate are reduced to completion. Assuming a groundwater flow rate of 1 ft/day, it is estimated that the ISRM barrier reductive capacity is 160 pore volumes (with no nitrate), and 85 pore volumes if 60 mg/L nitrate is present (i.e., a 47% decrease in the ISRM barrier longevity). Zones with more rapid groundwater flow will be less influenced by nitrate reduction. For example, a zone with a groundwater flow rate of 3 ft/day and 60 mg/L nitrate will have a reductive capacity of 130 pore volumes. Finally, long-term column experiments

  8. Competition for ammonia influences the structure of chemotrophic communities in geothermal springs.

    PubMed

    Hamilton, Trinity L; Koonce, Evangeline; Howells, Alta; Havig, Jeff R; Jewell, Talia; de la Torre, José R; Peters, John W; Boyd, Eric S

    2014-01-01

    Source waters sampled from Perpetual Spouter hot spring (pH 7.03, 86.4°C), Yellowstone National Park, WY, have low concentrations of total ammonia, nitrite, and nitrate, suggesting nitrogen (N) limitation and/or tight coupling of N cycling processes. Dominant small-subunit rRNA sequences in Perpetual Spouter source sediments are closely affiliated with the ammonia-oxidizing archaeon "Candidatus Nitrosocaldus yellowstonii" and the putatively nitrogen-fixing (diazotrophic) bacterium Thermocrinis albus, respectively, suggesting that these populations may interact at the level of the bioavailable N pool, specifically, ammonia. This hypothesis was evaluated by using a combination of geochemical, physiological, and transcriptomic analyses of sediment microcosms. Amendment of microcosms with allylthiourea, an inhibitor of ammonia oxidation, decreased rates of acetylene reduction (a proxy for N2 fixation) and nitrite production (a proxy for ammonia oxidation) and decreased transcript levels of structural genes involved in both nitrogen fixation (nifH) and ammonia oxidation (amoA). In contrast, amendment of microcosms with ammonia stimulated nitrite production and increased amoA transcript levels while it suppressed rates of acetylene reduction and decreased nifH transcript levels. Sequencing of amplified nifH and amoA transcripts from native sediments, as well as microcosms, at 2 and 4 h postamendment, indicates that the dominant and responsive populations involved in ammonia oxidation and N2 fixation are closely affiliated with Ca. Nitrosocaldus yellowstonii and T. albus, respectively. Collectively, these results suggest that ammonia-oxidizing archaea, such as Ca. Nitrosocaldus yellowstonii, have an apparent affinity for ammonia that is higher than that of the diazotrophs present in this ecosystem. Depletion of the bioavailable N pool through the activity of ammonia-oxidizing archaea likely represents a strong selective pressure for the inclusion of organisms capable of

  9. Competition for Ammonia Influences the Structure of Chemotrophic Communities in Geothermal Springs

    PubMed Central

    Hamilton, Trinity L.; Koonce, Evangeline; Howells, Alta; Havig, Jeff R.; Jewell, Talia; de la Torre, José R.; Peters, John W.

    2014-01-01

    Source waters sampled from Perpetual Spouter hot spring (pH 7.03, 86.4°C), Yellowstone National Park, WY, have low concentrations of total ammonia, nitrite, and nitrate, suggesting nitrogen (N) limitation and/or tight coupling of N cycling processes. Dominant small-subunit rRNA sequences in Perpetual Spouter source sediments are closely affiliated with the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii” and the putatively nitrogen-fixing (diazotrophic) bacterium Thermocrinis albus, respectively, suggesting that these populations may interact at the level of the bioavailable N pool, specifically, ammonia. This hypothesis was evaluated by using a combination of geochemical, physiological, and transcriptomic analyses of sediment microcosms. Amendment of microcosms with allylthiourea, an inhibitor of ammonia oxidation, decreased rates of acetylene reduction (a proxy for N2 fixation) and nitrite production (a proxy for ammonia oxidation) and decreased transcript levels of structural genes involved in both nitrogen fixation (nifH) and ammonia oxidation (amoA). In contrast, amendment of microcosms with ammonia stimulated nitrite production and increased amoA transcript levels while it suppressed rates of acetylene reduction and decreased nifH transcript levels. Sequencing of amplified nifH and amoA transcripts from native sediments, as well as microcosms, at 2 and 4 h postamendment, indicates that the dominant and responsive populations involved in ammonia oxidation and N2 fixation are closely affiliated with Ca. Nitrosocaldus yellowstonii and T. albus, respectively. Collectively, these results suggest that ammonia-oxidizing archaea, such as Ca. Nitrosocaldus yellowstonii, have an apparent affinity for ammonia that is higher than that of the diazotrophs present in this ecosystem. Depletion of the bioavailable N pool through the activity of ammonia-oxidizing archaea likely represents a strong selective pressure for the inclusion of organisms capable

  10. Nitrogen cycling in the secondary nitrite maximum of the eastern tropical North Pacific off Costa Rica

    NASA Astrophysics Data System (ADS)

    Buchwald, Carolyn; Santoro, Alyson E.; Stanley, Rachel H. R.; Casciotti, Karen L.

    2015-12-01

    Nitrite is a central intermediate in the marine nitrogen cycle and represents a critical juncture where nitrogen can be reduced to the less bioavailable N2 gas or oxidized to nitrate and retained in a more bioavailable form. We present an analysis of rates of microbial nitrogen transformations in the oxygen deficient zone (ODZ) within the eastern tropical North Pacific Ocean (ETNP). We determined rates using a novel one-dimensional model using the distribution of nitrite and nitrate concentrations, along with their natural abundance nitrogen (N) and oxygen (O) isotope profiles. We predict rate profiles for nitrate reduction, nitrite reduction, and nitrite oxidation throughout the ODZ, as well as the contributions of anammox to nitrite reduction and nitrite oxidation. Nitrate reduction occurs at a maximum rate of 25 nM d-1 at the top of the ODZ, at the same depth as the maximum rate of nitrite reduction, 15 nM d-1. Nitrite oxidation occurs at maximum rates of 10 nM d-1 above the secondary nitrite maximum, but also in the secondary nitrite maximum, within the ODZ. Anammox contributes to nitrite oxidation within the ODZ but cannot account for all of it. Nitrite oxidation within the ODZ that is not through anammox is also supported by microbial gene abundance profiles. Our results suggest the presence of nitrite oxidation within the ETNP ODZ, with implications for the distribution and physiology of marine nitrite-oxidizing bacteria, and for total nitrogen loss in the largest marine ODZ.

  11. Nitrite Uptake into Intact Pea Chloroplasts 1

    PubMed Central

    Brunswick, Pamela; Cresswell, Christopher F.

    1988-01-01

    The relationship between net nitrite uptake and its reduction in intact pea chloroplasts was investigated employing electron transport regulators, uncouplers, and photophosphorylation inhibitors. Observations confirmed the dependence of nitrite uptake on stromal pH and nitrite reduction but also suggested a partial dependance upon PSI phosphorylation. It was also suggested that ammonia stimulates nitrogen assimilation in the dark by association with stromal protons. Inhibition of nitrite uptake by N-ethylmaleimide and dinitrofluorobenzene could not be completely attributed to their inhibition of carbon dioxide fixation. Other protein binding reagents which inhibited photosynthesis showed no effect on nitrite uptake, except for p-chlormercuribenzoate which stimulated nitrite uptake. The results with N-ethylmaleimide and dinitrofluorobenzene tended to support the proposed presence of a protein permeation channel for nitrite uptake in addition to HNO2 penetration. On the basis of a lack of effect by known anion uptake inhibitors, it was concluded that the nitrite uptake mechanism was distinct from that of phosphate and chloride/sulfate transport. PMID:16665917

  12. Nitrite reduction mechanism on a Pd surface.

    PubMed

    Shin, Hyeyoung; Jung, Sungyoon; Bae, Sungjun; Lee, Woojin; Kim, Hyungjun

    2014-11-01

    Nitrate (NO3-) is one of the most harmful contaminants in the groundwater, and it causes various health problems. Bimetallic catalysts, usually palladium (Pd) coupled with secondary metallic catalyst, are found to properly treat nitrate-containing wastewaters; however, the selectivity toward N2 production over ammonia (NH3) production still requires further improvement. Because the N2 selectivity is determined at the nitrite (NO2-) reduction step on the Pd surface, which occurs after NO3- is decomposed into NO2- on the secondary metallic catalyst, we here performed density functional theory (DFT) calculations and experiments to investigate the NO2- reduction pathway on the Pd surface activated by hydrogen. Based on extensive DFT calculations on the relative energetics among ∼100 possible intermediates, we found that NO2- is easily reduced to NO* on the Pd surface, followed by either sequential hydrogenation steps to yield NH3 or a decomposition step to N* and O* (an adsorbate on Pd is denoted using an asterisk). Based on the calculated high migration barrier of N*, we further discussed that the direct combination of two N* to yield N2 is kinetically less favorable than the combination of a highly mobile H* with N* to yield NH3. Instead, the reduction of NO2- in the vicinity of the N* can yield N2O* that can be preferentially transformed into N2 via diverse reaction pathways. Our DFT results suggest that enhancing the likelihood of N* encountering NO2- in the solution phase before combination with surface H* is important for maximizing the N2 selectivity. This is further supported by our experiments on NO2- reduction by Pd/TiO2, showing that both a decreased H2 flow rate and an increased NO2- concentration increased the N2 selectivity (78.6-93.6% and 57.8-90.9%, respectively). PMID:25280017

  13. Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox.

    PubMed

    Daigger, Glen T

    2014-03-01

    The oxygen and carbon savings associated with novel nitrogen removal processes for the treatment of high ammonia, low biodegradable organic matter waste streams such as the recycle streams from the dewatering of anaerobically digested sludges are well documented.This understanding may lead some to think that similar oxygen savings are possible if novel processes such as nitritation/ denitritation and partial nitritation-deammonification are incorporated into main liquid stream processes where influent biodegradable organic matter is used to denitrify residual oxidized nitrogen (nitrite and nitrate). It is demonstrated that the net oxygen required for nitrogen removal is 1.71 mg O2/mg ammonia-nitrogen converted to nitrogen gas as long as influent biodegradable organic matter is used to denitrify residual oxidized nitrogen. Less oxygen is required to produce oxidized nitrogen with these novel processes, but less biodegradable organic matter is also required for oxidized nitrogen reduction to nitrogen gas, resulting in reduced oxygen savings for the oxidation of biodegradable organic matter. The net oxygen requirement is the same since the net electron transfer for the conversion of ammonia-nitrogen to nitrogen gas is the same. The biodegradable organic matter required to reduce the oxidized nitrogen to nitrogen gas is estimated for these processes based on standard biological process calculations. It is estimated to be in the range of 3.5 to 4.0 mg biodegradable COD/mg ammonia-nitrogen reduced to nitrogen gas for nitrification-denitrification, 2.0 to 2.5 for nitritation-denitritation, and 0.5 for partial nitritation-deammonification. The resulting limiting influent wastewater carbon-to-nitrogen ratios are estimated and can be used to guide the appropriate selection of biological nitrogen removal process given knowledge of the biological process influent wastewater carbon-to-nitrogen ratio. Energy savings possible for mainstream processes incorporating these novel

  14. Defense Waste Processing Facility: Report of task force on options to mitigate the effect of nitrite on DWPF operations

    SciTech Connect

    Randall, D.; Marek, J.C.

    1992-03-01

    The possibility of accumulating ammonium nitrate (an explosive) as well as organic compounds in the DWPF Chemical Processing Cell Vent System was recently discovered. A task force was therefore organized to examine ways to avoid this potential hazard. Of thirty-two processing/engineering options screened, the task force recommended five options, deemed to have the highest technical certainty, for detailed development and evaluation: Radiolysis of nitrite in the tetraphenylborate precipitate slurry feed in a new corrosion-resistant facility. Construction of a Late Washing Facility for precipitate washing before transfer to the DWPF; Just-in-Time'' precipitation; Startup Workaround by radiolysis of nitrite in the existing corrosion-resistant Pump Pit tanks; Ammonia venting and organics separation in the DWPF; and, Estimated costs and schedules are included in this report.

  15. Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate

    PubMed Central

    Hanson, Thomas E.; Campbell, Barbara J.; Kalis, Katie M.; Campbell, Mark A.; Klotz, Martin G.

    2013-01-01

    The process of nitrate reduction via nitrite controls the fate and bioavailability of mineral nitrogen within ecosystems; i.e., whether it is retained as ammonium (ammonification) or lost as nitrous oxide or dinitrogen (denitrification). Here, we present experimental evidence for a novel pathway of microbial nitrate reduction, the reverse hydroxylamine:ubiquinone reductase module (reverse-HURM) pathway. Instead of a classical ammonia-forming nitrite reductase that performs a 6 electron-transfer process, the pathway is thought to employ two catalytic redox modules operating in sequence: the reverse-HURM reducing nitrite to hydroxylamine followed by a hydroxylamine reductase that converts hydroxylamine to ammonium. Experiments were performed on Nautilia profundicola strain AmH, whose genome sequence led to the reverse-HURM pathway proposal. N. profundicola produced ammonium from nitrate, which was assimilated into biomass. Furthermore, genes encoding the catalysts of the reverse-HURM pathway were preferentially expressed during growth of N. profundicola on nitrate as an electron acceptor relative to cultures grown on polysulfide as an electron acceptor. Finally, nitrate-grown cells of N. profundicola were able to rapidly and stoichiometrically convert high concentrations of hydroxylamine to ammonium in resting cell assays. These experiments are consistent with the reverse-HURM pathway and a free hydroxylamine intermediate, but could not definitively exclude direct nitrite reduction to ammonium by the reverse-HURM with hydroxylamine as an off-pathway product. N. profundicola and related organisms are models for a new pathway of nitrate ammonification that may have global impact due to the wide distribution of these organisms in hypoxic environments and symbiotic or pathogenic associations with animal hosts. PMID:23847604

  16. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Travis, R. L.; Huffaker, R. C.

    1992-01-01

    Nitrate and NO2- transport by roots of 8-day-old uninduced and induced intact barley (Hordeum vulgare L. var CM 72) seedlings were compared to kinetic patterns, reciprocal inhibition of the transport systems, and the effect of the inhibitor, p-hydroxymercuribenzoate. Net uptake of NO3- and NO2- was measured by following the depletion of the ions from the uptake solutions. The roots of uninduced seedlings possessed a low concentration, saturable, low Km, possibly a constitutive uptake system, and a linear system for both NO3- and NO2-. The low Km system followed Michaelis-Menten kinetics and approached saturation between 40 and 100 micromolar, whereas the linear system was detected between 100 and 500 micromolar. In roots of induced seedlings, rates for both NO3- and NO2- uptake followed Michaelis-Menten kinetics and approached saturation at about 200 micromolar. In induced roots, two kinetically identifiable transport systems were resolved for each anion. At the lower substrate concentrations, less than 10 micromolar, the apparent low Kms of NO3- and NO2- uptake were 7 and 9 micromolar, respectively, and were similar to those of the low Km system in uninduced roots. At substrate concentrations between 10 and 200 micromolar, the apparent high Km values of NO3- uptake ranged from 34 to 36 micromolar and of NO2- uptake ranged from 41 to 49 micromolar. A linear system was also found in induced seedlings at concentrations above 500 micromolar. Double reciprocal plots indicated that NO3- and NO2- inhibited the uptake of each other competitively in both uninduced and induced seedlings; however, Ki values showed that NO3- was a more effective inhibitor than NO2-. Nitrate and NO2- transport by both the low and high Km systems were greatly inhibited by p-hydroxymercuribenzoate, whereas the linear system was only slightly inhibited.

  17. Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions.

    PubMed

    Fernandez-Fontaina, E; Gomes, I B; Aga, D S; Omil, F; Lema, J M; Carballa, M

    2016-01-15

    The effect of nitrification, nitratation and heterotrophic conditions on the biotransformation of several pharmaceuticals in a highly enriched nitrifying activated sludge was evaluated in this study by selective activation of ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and heterotrophic bacteria. Nitrifiers displayed a noticeable capacity to process ibuprofen due to hydroxylation by ammonia monooxygenase (AMO) to produce 2-hydroxy-ibuprofen. Naproxen was also biotransformed under nitrifying conditions. On the other hand, heterotrophic bacteria present in the nitrifying activated sludge (NAS) biotransformed sulfamethoxazole. In contrast, both nitrifying and heterotrophic activities were ineffective against diclofenac, diazepam, carbamazepine and trimethoprim. Similar biotransformation rates of erythromycin, roxithromycin and fluoxetine were observed under all conditions tested. Overall, results from this study give more evidence on the role of the different microbial communities present in activated sludge reactors on the biological removal of pharmaceuticals. PMID:26479917

  18. Ammonia oxidizing bacteria and archaea in horizontal flow biofilm reactors treating ammonia-contaminated air at 10 °C.

    PubMed

    Gerrity, Seán; Clifford, Eoghan; Kennelly, Colm; Collins, Gavin

    2016-05-01

    The objective of this study was to demonstrate the feasibility of novel, Horizontal Flow Biofilm Reactor (HFBR) technology for the treatment of ammonia (NH3)-contaminated airstreams. Three laboratory-scale HFBRs were used for remediation of an NH3-containing airstream at 10 °C during a 90-d trial to test the efficacy of low-temperature treatment. Average ammonia removal efficiencies of 99.7 % were achieved at maximum loading rates of 4.8 g NH3 m(3) h(-1). Biological nitrification of ammonia to nitrite (NO2 (-)) and nitrate (NO3 (-)) was mediated by nitrifying bacterial and archaeal biofilm populations. Ammonia-oxidising bacteria (AOB) were significantly more abundant than ammonia-oxidising archaea (AOA) vertically at each of seven sampling zones along the vertical HFBRs. Nitrosomonas and Nitrosospira, were the two most dominant bacterial genera detected in the HFBRs, while an uncultured archaeal clone dominated the AOA community. The bacterial community composition across the three HFBRs was highly conserved, although variations occurred between HFBR zones and were driven by physicochemical variables. The study demonstrates the feasibility of HFBRs for the treatment of ammonia-contaminated airstreams at low temperatures; identifies key nitrifying microorganisms driving the removal process; and provides insights for process optimisation and control. The findings are significant for industrial applications of gas oxidation technology in temperate climates. PMID:26879980

  19. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries.

    PubMed

    Doel, J J; Hector, M P; Amirtham, C V; Al-Anzan, L A; Benjamin, N; Allaker, R P

    2004-10-01

    To test the hypothesis that a combination of high salivary nitrate and high nitrate-reducing capacity are protective against dental caries, 209 children attending the Dental Institute, Barts and The London NHS Trust were examined. Salivary nitrate and nitrite levels, counts of Streptococcus mutans and Lactobacillus spp., and caries experience were recorded. Compared with control subjects, a significant reduction in caries experience was found in patients with high salivary nitrate and high nitrate-reducing ability. Production of nitrite from salivary nitrate by commensal nitrate-reducing bacteria may limit the growth of cariogenic bacteria as a result of the production of antimicrobial oxides of nitrogen, including nitric oxide. PMID:15458501

  20. Skeletal muscle as an endogenous nitrate reservoir

    PubMed Central

    Piknova, Barbora; Park, Ji Won; Swanson, Kathryn M.; Dey, Soumyadeep; Noguchi, Constance Tom; Schechter, Alan N

    2015-01-01

    The nitric oxide synthase (NOS) family of enzymes form nitric oxide (NO) from arginine in the presence of oxygen. At reduced oxygen availability NO is also generated from nitrate in a two step process by bacterial and mammalian molybdopterin proteins, and also directly from nitrite by a variety of five-coordinated ferrous hemoproteins. The mammalian NO cycle also involves direct oxidation of NO to nitrite, and both NO and nitrite to nitrate by oxy-ferrous hemoproteins. The liver and blood are considered the sites of active mammalian NO metabolism and nitrite and nitrate concentrations in the liver and blood of several mammalian species, including human, have been determined. However, the large tissue mass of skeletal muscle had not been generally considered in the analysis of the NO cycle, in spite of its long-known presence of significant levels of active neuronal NOS (nNOS or NOS1). We hypothesized that skeletal muscle participates in the NO cycle and, due to its NO oxidizing heme protein, oxymyoglobin, has high concentrations of nitrate ions. We measured nitrite and nitrate concentrations in rat and mouse leg skeletal muscle and found unusually high concentrations of nitrate but similar levels of nitrite, when compared to the liver. The nitrate reservoir in muscle is easily accessible via the bloodstream and therefore nitrate is available for transport to internal organs where it can be reduced to nitrite and NO. Nitrate levels in skeletal muscle and blood in nNOS−/− mice were dramatically lower when compared with controls, which support further our hypothesis. Although the nitrate reductase activity of xanthine oxidoreductase in muscle is less than that of liver, the residual activity in muscle could be very important in view of its total mass and the high basal level of nitrate. We suggest that skeletal muscle participates in overall NO metabolism, serving as a nitrate reservoir, for direct formation of nitrite and NO, and for determining levels of nitrate

  1. NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA

    SciTech Connect

    Steimke, J.

    2011-02-01

    literature survey of technologies to perform the nitrate to hydroxide conversion, selection of the most promising technologies, preparation of a flowsheet and design of a system. The most promising technologies are electrochemical reduction of nitrates and chemical reduction with hydrogen or ammonia. The primary reviewed technologies are listed and they aredescribed in more detail later in the report: (1) Electrochemical destruction; (2) Chemical reduction with agents such as ammonia, hydrazine or hydrogen; (3) Hydrothermal reduction process; and (4) Calcination. Only three of the technologies on the list have been demonstrated to generate usable amounts of caustic; electrochemical reduction and chemical reduction with ammonia, hydrazine or hydrogen and hydrothermal reduction. Chemical reduction with an organic reactant such as formic acid generates carbon dioxide which reacts with caustic and is thus counterproductive. Treatment of nitrate with aluminum or other active metals generates a solid product. High temperature calcination has the potential to generate sodium oxide which may be hydrated to sodium hydroxide, but this is unproven. The following criteria were developed to evaluate the most suitable option. The numbers in brackets after the criteria are relative weighting factors to account for importance: (1) Personnel exposure to radiation for installation, routine operation and maintenance; (2) Non-radioactive safety issues; (3) Whether the technology generates caustic and how many moles of caustic are generated per mole of nitrate plus nitrite decomposed; (4) Whether the technology can handle nitrate and nitrite at the concentrations encountered in waste; (5) Maturity of technology; (6) Estimated annual cost of operation (labor, depreciation, materials, utilities); (7) Capital cost; (8) Selectivity to nitrogen as decomposition product (other products are flammable and/or toxic); (9) Impact of introduced species; (10) Selectivity for destruction of nitrate vs

  2. Ammonia inhibition of electricity generation in single-chambered microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Nam, Joo-Youn; Kim, Hyun-Woo; Shin, Hang-Sik

    Batch experiments are conducted at various concentrations of initial total ammonia nitrogen (TAN) with acetate as an electron donor to examine the effects of free ammonia (NH 3) inhibition on electricity production in single-chambered microbial fuel cells (MFCs). This research demonstrates that initial TAN concentrations of over 500 mg N L -1 significantly inhibit electricity generation in MFCs. The maximum power density of 4240 mW m -3 at 500 mg N L -1 drastically decreases to 1700 mW m -3 as the initial TAN increases up to 4000 mg N L -1. Nitrite and nitrate analysis confirms that nitrification after complete acetate removal consumes some TAN. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) are also inhibited by increasing the initial TAN concentrations. Another batch experiment verifies the strong inhibitory effect of TAN with only small differences between the half-maximum effective concentration (EC 50) for TAN (894 mg N L -1 equivalent to 10 mg N L -1 as NH 3) and optimum TAN conditions; it requires careful monitoring of the TAN for MFCs. In addition, abiotic control experiments reveal that granular activated carbon, which is used as an auxiliary anode material, adsorbs a significant amount of ammonia at each TAN concentration in batch MFCs.

  3. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities].

    PubMed

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan

    2014-10-01

    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater. PMID:25693403

  4. Method for the fast determination of bromate, nitrate and nitrite by ultra performance liquid chromatography-mass spectrometry and their monitoring in Saudi Arabian drinking water with chemometric data treatment.

    PubMed

    Khan, Mohammad Rizwan; Wabaidur, Saikh Mohammad; Alothman, Zeid Abdullah; Busquets, Rosa; Naushad, Mu

    2016-05-15

    A rapid, sensitive and precise method for the determination of bromate (BrO3(-)), nitrate (NO3(-)) and nitrite (NO2(-)) in drinking water was developed with Ultra performance Liquid Chromatography-Mass Spectrometry (UPLC-ESI/MS). The elution of BrO3(-), NO3(-) and NO2(-) was attained in less than two minutes in a reverse phase column. Quality parameters of the method were established; run-to-run and day-to-day precisions were <3% when analysing standards at 10 µg L(-1). The limit of detection was 0.04 µg NO2(-) L(-1) and 0.03 µg L(-1) for both NO3(-)and BrO3(-). The developed UPLC-ESI/MS method was used to quantify these anions in metropolitan water from Saudi Arabia (Jeddah, Dammam and Riyadh areas) and commercial bottled water (from well or unknown source) after mere filtration steps. The quantified levels of NO3(-) were not found to pose a risk. In contrast, BrO3(-) was found above the maximum contaminant level established by the US Environmental Protection Agency in 25% and 33% of the bottled and metropolitan waters, respectively. NO2(-) was found at higher concentrations than the aforementioned limits in 70% and 92% of the bottled and metropolitan water samples, respectively. Therefore, remediation measures or improvements in the disinfection treatments are required. The concentrations of BrO3(-), NO3(-) and NO2(-) were mapped with Principal Component analysis (PCA), which differentiated metropolitan water from bottled water through the concentrations of BrO3(-) and NO3(-) mainly. Furthermore, it was possible to discriminate between well water; blend of well water and desalinated water; and desalinated water. The point or source (region) was found to not be distinctive. PMID:26992549

  5. Stability and nitrite-oxidizing bacteria community structure in different high-rate CANON reactors.

    PubMed

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Zhuo; Cui, Shaoming; Zhang, Jie

    2015-01-01

    In completely autotrophic nitrogen removal over nitrite (CANON) process, the bioactivity of nitrite-oxidizing bacteria (NOB) should be effectively inhibited. In this study, the stability of four high-rate CANON reactors and the effect of free ammonia (FA) and organic material on NOB community structure were investigated using DGGE. Results suggested that with the increasing of FA, the ratio of total nitrogen removal to nitrate production went up gradually, while the biodiversity of Nitrobacter-like NOB and Nitrospira-like NOB both decreased. When the CANON reactor was transformed to simultaneous partial nitrification, anammox and denitrification (SNAD) reactor by introducing organic material, the denitrifiers and aerobic heterotrophic bacteria would compete nitrite or oxygen with NOB, which then led to the biodiversity decreasing of both Nitrobacter-like NOB and Nitrospira-like NOB. The distribution of Nitrobacter-like NOB and Nitrospira-like NOB were evaluated, and finally effective strategies for suppressing NOB in CANON reactors were proposed. PMID:25459821

  6. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor.

    PubMed

    Isanta, Eduardo; Reino, Clara; Carrera, Julián; Pérez, Julio

    2015-09-01

    Partial nitritation for a low-strength wastewater at low temperature was stably achieved in an aerobic granular reactor. A bench-scale granular sludge bioreactor was operated in continuous mode treating an influent of 70 mg N-NH4(+) L(-1) to mimic pretreated municipal nitrogenous wastewater and the temperature was progressively decreased from 30 to 12.5 °C. A suitable effluent nitrite to ammonium concentrations ratio to a subsequent anammox reactor was maintained stable during 300 days at 12.5 °C. The average applied nitrogen loading rate at 12.5 °C was 0.7 ± 0.3 g N L(-1) d(-1), with an effluent nitrate concentration of only 2.5 ± 0.7 mg N-NO3(-) L(-1). The biomass fraction of nitrite-oxidizing bacteria (NOB) in the granular sludge decreased from 19% to only 1% in 6 months of reactor operation at 12.5 °C. Nitrobacter spp. where found as the dominant NOB population, whereas Nitrospira spp. were not detected. Simulations indicated that: (i) NOB would only be effectively repressed when their oxygen half-saturation coefficient was higher than that of ammonia-oxidizing bacteria; and (ii) a lower specific growth rate of NOB was maintained at any point in the biofilm (even at 12.5 °C) due to the bulk ammonium concentration imposed through the control strategy. PMID:26001281

  7. Diversity, Physiology, and Niche Differentiation of Ammonia-Oxidizing Archaea

    PubMed Central

    2012-01-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, has been suggested to have been a central part of the global biogeochemical nitrogen cycle since the oxygenation of Earth. The cultivation of several ammonia-oxidizing archaea (AOA) as well as the discovery that archaeal ammonia monooxygenase (amo)-like gene sequences are nearly ubiquitously distributed in the environment and outnumber their bacterial counterparts in many habitats fundamentally revised our understanding of nitrification. Surprising insights into the physiological distinctiveness of AOA are mirrored by the recognition of the phylogenetic uniqueness of these microbes, which fall within a novel archaeal phylum now known as Thaumarchaeota. The relative importance of AOA in nitrification, compared to ammonia-oxidizing bacteria (AOB), is still under debate. This minireview provides a synopsis of our current knowledge of the diversity and physiology of AOA, the factors controlling their ecology, and their role in carbon cycling as well as their potential involvement in the production of the greenhouse gas nitrous oxide. It emphasizes the importance of activity-based analyses in AOA studies and formulates priorities for future research. PMID:22923400

  8. Inorganic nitrite supplementation for healthy arterial aging

    PubMed Central

    DeVan, Allison E.; Fleenor, Bradley S.; Seals, Douglas R.

    2014-01-01

    Aging is the major risk factor for cardiovascular diseases (CVD). This is attributable primarily to adverse changes in arteries, notably, increases in large elastic artery stiffness and endothelial dysfunction mediated by inadequate concentrations of the vascular-protective molecule, nitric oxide (NO), and higher levels of oxidative stress and inflammation. Inorganic nitrite is a promising precursor molecule for augmenting circulating and tissue NO bioavailability because it requires only a one-step reduction to NO. Nitrite also acts as an independent signaling molecule, exerting many of the effects previously attributed to NO. Results of recent studies indicate that nitrite may be effective in the treatment of vascular aging. In old mice, short-term oral sodium nitrite supplementation reduces aortic pulse wave velocity, the gold-standard measure of large elastic artery stiffness, and ameliorates endothelial dysfunction, as indicated by normalization of NO-mediated endothelium-dependent dilation. These improvements in age-related vascular dysfunction with nitrite are mediated by reductions in oxidative stress and inflammation, and may be linked to increases in mitochondrial biogenesis and health. Increasing nitrite levels via dietary intake of nitrate appears to have similarly beneficial effects in many of the same physiological and clinical settings. Several clinical trials are being performed to determine the broad therapeutic potential of increasing nitrite bioavailability on human health and disease, including studies related to vascular aging. In summary, inorganic nitrite, as well as dietary nitrate supplementation, represents a promising therapy for treatment of arterial aging and prevention of age-associated CVD in humans. PMID:24408999

  9. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen

    PubMed Central

    Fitzgerald, Colin M.; Camejo, Pamela; Oshlag, J. Zachary; Noguera, Daniel R.

    2015-01-01

    Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions. PMID:25506762

  10. Interaction of organic carbon, reduced sulphur and nitrate in anaerobic baffled reactor for fresh leachate treatment.

    PubMed

    Yin, Zhixuan; Xie, Li; Khanal, Samir Kumar; Zhou, Qi

    2016-01-01

    Interaction of organic carbon, reduced sulphur and nitrate was examined using anaerobic baffled reactor for fresh leachate treatment by supplementing nitrate and/or sulphide to compartment 3. Nitrate was removed completely throughout the study mostly via denitrification (>80%) without nitrite accumulation. Besides carbon source, various reduced sulphur (e.g. sulphide, elemental sulphur and organic sulphur) could be involved in the nitrate reduction process via sulphur-based autotrophic denitrification when dissolved organic carbon/nitrate ratio decreased below 1.6. High sulphide concentration not only stimulated autotrophic denitrification, but it also inhibited heterotrophic denitrification, resulting in a shift (11-20%) from heterotrophic denitrification to dissimilatory nitrate reduction to ammonia. High-throughput 16S rRNA gene sequencing analysis further confirmed that sulphur-oxidizing nitrate-reducing bacteria were stimulated with increase in the proportion of bacterial population from 18.6% to 27.2% by high sulphide concentration, meanwhile, heterotrophic nitrate-reducing bacteria and fermentative bacteria were inhibited with 25.5% and 66.6% decrease in the bacterial population. PMID:26495763

  11. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+) LAT2 transporter.

    PubMed

    Zielińska, Magdalena; Milewski, Krzysztof; Skowrońska, Marta; Gajos, Anna; Ziemińska, Elżbieta; Beręsewicz, Andrzej; Albrecht, Jan

    2015-12-01

    One of the aspects of ammonia toxicity to brain cells is increased production of nitric oxide (NO) by NO synthases (NOSs). Previously we showed that ammonia increases arginine (Arg) uptake in cultured rat cortical astrocytes specifically via y(+) L amino acid transport system, by activation of its member, a heteromeric y(+) LAT2 transporter. Here, we tested the hypothesis that up-regulation of y(+) LAT2 underlies ammonia-dependent increase of NO production via inducible NOS (iNOS) induction, and protein nitration. Treatment of rat cortical astrocytes for 48 with 5 mM ammonium chloride ('ammonia') (i) increased the y(+) L-mediated Arg uptake, (ii) raised the expression of iNOS and endothelial NOS (eNOS), (iii) stimulated NO production, as manifested by increased nitrite+nitrate (Griess) and/or nitrite alone (chemiluminescence), and consequently, (iv) evoked nitration of tyrosine residues of proteins in astrocytes. Except for the increase of eNOS, all the above described effects of ammonia were abrogated by pre-treatment of astrocytes with either siRNA silencing of the Slc7a6 gene coding for y(+) LAT2 protein, or antibody to y(+) LAT2, indicating their strict coupling to y(+) LAT2 activity. Moreover, induction of y(+) LAT2 expression by ammonia was sensitive to Nf-κB inhibitor, BAY 11-7085, linking y(+) LAT2 upregulation to the Nf-κB activation in this experimental setting as reported earlier and here confirmed. Importantly, ammonia did not affect y(+) LAT2 expression nor y(+) L-mediated Arg uptake activity in the cultured cerebellar neurons, suggesting astroglia-specificity of the above described mechanism. The described coupling of up-regulation of y(+) LAT2 transporter with iNOS in ammonia-exposed astrocytes may be considered as a mechanism to ensure NO supply for protein nitration. Ammonia (NH4(+) ) increases the expression and activity of the L-arginine (Arg) transporter (Arg/neutral amino acids [NAA] exchanger) y(+) LAT2 in cultured rat cortical astrocytes

  12. Nitrite and nitrite reductases: from molecular mechanisms to significance in human health and disease.

    PubMed

    Castiglione, Nicoletta; Rinaldo, Serena; Giardina, Giorgio; Stelitano, Valentina; Cutruzzolà, Francesca

    2012-08-15

    Nitrite, previously considered physiologically irrelevant and a simple end product of endogenous nitric oxide (NO) metabolism, is now envisaged as a reservoir of NO to be activated in response to oxygen (O(2)) depletion. In the first part of this review, we summarize and compare the mechanisms of nitrite-dependent production of NO in selected bacteria and in eukaryotes. Bacterial nitrite reductases, which are copper or heme-containing enzymes, play an important role in the adaptation of pathogens to O(2) limitation and enable microrganisms to survive in the human body. In mammals, reduction of nitrite to NO under hypoxic conditions is carried out in tissues and blood by an array of metalloproteins, including heme-containing proteins and molybdenum enzymes. In humans, tissues play a more important role in nitrite reduction, not only because most tissues produce more NO than blood, but also because deoxyhemoglobin efficiently scavenges NO in blood. In the second part of the review, we outline the significance of nitrite in human health and disease and describe the recent advances and pitfalls of nitrite-based therapy, with special attention to its application in cardiovascular disorders, inflammation, and anti-bacterial defence. It can be concluded that nitrite (as well as nitrate-rich diet for long-term applications) may hold promise as therapeutic agent in vascular dysfunction and ischemic injury, as well as an effective compound able to promote angiogenesis. PMID:22304560

  13. Losses of Ammonia and Nitrate from Agriculture and Their Effect on Nitrogen Recovery in the European Union and the United States between 1900 and 2050.

    PubMed

    van Grinsven, Hans J M; Bouwman, Lex; Cassman, Kenneth G; van Es, Harold M; McCrackin, Michelle L; Beusen, Arthur H W

    2015-03-01

    Historical trends and levels of nitrogen (N) budgets and emissions to air and water in the European Union and the United States are markedly different. Agro-environmental policy approaches also differ, with emphasis on voluntary or incentive-based schemes in the United States versus a more regulatory approach in the European Union. This paper explores the implications of these differences for attaining long-term policy targets for air and water quality. Nutrient surplus problems were more severe in the European Union than in the United States during the 1970s and 1980s. The EU Nitrates and National Emission Ceilings directives contributed to decreases in fertilizer use, N surplus, and ammonia (NH) emissions, whereas in the United States they stabilized, although NH emissions are still increasing. These differences were analyzed using statistical data for 1900-2005 and the global IMAGE model. IMAGE could reproduce NH emissions and soil N surpluses at different scales (European Union and United States, country and state) and N loads in the Rhine and Mississippi. The regulation-driven changes during the past 25 yr in the European Union have reduced public concerns and have brought agricultural N loads to the aquatic environment closer to US levels. Despite differences in agro-environmental policies and agricultural structure (more N-fixing soybean and more spatially separated feed and livestock production in the United States than in the European Union), current N use efficiency in US and EU crop production is similar. IMAGE projections for the IAASTD-baseline scenario indicate that N loading to the environment in 2050 will be similar to current levels. In the United States, environmental N loads will remain substantially smaller than in the European Union, whereas agricultural production in 2050 in the United States will increase by 30% relative to 2005, as compared with an increase of 8% in the European Union. However, in the United States, even rigorous mitigation

  14. Defense Waste Processing Facility: Report of task force on options to mitigate the effect of nitrite on DWPF operations. Savannah River Site 200-S Area

    SciTech Connect

    Randall, D.; Marek, J.C.

    1992-03-01

    The possibility of accumulating ammonium nitrate (an explosive) as well as organic compounds in the DWPF Chemical Processing Cell Vent System was recently discovered. A task force was therefore organized to examine ways to avoid this potential hazard. Of thirty-two processing/engineering options screened, the task force recommended five options, deemed to have the highest technical certainty, for detailed development and evaluation: Radiolysis of nitrite in the tetraphenylborate precipitate slurry feed in a new corrosion-resistant facility. Construction of a Late Washing Facility for precipitate washing before transfer to the DWPF; ``Just-in-Time`` precipitation; Startup Workaround by radiolysis of nitrite in the existing corrosion-resistant Pump Pit tanks; Ammonia venting and organics separation in the DWPF; and, Estimated costs and schedules are included in this report.

  15. Dietary nitrate supplementation and exercise performance.

    PubMed

    Jones, Andrew M

    2014-05-01

    Dietary nitrate is growing in popularity as a sports nutrition supplement. This article reviews the evidence base for the potential of inorganic nitrate to enhance sports and exercise performance. Inorganic nitrate is present in numerous foodstuffs and is abundant in green leafy vegetables and beetroot. Following ingestion, nitrate is converted in the body to nitrite and stored and circulated in the blood. In conditions of low oxygen availability, nitrite can be converted into nitric oxide, which is known to play a number of important roles in vascular and metabolic control. Dietary nitrate supplementation increases plasma nitrite concentration and reduces resting blood pressure. Intriguingly, nitrate supplementation also reduces the oxygen cost of submaximal exercise and can, in some circumstances, enhance exercise tolerance and performance. The mechanisms that may be responsible for these effects are reviewed and practical guidelines for safe and efficacious dietary nitrate supplementation are provided. PMID:24791915

  16. Abundance and Diversity of Archaeal Ammonia Oxidizers in a Coastal Groundwater System ▿ †

    PubMed Central

    Rogers, Daniel R.; Casciotti, Karen L.

    2010-01-01

    Nitrification, the microbially catalyzed oxidation of ammonia to nitrate, is a key process in the nitrogen cycle. Archaea have been implicated in the first part of the nitrification pathway (oxidation of ammonia to nitrite), but the ecology and physiology of these organisms remain largely unknown. This work describes two different populations of sediment-associated ammonia-oxidizing archaea (AOA) in a coastal groundwater system in Cape Cod, MA. Sequence analysis of the ammonia monooxygenase subunit A gene (amoA) shows that one population of putative AOA inhabits the upper meter of the sediment, where they may experience frequent ventilation, with tidally driven overtopping and infiltration of bay water supplying dissolved oxygen, ammonium, and perhaps organic carbon. A genetically distinct population occurs deeper in the sediment, in a mixing zone between a nitrate- and oxygen-rich freshwater zone and a reduced, ammonium-bearing saltwater wedge. Both of these AOA populations are coincident with increases in the abundance of group I crenarchaeota 16S rRNA gene copies. PMID:20971859

  17. Influence of Volatile Fatty Acids on Nitrite Accumulation by a Pseudomonas stutzeri Strain Isolated from a Denitrifying Fluidized Bed Reactor

    PubMed Central

    van Rijn, J.; Tal, Y.; Barak, Y.

    1996-01-01

    Intermediate nitrite accumulation during denitrification by Pseudomonas stutzeri isolated from a denitrifying fluidized bed reactor was examined in the presence of different volatile fatty acids. Nitrite accumulated when acetate or propionate served as the carbon and electron source but did not accumulate in the presence of butyrate, valerate, or caproate. Nitrite accumulation in the presence of acetate was caused by differences in the rates of nitrate and nitrite reduction and, in addition, by competition between nitrate and nitrite reduction pathways for electrons. Incubation of the cells with butyrate resulted in a slower nitrate reduction rate and a faster nitrite reduction rate than incubation with acetate. Whereas nitrate inhibited the nitrite reduction rate in the presence of acetate, no such inhibition was found in butyrate-supplemented cells. Cytochromes b and c were found to mediate electron transport during nitrate reduction by the cells. Cytochrome c was reduced via a different pathway when nitrite-reducing cells were incubated with acetate than when they were incubated with butyrate. Furthermore, addition of antimycin A to nitrite-reducing cells resulted in partial inhibition of electron transport to cytochrome c in acetate-supplemented cells but not in butyrate-supplemented cells. On the basis of these findings, we propose that differences in intermediate nitrite accumulation are caused by differences in electron flow to nitrate and nitrite reductases during oxidation of either acetate or butyrate. PMID:16535368

  18. Role of the denitrifying Haloarchaea in the treatment of nitrite-brines.

    PubMed

    Nájera-Fernández, Cindy; Zafrilla, Basilio; Bonete, María José; Martínez-Espinosa, Rosa María

    2012-09-01

    Haloferax mediterranei is a denitrifying halophilic archaeon able to reduce nitrate and nitrite under oxic and anoxic conditions. In the presence of oxygen, nitrate and nitrite are used as nitrogen sources for growth. Under oxygen scarcity, this haloarchaeon uses both ions as electron acceptors via a denitrification pathway. In the present work, the maximal nitrite concentration tolerated by this organism was determined by studying the growth of H. mediterranei in minimal medium containing 30, 40 and 50 mM nitrite as sole nitrogen source and under initial oxic conditions at 42 degrees C. The results showed the ability of H. mediterranei to withstand nitrite concentrations up to 50 mM. At the beginning of the incubation, nitrate was detected in the medium, probably due to the spontaneous oxidation of nitrite under the initial oxic conditions. The complete removal of nitrite and nitrate was accomplished in most of the tested conditions, except in culture medium containing 50 mM nitrite, suggesting that this concentration compromised the denitrification capacity of the cells. Nitrite and nitrate reductases activities were analyzed at different growth stages of H. mediterranei. In all cases, the activities of the respiratory enzymes were higher than their assimilative counterparts; this was especially the case for NirK. The denitrifying and possibly detoxifying role of this enzyme might explain the high nitrite tolerance of H. mediterranei. This archaeon was also able to remove 60% of the nitrate and 75% of the nitrite initially present in brine samples collected from a wastewater treatment facility. These results suggest that H. mediterranei, and probably other halophilic denitrifying Archaea, are suitable candidates for the bioremediation of brines with high nitrite and nitrate concentrations. PMID:23847815

  19. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein.

    PubMed

    Simon, Jörg; Sänger, Monica; Schuster, Stephan C; Gross, Roland

    2003-07-01

    The rumen bacterium Wolinella succinogenes grows by respiratory nitrate ammonification with formate as electron donor. Whereas the enzymology and coupling mechanism of nitrite respiration is well known, nitrate reduction to nitrite has not yet been examined. We report here that intact cells and cell fractions catalyse nitrate and chlorate reduction by reduced viologen dyes with high specific activities. A gene cluster encoding components of a putative periplasmic nitrate reductase system (napA, G, H, B, F, L, D) was sequenced. The napA gene was inactivated by inserting a kanamycin resistance gene cassette. The resulting mutant did not grow by nitrate respiration and did not reduce nitrate during growth by fumarate respiration, in contrast to the wild type. An antigen was detected in wild-type cells using an antiserum raised against the periplasmic nitrate reductase (NapA) from Paracoccus pantotrophus. This antigen was absent in the W. succinogenes napA mutant. It is concluded that the periplasmic nitrate reductase NapA is the only respiratory nitrate reductase in W. succinogenes, although a second nitrate-reducing enzyme is apparently induced in the napA mutant. The nap cluster of W. succinogenes lacks a napC gene whose product is thought to function in quinol oxidation and electron transfer to NapA in other bacteria. The W. succinogenes genome encodes two members of the NapC/NirT family, NrfH and FccC. Characterization of corresponding deletion mutants indicates that neither of these two proteins is required for nitrate respiration. A mutant lacking the genes encoding respiratory nitrite reductase (nrfHA) had wild-type properties with respect to nitrate respiration. A model of the electron transport chain of nitrate respiration is proposed in which one or more of the napF, G, H and L gene products mediate electron transport from menaquinol to the periplasmic NapAB complex. Inspection of the W. succinogenes genome sequence suggests that ammonia formation from

  20. A convenient method for preparation of pure standards of peroxyacetyl nitrate for atmospheric analyses

    NASA Astrophysics Data System (ADS)

    Nielsen, Torben; Hansen, Anne Maria; Thomsen, Erling Lund

    Peroxyacetyl nitrate (PAN) is synthesized by nitration of peracetic acid (1.2 M), extracted by n- heptane, and purified with normal-phase high-performance liquid chromatography. The purified PAN solution is free of acetyl nitrate. The content of PAN is determined by means of hydrolysis of PAN into nitrite, and determination by ion chromatography of nitrite and nitrate (formed by oxidation of nitrite). The purified PAN solution is used for the calibration of the gas Chromatograph with electron capture detection.

  1. Inhibition Of Washed Sludge With Sodium Nitrite

    SciTech Connect

    Congdon, J. W.; Lozier, J. S.

    2012-09-25

    This report describes the results of electrochemical tests used to determine the relationship between the concentration of the aggressive anions in washed sludge and the minimum effective inhibitor concentration. Sodium nitrate was added as the inhibitor because of its compatibility with the DWPF process. A minimum of 0.05M nitrite is required to inhibit the washed sludge simulant solution used in this study. When the worst case compositions and safety margins are considered, it is expected that a minimum operating limit of nearly 0.1M nitrite will be specified. The validity of this limit is dependent on the accuracy of the concentrations and solubility splits previously reported. Sodium nitrite additions to obtain 0.1M nitrite concentrations in washed sludge will necessitate the additional washing of washed precipitate in order to decrease its sodium nitrite inhibitor requirements sufficiently to remain below the sodium limits in the feed to the DWPF. Nitrite will be the controlling anion in "fresh" washed sludge unless the soluble chloride concentration is about ten times higher than predicted by the solubility splits. Inhibition of "aged" washed sludge will not be a problem unless significant chloride dissolution occurs during storage. It will be very important tomonitor the composition of washed sludge during processing and storage.

  2. Nitrite impacts the survival of Mycobacterium tuberculosis in response to isoniazid and hydrogen peroxide

    PubMed Central

    Cunningham-Bussel, Amy; Bange, Franz C; Nathan, Carl F

    2013-01-01

    When access to molecular oxygen is restricted, Mycobacterium tuberculosis (Mtb) can respire an alternative electron acceptor, nitrate. We found that Mtb within infected primary human macrophages in vitro at physiologic tissue oxygen tensions respired nitrate, generating copious nitrite. A strain of Mtb lacking a functioning nitrate reductase was more susceptible than wild-type Mtb to treatment with isoniazid during infection of macrophages. Likewise, nitrate reductase-deficient Mtb was more susceptible to isoniazid than wild-type Mtb in axenic culture, and more resistant to hydrogen peroxide. These phenotypes were reversed by the addition of exogenous nitrite. Further investigation suggested that nitrite might inhibit the bacterial catalase. To the extent that Mtb itself is the most relevant source of nitrite acting within Mtb, these findings suggest that inhibitors of Mtb's nitrate transporter or nitrate reductase could enhance the efficacy of isoniazid. PMID:24019302

  3. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  4. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  5. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  6. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  7. Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation

    PubMed Central

    Merino, Leonardo; Darnerud, Per Ola; Toldrá, Fidel; Ilbäck, Nils-Gunnar

    2016-01-01

    ABSTRACT The food additive nitrite (E249, E250) is commonly used in meat curing as a food preservation method. Because of potential negative health effects of nitrite, its use is strictly regulated. In an earlier study we have shown that the calculated intake of nitrite in children can exceed the acceptable daily intake (ADI) when conversion from dietary nitrate to nitrite is included. This study examined time-dependent changes in nitrite levels in four Swedish meat products frequently eaten by children: pork/beef sausage, liver paté and two types of chicken sausage, and how the production process, storage and also boiling (e.g., simmering in salted water) and frying affect the initial added nitrite level. The results showed a steep decrease in nitrite level between the point of addition to the product and the first sampling of the product 24 h later. After this time, residual nitrite levels continued to decrease, but much more slowly, until the recommended use-by date. Interestingly, this continuing decrease in nitrite was much smaller in the chicken products than in the pork/beef products. In a pilot study on pork/beef sausage, we found no effects of boiling on residual nitrite levels, but frying decreased nitrite levels by 50%. In scenarios of time-dependent depletion of nitrite using the data obtained for sausages to represent all cured meat products and including conversion from dietary nitrate, calculated nitrite intake in 4-year-old children generally exceeded the ADI. Moreover, the actual intake of nitrite from cured meat is dependent on the type of meat source, with a higher residual nitrite levels in chicken products compared with pork/beef products. This may result in increased nitrite exposure among consumers shifting their consumption pattern of processed meats from red to white meat products. PMID:26743589

  8. Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation.

    PubMed

    Merino, Leonardo; Darnerud, Per Ola; Toldrá, Fidel; Ilbäck, Nils-Gunnar

    2016-01-01

    The food additive nitrite (E249, E250) is commonly used in meat curing as a food preservation method. Because of potential negative health effects of nitrite, its use is strictly regulated. In an earlier study we have shown that the calculated intake of nitrite in children can exceed the acceptable daily intake (ADI) when conversion from dietary nitrate to nitrite is included. This study examined time-dependent changes in nitrite levels in four Swedish meat products frequently eaten by children: pork/beef sausage, liver paté and two types of chicken sausage, and how the production process, storage and also boiling (e.g., simmering in salted water) and frying affect the initial added nitrite level. The results showed a steep decrease in nitrite level between the point of addition to the product and the first sampling of the product 24 h later. After this time, residual nitrite levels continued to decrease, but much more slowly, until the recommended use-by date. Interestingly, this continuing decrease in nitrite was much smaller in the chicken products than in the pork/beef products. In a pilot study on pork/beef sausage, we found no effects of boiling on residual nitrite levels, but frying decreased nitrite levels by 50%. In scenarios of time-dependent depletion of nitrite using the data obtained for sausages to represent all cured meat products and including conversion from dietary nitrate, calculated nitrite intake in 4-year-old children generally exceeded the ADI. Moreover, the actual intake of nitrite from cured meat is dependent on the type of meat source, with a higher residual nitrite levels in chicken products compared with pork/beef products. This may result in increased nitrite exposure among consumers shifting their consumption pattern of processed meats from red to white meat products. PMID:26743589

  9. [Nitrate removal by a strain of nitrate-dependent Fe (II) -oxidizing bacteria].

    PubMed

    Wang, Hong-Yu; Yang, Kai; Zhang, Qian; Ji, Bin; Chen, Dan; Sun, Yu-Chong; Tian, Jun

    2014-04-01

    A nitrate-dependent Fe(II)-oxidizing bacterial strain, named W5, was isolated from the sediment of the East Lake in Wuhan. Strain W5 was studied for its characteristics of denitrification and nitrogen removal. According to its physiological and biochemical characteristics and the analysis of its 16S rRNA gene sequence, strain W5 was identified as Microbacterium sp. The optimal denitrification performance can be obtained under conditions of NO3(-) -N 40 mg x L(-1), Fe2+ 500 mg x L(-1) and pH 6.8-7.0. After one week of cultivation under optimal conditions, nitrate removal percentage reached 87.0%. During the process of the culture, the nitrite nitrogen concentration was no more than 0.31 mg x L(-1) and there was no ammonia nitrogen production. It was indicated that the nitrate was mostly converted into N2. The consumption rate of Fe2+ was 95.2%. PMID:24946599

  10. Effect of Encapsulating Nitrate in Sesame Gum on In vitro Rumen Fermentation Parameters

    PubMed Central

    Mamvura, Chiedza Isabel; Cho, Sangbuem; Mbiriri, David Tinotenda; Lee, Hong-gu; Choi, Nag-Jin

    2014-01-01

    Encapsulation is a method used to protect material from certain undesirable environments, for controlled release at a more favorable time and place. Animal productivity would be enhanced if feed additives are delivered to be utilized at their site of action, bypassing the rumen where they are likely to be degraded by microbial action. A novel method of encapsulation with sesame gum was used to coat nitrate, a known enteric methane mitigating agent, and tested for the effect on methane reduction and other in vitro fermentation parameters using rumen fluid from cannulated Hanwoo steers. Orchard grass was used as basal diet for fermentation. The treatments were matrix (1.1 g sesame gum+0.4 g sesame oil cake) only, encapsulated nitrate (matrix+nitrate [21 mM]), free nitrate (21 mM), and a control that contained no additive. Analyses of fermentation parameters were done at 0, 3, 6, 9, 12, 24, and 48 h time periods. In comparison to control, both free and encapsulated nitrate produced significantly reduced (p<0.01) methane (76% less) and also the total volatile fatty acids were reduced. A significantly higher (p<0.01) concentration of ammonia nitrogen was obtained with the encapsulated nitrate treatment (44%) compared to the free form (28%) and matrix only (20%) (p = 0.014). This might suggest slow release of encapsulated nitrate so that it is fully reduced to ammonia. Thus, this pioneering study found a significant reduction in methane production following the use of sesame gum encapsulated nitrate that shows the potential of a controlled release system in enhancing sustainability of ruminant production while reducing/eliminating the risk of nitrite toxicity. PMID:25358317

  11. Effect of Encapsulating Nitrate in Sesame Gum on In vitro Rumen Fermentation Parameters.

    PubMed

    Mamvura, Chiedza Isabel; Cho, Sangbuem; Mbiriri, David Tinotenda; Lee, Hong-Gu; Choi, Nag-Jin

    2014-11-01

    Encapsulation is a method used to protect material from certain undesirable environments, for controlled release at a more favorable time and place. Animal productivity would be enhanced if feed additives are delivered to be utilized at their site of action, bypassing the rumen where they are likely to be degraded by microbial action. A novel method of encapsulation with sesame gum was used to coat nitrate, a known enteric methane mitigating agent, and tested for the effect on methane reduction and other in vitro fermentation parameters using rumen fluid from cannulated Hanwoo steers. Orchard grass was used as basal diet for fermentation. The treatments were matrix (1.1 g sesame gum+0.4 g sesame oil cake) only, encapsulated nitrate (matrix+nitrate [21 mM]), free nitrate (21 mM), and a control that contained no additive. Analyses of fermentation parameters were done at 0, 3, 6, 9, 12, 24, and 48 h time periods. In comparison to control, both free and encapsulated nitrate produced significantly reduced (p<0.01) methane (76% less) and also the total volatile fatty acids were reduced. A significantly higher (p<0.01) concentration of ammonia nitrogen was obtained with the encapsulated nitrate treatment (44%) compared to the free form (28%) and matrix only (20%) (p = 0.014). This might suggest slow release of encapsulated nitrate so that it is fully reduced to ammonia. Thus, this pioneering study found a significant reduction in methane production following the use of sesame gum encapsulated nitrate that shows the potential of a controlled release system in enhancing sustainability of ruminant production while reducing/eliminating the risk of nitrite toxicity. PMID:25358317

  12. Field determination of nitrate using nitrate reductase

    SciTech Connect

    Campbell, E.R.; Corrigan, J.S.; Campbell, W.H.

    1997-12-31

    Nitrate is routinely measured in a variety of substrates - water, tissues, soils, and foods - both in the field and in laboratory settings. The most commonly used nitrate test methods involve the reduction of nitrate to nitrite via a copper-cadmium reagent, followed by reaction of the nitrite with the Griess dye reagents. The resulting color is translated into a nitrate concentration by comparison with a calibrated color chart or comparator, or by reading the absorbance in a spectrophotometer. This basic method is reliable and sufficiently sensitive for many applications. However, the cadmium reagent is quite toxic. The trend today is for continued increase in concern for worker health and safety; in addition, there are increasing costs and logistical problems associated with regulatory constraints on transport and disposal of hazardous materials. Some suppliers have substituted a zinc-based reagent powder for the cadmium in an effort to reduce toxicity. We describe here an enzyme-based nitrate detection method as an improvement on the basic Griess method that demonstrates equal or superior sensitivity, superior selectivity, and is more environmentally benign. Comparisons between the enzyme-based method and some standard field test kits being used today are made.

  13. Dietary exposure to benzoates (E210-E213), parabens (E214-E219), nitrites (E249-E250), nitrates (E251-E252), BHA (E320), BHT (E321) and aspartame (E951) in children less than 3 years old in France.

    PubMed

    Mancini, F R; Paul, D; Gauvreau, J; Volatier, J L; Vin, K; Hulin, M

    2015-01-01

    This study aimed to estimate the exposure to seven additives (benzoates, parabens, nitrites, nitrates, BHA, BHT and aspartame) in children aged less than 3 years old in France. A conservative approach, combining individual consumption data with maximum permitted levels, was carried out for all the additives. More refined estimates using occurrence data obtained from products' labels (collected by the French Observatory of Food Quality) were conducted for those additives that exceeded the acceptable daily intake (ADI). Information on additives' occurrence was obtained from the food labels. When the ADI was still exceeded, the exposure estimate was further refined using measured concentration data, if available. When using the maximum permitted level (MPL), the ADI was exceeded for benzoates (1.94 mg kg(-1) bw day(-1)), nitrites (0.09 mg kg(-1) bw day(-1)) and BHA (0.39 mg kg(-1) bw day(-1)) in 25%, 54% and 20% of the entire study population respectively. The main food contributors identified with this approach were current foods as these additives are not authorised in specific infant food: vegetable soups and broths for both benzoates and BHA, delicatessen and meat for nitrites. The exposure estimate was significantly reduced when using occurrence data, but in the upper-bound scenario the ADI was still exceeded significantly by the age group 13-36 months for benzoates (2%) and BHA (1%), and by the age group 7-12 months (16%) and 13-36 months (58%) for nitrites. Measured concentration data were available exclusively for nitrites and the results obtained using these data showed that the nitrites' intake was below the ADI for all the population considered in this study. These results suggest that refinement of exposure, based on the assessment of food levels, is needed to estimate the exposure of children to BHA and benzoates for which the risk of exceeding the ADI cannot be excluded when using occurrence data. PMID:25686474

  14. Biological Nitrogen Removal through Nitritation Coupled with Thiosulfate-Driven Denitritation.

    PubMed

    Qian, Jin; Zhou, Junmei; Zhang, Zhen; Liu, Rulong; Wang, Qilin

    2016-01-01

    A novel biological nitrogen removal system based on nitritation coupled with thiosulfate-driven denitritation (Nitritation-TDD) was developed to achieve a high nitrogen removal rate and low sludge production. A nitritation sequential batch reactor (nitritation SBR) and an anoxic up-flow sludge bed (AnUSB) reactor were applied for effective nitritation and denitritation, respectively. Above 75% nitrite was accumulated in the nitritation SBR with an influent ammonia loading rate of 0.43 kg N/d/m(3). During Nitritation-TDD operation, particle sizes (d50) of the sludge decreased from 406 to 225 um in nitritation SBR and from 327-183 um in AnUSB reactor. Pyrosequencing tests revealed that ammonium-oxidizing bacteria (AOB) population was stabilized at approximately 7.0% (calculated as population of AOB-related genus divided by the total microbial population) in the nitritation SBR. In contrast, nitrite-oxidizing bacteria (NOB) population decreased from 6.5-0.6% over the same time, indicating the effective nitrite accumulation in the nitritation SBR. Thiobacillus, accounting for 34.2% in the AnUSB reactor, was mainly responsible for nitrogen removal via autotrophic denitritation, using an external source of thiosulfate as electron donor. Also, it was found that free nitrous acid could directly affect the denitritation activity. PMID:27272192

  15. Biological Nitrogen Removal through Nitritation Coupled with Thiosulfate-Driven Denitritation

    PubMed Central

    Qian, Jin; Zhou, Junmei; Zhang, Zhen; Liu, Rulong; Wang, Qilin

    2016-01-01

    A novel biological nitrogen removal system based on nitritation coupled with thiosulfate-driven denitritation (Nitritation-TDD) was developed to achieve a high nitrogen removal rate and low sludge production. A nitritation sequential batch reactor (nitritation SBR) and an anoxic up-flow sludge bed (AnUSB) reactor were applied for effective nitritation and denitritation, respectively. Above 75% nitrite was accumulated in the nitritation SBR with an influent ammonia loading rate of 0.43 kg N/d/m3. During Nitritation-TDD operation, particle sizes (d50) of the sludge decreased from 406 to 225 um in nitritation SBR and from 327–183 um in AnUSB reactor. Pyrosequencing tests revealed that ammonium-oxidizing bacteria (AOB) population was stabilized at approximately 7.0% (calculated as population of AOB-related genus divided by the total microbial population) in the nitritation SBR. In contrast, nitrite-oxidizing bacteria (NOB) population decreased from 6.5–0.6% over the same time, indicating the effective nitrite accumulation in the nitritation SBR. Thiobacillus, accounting for 34.2% in the AnUSB reactor, was mainly responsible for nitrogen removal via autotrophic denitritation, using an external source of thiosulfate as electron donor. Also, it was found that free nitrous acid could directly affect the denitritation activity. PMID:27272192

  16. Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats.

    PubMed

    Viegas, C M; Zanatta, Â; Grings, M; Hickmann, F H; Monteiro, W O; Soares, L E; Sitta, Â; Leipnitz, G; de Oliveira, F H; Wajner, M

    2014-06-01

    Hyperammonemia is a common finding in children with methylmalonic acidemia and propionic acidemia, but its contribution to the development of the neurological symptoms in the affected patients is poorly known. Considering that methylmalonic acid (MMA) and propionic acid (PA) predominantly accumulate in these disorders, we investigated the effects of hyperammonemia induced by urease treatment in 30-day-old rats receiving an intracerebroventricular (ICV) injection of MMA or PA on important parameters of redox homeostasis in cerebral cortex and striatum. We evaluated glutathione (GSH) concentrations, sulfhydryl content, nitrate and nitrite concentrations, 2',7'-dichlorofluorescein (DCFH) oxidation, and the activity of antioxidant enzymes. MMA decreased GSH concentrations and sulfhydryl content and increased nitrate and nitrite concentrations in cerebral cortex and striatum from hyperammonemic rats, whereas MMA or ammonia per se did not alter these parameters. MMA plus hyperammonemia also decreased glutathione reductase activity in rat cerebral cortex, but did not affect catalase, superoxide dismutase and glutathione peroxidase activities, neither DCFH oxidation. Furthermore, ICV PA administration alone or combined with hyperammonemia did not alter any of the evaluated parameters. We also found that pre-treatment with antioxidants prevented GSH reduction and sulfhydryl oxidation, whereas N(ω)-nitro-L-arginine methyl ester (L-NAME) prevented the increased nitrate and nitrite concentrations provoked by MMA plus ammonia treatments. Histological alterations, including vacuolization, ischemic neurons, and pericellular edema, were observed in brain of hyperammonemic rats injected with MMA. The data indicate a synergistic effect of MMA and ammonia disturbing redox homeostasis and causing morphological brain abnormalities in rat brain. PMID:24580146

  17. Role of nitrite, urate and pepsin in the gastroprotective effects of saliva

    PubMed Central

    Rocha, Bárbara S.; Lundberg, Jon O; Radi, Rafael; Laranjinha, João

    2016-01-01

    Dietary nitrate is now recognized as an alternative substrate for nitric oxide (•NO) production in the gut. This novel pathway implies the sequential reduction of nitrate to nitrite, •NO and other bioactive nitrogen oxides but the physiological relevance of these oxidants has remained elusive. We have previously shown that dietary nitrite fuels an hitherto unrecognized nitrating pathway at acidic gastric pH, through which pepsinogen is nitrated in the gastric mucosa, yielding a less active form of pepsin in vitro. Here, we demonstrate that pepsin is nitrated in vivo and explore the functional impact of protein nitration by means of peptic ulcer development. Upon administration of pentagastrin and human nitrite-rich saliva or sodium nitrite to rats, nitrated pepsin was detected in the animal's stomach by immunoprecipitation. •NO was measured in the gastric headspace before and after nitrite instillation by chemiluminescence. At the end of each procedure, the stomach's lesions, ranging from gastric erosions to haemorrhagic ulcers, were scored. Nitrite increased gastric •NO by 200-fold (p<0.05) and nitrated pepsin was detected both in the gastric juice and the mucosa (p<0.05). Exogenous urate, a scavenger of nitrogen dioxide radical, blunted •NO detection and inhibited pepsin nitration, suggesting an underlining free radical-dependent mechanism for nitration. Functionally, pepsin nitration prevented the development of gastric ulcers, as the lesions were only apparent when pepsin nitration was inhibited by urate. In sum, this work unravels a novel dietary-dependent nitrating pathway in which pepsin is nitrated and inactivated in the stomach, preventing the progression of gastric ulcers. PMID:27156250

  18. Role of nitrite, urate and pepsin in the gastroprotective effects of saliva.

    PubMed

    Rocha, Bárbara S; Lundberg, Jon O; Radi, Rafael; Laranjinha, João

    2016-08-01

    Dietary nitrate is now recognized as an alternative substrate for nitric oxide (•NO) production in the gut. This novel pathway implies the sequential reduction of nitrate to nitrite, •NO and other bioactive nitrogen oxides but the physiological relevance of these oxidants has remained elusive. We have previously shown that dietary nitrite fuels an hitherto unrecognized nitrating pathway at acidic gastric pH, through which pepsinogen is nitrated in the gastric mucosa, yielding a less active form of pepsin in vitro. Here, we demonstrate that pepsin is nitrated in vivo and explore the functional impact of protein nitration by means of peptic ulcer development. Upon administration of pentagastrin and human nitrite-rich saliva or sodium nitrite to rats, nitrated pepsin was detected in the animal's stomach by immunoprecipitation. •NO was measured in the gastric headspace before and after nitrite instillation by chemiluminescence. At the end of each procedure, the stomach's lesions, ranging from gastric erosions to haemorrhagic ulcers, were scored. Nitrite increased gastric •NO by 200-fold (p<0.05) and nitrated pepsin was detected both in the gastric juice and the mucosa (p<0.05). Exogenous urate, a scavenger of nitrogen dioxide radical, blunted •NO detection and inhibited pepsin nitration, suggesting an underlining free radical-dependent mechanism for nitration. Functionally, pepsin nitration prevented the development of gastric ulcers, as the lesions were only apparent when pepsin nitration was inhibited by urate. In sum, this work unravels a novel dietary-dependent nitrating pathway in which pepsin is nitrated and inactivated in the stomach, preventing the progression of gastric ulcers. PMID:27156250

  19. Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium

    PubMed Central

    Rajeev, Lara; Chen, Amy; Kazakov, Alexey E.; Luning, Eric G.; Zane, Grant M.; Novichkov, Pavel S.; Wall, Judy D.

    2015-01-01

    ABSTRACT Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness at low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. We discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. IMPORTANCE The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB. PMID:26283774

  20. Influence of operating conditions on electrochemical reduction of nitrate in groundwater.

    PubMed

    Huang, Wenli; Li, Miao; Zhang, Baogang; Feng, Chuanping; Lei, Xiaohui; Xu, Bin

    2013-03-01

    The influences of current density, initial pH, cation and anion concentrations, and the coexistence of Ca2+ and HCO3- on the efficiency of electrochemical nitrate reduction by a copper cathode and Ti/IrO2 anode in an undivided cell were studied. In the presence of 5 mM of sodium chloride (NaCl), the nitrate-nitrogen concentration decreased from 3.57 to 0.69 mM in 120 minutes, and no ammonia or nitrite byproducts were detected. The nitrate reduction rate increased as the current density increased. The electrochemical method performed well at an initial pH range of 3.0 to 11.0. The rate of nitrate reduction increased as concentrations of Na+, K+, and Ca2+ increased. The anion of the supporting electrolyte decreased the rate of reduction in the order Cl- > HCO3(2-) = CO3(2-) > SO4(2-) at both 5 mM and 10 mM of anion. The coexistence of Ca2+ and HCO3- ions could inhibit nitrate reduction. The concentration of nitrate-nitrogen in polluted groundwater decreased from 2.80 to 0.31 mM after electrolysis for 120 minutes. PMID:23581237

  1. Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor.

    PubMed

    Fajardo, Carmen; Mora, Mabel; Fernández, Isaac; Mosquera-Corral, Anuska; Campos, José Luis; Méndez, Ramón

    2014-02-01

    Autotrophic denitrification is a suitable technology to simultaneously remove oxidised nitrogen compounds and reduced sulphur compounds yielding nitrogen gas, sulphur and sulphate as the main products. In this work, several batch tests were conducted to investigate the cross effect of temperature, pH and free ammonia on the autotrophic denitrification. Denitrification efficiencies above 95% were achieved at 35°C and pH 7.5-8.0 with maximum specific autotrophic denitrifying activities up to 188mgN2g(-1)VSSd(-1). Free ammonia did not show any effect on denitrification at concentrations up to 53mg NH3-NL(-1). Different sulphide concentrations were also tested with stoichiometric nitrite and nitrate concentrations. Sulphide inhibited denitrification at concentrations higher than 200mgS(2-)L(-1). A 50% inhibition was also found at nitrite concentrations above 48mg NO2(-)-NL(-1). The maximum specific activity decreased until a value of 25mgN2g(-1) VSSd(-1) at 232mg NO2(-)-NL(-1). The Haldane model was used to describe denitrification inhibition caused by nitrite. Kinetic parameters determined from the fitting of experimental data were rmax=176mgN2g(-1)VSSd(-1), Ks=10.7mg NO2(-)-NL(-1) and Ki=34.7mg NO2(-)-NL(-1). The obtained model allowed optimising an autotrophic denitrification process by avoiding situations of inhibition and thus obtaining higher denitrification efficiencies. PMID:24216266

  2. Electrochemical Studies of Nitrate-Induced Pitting in Carbon Steel

    SciTech Connect

    Zapp, P.E.

    1998-12-07

    The phenomenon of pitting in carbon steel exposed to alkaline solutions of nitrate and chloride was studied with the cyclic potentiodynamic polarization technique. Open-circuit and pitting potentials were measured on specimens of ASTM A537 carbon steel in pH 9.73 salt solutions at 40 degrees Celsius, with and without the inhibiting nitrite ion present. Nitrate is not so aggressive a pitting agent as is chloride. Both nitrate and chloride did induce passive breakdown and pitting in nitrite-free solutions, but the carbon steel retained passivity in solutions with 0.11-M nitrite even at a nitrate concentration of 2.2 M.

  3. Characteristics of Nitrate Reduction in a Mutant of the Blue-Green Alga Agmenellum quadruplicatum1

    PubMed Central

    Stevens, S. E.; Van Baalen, Chase

    1973-01-01

    Characteristics of nitrate reduction in terms of nitrite production in an N-methyl-N′-nitro-N-nitrosoguanidine-induced mutant of the blue-green alga Agmenellum quadruplicatum are described. Following induction of nitrate reduction a linear rate of nitrite production proportional to cell concentration was observed. Rate of nitrite production and growth rate showed similar responses to pH, temperature, and light intensity. If required, only trace amounts of carbon dioxide were necessary for nitrite production. Atmospheres of oxygen or nitrogen inhibited production of nitrite. In addition, a low but constant rate of nitrite production was observed in the dark. Nitrite production by mutant AQ-6 was studied in terms of photosynthesis. As nitrite production proceeded, rate of photosynthesis declined. Ultraviolet irradiation and 3-(3,4-dichlorophenyl)-1, 1-dimethylurea poisoning did not prevent nitrite production. The action spectrum of nitrite production was chlorophyll a-like. PMID:16658328

  4. Nitrate reduction in a simulated free-water surface wetland system.

    PubMed

    Misiti, Teresa M; Hajaya, Malek G; Pavlostathis, Spyros G

    2011-11-01

    The feasibility of using a constructed wetland for treatment of nitrate-contaminated groundwater resulting from the land application of biosolids was investigated for a site in the southeastern United States. Biosolids degradation led to the release of ammonia, which upon oxidation resulted in nitrate concentrations in the upper aquifer in the range of 65-400 mg N/L. A laboratory-scale system was constructed in support of a pilot-scale project to investigate the effect of temperature, hydraulic retention time (HRT) and nitrate and carbon loading on denitrification using soil and groundwater from the biosolids application site. The maximum specific reduction rates (MSRR), measured in batch assays conducted with an open to the atmosphere reactor at four initial nitrate concentrations from 70 to 400 mg N/L, showed that the nitrate reduction rate was not affected by the initial nitrate concentration. The MSRR values at 22 °C for nitrate and nitrite were 1.2 ± 0.2 and 0.7 ± 0.1 mg N/mg VSS(COD)-day, respectively. MSRR values were also measured at 5, 10, 15 and 22 °C and the temperature coefficient for nitrate reduction was estimated at 1.13. Based on the performance of laboratory-scale continuous-flow reactors and model simulations, wetland performance can be maintained at high nitrogen removal efficiency (>90%) with an HRT of 3 days or higher and at temperature values as low as 5 °C, as long as there is sufficient biodegradable carbon available to achieve complete denitrification. The results of this study show that based on the climate in the southeastern United States, a constructed wetland can be used for the treatment of nitrate-contaminated groundwater to low, acceptable nitrate levels. PMID:21885082

  5. Evidence for a Role of Calcium in Nitrate Assimilation in Wheat Seedlings 1

    PubMed Central

    Paulsen, Gary M.; Harper, James E.

    1968-01-01

    Severely Ca-deficient Triticum aestivum L. seedlings accumulated high levels of nitrite and moderate levels of nitrate and organic nitrogen, but contained unaltered levels of hydroxylamine. Nitrite accumulation was not related to molybdenum deficiency, or altered cellular pH. Nitrate reductase was decreased by Ca deficiency, apparently by repression of enzyme synthesis from accumulated nitrite and not by inhibition of enzyme activity. Nitrite reductase and NADP diaphorase activities were not affected by Ca deficiency, and Ca did not restore activity to nitrite reductase inactivated by cyanide. The results indicated that the role of Ca is in intracellular transport of nitrite and not in induction or activity of enzymes. Images PMID:16656839

  6. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    PubMed Central

    Sauder, Laura A.; Mosquera, Mariela; Neufeld, Josh D.; Boon, Nico

    2014-01-01

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  7. Temporal and spatial stability of ammonia-oxidizing archaea and bacteria in aquarium biofilters.

    PubMed

    Bagchi, Samik; Vlaeminck, Siegfried E; Sauder, Laura A; Mosquera, Mariela; Neufeld, Josh D; Boon, Nico

    2014-01-01

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4-5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥ 81-86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  8. An evaluation of liquid ammonia (ammonium hydroxide) as a candidate piscicide

    USGS Publications Warehouse

    Ward, David L.; Morton-Starner, R.; Hedwall, Shaula J.

    2013-01-01

    Eradication of populations of nonnative aquatic species for the purpose of reintroducing native fish is often difficult because very few effective tools are available for removing aquatic organisms. This creates the need to evaluate new chemicals that could be used as management tools for native fish conservation. Ammonia is a natural product of fish metabolism and is naturally present in the environment at low levels, yet is known to be toxic to most aquatic species. Our objective was to determine the feasibility of using liquid ammonia as a fisheries management tool by evaluating its effectiveness at killing undesirable aquatic species and its persistence in a pond environment. A suite of invasive aquatic species commonly found in the southwestern USA were introduced into two experimental outdoor ponds located at the Rocky Mountain Research Station in Flagstaff, Arizona. Each pond was treated with ammonium hydroxide (29%) at 38 ppm. This target concentration was chosen because previous studies using anhydrous ammonia reported incomplete fish kills in ponds at concentrations less than 30 ppm. Water quality was monitored for 49 d to determine how quickly the natural bacteria in the environment converted the ammonia to nitrate. Ammonia levels remained above 8 ppm for 24 and 18 d, respectively, in ponds 1 and 2. Nitrite levels in each pond began to rise approximately 14 d after dosing with ammonia and stayed above 5 ppm for an additional 21 d in pond 1 and 18 d in pond 2. After 49 d all water in both ponds was drained and no fish, crayfish, or tadpoles were found to have survived the treatment, but aquatic turtles remained alive and appeared unaffected. Liquid ammonia appears to be an effective tool for removing many problematic invasive aquatic species and may warrant further investigation as a piscicide.

  9. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.

    PubMed

    Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. PMID:27134026

  10. [Diversity of ammonia-oxidizing archaea in Tibetan Zoige plateau wetland ].

    PubMed

    Zheng, Youkun; Wang, Xianbin; Gu, Yunfu; Zhang, Xiaoping

    2014-09-01

    [ OBJECTIVE ] Investigation of ammonia-oxidizing archaea (AOA) in nature environments is important to understand the global nitrogen cycling. However, little is known about the AOA community in plateau wetland. Therefore, we studied the composition and diversity of AOA in Zoige plateau wetland swamp soil. [METHODS] Total DNA was extracted from the swamp soil of three typical wetlands including A'xi pastoral area, Maixi pastoral area and Fenqu pastoral area locate in Zoige plateau wetland, and amoA gene was amplified with universally AOA amoA gene primers and then cloned. Then 80 positive clones for each clone library were chosen for further restriction fragment length polymorphism (RFLP) analysis, and the typical RFLP types were selected for sequencing and clustered into operational taxonomic units (OTUs) at 98% cutoff using the Mothur software. The MEGA 5. 0 software was used for the amoA gene phylogeny analysis. [RESULTS] A total of 240 positive clones for all 3 libraries were used for RFLP analysis, and 15 specific amoA sequences were sequenced and clustered into 7 OTUs at 98% cutoff. Among them, OTU6 was detected in all of the 3 libraries and included 27% of the total specific clones. The phylogeny analysis showed that the 15 amoA sequences were grouped into 3 subgroups consisted of Zoige Wetland Clade 1 (4 OTUs), Zoige Wetland Clade 2 (2 OTUs) and Zoige Wetland Clade 3 (1 OTU). BLAST analysis showed that all OTUs were affiliated with the phylum Crenarchaeota. Correlation analysis showed that the Shannon diversity index (H') was significantly correlated with ammonia, nitrate/nitrite (P <0. 05). [ CONCLUSION] AOA in the Zoige plateau wetland swamp soil are all belonged to the Crenarchaeota, and their diversity is significantly correlated with soil ammonia, nitrate/nitrite content. PMID:25522598

  11. Ammonia in simulated Hanford double-shell tank wastes: Solubility and effects on surface tension

    SciTech Connect

    Norton, J.D.; Pederson, L.R.

    1994-09-01

    Radioactive and wastes left from defense materials production activities are temporarily stored in large underground tanks at the Hanford Site in south central Washington State (Tank Waste Science Panel 1991). Some of these wastes are in the form of a thick slurry (``double-shell slurry``) containing sodium nitrate, sodium nitrite, sodium aluminate, sodium hydroxide, sodium carbonate, organic complexants and buffering agents, complexant fragments and other minor components (Herting et al. 1992a; Herting et al. 1992b; Campbell et al. 1994). As a result of thermal and radiolytic processes, a number of gases are known to be produced by some of these stored wastes, including ammonia, nitrous oxide, nitrogen, hydrogen, and methane (Babad et al. 1991; Ashby et al. 1992; Meisel et al. 1993; Ashby et al. 1993; Ashby et al. 1994; Bryan et al. 1993; US Department of Energy 1994). Before the emplacement of a mixer pump, these gases were retained in and periodically released from Tank 241-SY-101, a double-shell tank at the Hanford Site (Babad et al. 1992; US Department of Energy 1994). Gases are believed to be retained primarily in the form of bubbles attached to solid particles (Bryan, Pederson, and Scheele 1992), with very little actually dissolved in the liquid. Ammonia is an exception. The relation between the concentration of aqueous ammonia in such concentrated, caustic mixtures and the ammonia partial pressure is not well known, however.

  12. Oil Field Souring Control by Nitrate-Reducing Sulfurospirillum spp. That Outcompete Sulfate-Reducing Bacteria for Organic Electron Donors▿ †

    PubMed Central

    Hubert, Casey; Voordouw, Gerrit

    2007-01-01

    Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB. PMID:17308184

  13. Volatile fatty acid impacts on nitrite oxidation and carbon dioxide fixation in activated sludge.

    PubMed

    Oguz, Merve T; Robinson, Kevin G; Layton, Alice C; Sayler, Gary S

    2006-02-01

    Batch test were performed to assess nitrite removal, nitrate formation, CO2 fixation, gaseous nitrogen production and microbial density in activated sludge exposed to volatile fatty acid (VFA) mixtures. Nitrite removal and nitrate formation were both affected by the presence of VFAs, but to different degrees. Nitrate formation rates were reduced to a greater extent (79%) than nitrite removal rates (36%) resulting in an apparent unbalanced nitrite oxidation reaction. Since the total bacterial density and the nitrite oxidizing bacteria (NOB, Nitrospira) concentration remained essentially constant under all test conditions, the reduction in rates was not due to heterotrophic uptake of nitrogen or to a decrease in the NOB population. In contrast to the nitrogen results, VFAs were not found to impact CO2 fixation efficiency. It appeared that nitrite oxidation occurred when VFAs were present since the oxidation of nitrite provides energy for CO2 fixation. However, nitrate produced from the oxidation of nitrite was reduced to gaseous nitrogen products. N2O gas was detected in the presence of VFAs which was a clear indication that VFAs stimulated an alternative pathway, such as aerobic denitrification, during biotransformation of nitrogen in activated sludge. PMID:16436292

  14. Combination process of limited filamentous bulking and nitrogen removal via nitrite for enhancing nitrogen removal and reducing aeration requirements.

    PubMed

    Guo, Jianhua; Peng, Yongzhen; Yang, Xiong; Gao, Chundi; Wang, Shuying

    2013-03-01

    Limited filamentous bulking (LFB) activated sludge process was proposed by Guo et al. (2010) to increase the removal of tiny suspended particulates in the clarifier and reduce aeration energy consumption. However, when the use of LFB process, ammonium removal efficiency would be compromised due to low dissolved oxygen (DO). In this study, the combination process of nitrogen removal via nitrite and LFB was achieved to enhance nitrogen removal and reduce aeration energy consumption by controlling low DO levels (0.5-1.0 mg L(-1)) in a lab-scale anoxic-oxic reactor (V=66 L) treating real domestic wastewater at room temperature. Above 85% of nitrite accumulation ratio was steadily maintained during continuous operation period. The combined process improved the total nitrogen (TN) removal by about 20% in comparison to the traditional process via the nitrate pathway, and also reduced the specific aeration energy consumption by 35%. COD, ammonium and TN removal efficiencies were up to 86%, 94% and 75%, respectively. The process proved effective in achieving a steady LFB state, whereby sludge volume index between 150 and 250 mL g(-1) was sustained for long-term operation. The microbial community structure was analyzed by fluorescence in situ hybridization, which indicated ammonia-oxidizing bacteria out-competed nitrite-oxidizing bacteria. Moreover, the filaments Type 0041 and Microthrix parvicella proliferated with limited abundance. The results indicated the combination process of LFB and nitrogen removal via nitrite under low DO was a feasible solution for saving energy and enhancing nitrogen removal when treating domestic wastewater. PMID:23305749

  15. A Mesophilic, Autotrophic, Ammonia-Oxidizing Archaeon of Thaumarchaeal Group I.1a Cultivated from a Deep Oligotrophic Soil Horizon

    PubMed Central

    Jung, Man-Young; Park, Soo-Je; Kim, So-Jeong; Kim, Jong-Geol; Sinninghe Damsté, Jaap S.

    2014-01-01

    Soil nitrification plays an important role in the reduction of soil fertility and in nitrate enrichment of groundwater. Various ammonia-oxidizing archaea (AOA) are considered to be members of the pool of ammonia-oxidizing microorganisms in soil. This study reports the discovery of a chemolithoautotrophic ammonia oxidizer that belongs to a distinct clade of nonmarine thaumarchaeal group I.1a, which is widespread in terrestrial environments. The archaeal strain MY2 was cultivated from a deep oligotrophic soil horizon. The similarity of the 16S rRNA gene sequence of strain MY2 to those of other cultivated group I.1a thaumarchaeota members, i.e., Nitrosopumilus maritimus and “Candidatus Nitrosoarchaeum koreensis,” is 92.9% for both species. Extensive growth assays showed that strain MY2 is chemolithoautotrophic, mesophilic (optimum temperature, 30°C), and neutrophilic (optimum pH, 7 to 7.5). The accumulation of nitrite above 1 mM inhibited ammonia oxidation, while ammonia oxidation itself was not inhibited in the presence of up to 5 mM ammonia. The genome size of strain MY2 was 1.76 Mb, similar to those of N. maritimus and “Ca. Nitrosoarchaeum koreensis,” and the repertoire of genes required for ammonia oxidation and carbon fixation in thaumarchaeal group I.1a was conserved. A high level of representation of conserved orthologous genes for signal transduction and motility in the noncore genome might be implicated in niche adaptation by strain MY2. On the basis of phenotypic, phylogenetic, and genomic characteristics, we propose the name “Candidatus Nitrosotenuis chungbukensis” for the ammonia-oxidizing archaeal strain MY2. PMID:24705324

  16. Determination of nitrate in the blood of the hydrothermal vent tubeworm Riftia pachyptila using a bacterial nitrate reduction assay

    NASA Astrophysics Data System (ADS)

    Pospesel, Mark A.; Hentschel, Ute; Felbeck, Horst

    1998-12-01

    The vestimentiferan tubeworm Riftia pachyptila derives most or all of its nutrition from intracellular chemosynthetic bacterial symbionts. Because purified preparations of symbionts respire nitrate, possibly nitrite, and oxygen, host transport of nitrate is a topic of interest. In the present study, we have developed a nitrate detection assay that utilizes a nitrite reductase-deficient Escherichia coli strain for the reduction of nitrate to nitrite, which is then determined spectrophotometrically. Nitrate and nitrite concentrations were measured in the blood and coelomic fluids of R. pachyptila collected from hydrothermal vent sites at 9°N and 13°N. The blood was shown to have nitrate concentrations up to one hundred times that of ambient sea water (40 μM). Blood nitrate levels reached concentrations of >1 mM, while nitrite was measured in the range of 400-700 μM. The concentrations of nitrate and nitrite in the coelomic fluids were 150-240 μM and <20 μM, respectively. The nitrate determination technique we present here is simple, applicable for laboratory and shipboard use on sea water or biological fluids, and works reliably within the 0.5 to 2000 μM range.

  17. Mechanisms of Nitrite Bioactivation

    PubMed Central

    Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2014-01-01

    It is now accepted that the anion nitrite, once considered an inert oxidation product of nitric oxide (NO), contributes to hypoxic vasodilation, physiological blood pressure control, and redox signaling. As such, its application in therapeutics is being actively testing in pre-clinical models and in human phase I–II clinical trials. Major pathways for nitrite bioactivation involve its reduction to NO by members of the hemoglobin or molybdopterin family of proteins, or catalyzed dysproportionation. These conversions occur preferentially under hypoxic and acidic conditions. A number of enzymatic systems reduce nitrite to NO and their activity and importance are defined by oxygen tension, specific organ system and allosteric and redox effectors. In this work, we review different proposed mechanisms of nitrite bioactivation, focusing on analysis of kinetics and experimental evidence for the relevance of each mechanism under different conditions. PMID:24315961

  18. The mechanism of radiolysis of alkaline-earth nitrates

    NASA Astrophysics Data System (ADS)

    Anan'ev, V.; Kriger, L.; Miklin, M.

    2015-04-01

    The formation of peroxynitrite and nitrite in crystalline alkaline-earth nitrates under γ-irradiation at 310 K by optical reflectance spectroscopy has been studied. The radiolysis of Sr(NO3)2 and Ba(NO3)2 results in nitrite and peroxynitrite, Mg(NO3)2·6H2O and Ca(NO3)2·4H2O - nitrite. The mechanism for nitrite and peroxynitrite formation under γ-irradiation of crystalline alkaline-earth nitrates has been discussed.

  19. Nitrite inhibition of denitrification by Pseudomonas fluorescens

    SciTech Connect

    Almeida, J.S.; Julio, S.M.; Reis, M.A.M. |

    1995-05-05

    Using a pure culture of Pseudomonas fluorescens as a model system nitrite inhibition of denitrification was studied. A mineral media with acetate and nitrate as sole electron donor and acceptor, respectively, was used. Results obtained in continuous stirred-tank reactors (CSTR) operated at pH values between 6.6 and 7.8 showed that growth inhibition depended only on the nitrite undissociated fraction concentration (nitrous acid). A mathematical model to describe this dependence is put forward. The maximum nitrous acid concentration compatible with cell growth and denitrification activity was found to be 66 {mu}g N/L. Denitrification activity was partially associated with growth, as described by the Luedeking-Piret equation. However, when the freshly inoculated reactor was operated discontinuously, nitrite accumulation caused growth uncoupling from denitrification activity. The authors suggest that these results can be interpreted considering that (a) nitrous acid acts as a proton uncoupler; and (b) cultures continuously exposed to nitrous acid prevent the uncoupling effect but not the growth inhibition. Examination of the growth dependence on nitrite concentration at pH 7.0 showed that adapted cultures (growth on CSTR) are less sensitive to nitrous acid inhibition than the ones cultivated in batch.

  20. Quantitative Systems Pharmacology Model of NO Metabolome and Methemoglobin Following Long-Term Infusion of Sodium Nitrite in Humans

    PubMed Central

    Vega-Villa, K; Pluta, R; Lonser, R; Woo, S

    2013-01-01

    A long-term sodium nitrite infusion is intended for the treatment of vascular disorders. Phase I data demonstrated a significant nonlinear dose-exposure-toxicity relationship within the therapeutic dosage range. This study aims to develop a quantitative systems pharmacology model characterizing nitric oxide (NO) metabolome and methemoglobin after sodium nitrite infusion. Nitrite, nitrate, and methemoglobin concentration–time profiles in plasma and RBC were used for model development. Following intravenous sodium nitrite administration, nitrite undergoes conversion in RBC and tissue. Nitrite sequestered by RBC interacts more extensively with deoxyhemoglobin, which contributes greatly to methemoglobin formation. Methemoglobin is formed less-than-proportionally at higher nitrite doses as characterized with facilitated methemoglobin removal. Nitrate-to-nitrite reduction occurs in tissue and via entero-salivary recirculation. The less-than-proportional increase in nitrite and nitrate exposure at higher nitrite doses is modeled with a dose-dependent increase in clearance. The model provides direct insight into NO metabolome disposition and is valuable for nitrite dosing selection in clinical trials. PMID:23903463

  1. Streamlined ammonia removal from wastewater using biological deammonification process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work we evaluated biological deammonification process to more economically remove ammonia from livestock wastewater. The process combines partial nitritation (PN) and anammox. The anammox is a biologically mediated reaction that oxidizes ammonia (NH4+) and releases di-nitrogen gas (N2) unde...

  2. Dietary nitrate and cardiovascular health

    USGS Publications Warehouse

    Ahluwalia, A.; Gladwin, M.T.; Harman, Jane L.; Ward, M.H.; Nolan, Bernard T.

    2014-01-01

    The National Heart, Lung, and Blood Institute convened this workshop to discuss the results of recent research on the effects of inorganic nitrate and nitrite on the cardiovascular system, possible long term effects of these compounds in the diet and drinking water, and future research needs including population-wide effects examined through epidemiological studies.

  3. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    SciTech Connect

    John F. Stolz

    2011-06-15

    A major challenge for the bioremediation of radionuclides (i.e., uranium, technetium) and metals (i.e., Cr(VI), Hg) is the co-occurrence of nitrate as it can inhibit metal transformation. Denitrification (nitrate reduction to dinitrogen gas) is considered the most important ecological process. For many metal and metalloid reducing bacteria, however, ammonia is the end product through respiratory nitrate reduction (RNRA). The focus of this work was to determine how RNRA impacts Cr(VI) transformation. The goal was to elucidate the specific mechanism(s) that limits Cr(VI) reduction in the presence of nitrate and to use this information to develop strategies that enhance Cr(VI) reduction (and thus detoxification). Our central hypothesis is that nitrate impacts the biotransformation of metals and metalloids in three ways 1) as a competitive alternative electron acceptor (inhibiting transformation), 2) as a co-metabolite (i.e., concomitant reduction, stimulating transformation), and 3) as an inducer of specific proteins and pathways involved in oxidation/reduction reactions (stimulating transformation). We have identified three model organisms, Geobacter metallireducens (mechanism 1), Sulfurospirillum barnesii, (mechasism 2), and Desulfovibrio desulfuricans (mechanisms 3). Our specific aims were to 1) investigate the role of Cr(VI) concentration on the kinetics of both growth and reduction of nitrate, nitrite, and Cr(VI) in these three organisms; 2) develop a profile of bacterial enzymes involved in nitrate transformation (e.g., oxidoreductases) using a proteomic approach; 3) investigate the function of periplasmic nitrite reductase (Nrf) as a chromate reductase; and 4) develop a strategy to maximize microbial chromium reduction in the presence of nitrate. We found that growth on nitrate by G. metallireducens was inhibited by Cr(VI). Over 240 proteins were identified by LC/MS-MS. Redox active proteins, outer membrane heavy metal efflux proteins, and chemotaxis sensory

  4. Methemoglobinemia attributable to nitrite contamination of potable water through boiler fluid additives--New Jersey, 1992 and 1996.

    PubMed

    1997-03-01

    Nitrite and nitrate ions are naturally occurring forms of nitrogen that can be present in ground and surface water and can be used as a food preservative because they inhibit the growth of Clostridium botulinum. Exposure to excessive levels of nitrite or nitrate may result in the acute syndrome of methemoglobinemia (MetHb), in which nitrite binds to hemoglobin. This report summarizes the findings of investigations of two incidents in which unintentional exposure to high doses of nitrite occurred through drinking potable water contaminated with additives to boiler conditioning fluids. PMID:9072681

  5. Performance of Denitrifying Microbial Fuel Cell with Biocathode over Nitrite

    PubMed Central

    Zhao, Huimin; Zhao, Jianqiang; Li, Fenghai; Li, Xiaoling

    2016-01-01

    Microbial fuel cell (MFC) with nitrite as an electron acceptor in cathode provided a new technology for nitrogen removal and electricity production simultaneously. The influences of influent nitrite concentration and external resistance on the performance of denitrifying MFC were investigated. The optimal effectiveness were obtained with the maximum total nitrogen (TN) removal rate of 54.80 ± 0.01 g m−3 d−1. It would be rather desirable for the TN removal than electricity generation at lower external resistance. Denaturing gradient gel electrophoresis suggested that Proteobacteria was the predominant phylum, accounting for 35.72%. Thiobacillus and Afipia might benefit to nitrite removal. The presence of nitrifying Devosia indicated that nitrite was oxidized to nitrate via a biochemical mechanism in the cathode. Ignavibacterium and Anaerolineaceae was found in the cathode as a heterotrophic bacterium with sodium acetate as substrate, which illustrated that sodium acetate in anode was likely permeated through proton exchange membrane to the cathode. PMID:27047462

  6. Photochemistry of nitrate ion in acetonitrile

    NASA Astrophysics Data System (ADS)

    Meera, N.; Ramamurthy, P.

    1988-12-01

    The photochemistry of cobalt(II) nitrate in acetonitrile is investigated using steady-state and flash photolysis techniques. Formation of NO 3• radical has been observed as an intermediate by direct photolysis of nitrate ion and the reaction of the nitrate radical with the solvent is observed as a transient absorption around 600 nm in air-equilibrated acetonitrile. Nitrite ion forms as a product through a collision electron transfer complex intermediate.

  7. Biochemical predetermination of the NO synthase and nitrite reductase components of the nitric oxide cycle.

    PubMed

    Reutov, V P

    1999-05-01

    This review presents some aspects of a concept of cellular evolution bearing a relationship to nitrate--nitrite respiration, the endosymbiosis theory, and the origin of NO synthase and nitrite reductase activity in heme-containing proteins. Analysis of structural and functional unity of the NO synthase and nitrite reductase systems suggests that these systems did not arise without any relation to evolutionarily ancient energetic systems of cells. The use of symmetry principles reveals commonalities among many electron transport chains which in the language of physics is called "invariance". This work also comparatively analyzes the nitric oxide cycle and the known nitrogen cycle. The ideas about evolution of the NO synthase and nitrite reductase systems developed here are clearly compatible with the endosymbiotic theory and the hypothesis that nitrate--nitrite respiration was a precursor of oxygen-dependent respiration. PMID:10381613

  8. Genetic basis for nitrate resistance in Desulfovibrio strains

    PubMed Central

    Korte, Hannah L.; Fels, Samuel R.; Christensen, Geoff A.; Price, Morgan N.; Kuehl, Jennifer V.; Zane, Grant M.; Deutschbauer, Adam M.; Arkin, Adam P.; Wall, Judy D.

    2014-01-01

    Nitrate is an inhibitor of sulfate-reducing bacteria (SRB). In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes of nitrate application. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702), as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605) that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance

  9. Ammonia scrubbing

    SciTech Connect

    Epperly, W.R.; Peter-Hoblyn, J.D.; Sullivan, J.C

    1989-05-16

    A process is described for reducing the concentration of ammonia in the effluent from the combustion of a carbonaceous fuel, the process comprising introducing a non-nitrogeneous treatment agent which comprises a paraffinic, olefinic, aromatic oxygenated hydrocarbon into the effluent at a ratio of non-nitrogenous treatment agent to effluent ammonia of about 2:1 to about 200:1 to combine with ammonia present in the effluent, wherein the effluent temperature is about 1350/sup 0/F to about 2000/sup 0/F, and further wherein the non-nitrogenous treatment agent is introduced under conditions effective to perform ammonia scrubbing.

  10. Ammonia Monitor

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)

    1999-01-01

    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.

  11. Assimilation of ammonia in Paracoccus denitrificans.

    PubMed

    Mikes, V; Chválová, H; Mátlová, L

    1991-01-01

    Two pathways serve for assimilation of ammonia in Paracoccus denitrificans. Glutamate dehydrogenase (NADP+) catalyzes the assimilation at a high NH4+ concentration. If nitrate serves as the nitrogen source, glutamate is synthesized by glutamate-ammonia ligase and glutamate synthase (NADPH). At a very low NH4+ concentration, all three enzymes are synthesized simultaneously. No direct relationship exists between glutamate dehydrogenase (NADP+) and glutamate-ammonia ligase in P. denitrificans, while the glutamate synthase (NADPH) activity changes in parallel with that of the latter enzyme. Ammonia does not influence the induction or repression of glutamate dehydrogenase (NADP+). The inner concentration of metabolites indicates a possible repression of glutamate dehydrogenase (NADP+) by the high concentration of glutamine or its metabolic products as in the case when NH4+ is formed by assimilative nitrate reduction. No direct effect of the intermediates of nitrate assimilation on the synthesis of glutamate dehydrogenase (NADP+) was observed. PMID:1688163

  12. Nitrate in Ground Waters of the United States: Contrasting Scales and Processes

    NASA Astrophysics Data System (ADS)

    Nolan, B. T.

    2002-12-01

    Nitrate is one of the most ubiquitous compounds in ground water. Studies conducted during 1992 - 1995 by the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program detected nitrate in 71% of shallow ground water samples, more than 13 times as often as organic nitrogen, ammonia, nitrite, and orthophosphate (based on a common detection threshold of 0.2 mg/L). Nitrate commonly occurs in mixtures with other contaminants. Mixtures of "anthropogenic" nitrate (>3 mg/L as N), atrazine, and deethylatrazine were among the most frequently occurring mixtures in ground water samples from 1,497 domestic and public supply wells. The samples were analyzed for nitrate, 83 pesticides, and 60 volatile organic compounds. Elevated nitrate concentration in ground water has been associated with adverse health effects. Interpretive studies conducted at contrasting spatial scales reveal different processes influencing nitrate behavior in ground water. At the national scale, an empirical model indicates that leaching and water-table position influence nitrate concentration in shallow ground water (typically <5 m deep). The probability of nitrate contamination is greater in areas with high nitrogen loading and well-drained soils overlying unconsolidated sand and gravel deposits. Median nitrate concentration for wells grouped by mapped probability region increases from 0.24 to 8.3 mg/L as the predicted probability of nitrate exceeding 4 mg/L increases from 0.17 or less to >0.83. With these shallow ground-water data, nitrate contamination risk increases with increasing depth to ground water because of reduced denitrification potential. Denitrification commonly occurs under anoxic conditions in areas with very shallow depth to ground water (i.e., high water-table position). A regional study indicates that nitrate reduction and calcite dissolution processes influence nitrate concentration in ground waters of the southeastern United States. Water and sediment of the North

  13. Assessment of N2O emission from a photobioreactor treating ammonia-rich swine wastewater digestate.

    PubMed

    Mezzari, Melissa P; da Silva, Márcio L B; Nicoloso, Rodrigo S; Ibelli, Adriana M G; Bortoli, Marcelo; Viancelli, Aline; Soares, Hugo M

    2013-12-01

    This study investigated the interactions between naturally occurring bacteria and the microalgae Chlorella vulgaris within a lab scale photobioreactor treating ammonia-rich swine wastewater digestate effluent. Nitrification and denitrification were assessed by targeting ammonia monoxygenases (amoA), nitrate (narG), nitrite (nirS), nitric oxide (norB) and nitrous oxide (nosZ) reductases genes. Oxygen produced from microalgae photosynthesis stimulated nitrification. Under limiting carbon availability (i.e., <1.44 for mg TOC/mg NO2-N and 1.72 for mg TOC/mg NO3-N), incomplete denitrification led to accumulation of NO2 and NO3. Significant N2O emission (up to 118 μg N2O-N) was linked to NO2 metabolism in Chlorella. The addition of acetate as external carbon source recovered heterotrophic denitrification activity suppressing N2O emission. Effluent methane concentrations trapped within photobioreactor was removed concomitantly with ammonia. Overall, closed photobioreactors can be built to effectively remove nitrogen and mitigate simultaneously greenhouse gases emissions that would occur otherwise in open microalgae-based wastewater treatment systems. PMID:24128394

  14. Drivers of archaeal ammonia-oxidizing communities in soil.

    PubMed

    Zhalnina, Kateryna; de Quadros, Patrícia Dörr; Camargo, Flavio A O; Triplett, Eric W

    2012-01-01

    Soil ammonia-oxidizing archaea (AOA) are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. Nitrite produced by AOA and further oxidized to nitrate can cause nitrogen loss from soils, surface and groundwater contamination, and water eutrophication. The AOA discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA. PMID:22715335

  15. Drivers of archaeal ammonia-oxidizing communities in soil

    PubMed Central

    Zhalnina, Kateryna; de Quadros, Patrícia Dörr; Camargo, Flavio A. O.; Triplett, Eric W.

    2012-01-01

    Soil ammonia-oxidizing archaea (AOA) are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. Nitrite produced by AOA and further oxidized to nitrate can cause nitrogen loss from soils, surface and groundwater contamination, and water eutrophication. The AOA discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA. PMID:22715335

  16. Nitrite and Nitrous Oxide Reductase Regulation by Nitrogen Oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106

    PubMed Central

    Sabaty, Monique; Schwintner, Carole; Cahors, Sandrine; Richaud, Pierre; Verméglio, Andre

    1999-01-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N2O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N2O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase. PMID:10498715

  17. Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106.

    PubMed

    Sabaty, M; Schwintner, C; Cahors, S; Richaud, P; Verméglio, A

    1999-10-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N(2)O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N(2)O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase. PMID:10498715

  18. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor.

    PubMed

    Jaroszynski, L W; Cicek, N; Sparling, R; Oleszkiewicz, J A

    2012-06-01

    Using a bench scale moving bed bioreactor (MBBR), the effect of free ammonia (FA, NH(3), the un-ionized form of ammonium NH(4)(+)) concentration on anoxic ammonium oxidation (anammox) was evaluated based on the volumetric nitrogen removal rate (NRR). Although, a detailed microbial analysis was not conducted, the major NRR observed was assumed to be by anammox, based on the nitrogen conversion ratios of nitrite to ammonium and nitrate to ammonium. Since the concentration of free ammonia as a proportion of the total ammonia concentration is pH-dependent, the impact of changing the operating pH from 6.9 to 8.2, was investigated under constant nitrogen loading conditions during continuous reactor operation. Furthermore, the effect of sudden nitrogen load changes was investigated under constant pH conditions. Batch tests were conducted to determine the immediate response of the anammox consortium to shifts in pH and FA concentrations. It was found that FA was inhibiting NRR at concentrations exceeding 2 mg N L(-1). In the pH range 7-8, the decrease in anammox activity was independent of pH and related only to the concentration of FA. Nitrite concentrations of up to 120 mg N L(-1) did not negatively affect NRR for up to 3.5 h. It was concluded that a stable NRR in a moving bed biofilm reactor depended on maintaining FA concentrations below 2 mg N L(-1) when the pH was maintained between 7 and 8. PMID:22483855

  19. Sulfite Oxidase Catalyzes Single-Electron Transfer at Molybdenum Domain to Reduce Nitrite to Nitric Oxide

    PubMed Central

    Wang, Jun; Krizowski, Sabina; Fischer-Schrader, Katrin; Niks, Dimitri; Tejero, Jesús; Sparacino-Watkins, Courtney; Wang, Ling; Ragireddy, Venkata; Frizzell, Sheila; Kelley, Eric E.; Zhang, Yingze; Basu, Partha; Hille, Russ

    2015-01-01

    Abstract Aims: Recent studies suggest that the molybdenum enzymes xanthine oxidase, aldehyde oxidase, and mARC exhibit nitrite reductase activity at low oxygen pressures. However, inhibition studies of xanthine oxidase in humans have failed to block nitrite-dependent changes in blood flow, leading to continued exploration for other candidate nitrite reductases. Another physiologically important molybdenum enzyme—sulfite oxidase (SO)—has not been extensively studied. Results: Using gas-phase nitric oxide (NO) detection and physiological concentrations of nitrite, SO functions as nitrite reductase in the presence of a one-electron donor, exhibiting redox coupling of substrate oxidation and nitrite reduction to form NO. With sulfite, the physiological substrate, SO only facilitates one turnover of nitrite reduction. Studies with recombinant heme and molybdenum domains of SO indicate that nitrite reduction occurs at the molybdenum center via coupled oxidation of Mo(IV) to Mo(V). Reaction rates of nitrite to NO decreased in the presence of a functional heme domain, mediated by steric and redox effects of this domain. Using knockdown of all molybdopterin enzymes and SO in fibroblasts isolated from patients with genetic deficiencies of molybdenum cofactor and SO, respectively, SO was found to significantly contribute to hypoxic nitrite signaling as demonstrated by activation of the canonical NO-sGC-cGMP pathway. Innovation: Nitrite binds to and is reduced at the molybdenum site of mammalian SO, which may be allosterically regulated by heme and molybdenum domain interactions, and contributes to the mammalian nitrate-nitrite-NO signaling pathway in human fibroblasts. Conclusion: SO is a putative mammalian nitrite reductase, catalyzing nitrite reduction at the Mo(IV) center. Antioxid. Redox Signal. 23, 283–294. PMID:25314640

  20. Comment on Egami's concept of the evolution of nitrate respiration

    NASA Technical Reports Server (NTRS)

    Rambler, M.; Margulis, L.

    1976-01-01

    Recent results suggest that the presence of common nitrogen salts (sodium nitrite and nitrate) in the irradiation medium can markedly protect filamentous blue-green algae from potentially lethal ultraviolet irradiation. The present results as well as general biological arguments of Egami support and extend Egami's original view that anaerobic respiratory pathways using nitrite and nitrate as terminal electron acceptors evolved prior to oxygen requiring aerobic respiratory pathways.

  1. Inhibitory effect of nitrite on coagulation processes demonstrated by thrombelastography

    PubMed Central

    Park, J. W.; Piknova, B.; Nghiem, K.; Lozier, J. N.; Schechter, A. N.

    2014-01-01

    Nitric oxide (NO) can be generated by two-step reduction pathway in which nitrate is converted first into nitrite and then into NO via several mechanisms, as well as from arginine by endogenous nitric oxide synthase (NOS). We have recently shown that nitrite ions in the presence of erythrocytes inhibit platelet aggregation and activation, as measured by aggregometry and flow cytometric analysis of P-selectin, through its reduction to NO under partially deoxygenated conditions. In the current study, we investigated how nitrite may affect overall clotting processes via modulating platelet function using thrombelastography (TEG). We measured three major TEG parameters, reaction time (R, time to initial fibrin formation), α angle (velocity of clot growth) and maximum amplitude (MA, maximum clot strength) using blood from healthy volunteers. An NO donor (DEANONOate) showed inhibitory effects on all TEG parameters in platelet rich plasma (PRP) and whole blood, resulting in delayed R, decreased angle, and reduced MA in a dose dependent manner. Nitrite ions also exhibited inhibitory effects in whole blood at 20% hematocrit, and this was greatly enhanced under hypoxic conditions, being demonstrable at 0.1 μM concentration. Neither compound changed any TEG parameters in plasma. Our results suggest that nitrite affects overall blood clotting and that TEG may be used to follow this process. Further the physiological effects of factors which determine NO bioavailability, such as endogenous levels of blood and tissue nitrite, may be useful as biomarkers for predicting hemostatic potential. PMID:24858214

  2. FINAL REPORT. MECHANISM OF PITTING CORROSION PREVENTION BY NITRITE IN CARBON STEEL EXPOSED TO DILUTE SALT SOLUTIONS

    EPA Science Inventory

    The research has developed a broad fundamental understanding of the inhibition action of nitrite ions in preventing nitrate pitting corrosion of carbon steel tanks containing high-level radioactive waste. This fundamental understanding can be applied to specific situations during...

  3. Denitrification of high strength nitrate waste from a nuclear industry using acclimatized biomass in a pilot scale reactor.

    PubMed

    Dhamole, Pradip B; Nair, Rashmi R; D'Souza, Stanislaus F; Pandit, Aniruddha B; Lele, S S

    2015-01-01

    This work investigates the performance of acclimatized biomass for denitrification of high strength nitrate waste (10,000 mg/L NO3) from a nuclear industry in a continuous laboratory scale (32 L) and pilot scale reactor (330 L) operated over a period of 4 and 5 months, respectively. Effect of substrate fluctuations (mainly C/NO3-N) on denitrification was studied in a laboratory scale reactor. Incomplete denitrification (95-96 %) was observed at low C/NO3-N (≤2), whereas at high C/NO3-N (≥2.25) led to ammonia formation. Ammonia production increased from 1 to 9 % with an increase in C/NO3-N from 2.25 to 6. Complete denitrification and no ammonia formation were observed at an optimum C/NO3-N of 2.0. Microbiological studies showed decrease in denitrifiers and increase in nitrite-oxidizing bacteria and ammonia-oxidizing bacteria at high C/NO3-N (≥2.25). Pilot scale studies were carried out with optimum C/NO3-N, and sustainability of the process was checked on the pilot scale for 5 months. PMID:25342265

  4. Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002.

    PubMed

    Qian, Xiao; Kumaraswamy, G Kenchappa; Zhang, Shuyi; Gates, Colin; Ananyev, Gennady M; Bryant, Donald A; Dismukes, G Charles

    2016-05-01

    To produce cellular energy, cyanobacteria reduce nitrate as the preferred pathway over proton reduction (H2 evolution) by catabolizing glycogen under dark anaerobic conditions. This competition lowers H2 production by consuming a large fraction of the reducing equivalents (NADPH and NADH). To eliminate this competition, we constructed a knockout mutant of nitrate reductase, encoded by narB, in Synechococcus sp. PCC 7002. As expected, ΔnarB was able to take up intracellular nitrate but was unable to reduce it to nitrite or ammonia, and was unable to grow photoautotrophically on nitrate. During photoautotrophic growth on urea, ΔnarB significantly redirects biomass accumulation into glycogen at the expense of protein accumulation. During subsequent dark fermentation, metabolite concentrations--both the adenylate cellular energy charge (∼ATP) and the redox poise (NAD(P)H/NAD(P))--were independent of nitrate availability in ΔnarB, in contrast to the wild type (WT) control. The ΔnarB strain diverted more reducing equivalents from glycogen catabolism into reduced products, mainly H2 and d-lactate, by 6-fold (2.8% yield) and 2-fold (82.3% yield), respectively, than WT. Continuous removal of H2 from the fermentation medium (milking) further boosted net H2 production by 7-fold in ΔnarB, at the expense of less excreted lactate, resulting in a 49-fold combined increase in the net H2 evolution rate during 2 days of fermentation compared to the WT. The absence of nitrate reductase eliminated the inductive effect of nitrate addition on rerouting carbohydrate catabolism from glycolysis to the oxidative pentose phosphate (OPP) pathway, indicating that intracellular redox poise and not nitrate itself acts as the control switch for carbon flux branching between pathways. PMID:26479976

  5. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate.

    PubMed

    Duncan, C; Dougall, H; Johnston, P; Green, S; Brogan, R; Leifert, C; Smith, L; Golden, M; Benjamin, N

    1995-06-01

    High concentrations of nitrite present in saliva (derived from dietary nitrate) may, upon acidification, generate nitrogen oxides in the stomach in sufficient amounts to provide protection from swallowed pathogens. We now show that, in the rat, reduction of nitrate to nitrite is confined to a specialized area on the posterior surface of the tongue, which is heavily colonized by bacteria, and that nitrate reduction is absent in germ-free rats. We also show that in humans increased salivary nitrite production resulting from nitrate intake enhances oral nitric oxide production. We propose that the salivary generation of nitrite is accomplished by a symbiotic relationship involving nitrate-reducing bacteria on the tongue surface, which is designed to provide host defence against microbial pathogens in the mouth and lower gut. These results provide further evidence for beneficial effects of dietary nitrate. PMID:7585121

  6. Metabolic fates and effects of nitrite in brown trout under normoxic and hypoxic conditions: blood and tissue nitrite metabolism and interactions with branchial NOS, Na+/K+-ATPase and hsp70 expression.

    PubMed

    Jensen, Frank B; Gerber, Lucie; Hansen, Marie N; Madsen, Steffen S

    2015-07-01

    Nitrite secures essential nitric oxide (NO) bioavailability in hypoxia at low endogenous concentrations, whereas it becomes toxic at high concentrations. We exposed brown trout to normoxic and hypoxic water in the absence and presence of added ambient nitrite to decipher the cellular metabolism and effects of nitrite at basal and elevated concentrations under different oxygen regimes. We also tested hypotheses concerning the influence of nitrite on branchial nitric oxide synthase (NOS), Na(+)/K(+)-ATPase (nka) and heat shock protein (hsp70) mRNA expression. Basal plasma and erythrocyte nitrite levels were higher in hypoxia than normoxia, suggesting increased NOS activity. Nitrite exposure strongly elevated nitrite concentrations in plasma, erythrocytes, heart tissue and white muscle, which was associated with an extensive metabolism of nitrite to nitrate and to iron-nitrosylated and S-nitrosated compounds. Nitrite uptake was slightly higher in hypoxia than normoxia, and high internal nitrite levels extensively converted blood hemoglobin to methemoglobin and nitrosylhemoglobin. Hypoxia increased inducible NOS (iNOS) mRNA levels in the gills, which was overruled by a strong inhibition of iNOS expression by nitrite in both normoxia and hypoxia, suggesting negative-feedback regulation of iNOS gene expression by nitrite. A similar inhibition was absent for neuronal NOS. Branchial NKA activity stayed unchanged, but mRNA levels of the nkaα1a subunit increased with hypoxia and nitrite, which may have countered an initial NKA inhibition. Nitrite also increased hsp70 gene expression, probably contributing to the cytoprotective effects of nitrite at low concentrations. Nitrite displays a concentration-dependent switch between positive and negative effects similar to other signaling molecules. PMID:25908056

  7. Validation of a method to directly and specifically measure nitrite in biological matrices.

    PubMed

    Almeida, Luis E F; Kamimura, Sayuri; Kenyon, Nicholas; Khaibullina, Alfia; Wang, Li; de Souza Batista, Celia M; Quezado, Zenaide M N

    2015-02-15

    The bioactivity of nitric oxide (NO) is influenced by chemical species generated through reactions with proteins, lipids, metals, and its conversion to nitrite and nitrate. A better understanding of the functions played by each of these species could be achieved by developing selective assays able of distinguishing nitrite from other NO species. Nagababu and Rifkind developed a method using acetic and ascorbic acids to measure nitrite-derived NO in plasma. Here, we adapted, optimized, and validated this method to assay nitrite in tissues. The method yielded linear measurements over 1-300 pmol of nitrite and was validated for tissue preserved in a nitrite stabilization solution composed of potassium ferricyanide, N-ethylmaleimide and NP-40. When samples were processed with chloroform, but not with methanol, ethanol, acetic acid or acetonitrile, reliable and reproducible nitrite measurements in up to 20 sample replicates were obtained. The method's accuracy in tissue was ≈ 90% and in plasma 99.9%. In mice, during basal conditions, brain, heart, lung, liver, spleen and kidney cortex had similar nitrite levels. In addition, nitrite tissue levels were similar regardless of when organs were processed: immediately upon collection, kept in stabilization solution for later analysis or frozen and later processed. After ip nitrite injections, rapidly changing nitrite concentrations in tissue and plasma could be measured and were shown to change in significantly distinct patterns. This validated method could be valuable for investigations of nitrite biology in conditions such as sickle cell disease, cardiovascular disease, and diabetes, where nitrite is thought to play a role. PMID:25445633

  8. Nitrogen removal over nitrite by aeration control in aerobic granular sludge sequencing batch reactors.

    PubMed

    Lochmatter, Samuel; Maillard, Julien; Holliger, Christof

    2014-07-01

    This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m-3·d-1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970

  9. Nitrogen Removal over Nitrite by Aeration Control in Aerobic Granular Sludge Sequencing Batch Reactors

    PubMed Central

    Lochmatter, Samuel; Maillard, Julien; Holliger, Christof

    2014-01-01

    This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m−3·d−1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970

  10. The effect of environmental hypercapnia and size on nitrite toxicity in the striped catfish (Pangasianodon hypophthalmus).

    PubMed

    Hvas, Malthe; Damsgaard, Christian; Gam, Le Thi Hong; Huong, Do Thi Thanh; Jensen, Frank B; Bayley, Mark

    2016-07-01

    Striped catfish (Pangasianodon hypophthalmus) are farmed intensively at high stocking densities in Vietnam where they are likely to encounter environmental hypercapnia as well as occasional high levels of aquatic nitrite. Nitrite competes with Cl(-) for uptake at the branchial HCO3(-)/Cl(-) exchanger, causing a drastic reduction in the blood oxygen carrying capacity through the formation of methaemoglobin and nitrosylhaemoglobin. Environmental hypercapnia induces a respiratory acidosis where the branchial HCO3(-)/Cl(-) exchange activity is reduced in order to retain HCO3(-) for pH recovery, which should lead to a reduced nitrite uptake. To assess the effect of hypercapnia on nitrite uptake, fish were cannulated in the dorsal aorta, allowing repeated blood sampling for measurements of haemoglobin derivatives, plasma ions and acid-base status during exposure to 0.9mM nitrite alone and in combination with acute and 48h acclimated hypercapnia over a period of 72h. Nitrite uptake was initially reduced during the hypercapnia-induced acidosis, but after pH recovery the situation was reversed, resulting in higher plasma nitrite concentrations and lower functional haemoglobin levels that eventually caused mortality. This suggests that branchial HCO3(-)/Cl(-) exchange activity is reduced only during the initial acid-base compensation, but subsequently increases with the greater availability of internal HCO3(-) counter-ions as pH is compensated. The data further suggest that branchial Na(+)/H(+) exchange plays a significant role in the initial phase of acid-base compensation. Overall, longer term environmental hypercapnia does not protect against nitrite uptake in P. hypophthalmus, but instead enhances it. In addition, we observed a significant size effect in nitrite accumulation, where large fish attained plasma [nitrite] above the ambient concentration, while small fish did not. Small P. hypophthalmus instead had significantly higher plasma [nitrate], and haemoglobin

  11. Corn leaf nitrate reductase - A nontoxic alternative to cadmium for photometric nitrate determinations in water samples by air-segmented continuous-flow analysis

    USGS Publications Warehouse

    Patton, C.J.; Fischer, A.E.; Campbell, W.H.; Campbell, E.R.

    2002-01-01

    Development, characterization, and operational details of an enzymatic, air-segmented continuous-flow analytical method for colorimetric determination of nitrate + nitrite in natural-water samples is described. This method is similar to U.S. Environmental Protection Agency method 353.2 and U.S. Geological Survey method 1-2545-90 except that nitrate is reduced to nitrite by soluble nitrate reductase (NaR, EC 1.6.6.1) purified from corn leaves rather than a packed-bed cadmium reactor. A three-channel, air-segmented continuous-flow analyzer-configured for simultaneous determination of nitrite (0.020-1.000 mg-N/L) and nitrate + nitrite (0.05-5.00 mg-N/L) by the nitrate reductase and cadmium reduction methods-was used to characterize analytical performance of the enzymatic reduction method. At a sampling rate of 90 h-1, sample interaction was less than 1% for all three methods. Method detection limits were 0.001 mg of NO2- -N/L for nitrite, 0.003 mg of NO3-+ NO2- -N/L for nitrate + nitrite by the cadmium-reduction method, and 0.006 mg of NO3- + NO2- -N/L for nitrate + nitrite by the enzymatic-reduction method. Reduction of nitrate to nitrite by both methods was greater than 95% complete over the entire calibration range. The difference between the means of nitrate + nitrite concentrations in 124 natural-water samples determined simultaneously by the two methods was not significantly different from zero at the p = 0.05 level.

  12. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    PubMed

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. PMID:26134447

  13. Reduction of nitrate in Shewanella

    SciTech Connect

    Gao, Haichun; Yang, Zamin Koo; Barua, Sumitra; Reed, SB; Nealson, Kenneth H.; Fredrikson, JK; Tiedje, James; Zhou, Jizhong

    2009-01-01

    In the genome of Shewanella oneidensis, a napDAGHB gene cluster encoding periplasmic nitrate reductase (NapA) and accessory proteins and an nrfA gene encoding periplasmic nitrite reductase (NrfA) have been identified. These two systems seem to be atypical because the genome lacks genes encoding cytoplasmic membrane electron transport proteins, NapC for NAP and NrfBCD/NrfH for NRF, respectively. Here, we present evidence that reduction of nitrate to ammonium in S. oneidensis is carried out by these atypical systems in a two-step manner. Transcriptional and mutational analyses suggest that CymA, a cytoplasmic membrane electron transport protein, is likely to be the functional replacement of both NapC and NrfH in S. oneidensis. Surprisingly, a strain devoid of napB encoding the small subunit of nitrate reductase exhibited the maximum cell density sooner than the wild type. Further characterization of this strain showed that nitrite was not detected as a free intermediate in its culture and NapB provides a fitness gain for S. oneidensis to compete for nitrate in the environments. On the basis results from mutational analyses of napA, napB, nrfA and napBnrfA in-frame deletion mutants, we propose that NapB is able to favor nitrate reduction by routing electrons to NapA exclusively.

  14. Role of the anion nitrite in ischemia-reperfusion cytoprotection and therapeutics.

    PubMed

    Dezfulian, Cameron; Raat, Nicolaas; Shiva, Sruti; Gladwin, Mark T

    2007-07-15

    The anion nitrite (NO(2)(-)) constitutes a biochemical reservoir for nitric oxide (NO). Nitrite reduction to NO may be catalyzed by hemoglobin, myoglobin or other metal-containing enzymes and occurs at increasing rates under conditions of physiologic hypoxia or ischemia. A number of laboratories have now demonstrated in animal models the ability of nitrite to provide potent cytoprotection following focal ischemia-reperfusion (IR) injury of the heart, liver, brain, and kidney. While the mechanism of nitrite-mediated cytoprotection remains to be fully characterized, the release of nitrite-derived NO following IR appears to be central to this mechanism. The evidence of nitrite-mediated cytoprotection against IR injury in multiple animal models opens the door to potential therapeutic opportunities in human disease. Here we review the mechanisms for nitrite formation in blood and tissue, its metabolic equilibrium with NO, nitrate, and NO-modified proteins, the evidence supporting nitrite-mediated cytoprotection, and the potential mechanisms driving cytoprotection, and we explore the opportunities for the therapeutic application of nitrite for human disease. PMID:17568573

  15. Chemical pathways for the formation of ammonia in Hanford wastes

    SciTech Connect

    Stock, L.M.; Pederson, L.R.

    1997-09-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important). Reduction of nitrite ions is believed to be the most important source of ammonia. Whether by radiolytic or thermal routes, nitrite reduction reactions proceed through nitrogen dioxide, nitric oxide, the nitrosyl anion, and the hyponitrite anion. Nitrite ion is also converted into hydroxylamine, another important intermediate on the pathway to form ammonia. These reaction pathways additionally result in the formation of nitrous oxide and molecular nitrogen, whereas hydrogen formation is produced in a separate reaction sequence.

  16. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise.

    PubMed

    Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio

    2016-04-01

    Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT. PMID:26988767

  17. Effects of acute ammonia toxicity on nitric oxide (NO), citrulline-NO cycle enzymes, arginase and related metabolites in diff