Science.gov

Sample records for ammonia recycle percolation

  1. PRETREATMENT AND FRACTIONATION OF CORN STOVER BY AMMONIA RECYCLE PERCOLATION PROCESS. (R831645)

    EPA Science Inventory

    Corn stover was pretreated with aqueous ammonia in a flow-through column reactor,
    a process termed as Ammonia Recycle Percolation (ARP). The aqueous ammonia causes
    swelling and efficient delignification of biomass at high temperatures. The ARP
    process solubilizes abou...

  2. Ammonia recycled percolation as a complementary pretreatment to the dilute-acid process

    SciTech Connect

    Wu, Zhangwen, Lee, Y.Y.

    1997-12-31

    A two-stage dilute-acid percolation (DA) was investigated as a pre-treatment method for switchgrass. With use of extremely low acid (0.078 wt% sulfuric acid) under moderate temperature (145-170{degrees}C), hemicellulose in switchgrass was completely solubilized showing no sugar decomposition. The treated switchgrass contained about 70% glucan and 30% lignin. The high lignin content in the treated feedstock raises a concern that it may cause a high enzyme consumption because of irreversible adsorption of cellulose enzymes to lignin. This problem may be amplified in the SSF operation since it is usually run in fed-batch mode and the residual lignin is accumulated. The DA pretreatment was, therefore, combined with the ammonia recycled percolation (ARP) process that has been proven to be effective in delignification. The combined pretreatment essentially fractionated the switchgrass into three major components. The treated feedstock contained about 90% glucan and 10% lignin. The digestibility of these samples was consistently higher than that of DA treated samples. Further study on the interaction of cellulase with xylan and that with lignin has shown that the enzymatic hydrolysis of cellulose is inhibited by lignin as well as xylan. The external xylan was found to be a noncompetitive inhibitor to cellulose hydrolysis. The cellulose used in this study was proven to have the xylanase activity. 23 refs., 8 figs., 4 tabs.

  3. Ammonia recycling enables sustainable operation of bioelectrochemical systems.

    PubMed

    Cheng, Ka Yu; Kaksonen, Anna H; Cord-Ruwisch, Ralf

    2013-09-01

    Ammonium (NH4(+)) migration across a cation exchange membrane is commonly observed during the operation of bioelectrochemical systems (BES). This often leads to anolyte acidification (pH <5.5) and complete inactivation of biofilm electroactivity. Without using conventional pH controls (dosage of alkali or pH buffers), the present study revealed that anodic biofilm activity (current) could be sustained if recycling of ammonia (NH3) was implemented. A simple gas-exchange apparatus was designed to enable continuous recycling of NH3 (released from the catholyte at pH >10) from the cathodic headspace to the acidified anolyte. Results indicated that current (110 mA or 688 Am(-3) net anodic chamber volume) was sustained as long as the NH3 recycling path was enabled, facilitating continuous anolyte neutralization with the recycled NH3. Since the microbial current enabled NH4(+) migration against a strong concentration gradient (~10-fold), a novel way of ammonia recovery from wastewaters could be envisaged. PMID:23774293

  4. Amination of aryl halides with aqueous ammonia catalyzed by green recyclable poly(4-vinylpyridine)-supported copper iodide nanoparticles catalyst.

    PubMed

    Albadi, Jalal; Shiran, Jafar Abbasi; Mansournezhad, Azam

    2014-01-01

    In this research efficient procedure for the amination of aryl halides with aqueous ammonia in the presence of poly(4-vinylpyridine)-supported copper iodide nanoparticles catalyst is reported. A wide range of aryl halides including aryl iodides and aryl bromides are converted into the corresponding aniline derivatives. The experimental procedure with poly(4-vinylpyridine)-supported copper iodide nanoparticles catalyst is quite straightforward and it is recycled up to 3 consecutive runs by simple filtration. PMID:25551733

  5. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  6. Ammonia

    Integrated Risk Information System (IRIS)

    Ammonia ; CASRN 7664 - 41 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  7. Process modeling of an advanced NH₃ abatement and recycling technology in the ammonia-based CO₂ capture process.

    PubMed

    Li, Kangkang; Yu, Hai; Tade, Moses; Feron, Paul; Yu, Jingwen; Wang, Shujuan

    2014-06-17

    An advanced NH3 abatement and recycling process that makes great use of the waste heat in flue gas was proposed to solve the problems of ammonia slip, NH3 makeup, and flue gas cooling in the ammonia-based CO2 capture process. The rigorous rate-based model, RateFrac in Aspen Plus, was thermodynamically and kinetically validated by experimental data from open literature and CSIRO pilot trials at Munmorah Power Station, Australia, respectively. After a thorough sensitivity analysis and process improvement, the NH3 recycling efficiency reached as high as 99.87%, and the NH3 exhaust concentration was only 15.4 ppmv. Most importantly, the energy consumption of the NH3 abatement and recycling system was only 59.34 kJ/kg CO2 of electricity. The evaluation of mass balance and temperature steady shows that this NH3 recovery process was technically effective and feasible. This process therefore is a promising prospect toward industrial application. PMID:24850444

  8. Recycling.

    ERIC Educational Resources Information Center

    Sinker, Barbara

    1986-01-01

    Discusses the range of benefits resulting from recycling efforts and projects. Presents information and data related to the recycling of metals, cans, paper, fans, and plastics. Suggestions for motivating and involving youth in recycling programs are also offered. (ML)

  9. Recycling

    NASA Astrophysics Data System (ADS)

    Goto, Junya; Santorelli, Michael

    Recycling systems are classified into those employing typically three methods, and the progress of each method is described. In mechanical recycling, powders of phenolic materials are recovered via a mechanical process and reused as fillers or additives in virgin materials. The effects to flowability, curability, and mechanical properties of the materials are explained. In feedstock recycling, monomers, oligomers, or oils are recovered via chemical processes and reused as feedstock. Pyrolysis, solvolysis or hydrolysis, and supercritical or subcritical fluid technology will also be introduced. When using a subcritical fluid of phenol, the recycled material maintains excellent properties similar to the virgin material, and a demonstration plant has been constructed to carry out mass production development. In energy recovery, wastes of phenolic materials are used as an alternative solid fuel to coal because they are combustible and have good calorific value. Industrial wastes of these have been in practical use in a cement plant. Finally, it is suggested that the best recycling method should be selected according to the purpose or situation, because every recycling method has both strengths and weaknesses. Therefore, quantitative and objective evaluation methods in recycling are desirable and should be established.

  10. Simultaneous determination of indoor ammonia pollution and its biological metabolite in the human body with a recyclable nanocrystalline lanthanide-functionalized MOF

    NASA Astrophysics Data System (ADS)

    Hao, Ji-Na; Yan, Bing

    2016-01-01

    A Eu3+ post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu3+@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability.A Eu3+ post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu3+@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability. Electronic supplementary information (ESI) available: Experimental section; XPS spectra; N2 adsorption-desorption isotherms; ICP data; SEM image; PXRD patterns and other luminescence data. See DOI: 10.1039/c5nr06066d

  11. Advanced Life Support Water Recycling Technologies Case Studies: Vapor Phase Catalytic Ammonia Removal and Direct Osmotic Concentration

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2004-01-01

    Design for microgravity has traditionally not been well integrated early on into the development of advanced life support (ALS) technologies. NASA currently has a many ALS technologies that are currently being developed to high technology readiness levels but have not been formally evaluated for microgravity compatibility. Two examples of such technologies are the Vapor Phase Catalytic Ammonia Removal Technology and the Direct Osmotic Concentration Technology. This presentation will cover the design of theses two systems and will identify potential microgravity issues.

  12. Elimination of phenols, ammonia and cyanide in wash water from biomass gasification, and nitrogen recycling using planted trickling filters.

    PubMed

    Graber, Andreas; Skvarc, Robert; Junge-Berberović, Ranka

    2009-01-01

    Trickling filters were used to treat wash water from a wood gasifier. This wash water contained toxic substances such as ammonium, cyanide, phenols, and PAH. The goal was to develop a system that degraded toxic substances, and achieved full nitrification of ammonia. A 1 kW model wood gasifier plant delivered wash water for the experiments, which was standardised to a conductivity of 3 mS/cm by dilution. Toxicity was assessed by bacterial luminescence detection, germination test with cress (Lepidium sativum), and pot plants cultivated in a hydroponic setup irrigated continuously with the wastewater. Treatment experiments were done in both planted and unplanted trickling filters. Plant yield was similar to conventional hydroponic production systems. The trickling filters achieved complete detoxification of phenol, PAH and cyanide as well as full nitrification. The specific elimination rates were 100 g m(-3) Leca d(-1) for phenols and 90 g m(-3) Leca d(-1) for ammonium in planted systems. In unplanted trickling filters circulated for 63 h, phenol concentration decreased from 83.5 mg/L to 2.5 mg/L and cyanide concentration from 0.32 mg/L to 0.02 mg/L. PAH concentrations were reduced from 3,050 microg/L to 0.89 microg/L within 68 days. The assays demonstrated the feasibility of using the technique to construct a treatment system in a partially closed circulation for gasifier wash water. The principal advantage is to convert toxic effluents from biomass gasifiers into a non-toxic, nitrogen-rich fertiliser water, enabling subsequent use in plant production and thus income generation. However, the questions of long-term performance and possible accumulation of phenols and heavy metals in the produce still have to be studied. PMID:19955650

  13. Substrate Dependency and Effect of Xylanase Supplementation on Enzymatic Hydrolysis of Ammonia-Treated Biomass

    NASA Astrophysics Data System (ADS)

    Gupta, Rajesh; Kim, Tae Hyun; Lee, Yoon Y.

    Pretreatment based on aqueous ammonia was investigated under two different modes of operation: soaking in aqueous ammonia and ammonia recycle percolation. These processes were applied to three different feedstocks with varied composition: corn stover, high lignin (HL), and low lignin (LL) hybrid poplars. One of the important features of ammonia-based pretreatment is that most of the hemicellulose is retained after treatment, which simplifies the overall bioconversion process and enhances the conversion efficiency. The pretreatment processes were optimized for these feedstocks, taking carbohydrate retention as well as sugar yield in consideration. The data indicate that hybrid poplar is more difficult to treat than corn stover, thus, requires more severe conditions. On the other hand, hybrid poplar has a beneficial property that it retains most of the hemicellulose after pretreatment. To enhance the digestibility of ammonia-treated poplars, xylanase was supplemented during enzymatic hydrolysis. Because of high retention of hemicellulose in treated hybrid poplar, xylanase supplementation significantly improved xylan as well as glucan digestibility. Of the three feedstocks, best results and highest improvement by xylanase addition was observed with LL hybrid poplar, showing 90% of overall sugar yield.

  14. Percolation on Sparse Networks

    NASA Astrophysics Data System (ADS)

    Karrer, Brian; Newman, M. E. J.; Zdeborová, Lenka

    2014-11-01

    We study percolation on networks, which is used as a model of the resilience of networked systems such as the Internet to attack or failure and as a simple model of the spread of disease over human contact networks. We reformulate percolation as a message passing process and demonstrate how the resulting equations can be used to calculate, among other things, the size of the percolating cluster and the average cluster size. The calculations are exact for sparse networks when the number of short loops in the network is small, but even on networks with many short loops we find them to be highly accurate when compared with direct numerical simulations. By considering the fixed points of the message passing process, we also show that the percolation threshold on a network with few loops is given by the inverse of the leading eigenvalue of the so-called nonbacktracking matrix.

  15. Social percolation models

    NASA Astrophysics Data System (ADS)

    Solomon, Sorin; Weisbuch, Gerard; de Arcangelis, Lucilla; Jan, Naeem; Stauffer, Dietrich

    2000-03-01

    We here relate the occurrence of extreme market shares, close to either 0 or 100%, in the media industry to a percolation phenomenon across the social network of customers. We further discuss the possibility of observing self-organized criticality when customers and cinema producers adjust their preferences and the quality of the produced films according to previous experience. Comprehensive computer simulations on square lattices do indeed exhibit self-organized criticality towards the usual percolation threshold and related scaling behaviour.

  16. Ammonia Process by Pressure Swing Adsorption

    SciTech Connect

    Dr Felix Jegede

    2010-12-27

    The overall objective of the project is to design, develop and demonstrate a technically feasible and commercially viable system to produce ammonia along with recovery of the products by adsorption separation methods and significantly decrease the energy requirement in ammonia production. This is achieved through a significantly more efficient ammonia psa recovery system. The new ammonia recovery system receives the reactor effluents and achieves complete ammonia recovery, (which completely eliminates the energy intensive refrigeration and condensation system currently used in ammonia production). It also recovers the unused reactants and recycles them back to the reactor, free of potential reactor contaminants, and without the need for re-compression and re-heat of recycle stream thereby further saving more energy. The result is a significantly lower energy consumption, along with capital cost savings.

  17. Price percolation model

    NASA Astrophysics Data System (ADS)

    Kanai, Yasuhiro; Abe, Keiji; Seki, Yoichi

    2015-06-01

    We propose a price percolation model to reproduce the price distribution of components used in industrial finished goods. The intent is to show, using the price percolation model and a component category as an example, that percolation behaviors, which exist in the matter system, the ecosystem, and human society, also exist in abstract, random phenomena satisfying the power law. First, we discretize the total potential demand for a component category, considering it a random field. Second, we assume that the discretized potential demand corresponding to a function of a finished good turns into actual demand if the difficulty of function realization is less than the maximum difficulty of the realization. The simulations using this model suggest that changes in a component category's price distribution are due to changes in the total potential demand corresponding to the lattice size and the maximum difficulty of realization, which is an occupation probability. The results are verified using electronic components' sales data.

  18. Percolation and Deconfinement

    NASA Astrophysics Data System (ADS)

    Srivastava, Brijesh K.

    2011-07-01

    Possible phase transition of strongly interacting matter from hadron to a Quark-Gluon Plasma (QGP) state have in the past received considerable interest. It has been suggested that this problem might be treated by percolation theory. The Color String Percolation Model (CSPM) is used to determine the equation of state (EOS) of the QGP produced in central Au-Au collisions at RHIC energies. The bulk thermodynamic quantities - energy density, entropy density and the sound velocity - are obtained in the framework of CSPM. It is shown that the results are in excellent agreement with the recent lattice QCD calculations(LQCD).

  19. Ammonia scrubbing

    SciTech Connect

    Epperly, W.R.; Peter-Hoblyn, J.D.; Sullivan, J.C

    1989-05-16

    A process is described for reducing the concentration of ammonia in the effluent from the combustion of a carbonaceous fuel, the process comprising introducing a non-nitrogeneous treatment agent which comprises a paraffinic, olefinic, aromatic oxygenated hydrocarbon into the effluent at a ratio of non-nitrogenous treatment agent to effluent ammonia of about 2:1 to about 200:1 to combine with ammonia present in the effluent, wherein the effluent temperature is about 1350/sup 0/F to about 2000/sup 0/F, and further wherein the non-nitrogenous treatment agent is introduced under conditions effective to perform ammonia scrubbing.

  20. Ammonia Monitor

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)

    1999-01-01

    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.

  1. Unstable supercritical discontinuous percolation transitions

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Cheng, Xueqi; Zheng, Zhiming; Chung, Ning Ning; D'Souza, Raissa M.; Nagler, Jan

    2013-10-01

    The location and nature of the percolation transition in random networks is a subject of intense interest. Recently, a series of graph evolution processes have been introduced that lead to discontinuous percolation transitions where the addition of a single edge causes the size of the largest component to exhibit a significant macroscopic jump in the thermodynamic limit. These processes can have additional exotic behaviors, such as displaying a “Devil's staircase” of discrete jumps in the supercritical regime. Here we investigate whether the location of the largest jump coincides with the percolation threshold for a range of processes, such as Erdős-Rényipercolation, percolation via edge competition and via growth by overtaking. We find that the largest jump asymptotically occurs at the percolation transition for Erdős-Rényiand other processes exhibiting global continuity, including models exhibiting an “explosive” transition. However, for percolation processes exhibiting genuine discontinuities, the behavior is substantially richer. In percolation models where the order parameter exhibits a staircase, the largest discontinuity generically does not coincide with the percolation transition. For the generalized Bohman-Frieze-Wormald model, it depends on the model parameter. Distinct parameter regimes well in the supercritical regime feature unstable discontinuous transitions—a novel and unexpected phenomenon in percolation. We thus demonstrate that seemingly and genuinely discontinuous percolation transitions can involve a rich behavior in supercriticality, a regime that has been largely ignored in percolation.

  2. Electrical Percolation Based Biosensors

    PubMed Central

    Bruck, Hugh Alan; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham

    2013-01-01

    A new approach to label free biosensing has been developed based on the principle of “electrical percolation”. In electrical percolation, long-range electrical connectivity is formed in randomly oriented and distributed systems of discrete elements. By applying this principle to biological interactions, it is possible to measure biological components both directly and electronically. The main element for electrical percolation biosensor is the biological semiconductor (BSC) which is a multi-layer 3-D carbon nanotube-antibody network. In the BSC, molecular interactions, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. BSCs can be fabricated by immobilizing conducting elements, such as pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex, directly onto a substrate, such as a Poly(methyl methacrylate) (PMMA) surface (also known as plexi-glass or Acrylic). BSCs have been demonstrated for direct (label-free) electronic measurements of antibody-antigen binding using SWNTs. If the concentration of the SWNT network is slightly above the electrical percolation threshold, then binding of a specific antigen to the pre-functionalized SWNT dramatically increases the electrical resistance due to changes in the tunneling between the SWNTs. Using anti-Staphylococcal enterotoxin B (SEB) IgG as a “gate” and SEB as an “actuator”, it was demonstrated that the BSC was able to detect SEB at concentrations of 1 ng/ml. Based on this concept, an automated configuration for BSCs is described here that enables real time continuous detection. The new BSC configuration may permit assembly of multiple sensors on the same chip to create “Biological Central Processing Units (CPUs)” with multiple biological elements, capable of processing and sorting out information on multiple analytes simultaneously. PMID:24041756

  3. Percolation testing and hydraulic conductivity of soils for percolation areas.

    PubMed

    Mulqueen, J; Rodgers, M

    2001-11-01

    The results of specific percolation tests are expressed in terms of field saturated hydraulic conductivity (Kfs) of the soil. The specific tests comprise the Irish SR 6 and the UK BS 6297 standard tests and the inversed auger hole and square hole tests employed for the design of land drainage. Percolation times from these tests are converted to Kfs values using unit gradient theory and the Elrick and Reynolds (Soil Sci. 142(5) (1986) 308) model which takes into account gravitational, pressure head and matric potential gradients. Kfs is then expressed as the inverse of the percolation rate times a constant, in this way the percolation rate can be directly related to Kfs of the soil. A plot of Kfs against percolation rate for the Irish SR 6 and the UK BS 6297 standard tests is asymptotic at Kfs values less than 0.2 m/d and greater than 0.8 m/d. This behaviour creates difficulty in setting limits for percolation rates in standards. Curves are provided which enable Kfs values to be read off from percolation tests without the restrictions of head range currently enforced, for example in the Irish SR 6 and BS 6297 standards. Experimental measurements of percolation rates and Kfs were carried out on two sands in the laboratory and in the field on two soils. Kfs of these four materials was also measured using a tension infiltrometer and the Guelph permeameter. The saturated hydraulic conductivities (Ks) of the sands were also estimated in a falling head laboratory apparatus and by the Hazen formula. There was good agreement between the different tests for Kfs on each material. Because percolation time continued to increase significantly in consecutive tests in the same test hole while Kfs became constant, the latter is a better measure of the suitability of soils for percolation. PMID:12230173

  4. Recycling, Inc.

    ERIC Educational Resources Information Center

    Martin, Amy

    1992-01-01

    Suggestions for creating a successful office recycling system are enumerated from start up plans to waste reduction and paper recycling. Contact information for recycling equipment, potential buyers of recycled materials, recycled products for purchase, and ideas for promotion and education of staff are included. (MCO)

  5. Recycling endosomes

    PubMed Central

    Goldenring, James R

    2015-01-01

    The endosomal membrane recycling system represents a dynamic conduit for sorting and re-exporting internalized membrane constituents. The recycling system is composed of multiple tubulovesicular recycling pathways that likely confer distinct trafficking pathways for individual cargoes. In addition, elements of the recycling system are responsible for assembly and maintenance of apical membrane specializations including primary cilia and apical microvilli. The existence of multiple intersecting and diverging recycling tracks likely accounts for specificity in plasma membrane recycling trafficking. PMID:26022676

  6. Self Healing Percolation

    NASA Astrophysics Data System (ADS)

    Scala, Antonio

    2015-03-01

    We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. Self-healing is a crucial in implementing the next generation of smart grids allowing to ensure a high quality of service to the users. We then map our self-healing procedure in a percolation problem and analyse the interplay between redundancies and topology in improving the resilience of networked infrastructures to multiple failures. We find exact results both for planar lattices and for random lattices, hinting the role of duality in the design of resilient networks. Finally, we introduce a cavity method approach to study the recovery of connectivity after damage in self-healing networks. CNR-PNR National Project ``Crisis-Lab,'' EU HOME/2013/CIPS/AG/4000005013 project CI2C and EU FET project MULTIPLEX nr.317532.

  7. Weak percolation on multiplex networks

    NASA Astrophysics Data System (ADS)

    Baxter, Gareth J.; Dorogovtsev, Sergey N.; Mendes, José F. F.; Cellai, Davide

    2014-04-01

    Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters.

  8. Weak percolation on multiplex networks.

    PubMed

    Baxter, Gareth J; Dorogovtsev, Sergey N; Mendes, José F F; Cellai, Davide

    2014-04-01

    Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters. PMID:24827287

  9. Percolation of spatially constraint networks

    NASA Astrophysics Data System (ADS)

    Li, Daqing; Li, Guanliang; Kosmidis, Kosmas; Stanley, H. E.; Bunde, Armin; Havlin, Shlomo

    2011-03-01

    We study how spatial constraints are reflected in the percolation properties of networks embedded in one-dimensional chains and two-dimensional lattices. We assume long-range connections between sites on the lattice where two sites at distance r are chosen to be linked with probability p(r)~r-δ. Similar distributions have been found in spatially embedded real networks such as social and airline networks. We find that for networks embedded in two dimensions, with 2<δ<4, the percolation properties show new intermediate behavior different from mean field, with critical exponents that depend on δ. For δ<2, the percolation transition belongs to the universality class of percolation in Erdös-Rényi networks (mean field), while for δ>4 it belongs to the universality class of percolation in regular lattices. For networks embedded in one dimension, we find that, for δ<1, the percolation transition is mean field. For 1<δ<2, the critical exponents depend on δ, while for δ>2 there is no percolation transition as in regular linear chains.

  10. Development of Vapor-Phase Catalytic Ammonia Removal System

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Fisher, John; Kiss, Mark; Borchers, Bruce; Tleimat, Badawi; Tleimat, Maher; Quinn, Gregory; Fort, James; Nalette, Tim; Baker, Gale; Genovese, Joseph

    2007-01-01

    A report describes recent accomplishments of a continuing effort to develop the vapor-phase catalytic ammonia removal (VPCAR) process for recycling wastewater for consumption by humans aboard a spacecraft in transit to Mars.

  11. Explosive percolation in thresholded networks

    NASA Astrophysics Data System (ADS)

    Hayasaka, Satoru

    2016-06-01

    Explosive percolation in a network is a phase transition where a large portion of nodes becomes connected with an addition of a small number of edges. Although extensively studied in random network models and reconstructed real networks, explosive percolation has not been observed in a more realistic scenario where a network is generated by thresholding a similarity matrix describing between-node associations. In this report, I examine construction schemes of such thresholded networks, and demonstrate that explosive percolation can be observed by introducing edges in a particular order.

  12. Core percolation on complex networks.

    PubMed

    Liu, Yang-Yu; Csóka, Endre; Zhou, Haijun; Pósfai, Márton

    2012-11-16

    We analytically solve the core percolation problem for complex networks with arbitrary degree distributions. We find that purely scale-free networks have no core for any degree exponents. We show that for undirected networks if core percolation occurs then it is continuous while for directed networks it is discontinuous (and hybrid) if the in- and out-degree distributions differ. We also find that core percolations on undirected and directed networks have completely different critical exponents associated with their critical singularities. PMID:23215509

  13. Ammonia Test

    MedlinePlus

    ... be ordered, along with other tests such as glucose , electrolytes , and kidney and liver function tests , to help diagnose the cause of ... Pages tab.) An increased ammonia level and decreased glucose ... may indicate that severe liver or kidney damage has impacted the body's ability ...

  14. Conductivity of continuum percolating systems

    NASA Astrophysics Data System (ADS)

    Stenull, Olaf; Janssen, Hans-Karl

    2001-11-01

    We study the conductivity of a class of disordered continuum systems represented by the Swiss-cheese model, where the conducting medium is the space between randomly placed spherical holes, near the percolation threshold. This model can be mapped onto a bond percolation model where the conductance σ of randomly occupied bonds is drawn from a probability distribution of the form σ-a. Employing the methods of renormalized field theory we show to arbitrary order in ɛ expansion that the critical conductivity exponent of the Swiss-cheese model is given by tSC(a)=(d-2)ν+max[φ,(1-a)-1], where d is the spatial dimension and ν and φ denote the critical exponents for the percolation correlation length and resistance, respectively. Our result confirms a conjecture that is based on the ``nodes, links, and blobs'' picture of percolation clusters.

  15. Signature of Thermal Rigidity Percolation

    NASA Astrophysics Data System (ADS)

    Huerta, Adrián

    2013-12-01

    To explore the role that temperature and percolation of rigidity play in determining the macroscopic properties, we propose a model that adds translational degrees of freedom to the spins of the well known Ising hamiltonian. In particular, the Ising model illustrate the longstanding idea that the growth of correlations on approach to a critical point could be describable in terms of the percolation of some sort of "physical cluster". For certain parameters of this model we observe two well defined peaks of CV, that suggest the existence of two kinds of "physical percolation", namely connectivity and rigidity percolation. Thermal fluctuations give rise to two different kinds of elementary excitations, i.e. droplets and configuron, as suggested by Angell in the framework of a bond lattice model approach. The later is reflected in the fluctuations of redundant constraints that gives stability to the structure and correlate with the order parameter.

  16. Deep Percolation in Devegetated Hillslopes

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.; Hinckley, E. S.

    2011-12-01

    Deep percolation has recently been recognized as a critical component in hillslope hydrology studies. In devegetated hillslopes where vegetation is killed and, in some cases, removed, deep percolation may be substantially enhanced beyond pre-disturbance magnitudes. We discuss two examples of devegetated hillslopes where water balance partitioning shifted to favor increased deep percolation fluxes for some hydrologic conditions. The first is the Coos Bay Experimental Catchment in Oregon, USA, where commercial forestry resulted in the complete removal of trees. An intensive field campaign in the 1990's resulted in a long term record of precipitation, discharge, piezometric response, and groundwater levels. Hydrologic response modeling confirms hypotheses from the field-data analysis and points to unresolved questions regarding feedbacks between deep percolation and near-surface hydrologic processes. The second example is the area burned by the Fourmile Canyon Fire in Colorado, USA, where a severe wildland fire removed all vegetation from a north-aspect hillslope in 2010. Precipitation, atmospheric conditions, soil-water content, matric potential, and runoff have been measured since the fire devegetated the site. Subsurface sampling of the vadose zone is accomplished using suction lysimeters to capture total nitrate, ammonium, and dissolved organic carbon concentrations. Darcian flux calculations of net infiltration from the shallow soil into fractured granodiorite bedrock are used to estimate solute fluxes to a deeper groundwater system. Virtual experiments using numerical models of unsaturated fluid flow and solute transport further elucidate the temporal dynamics of deep percolation and associated solute fluxes during spring snowmelt and frontal rainstorms, which are the major hydrologic drivers of deep percolation in this fire-impacted system. Together, these examples serve to illustrate the critical importance of deep percolation in disturbed landscapes. The

  17. Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst

    DOEpatents

    Matthews, Charles W.

    1977-01-01

    A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

  18. Hanford recycling

    SciTech Connect

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  19. Clique percolation in random graphs.

    PubMed

    Li, Ming; Deng, Youjin; Wang, Bing-Hong

    2015-10-01

    As a generation of the classical percolation, clique percolation focuses on the connection of cliques in a graph, where the connection of two k cliques means that they share at least lpercolation in Erdős-Rényi graphs, which gives not only the exact solutions of the critical point, but also the corresponding order parameter. Based on this, we prove theoretically that the fraction ψ of cliques in the giant clique cluster always makes a continuous phase transition as the classical percolation. However, the fraction ϕ of vertices in the giant clique cluster for l>1 makes a step-function-like discontinuous phase transition in the thermodynamic limit and a continuous phase transition for l=1. More interesting, our analysis shows that at the critical point, the order parameter ϕ(c) for l>1 is neither 0 nor 1, but a constant depending on k and l. All these theoretical findings are in agreement with the simulation results, which give theoretical support and clarification for previous simulation studies of clique percolation. PMID:26565177

  20. Percolation transitions in two dimensions.

    PubMed

    Feng, Xiaomei; Deng, Youjin; Blöte, Henk W J

    2008-09-01

    We investigate bond- and site-percolation models on several two-dimensional lattices numerically, by means of transfer-matrix calculations and Monte Carlo simulations. The lattices include the square, triangular, honeycomb kagome, and diced lattices with nearest-neighbor bonds, and the square lattice with nearest- and next-nearest-neighbor bonds. Results are presented for the bond-percolation thresholds of the kagome and diced lattices, and the site-percolation thresholds of the square, honeycomb, and diced lattices. We also include the bond- and site-percolation thresholds for the square lattice with nearest- and next-nearest-neighbor bonds. We find that corrections to scaling behave according to the second temperature dimension X_{t2}=4 predicted by the Coulomb gas theory and the theory of conformal invariance. In several cases there is evidence for an additional term with the same exponent, but modified by a logarithmic factor. Only for the site-percolation problem on the triangular lattice does such a logarithmic term appear to be small or absent. The amplitude of the power-law correction associated with X_{t2}=4 is found to be dependent on the orientation of the lattice with respect to the cylindrical geometry of the finite systems. PMID:18851022

  1. Percolation transitions in two dimensions

    NASA Astrophysics Data System (ADS)

    Feng, Xiaomei; Deng, Youjin; Blöte, Henk W. J.

    2008-09-01

    We investigate bond- and site-percolation models on several two-dimensional lattices numerically, by means of transfer-matrix calculations and Monte Carlo simulations. The lattices include the square, triangular, honeycomb kagome, and diced lattices with nearest-neighbor bonds, and the square lattice with nearest- and next-nearest-neighbor bonds. Results are presented for the bond-percolation thresholds of the kagome and diced lattices, and the site-percolation thresholds of the square, honeycomb, and diced lattices. We also include the bond- and site-percolation thresholds for the square lattice with nearest- and next-nearest-neighbor bonds. We find that corrections to scaling behave according to the second temperature dimension Xt2=4 predicted by the Coulomb gas theory and the theory of conformal invariance. In several cases there is evidence for an additional term with the same exponent, but modified by a logarithmic factor. Only for the site-percolation problem on the triangular lattice does such a logarithmic term appear to be small or absent. The amplitude of the power-law correction associated with Xt2=4 is found to be dependent on the orientation of the lattice with respect to the cylindrical geometry of the finite systems.

  2. Clique percolation in random graphs

    NASA Astrophysics Data System (ADS)

    Li, Ming; Deng, Youjin; Wang, Bing-Hong

    2015-10-01

    As a generation of the classical percolation, clique percolation focuses on the connection of cliques in a graph, where the connection of two k cliques means that they share at least l percolation in Erdős-Rényi graphs, which gives not only the exact solutions of the critical point, but also the corresponding order parameter. Based on this, we prove theoretically that the fraction ψ of cliques in the giant clique cluster always makes a continuous phase transition as the classical percolation. However, the fraction ϕ of vertices in the giant clique cluster for l >1 makes a step-function-like discontinuous phase transition in the thermodynamic limit and a continuous phase transition for l =1 . More interesting, our analysis shows that at the critical point, the order parameter ϕc for l >1 is neither 0 nor 1, but a constant depending on k and l . All these theoretical findings are in agreement with the simulation results, which give theoretical support and clarification for previous simulation studies of clique percolation.

  3. Recycled roads

    SciTech Connect

    Tarricone, P.

    1993-04-01

    This article examines the efforts of various states in the USA to recycle waste materials in highway construction as fill and pavements. The topics of the article include recycling used tires whole, ground, and shredded, cost of recycling, wood fiber chips as fill material in embankments, and mining wastes used to construct embankments and as coarse aggregates in asphalt pavement.

  4. Clique percolation in random networks.

    PubMed

    Derényi, Imre; Palla, Gergely; Vicsek, Tamás

    2005-04-29

    The notion of k-clique percolation in random graphs is introduced, where k is the size of the complete subgraphs whose large scale organizations are analytically and numerically investigated. For the Erdos-Rényi graph of N vertices we obtain that the percolation transition of k-cliques takes place when the probability of two vertices being connected by an edge reaches the threshold p(c) (k) = [(k - 1)N](-1/(k - 1)). At the transition point the scaling of the giant component with N is highly nontrivial and depends on k. We discuss why clique percolation is a novel and efficient approach to the identification of overlapping communities in large real networks. PMID:15904198

  5. Clique Percolation in Random Networks

    NASA Astrophysics Data System (ADS)

    Derényi, Imre; Palla, Gergely; Vicsek, Tamás

    2005-04-01

    The notion of k-clique percolation in random graphs is introduced, where k is the size of the complete subgraphs whose large scale organizations are analytically and numerically investigated. For the Erdős-Rényi graph of N vertices we obtain that the percolation transition of k-cliques takes place when the probability of two vertices being connected by an edge reaches the threshold pc(k)=[(k-1)N]-1/(k-1). At the transition point the scaling of the giant component with N is highly nontrivial and depends on k. We discuss why clique percolation is a novel and efficient approach to the identification of overlapping communities in large real networks.

  6. Percolation of interaction diffusing particles

    NASA Technical Reports Server (NTRS)

    Selinger, Robin Blumberg; Stanley, H. Eugene

    1990-01-01

    The connectivity properties of systems of diffusing interacting particles with the blind and myopic diffusion rules are studied. It is found that the blind rule case is equivalent to the lattice gas with J = 0 in all dimensions. The connectivity properties of blind rule diffusion are described by random site percolation due to the fact that the density on neighboring sites is uncorrelated.

  7. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism.

    PubMed

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Lamers, Wouter H; Chaudhry, Farrukh A; Verlander, Jill W; Weiner, I David

    2016-06-01

    Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na(+)-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression. PMID:27009341

  8. Percolation on correlated random networks

    NASA Astrophysics Data System (ADS)

    Agliari, E.; Cioli, C.; Guadagnini, E.

    2011-09-01

    We consider a class of random, weighted networks, obtained through a redefinition of patterns in an Hopfield-like model, and, by performing percolation processes, we get information about topology and resilience properties of the networks themselves. Given the weighted nature of the graphs, different kinds of bond percolation can be studied: stochastic (deleting links randomly) and deterministic (deleting links based on rank weights), each mimicking a different physical process. The evolution of the network is accordingly different, as evidenced by the behavior of the largest component size and of the distribution of cluster sizes. In particular, we can derive that weak ties are crucial in order to maintain the graph connected and that, when they are the most prone to failure, the giant component typically shrinks without abruptly breaking apart; these results have been recently evidenced in several kinds of social networks.

  9. String percolation and the Glasma

    NASA Astrophysics Data System (ADS)

    de Deus, J. Dias; Pajares, C.

    2011-01-01

    We compare string percolation phenomenology to Glasma results on particle rapidity densities, effective string or flux tube intrinsic correlations, the ridge phenomena and long range forward-backward correlations. Effective strings may be a tool to extend the Glasma to the low density QCD regime. A good example is given by the minimum of the negative binomial distribution parameter k expected to occur at low energy/centrality.

  10. Roots at the percolation threshold.

    PubMed

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water? PMID:25974526

  11. Percolation in dense storage arrays

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Scott; Wilcke, Winfried W.; Garner, Robert B.; Huels, Harald

    2002-11-01

    As computers and their accessories become smaller, cheaper, and faster the providers of news, retail sales, and other services we now take for granted on the Internet have met their increasing computing needs by putting more and more computers, hard disks, power supplies, and the data communications linking them to each other and to the rest of the wired world into ever smaller spaces. This has created a new and quite interesting percolation problem. It is no longer desirable to fix computers, storage or switchgear which fail in such a dense array. Attempts to repair things are all too likely to make problems worse. The alternative approach, letting units “fail in place”, be removed from service and routed around, means that a data communications environment will evolve with an underlying regular structure but a very high density of missing pieces. Some of the properties of this kind of network can be described within the existing paradigm of site or bond percolation on lattices, but other important questions have not been explored. I will discuss 3D arrays of hundreds to thousands of storage servers (something which it is quite feasible to build in the next few years), and show that bandwidth, but not percolation fraction or shortest path lengths, is the critical factor affected by the “fail in place” disorder. Redundancy strategies traditionally employed in storage systems may have to be revised. Novel approaches to routing information among the servers have been developed to minimize the impact.

  12. Roots at the percolation threshold

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water?

  13. Electrical percolation of fibre mixtures

    NASA Astrophysics Data System (ADS)

    Xie, Juan; Gordon, Stuart; Long, Hairu; Miao, Menghe

    2015-11-01

    In the development of conductive threads for wearable electronics, nonconductive cotton fibres and conductive stainless steel fibres are mixed to produce composite yarns at a wide range of stainless steel fibre weight fractions. The electrical resistance of the composite yarns is measured at different probe span lengths, ranging from 0.5 to 10 L ss ( L ss = 50 mm is the average length of stainless steel fibres). The percolation threshold and critical exponent are determined for each span length. The critical exponent followed a decreasing trend from 1.87 to 1.17 as the span length was increased. When the conductive fibre loading was expressed in terms of conductive fibre volume fraction, the percolation critical exponent showed a similar trend of change with probe span length. Such a dependence of percolation critical exponent on resistance probe span length has not been previously reported for conductive particle-filled polymer composites, probably because the probe span length used in resistance measurement is orders of magnitude larger than the dimension of the conductive fillers in the composites.

  14. Percolation in real interdependent networks

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo

    2015-07-01

    The function of a real network depends not only on the reliability of its own components, but is affected also by the simultaneous operation of other real networks coupled with it. Whereas theoretical methods of direct applicability to real isolated networks exist, the frameworks developed so far in percolation theory for interdependent network layers are of little help in practical contexts, as they are suited only for special models in the limit of infinite size. Here, we introduce a set of heuristic equations that takes as inputs the adjacency matrices of the layers to draw the entire phase diagram for the interconnected network. We demonstrate that percolation transitions in interdependent networks can be understood by decomposing these systems into uncoupled graphs: the intersection among the layers, and the remainders of the layers. When the intersection dominates the remainders, an interconnected network undergoes a smooth percolation transition. Conversely, if the intersection is dominated by the contribution of the remainders, the transition becomes abrupt even in small networks. We provide examples of real systems that have developed interdependent networks sharing cores of `high quality’ edges to prevent catastrophic failures.

  15. Percolative fragmentation and spontaneous agglomeration

    SciTech Connect

    Hurt, R.; Davis, K.

    1999-03-01

    Captive particle imaging experiments were performed on over 200 coal and char particles in the pulverized size range from four coals of various rank at oxygen concentration from 3--19 mol% and at gas temperatures of about 1250 K. Despite wide variations in single-particle behavior, the data set reveals two clear trends that provide new information on the nature of char combustion. First, the low-rank coal chars are observed to maintain their high reactivity through the late stages of combustion, thus avoiding the near-extinction events and long burnout tails observed for bituminous coal chars. Secondly, percolative fragmentation in the late stages of combustion is a rare event under these conditions. Some particles reach a percolation threshold rate in combustion, but typically undergo spontaneous agglomeration rather than liberation of the incipient fragments. It is concluded that percolative fragmentation behavior in the pulverized size range is determined not only by solid-phase connectivity, but also by a real competition between disruptive and cohesive forces present at the time of formation of the colloidal-sized incipient fragments.

  16. Noise scaling in continuum percolating films

    NASA Astrophysics Data System (ADS)

    Garfunkel, G. A.; Weissman, M. B.

    1985-07-01

    Measurements of the scaling of 1/f noise magnitude versus resistance were made in metal films as the metal was removed by sandblasting. This procedure gives an approximate experimental realization of a Swiss-cheese continuum-percolation model, for which theory indicates some scaling properties very different from lattice percolation. The ratio of the resistance and noise exponents was in strong disagreement with lattice-percolation predictions and agreed approximately with simple continuum predictions.

  17. Semi-directed percolation in two dimensions

    NASA Astrophysics Data System (ADS)

    Knežević, Dragica; Knežević, Milan

    2016-02-01

    We studied a model of semi-directed percolation on finite strips of the square and triangular lattices. Using the transfer-matrix method, combined with phenomenological renormalization group approach, we obtain good numerical estimates for critical probabilities and correlation lengths critical exponents. Our results confirm the conjecture that semi-directed percolation belongs to the universality class of the usual fully-directed percolation model.

  18. Weighted Percolation on Directed Networks

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan G.; Ott, Edward; Hunt, Brian R.

    2008-02-01

    We present and numerically test an analysis of the percolation transition for general node removal strategies valid for locally treelike directed networks. On the basis of heuristic arguments we predict that, if the probability of removing node i is pi, the network disintegrates if pi is such that the largest eigenvalue of the matrix with entries Aij(1-pi) is less than 1, where A is the adjacency matrix of the network. The knowledge or applicability of a Markov network model is not required by our theory, thus making it applicable to situations not covered by previous works.

  19. Bootstrap percolation on spatial networks

    PubMed Central

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-01-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around −1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value −1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading. PMID:26423347

  20. Bootstrap percolation on spatial networks

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-10-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.

  1. Bond Percolation on Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Hackett, A.; Cellai, D.; Gómez, S.; Arenas, A.; Gleeson, J. P.

    2016-04-01

    We present an analytical approach for bond percolation on multiplex networks and use it to determine the expected size of the giant connected component and the value of the critical bond occupation probability in these networks. We advocate the relevance of these tools to the modeling of multilayer robustness and contribute to the debate on whether any benefit is to be yielded from studying a full multiplex structure as opposed to its monoplex projection, especially in the seemingly irrelevant case of a bond occupation probability that does not depend on the layer. Although we find that in many cases the predictions of our theory for multiplex networks coincide with previously derived results for monoplex networks, we also uncover the remarkable result that for a certain class of multiplex networks, well described by our theory, new critical phenomena occur as multiple percolation phase transitions are present. We provide an instance of this phenomenon in a multiplex network constructed from London rail and European air transportation data sets.

  2. Percolation in suspensions and de Gennes conjectures

    NASA Astrophysics Data System (ADS)

    Gallier, Stany; Lemaire, Elisabeth; Peters, François; Lobry, Laurent

    2015-08-01

    Dense suspensions display complex flow properties, intermediate between solid and liquid. When sheared, a suspension self-organizes and forms particle clusters that are likely to percolate, possibly leading to significant changes in the overall behavior. Some theoretical conjectures on percolation in suspensions were proposed by de Gennes some 35 years ago. Although still used, they have not received any validations so far. In this Rapid Communication, we use three-dimensional detailed numerical simulations to understand the formation of percolation clusters and assess de Gennes conjectures. We found that sheared noncolloidal suspensions do show percolation clusters occurring at a critical volume fraction in the range 0.3-0.4 depending on the system size. Percolation clusters are roughly linear, extremely transient, and involve a limited number of particles. We have computed critical exponents and found that clusters can be described reasonably well by standard isotropic percolation theory. The only disagreement with de Gennes concerns the role of percolation clusters on rheology which is found to be weak. Our results eventually validate de Gennes conjectures and demonstrate the relevance of percolation concepts in suspension physics.

  3. Textile recycling

    SciTech Connect

    Jablonowski, E. ); Carlton, J.

    1995-01-01

    The most common household textiles include clothing, linens, draperies, carpets, shoes, handbags, and rugs. Old clothing, of course, is the most readily reused and/or recycled residentially generated textile category. State and/or local mandates to recycle a percentage of the waste stream are providing the impetus to add new materials to existing collection programs. Concurrently, the textile industry is aggressively trying to increase its throughput by seeking new sources of material to meet increased world demand for product. As experienced with drop-off programs for traditional materials, a majority of residents will not recycle materials unless the collection programs are convenient, i.e., curbside collection. The tonnage of marketable textiles currently being landfilled provide evidence of this. It is the authors' contention that if textile recycling is made convenient and accessible to every household in a municipality or region, then the waste stream disposed may be reduced in a similar fashion as when traditional recyclables are included in curbside programs.

  4. Emergence of coexisting percolating clusters in networks.

    PubMed

    Faqeeh, Ali; Melnik, Sergey; Colomer-de-Simón, Pol; Gleeson, James P

    2016-06-01

    It is commonly assumed in percolation theories that at most one percolating cluster can exist in a network. We show that several coexisting percolating clusters (CPCs) can emerge in networks due to limited mixing, i.e., a finite and sufficiently small number of interlinks between network modules. We develop an approach called modular message passing (MMP) to describe and verify these observations. We demonstrate that the appearance of CPCs is an important source of inaccuracy in previously introduced percolation theories, such as the message passing (MP) approach, which is a state-of-the-art theory based on the belief propagation method. Moreover, we show that the MMP theory improves significantly over the predictions of MP for percolation on synthetic networks with limited mixing and also on several real-world networks. These findings have important implications for understanding the robustness of networks and in quantifying epidemic outbreaks in the susceptible-infected-recovered (SIR) model of disease spread. PMID:27415281

  5. Emergence of coexisting percolating clusters in networks

    NASA Astrophysics Data System (ADS)

    Faqeeh, Ali; Melnik, Sergey; Colomer-de-Simón, Pol; Gleeson, James P.

    2016-06-01

    It is commonly assumed in percolation theories that at most one percolating cluster can exist in a network. We show that several coexisting percolating clusters (CPCs) can emerge in networks due to limited mixing, i.e., a finite and sufficiently small number of interlinks between network modules. We develop an approach called modular message passing (MMP) to describe and verify these observations. We demonstrate that the appearance of CPCs is an important source of inaccuracy in previously introduced percolation theories, such as the message passing (MP) approach, which is a state-of-the-art theory based on the belief propagation method. Moreover, we show that the MMP theory improves significantly over the predictions of MP for percolation on synthetic networks with limited mixing and also on several real-world networks. These findings have important implications for understanding the robustness of networks and in quantifying epidemic outbreaks in the susceptible-infected-recovered (SIR) model of disease spread.

  6. Tire Recycling

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  7. Transport on exploding percolation clusters

    NASA Astrophysics Data System (ADS)

    Andrade, José S., Jr.; Herrmann, Hans J.; Moreira, André A.; Oliveira, Cláudio L. N.

    2011-03-01

    We propose a simple generalization of the explosive percolation process [Achlioptas , ScienceSCIEAS0036-807510.1126/science.1167782 323, 1453 (2009)], and investigate its structural and transport properties. In this model, at each step, a set of q unoccupied bonds is randomly chosen. Each of these bonds is then associated with a weight given by the product of the cluster sizes that they would potentially connect, and only that bond among the q set which has the smallest weight becomes occupied. Our results indicate that, at criticality, all finite-size scaling exponents for the spanning cluster, the conducting backbone, the cutting bonds, and the global conductance of the system, change continuously and significantly with q. Surprisingly, we also observe that systems with intermediate values of q display the worst conductive performance. This is explained by the strong inhibition of loops in the spanning cluster, resulting in a substantially smaller associated conducting backbone.

  8. Global persistence in directed percolation

    NASA Astrophysics Data System (ADS)

    Oerding, K.; van Wijland, F.

    1998-08-01

    We consider a directed percolation process at its critical point. The probability that the deviation of the global order parameter with respect to its average has not changed its sign between 0 and t decays with t as a power law. In space dimensions 0305-4470/31/34/004/img5 the global persistence exponent 0305-4470/31/34/004/img6 that characterizes this decay is 0305-4470/31/34/004/img7 while for d<4 its value is increased to first order in 0305-4470/31/34/004/img8. Combining a method developed by Majumdar and Sire with renormalization group techniques we compute the correction to 0305-4470/31/34/004/img6 to first order in 0305-4470/31/34/004/img10. The global persistence exponent is found to be a new and independent exponent. Finally we compare our results with existing simulations.

  9. Roots at the Percolation Threshold

    NASA Astrophysics Data System (ADS)

    Kroener, E.; Ahmed, M. A.; Kaestner, A.; Vontobel, P.; Zarebanadkouki, M.; Carminati, A.

    2014-12-01

    Much of the carbon assimilated by plants during photosynthesis is lost to the soil via rhizodepositions. One component of rhizopdeposition is mucilage, a hydrogel that dramatically alters the soil physical properties. Mucilage was assumed to explain unexpectedly low rhizosphere rewetting rates during irrigation (Carminati et al. 2010) and temporarily water repellency in the rhizosphere after severe drying (Moradi et al. 2012).Here, we present an experimental and theoretical study for the rewetting behaviour of a soil mixed with mucilage, which was used as an analogue of the rhizosphere. Our samples were made of two layers of untreated soils separated by a thin layer (ca. 1 mm) of soil treated with mucilage. We prepared soil columns of varying particle size, mucilage concentration and height of the middle layer above the water table. The dry soil columns were re-wetted by capillary rise from the bottom.The rewetting of the middle layer showed a distinct dual behavior. For mucilage concentrations lower than a certain threshold, water could cross the thin layer almost immediately after rewetting of bulk soil. At slightly higher mucilage concentrations, the thin layer was almost impermeable. The mucilage concentration at the threshold strongly depended on particle size: the smaller the particle size the larger the soil specific surface and the more mucilage was needed to cover the entire particle surface and to induce water repellency.We applied a classic pore network model to simulate the experimental observations. In the model a certain fraction of nodes were randomly disconnected to reproduce the effect of mucilage in temporarily blocking the flow. The percolation model could qualitatively reproduce well the threshold characteristics of the experiments. Our experiments, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively

  10. Rethinking Rice Preparation for Highly Efficient Removal of Inorganic Arsenic Using Percolating Cooking Water

    PubMed Central

    Carey, Manus; Jiujin, Xiao; Gomes Farias, Júlia; Meharg, Andrew A.

    2015-01-01

    A novel way of cooking rice to maximize the removal of the carcinogen inorganic arsenic (Asi) is presented here. In conventional rice cooking water and grain are in continuous contact, and it is known that the larger the water:rice cooking ratio, the more Asi removed by cooking, suggesting that the Asi in the grain is mobile in water. Experiments were designed where rice is cooked in a continual stream of percolating near boiling water, either low in Asi, or Asi free. This has the advantage of not only exposing grain to large volumes of cooking water, but also physically removes any Asi leached from the grain into the water receiving vessel. The relationship between cooking water volume and Asi removal in conventional rice cooking was demonstrated for the rice types under study. At a water-to-rice cooking ratio of 12:1, 57±5% of Asi could be removed, average of 6 wholegrain and 6 polished rice samples. Two types of percolating technology were tested, one where the cooking water was recycled through condensing boiling water steam and passing the freshly distilled hot water through the grain in a laboratory setting, and one where tap water was used to cook the rice held in an off-the-shelf coffee percolator in a domestic setting. Both approaches proved highly effective in removing Asi from the cooking rice, with up to 85% of Asi removed from individual rice types. For the recycled water experiment 59±8% and 69±10% of Asi was removed, on average, compared to uncooked rice for polished (n=27) and wholegrain (n=13) rice, respectively. For coffee percolation there was no difference between wholegrain and polished rice, and the effectiveness of Asi removal was 49±7% across 6 wholegrain and 6 polished rice samples. The manuscript explores the potential applications and further optimization of this percolating cooking water, high Asi removal, discovery. PMID:26200355

  11. Rethinking Rice Preparation for Highly Efficient Removal of Inorganic Arsenic Using Percolating Cooking Water.

    PubMed

    Carey, Manus; Jiujin, Xiao; Gomes Farias, Júlia; Meharg, Andrew A

    2015-01-01

    A novel way of cooking rice to maximize the removal of the carcinogen inorganic arsenic (Asi) is presented here. In conventional rice cooking water and grain are in continuous contact, and it is known that the larger the water:rice cooking ratio, the more Asi removed by cooking, suggesting that the Asi in the grain is mobile in water. Experiments were designed where rice is cooked in a continual stream of percolating near boiling water, either low in Asi, or Asi free. This has the advantage of not only exposing grain to large volumes of cooking water, but also physically removes any Asi leached from the grain into the water receiving vessel. The relationship between cooking water volume and Asi removal in conventional rice cooking was demonstrated for the rice types under study. At a water-to-rice cooking ratio of 12:1, 57±5% of Asi could be removed, average of 6 wholegrain and 6 polished rice samples. Two types of percolating technology were tested, one where the cooking water was recycled through condensing boiling water steam and passing the freshly distilled hot water through the grain in a laboratory setting, and one where tap water was used to cook the rice held in an off-the-shelf coffee percolator in a domestic setting. Both approaches proved highly effective in removing Asi from the cooking rice, with up to 85% of Asi removed from individual rice types. For the recycled water experiment 59±8% and 69±10% of Asi was removed, on average, compared to uncooked rice for polished (n=27) and wholegrain (n=13) rice, respectively. For coffee percolation there was no difference between wholegrain and polished rice, and the effectiveness of Asi removal was 49±7% across 6 wholegrain and 6 polished rice samples. The manuscript explores the potential applications and further optimization of this percolating cooking water, high Asi removal, discovery. PMID:26200355

  12. Utility of Recycled Bedding for Laboratory Rodents

    PubMed Central

    Miyamoto, Toru; Li, Zhixia; Kibushi, Tomomi; Okano, Shinya; Yamasaki, Nakamichi; Kasai, Noriyuki

    2009-01-01

    Animal facilities generate a large amount of used bedding containing excrement as medical waste. We developed a recycling system for used bedding that involves soft hydrothermal processing. In this study, we examined the effects of bedding type on growth, hematologic and serum biochemical values, and organ weights of female and male mice reared on either recycled or fresh bedding from 3 to 33 wk of age. Neither growth nor physiology differed between mice housed on recycled bedding compared with fresh bedding. When 14-wk-old mice were bred, litter size and total number of weaned pups showed no significant differences between animals raised on recycled or fresh bedding. Because bedding type influences the environment within cages and animal rooms, we evaluated particulate and ammonia data from cages and animal rooms. Values were significantly lower from cages and rooms that used recycled bedding than from those using fresh bedding, thus indicating that recycled bedding has the potential to improve the environment within both cages and animal rooms. Overall, this study revealed that recycled bedding is an excellent material for use in housing laboratory rodents. Specifically, recycled bedding may reduce medical waste and maintain healthy environments within cages and animal rooms. PMID:19653951

  13. Toxicity of ammonia in pore-water and in the water column to freshwater benthic invertebrates

    SciTech Connect

    Whiteman, F.W.; Kahl, M.D.; Rau, D.M.; Balcer, M.D.; Ankley, G.T.

    1994-12-31

    Ammonia has been mentioned as both a primary toxicant and a factor that can produce false positive results in laboratory sediment tests using benthic invertebrates. This study developed a sediment dosing system that percolates an ammonia solution through sediment to achieve target porewater ammonia concentrations that remain stable over four and ten day spiked sediment tests. Ten day flow-through water-only tests and ten day spiked sediment tests were used to determine the toxicity of ammonia in the water column and in the sediment pore-water to the oligochaete Lumbriculus variegatus and the midge Chironomus tentans. Four-day tests were run with the amphipod Hyalella azteca. The relationship between water column ammonia toxicity and sediment pore-water ammonia toxicity is influenced by the organism`s association with the sediment. For Lumbriculus variegatus and Chironomus tentans that burrow into the sediment and are in direct contact with the porewater, the pore-water LC50 for ammonia is 30--40% higher than the water-only LC50 for each species. Hyalella azteca is epibenthic and avoids ammonia spiked sediment, thus ammonia in the water column is considerably more toxic than the pore-water ammonia with the porewater LC50 about 800% higher than the water only LC50.

  14. Precipitation Recycling

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1996-01-01

    The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?

  15. Lateral diffusion and percolation in membranes.

    PubMed

    Sung, Bong June; Yethiraj, Arun

    2006-06-01

    An algorithm based on Voronoi tessellation and percolation theory is presented to study the diffusion of model membrane components (solutes) in the plasma membrane. The membrane is modeled as a two-dimensional space with integral membrane proteins as static obstacles. The Voronoi diagram consists of vertices, which are equidistant from three matrix obstacles, joined by edges. An edge between two vertices is said to be connected if solute particles can pass directly between the two regions. The percolation threshold, pc, determined using this passage criterion is pc approximately equal to 0.53. This is smaller than if the connectivity of edges were assigned randomly, in which case the percolation threshold pr=2/3, where p is the fraction of connected edges. Molecular dynamics simulations show that diffusion is determined by percolation of clusters of edges. PMID:16803348

  16. Coalescence and percolation in thin metal films

    SciTech Connect

    Yu, X.; Duxbury, P.M.; Jeffers, G.; Dubson, M.A. Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1116 )

    1991-12-15

    Metals thermally evaporated onto warm insulating substrates evolve to the thin-film state via the morphological sequence: compact islands, elongated islands, percolation, hole filling, and finally the thin-film state. The coverage at which the metal percolates ({ital p}{sub {ital c}}) is often considerably higher than that predicted by percolation models, such as inverse swiss cheese or lattice percolation. Using a simple continuum model, we show that high-{ital p}{sub {ital c}}'s arise naturally in thin films that exhibit a crossover from full coalescence of islands at early stages of growth to partial coalescence at later stages. In this interrupted-coalescence model, full coalescence of islands occurs up to a critical island radius {ital R}{sub {ital c}}, after which islands overlap, but do not fully coalesce. We present the morphology of films and the critical area coverages generated by this model.

  17. Discrete scale invariance in supercritical percolation

    NASA Astrophysics Data System (ADS)

    Schröder, Malte; Chen, Wei; Nagler, Jan

    2016-01-01

    Recently it has been demonstrated that the connectivity transition from microscopic connectivity to macroscopic connectedness, known as percolation, is generically announced by a cascade of microtransitions of the percolation order parameter (Chen et al 2014 Phys. Rev. Lett. 112 155701). Here we report the discovery of macrotransition cascades which follow percolation. The order parameter grows in discrete macroscopic steps with positions that can be randomly distributed even in the thermodynamic limit. These transition positions are, however, correlated and follow scaling laws which arise from discrete scale invariance (DSI) and non self-averaging, both traditionally unrelated to percolation. We reveal the DSI in ensemble measurements of these non self-averaging systems by rescaling of the individual realizations before averaging.

  18. Percolation of secret correlations in a network

    SciTech Connect

    Leverrier, Anthony; Garcia-Patron, Raul

    2011-09-15

    In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.

  19. Photosynthesis of ammonia

    SciTech Connect

    Mallow, W.A.

    1984-09-24

    This study has demonstrated the technical feasibility of producing ammonia using an innovative technique of combining air, water and sunlight. The technique involves passing moist air over a catalyst-doped, open-celled silica foam bed illuminated by concentrated sunlight. A catalytic reaction results in tounts of ammonia. The work summarized in this report included testing of a pilot (small scale) ammonia production system located on the roof of a Southwest Research Institute (SwRI) Laboratory located in San Antonio, Texas. The system consisted of a catalyst foam bed located in a glass tube about three meters long and 5 centimeters in diameter and mounted on the focal line of a parabolic trough solar collector focused at the sun. The primary active ingredient in the catalyst was titanium dioxide. Moist air was blown through the glass tube, over illuminated catalyst foam bed. A catalytic reaction took place in the foam bed resulting in the production of ammonia gas. The ammonia gas was bubbled through a water scrubber where the ammonia was dissolved. The ammonia concentration in the scrubber water was then measured using chemiluminescence and spectrophotometry techniques to determine the ammonia production rate. Thirty-one tests were conducted in the roof top facility. A number of important process parameters were evaluated. The ammonia production rate from these tests varied from several milligrams per hour to a few micrograms per hour. The tests showed that ammonia production was possible although the yields were relatively low. Several aspects of the process could be improved to increase the yield rates. Specifically, better techniques for illuminating the catalyst with concentrated sunlight and for providing moisture at the catalyst surface should enhance the ammonia production rate. 13 references, 7 figures, 1 table.

  20. A Percolation Model for Fracking

    NASA Astrophysics Data System (ADS)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2014-12-01

    Developments in fracking technology have enabled the recovery of vast reserves of oil and gas; yet, there is very little publicly available scientific research on fracking. Traditional reservoir simulator models for fracking are computationally expensive, and require many hours on a supercomputer to simulate a single fracking treatment. We have developed a computationally inexpensive percolation model for fracking that can be used to understand the processes and risks associated with fracking. In our model, a fluid is injected from a single site and a network of fractures grows from the single site. The fracture network grows in bursts, the failure of a relatively strong bond followed by the failure of a series of relatively weak bonds. These bursts display similarities to micro seismic events observed during a fracking treatment. The bursts follow a power-law (Gutenburg-Richter) frequency-size distribution and have growth rates similar to observed earthquake moment rates. These are quantifiable features that can be compared to observed microseismicity to help understand the relationship between observed microseismicity and the underlying fracture network.

  1. Multiple-well invasion percolation.

    PubMed

    Araújo, A D; Romeu, M C; Moreira, A A; Andrade, R F S; Andrade, J S

    2008-04-01

    When the invasion percolation model is applied as a simplified model for the displacement of a viscous fluid by a less viscous one, the distribution of displaced mass follows two distinct universality classes, depending on the criteria used to stop the displacement. Here we study the distribution of mass for this process, in the case where four extraction wells are placed around a single injection well in the middle of a square lattice. Our analysis considers the limit where the pressure of the extraction well Pe is zero; in other words, an extraction well is capped as soon as less viscous fluid reaches that extraction well. Our results show that, as expected, the probability of stopping the production with small amounts of displaced mass is greatly reduced. We also investigate whether or not creating extra extraction wells is an efficient strategy. We show that the probability of increasing the amount of displaced fluid by adding an extra extraction well depends on the total recovered mass obtained before adding this well. The results presented here could be relevant to determine efficient strategies in oil exploration. PMID:18517620

  2. Generalized epidemic process and tricritical dynamic percolation

    NASA Astrophysics Data System (ADS)

    Janssen, Hans-Karl; Müller, Martin; Stenull, Olaf

    2004-08-01

    The renowned general epidemic process describes the stochastic evolution of a population of individuals which are either susceptible, infected, or dead. A second order phase transition belonging to the universality class of dynamic isotropic percolation lies between the endemic and pandemic behavior of the process. We generalize the general epidemic process by introducing a fourth kind of individuals, viz., individuals which are weakened by the process but not yet infected. This weakening gives rise to a mechanism that introduces a global instability in the spreading of the process and therefore opens the possibility of a discontinuous transition in addition to the usual continuous percolation transition. The tricritical point separating the lines of first and second order transitions constitutes an independent universality class, namely, the universality class of tricritical dynamic isotropic percolation. Using renormalized field theory we work out a detailed scaling description of this universality class. We calculate the scaling exponents in an ɛ expansion below the upper critical dimension dc=5 for various observables describing tricritical percolation clusters and their spreading properties. In a remarkable contrast to the usual percolation transition, the exponents β and β' governing the two order parameters, viz., the mean density and the percolation probability, turn out to be different at the tricritical point. In addition to the scaling exponents we calculate for all our static and dynamic observables logarithmic corrections to the mean-field scaling behavior at dc=5 .

  3. Assessing Ammonia Treatment Options

    EPA Science Inventory

    This is the second of three articles to help water system operators understand ammonia and how to monitor and control its effects at the plant and in the distribution system. The first article (Opflow, April 2012) provided an overview of ammonia's chemistry, origins, and water sy...

  4. Method for forming ammonia

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Zuck, Larry D.

    2008-08-19

    A method for forming ammonia is disclosed and which includes the steps of forming a plasma; providing a source of metal particles, and supplying the metal particles to the plasma to form metal nitride particles; and providing a substance, and reacting the metal nitride particles with the substance to produce ammonia, and an oxide byproduct.

  5. Application of percolation theory to microtomography of structured media: Percolation threshold, critical exponents, and upscaling

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Regenauer-Lieb, Klaus

    2011-01-01

    Percolation theory provides a tool for linking microstructure and macroscopic material properties. In this paper, percolation theory is applied to the analysis of microtomographic images for the purpose of deriving scaling laws for upscaling of properties. We have tested the acquisition of quantities such as percolation threshold, crossover length, fractal dimension, and critical exponent of correlation length from microtomography. By inflating or deflating the target phase and percolation analysis, we can get a critical model and an estimation of the percolation threshold. The crossover length is determined from the critical model by numerical simulation. The fractal dimension can be obtained either from the critical model or from the relative size distribution of clusters. Local probabilities of percolation are used to extract the critical exponent of the correlation length. For near-isotropic samples such as sandstone and bread, the approach works very well. For strongly anisotropic samples, such as highly deformed rock (mylonite) and a tree branch, the percolation threshold and fractal dimension can be assessed with accuracy. However, the uncertainty of the correlation length makes it difficult to accurately extract its critical exponents. Therefore, this aspect of percolation theory cannot be reliably used for upscaling properties of strongly anisotropic media. Other methods of upscaling have to be used for such media.

  6. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  7. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  8. Recycling Lesson Plans.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Environmental Resources, Harrisburg.

    This document contains lesson plans about recycling for teachers in grades K-12. Titles include: (1) "Waste--Where Does It Come From? Where Does It Go?" (2) "Litter Detectives," (3) "Classroom Paper Recycling," (4) "Recycling Survey," (5) "Disposal and Recycling Costs," (6) "Composting Project," (7) Used Motor Oil Recycling," (8) "Unwrapping…

  9. Surface exponent in percolation and central-force percolation: A test for splay rigidity

    NASA Astrophysics Data System (ADS)

    Roux, Stéphane; Hansen, Alex

    1988-09-01

    We study two related problems: one in the usual percolation and the other in central-force percolation; namely, the probability that a site sitting on the border of a semi-infinite domain belongs to either the infinite cluster in usual percolation or the infinitely rigid cluster in central-force percolation. We study the critical exponents describing the critical behavior of these probabilities by a numerical simulation using a transfer-matrix technique. Our results are consistent with the hypothesis that both critical phenomena belong to the same universality class. In addition, our results suggest that the splay-rigid phase threshold is different from the rigidity threshold in central-force percolation.

  10. Percolation thresholds and percolation conductivities of octagonal and dodecagonal quasicrystalline lattices

    NASA Astrophysics Data System (ADS)

    Babalievski, F.

    1995-02-01

    The octagonal and dodecagonal quaislattices were generated by means of the grid method. Monte Carlo simulation and cluster counting procedure were used for numerical determination of the site and bond percolation thresholds. Two types of connectivity called ferromagnetic and chemical were studied. The estimated site percolation thresholds are 0.5435… and 0.585… for octagonal lattice and 0.617… and 0.628… for dodecagonal lattice respectively. The obtained spanning fraction curves (for site percolation) seem to approach the 50% value at the percolation threshold. The site percolation conductivity for these lattices was studied by means of a transfer-matrix approach. The critical behavior was found to be the same as for the periodic lattices.

  11. Effect of filler alignment on percolation in polymer nanocomposites using tunneling-percolation model

    NASA Astrophysics Data System (ADS)

    Kale, Sohan; Sabet, Fereshteh A.; Jasiuk, Iwona; Ostoja-Starzewski, Martin

    2016-07-01

    In this study, we examine the effect of filler alignment on percolation behavior of polymer nanocomposites using Monte Carlo simulations of monodisperse prolate and oblate hard-core soft-shell ellipsoids representing carbon nanotubes and graphene nanoplatelets, respectively. The percolation threshold is observed to increase with increasing extent of alignment as expected. For a highly aligned system of rod-like fillers, the simulation results are shown to be in good agreement with the second virial approximation based predictions. However, for a highly aligned system of disk-like fillers, the second virial approximation based results are observed to significantly deviate from the simulations, even for higher aspect ratios. The effect of filler alignment on anisotropy in percolation behavior is also studied by predicting the percolation threshold along different directions. The anisotropy in percolation threshold is found to vanish even for highly aligned systems of fillers with increasing system size.

  12. Mathematical Model of Ammonia Handling in the Rat Renal Medulla

    PubMed Central

    Noiret, Lorette; Baigent, Stephen; Jalan, Rajiv; Thomas, S. Randall

    2015-01-01

    The kidney is one of the main organs that produces ammonia and release it into the circulation. Under normal conditions, between 30 and 50% of the ammonia produced in the kidney is excreted in the urine, the rest being absorbed into the systemic circulation via the renal vein. In acidosis and in some pathological conditions, the proportion of urinary excretion can increase to 70% of the ammonia produced in the kidney. Mechanisms regulating the balance between urinary excretion and renal vein release are not fully understood. We developed a mathematical model that reflects current thinking about renal ammonia handling in order to investigate the role of each tubular segment and identify some of the components which might control this balance. The model treats the movements of water, sodium chloride, urea, NH3 and NH4+, and non-reabsorbable solute in an idealized renal medulla of the rat at steady state. A parameter study was performed to identify the transport parameters and microenvironmental conditions that most affect the rate of urinary ammonia excretion. Our results suggest that urinary ammonia excretion is mainly determined by those parameters that affect ammonia recycling in the loops of Henle. In particular, our results suggest a critical role for interstitial pH in the outer medulla and for luminal pH along the inner medullary collecting ducts. PMID:26280830

  13. Ammonia Leak Locator Study

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Wuest, Martin P.; Deffenbaugh, Danny M.

    1995-01-01

    The thermal control system of International Space Station Alpha will use liquid ammonia as the heat exchange fluid. It is expected that small leaks (of the order perhaps of one pound of ammonia per day) may develop in the lines transporting the ammonia to the various facilities as well as in the heat exchange equipment. Such leaks must be detected and located before the supply of ammonia becomes critically low. For that reason, NASA-JSC has a program underway to evaluate instruments that can detect and locate ultra-small concentrations of ammonia in a high vacuum environment. To be useful, the instrument must be portable and small enough that an astronaut can easily handle it during extravehicular activity. An additional complication in the design of the instrument is that the environment immediately surrounding ISSA will contain small concentrations of many other gases from venting of onboard experiments as well as from other kinds of leaks. These other vapors include water, cabin air, CO2, CO, argon, N2, and ethylene glycol. Altogether, this local environment might have a pressure of the order of 10(exp -7) to 10(exp -6) torr. Southwest Research Institute (SwRI) was contracted by NASA-JSC to provide support to NASA-JSC and its prime contractors in evaluating ammonia-location instruments and to make a preliminary trade study of the advantages and limitations of potential instruments. The present effort builds upon an earlier SwRI study to evaluate ammonia leak detection instruments [Jolly and Deffenbaugh]. The objectives of the present effort include: (1) Estimate the characteristics of representative ammonia leaks; (2) Evaluate the baseline instrument in the light of the estimated ammonia leak characteristics; (3) Propose alternative instrument concepts; and (4) Conduct a trade study of the proposed alternative concepts and recommend promising instruments. The baseline leak-location instrument selected by NASA-JSC was an ion gauge.

  14. Percolation on hypergraphs with four-edges

    NASA Astrophysics Data System (ADS)

    Khatib Damavandi, Ojan; Ziff, Robert M.

    2015-10-01

    We study percolation on self-dual hypergraphs that contain hyperedges with four bounding vertices, or ‘four-edges’, using three different generators, each containing bonds or sites with three distinct probabilities p, r, and t connecting the four vertices. We find explicit values of these probabilities that satisfy the self-duality conditions discussed by Bollobás and Riordan. This demonstrates that explicit solutions of the self-duality conditions can be found using generators containing bonds and sites with independent probabilities. These solutions also provide new examples of lattices where exact percolation critical points are known. One of the generators exhibits three distinct criticality solutions (p, r, t). We carry out Monte-Carlo simulations of two of the generators on two different hypergraphs to confirm the critical values. For the case of the hypergraph and uniform generator studied by Wierman et al, we also determine the threshold p = 0.441 374 ± 0.000 001, which falls within the tight bounds that they derived. Furthermore, we consider a generator in which all or none of the vertices can connect, and find a soluble inhomogeneous percolation system that interpolates between site percolation on the union-jack lattice and bond percolation on the square lattice.

  15. Percolation conductivity in hafnium sub-oxides

    SciTech Connect

    Islamov, D. R. Gritsenko, V. A.; Cheng, C. H.; Chin, A.

    2014-12-29

    In this study, we demonstrated experimentally that formation of chains and islands of oxygen vacancies in hafnium sub-oxides (HfO{sub x}, x < 2) leads to percolation charge transport in such dielectrics. Basing on the model of Éfros-Shklovskii percolation theory, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. Based on the percolation theory suggested model shows that hafnium sub-oxides consist of mixtures of metallic Hf nanoscale clusters of 1–2 nm distributed onto non-stoichiometric HfO{sub x}. It was shown that reported approach might describe low resistance state current-voltage characteristics of resistive memory elements based on HfO{sub x}.

  16. Fluid leakage near the percolation threshold

    NASA Astrophysics Data System (ADS)

    Dapp, Wolf B.; Müser, Martin H.

    2016-02-01

    Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again.

  17. Percolation conductivity in hafnium sub-oxides

    NASA Astrophysics Data System (ADS)

    Islamov, D. R.; Gritsenko, V. A.; Cheng, C. H.; Chin, A.

    2014-12-01

    In this study, we demonstrated experimentally that formation of chains and islands of oxygen vacancies in hafnium sub-oxides (HfOx, x < 2) leads to percolation charge transport in such dielectrics. Basing on the model of Éfros-Shklovskii percolation theory, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. Based on the percolation theory suggested model shows that hafnium sub-oxides consist of mixtures of metallic Hf nanoscale clusters of 1-2 nm distributed onto non-stoichiometric HfOx. It was shown that reported approach might describe low resistance state current-voltage characteristics of resistive memory elements based on HfOx.

  18. Fluid leakage near the percolation threshold

    PubMed Central

    Dapp, Wolf B.; Müser, Martin H.

    2016-01-01

    Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again. PMID:26839261

  19. Fluid leakage near the percolation threshold.

    PubMed

    Dapp, Wolf B; Müser, Martin H

    2016-01-01

    Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal--applying common assumptions of elasticity, contact mechanics, and fluid dynamics--show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again. PMID:26839261

  20. Weakly explosive percolation in directed networks.

    PubMed

    Squires, Shane; Sytwu, Katherine; Alcala, Diego; Antonsen, Thomas M; Ott, Edward; Girvan, Michelle

    2013-05-01

    Percolation, the formation of a macroscopic connected component, is a key feature in the description of complex networks. The dynamical properties of a variety of systems can be understood in terms of percolation, including the robustness of power grids and information networks, the spreading of epidemics and forest fires, and the stability of gene regulatory networks. Recent studies have shown that if network edges are added "competitively" in undirected networks, the onset of percolation is abrupt or "explosive." The unusual qualitative features of this phase transition have been the subject of much recent attention. Here we generalize this previously studied network growth process from undirected networks to directed networks and use finite-size scaling theory to find several scaling exponents. We find that this process is also characterized by a very rapid growth in the giant component, but that this growth is not as sudden as in undirected networks. PMID:23767507

  1. Randomness in fractals, connectivity dimensions, and percolation

    NASA Astrophysics Data System (ADS)

    Perreau, M.; Levy, J. C. S.

    1989-10-01

    The structural properties of random fractals embedded in a d-dimensional Euclidean space are studied by means of transfer-matrix formalism of fractal sets. For d=1, both global and local approaches have been investigated, leading to the definition of a subdimension that is different from the fractal dimension and depends on the probability distribution. This subdimension is shown to be identical for the global and local approaches; then, the scaling corrections involved in this subdimension are the same for both these approaches. For d>1, only the local approach can be generalized, characterizing the connectivity properties of these structures. There are exactly d subdimensions called connectivity dimensions that prove to be useful to describe percolation properties of these fractals. Several percolation thresholds are shown, and the fractal dimension of the sets at the percolation threshold are related to the connectivity dimensions.

  2. The structure of percolating lipid monolayers.

    PubMed

    Risović, D; Frka, S; Kozarac, Z

    2012-05-01

    The lattice structure and in plane molecular organization of Langmuir monolayer of amphiphilic material is usually determined from grazing incidence X-ray diffraction (GIXD) or neutron reflectivity. Here we present results of a different approach for determination of monolayer lattice structure based on application of fractal analysis and percolation theory in combination with Brewster angle microscopy. The considerations of compressibility modulus and fractal dimension dynamics provide information on percolation threshold and consequently by application of percolation theory on the lattice structure of a monolayer. We have applied this approach to determine the monolayer lattice structures of single chain and double chain lipids. The compressibility moduli were determined from measured π-A isotherms and fractal dimensions from corresponding BAM images. The monolayer lattice structures of stearic acid, 1-hexadecanol, DPPC and DPPA, obtained in this way conform to the corresponding lattice structures determined previously by other authors using GIXD. PMID:22209411

  3. Ammonia Release on ISS

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2009-01-01

    Crew: Approximately 53% metabolic load Product of protein metabolism Limit production of ammonia by external regulation NOT possbile Payloads Potential source Scientific experiments Thorough safety review ensures sufficient levels of containment

  4. Reactor for removing ammonia

    DOEpatents

    Luo, Weifang; Stewart, Kenneth D.

    2009-11-17

    Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.

  5. Percolation under noise: Detecting explosive percolation using the second-largest component

    NASA Astrophysics Data System (ADS)

    Viles, Wes; Ginestet, Cedric E.; Tang, Ariana; Kramer, Mark A.; Kolaczyk, Eric D.

    2016-05-01

    We consider the problem of distinguishing between different rates of percolation under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi) percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two different criteria for discriminating between these two percolation models, based on the interquartile range (IQR) of the first component's size, and on the maximal size of the second-largest component. We show through data simulations that this second criterion outperforms the IQR of the first component's size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between different rates of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the context of applied neuroscience is also discussed.

  6. Alternative E ammonia feedstock

    SciTech Connect

    Lentz, M.J.; Wright, R.A.

    1999-07-01

    Power plants are using more Ammonia for increasing precipitator and baghouse efficiency, for SCR and SNCR processes, and for controlling acid stack plumes and dewpoint corrosion. These simple systems inject ammonia and air into the furnace or the precipitator or baghouse inlet ductwork. The common feedstocks in use today are Anhydrous ammonia [NH{sub 3}] and Aqueous ammonia [NH{sub 4}OH], both defined as poison gases by US authorities and most Western nations. Storage and handling procedures for these products are strictly regulated. Wilhelm Environmental Technologies Inc. is developing use of solid, formed or prilled Urea [CO(NH{sub 2}){sub 2}] as the feedstock. When heated in moist air, Urea sublimes to ammonia [NH{sub 3}] and carbon dioxide [CO{sub 2}]. Urea is stored and handled without restrictions or environmental concerns. Urea is a more expensive feedstock than NH{sub 3}, but much less expensive than [NH{sub 4}OH]. The design, and operating results, of a pilot system at Jacksonville Electric St. John's River Plant [Unit 2] are described. The pilot plant successfully sublimed Urea up to 100 pounds/hour. Further testing is planned. Very large ammonia use may favor NH{sub 3}, but smaller quantities can be produced at attractive prices with Urea based ammonia systems. Storage costs are far less. Many fluidized-bed boilers can use pastille or solid urea metered directly into the existing cyclones for NO{sub x} control. This is more economical than aqueous ammonia or aqueous urea based technology.

  7. Ammonia and sediment toxicity

    SciTech Connect

    Ogle, R.S.; Hansen, S.R.

    1994-12-31

    Ammonia toxicity to aquatic organisms has received considerable study, with most of these studies focusing on water column organisms. However, with the development and implementation of sediment (and pore water) toxicity tests, the toxicity of ammonia to benthic infauna and other sediment toxicity test organisms has become important, especially since sediment/porewater ammonia occurs at higher concentrations than in the water column. Unfortunately, there has been very little of this type information, especially for marine/estuarine organisms. This laboratory determined the toxicity of ammonia to three key marine/estuarine test organisms: the amphipod Eohaustorius estuarius, the bivalve Mytilus edulis, and the echinoderm Strongylocentrotus purpuratus. Because sediment/porewater pH can differ substantially from typical seawater pH, the toxicity evaluations covered a range of pH levels (6, 7, 8, and 9). Eohaustorius results indicate that while Total Ammonia increased in toxicity (measured as EC50) as pH increased (from 460 mg/L at pH 6, to 13 mg/L at pH 9), unionized ammonia toxicity decreased from 0.13 mg/L at pH 6 to 2.8 mg/L at pH 9. The amphipod was much less sensitive to ammonia than were the bivalve and echinoderm, with an unionized ammonia EC50 at pH 8 of 2.14 mg/L relative to 0.43 mg/L for the mussel and 0.13 mg/L for the purple urchin. These results are discussed with respect to design and interpretation of sediment toxicity test results, including an interpretation approach based on partitioning of Toxic Units (TU).

  8. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  9. Ammonia Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter

    In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.

  10. Percolation systems away from the critical point

    NASA Astrophysics Data System (ADS)

    Dhar, Deepak

    2002-02-01

    This article reviews some effects of disorder in percolation systems away from the critical density pc. For densities below pc, the statistics of large clusters defines the animals problem. Its relation to the directed animals problem and the Lee--Yang edge singularity problem is described. Rare compact clusters give rise to Griffiths singularities in the free energy of diluted ferromagnets, and lead to a very slow relaxation of magnetization. In biased diffusion on percolation clusters, trapping in dead-end branches leads to asymptotic drift velocity becoming zero for strong bias, and very slow relaxation of velocity near the critical bias field.

  11. Percolation threshold on planar Euclidean Gabriel graphs

    NASA Astrophysics Data System (ADS)

    Norrenbrock, Christoph

    2016-04-01

    In the present article, numerical simulations have been performed to find the bond and site percolation thresholds on two-dimensional Gabriel graphs (GG) for Poisson point processes. GGs belong to the family of "proximity graphs" and are discussed, e.g., in context of the construction of backbones for wireless ad-hoc networks. Finite-size scaling analyses have been performed to find the critical points and critical exponents ν, β and γ. The critical exponents obtained this way verify that the associated universality class is that of standard 2D percolation.

  12. Percolation threshold on planar Euclidean Gabriel graphs

    NASA Astrophysics Data System (ADS)

    Norrenbrock, Christoph

    2016-05-01

    In the present article, numerical simulations have been performed to find the bond and site percolation thresholds on two-dimensional Gabriel graphs (GG) for Poisson point processes. GGs belong to the family of "proximity graphs" and are discussed, e.g., in context of the construction of backbones for wireless ad-hoc networks. Finite-size scaling analyses have been performed to find the critical points and critical exponents ν, β and γ. The critical exponents obtained this way verify that the associated universality class is that of standard 2D percolation.

  13. Recycled pulsars

    NASA Astrophysics Data System (ADS)

    Jacoby, Bryan Anthony

    2005-11-01

    In a survey of ~4,150 square degrees, we discovered 26 previously unknown pulsars, including 7 "recycled" millisecond or binary pulsars. The most significant discovery of this survey is PSR J1909-3744, a 2.95 ms pulsar in an extremely circular 1.5 d orbit with a low-mass white dwarf companion. Though this system is a fairly typical low-mass binary pulsar (LMBP) system, it has several exceptional qualities: an extremely narrow pulse profile and stable rotation have enabled the most precise long-term timing ever reported, and a nearly edge-on orbit gives rise to a strong Shapiro delay which has allowed the most precise measurement of the mass of a millisecond pulsar: m p = (1.438 +/- 0.024) [Special characters omitted.] . Our accurate parallax distance measurement, d p = ([Special characters omitted.] ) kpc, combined with the mass of the optically-detected companion, m c = (0.2038 +/- 0.022) [Special characters omitted.] , will provide an important calibration for white dwarf models relevant to other LMBP companions. We have detected optical counterparts for two intermediate mass binary pulsar (IMBP) systems; taken together with optical detections and non-detections of several similar systems, our results indicate that the characteristic age t = c P /2 P consistently overestimates the time since the end of mass accretion in these recycled systems. We have measured orbital decay in the double neutron star system PSR B2127+11C in the globular cluster M15. This has allowed an improved measurement of the mass of the pulsar, m p = (1.3584 +/- 0.0097) [Special characters omitted.] , and companion, m c = (1.3544 +/- 0.0097) [Special characters omitted.] , as well as a test of general relativity at the 3% level. We find that the proper motions of this pulsar as well as PSR B2127+11A and PSR B2127+11B are consistent with each other and with one published measurement of the cluster proper motion. We have discovered three binary millisecond pulsars in the globular cluster M62

  14. Temporal percolation in activity-driven networks

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Pastor-Satorras, Romualdo

    2014-03-01

    We study the temporal percolation properties of temporal networks by taking as a representative example the recently proposed activity-driven-network model [N. Perra et al., Sci. Rep. 2, 469 (2012), 10.1038/srep00469]. Building upon an analytical framework based on a mapping to hidden variables networks, we provide expressions for the percolation time Tp marking the onset of a giant connected component in the integrated network. In particular, we consider both the generating function formalism, valid for degree-uncorrelated networks, and the general case of networks with degree correlations. We discuss the different limits of the two approaches, indicating the parameter regions where the correlated threshold collapses onto the uncorrelated case. Our analytical predictions are confirmed by numerical simulations of the model. The temporal percolation concept can be fruitfully applied to study epidemic spreading on temporal networks. We show in particular how the susceptible-infected-removed model on an activity-driven network can be mapped to the percolation problem up to a time given by the spreading rate of the epidemic process. This mapping allows us to obtain additional information on this process, not available for previous approaches.

  15. Percolation in a kinetic opinion exchange model

    NASA Astrophysics Data System (ADS)

    Chandra, Anjan Kumar

    2012-02-01

    We study the percolation transition of the geometrical clusters in the square-lattice LCCC model [a kinetic opinion exchange model introduced by Lallouache, Chakrabarti, Chakraborti, and Chakrabarti, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.056112 82, 056112 (2010)] with the change in conviction and influencing parameter. The cluster is comprised of the adjacent sites having an opinion value greater than or equal to a prefixed threshold value of opinion (Ω). The transition point is different from that obtained for the transition of the order parameter (average opinion value) found by Lallouache Although the transition point varies with the change in the threshold value of the opinion, the critical exponents for the percolation transition obtained from the data collapses of the maximum cluster size, the cluster size distribution, and the Binder cumulant remain the same. The exponents are also independent of the values of conviction and influencing parameters, indicating the robustness of this transition. The exponents do not match any other known percolation exponents (e.g., the static Ising, dynamic Ising, and standard percolation). This means that the LCCC model belongs to a separate universality class.

  16. Generic rigidity percolation in two dimensions

    NASA Astrophysics Data System (ADS)

    Jacobs, D. J.; Thorpe, M. F.

    1996-04-01

    We study rigidity percolation for random central-force networks on the bondand site-diluted generic triangular lattice. Here, each site location is randomly displaced from the perfect lattice, removing any special symmetries. Using the pebble game algorithm, the total number of floppy modes are counted exactly, and exhibit a cusp singularity in the second derivative at the transition from a rigid to a floppy structure. The critical thresholds for bond and site dilution are found to be 0.66020+/-0.0003 and 0.69755+/-0.0003, respectively. The network is decomposed into unique rigid clusters, and we apply the usual percolation scaling theory. From finite size scaling, we find that the generic rigidity percolation transition is second order, but in a different universality class from connectivity percolation, with the exponents α=-0.48+/-0.05, β=0.175+/-0.02, and ν=1.21+/-0.06. The fractal dimension of the spanning rigid clusters and the spanning stressed regions at the critical threshold are found to be df=1.86+/-0.02 and dBB=1.80+/-0.03, respectively.

  17. Crossover from isotropic to directed percolation

    NASA Astrophysics Data System (ADS)

    Zhou, Zongzheng; Yang, Ji; Ziff, Robert M.; Deng, Youjin

    2012-08-01

    We generalize the directed percolation (DP) model by relaxing the strict directionality of DP such that propagation can occur in either direction but with anisotropic probabilities. We denote the probabilities as p↓=ppd and p↑=p(1-pd), with p representing the average occupation probability and pd controlling the anisotropy. The Leath-Alexandrowicz method is used to grow a cluster from an active seed site. We call this model with two main growth directions biased directed percolation (BDP). Standard isotropic percolation (IP) and DP are the two limiting cases of the BDP model, corresponding to pd=1/2 and pd=0,1 respectively. In this work, besides IP and DP, we also consider the 1/2percolation thresholds of the BDP model for pd=0.6 and 0.8, and determine various critical exponents. These exponents are found to be consistent with those for standard DP. We also determine the renormalization exponent associated with the asymmetric perturbation due to pd-1/2≠0 near IP, and confirm that such an asymmetric scaling field is relevant at IP.

  18. Crossover from isotropic to directed percolation.

    PubMed

    Zhou, Zongzheng; Yang, Ji; Ziff, Robert M; Deng, Youjin

    2012-08-01

    We generalize the directed percolation (DP) model by relaxing the strict directionality of DP such that propagation can occur in either direction but with anisotropic probabilities. We denote the probabilities as p(↓) = pp(d) and p(↑) = p(1-p(d)), with p representing the average occupation probability and p(d) controlling the anisotropy. The Leath-Alexandrowicz method is used to grow a cluster from an active seed site. We call this model with two main growth directions biased directed percolation (BDP). Standard isotropic percolation (IP) and DP are the two limiting cases of the BDP model, corresponding to p(d) =1/2 and p(d) = 0,1 respectively. In this work, besides IP and DP, we also consider the 1/2 < p(d) <1 region. Extensive Monte Carlo simulations are carried out on the square and the simple-cubic lattices, and the numerical data are analyzed by finite-size scaling. We locate the percolation thresholds of the BDP model for p(d) = 0.6 and 0.8, and determine various critical exponents. These exponents are found to be consistent with those for standard DP. We also determine the renormalization exponent associated with the asymmetric perturbation due to p(d)-1/2 ≠ 0 near IP, and confirm that such an asymmetric scaling field is relevant at IP. PMID:23005718

  19. Ammonia diffusion through Nalophan™ bags.

    PubMed

    Sironi, Selena; Eusebio, Lidia; Dentoni, Licinia; Capelli, Laura; Del Rosso, Renato

    2014-01-01

    The aim of the work is to verify the diffusion rate of ammonia through the Nalophan™ film that constitutes the sampling bag, considering storage times ranging from 1 to 26 h. The ammonia decay over time was evaluated using gas-chromatography for the quantification of ammonia concentration inside the bag. The research assesses the roles of both of ammonia and water concentration gradients at the polymeric film interface on the diffusion process. The results show that both the ammonia concentration gradient and, in a less pronounced way, the water concentration gradient are the main 'engines' of ammonia diffusion. Double bags seem to represent a simple solution for preventing ammonia losses during storage. Another interesting result concerns the role of the bag surface on the ammonia diffusion rate: the higher the surface/volume (S/V) ratio, the higher the ammonia diffusion rate through the polymeric film. PMID:24552718

  20. Green Science: Revisiting Recycling

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  1. Phase transitions in supercritical explosive percolation

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Nagler, Jan; Cheng, Xueqi; Jin, Xiaolong; Shen, Huawei; Zheng, Zhiming; D'Souza, Raissa M.

    2013-05-01

    Percolation describes the sudden emergence of large-scale connectivity as edges are added to a lattice or random network. In the Bohman-Frieze-Wormald model (BFW) of percolation, edges sampled from a random graph are considered individually and either added to the graph or rejected provided that the fraction of accepted edges is never smaller than a decreasing function with asymptotic value of α, a constant. The BFW process has been studied as a model system for investigating the underlying mechanisms leading to discontinuous phase transitions in percolation. Here we focus on the regime α∈[0.6,0.95] where it is known that only one giant component, denoted C1, initially appears at the discontinuous phase transition. We show that at some point in the supercritical regime C1 stops growing and eventually a second giant component, denoted C2, emerges in a continuous percolation transition. The delay between the emergence of C1 and C2 and their asymptotic sizes both depend on the value of α and we establish by several techniques that there exists a bifurcation point αc=0.763±0.002. For α∈[0.6,αc), C1 stops growing the instant it emerges and the delay between the emergence of C1 and C2 decreases with increasing α. For α∈(αc,0.95], in contrast, C1 continues growing into the supercritical regime and the delay between the emergence of C1 and C2 increases with increasing α. As we show, αc marks the minimal delay possible between the emergence of C1 and C2 (i.e., the smallest edge density for which C2 can exist). We also establish many features of the continuous percolation of C2 including scaling exponents and relations.

  2. Disinfection of secondary effluents by infiltration percolation.

    PubMed

    Makni, H

    2001-01-01

    Among the most attractive applications of reclaimed wastewater are: irrigation of public parks, sports fields, golf courses and market gardening. These uses require advanced wastewater treatment including disinfection. According to WHO guidelines (1989) and current rules and regulations in Tunisia, faecal coliform levels have to be reduced to < 10(3) or 10(2) CFU/100 mL. In Tunisia, most wastewater plants are only secondary treatment and, in order to meet health related regulations, the effluents need to be disinfected. However, it is usual for secondary effluents to need filtration prior to disinfection. Effectiveness of conventional disinfection processes, such as chlorination and UV radiation, are dependent upon the oxidation level and the levels of suspended solids of the treated water. Ozonation is relatively expensive and energy consuming. The consideration of the advantages and disadvantages of conventional techniques, their reliability, investment needs and operational costs will lead to the use of less sophisticated alternative techniques for certain facilities. Among alternative techniques, soil aquifer treatment and infiltration percolation through sand beds have been studied in Arizona, Israel, France, Spain and Morocco. Infiltration percolation plants have been intermittently fed with secondary or high quality primary effluents which percolated through 1.5-2 m unsaturated coarse sand and were recovered by under-drains. In such infiltration percolation facilities, microorganisms were eliminated through numerous physical, physicochemical and biological inter-related processes (mechanical filtration, adsorption and microbial degradation respectively). Efficiency of faecal coliform removal was dependent upon the water detention times in the filtering medium and on the oxidation of the filtered water. Effluents of Sfax town aerated ponds were infiltrated through 1.5 m deep sand columns in order to determine the performance of infiltration percolation in the

  3. Anomalous critical and supercritical phenomena in explosive percolation

    NASA Astrophysics Data System (ADS)

    D'Souza, Raissa M.; Nagler, Jan

    2015-07-01

    The emergence of large-scale connectivity on an underlying network or lattice, the so-called percolation transition, has a profound impact on the system’s macroscopic behaviours. There is thus great interest in controlling the location of the percolation transition to either enhance or delay its onset and, more generally, in understanding the consequences of such control interventions. Here we review explosive percolation, the sudden emergence of large-scale connectivity that results from repeated, small interventions designed to delay the percolation transition. These transitions exhibit drastic, unanticipated and exciting consequences that make explosive percolation an emerging paradigm for modelling real-world systems ranging from social networks to nanotubes.

  4. Reversible first-order transition in Pauli percolation

    NASA Astrophysics Data System (ADS)

    Maksymenko, Mykola; Moessner, Roderich; Shtengel, Kirill

    2015-06-01

    Percolation plays an important role in fields and phenomena as diverse as the study of social networks, the dynamics of epidemics, the robustness of electricity grids, conduction in disordered media, and geometric properties in statistical physics. We analyze a new percolation problem in which the first-order nature of an equilibrium percolation transition can be established analytically and verified numerically. The rules for this site percolation model are physical and very simple, requiring only the introduction of a weight W (n )=n +1 for a cluster of size n . This establishes that a discontinuous percolation transition can occur with qualitatively more local interactions than in all currently considered examples of explosive percolation; and that, unlike these, it can be reversible. This greatly extends both the applicability of such percolation models in principle and their reach in practice.

  5. Reversible first-order transition in Pauli percolation.

    PubMed

    Maksymenko, Mykola; Moessner, Roderich; Shtengel, Kirill

    2015-06-01

    Percolation plays an important role in fields and phenomena as diverse as the study of social networks, the dynamics of epidemics, the robustness of electricity grids, conduction in disordered media, and geometric properties in statistical physics. We analyze a new percolation problem in which the first-order nature of an equilibrium percolation transition can be established analytically and verified numerically. The rules for this site percolation model are physical and very simple, requiring only the introduction of a weight W(n)=n+1 for a cluster of size n. This establishes that a discontinuous percolation transition can occur with qualitatively more local interactions than in all currently considered examples of explosive percolation; and that, unlike these, it can be reversible. This greatly extends both the applicability of such percolation models in principle and their reach in practice. PMID:26172657

  6. Liberation of ammonia by cyanobacteria

    SciTech Connect

    Newton, J.W.

    1986-04-01

    Photoheterotrophic nitrogen-fixing cyanobacteria release ammonia when treated with methionine sulfoximine (MSX) to inhibit nitrogen incorporation into protein. This released ammonia can be derived from recently fixed nitrogen (nitrogen atmosphere) or endogenous reserves (argon atmosphere). Anaerobic ammonia release requires light and is stimulated by the photosystem II herbicides DCMU and Atrazine, regardless of the source of ammonia. As much as one quarter of the total cellular nitrogen can be released as ammonia by cyanbacteria treated with MSX and DCMU under argon in light. Chromatography of cell extracts indicates that virtually all cellular proteins are degraded. DCMU and Atrazine, at very low concentration, inhibit sustained uptake of the ammonia analog /sup 14/C methylamine. These data indicate that the herbicides interrupt ammonia uptake and retention by the cells, and support a role for photosystem II in ammonia metabolism.

  7. The Ammonia-Soda Process.

    ERIC Educational Resources Information Center

    Tingle, M.

    1979-01-01

    This article is a condensed version of a commentary written to accompany a set of slides which describes the ammonia-soda process used by the ammonia-soda plant at Northwich of the United Kingdom. (HM)

  8. The Chemistry of Liquid Ammonia.

    ERIC Educational Resources Information Center

    Lagowski, J. J.

    1978-01-01

    The solvent and chemical properties of liquid ammonia are presented. In a certain sense, ammonia is a more versatile solvent than is water because of its ability to solubilize, without reaction, highly negative or reducing species. (Author/BB)

  9. Recycled Art: Create Puppets Using Recycled Objects.

    ERIC Educational Resources Information Center

    Clearing, 2003

    2003-01-01

    Presents an activity from "Healthy Foods from Healthy Soils" for making puppets using recycled food packaging materials. Includes background information, materials, instructions, literature links, resources, and benchmarks. (NB)

  10. Recycle Used Oil on America Recycles Day.

    ERIC Educational Resources Information Center

    White, Boyd W.

    2000-01-01

    Explains that motor oils can be reused and recycled. Educates students about environmental hazards and oil management and includes classroom activities. Addresses the National Science Education Standards. (YDS)

  11. Discontinuous percolation transitions in real physical systems

    NASA Astrophysics Data System (ADS)

    Cho, Y. S.; Kahng, B.

    2011-11-01

    We study discontinuous percolation transitions (PTs) in the diffusion-limited cluster aggregation model of the sol-gel transition as an example of real physical systems, in which the number of aggregation events is regarded as the number of bonds occupied in the system. When particles are Brownian, in which cluster velocity depends on cluster size as vs˜sη with η=-0.5, a larger cluster has less probability to collide with other clusters because of its smaller mobility. Thus, the cluster is effectively more suppressed in growth of its size. Then the giant cluster size increases drastically by merging those suppressed clusters near the percolation threshold, exhibiting a discontinuous PT. We also study the tricritical behavior by controlling the parameter η, and the tricritical point is determined by introducing an asymmetric Smoluchowski equation.

  12. Abrupt percolation in small equilibrated networks

    NASA Astrophysics Data System (ADS)

    Matsoukas, Themis

    2015-05-01

    Networks can exhibit an abrupt transition in the form of a spontaneous self-organization of a sizable fraction of the population into a giant component of connected members. This behavior has been demonstrated in random graphs under suppressive rules that passively or actively attempt to delay the formation of the giant cluster. We show that suppressive rules are not a necessary condition for a sharp transition at the percolation threshold. Rather, a finite system with aggressive tendency to form a giant cluster may exhibit an instability at the percolation threshold that is relieved through an abrupt and discontinuous transition to the stable branch. We develop the theory for a class of equilibrated networks that produce this behavior and find that the discontinuous jump is especially pronounced in small networks but disappears when the size of the system is infinite.

  13. Percolation in Self-Similar Networks

    NASA Astrophysics Data System (ADS)

    Serrano, M. Ángeles; Krioukov, Dmitri; Boguñá, Marián

    2011-01-01

    We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike. Our results rely only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal for percolation in networks.

  14. On directed interacting animals and directed percolation

    NASA Astrophysics Data System (ADS)

    Knezevic, Milan; Vannimenus, Jean

    2002-03-01

    We study the phase diagram of fully directed lattice animals with nearest-neighbour interactions on the square lattice. This model comprises several interesting ensembles (directed site and bond trees, bond animals, strongly embeddable animals) as special cases and its collapse transition is equivalent to a directed bond percolation threshold. Precise estimates for the animal size exponents in the different phases and for the critical fugacities of these special ensembles are obtained from a phenomenological renormalization group analysis of the correlation lengths for strips of width up to n = 17. The crossover region in the vicinity of the collapse transition is analysed in detail and the crossover exponent φ is determined directly from the singular part of the free energy. We show using scaling arguments and an exact relation due to Dhar that φ is equal to the Fisher exponent σ governing the size distribution of large directed percolation clusters.

  15. Local Directed Percolation Probability in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Inui, Norio; Konno, Norio; Komatsu, Genichi; Kameoka, Koichi

    1998-01-01

    Using the series expansion method and Monte Carlo simulation,we study the directed percolation probability on the square lattice Vn0=\\{ (x,y) \\in {Z}2:x+y=even, 0 ≤ y ≤ n, - y ≤ x ≤ y \\}.We calculate the local percolationprobability Pnl defined as the connection probability between theorigin and a site (0,n). The critical behavior of P∞lis clearly different from the global percolation probability P∞g characterized by a critical exponent βg.An analysis based on the Padé approximants shows βl=2βg.In addition, we find that the series expansion of P2nl can be expressed as a function of Png.

  16. Ammonia tank failure

    SciTech Connect

    Sweat, M.E.

    1983-04-01

    An ammonia tank failure at Hawkeye Chemical of Clinton, Iowa is discussed. The tank was a double-wall, 27,000 metric-ton tank built in 1968 and commissioned in December 1969. The paper presented covers the cause of the failure, repair, and procedural changes made to prevent recurrence of the failure. (JMT)

  17. Modified Invasion Percolation Models for Multiphase Processes

    SciTech Connect

    Karpyn, Zuleima

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  18. Random fracture networks: percolation, geometry and flow

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Thovert, J. F.; Mourzenko, V. V.

    2015-12-01

    This paper reviews some of the basic properties of fracture networks. Most of the data can only be derived numerically, and to be useful they need to be rationalized, i.e., a large set of numbers should be replaced by a simple formula which is easy to apply for estimating orders of magnitude. Three major tools are found useful in this rationalization effort. First, analytical results can usually be derived for infinite fractures, a limit which corresponds to large densities. Second, the excluded volume and the dimensionless density prove crucial to gather data obtained at intermediate densities. Finally, shape factors can be used to further reduce the influence of fracture shapes. Percolation of fracture networks is of primary importance since this characteristic controls transport properties such as permeability. Recent numerical studies for various types of fracture networks (isotropic, anisotropic, heterogeneous in space, polydisperse, mixture of shapes) are summarized; the percolation threshold rho is made dimensionless by means of the excluded volume. A general correlation for rho is proposed as a function of the gyration radius. The statistical characteristics of the blocks which are cut in the solid matrix by the network are presented, since they control transfers between the porous matrix and the fractures. Results on quantities such as the volume, surface and number of faces are given and semi empirical relations are proposed. The possible intersection of a percolating network and of a cubic cavity is also summarized. This might be of importance for the underground storage of wastes. An approximate reasoning based on the excluded volume of the percolating cluster and of the cubic cavity is proposed. Finally, consequences on the permeability of fracture networks are briefly addressed. An empirical formula which verifies some theoretical properties is proposed.

  19. Generic Rigidity Percolation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Thorpe, M. F.; Jacobs, D. J.; Day, A. R.

    1996-03-01

    We study rigidity percolation for random central-force networks, using the Pebble Game(D. J. Jacobs and M. F. Thorpe, Phys. Rev. Letts. 75), 4051 (1995) algorithm on the bond and site diluted generic triangular lattice. Here, each site location is randomly displaced from the perfect lattice, removing any special symmetries. The total number of floppy modes are counted exactly, and exhibit a cusp singularity in the second derivative of the number of floppy modes, at the transition from a rigid to a floppy structure. The critical thresholds for bond and site dilution are found to be 0.6602 ± 0.0003 and 0.6976 ± 0.0003 respectively. We find that the generic rigidity percolation transition is second order, but in a different universality class than connectivity percolation, with the exponents; α = -0.48 ± 0.05 , β = 0.175 ± 0.02 and ν = 1.21 ± 0.06 . The fractal dimension of the spanning rigid clusters and the spanning stressed regions at the critical threshold are found to be df = 1.86 ± 0.02 and d_BB = 1.80 ± 0.03 respectively. Some elastic properties of the rigid backbone will be discussed.

  20. Percolation properties in a traffic model

    NASA Astrophysics Data System (ADS)

    Wang, Feilong; Li, Daqing; Xu, Xiaoyun; Wu, Ruoqian; Havlin, Shlomo

    2015-11-01

    As a dynamical complex system, traffic is characterized by a transition from free flow to congestions, which is mostly studied in highways. However, despite its importance in developing congestion mitigation strategies, the understanding of this common traffic phenomenon in a city scale is still missing. An open question is how the traffic in the network collapses from a global efficient traffic to isolated local flows in small clusters, i.e. the question of traffic percolation. Here we study the traffic percolation properties on a lattice by simulation of an agent-based model for traffic. A critical traffic volume in this model distinguishes the free state from the congested state of traffic. Our results show that the threshold of traffic percolation decreases with increasing traffic volume and reaches a minimum value at the critical traffic volume. We show that this minimal threshold is the result of longest spatial correlation between traffic flows at the critical traffic volume. These findings may help to develop congestion mitigation strategies in a network view.

  1. Scaling properties of percolation models for multifragmentation

    NASA Astrophysics Data System (ADS)

    Ngô, H.; Ngô, C.; Ighezou, F. Z.; Desbois, J.; Leray, S.; Zheng, Y.-M.

    1990-03-01

    We have used scaling properties of nuclear multifragmentation, which have been observed with emulsion data, to investigate the properties of some approaches based on percolation. We have studied different percolation models on a cubic lattice and shown that they can rather well reproduce the data except for binary break up. We have described what the mean field approximation would give in this context and showed that it cannot reproduce the experimental results. Most of the paper is focused on the restructured aggregation model introduced earlier which allows to well reproduce the scaling properties observed experimentally. This model has been studied in details and extended to take account of bonds breaking. It is shown that, in some cases, a nucleus can break up in two pieces. This process cannot be obtained in conventional percolation or aggregation but is observed experimentally in the emulsion data. Other features like the dimensionality of the aggregation model, the restructuration of the clusters and a schematic constraint in momentum space have also been investigated.

  2. Percolation of networks with directed dependency links

    NASA Astrophysics Data System (ADS)

    Niu, Dunbiao; Yuan, Xin; Du, Minhui; Stanley, H. Eugene; Hu, Yanqing

    2016-04-01

    The self-consistent probabilistic approach has proven itself powerful in studying the percolation behavior of interdependent or multiplex networks without tracking the percolation process through each cascading step. In order to understand how directed dependency links impact criticality, we employ this approach to study the percolation properties of networks with both undirected connectivity links and directed dependency links. We find that when a random network with a given degree distribution undergoes a second-order phase transition, the critical point and the unstable regime surrounding the second-order phase transition regime are determined by the proportion of nodes that do not depend on any other nodes. Moreover, we also find that the triple point and the boundary between first- and second-order transitions are determined by the proportion of nodes that depend on no more than one node. This implies that it is maybe general for multiplex network systems, some important properties of phase transitions can be determined only by a few parameters. We illustrate our findings using Erdős-Rényi networks.

  3. Hidden percolation transition in kinetic replication process

    NASA Astrophysics Data System (ADS)

    Timonin, P. N.; Chitov, G. Y.

    2015-04-01

    The one-dimensional kinetic contact process with parallel update is introduced and studied by the mean-field approximation and Monte Carlo (MC) simulations. Contrary to a more conventional scenario with single active phase for 1d models with Ising-like variables, we find two different adjacent active phases in the parameter space of the proposed model with a second-order transition between them and a multiphase point where the active and the absorbing phases meet. While one of the active phases is quite standard with a smooth average filling of the space-time lattice, the second active phase demonstrates a very subtle (hidden) percolating order which becomes manifest only after certain transformation from the original model. We determine the percolation order parameter for active-active phase transition and discuss such hidden orders in other low-dimensional systems. Our MC data demonstrate finite-size critical and near-critical scaling of the order parameter relaxation for the two phase transitions. We find three independent critical indices for them and conclude that they both belong to the directed percolation universality class.

  4. Recycling overview in Sweden

    SciTech Connect

    Not Available

    1989-07-01

    This article discusses the recycling programs currently in use in Sweden. Recycling of newspapers, batteries, plastics are all mentioned in this report by the Swedish Association of Public Cleansing and Solid Waste Management.

  5. Recycling Research. Tracking Trash.

    ERIC Educational Resources Information Center

    DeLago, Louise Furia

    1991-01-01

    An activity in which students research the effectiveness of recycling is presented. Students compare the types and amount of litter both before and after recycling is implemented. Directions for the activity and a sample data sheet are included. (KR)

  6. Topology of a percolating soil pore network

    NASA Astrophysics Data System (ADS)

    Capa-Morocho, M.; Ruiz-Ramos, M.; Hapca, S. M.; Houston, A.; Tarquis, A. M.

    2012-04-01

    A connectivity function defined by the 3D-Euler number, is a topological indicator and can be related to hydraulic properties (Vogel and Roth, 2001). This study aims to develop connectivity Euler indexes as indicators of the ability of soils for fluid percolation. The starting point was a 3D grey image acquired by X-ray computed tomography of a soil at bulk density of 1.2 mg cm-3. This image was used in the simulation of 40000 particles following a directed random walk algorithms with 7 binarization thresholds. These data consisted of 7 files containing the simulated end points of the 40000 random walks, obtained in Ruiz-Ramos et al. (2010). MATLAB software was used for computing the frequency matrix of the number of particles arriving at every end point of the random walks and their 3D representation. In a former work (Capa et al., 2011) a criteria for choosing the optimal threshold of grey value was identified: Final positions were divided in two subgroups, cg1 (positions with frequency of the number of particles received greater than the median) and cg2 (frequency lower or equal to median). Images with maximum difference between the Z coordinate of the center of gravity of both subgroups were selected as those with optimal threshold that reflects the major internal differences in soil structure that are relevant to percolation. According to this criterion, the optimal threshold for the soil with density 1.2 mg cm-3 was 24.Thresholds above and below the optimal (23 and 25) were also considered to confirm this selection; therefore the analysis were conducted for three files (1 image with 3 grey threshold values, which have different porosity). Additionally, three random matrix simulations with the same porosity than the selected binaries images were used to test the existence of pore connectivity as a consequence of a non-random soil structure. Therefore, 6 matrix were considered (three structured and three random) for this study. Random matrix presented a normal

  7. Percolation behavior in metallic-insulator composite systems and the filling factor near the percolation threshold

    NASA Astrophysics Data System (ADS)

    Mukherjee, Rupam; Mishra, Debabrata; Huang, Zhifeng; Nadgorny, Boris

    2012-10-01

    We investigate the percolation behavior in various composite metal -- insulator systems including LiCoO2/ CrO2, MgB2/Al2O3, CrO2/Al2O3, CrO2/ CaCO3. The effect of particle size and shapes in these systems has been studied to better understand the geometrical phase transitions. The power law exponent around the percolation threshold has been found to be 2.0±0.04 in all the cases, which agrees well with the theoretical result. Interestingly, the filling factor of these composite systems also exhibits the power law dependence near the percolation threshold with the value found to be dependent on the shape of the insulating particle. The exponent ranges from 0.2 to 0.4 depending on size of particles of a given shape in the composite system.

  8. Recycling and the automobile

    SciTech Connect

    Holt, D.J.

    1993-10-01

    This article examines the current status of automobile recycling and contains a summary of a survey which points out the major drivers and their impacts on automotive recycling. The topics of the article include computerized dismantling, polyurethane, sheet molding compound, polyester, thermoplastic polyester, recycling salvaged parts, vinyl and automotive shredder residue.

  9. The Sustainability of Recycling.

    ERIC Educational Resources Information Center

    Juniper, Christopher

    1993-01-01

    Describes the need for closing the business cycle in the recycling process. Discusses whether the government should mandate or the free market create uses for recycled products. Presents challenges associated with marketing recycled materials including what has been and what needs to be done to stimulate markets, encourage business, and balance…

  10. Rethink, Rework, Recycle.

    ERIC Educational Resources Information Center

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  11. Exploring percolative landscapes: Infinite cascades of geometric phase transitions

    NASA Astrophysics Data System (ADS)

    Timonin, P. N.; Chitov, Gennady Y.

    2016-01-01

    The evolution of many kinetic processes in 1+1 (space-time) dimensions results in 2 D directed percolative landscapes. The active phases of these models possess numerous hidden geometric orders characterized by various types of large-scale and/or coarse-grained percolative backbones that we define. For the patterns originated in the classical directed percolation (DP) and contact process we show from the Monte Carlo simulation data that these percolative backbones emerge at specific critical points as a result of continuous phase transitions. These geometric transitions belong to the DP universality class and their nonlocal order parameters are the capacities of corresponding backbones. The multitude of conceivable percolative backbones implies the existence of infinite cascades of such geometric transitions in the kinetic processes considered. We present simple arguments to support the conjecture that such cascades of transitions are a generic feature of percolation as well as of many other transitions with nonlocal order parameters.

  12. Breaking of the site-bond percolation universality in networks

    PubMed Central

    Radicchi, Filippo; Castellano, Claudio

    2015-01-01

    The stochastic addition of either vertices or connections in a network leads to the observation of the percolation transition, a structural change with the appearance of a connected component encompassing a finite fraction of the system. Percolation has always been regarded as a substrate-dependent but model-independent process, in the sense that the critical exponents of the transition are determined by the geometry of the system, but they are identical for the bond and site percolation models. Here, we report a violation of such assumption. We provide analytical and numerical evidence of a difference in the values of the critical exponents between the bond and site percolation models in networks with null percolation thresholds, such as scale-free graphs with diverging second moment of the degree distribution. We discuss possible implications of our results in real networks, and provide additional insights on the anomalous nature of the percolation transition with null threshold. PMID:26667155

  13. Percolation in a Proton Exchange Membrane Fuel Cell Catalyst Layer

    SciTech Connect

    Stacy, Stephen; Allen, Jeffrey

    2012-07-01

    Water management in the catalyst layers of proton exchange membrane fuel cells (PEMFC) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. At the present time, the data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited. A method and apparatus for measuring the percolation pressure in the catalyst layer has been developed based upon an experimental apparatus used to test water percolation in porous transport layers (PTL). The experimental setup uses a pseudo Hele-Shaw type testing where samples are compressed and a fluid is injected into the sample. Testing the samples gives percolation pressure plots which show trends in increasing percolation pressure with an increase in flow rate. A decrease in pressure was seen as percolation occurred in one sample, however the pressure only had a rising effect in the other sample.

  14. Deformation-assisted fluid percolation in rock salt.

    PubMed

    Ghanbarzadeh, Soheil; Hesse, Marc A; Prodanović, Maša; Gardner, James E

    2015-11-27

    Deep geological storage sites for nuclear waste are commonly located in rock salt to ensure hydrological isolation from groundwater. The low permeability of static rock salt is due to a percolation threshold. However, deformation may be able to overcome this threshold and allow fluid flow. We confirm the percolation threshold in static experiments on synthetic salt samples with x-ray microtomography. We then analyze wells penetrating salt deposits in the Gulf of Mexico. The observed hydrocarbon distributions in rock salt require that percolation occurred at porosities considerably below the static threshold due to deformation-assisted percolation. Therefore, the design of nuclear waste repositories in salt should guard against deformation-driven fluid percolation. In general, static percolation thresholds may not always limit fluid flow in deforming environments. PMID:26612949

  15. Exploring percolative landscapes: Infinite cascades of geometric phase transitions.

    PubMed

    Timonin, P N; Chitov, Gennady Y

    2016-01-01

    The evolution of many kinetic processes in 1+1 (space-time) dimensions results in 2D directed percolative landscapes. The active phases of these models possess numerous hidden geometric orders characterized by various types of large-scale and/or coarse-grained percolative backbones that we define. For the patterns originated in the classical directed percolation (DP) and contact process we show from the Monte Carlo simulation data that these percolative backbones emerge at specific critical points as a result of continuous phase transitions. These geometric transitions belong to the DP universality class and their nonlocal order parameters are the capacities of corresponding backbones. The multitude of conceivable percolative backbones implies the existence of infinite cascades of such geometric transitions in the kinetic processes considered. We present simple arguments to support the conjecture that such cascades of transitions are a generic feature of percolation as well as of many other transitions with nonlocal order parameters. PMID:26871019

  16. Explosive site percolation and finite-size hysteresis

    NASA Astrophysics Data System (ADS)

    Bastas, Nikolaos; Kosmidis, Kosmas; Argyrakis, Panos

    2011-12-01

    We report the critical point for site percolation for the “explosive” type for two-dimensional square lattices using Monte Carlo simulations and compare it to the classical well-known percolation. We use similar algorithms as have been recently reported for bond percolation and networks. We calculate the explosive site percolation threshold as pc=0.695 and we find evidence that explosive site percolation surprisingly may belong to a different universality class than bond percolation on lattices, providing that the transitions (a) are continuous and (b) obey the conventional finite size scaling forms. Finally, we study and compare the direct and reverse processes, showing that while the reverse process is different from the direct process for finite size systems, the two cases become equivalent in the thermodynamic limit of large L.

  17. Continuum percolation of carbon nanotubes in polymeric and colloidal media

    PubMed Central

    Kyrylyuk, Andriy V.; van der Schoot, Paul

    2008-01-01

    We apply continuum connectedness percolation theory to realistic carbon nanotube systems and predict how bending flexibility, length polydispersity, and attractive interactions between them influence the percolation threshold, demonstrating that it can be used as a predictive tool for designing nanotube-based composite materials. We argue that the host matrix in which the nanotubes are dispersed controls this threshold through the interactions it induces between them during processing and through the degree of connectedness that must be set by the tunneling distance of electrons, at least in the context of conductivity percolation. This provides routes to manipulate the percolation threshold and the level of conductivity in the final product. We find that the percolation threshold of carbon nanotubes is very sensitive to the degree of connectedness, to the presence of small quantities of longer rods, and to very weak attractive interactions between them. Bending flexibility or tortuosity, on the other hand, has only a fairly weak impact on the percolation threshold. PMID:18550818

  18. Ammonia capture and flexible transformation of M-2(INA) (M=Cu, Co, Ni, Cd) series materials.

    PubMed

    Chen, Yang; Li, Libo; Li, Jinping; Ouyang, Kun; Yang, Jiangfeng

    2016-04-01

    With the conflicting problems of pollution due to ammonia emissions and the demand for ammonia, we propose M-2(INA) (M=Cu, Co, Ni, Cd) (INA=isonicotinic acid), a series of materials that exhibit flexible conversion in ammonia adsorption. They can capture both wet and dry ammonia for recycling. The materials were obtained by dehydration of coordination materials M(INA)2(H2O)4 (M=Cu, Co, Ni, Cd) (150°C) at atmospheric pressure for 2h. M-2(INA) could reversibly transform to the stable coordination compounds M(INA)2(H2O)2(NH3)2 by adsorbing ammonia in the presence of moisture. The capacity for pure ammonia could reach 12-13mmol/g. Importantly, these materials could stably retain NH3 at a maximum temperature of 80°C and could regenerate below 150°C with no performance loss. PMID:26780590

  19. Oceanic emissions of ammonia

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Jacob, D. J.; Johnson, M.; Bell, T. G.; Stock, C. A.; Doney, S. C.

    2013-12-01

    Half of natural ammonia (NH3) emissions is thought to originate from the oceans. Such large emissions have implications for the global budget of N and the acidity of marine aerosols. We develop two new inventories of oceanic NH3 emissions based on simulated monthly NH3 seawater concentrations from the GFDL-COBALT and the CESM-BEC ocean models. These new inventories explicitly account for the effect of temperature on the water-atmosphere exchange of NH3. We evaluate these inventory using cruise observations of gas-phase ammonia (AMT cruises) and ammonium (NOAA cruises) as well as seawater measurement of NHx. Implications of atmospheric NHx observations for the exchange of N between ocean and land and ocean N/P limitations are discussed.

  20. Crossover from percolation to self-organized criticality

    NASA Astrophysics Data System (ADS)

    Drossel, Barbara; Clar, Siegfried; Schwabl, Franz

    1994-10-01

    We include immunity against fire into the self-organized critical forest-fire model. When the immunity assumes a critical value, clusters of burnt trees are identical to percolation clusters of random bond percolation. As long as the immunity is below its critical value, the asymptotic critical exponents are those of the original self-organized critical model, i.e., the system performs a crossover from percolation to self-organized criticality. We present a scaling theory and computer simulation results.

  1. Industrial ammonia gassing

    PubMed Central

    Walton, M.

    1973-01-01

    Walton, M. (1972).British Journal of Industrial Medicine,30, 78-86. Industrial ammonia gassing. Seven cases of ammonia gassing are described with follow-up for five years of the six survivors and the post-mortem findings of the fatal case. All the survivors attributed continuing symptoms to the gassing. The study failed to demonstrate permanent ill effects in the one case of mild exposure. Of the more serious cases one has stopped smoking and taken up physical training teaching. He now has above average lung function. Two serious cases who continued to smoke have the lung function abnormalities expected from their smoking. In the other two seriously exposed cases, who also continued to smoke, there is a persistent reduction in ventilation and gas transfer which seems to be due to the ammonia gassing. The post-mortem findings in the fatal case showed acute congestion and oedema of the mucosa of the respiratory tract, the bronchial walls being stripped of their lining epithelium and the alveoli stuffed with red blood cells and oedema fluid. Images PMID:4685304

  2. Recent advances in percolation theory and its applications

    NASA Astrophysics Data System (ADS)

    Saberi, Abbas Ali

    2015-05-01

    Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin-Kasteleyn and geometric spin clusters. As an application we will discuss how percolation

  3. Connectedness Percolation of Elongated Hard Particles in an External Field

    NASA Astrophysics Data System (ADS)

    Otten, Ronald H. J.; van der Schoot, Paul

    2012-02-01

    A theory is presented of how orienting fields and steric interactions conspire against the formation of a percolating network of, in some sense, connected elongated colloidal particles in fluid dispersions. We find that the network that forms above a critical loading breaks up again at higher loadings due to interaction-induced enhancement of the particle alignment. Upon approach of the percolation threshold, the cluster dimensions diverge with the same critical exponent parallel and perpendicular to the field direction, implying that connectedness percolation is not in the universality class of directed percolation.

  4. Connectedness percolation of elongated hard particles in an external field.

    PubMed

    Otten, Ronald H J; van der Schoot, Paul

    2012-02-24

    A theory is presented of how orienting fields and steric interactions conspire against the formation of a percolating network of, in some sense, connected elongated colloidal particles in fluid dispersions. We find that the network that forms above a critical loading breaks up again at higher loadings due to interaction-induced enhancement of the particle alignment. Upon approach of the percolation threshold, the cluster dimensions diverge with the same critical exponent parallel and perpendicular to the field direction, implying that connectedness percolation is not in the universality class of directed percolation. PMID:22463580

  5. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Rodean, H.C.; Chan, S.T.; Ermak, D.L.

    1983-01-01

    A simplification to the two-phase ammonia vapor-droplet fog problem has been implemented to study the dispersion of a spill of 40 tons of ammonia. We have circumvented the necessity of adding the partial differential equations for mass, momentum, and energy for the ammonia in the liquid phase by certain assumptions. It is assumed that the ammonia fog behaves as an ideal gas including the droplets. A temperature-dependent molecular weight was introduced to simulate the transition from a vapor-droplet cloud to a pure vapor cloud of ammonia. Likewise, the vaporization of ammonia was spread out over a temperature range. Mass, momentum, energy, and total ammonia is conserved rigorously. The observed features of the ammonia spill simulation have pointed out phenomena that could not be predicted in simpler calculations. Perhaps the most obvious feature is the cloud bifurcation due to the strength of the gravity current relative to the ambient wind. The gravity spreading of the denser ammonia fog significantly perturbs the unidirectional windfield in the vicinity of the spill, setting up complex eddy patterns in the cloud which are enhanced by ground heating and warm dry air entrainment. The lower concentrations appear to lift off by a buoyancy-induced flow. The ammonia cloud, rather than being cigar shaped as assumed in simpler models, ranges from pancake shaped to pear shaped, depending upon the ambient windfield. The fact that the ammonia cloud remains cold, very low, and wide is in qualitative agreement with some of the large-scale ammonia spill accidents. 14 figures.

  6. Recovery of ammonia nitrogen in livestock and industrial wastes using gas permeable membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New waste management methods are needed that can protect the environment and allow manure management to switch back to a recycling view of manure handling. We investigated the use of gas-permeable membranes as components of new processes to capture and recover the ammonia in the liquid manures or in...

  7. Epidemic Percolation Networks, Epidemic Outcomes, and Interventions

    DOE PAGESBeta

    Kenah, Eben; Miller, Joel C.

    2011-01-01

    Epidemic percolation networks (EPNs) are directed random networks that can be used to analyze stochastic “Susceptible-Infectious-Removed” (SIR) and “Susceptible-Exposed-Infectious-Removed” (SEIR) epidemic models, unifying and generalizing previous uses of networks and branching processes to analyze mass-action and network-based S(E)IR models. This paper explains the fundamental concepts underlying the definition and use of EPNs, using them to build intuition about the final outcomes of epidemics. We then show how EPNs provide a novel and useful perspective on the design of vaccination strategies.

  8. Percolation Theory and Modern Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  9. Modied invasion percolation model for fracking

    NASA Astrophysics Data System (ADS)

    Norris, J.; Turcotte, D. L.; Rundle, J. B.

    2013-12-01

    Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large reserves of natural gas and oil. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. We consider new models of Invasion Percolation, (IP) which are models that were originally introduced to represent the injection of an invading fluid into a fluid filled porous medium. A primary difference between our model and the original model is the elimination of any unbroken bonds whose end sites are both filled with fluid. While the original model was found to have statistics nearly identical to traditional percolation, we find significant statistical differences. In particular, the distribution of broken bond strengths displays a strong roll-over near the critical point. Another difference between traditional percolation clusters and clusters generated using our model is the absence of internal loops. The modified growth rule prevents the formation of internal loops making the growing cluster ramified. Other ramified networks include drainage basins and DLA clusters. The study of drainage basins led to the development of Horton-Strahler and Tokunaga network statistics. We used both Horton-Strahler and Tokunaga network statistics to characterize simulated clusters using and found that the clusters generated by our model are statistically self-similar fractals. In addition to fractal clusters, IP also displays burst dynamics, in which the cluster extends rapidly through a spontaneous extension of percolating bonds. We define a burst to be a consecutive series of broken bonds whose strengths are all below a specified value. Using this definition of bursts we found good agreement with a power-law frequency-area distribution. Our model displays many of the characteristics of an energy landscape, and shows many similarities to DLA, neural networks, ecological landscapes, and the world wide web. We anticipate that this

  10. Epidemic percolation networks, epidemic outcomes, and interventions.

    PubMed

    Kenah, Eben; Miller, Joel C

    2011-01-01

    Epidemic percolation networks (EPNs) are directed random networks that can be used to analyze stochastic "Susceptible-Infectious-Removed" (SIR) and "Susceptible-Exposed-Infectious-Removed" (SEIR) epidemic models, unifying and generalizing previous uses of networks and branching processes to analyze mass-action and network-based S(E)IR models. This paper explains the fundamental concepts underlying the definition and use of EPNs, using them to build intuition about the final outcomes of epidemics. We then show how EPNs provide a novel and useful perspective on the design of vaccination strategies. PMID:21437002

  11. Tree structure of a percolating Universe.

    PubMed

    Colombi, S; Pogosyan, D; Souradeep, T

    2000-12-25

    We present a numerical study of topological descriptors of initially Gaussian and scale-free density perturbations evolving via gravitational instability in an expanding Universe. The measured Euler number of the excursion set at the percolation threshold, delta(c), is positive and nearly equal to the number of isolated components, suggesting that these structures are trees. Our study of critical point counts reconciles the clumpy appearance of the density field at delta(c) with measured filamentary local curvature. In the Gaussian limit, we measure delta(c)>sigma, where sigma2 is the variance of the density field. PMID:11136035

  12. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Ermak, D.L.

    1983-01-01

    Ammonia (NH/sub 3/), a by-product of many chemical processes, is widely used as a fertilizer and as a raw material for many chemical syntheses. The purpose of this paper is to discuss the atmospheric dispersion of ammonia resulting from a high pressure release. The resulting nature of the two-phase cloud of ammonia vapor and droplets has a significant effect on its dispersion characteristics. Our calculations of a 40 ton release show that even under moderately high wind conditions, the resulting ammonia cloud remains negatively buoyant for considerable distances downwind.

  13. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Ermak,D.L.

    1983-04-01

    Ammonia (NH/sub 3/), a by-product of many chemical processes, is widely used as a fertilizer and as a raw material for many chemical syntheses. The purpose of this paper is to discuss the atmospheric dispersion of ammonia resulting from a high pressure release. The resulting nature of the two-phase clouds of ammonia vapor and droplets has a significant effect on its dispersion characteristics. Our calculations of a 40 ton release show that even under moderately high wind conditions, the resulting ammonia cloud remains negatively buoyant for considerable distances downwind.

  14. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Ermak, D.L.; Chan, S.T.; Rodean, H.C.

    1983-07-01

    Ammonia (NH/sub 3/), a by-product of many chemical processes, is widely used as a fertilizer and as a raw material for many chemical syntheses. The purpose of this paper is to discuss the atmospheric dispersion of ammonia resulting from a high pressure release. The resulting nature of the two-phase cloud of ammonia vapor and droplets has a significant effect on its dispersion characteristics. Our calculations of a 40 ton release show that even under moderately high wind conditions, the resulting ammonia cloud remains negatively buoyant for considerable distances downwind. 10 references, 15 figures.

  15. Ammonia emissions from seabird colonies

    NASA Astrophysics Data System (ADS)

    Blackall, Trevor D.; Wilson, Linda J.; Theobald, Mark R.; Milford, Celia; Nemitz, Eiko; Bull, Jennifer; Bacon, Philip J.; Hamer, Keith C.; Wanless, Sarah; Sutton, Mark A.

    2007-05-01

    Ammonia emissions were measured from two entire seabird colonies with contrasting species assemblages, to ascertain the ammonia volatilisation potentials among seabird species in relation to their nesting behaviour. Emissions were calculated from downwind plume measurements of ammonia concentration using both inverse dispersion and tracer ratio methods. Measured colony emissions ranged 1-90 kg NH3 hour-1, and equated to 16 and 36% volatilization of excreted nitrogen for colonies dominated by ground/burrow nesting and bare rock nesting birds, respectively. The results were applied in a bioenergetics model with a global seabird database. Seabird colonies are found to represent the largest point sources of ammonia globally (up to ~6 Gg NH3 colony-1 year-1). Moreover the largest emissions occur mainly in remote environments with otherwise low NH3 emissions. These ammonia ``hot spots'' explain significant perturbations of the nitrogen cycle in these regions and add ~20% to oceanic ammonia emissions south of latitude 45°S.

  16. Removal of ammonia from contaminated air in a biotrickling filter - denitrifying bioreactor combination system.

    PubMed

    Sakuma, Takeyuki; Jinsiriwanit, Siriwat; Hattori, Toshihiro; Deshusses, Marc A

    2008-11-01

    The removal of gaseous ammonia in a system consisting of a biotrickling filter, a denitrification reactor and a polishing bioreactor for the trickling liquid was investigated. The system allowed sustained treatment of ammonia while preventing biological inhibition by accumulating nitrate and nitrite and avoiding generation of contaminated water. All bioreactors were packed with cattle bone composite ceramics, a porous support with a large interfacial area. Excellent removal of ammonia gas was obtained. The critical loading ranged from 60 to 120 gm(-3)h(-1) depending on the conditions, and loadings below 56 gm(-3)h(-1) resulted in essentially complete removal of ammonia. In addition, concentrations of ammonia, nitrite, nitrate and COD in the recycle liquid of the inlet and outlet of each reactor were measured to determine the fate of nitrogen in the reactor, close nitrogen balances and calculate nitrogen to COD ratios. Ammonia absorption and nitrification occurred in the biotrickling filter; nitrate and nitrite were biologically removed in the denitrification reactor and excess dissolved COD and ammonia were treated in the polishing bioreactor. Overall, ammonia gas was very successfully removed in the bioreactor system and steady state operation with respect to nitrogen species was achieved. PMID:18823641

  17. Bronchiectasis following pulmonary ammonia burn

    SciTech Connect

    Hoeffler, H.B.; Schweppe, H.I.; Greenberg, S.D.

    1982-12-01

    Long-term follow-up of the pulmonary lesions of severe exposure to ammonia in humans has seldom been documented, and development of bronchiectasis continues to be of concern. We studied a previously healthy 30-year-old woman whose lungs at time of necropsy, three years after massive exposure to ammonia fumes, had extensive cylindrical and saccular bronchiectasis. We concluded that massive exposure to ammonia can lead to bronchiectasis. It is not known, however, whether the bronchiectasis resulted from chemical injury by ammonia or from a superimposed bacterial bronchitis.

  18. Explosive percolation transitions in growing networks

    NASA Astrophysics Data System (ADS)

    Oh, S. M.; Son, S.-W.; Kahng, B.

    2016-03-01

    Recent extensive studies of the explosive percolation (EP) model revealed that the EP transition is second order with an extremely small value of the critical exponent β associated with the order parameter. This result was obtained from static networks, in which the number of nodes in the system remains constant during the evolution of the network. However, explosive percolating behavior of the order parameter can be observed in social networks, which are often growing networks, where the number of nodes in the system increases as dynamics proceeds. However, extensive studies of the EP transition in such growing networks are still missing. Here we study the nature of the EP transition in growing networks by extending an existing growing network model to a general case in which m node candidates are picked up in the Achiloptas process. When m =2 , this model reduces to the existing model, which undergoes an infinite-order transition. We show that when m ≥3 , the transition becomes second order due to the suppression effect against the growth of large clusters. Using the rate-equation approach and performing numerical simulations, we also show that the exponent β decreases algebraically with increasing m , whereas it does exponentially in a corresponding static random network model. Finally, we find that the hyperscaling relations hold but in different forms.

  19. Electron Percolation In Copper Infiltrated Carbon

    NASA Astrophysics Data System (ADS)

    Krcho, Stanislav

    2015-11-01

    The work describes the dependence of the electrical conductivity of carbon materials infiltrated with copper in a vacuum-pressure autoclave on copper concentration and on the effective pore radius of the carbon skeleton. In comparison with non-infiltrated material the electrical conductivity of copper infiltrated composite increased almost 500 times. If the composite contained less than 7.2 vol% of Cu, a linear dependence of the electrical conductivity upon cupper content was observed. If infiltrated carbon contained more than 7.2 vol% of Cu, the dependence was nonlinear - the curve could be described by a power formula (x - xc)t. This is a typical formula describing the electron percolation process in regions containing higher Cu fraction than the critical one. The maximum measured electrical conductivity was 396 × 104 Ω-1 m-1 for copper concentration 27.6 vol%. Experiments and analysis of the electrical conductivity showed that electron percolation occurred in carbon materials infiltrated by copper when the copper volume exceeded the critical concentration. The analysis also showed a sharp increase of electrical conductivity in composites with copper concentration higher than the threshold, where the effective radius of carbon skeleton pores decreased to 350 nanometres.

  20. Percolating plasmonic networks for light emission control.

    PubMed

    Gaio, Michele; Castro-Lopez, Marta; Renger, Jan; van Hulst, Niek; Sapienza, Riccardo

    2015-01-01

    Optical nanoantennas have revolutionised the way we manipulate single photons emitted by individual light sources in a nanostructured photonic environment. Complex plasmonic architectures allow for multiscale light control by shortening or stretching the light wavelength for a fixed operating frequency, meeting the size of the emitter and that of propagating modes. Here, we study self-assembled semi-continuous gold films and lithographic gold networks characterised by large local density of optical state (LDOS) fluctuations around the electrical percolation threshold, a regime where the surface is characterised by large metal clusters with fractal topology. We study the formation of plasmonic networks and their effect on light emission from embedded fluorescent probes in these systems. Through fluorescence dynamics experiments we discuss the role of global long-range interactions linked to the degree of percolation and to the network fractality, as well as the local near-field contributions coming from the local electro-magnetic fields and the topology. Our experiments indicate that local properties dominate the fluorescence modification. PMID:25711923

  1. Reionization through the lens of percolation theory

    NASA Astrophysics Data System (ADS)

    Furlanetto, Steven R.; Oh, S. Peng

    2016-04-01

    The reionization of intergalactic hydrogen has received intense theoretical scrutiny over the past two decades. Here, we approach the process formally as a percolation process and phase transition. Using semi-numeric simulations, we demonstrate that an infinitely large ionized region abruptly appears at an ionized fraction of xi ≈ 0.1 and quickly grows to encompass most of the ionized gas: by xi ˜ 0.3, nearly 90 per cent of the ionized material is part of this region. Throughout most of reionization, nearly all of the intergalactic medium is divided into just two regions, one ionized and one neutral, and both infinite in extent. We also show that the discrete ionized regions that exist before and near this transition point follow a near-power-law distribution in volume, with equal contributions to the total filling factor per logarithmic interval in size up to a sharp cutoff in volume. These qualities are generic to percolation processes, with the detailed behaviour a result of long-range correlations in the underlying density field. These insights will be crucial to understanding the distribution of ionized and neutral gas during reionization and provide precise meaning to the intuitive description of reionization as an `overlap' process.

  2. Spectral Dimension of a Percolation Network

    NASA Astrophysics Data System (ADS)

    Rudra, Jayanta

    2005-03-01

    While the fractal dimension df describes the self-similar static nature of the lattice, the spectral dimension ds dictates the dynamic properties on it. Alexander and Orbach^1 conjectured that the spectral dimension might be exactly 4/3 for percolation networks with embedding euclidian dimension de >= 2. Recent numerical simulations^2, however, could not decisively prove or disprove this conjecture, although there are other indirect evidences that it is true. We believe that the failure of the simulations to decisively check the validity of the conjecture is due to the non-stochastic nature of the methods. Most of these simulations are Monte Carlo Methods based on a random-walk model and, in spite of very large number of walks on huge lattices, the results do not reach the satisfactory level. In this work we apply a stochastic approach^3 to determine the spectral dimension of percolation network for de >= 2 and check the validity of the Alexander-Orbach-conjecture. Due to its stochastic nature this method is numerically superior and more accurate than the conventional Monte Carlo simulations. References: 1. S. Alexander and R. Orbach, J. Phys. Lett. (Paris) 43 (1982) L625. 2. N. Pitsianis, G. Bleris and P. Argyrakis, Phys. Rev. B 39 (1989) 7097. 3. J. Rudra and J. Kozak, Phys. Lett A 151 (1990) 429.

  3. Percolation experiments in complex fractal media

    NASA Astrophysics Data System (ADS)

    Redondo, Jose Manuel; Tarquis, Ana Maria; Cherubini, Claudia; Lopez Gzlez-Nieto, Pilar; Vila, Teresa

    2013-04-01

    Series of flow percolation experiments under gravity were performed in different glass model and real karstic media samples. We present a multifractal characterization of the experiments in several parametric non-dimensional flow descriptors. Using the maximum local multifractal dimension as an additional flow indicator. Also experiments on Non laminar flow and transport conditions in fractured and karstified media were performed at Bari. The investigation on hypothesis of non linear flow and non fickian transport in fractured aquifers led to a distinction on the different role of channels and microchannels and of the presence of vortices and eddy trapping. The dominance of the elongated channels produced early arrival times, with the solute traveling along the high velocity channel network. On the other hand in a lumped structured karstic media, the percolation flow produced long tails with local Eddy mixing, entrapment in eddies, and slow flow out of the eddies. In The laboratory experiments performed in Madrid and in DAMTP Cambridge the role of the initial pressure produced fractal pathway structures even in iniatilly uniform ballotini substrates.

  4. Percolation effect in thick film superconductors

    SciTech Connect

    Sali, R.; Harsanyi, G.

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  5. Percolation on bipartite scale-free networks

    NASA Astrophysics Data System (ADS)

    Hooyberghs, H.; Van Schaeybroeck, B.; Indekeu, J. O.

    2010-08-01

    Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual-contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with a probability proportional to (, where α is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.

  6. Novel percolation transitions and coupled catastrophes

    NASA Astrophysics Data System (ADS)

    D'Souza, Raissa

    Collections of interdependent networks are at the core of modern society, spanning physical, biological and social systems. Simple mathematical models of the structure and function of networks can provide important insights into real-world systems, enhancing our ability to steer and control them. Here our focus is on abrupt changes in networks, due both to phase transitions and to jumping between bi-stable equilibria. We begin with an overview of novel classes of percolation phase transitions that result from repeated, small interventions intended to delay the transition. These new phenomena allow us to extend percolation approaches to modular networks, Brownian motion, and cluster growth dynamics. We then focus on abrupt transitions due to a system jumping between bi-stable equilibria, modeled as a cusp catastrophe in nonlinear dynamics. We show that when systems that each undergo a cusp catastrophe interact, we can observe a new phenomena of catastrophe-hopping leading to non-local cascading failures. Here an intermediate system facilitates the propagation of a sudden change or collapse, and we show that catastrophe hopping is consistent with the outbreak of protests observed during the Arab Spring of 2011.

  7. Compact directed percolation with movable partial reflectors

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald; ben-Avraham, Daniel

    2002-09-01

    We study a version of compact directed percolation (CDP) in one dimension in which occupation of a site for the first time requires that a 'mine' or an antiparticle be eliminated. This process is analogous to the variant of directed percolation with a long-time memory, proposed by Grassberger et al (1997 Phys. Rev. E 55 2488) in order to understand spreading at a critical point involving an infinite number of absorbing configurations. The problem is equivalent to that of a pair of random walkers in the presence of movable partial reflectors. The walkers, which are unbiased, start one lattice spacing apart and annihilate on their first contact. Each time one of the walkers tries to visit a new site, it is reflected (with probability r) back to its previous position, while the reflector is simultaneously pushed one step away from the walker. Iteration of the discrete-time evolution equation for the probability distribution yields the survival probability S(t). We find that S(t) ~ t-δ, with δ varying continuously between 1/2 and 1.160 as the reflection probability varies between 0 and 1.

  8. Explosive percolation transitions in growing networks.

    PubMed

    Oh, S M; Son, S-W; Kahng, B

    2016-03-01

    Recent extensive studies of the explosive percolation (EP) model revealed that the EP transition is second order with an extremely small value of the critical exponent β associated with the order parameter. This result was obtained from static networks, in which the number of nodes in the system remains constant during the evolution of the network. However, explosive percolating behavior of the order parameter can be observed in social networks, which are often growing networks, where the number of nodes in the system increases as dynamics proceeds. However, extensive studies of the EP transition in such growing networks are still missing. Here we study the nature of the EP transition in growing networks by extending an existing growing network model to a general case in which m node candidates are picked up in the Achiloptas process. When m = 2, this model reduces to the existing model, which undergoes an infinite-order transition. We show that when m ≥ 3, the transition becomes second order due to the suppression effect against the growth of large clusters. Using the rate-equation approach and performing numerical simulations, we also show that the exponent β decreases algebraically with increasing m, whereas it does exponentially in a corresponding static random network model. Finally, we find that the hyperscaling relations hold but in different forms. PMID:27078375

  9. Electrically Percolating Clusters in Sheared Carbon Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Migler, Kalman; Moon, Doyoung; Obrzut, Jan; Douglas, Jack; Lam, Thomas; Sharma, Renu; Liddle, Alex James

    2013-03-01

    The electrical conductivity of polymer nanotube composites can be dramatically modified by processing flows and subsequent annealing. The mechanism is widely believed to be nanotube structural rearrangements that occur during flow and alter the percolating pathways. We seek to directly visualize these flow-induced three-dimensional percolating clusters through three-dimensional confocal microscopy and image analysis.

  10. Benchmarking survey for recycling.

    SciTech Connect

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  11. Charge percolation pathways guided by defects in quantum dot solids.

    PubMed

    Zhang, Yingjie; Zherebetskyy, Danylo; Bronstein, Noah D; Barja, Sara; Lichtenstein, Leonid; Schuppisser, David; Wang, Lin-Wang; Alivisatos, A Paul; Salmeron, Miquel

    2015-05-13

    Charge hopping and percolation in quantum dot (QD) solids has been widely studied, but the microscopic nature of the percolation process is not understood or determined. Here we present the first imaging of the charge percolation pathways in two-dimensional PbS QD arrays using Kelvin probe force microscopy (KPFM). We show that under dark conditions electrons percolate via in-gap states (IGS) instead of the conduction band, while holes percolate via valence band states. This novel transport behavior is explained by the electronic structure and energy level alignment of the individual QDs, which was measured by scanning tunneling spectroscopy (STS). Chemical treatments with hydrazine can remove the IGS, resulting in an intrinsic defect-free semiconductor, as revealed by STS and surface potential spectroscopy. The control over IGS can guide the design of novel electronic devices with impurity conduction, and photodiodes with controlled doping. PMID:25844919

  12. Percolation in one of q colors near criticality

    NASA Astrophysics Data System (ADS)

    Qian, Xiaofeng; Deng, Youjin; Blöte, Henk W. J.

    2005-04-01

    We study bond percolation in two dimensions between random site variables having one out of q colors, using transfer-matrix and Monte Carlo techniques. We determine the percolation threshold as a function of the Potts temperature T in the disordered Potts range Tc⩽T<∞ for several q -state Potts Hamiltonians. For high T , these transitions fit, irrespective of q , in the universality class of the ordinary percolation transitions. However, for T↓Tc , q -dependent crossover phenomena appear. The topology of the phase diagram changes in a qualitative sense at q=2 . For q<2 the Potts critical state appears to enhance percolation, for q>2 it appears to suppress it. Remarkably, for q=2 the percolation line coincides with the only flow line extending to T>Tc from the critical fixed point associated with Potts clusters.

  13. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  14. Ammonia plant designers talk of big energy savings

    SciTech Connect

    Axelrod, L.C.

    1980-08-27

    The ammonia plant that Pullman Kellogg has designed for Sherritt-Gordon Mines Ltd. in Alberta will require < 27 million Btu/ton of ammonia, and save $8.10/ton in energy costs because of improvements involving increased pressure in the primary reformer; more efficient use of the heat from the secondary reformer; carbon dioxide recovery by Allied Chemical Corp.'s Selexol process; the reduction of power requirements in the synthesis recycle loop; and the use of a horizontal reactor. C. F. Braun and Co. claims that its Purifier process will require < 25 million Btu/ton, due to the use of excess air in the secondary reformer. C-E Lummus offers a 1500 ton/day plant which, incorporating cryogenic recovery of hydrogen from purge gas and operation at a lower steam-to-carbon ratio, would require only 26 million Btu/ton; Haldor Topsoe Inc. offers a design rated at 26.3 million Btu/ton. According to L. C. Axelrod of Pullman Kellogg, ammonia plant construction will shift to gas-rich areas outside the U.S. and Europe. The 3% of the U.S. natural gas used by the fertilizer industry accounts for > 95% of ammonia feedstock.

  15. Ammonia caramels: specifications and analysis.

    PubMed

    Patey, A L; Shearer, G; Knowles, M E; Denner, W H

    1985-01-01

    Twenty three UK commercially produced ammonia caramels and eight experimentally produced ammonia caramels have been analysed by a range of physical and chemical tests, which include solids content, nitrogen levels, colour intensity and pH. A statistical treatment of the results is reported. PMID:4018316

  16. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  17. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  18. Recovery and removal of nutrients from swine wastewater by using a novel integrated reactor for struvite decomposition and recycling

    PubMed Central

    Huang, Haiming; Xiao, Dean; Liu, Jiahui; Hou, Li; Ding, Li

    2015-01-01

    In the present study, struvite decomposition was performed by air stripping for ammonia release and a novel integrated reactor was designed for the simultaneous removal and recovery of total ammonia-nitrogen (TAN) and total orthophosphate (PT) from swine wastewater by internal struvite recycling. Decomposition of struvite by air stripping was found to be feasible. Without supplementation with additional magnesium and phosphate sources, the removal ratio of TAN from synthetic wastewater was maintained at >80% by recycling of the struvite decomposition product formed under optimal conditions, six times. Continuous operation of the integrated reactor indicated that approximately 91% TAN and 97% PT in the swine wastewater could be removed and recovered by the proposed recycling process with the supplementation of bittern. Economic evaluation of the proposed system showed that struvite precipitation cost can be saved by approximately 54% by adopting the proposed recycling process in comparison with no recycling method. PMID:25960246

  19. Recovery and removal of nutrients from swine wastewater by using a novel integrated reactor for struvite decomposition and recycling

    NASA Astrophysics Data System (ADS)

    Huang, Haiming; Xiao, Dean; Liu, Jiahui; Hou, Li; Ding, Li

    2015-05-01

    In the present study, struvite decomposition was performed by air stripping for ammonia release and a novel integrated reactor was designed for the simultaneous removal and recovery of total ammonia-nitrogen (TAN) and total orthophosphate (PT) from swine wastewater by internal struvite recycling. Decomposition of struvite by air stripping was found to be feasible. Without supplementation with additional magnesium and phosphate sources, the removal ratio of TAN from synthetic wastewater was maintained at >80% by recycling of the struvite decomposition product formed under optimal conditions, six times. Continuous operation of the integrated reactor indicated that approximately 91% TAN and 97% PT in the swine wastewater could be removed and recovered by the proposed recycling process with the supplementation of bittern. Economic evaluation of the proposed system showed that struvite precipitation cost can be saved by approximately 54% by adopting the proposed recycling process in comparison with no recycling method.

  20. Explosive Percolation with Multiple Giant Components

    NASA Astrophysics Data System (ADS)

    Chen, Wei; D'Souza, Raissa M.

    2011-03-01

    We generalize the random graph evolution process of Bohman, Frieze, and Wormald [T. Bohman, A. Frieze, and N. C. Wormald, Random Struct. AlgorithmsRSALFD1042-983210.1002/rsa.20038, 25, 432 (2004)]. Potential edges, sampled uniformly at random from the complete graph, are considered one at a time and either added to the graph or rejected provided that the fraction of accepted edges is never smaller than a decreasing function asymptotically approaching the value α=1/2. We show that multiple giant components appear simultaneously in a strongly discontinuous percolation transition and remain distinct. Furthermore, tuning the value of α determines the number of such components with smaller α leading to an increasingly delayed and more explosive transition. The location of the critical point and strongly discontinuous nature are not affected if only edges which span components are sampled.

  1. Percolation of Blast Waves though Sand

    NASA Astrophysics Data System (ADS)

    Proud, William

    2013-06-01

    Previous research has concentrated on the physical processes occurring when samples of sand, of varying moisture content, were shock compressed. In this study quartz sand samples are subjected to blast waves over a range of pressure and duration. Aspects of particle movement are discussed; the global movement of a bed hundreds of particles thick is a fraction of particle width. The main diagnostics used are pressure sensors and high-speed photography. Results are presented for a range of particle sizes, aspect ratio, density and moisture content. While the velocity of the percolation through the bed is primarily controlled by density and porosity the effect of moisture reveals a more complex dependence. The ISP acknowledges the support of the Atomic Weapons Establishment and Imperial College London.

  2. A Percolation Model of the Streamer Discharges

    NASA Astrophysics Data System (ADS)

    Sasaki, Akira; Kato, Susumu; Takahashi, Eiichi; Kanazawa, Seiji

    A percolation model of discharge is presented. The model can reproduce stochastic behaviors of initial partial discharge to the growth of a stepped leader. The model uses macroscopic cells, from which a network of electric circuits is defined, and the spatial and temporal evolutions of the electric field and current in the discharge medium are calculated. For each cell, one of two states, either insulator or conductor, which corresponds to neutral gas or ionized plasmas, respectively, is decided. The decision is made on the basis of probability for each calculation cell at each time step, taking the effects of local electric field and current, which enhance ionization and sustain the discharge channel, respectively, into account.

  3. Clarification of the Bootstrap Percolation Paradox

    NASA Astrophysics Data System (ADS)

    de Gregorio, Paolo; Lawlor, Aonghus; Bradley, Phil; Dawson, Kenneth A.

    2004-07-01

    We study the onset of the bootstrap percolation transition as a model of generalized dynamical arrest. Our results apply to two dimensions, but there is no significant barrier to extending them to higher dimensionality. We develop a new importance-sampling procedure in simulation, based on rare events around “holes”, that enables us to access bootstrap lengths beyond those previously studied. By framing a new theory in terms of paths or processes that lead to emptying of the lattice we are able to develop systematic corrections to the existing theory and compare them to simulations. Thereby, for the first time in the literature, it is possible to obtain credible comparisons between theory and simulation in the accessible density range.

  4. Percolation and permeability of heterogeneous fracture networks

    NASA Astrophysics Data System (ADS)

    Adler, Pierre; Mourzenko, Valeri; Thovert, Jean-François

    2013-04-01

    Natural fracture fields are almost necessarily heterogeneous with a fracture density varying with space. Two classes of variations are quite frequent. In the first one, the fracture density is decreasing from a given surface; the fracture density is usually (but not always see [1]) an exponential function of depth as it has been shown by many measurements. Another important example of such an exponential decrease consists of the Excavated Damaged Zone (EDZ) which is created by the excavation process of a gallery [2,3]. In the second one, the fracture density undergoes some local random variations around an average value. This presentation is mostly focused on the first class and numerical samples are generated with an exponentially decreasing density from a given plane surface. Their percolation status and hydraulic transmissivity can be calculated by the numerical codes which are detailed in [4]. Percolation is determined by a pseudo diffusion algorithm. Flow determination necessitates the meshing of the fracture networks and the discretisation of the Darcy equation by a finite volume technique; the resulting linear system is solved by a conjugate gradient algorithm. Only the flow properties of the EDZ along the directions which are parallel to the wall are of interest when a pressure gradient parallel to the wall is applied. The transmissivity T which relates the total flow rate per unit width Q along the wall through the whole fractured medium to the pressure gradient grad p, is defined by Q = - T grad p/mu where mu is the fluid viscosity. The percolation status and hydraulic transmissivity are systematically determined for a wide range of decay lengths and anisotropy parameters. They can be modeled by comparison with anisotropic fracture networks with a constant density. A heuristic power-law model is proposed which accurately describes the results for the percolation threshold over the whole investigated range of heterogeneity and anisotropy. Then, the data

  5. Percolation of localized attack on complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2015-02-01

    The robustness of complex networks against node failure and malicious attack has been of interest for decades, while most of the research has focused on random attack or hub-targeted attack. In many real-world scenarios, however, attacks are neither random nor hub-targeted, but localized, where a group of neighboring nodes in a network are attacked and fail. In this paper we develop a percolation framework to analytically and numerically study the robustness of complex networks against such localized attack. In particular, we investigate this robustness in Erdős-Rényi networks, random-regular networks, and scale-free networks. Our results provide insight into how to better protect networks, enhance cybersecurity, and facilitate the design of more robust infrastructures.

  6. Temporal percolation of a susceptible adaptive network

    NASA Astrophysics Data System (ADS)

    Valdez, L. D.; Macri, P. A.; Braunstein, L. A.

    2013-09-01

    In the past decades, many authors have used the susceptible-infected-recovered model to study the impact of the disease spreading on the evolution of the infected individuals. However, few authors focused on the temporal unfolding of the susceptible individuals. In this paper, we study the dynamic of the susceptible-infected-recovered model in an adaptive network that mimics the transitory deactivation of permanent social contacts, such as friendship and work-ship ties. Using an edge-based compartmental model and percolation theory, we obtain the evolution equations for the fraction susceptible individuals in the susceptible biggest component. In particular, we focus on how the individual’s behavior impacts on the dilution of the susceptible network. We show that, as a consequence, the spreading of the disease slows down, protecting the biggest susceptible cluster by increasing the critical time at which the giant susceptible component is destroyed. Our theoretical results are fully supported by extensive simulations.

  7. Renal Ammonia Metabolism and Transport

    PubMed Central

    Weiner, I. David; Verlander, Jill W.

    2015-01-01

    Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4+ and 2 HCO3− for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3−-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4+ trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4+-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K+, and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis. PMID:23720285

  8. AIRCRAFT INDUSTRY WASTEWATER RECYCLING

    EPA Science Inventory

    The feasibility of recycling certain categories of water used in the manufacture of airplanes was demonstrated. Water in four categories was continuously recycled in 380-liter (100-gallon) treatment plants; chemical process rinse water, dye-penetrant crack-detection rinse water, ...

  9. Wee Recyclers Resources.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    Hands-on activities in this guide are designed to help preschool children (ages 3-5) understand that reducing, reusing, and recycling preserves natural resources and prolongs the life of landfills. Children sort, match and compare recyclable items and learn to separate some items by number and color. The 29 activities are divided into units that…

  10. Design for aluminum recycling

    SciTech Connect

    Not Available

    1993-10-01

    This article describes the increasing use of aluminum in automobiles and the need to recycle to benefit further growth of aluminum applications by assuring an economical, high-quality source of metal. The article emphasizes that coordination of material specifications among designers can raise aluminum scrap value and facilitate recycling. Applications of aluminum in automobile construction are discussed.

  11. Reuse, Reduce, Recycle.

    ERIC Educational Resources Information Center

    Briscoe, Georgia

    1991-01-01

    Discussion of recycling paper in law libraries is also applicable to other types of libraries. Results of surveys of law libraries that investigated recycling practices in 1987 and again in 1990 are reported, and suggestions for reducing the amount of paper used and reusing as much as possible are offered. (LRW)

  12. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  13. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  14. Recycling at Camp.

    ERIC Educational Resources Information Center

    Cummins, William M.

    1988-01-01

    Outlines a Michigan summer camp's efforts to reduce solid waste disposal by recycling cardboard, tin, glass, aluminum, and plastic milk containers. Points out variables affecting the success of such efforts. Discusses Michigan state funding for the development of recycling programs. (SV)

  15. Multiple percolation tunneling staircase in metal-semiconductor nanoparticle composites

    SciTech Connect

    Mukherjee, Rupam; Huang, Zhi-Feng; Nadgorny, Boris

    2014-10-27

    Multiple percolation transitions are observed in a binary system of RuO{sub 2}-CaCu{sub 3}Ti{sub 4}O{sub 12} metal-semiconductor nanoparticle composites near percolation thresholds. Apart from a classical percolation transition, associated with the appearance of a continuous conductance path through RuO{sub 2} metal oxide nanoparticles, at least two additional tunneling percolation transitions are detected in this composite system. Such behavior is consistent with the recently emerged picture of a quantum conductivity staircase, which predicts several percolation tunneling thresholds in a system with a hierarchy of local tunneling conductance, due to various degrees of proximity of adjacent conducting particles distributed in an insulating matrix. Here, we investigate a different type of percolation tunneling staircase, associated with a more complex conductive and insulating particle microstructure of two types of non-spherical constituents. As tunneling is strongly temperature dependent, we use variable temperature measurements to emphasize the hierarchical nature of consecutive tunneling transitions. The critical exponents corresponding to specific tunneling percolation thresholds are found to be nonuniversal and temperature dependent.

  16. Percolation in binary and ternary mixtures of patchy colloids.

    PubMed

    Seiferling, Felix; de Las Heras, Daniel; Telo da Gama, Margarida M

    2016-08-21

    We investigate percolation in binary and ternary mixtures of patchy colloidal particles theoretically and using Monte Carlo simulations. Each particle has three identical patches, with distinct species having different types of patch. Theoretically we assume tree-like clusters and calculate the bonding probabilities using Wertheim's first-order perturbation theory for association. For ternary mixtures, we find up to eight fundamentally different percolated states. The states differ in terms of the species and pairs of species that have percolated. The strongest gel is a trigel or tricontinuous gel, in which each of the three species has percolated. The weakest gel is a mixed gel in which all of the particles have percolated, but none of the species percolates by itself. The competition between entropy of mixing and internal energy of bonding determines the stability of each state. Theoretical and simulation results are in very good agreement. The only significant difference is the temperature at the percolation threshold, which is overestimated by the theory due to the absence of correlations between bonds in the theoretical description. PMID:27544122

  17. Modeling of heat generation in ammonia-treated solid rocket propellant

    SciTech Connect

    Raun, R.L.; Isom, K.B.

    1995-06-01

    With the end of the Cold War, safe, environmentally sound separation, recycling, and disposal of ingredients in solid rocket propellants and munitions has become a national priority. One approach to demilitarize solid rocket propellants is treatment with ammonia. Ammonia extracts the oxidizers ammonium perchlorate and HMX, yielding a solid reside that is more suitable for incineration and less sensitive to impact and other modes of accidental initiation. Ammonia treatment of nitroglycerin-containing propellants is complicated by an exothermic reaction between ammonia and nitroglycerin. If not removed, the heat generated by this reaction can cause propellant ignition. To help design safe treatment processes, a model for the ammonia-propellant reaction was developed, which integrates transient energy and species conservation equations to simulate ammonia diffusion, heat generation, and heat flow in a propellant and in the solid residue resulting from ammonia treatment. It was calibrated using residue thickness and thermocouple data for one propellant. The calibrated model was used to predict conditions leading to ignition of thin propellant strips. The results agree well with experimental observations.

  18. Advances in plastic recycling. Volume 1: Recycling of polyurethanes

    SciTech Connect

    Frisch, K.C.; Klempner, D.; Prentice, G.

    1999-07-01

    ``Recycling of Polyurethanes'', the first volume in the Advances in Plastics Recycling series, is focused on the physical and chemical recycling of polyurethanes, with attention given to energy conversion. A compilation of the present ongoing studies on recycling of urethane and, in general, isocyanate-based polymers, the focus is on thermosetting urethane polymers. Contents include: Recycling of Polyurethane Plastics in the European Automotive Industry; Present State of Polyurethane Recycling in Europe; Processing Overview of Bonded Polyurethane Foam; Mechanical Recycling of Polyurethane Scrap; Ecostream{trademark}--A Technology Beyond Recycling; Recycling of Flexible polyurethane Foam; General purpose Adhesives Prepared from Chemically Recycled Waste Rigid Polyurethane Foams; and Utilization of Isocyanate Binders in Recycling of Scrap Automotive Headliners.

  19. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources.

    PubMed

    Anderson, Natalie; Strader, Ross; Davidson, Cliff

    2003-06-01

    Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM(2.5) mass in eastern United States is ammonium sulfate, according to the US EPA. Results from recent studies of PM(2.5) show that these fine particles are typically deposited deep in the lungs and may lead to increased morbidity and/or mortality. Also, these particles are in the size range that will degrade visibility. Ammonia emission inventories are usually constructed by multiplying an activity level by an experimentally determined emission factor for each source category. Typical sources of ammonia include livestock, fertilizer, soils, forest fires and slash burning, industry, vehicles, the oceans, humans, pets, wild animals, and waste disposal and recycling activities. Livestock is the largest source category in the United States, with waste from livestock responsible for about 3x10(9) kg of ammonia in 1995. Volatilization of ammonia from livestock waste is dependent on many parameters, and thus emission factors are difficult to predict. Despite a seasonal variation in these values, the emission factors for general livestock categories are usually annually averaged in current inventories. Activity levels for livestock are from the USDA Census of Agriculture, which does not give information about animal raising practices such as housing types and grazing times, waste handling systems, and approximate animal slurry spreading times or methods. Ammonia emissions in the United States in 1995 from sources other than livestock are much lower; for example, annual emissions are roughly 8x10(8) kg from fertilizer, 7x10(7) kg from industry, 5x10(7) kg from vehicles and 1x10(8) kg from humans. There is considerable uncertainty in the emissions from soil and vegetation, although this category may also be significant

  20. Ammonia Ice Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The top cloud layer on Jupiter is thought to consist of ammonia ice, but most of that ammonia 'hides' from spectrometers. It does not absorb light in the same way ammonia does. To many scientists, this implies that ammonia churned up from lower layers of the atmosphere 'ages' in some way after it condenses, possibly by being covered with a photochemically generated hydrocarbon mixture. The New Horizons Linear Etalon Imaging Spectral Array (LEISA), the half of the Ralph instrument that is able to 'see' in infrared wavelengths that are absorbed by ammonia ice, spotted these clouds and watched them evolve over five Jupiter days (about 40 Earth hours). In these images, spectroscopically identified fresh ammonia clouds are shown in bright blue. The largest cloud appeared as a localized source on day 1, intensified and broadened on day 2, became more diffuse on days 3 and 4, and disappeared on day 5. The diffusion seemed to follow the movement of a dark spot along the boundary of the oval region. Because the source of this ammonia lies deeper than the cloud, images like these can tell scientists much about the dynamics and heat conduction in Jupiter's lower atmosphere.

  1. Truncated Long-Range Percolation on Oriented Graphs

    NASA Astrophysics Data System (ADS)

    van Enter, A. C. D.; de Lima, B. N. B.; Valesin, D.

    2016-07-01

    We consider different problems within the general theme of long-range percolation on oriented graphs. Our aim is to settle the so-called truncation question, described as follows. We are given probabilities that certain long-range oriented bonds are open; assuming that the sum of these probabilities is infinite, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. We give some conditions in which the answer is affirmative. We also translate some of our results on oriented percolation to the context of a long-range contact process.

  2. Percolation Model for Slow Dynamics in Glass-Forming Materials

    NASA Astrophysics Data System (ADS)

    Lois, Gregg; Blawzdziewicz, Jerzy; O'Hern, Corey S.

    2009-01-01

    We identify a link between the glass transition and percolation of regions of mobility in configuration space. We find that many hallmarks of glassy dynamics, for example, stretched-exponential response functions and a diverging structural relaxation time, are consequences of the critical properties of mean-field percolation. Specific predictions of the percolation model include the range of possible stretching exponents 1/3≤β≤1 and the functional dependence of the structural relaxation time τα and exponent β on temperature, density, and wave number.

  3. Isolation of equine peripheral blood mononuclear cells using Percoll.

    PubMed

    May, S A; Hooke, R E; Lees, P

    1991-01-01

    The concentration of Percoll required for isolating equine peripheral blood mononuclear cells has been reinvestigated. A poor cell yield was obtained at the 60 per cent concentration already reported. It is recommended that workers specifically interested in high yields of mononuclear cells, for investigation of lymphocyte and monocyte functions, use a concentration of 65 per cent Percoll. However, workers wishing to isolate pure populations of equine neutrophils might consider a concentration of 70 per cent in the upper layer of Percoll used to retain the mononuclear cells. PMID:1646471

  4. Fractal atomic-level percolation in metallic glasses.

    PubMed

    Chen, David Z; Shi, Crystal Y; An, Qi; Zeng, Qiaoshi; Mao, Wendy L; Goddard, William A; Greer, Julia R

    2015-09-18

    Metallic glasses are metallic alloys that exhibit exotic material properties. They may have fractal structures at the atomic level, but a physical mechanism for their organization without ordering has not been identified. We demonstrated a crossover between fractal short-range (<2 atomic diameters) and homogeneous long-range structures using in situ x-ray diffraction, tomography, and molecular dynamics simulations. A specific class of fractal, the percolation cluster, explains the structural details for several metallic-glass compositions. We postulate that atoms percolate in the liquid phase and that the percolating cluster becomes rigid at the glass transition temperature. PMID:26383945

  5. AQUEOUS AMMONIA EQUILIBRIUM - TABULATION OF PERCENT UN-IONIZED AMMONIA

    EPA Science Inventory

    The percent of un-ionized ammonia as a function of pH and temperature in aqueous ammonia solutions of zero salinity is presented in tabular form over the following ranges: temperature 0.0 to 40.0 C in increments of 0.2 degree, and pH 5.00 to 12.00 in increments of 0.01 pH unit.

  6. ENGINEERING DESIGN CONFIGURATIONS FOR BIOLOGICAL AMMONIA REMOVAL

    EPA Science Inventory

    Many regions in the United States have excessive levels of nutrients including ammonia in their source waters. For example, farming and agricultural sources of ammonia in the Midwest contribute to relatively high levels of ammonia in many ground waters. Although ammonia in water ...

  7. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  8. Fission gas bubble percolation on crystallographically consistent grain boundary networks

    NASA Astrophysics Data System (ADS)

    Sabogal-Suárez, Daniel; David Alzate-Cardona, Juan; Restrepo-Parra, Elisabeth

    2016-07-01

    Fission gas release in nuclear fuels can be modeled in the framework of percolation theory, where each grain boundary is classified as open or closed to the release of the fission gas. In the present work, two-dimensional grain boundary networks were assembled both at random and in a crystallographically consistent manner resembling a general textured microstructure. In the crystallographically consistent networks, grain boundaries were classified according to its misorientation. The percolation behavior of the grain boundary networks was evaluated as a function of radial cracks and radial thermal gradients in the fuel pellet. Percolation thresholds tend to shift to the left with increasing length and number of cracks, especially in the presence of thermal gradients. In general, the topology and percolation behavior of the crystallographically consistent networks differs from those of the random network.

  9. Network robustness and fragility: percolation on random graphs.

    PubMed

    Callaway, D S; Newman, M E; Strogatz, S H; Watts, D J

    2000-12-18

    Recent work on the Internet, social networks, and the power grid has addressed the resilience of these networks to either random or targeted deletion of network nodes or links. Such deletions include, for example, the failure of Internet routers or power transmission lines. Percolation models on random graphs provide a simple representation of this process but have typically been limited to graphs with Poisson degree distribution at their vertices. Such graphs are quite unlike real-world networks, which often possess power-law or other highly skewed degree distributions. In this paper we study percolation on graphs with completely general degree distribution, giving exact solutions for a variety of cases, including site percolation, bond percolation, and models in which occupation probabilities depend on vertex degree. We discuss the application of our theory to the understanding of network resilience. PMID:11136023

  10. Getter materials for cracking ammonia

    DOEpatents

    Boffito, Claudio; Baker, John D.

    1999-11-02

    A method is provided for cracking ammonia to produce hydrogen. The method includes the steps of passing ammonia over an ammonia-cracking catalyst which is an alloy including (1) alloys having the general formula Zr.sub.1-x Ti.sub.x M.sub.1 M.sub.2, wherein M.sub.1 and M.sub.2 are selected independently from the group consisting of Cr, Mn, Fe, Co, and Ni, and x is between about 0.0 and about 1.0 inclusive; and between about 20% and about 50% Al by weight. In another aspect, the method of the invention is used to provide methods for operating hydrogen-fueled internal combustion engines and hydrogen fuel cells. In still another aspect, the present invention provides a hydrogen-fueled internal combustion engine and a hydrogen fuel cell including the above-described ammonia-cracking catalyst.

  11. Compatibility testing with anhydrous ammonia

    NASA Technical Reports Server (NTRS)

    Benner, Steve M.; Schweickart, Russell B.

    1992-01-01

    Anhydrous ammonia has been proposed as the working fluid for a number of two-phase thermal control systems to be used in future space applications, including the Space Station Freedom and the Earth Observing Station (EOS). The compatibility of ammonia with the components in these systems is a major concern due to the corrosive nature of the fluid. Compatibility of ammonia with stainless steel and some aluminum alloys is well documented; however, data on other materials potentially suitable for aerospace use is less common. This paper documents the compatibility testing of nine materials with both gaseous and liquid ammonia. The test procedures are presented along with the resulting measurement data. Tensile strength was the only mechanical property tested that indicated a significant material incompatibility.

  12. Argon recovery from hydrogen depleted ammonia plant purge gas using a HARP Plant

    SciTech Connect

    Krishnamurthy, R.; Lerner, S.L.; Maclean, D.L.

    1987-01-01

    A number of ammonia plants employ membranes or cryogenic hydrogen recovery units to separate hydrogen contained in the purge gas for recycle to the ammonia synthesis loop. The resulting hydrogen depleted purge gas, which is usually used for fuel, is an attractive source of argon. This paper presents the novel features of a process which employs a combination of pressure swing adsorption (PSA) and cryogenic technology to separate the argon from this hydrogen depleted purge gas stream. This new proprietary Hybrid Argon Recovery Progress (HARP) plant is an effective alternative to a conventional all-cryogenic plant.

  13. Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics

    NASA Astrophysics Data System (ADS)

    Becker, M.; Allen, E. M.; Hutchinson, A.

    2014-12-01

    Infiltration (spreading) basins are a central component of managed aquifer and recovery operations around the world. The concept is simple. Water is percolated into an aquifer where it can be withdrawn at a later date. However, managing infiltration basins can be complicated by entrapped air in sediments, strata of low permeability, clogging of the recharge surface, and biological growth, among other factors. Understanding the dynamics of percolation in light of these complicating factors provides a basis for making management decisions that increase recharge efficiency. As an aid to understanding percolation dynamics, fiber optic distribute temperature sensing (DTS) was used to track heat as a tracer of water movement in an infiltration basin. The diurnal variation of temperature in the basin was sensed at depth. The time lag between the oscillating temperature signal at the surface and at depth indicated the velocity of water percolation. DTS fiber optic cables were installed horizontally along the basin and vertically in boreholes to measure percolation behavior. The horizontal cable was installed in trenches at 0.3 and 1 m depth, and the vertical cable was installed using direct push technology. The vertical cable was tightly wound to produce a factor of 10 increase in spatial resolution of temperature measurements. Temperature was thus measured every meter across the basin and every 10 cm to a depth of 10 m. Data from the trenched cable suggested homogeneous percolation across the basin, but infiltration rates were a function of stage indicating non-ideal percolation. Vertical temperature monitoring showed significant lateral flow in sediments underlying the basin both during saturation and operation of the basin. Deflections in the vertical temperature profile corresponded with fine grained layers identified in core samples indicating a transient perched water table condition. The three-dimensional flow in this relatively homogenous surficial geology calls

  14. Social percolation and the influence of mass media

    NASA Astrophysics Data System (ADS)

    Proykova, Ana; Stauffer, Dietrich

    2002-09-01

    In the marketing model of Solomon and Weisbuch, people buy a product only if their neighbours tell them of its quality, and if this quality is higher than their own quality expectations. Now we introduce additional information from the mass media, which is analogous to the ghost field in percolation theory. The mass media shift the percolative phase transition observed in the model, and decrease the time after which the stationary state is reached.

  15. Transfer-matrix methods and results for directed percolation

    NASA Astrophysics Data System (ADS)

    Ben-Avraham, D.; Bidaux, R.; Schulman, L. S.

    1991-06-01

    For directed percolation, the second nontrivial eigenvalue of the transfer matrix is shown to have its maximum at pc. Using this, we obtain for (1+1)-dimensional directed site percolation pc=0.706 522+/-0.000 005, which agrees within 10-3 with other results, but is nevertheless significantly (in terms of quoted uncertainties) different from them. We also relate other quantities to the transfer-matrix spectrum and eigenfunctions.

  16. On Logarithmic Corrections in Two-Dimensional Percolation

    NASA Astrophysics Data System (ADS)

    Marsili, M.; Jug, G.

    The possibility of unusual leading logarithmic corrections to the asymptotic behavior of the percolation connectedness length ξ in two dimensions is explored through a finite-size transfer-matrix analysis on strips of widths L≤12. It is found that, for both square-site and triangular-site percolation problems, no such corrections arise and the accepted exact value of the critical exponent ν is recovered.

  17. Percolation temperature and the ''instability'' of the effective potential

    SciTech Connect

    Arago de Carvalho, C.; Bazeia, D.; Eboli, O.J.P.; Marques, G.C.; da Silva, A.J.; Ventura, I.

    1985-03-15

    We show that in spontaneously broken lambdaphi/sup 4/ theory the percolation temperature coincides with the temperature at which the semiclassical (loop) expansion of the effective potential (free energy) of the system around a uniform field configuration fails. This allows us to extract the percolation temperature directly from the effective potential. The addition of fermions or gauge fields does not alter the result as long as they are weakly coupled to the scalars. The coincidence holds in the high-temperature limit.

  18. Satellite Observations of Tropospheric Ammonia

    NASA Astrophysics Data System (ADS)

    Shephard, M. W.; Luo, M.; Rinsland, C. P.; Cady-Pereira, K. E.; Beer, R.; Pinder, R. W.; Henze, D.; Payne, V. H.; Clough, S.; Rodgers, C. D.; Osterman, G. B.; Bowman, K. W.; Worden, H. M.

    2008-12-01

    Global high-spectral resolution (0.06 cm-1) nadir measurements from TES-Aura enable the simultaneous retrieval of a number of tropospheric pollutants and trace gases in addition to the TES standard operationally retrieved products (e.g. carbon monoxide, ozone). Ammonia (NH3) is one of the additional species that can be retrieved in conjunction with the TES standard products, and is important for local, regional, and global tropospheric chemistry studies. Ammonia emissions contribute significantly to several well-known environmental problems, yet the magnitude and seasonal/spatial variability of the emissions are poorly constrained. In the atmosphere, an important fraction of fine particulate matter is composed of ammonium nitrate and ammonium sulfate. These particles are statistically associated with health impacts. When deposited to ecosystems in excess, nitrogen, including ammonia can cause nutrient imbalances, change in ecosystem species composition, eutrophication, algal blooms and hypoxia. Ammonia is also challenging to measure in-situ. Observations of surface concentrations are rare and are particularly sparse in North America. Satellite observations of ammonia are therefore highly desirable. We recently demonstrated that tropospheric ammonia is detectable in the TES spectra and presented some corresponding preliminary retrievals over a very limited range of conditions (Beer et al., 2008). Presented here are results that expand upon these initial TES ammonia retrievals in order to evaluate/validate the retrieval results utilizing in-situ surface observations (e.g. LADCO, CASTNet, EPA /NC State) and chemical models (e.g. GEOS-Chem and CMAQ). We also present retrievals over regions of interest that have the potential to help further understand air quality and the active nitrogen cycle. Beer, R., M. W. Shephard, S. S. Kulawik, S. A. Clough, A. Eldering, K. W. Bowman, S. P. Sander, B. M. Fisher, V. H. Payne, M. Luo, G. B. Osterman, and J. R. Worden, First

  19. Two exactly soluble models of rigidity percolation

    PubMed Central

    Thorpe, M. F.; Stinchcombe, R. B.

    2014-01-01

    We summarize results for two exactly soluble classes of bond-diluted models for rigidity percolation, which can serve as a benchmark for numerical and approximate methods. For bond dilution problems involving rigidity, the number of floppy modes F plays the role of a free energy. Both models involve pathological lattices with two-dimensional vector displacements. The first model involves hierarchical lattices where renormalization group calculations can be used to give exact solutions. Algebraic scaling transformations produce a transition of the second order, with an unstable critical point and associated scaling laws at a mean coordination 〈r〉=4.41, which is above the ‘mean field’ value 〈r〉=4 predicted by Maxwell constraint counting. The order parameter exponent associated with the spanning rigid cluster geometry is β=0.0775 and that associated with the divergence of the correlation length and the anomalous lattice dimension d is dν=3.533. The second model involves Bethe lattices where the rigidity transition is massively first order by a mean coordination 〈r〉=3.94 slightly below that predicted by Maxwell constraint counting. We show how a Maxwell equal area construction can be used to locate the first-order transition and how this result agrees with simulation results on larger random-bond lattices using the pebble game algorithm. PMID:24379428

  20. Percolation theory applied to measures of fragmentation in social networks.

    PubMed

    Chen, Yiping; Paul, Gerald; Cohen, Reuven; Havlin, Shlomo; Borgatti, Stephen P; Liljeros, Fredrik; Stanley, H Eugene

    2007-04-01

    We apply percolation theory to a recently proposed measure of fragmentation F for social networks. The measure F is defined as the ratio between the number of pairs of nodes that are not connected in the fragmented network after removing a fraction q of nodes and the total number of pairs in the original fully connected network. We compare F with the traditional measure used in percolation theory, P(infinity), the fraction of nodes in the largest cluster relative to the total number of nodes. Using both analytical and numerical methods from percolation, we study Erdos-Rényi and scale-free networks under various types of node removal strategies. The removal strategies are random removal, high degree removal, and high betweenness centrality removal. We find that for a network obtained after removal (all strategies) of a fraction q of nodes above percolation threshold, P(infinity) approximately (1-F)1/2. For fixed P(infinity) and close to percolation threshold (q=qc), we show that 1-F better reflects the actual fragmentation. Close to qc, for a given P(infinity), 1-F has a broad distribution and it is thus possible to improve the fragmentation of the network. We also study and compare the fragmentation measure F and the percolation measure P(infinity) for a real social network of workplaces linked by the households of the employees and find similar results. PMID:17500961

  1. Percolation model for selective dissolution of multi-component glasses

    SciTech Connect

    Kale, R.P.; Brinker, C.J.

    1995-03-01

    A percolation model is developed which accounts for most known features of the process of porous glass membrane preparation by selective dissolution of multi-component glasses. The model is founded within tile framework of the classical percolation theory, wherein the components of a glass are represented by random sites on a suitable lattice. Computer simulation is used to mirror the generation of a porous structure during the dissolution process, reproducing many of the features associated with the phenomenon. Simulation results evaluate the effect of the initial composition of the glass on the kinetics of the leaching process as well as the morphology of the generated porous structure. The percolation model establishes the porous structure as a percolating cluster of unreachable constituents in the glass. The simulation algorithm incorporates removal of both, the accessible leachable components in the glass as well as the independent clusters of unreachable components not attached to the percolating cluster. The dissolution process thus becomes limited by the conventional site percolation thresholds of the unreachable components (which restricts the formation of the porous network), as well as the leachable components (which restricts the accessibility of the solvating medium into the glass). The simulation results delineate the range of compositional variations for successful porous glass preparation and predict the variation of porosity, surface area, dissolution rates and effluent composition with initial composition and time. Results compared well with experimental studies and improved upon similar models attempted in die past.

  2. Phase Diagram of Inhomogeneous Percolation with a Defect Plane

    NASA Astrophysics Data System (ADS)

    Iliev, G. K.; Janse van Rensburg, E. J.; Madras, N.

    2015-01-01

    Let be the -dimensional hypercubic lattice and let be an -dimensional sublattice, with . We consider a model of inhomogeneous bond percolation on at densities and , in which edges in are open with probability , and edges in open with probability . We generalize several classical results of (homogeneous) bond percolation to this inhomogeneous model. The phase diagram of the model is presented, and it is shown that there is a subcritical regime for and (where is the critical probability for homogeneous percolation in ), a bulk supercritical regime for , and a surface supercritical regime for and . We show that is a strictly decreasing function for , with a jump discontinuity at . We extend the Aizenman-Barsky differential inequalities for homogeneous percolation to the inhomogeneous model and use them to prove that the susceptibility is finite inside the subcritical phase. We prove that the cluster size distribution decays exponentially in the subcritical phase, and sub-exponentially in the supercritical phases. For a model of lattice animals with a defect plane, the free energy is related to functions of the inhomogeneous percolation model, and we show how the percolation transition implies a non-analyticity in the free energy of the animal model. Finally, we present simulation estimates of the critical curve.

  3. Percolation theory applied to measures of fragmentation in social networks

    NASA Astrophysics Data System (ADS)

    Chen, Yiping; Paul, Gerald; Cohen, Reuven; Havlin, Shlomo; Borgatti, Stephen P.; Liljeros, Fredrik; Stanley, H. Eugene

    2007-04-01

    We apply percolation theory to a recently proposed measure of fragmentation F for social networks. The measure F is defined as the ratio between the number of pairs of nodes that are not connected in the fragmented network after removing a fraction q of nodes and the total number of pairs in the original fully connected network. We compare F with the traditional measure used in percolation theory, P∞ , the fraction of nodes in the largest cluster relative to the total number of nodes. Using both analytical and numerical methods from percolation, we study Erdős-Rényi and scale-free networks under various types of node removal strategies. The removal strategies are random removal, high degree removal, and high betweenness centrality removal. We find that for a network obtained after removal (all strategies) of a fraction q of nodes above percolation threshold, P∞≈(1-F)1/2 . For fixed P∞ and close to percolation threshold (q=qc) , we show that 1-F better reflects the actual fragmentation. Close to qc , for a given P∞ , 1-F has a broad distribution and it is thus possible to improve the fragmentation of the network. We also study and compare the fragmentation measure F and the percolation measure P∞ for a real social network of workplaces linked by the households of the employees and find similar results.

  4. Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics.

    PubMed

    Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang

    2016-01-01

    Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998

  5. Percolation velocity dependence on local concentration in bidisperse granular flows

    NASA Astrophysics Data System (ADS)

    Jones, Ryan P.; Xiao, Hongyi; Deng, Zhekai; Umbanhowar, Paul B.; Lueptow, Richard M.

    The percolation velocity, up, of granular material in size or density bidisperse mixtures depends on the local concentration, particle size ratio, particle density ratio, and shear rate, γ ˙. Discrete element method computational results were obtained for bounded heap flows with size ratios between 1 and 3 and for density ratios between 1 and 4. The results indicate that small particles percolate downward faster when surrounded by large particles than large particles percolate upward when surrounded by small particles, as was recently observed in shear-box experiments. Likewise, heavy particles percolate downward faster when surrounded by light particles than light particles percolate upward when surrounded by heavy particles. The dependence of up / γ ˙ on local concentration results in larger percolation flux magnitudes at high concentrations of large (or light) particles compared to high concentrations of small (or heavy) particles, while local volumetric flux is conserved. The dependence of up / γ ˙ on local concentration can be incorporated into a continuum model, but the impact on global segregation patterns is usually minimal. Partially funded by Dow Chemical Company and NSF Grant No. CBET-1511450.

  6. Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics

    PubMed Central

    Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang

    2016-01-01

    Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998

  7. Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang

    2016-08-01

    Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.

  8. The Totem Pole Recycled.

    ERIC Educational Resources Information Center

    Sewall, Susan Breyer

    1991-01-01

    Presents an activity that integrates science, environmental education, art, and social studies. Students identify and research an endangered species and construct a totem pole depicting the species using a recyclable material. (MDH)

  9. Recycle plastics into feedstocks

    SciTech Connect

    Kastner, H.; Kaminsky, W.

    1995-05-01

    Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

  10. A Practical Recycling Project . . .

    ERIC Educational Resources Information Center

    Durant, Raymond H.; Mikuska, James M.

    1973-01-01

    Descirbes a school district's recycling program of aluminum lunch trays that are collected after their use. The trays are used as scrap metal in industrial education workshop and used for sand castings. (PS)