Science.gov

Sample records for ammonia synthesis reaction

  1. Direct microwave-assisted amino acid synthesis by reaction of succinic acid and ammonia in the presence of magnetite

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Liu, Dandan; Shi, Weiguang; Hua, Yingjie; Wang, Chongtai; Liu, Xiaoyang

    2013-10-01

    Since the discovery of submarine hot vents in the late 1970s, it has been postulated that submarine hydrothermal environments would be suitable for emergence of life on Earth. To simulate warm spring conditions, we designed a series of microwave-assisted amino acid synthesis involving direct reactions between succinic acid and ammonia in the presence of the magnetite catalyst. These reactions which generated aspartic acid and glycine were carried out under mild temperatures and pressures (90-180 °C, 4-19 bar). We studied this specific reaction inasmuch as succinic acid and ammonia were traditionally identified as prebiotic compounds in primitive deep-sea hydrothermal systems on Earth. The experimental results were discussed in both biochemical and geochemical context to offer a possible route for abiotic amino acid synthesis. With extremely diluted starting materials (0.002 M carboxylic acid and 0.002 M ammonia) and catalyst loading, an obvious temperature dependency was observed in both cases [neither product was detected at 90 °C in comparison with 21.08 ?mol L-1 (aspartic acid) and 70.25 umol L-1 (glycine) in 180 °C]. However, an opposite trend presented for reaction time factor, namely a positive correlation for glycine, but a negative one for aspartic acid.

  2. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  3. The Ammonia Synthesis Reaction: An Exception to the Le Chatelier Principle and Effects of Nonideality

    ERIC Educational Resources Information Center

    Uline, Mark J.; Corti, David S.

    2006-01-01

    Le Chatelier's principle states that the further addition of a particular component will cause the reaction to shift in the direction that reduces the total number of moles of the system. However, the addition of one reactant [N[subscript 2

  4. Structure of the Active Platinum Cluster and Reaction Pathway of the Selective Synthesis of Phenol from Benzene and Oxygen Regulated with Ammonia on a Platinum Cluster/?-Zeolite Catalyst Studied by DFT Calculations.

    PubMed

    Sasaki, Takehiko; Tada, Mizuki; Wang, Linsheng; Malwadkar, Sachin; Iwasawa, Yasuhiro

    2015-10-01

    DFT calculations were used to investigate the structure of the active Pt cluster and the catalytic reaction pathway for the selective synthesis of phenol from benzene and molecular oxygen regulated with ammonia on a Pt cluster/?-zeolite catalyst that was reported to be active for the selective hydroxylation of benzene only in the coexistence of ammonia. It was found that Pt5-Pt6 clusters were active for the direct synthesis of phenol, and they provided the reaction sites for bond rearrangements among ammonia, oxygen, and benzene; furthermore, the coexistence of ammonia was crucial for the selective oxidation of benzene to phenol, as it suppressed benzene combustion to CO2 and promoted the selective synthesis of phenol. It was further found that water coexisting in the system also played a significant role in desorbing phenol on the Pt cluster surface, which resulted in promotion of the overall selective synthesis of phenol. The energy diagram for the reaction sequences and the structures of the transition states were obtained, which indicated the origin of the Pt/? catalysis. PMID:26179978

  5. Ammonia synthesis using magnetic induction method (MIM)

    NASA Astrophysics Data System (ADS)

    Puspitasari, P.; Razak, J. Abd; Yahya, N.

    2012-09-01

    The most challenging issues for ammonia synthesis is to get the high yield. New approach of ammonia synthesis by using Magnetic Induction Method (MIM) and the Helmholtz Coils has been proposed. The ammonia detection was done by using Kjeldahl Method and FTIR. The system was designed by using Autocad software. The magnetic field of MIM was vary from 100mT-200mT and the magnetic field for the Helmholtz coils was 14mT. The FTIR result shows that ammonia has been successfully formed at stretching peaks 1097,1119,1162,1236, 1377, and 1464 cm-1. UV-VIS result shows the ammonia bond at 195nm of wavelength. The ammonia yield was increase to 244.72?mole/g.h by using the MIM and six pairs of Helmholtz coils. Therefore this new method will be a new promising method to achieve the high yield ammonia at ambient condition (at 25?C and 1atm), under the Magnetic Induction Method (MIM).

  6. The Sugar Model: Autocatalytic Activity of the Triose-Ammonia Reaction

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2006-01-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose-ammonia reaction product on the kinetics of a second identical triose-ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  7. Prebiotic Amino Acid Thioester Synthesis: Thiol-Dependent Amino Acid Synthesis from Formose substrates (Formaldehyde and Glycolaldehyde) and Ammonia

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1998-01-01

    Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.

  8. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis

    PubMed Central

    Kitano, Masaaki; Kanbara, Shinji; Inoue, Yasunori; Kuganathan, Navaratnarajah; Sushko, Peter V.; Yokoyama, Toshiharu; Hara, Michikazu; Hosono, Hideo

    2015-01-01

    Novel approaches to efficient ammonia synthesis at an ambient pressure are actively sought out so as to reduce the cost of ammonia production and to allow for compact production facilities. It is accepted that the key is the development of a high-performance catalyst that significantly enhances dissociation of the nitrogen–nitrogen triple bond, which is generally considered a rate-determining step. Here we examine kinetics of nitrogen and hydrogen isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered efficient catalyst for ammonia synthesis—ruthenium-loaded 12CaO·7Al2O3 electride (Ru/C12A7:e?)—and find that the rate controlling step of ammonia synthesis over Ru/C12A7:e? is not dissociation of the nitrogen–nitrogen triple bond but the subsequent formation of N–Hn species. A mechanism of ammonia synthesis involving reversible storage and release of hydrogen atoms on the Ru/C12A7:e? surface is proposed on the basis of observed hydrogen absorption/desorption kinetics. PMID:25816758

  9. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis.

    PubMed

    Kitano, Masaaki; Kanbara, Shinji; Inoue, Yasunori; Kuganathan, Navaratnarajah; Sushko, Peter V; Yokoyama, Toshiharu; Hara, Michikazu; Hosono, Hideo

    2015-01-01

    Novel approaches to efficient ammonia synthesis at an ambient pressure are actively sought out so as to reduce the cost of ammonia production and to allow for compact production facilities. It is accepted that the key is the development of a high-performance catalyst that significantly enhances dissociation of the nitrogen-nitrogen triple bond, which is generally considered a rate-determining step. Here we examine kinetics of nitrogen and hydrogen isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered efficient catalyst for ammonia synthesis--ruthenium-loaded 12CaO·7Al2O3 electride (Ru/C12A7:e(-))--and find that the rate controlling step of ammonia synthesis over Ru/C12A7:e(-) is not dissociation of the nitrogen-nitrogen triple bond but the subsequent formation of N-Hn species. A mechanism of ammonia synthesis involving reversible storage and release of hydrogen atoms on the Ru/C12A7:e(-) surface is proposed on the basis of observed hydrogen absorption/desorption kinetics. PMID:25816758

  10. Process for synthesis of ammonia borane for bulk hydrogen storage

    DOEpatents

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  11. How a century of ammonia synthesis changed the world

    NASA Astrophysics Data System (ADS)

    Erisman, Jan Willem; Sutton, Mark A.; Galloway, James; Klimont, Zbigniew; Winiwarter, Wilfried

    2008-10-01

    On 13 October 1908, Fritz Haber filed his patent on the ``synthesis of ammonia from its elements'' for which he was later awarded the 1918 Nobel Prize in Chemistry. A hundred years on we live in a world transformed by and highly dependent upon Haber-Bosch nitrogen.

  12. Sources and sinks for ammonia and nitrite on the early Earth and the reaction of nitrite with ammonia

    NASA Technical Reports Server (NTRS)

    Summers, D. P.

    1999-01-01

    An analysis of sources and sinks for ammonia and nitrite on the early Earth was conducted. Rates of formation and destruction, and steady state concentrations of both species were determined by steady state kinetics. The importance of the reaction of nitrite with ammonia on the feasibility of ammonia formation from nitrite was evaluated. The analysis considered conditions such as temperature, ferrous iron concentration, and pH. For sinks we considered the reduction of nitrite to ammonia, reaction between nitrite and ammonia, photochemical destruction of both species, and destruction at hydrothermal vents. Under most environmental conditions, the primary sink for nitrite is reduction to ammonia. The reaction between ammonia and nitrite is not an important sink for either nitrite or ammonia. Destruction at hydrothermal vents is important at acidic pH's and at low ferrous iron concentrations. Photochemical destruction, even in a worst case scenario, is unimportant under many conditions except possibly under acidic, low iron concentration, or low temperature conditions. The primary sink for ammonia is photochemical destruction in the atmosphere. Under acidic conditions, more of the ammonia is tied up as ammonium (reducing its vapor pressure and keeping it in solution) and hydrothermal destruction becomes more important.

  13. Parasitic reactions between alkyls and ammonia in OMVPE

    SciTech Connect

    Chen, C.H.; Liu, H.; Steigerwald, D.; Imler, W.; Kuo, C.P.; Craford, M.G.

    1996-11-01

    The parasitic reactions between ammonia and commonly used alkyls have been studied in a horizontal OMVPE reactor. The results indicate that parasitic reactions between TMAl and NH{sub 3} is severe, leading to the necessity to grow AlN at low reactor pressure. On the other hand, parasitic reactions between TMGa + NH{sub 3} and TMIn + NH{sub 3} are not significant and it is possible to grow GaN and GaInN at any reactor pressure.

  14. Isotopic studies of the ammonia decomposition reaction mediated by sodium amide.

    PubMed

    Wood, Thomas J; Makepeace, Joshua W; Hunter, Hazel M A; Jones, Martin O; David, William I F

    2015-09-21

    We demonstrate that the ammonia decomposition reaction catalysed by sodium amide proceeds under a different mechanism to ammonia decomposition over transition metal catalysts. Isotopic variants of ammonia and sodium amide reveal a significant kinetic isotope effect in contrast to the nickel-catalysed reaction where there is no such effect. The bulk composition of the catalyst is also shown to affect the kinetics of the ammonia decomposition reaction. PMID:26271016

  15. Vibrational and collisional energy effects in the reaction of ammonia ions with methylamine

    E-print Network

    Zare, Richard N.

    Vibrational and collisional energy effects in the reaction of ammonia ions with methylamine investigated the reactions of vibrationally state-selected ammonia ions with d3-methylamine over the center-of-mass collisional energy range of 0.5 to 10.0 eV and for ammonia ion vibrational states ranging from 2 1­9. Under

  16. Distribution of ammonia/aflatoxin reaction products in corn following exposure to ammonia decontamination procedure.

    PubMed

    Martinez, A J; Weng, C Y; Park, D L

    1994-01-01

    The distribution of aflatoxin decontamination reaction products in corn following ammonia decontamination treatment was determined. The parameters of the ammoniation procedure used to decontaminate aflatoxin contaminated corn were 2% NH3, 16% moisture, 55 psi, 40-45 degrees C, and 60 min duration. Uniformly ring-labelled 14C-aflatoxin B1 was added to corn (1.0 microCi/kg) containing 7500 micrograms naturally-incurred aflatoxin B1 (AFB1)/kg. Aflatoxin levels were reduced by ca 93% after ammonia treatment. Distribution of radiolabelled AFB1 was used to follow the modification of AFB1 and the ammonia/aflatoxin reaction products were separated and isolated through a series of chemical extraction/partition procedures. Samples of the ammoniated product were fractionated through sequential extraction with methylene chloride and methanol, then either treated with acetic acid and sodium hydroxide or exposed to proteolytic enzyme digestion followed by methylene chloride extraction. Approximately 88% of the added radioactivity was detected in the corn after treatment (i.e. 12% of aflatoxin reaction products were volatile), ca 20% was extracted with methylene chloride and ca 13% was extracted with methanol. Treatment with acid and base released 18.8% of the added radioactivity. Similar amounts (19.1%) of aflatoxin-related compounds were liberated after enzymatic digestion with Pronase E. The remaining corn matrix after acid-base treatment or Pronase digestion contained ca 37.0% of the original radioactivity. A fluorescent spot on the TLC plate represented 6.1% of the CH2Cl2-extractable compounds and contained a compound which reacts chromatographically similarly to AFB2a. PMID:7895871

  17. Synthesis of nanoscale particles of Ta and Nb3Al by homogeneous reduction in liquid ammonia

    E-print Network

    Sadoway, Donald Robert

    Synthesis of nanoscale particles of Ta and Nb3Al by homogeneous reduction in liquid ammonia Hongmin and electronic). This prediction was confirmed by reacting TaCl5 with sodium, each dissolved in liquid ammoniaCl5 and AlCl3 both dissolved in liquid ammonia. I. INTRODUCTION Reduction in particle size from

  18. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors

    E-print Network

    Nizkorodov, Sergey

    Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic t ammonia. 2012 Accepted 9 September 2012 Keywords: Brown carbon Secondary organic aerosol Ammonia Mass absorption

  19. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    PubMed Central

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N?N bond (225?kcal mol?1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10?5?mol m?2 s?1 has been achieved when a voltage of 1.6?V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  20. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store

    NASA Astrophysics Data System (ADS)

    Kitano, Masaaki; Inoue, Yasunori; Yamazaki, Youhei; Hayashi, Fumitaka; Kanbara, Shinji; Matsuishi, Satoru; Yokoyama, Toshiharu; Kim, Sung-Wng; Hara, Michikazu; Hosono, Hideo

    2012-11-01

    Industrially, the artificial fixation of atmospheric nitrogen to ammonia is carried out using the Haber-Bosch process, but this process requires high temperatures and pressures, and consumes more than 1% of the world's power production. Therefore the search is on for a more environmentally benign process that occurs under milder conditions. Here, we report that a Ru-loaded electride [Ca24Al28O64]4+(e-)4 (Ru/C12A7:e-), which has high electron-donating power and chemical stability, works as an efficient catalyst for ammonia synthesis. Highly efficient ammonia synthesis is achieved with a catalytic activity that is an order of magnitude greater than those of other previously reported Ru-loaded catalysts and with almost half the reaction activation energy. Kinetic analysis with infrared spectroscopy reveals that C12A7:e- markedly enhances N2 dissociation on Ru by the back donation of electrons and that the poisoning of ruthenium surfaces by hydrogen adatoms can be suppressed effectively because of the ability of C12A7:e- to store hydrogen reversibly.

  1. Reaction synthesis of intermetallics

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1994-12-31

    Exothermicity associated with the synthesis of aluminides was utilized to obtain nickel, iron, and cobalt aluminides. Combustion synthesis, extrusion, and hot pressing were utilized to obtain intermetallics and their composites. Extrusion conditions, reduction ratios, and hot-pressing conditions of the intermetallics and their composites are discussed.

  2. Multicomponent Reactions in Total Synthesis Kevin Allan

    E-print Network

    Stoltz, Brian M.

    Multicomponent Reactions in Total Synthesis Kevin Allan Stoltz Group Literature Meeting Monday Ph Ph PhO N N H Ph Ph Ph Ph N HN Ph Ph 3-CR 4-CR 5-CR #12;Multicomponent Reactions in Total Synthesis / Petasis (Boronic Acid Mannich) Reaction · Biginelli Dihydropyrimidinone Synthesis · Passerini Reaction

  3. AMMONIA

    EPA Science Inventory

    This document summarizes the available information on ammonia as it relates to its effects on man and his environment. Ammonia is a ubiquitous substance and is known widely as a household cleaning agent and as a fertilizer. It plays an important role in the nitrogen cycle--in the...

  4. Mechanism Switching of Ammonia Synthesis Over Ru-Loaded Electride Catalyst at Metal-Insulator Transition.

    PubMed

    Kanbara, Shinji; Kitano, Masaaki; Inoue, Yasunori; Yokoyama, Toshiharu; Hara, Michikazu; Hosono, Hideo

    2015-11-18

    The substitution of electrons for O(2-) anions in the crystallographic cages of [Ca24Al28O64](4+)(O(2-))2 was investigated to clarify the correlation between the electronic properties and catalytic activity for ammonia synthesis in Ru-loaded [Ca24Al28O64](4+)(O(2-))2-x(e(-))2x (0 ? x ? 2). This catalyst has low catalytic performance with an electron concentration (Ne) lower than 1 × 10(21) cm(-3) and a high apparent activation energy (Ea) for ammonia synthesis comparable to that for conventional Ru-based catalysts with a basic promoter such as alkali or alkaline earth compounds. Replacement of more than half of the cage O(2-) anions with electrons (Ne ? 1 × 10(21) cm(-3)) significantly changes the reaction mechanism to yield a catalytic activity that is an order higher and with half the Ea. The metal-insulator transition of [Ca24Al28O64](4+)(O(2-))2-x(e(-))2x also occurs at Ne ? 1 × 10(21) cm(-3) and is triggered by structural relaxation of the crystallographic cage induced by the replacement of O(2-) anions with electrons. These observations indicate that the metal-insulator transition point is a boundary in the catalysis between Ru-loaded [Ca24Al28O64](4+)(O(2-))2 and [Ca24Al28O64](4+)(e(-))4. It is thus demonstrated that whole electronic properties of the support material dominate catalysis for ammonia synthesis. PMID:26498867

  5. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    DOEpatents

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  6. Tandem Reactions for Streamlining Synthesis

    PubMed Central

    HUSSAIN, MAHMUD M.; WALSH, PATRICK J.

    2009-01-01

    CONSPECTUS In 1980 Sharpless and Katsuki introduced the asymmetric epoxidation of prochiral allylic alcohols (the Sharpless-Katsuki Asymmetric Epoxidation), which enabled the rapid synthesis of highly enantioenriched epoxy alcohols. This reaction was a milestone in the development of asymmetric catalysis because it was the first highly enantioselective oxidation reaction. Furthermore, it provided access to enantioenriched allylic alcohols that are now standard starting materials in natural product synthesis. In 1981 Sharpless and coworkers made another seminal contribution by describing the kinetic resolution (KR) of racemic allylic alcohols. This work demonstrated that small-molecule catalysts could compete with enzymatic catalysts in KRs. For these pioneering works, Sharpless was awarded the 2001 Nobel Prize with Knowles and Noyori. Despite these achievements, the Sharpless KR is not an efficient method to prepare epoxy alcohols with high enantiomeric excess (ee). First, the racemic allylic alcohol must be prepared and purified. KR of the racemic allylic alcohol must be stopped at low conversion, because the ee of the product epoxy alcohol decreases as the KR progresses. Thus, better methods to prepare epoxy alcohols containing stereogenic carbinol carbons are needed. This Account summarizes our efforts to develop one-pot methods for the synthesis of various epoxy alcohols and allylic epoxy alcohols with high enantio-, diastereo-, and chemoselectivity. Our laboratory developed titanium-based catalysts for use in the synthesis of epoxy alcohols with tertiary carbinols. The catalysts are involved in the first step, which is an asymmetric alkyl or allyl addition to enones. The resulting intermediates are then subjected to a titanium-directed diastereoselective epoxidation to provide tertiary epoxy alcohols. Similarly, the synthesis of acyclic epoxy alcohols begins with asymmetric additions to enals and subsequent epoxidation. The methods described here enable the synthesis of skeletally diverse epoxy alcohols. PMID:18710197

  7. Ammonia

    Integrated Risk Information System (IRIS)

    Ammonia ; CASRN 7664 - 41 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  8. Enantioselective Total Synthesis of (-)-Pironetin: Iterative Aldol Reactions

    E-print Network

    Enantioselective Total Synthesis of (-)-Pironetin: Iterative Aldol Reactions of Thiazolidinethiones titanium mediated iterative aldol reactions. Key steps in this synthesis include an acetal aldol reaction the ability to execute iterative propionate aldol reactions for the synthesis of complex polypropionates

  9. Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible "prebiotic" conditions

    NASA Astrophysics Data System (ADS)

    Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.

    2011-08-01

    The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.

  10. Reaction synthesis of heat-resistant materials

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1995-12-31

    Exothermicity associated with the synthesis of aluminides can be utilized to obtain aluminides of transition metals. Combustion synthesis, extrusion, and hot pressing were utilized to obtain dense intermetallics and their composites. Composites were analyzed by X- ray diffraction and microscopy techniques, and tensile properties were measured on button-head and sheet specimens of intermetallics and their composites. Mechanical properties of intermetallics obtained by reaction synthesis and densification compare well with conventionally processed materials. Reaction-synthesis principles were also extended to weld overlays. Possible approaches to obtaining dense products by reaction synthesis and densification are summarized in a schematic illustration. 19 refs., 14 figs., 3 tabs.

  11. Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia.

    PubMed

    Sutton, Andrew D; Burrell, Anthony K; Dixon, David A; Garner, Edward B; Gordon, John C; Nakagawa, Tessui; Ott, Kevin C; Robinson, J Pierce; Vasiliu, Monica

    2011-03-18

    Ammonia borane (H(3)N-BH(3), AB) is a lightweight material containing a high density of hydrogen (H(2)) that can be readily liberated for use in fuel cell-powered applications. However, in the absence of a straightforward, efficient method for regenerating AB from dehydrogenated polymeric spent fuel, its full potential as a viable H(2) storage material will not be realized. We demonstrate that the spent fuel type derived from the removal of greater than two equivalents of H(2) per molecule of AB (i.e., polyborazylene, PB) can be converted back to AB nearly quantitatively by 24-hour treatment with hydrazine (N(2)H(4)) in liquid ammonia (NH(3)) at 40°C in a sealed pressure vessel. PMID:21415349

  12. Ammonia synthesis. Ammonia synthesis by N? and steam electrolysis in molten hydroxide suspensions of nanoscale Fe?O?.

    PubMed

    Licht, Stuart; Cui, Baochen; Wang, Baohui; Li, Fang-Fang; Lau, Jason; Liu, Shuzhi

    2014-08-01

    The Haber-Bosch process to produce ammonia for fertilizer currently relies on carbon-intensive steam reforming of methane as a hydrogen source. We present an electrochemical pathway in which ammonia is produced by electrolysis of air and steam in a molten hydroxide suspension of nano-Fe2O3. At 200°C in an electrolyte with a molar ratio of 0.5 NaOH/0.5 KOH, ammonia is produced at 1.2 volts (V) under 2 milliamperes per centimeter squared (mA cm(-2)) of applied current at coulombic efficiency of 35% (35% of the applied current results in the six-electron conversion of N2 and water to ammonia, and excess H2 is cogenerated with the ammonia). At 250°C and 25 bar of steam pressure, the electrolysis voltage necessary for 2 mA cm(-2) current density decreased to 1.0 V. PMID:25104378

  13. The influence of phase and morphology of molybdenum nitrides on ammonia synthesis activity and reduction characteristics

    SciTech Connect

    Mckay, D.; Hargreaves, J.S.J. Rico, J.L.; Rivera, J.L.; Sun, X.-L.

    2008-02-15

    The reactivities of a series of ternary and binary molybdenum nitrides have been compared. Data have been obtained for the catalytic synthesis of ammonia at 400 deg. C and ambient pressure using a 3:1 H{sub 2}:N{sub 2} mixture. Amongst the ternary nitrides, the mass normalised activity is in the order Co{sub 3}Mo{sub 3}N>Fe{sub 3}Mo{sub 3}N>>Ni{sub 2}Mo{sub 3}N. For the binary molybdenum nitrides, the ammonia synthesis activity is significantly lower than that of Co{sub 3}Mo{sub 3}N and Fe{sub 3}Mo{sub 3}N and varies in the order {gamma}-Mo{sub 2}N{approx}{beta}-Mo{sub 2}N{sub 0.78}>>{delta}-MoN. Nanorod forms of {beta}-Mo{sub 2}N{sub 0.78} and {gamma}-Mo{sub 2}N exhibit generally similar activities to conventional polycrystalline samples, demonstrating that the influence of catalyst morphology is limited for these two materials. In order to characterise the reactivity of the lattice nitrogen species of the nitrides, temperature programmed reactions with a 3:1 H{sub 2}:Ar mixture at temperatures up to 700 deg. C have been performed. For all materials studied, the predominant form of nitrogen lost was N{sub 2}, with smaller amounts of NH{sub 3} being formed. Post-reaction powder diffraction analyses demonstrated lattice shifts in the case of Co{sub 3}Mo{sub 3}N and Ni{sub 2}Mo{sub 3}N upon temperature programmed reaction with H{sub 2}/Ar. Incomplete decomposition yielding mixtures of Mo metal and the original phase were observed for Fe{sub 3}Mo{sub 3}N and {gamma}-Mo{sub 2}N, whilst {beta}-Mo{sub 2}N{sub 0.78} transforms completely to Mo metal and {delta}-MoN is converted to {gamma}-Mo{sub 2}N. - Graphical abstract: Nanorod {gamma}-Mo{sub 2}N.

  14. Carboxymethylguargum-silver nanocomposite: green synthesis, characterization and an optical sensor for ammonia detection

    NASA Astrophysics Data System (ADS)

    Pal Gupta, Anek; Verma, Devendra Kumar

    2014-09-01

    This work describes the preparation of new carboxymethyl guar gum-silver nanocomposite (CMGG/Ag NC) by green synthesis method. For this carboxymethyl guar gum was used as a reducing agent as well as stabilizer. The silver nanoparticles obtained were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis spectroscopy, Fourier transform infrared (FTIR) and energy dispersive x-ray analysis (EDX). The average size of the silver nanoparticles was found of ˜6 nm. Thus, the obtained CMGG/AgNPs NC was examined for optical sensing property for detection of ammonia in aqueous medium. The response time and the detection limit of ammonia in aqueous solution were detected at room temperature. It was concluded that in the future, at this room temperature optical ammonia sensor may be used for medical diagnosis and clinically for detecting low ammonia level (up to 1 ppm) in biological samples for various biomedical applications.

  15. Studies on the use of supercritical ammonia for ceramic nitride synthesis and fabrication

    NASA Technical Reports Server (NTRS)

    Cornell, Linda; Lin, Y. C.; Philipp, Warren H.

    1990-01-01

    The extractability of ammonia halides (including ammonium thiocyanate) formed as byproducts from the synthesis of Si(NH)2 via ammonolysis of the corresponding silicon tetrahalides using supercritical NH3 as the extraction medium was investigated. It was found that the NH4SCN byproduct of ammonolysis of Si(SCN)4 can be almost completely extracted from the insoluble Si(NH)2 forming a promising system for the synthesis of pure Si(NH)2, one of the best precursors for Si3N4. In addition it was found that Si3N4, AlN, BN, and Si(NH)2 are insoluble in SC ammonia. Also discussed are design considerations for a supercritical ammonia extraction unit.

  16. The Inversion Potential of Ammonia: An Intrinsic Reaction Coordinate Calculation for Student Investigation

    ERIC Educational Resources Information Center

    Halpern, Arthur M.; Ramachandran, B. R.; Glendening, Eric D.

    2007-01-01

    A report is presented to describe how students can be empowered to construct the full, double minimum inversion potential for ammonia by performing intrinsic reaction coordinate calculations. This work can be associated with the third year physical chemistry lecture laboratory or an upper level course in computational chemistry.

  17. Reaction pathways in the oxydehydrogenation of ammonia at Cu(110) surfaces

    NASA Astrophysics Data System (ADS)

    Afsin, B.; Davies, P. R.; Pashusky, A.; Roberts, M. W.; Vincent, D.

    1993-03-01

    The activation of ammonia by oxygen at Cu(110) has been investigated by X-ray photoelectron and electron energy loss spectroscopies. The chemistry observed is dependent on the temperature, whether oxygen is preadsorbed and its surface coverage, or whether the oxygen is coadsorbed with ammonia. Amide species NH 2(a) are formed only when adsorbed ammonia is exposed to dioxygen at low temperatures. With increasing temperature further step-wise dehydrogenation occurs to give imide NH(a) and nitrogen adatoms N(a). For an ammonia-rich dioxygen-ammonia mixture a facile reaction to form exclusively bent imide species occurs at 295 K with no evidence for chemisorbed oxygen being present until ?NH approaches unity. A hot transient O -(s) species is implicated in the reaction mechanism. On the other hand for ?oxygen ? 1.0 the oxygen overlayer is relatively unreactive, imide formation being kinetically slow and limited in extent. Furthermore there is no evidence in the HREEL spectra for a loss peak characteristic of ? nh although a ? NH loss peak is present. This suggests a linear form of NH(a) in contrast to the bent form generated by coadsorption of ammonia and dioxygen. Two different oxygen species can exist at the copper surface: one that is highly reactive to ammonia and undergoes chemisorptive replacement, the other inactive. We suggest that the former is O --like and associated with isolated oxygen atoms and the latter O 2--like and associated with multi-oxygen atom copper nuclei. High catalytic oxydehydrogenation activity can be maintained during the coadsorption of dioxygen and ammonia, provided the development of O 2- species (oxide growth associated with surface reconstruction) is suppressed. The latter has been shown to occur even at low oxygen coverages ( ? ? 0.1) the ammonia molecule acting as a sensitive and specific probe for the isolated O --like species. The O -(s) species are therefore transients in the development of the chemisorbed oxygen overlayer and characterised by high chemical reactivity. Support for this model comes from recent scanning tunnelling microscope studies of the Al(111)-oxygen system of Ertl and coworkers [Phys. Rev. Lett. 68 (1992) 624] (ref. [1]).

  18. AMINO ACID SYNTHESIS IN PHOTO-SYNTHESIZING SPINACH CELLS. EFFECTS OF AMMONIA ON POOL SIZES AND RATES OF LABELING FROM {sup 14}CO{sub 2}

    SciTech Connect

    Larsen, Peder Olesen; Cornwell, Karen L.; Gee, Sherry L.; Bassham, James A.

    1980-10-01

    Isolated cells from leaves of Spinacea oleracea have been maintained in a state capable of high rates of photosynthetic CO{sub 2} fixation for more than 60 h. The incorporation of {sup 14}CO{sub 2} under saturating CO{sub 2} conditions into carbohydrates, carboxylic acids, and amino acids, and the effect of ammonia on this incorporation have been studied. Total incorporation, specific radioactivity and pool size have been determined as a function of time for most of the protein amino acids and for {gamma}-aminobutyric acid. the measurements of specific activities and of the approaches to {sup 14}C "saturation" of some amino acids indicate the presence and relative sizes of metabolically active and passive pools of these amino acids. Added ammonia decreased carbon fixation into carbohydrates and increased fixation into carboxylic acids and amino acids. Different amino acids were, however, affected in different and highly specific ways. Ammonia caused large stimulatory effects in incorporation of {sup 14}C into glutamine (a factor of 16), No effect or slight decreases were seen in glycine, serine, phenylalanine, and tyrosine labeling, In.the case of glutamate, {sup 14}C-labeling decreased, but specific activity increased. The production of labeled {gamma}-aminobutyric acid was virtually stopped by ammonia. The results indicate that added ammonia stimulates the reactions mediated by pyruvate kinase and phosphoenolpyruvate carboxylase, as seen with other plant systems. The data on the effects of added ammonia on total labeling, pool sizes, and specific activities of several amino acids provides a number of indications about the intracellular sites of principal synthesis from carbon skeletons of these amino acids and the selective nature of effects of increased intracellular ammonia concentration on such synthesis.

  19. Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor

    NASA Astrophysics Data System (ADS)

    Gómez-Ramírez, A.; Cotrino, J.; Lambert, R. M.; González-Elipe, A. R.

    2015-12-01

    A detailed study of ammonia synthesis from hydrogen and nitrogen in a planar dielectric barrier discharge (DBD) reactor was carried out. Electrical parameters were systematically varied, including applied voltage and frequency, electrode gap, and type of ferroelectric material (BaTiO3 versus PZT). For selected operating conditions, power consumption and plasma electron density were estimated from Lissajous diagrams and by application of the Bolsig??+??model, respectively. Optical emission spectroscopy was used to follow the evolution of plasma species (\\text{N}{{\\text{H}}*},{{\\text{N}}*},~{N}2+~\\text{and} ~{N}2* ) as a function of applied voltage with both types of ferroelectric material. PZT gave both greater energy efficiency and higher ammonia yield than BaTiO3: 0.9?g NH3 kWh?1 and 2.7% single pass N2 conversion, respectively. This performance is substantially superior to previously published findings on DBD synthesis of NH3 from N2 and H2 alone. The influence of electrical working parameters, the beneficial effect of PZT and the importance of controlling reactant residence time are rationalized in a reaction model that takes account of the principal process variables

  20. Experimental and theoretical studies of ammonia generation: Reactions of H2 with neutral cobalt nitride clusters.

    PubMed

    Yin, Shi; Xie, Yan; Bernstein, Elliot R

    2012-09-28

    Ammonia generation through reaction of H(2) with neutral cobalt nitride clusters in a fast flow reactor is investigated both experimentally and theoretically. Single photon ionization at 193 nm is used to detect neutral cluster distributions through time-of-flight mass spectrometry. Co(m)N(n) clusters are generated through laser ablation of Co foil into N(2)/He expansion gas. Mass peaks Co(m)NH(2) (m = 6, 10) and Co(m)NH(3) (m = 7, 8, 9) are observed for reactions of H(2) with the Co(m)N(n) clusters. Observation of these products indicates that clusters Co(m)N (m = 7, 8, 9) have high reactivity with H(2) for ammonia generation. Density functional theory (DFT) calculations are performed to explore the potential energy surface for the reaction Co(7)N + 3?2H(2) ? Co(7)NH(3), and a barrierless, thermodynamically favorable pathway is obtained. An odd number of hydrogen atoms in Co(m)NH(3) (m = 7, 8, 9) probably come from the hydrogen molecule dissociation on two active cobalt nitride clusters based on the DFT calculations. Both experimental observations and theoretical calculations suggest that hydrogen dissociation on two active cobalt nitride clusters is the key step to form NH(3) in a gas phase reaction. A catalytic cycle for ammonia generation from N(2) and H(2) on a cobalt metal catalyst surface is proposed based on our experimental and theoretical investigations. PMID:23020328

  1. Engineering methylaspartate ammonia lyase for the asymmetric synthesis of unnatural amino acids

    NASA Astrophysics Data System (ADS)

    Raj, Hans; Szyma?ski, Wiktor; de Villiers, Jandré; Rozeboom, Henriëtte J.; Veetil, Vinod Puthan; Reis, Carlos R.; de Villiers, Marianne; Dekker, Frank J.; de Wildeman, Stefaan; Quax, Wim J.; Thunnissen, Andy-Mark W. H.; Feringa, Ben L.; Janssen, Dick B.; Poelarends, Gerrit J.

    2012-06-01

    The redesign of enzymes to produce catalysts for a predefined transformation remains a major challenge in protein engineering. Here, we describe the structure-based engineering of methylaspartate ammonia lyase (which in nature catalyses the conversion of 3-methylaspartate to ammonia and 2-methylfumarate) to accept a variety of substituted amines and fumarates and catalyse the asymmetric synthesis of aspartic acid derivatives. We obtained two single-active-site mutants, one exhibiting a wide nucleophile scope including structurally diverse linear and cyclic alkylamines and one with broad electrophile scope including fumarate derivatives with alkyl, aryl, alkoxy, aryloxy, alkylthio and arylthio substituents at the C2 position. Both mutants have an enlarged active site that accommodates the new substrates while retaining the high stereo- and regioselectivity of the wild-type enzyme. As an example, we demonstrate a highly enantio- and diastereoselective synthesis of threo-3-benzyloxyaspartate (an important inhibitor of neuronal excitatory glutamate transporters in the brain).

  2. The reaction of monochloramine and hydroxylamine: implications for ammonia–oxidizing bacteria in chloraminated drinking water

    EPA Science Inventory

    Drinking water chloramine use may promote ammonia–oxidizing bacteria (AOB) growth because of naturally occurring ammonia, residual ammonia remaining from chloramine formation, and ammonia released from chloramine decay and demand. A rapid chloramine residual loss is often associa...

  3. Gas-phase synthesis of morpholine from diethylene glycol and ammonia

    SciTech Connect

    Kronich, I.G.; Dobrovol'skii, S.V.; Nikolaev, Y.T.; Shikunov, B.I.; Dyumaev, K.M.

    1982-11-01

    The theory and practice of catalysis in the process of amination of compounds which contain two or more hydroxyl groups has generated much interest. Specifically, there is particular interest in the reaction of diethylene glycol and ammonia; the amination process in this case is accompanied by cyclization with formation of morpholine - a very important product which is needed in growing amounts in the production of rubber vulcanization accelerators, optical bleaches and a number of other products. The possibility of producing morpholine from diethylene glycol and ammonia in gas phase in the presence of hydrogenating-dehydrogenating catalysts was demonstrated earlier. This report presents the results of further research in this area.

  4. Reaction of state-selected ammonia ions with methane Michael A. Everest, John C. Poutsma, Jonathan E. Flad, and Richard N. Zarea)

    E-print Network

    Reaction of state-selected ammonia ions with methane Michael A. Everest, John C. Poutsma, Jonathan 94305 Received 19 April 1999; accepted 18 May 1999 We have investigated the reaction of ammonia ions with methane molecules (CD4) over the collision energy range of 0.5­10.0 eV and for ammonia ion vibrational

  5. Ab Initio Quantum Calculations of Reactions in Astrophysical Ices: Acetaldehyde and Acetone with Ammonia

    NASA Astrophysics Data System (ADS)

    Chen, L.; Woon, D. E.

    2009-06-01

    Complex organic molecules, including amino acid precursors, have been observed in young stellar objects. Both laboratory and theoretical studies have shown that ice chemistry can play an important role in low-temperature synthetic pathways, with water serving as a catalyst that can significantly enhance reaction rates by lowering barriers or eliminating them altogether. Reactions between carbonyl species and ammonia are particularly promising, as shown in previous studies of the formaldehyde-ammonia reaction. In this study, we explore the reactions of ammonia with two larger carbonyl species, acetaldehyde and acetone, embedded in a water ice cluster. To examine the explicit impact of the water, we gradually increase the size of the cluster from 4H_2O to 12H_2O. Cluster calculations were performed at the MP2/{6-31}+G^{**} or B3LYP/{6-31}+G^{**} level. In order to account for the electrostatic contribution from bulk ice, the Polarizable Continuum Model (PCM) and Isodensity Surface Polarized Continuum Model (IPCM) were used to model reaction field solvation effects. For both acetaldehyde and acetone, the reactant is a charge transfer complex (a partial charge-transfer complex in small clusters and full proton-transfer complex in larger clusters). Rearrangement to amino-hydroxylated products can occur by surmounting a small reaction barrier. Stereo-selectivity is observed in the case of acetaldehyde. P. Ehrenfreund and S. B. Charnley, Ann. Rev. Astron. Astrophys. 38, 427 (2000). W. A. Schutte, L. J. Allamandola, and S. A. Sandford, Science 259, 1143 (1993) W. A. Schutte, L. J. Allamandola, and S. A. Sandford, Icarus 104, 118 (1993) D. E. Woon, Icarus 142, 550 (1999) S. P. Walch, C. W. Bauschicher, Jr., A. Ricca and E. L. O. Bakes, Chem. Phys. Lett, 333, 6 (2001)

  6. Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst

    NASA Astrophysics Data System (ADS)

    Yun, Dae Sik; Joo, Jong Hoon; Yu, Ji Haeng; Yoon, Hyung Chul; Kim, Jong-Nam; Yoo, Chung-Yul

    2015-06-01

    Electrochemical ammonia synthesis from steam and nitrogen has been systematically investigated using a proton-conducting electrolyte supported cell based on 20 mol% yttrium doped barium zirconate (BaZr0.8Y0.2O3-?) in a temperature range of 475-600 °C at atmospheric pressure. Silver (Ag), platinum (Pt), and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-?) are used for both anode and cathode electrocatalysts. Maximum ammonia formation rates of 4.9 × 10-11 mol cm-2 s-1 and 8.5 × 10-11 mol cm-2 s-1 are observed for Ag and La0.6Sr0.4Co0.2Fe0.8O3-? electrocatalysts, respectively, when a voltage of 0.8 V is applied. However, Pt electrocatalyst shows a negligible ammonia formation rate lower than 1 × 10-12 mol cm-2 s-1. This is ascribed to the high activity of Pt for the hydrogen evolution reaction rather than the ammonia formation reaction. The conversion efficiency of all electrocatalysts is below 1%, primarily due to the limited nitrogen disassociation activity of the electrocatalysts.

  7. Ammonia Gas Transport and Reactions in Unsaturated Sediments: Implications for Use as an Amendment to Immobilize Inorganic Contaminants

    SciTech Connect

    Zhong, Lirong; Szecsody, James E.; Truex, Michael J.; Williams, Mark D.; Liu, Yuanyuan

    2015-05-01

    Use of gas-phase amendments for in situ remediation of inorganic contaminants in unsaturated sediments of the vadose zone may be advantageous, but there has been limited development and testing of gas remediation technologies. Treatment with ammonia gas has been studied and has a potential for use in treating inorganic contaminants such as uranium because it induces a high pore-water pH causing mineral dissolution and subsequent formation of stable precipitates that decrease the mobility of some contaminants. For field application, knowledge of ammonia transport and the geochemical reactions induced by ammonia is needed. Laboratory studies were conducted to support calculations needed for field treatment design, to quantify advective and diffusive ammonia transport in unsaturated sediments, to evaluate reactions among gas, sediment, and water, and to study reaction-induced pore-water chemistry changes as a function of ammonia delivery conditions. Ammonia gas quickly partitions into sediment pore water and increases pH up to 13.2. Injected ammonia gas front movement can be reasonably predicted by gas flow rate and equilibrium partitioning. The ammonia gas diffusion rate is a function of the water content in the sediment. Measured diffusion front movement was 0.05, 0.03, and 0.02 cm/hr. in sediments with 2.0%, 8.7%, and 13.0% water content, respectively. Sodium, aluminum, and silica pore-water concentrations increase on exposure to ammonia and then decline as aluminosilicates precipitate with declining pH. When uranium is present in the sediment and pore water, up to 85% of the water-leachable uranium was immobilized by ammonia treatment.

  8. Pericyclic reactions in organic synthesis

    E-print Network

    Robinson-Surry, Julia M. (Julia Mae)

    2011-01-01

    Part I of this thesis describes a formal, metal-free, [2 + 2 + 2] cycloaddition strategy based on a cascade of two pericyclic processes. An intramolecular propargylic ene reaction of a 1,6-diyne is used to generate a ...

  9. Polyurethane synthesis reactions in asphalts

    SciTech Connect

    Bukowski, A.; Gretkiewicz, J.

    1982-04-01

    A series of asphalt-polyurethane composites was prepared by means of polyurethane synthesis in asphalt and carried out in melt. The applied materials were asphalts of differentiated group components content, polyester polyols of chain structure from linear to strongly branched, 2,4-tolylene diisocyanate, 4,4-methylenebis(phenyl isocyanate), and tinorganic catalyst. The asphalt components react with isocyanates to a minimal degree. The influence of the applied substrates, temperature, and polyurethane content in the system on the basic kinetic relations characterizing the process is presented. Polyurethane synthesis in asphalts does not differ in a fundamental way from the obtaining of polyurethanes, especially when their content in the composition is significant, 20 wt% and more.

  10. Process for the liquefaction of solid carbonaceous materials wherein nitrogen is separated from hydrogen via ammonia synthesis

    DOEpatents

    Stetka, Steven S. (Fleetwood, PA); Nazario, Francisco N. (Parsippany, NJ)

    1982-01-01

    In a process for the liquefaction of solid carbonaceous materials wherein bottoms residues are upgraded with a process wherein air is employed, the improvement wherein nitrogen buildup in the system is avoided by ammonia synthesis. In a preferred embodiment hydrogen from other portions of the liquefaction process will be combined with hydrogen produced as a result of the bottoms upgrading to increase the H.sub.2 :N.sub.2 ratio in the ammonia reactor.

  11. Ammonia from Iron(II) Reduction of Nitrite and the Strecker Synthesis: Do Iron(II) and Cyanide Interfere with Each Other?

    NASA Technical Reports Server (NTRS)

    Summers, David P.; Lerner, Narcinda; Chang, Sherwood (Technical Monitor)

    1996-01-01

    The question of whether the production of ammonia, from the reduction of nitrite by iron(II), is compatible with its use in the Strecker synthesis of amino acids, or whether the iron and the cyanide needed for the Strecker synthesis interfere with each other, is addressed. Results show that the presence of iron(II) appears to have little, or no, affect on the Strecker synthesis. The presence of cyanide does interfere with reduction of nitrite, but the reduction proceeds at cyanide/iron ratios of less than 4:1. At ratios of about 2:1 and less there is only a small effect. The two reactions can be combined to proceed in each other's presence, forming glycine from nitrite, Fe(+2), formaldehyde, and cyanide.

  12. Isotope effect of the photoinduced H(D)-transfer reaction in indole ammonia clusters

    NASA Astrophysics Data System (ADS)

    Lippert, H.; Stert, V.; Hesse, L.; Schulz, C. P.; Hertel, I. V.; Radloff, W.

    2003-03-01

    The intracluster reaction dynamics initiated by femtosecond laser pulses at 263 nm has been studied in nondeuterated and deuterated indole-ammonia clusters. No isotope effect is observed on the sub-ps timescale. On the long-timescale (of few 100 ps), however, the structural reorientation dynamics of the parent as well as the product clusters is prolongated (up to about 3 times) for the deuterated complexes. This effect is interpreted as due to the difference of the torsion modes and due to low energetic barriers between different isomers of both isotopic complexes.

  13. Vibrationally state-selected reactions of ammonia ions. III. NHt(v)+ND3 and NDt(v)+ NH3

    E-print Network

    that the hydrogen atom abstraction reaction does occur in addition to the pro- ton transfer reactionVibrationally state-selected reactions of ammonia ions. III. NHt(v)+ND3 and NDt(v)+ NH3 William E umbrella-bending mode of ND/ (.X,v = 0 to 10) and NH3+ (X,v = 0 to 9) on the reaction with NH3 and ND3

  14. Vibrationally state-selected reactions of ammonia ions. II. NHt(v)+CH4 William E. Conaway, Takayuki Ebata,8) and Richard N. Zare

    E-print Network

    Vibrationally state-selected reactions of ammonia ions. II. NHt(v)+CH4 William E. Conaway, Takayuki (Received 31 March 1987; accepted 18 May 1987) The effects of vibrational excitation of the ammonia v2 level of the ion. Added vibration in the ammonia ion umbrella-bending mode facilitates the transition

  15. Catalytic Radical Domino Reactions in Organic Synthesis

    PubMed Central

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  16. Surfactant-assisted synthesis, characterizations, and room temperature ammonia sensing mechanism of nanocrystalline CuO

    NASA Astrophysics Data System (ADS)

    Singh, Iqbal; Bedi, R. K.

    2011-11-01

    CuO nanocrystalline powder has been synthesized by a sol?gel auto combustion route with cetyltrimethylammonium bromide (CTAB) as cationic surfactant, and sodium dodecyl sulphate (SDS) as anionic surfactant. The powder samples are characterized by TGA/DTA, XRD, FESEM, and TEM techniques. Thermal analysis of the dried gel samples shows that addition of surfactant in the precursor increases the heat of reaction, which is evolved in the decomposition of metal citrate complex. The CTAB and SDS addition in the reaction mixture lowers the average crystallite size to few tens of nanometer. Surfactant doping in precursor causes a variation in lattice strain and changes to its type to compressive. CuO nanoparticles are bound together into facets-like weakly aggregated clusters, as indicated by FESEM images. TEM micrographs indicate the porous, nearly spherical particles having crystallite size around 7 and 18 nm for CTAB and SDS surfactant assisted CuO samples respectively. CuO nanoparticles assembled as thick film have been tested for their response to 100 ppm ammonia gas at room temperature. Cationic surfactant assisted sample shows maximum response to ammonia as compared to anionic surfactant. The CTAB assisted sensor shows almost completes recovery in 500 s whereas SDS assisted sample shows 75% recovery in the same time. The ammonia response of the films obeys the Elovich equation. The response rate of sensor is found to be maximum for CTAB assisted CuO films as compared to other samples. The kinetics of the response reaction shows that the ionic surfactants assisted CuO follows second order reaction kinetics.

  17. Action-Reaction Learning: Analysis and Synthesis of Human

    E-print Network

    Jebara, Tony

    Action-Reaction Learning: Analysis and Synthesis of Human Behaviour by Tony Jebara B;Action-Reaction Learning: Analysis and Synthesis of Human Behaviour by Tony Jebara The following people Departmental Committee on Graduate Students Program in Media Arts and Sciences #12;Action-Reaction Learning

  18. Synthesis and Evaluation of Cu-SAPO-34 Catalysts for Ammonia Selective Catalytic Reduction. 1. Aqueous Solution Ion Exchange

    SciTech Connect

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2013-09-06

    SAPO-34 molecular sieves are synthesized using various structure directing agents (SDAs). Cu-SAPO-34 catalysts are prepared via aqueous solution ion exchange. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. During solution ion exchange, different SAPO-34 samples undergo different extent of structural damage via irreversible hydrolysis. Si content within the samples (i.e., Al-O-Si bond density) and framework stress are key factors that affect irreversible hydrolysis. Even using very dilute Cu acetate solutions, it is not possible to generate Cu-SAPO-34 samples with only isolated Cu2+ ions. Small amounts of CuOx species always coexist with isolated Cu2+ ions. Highly active and selective Cu-SAPO-34 catalysts for NH3-SCR are readily generated using this synthesis protocol, even for SAPO-34 samples that degrade substantially during solution ion exchange. High-temperature aging is found to improve the catalytic performance. This is likely due to reduction of intracrystalline mass-transfer limitations via formation of additional porosity in the highly defective SAPO-34 particles formed after ion exchange. The authors gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technologies for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830.

  19. A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface

    E-print Network

    Senkan, Selim M.

    A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface Sezen Soyer a , Alper Uzun a , Selim Senkan b , Isik Onal a,* a Department of Chemical Engineering, Middle East Technical University, Ankara 06531, Turkey b Department of Chemical Engineering, University

  20. Rapid gas-phase reactions - The reaction of ammonia and the methylamines with boron trifluoride. III - Pressure dependence of rate constant.

    NASA Technical Reports Server (NTRS)

    Glicker, S.

    1973-01-01

    A steady-state flow apparatus, shown earlier to be suitable for the study of rapid gas reactions, has been used to determine the pressure dependence of the relative quasi-bimolecular rate constants for the reactant pairs ammonia (AM)-trimethylamine (TMA) and dimethylamine (DMA)-trimethylamine in reaction with boron trifluoride. The pressure dependence of the former was determined in the range 0.03-75 torr and that of the latter in the range 0.02-720 torr.

  1. Synthesis and photocatalytic performances of BiVO{sub 4} by ammonia co-precipitation process

    SciTech Connect

    Yu Jianqiang Zhang Yan; Kudo, Akihiko

    2009-02-15

    This paper reports the preparation and photocatalytic performance of Bismuth vanadate (BiVO{sub 4}) by a facile and inexpensive approach. An amorphous BiVO{sub 4} was first prepared by a co-precipitation process from aqueous solutions of Bi(NO{sub 3}){sub 3} and NH{sub 4}VO{sub 3} using ammonia. Followed by heating treatment at various temperatures, the amorphous phase converted to crystalline BiVO{sub 4} with a structure between monoclinic and tetragonal scheelite. The crystallization of BiVO{sub 4} occurred at about 523 K, while the nanocrystalline BiVO{sub 4} were formed with a heat-treatment of lower than 673 K. However, when the heat-treatment was carried out at 773 K, the accumulation of nanocrystals to bulk particles was observed. The photocatalytic performances of the materials were investigated by O{sub 2} evolution under visible-light, and MB decomposition under solar simulator. The results demonstrated that the crystalline structure is still the vital factor for the activities of both reactions. However, the crystallinity of BiVO{sub 4} gives a major influence on the activity of O{sub 2} evolution, whereas the surface area, plays an important role for photocatalytic MB decomposition. - Abstract: BiVO{sub 4} was prepared by a co-precipitation process using aqueous ammonia solution, followed by heating treatment at various temperatures. The crystalline structure and crystallization process, and their influences on photocatalytic O{sub 2} evolution and organic pollutants degradation were investigated. It demonstrated that the crystalline structure is still the vital factor for the activities of both reactions. However, the crystallinity of BiVO{sub 4} gives a major influence on the activity of O{sub 2} evolution, whereas the surface area, plays an important role for photocatalytic MB decomposition. Display Omitted.

  2. Synthesis of (+)-Discodermolide by Catalytic Stereoselective Borylation Reactions**

    PubMed Central

    Yu, Zhiyong; Ely, Robert J.

    2014-01-01

    The marine natural product (+)-discodermolide was first isolated in 1990 and, to this day, remains a compelling synthesis target. Not only does the compound possess fascinating biological activity, but it also presents an opportunity to test current methods for chemical synthesis and provides a forum for the inspiration of new reaction development. In this manuscript, we present a synthesis of discodermolide that employs a previously undisclosed stereoselective catalytic diene hydroboration and also establishes a strategy for chiral enolate alkylation. In addition, this synthesis of discodermolide provides the first examples of diene 1,4-diboration and borylative diene-aldehyde couplings in complex molecule synthesis. PMID:25045037

  3. Development of transitional metal-catalyzed reactions for organic synthesis

    E-print Network

    Rainka, Matthew P. (Matthew Paul)

    2005-01-01

    Chapter 1. A general catalyst system for the synthesis of tetra-ortho-substituted biaryls via the Suzuki-Miyaura cross-coupling reaction is described. It was found that the most efficient catalyst system is based on a ...

  4. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  5. Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction

    SciTech Connect

    Liang, Xianqing; Zhong, Jun; Shi, Yalin; Guo, Jin; Huang, Guolong; Hong, Caihao; Zhao, Yidong

    2015-01-15

    Highlights: • A novel approach to synthesis of N-doped few-layer graphene has been developed. • The high doping levels of N in products are achieved. • XPS and XANES results reveal a thermal transformation of N bonding configurations. • The developed method is cost-effective and eco-friendly. - Abstract: Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22 at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications.

  6. Organocatalytic cascade reactions as a new tool in total synthesis

    NASA Astrophysics Data System (ADS)

    Grondal, Christoph; Jeanty, Matthieu; Enders, Dieter

    2010-03-01

    The total synthesis of natural products and biologically active compounds, such as pharmaceuticals and agrochemicals, has reached an extraordinary level of sophistication. We are, however, still far away from the 'ideal synthesis' and the state of the art is still frequently hampered by lengthy protecting-group strategies and costly purification procedures derived from the step-by-step protocols. In recent years several new criteria have been brought forward to solve these problems and to improve total synthesis: atom, step and redox economy or protecting-group-free synthesis. Over the past decade the research area of organocatalysis has rapidly grown to become a third pillar of asymmetric catalysis standing next to metal and biocatalysis, thus paving the way for a new and powerful strategy that can help to address these issues - organocatalytic cascade reactions. In this Review we present the first applications of such asymmetric organocascade reactions to the total synthesis of natural products.

  7. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN)

    NASA Astrophysics Data System (ADS)

    Danger, G.; Borget, F.; Chomat, M.; Duvernay, F.; Theulé, P.; Guillemin, J.-C.; Le Sergeant D'Hendecourt, L.; Chiavassa, T.

    2011-11-01

    Context. Studing chemical reactivity in astrophysical environments is an important means for improving our understanding of the origin of the organic matter in molecular clouds, in protoplanetary disks, and possibly, as a final destination, in our solar system. Laboratory simulations of the reactivity of ice analogs provide important insight into the reactivity in these environments. Here, we use these experimental simulations to investigate the Strecker synthesis leading to the formation of aminoacetonitrile in astrophysical-like conditions. The aminoacetonitrile is an interesting compound because it was detected in SgrB2, hence could be a precursor of the smallest amino acid molecule, glycine, in astrophysical environments. Aims: We present the first experimental investigation of the formation of aminoacetonitrile NH2CH2CN from the thermal processing of ices including methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN) in interstellar-like conditions without VUV photons or particules. Methods: We use Fourier Transform InfraRed (FTIR) spectroscopy to monitor the ice evolution during its warming. Infrared spectroscopy and mass spectroscopy are then used to identify the aminoacetonitrile formation. Results: We demonstrate that methanimine can react with -CN during the warming of ice analogs containing at 20 K methanimine, ammonia, and [NH4+ -CN] salt. During the ice warming, this reaction leads to the formation of poly(methylene-imine) polymers. The polymer length depend on the initial ratio of mass contained in methanimine to that in the [NH4+ -CN] salt. In a methanimine excess, long polymers are formed. As the methanimine is progressively diluted in the [NH4+ -CN] salt, the polymer length decreases until the aminoacetonitrile formation at 135 K. Therefore, these results demonstrate that aminoacetonitrile can be formed through the second step of the Strecker synthesis in astrophysical-like conditions.

  8. Multicomponent reactions of isocyanides in the synthesis of heterocycles

    NASA Astrophysics Data System (ADS)

    Ivachtchenko, Aleksandr V.; Ivanenkov, Ya A.; Kysil, Vladimir M.; Krasavin, Mikhail Yu; Ilyin, Aleksei P.

    2010-11-01

    The latest achievements in the field of isocyanide-based multicomponent reactions for the synthesis of heterocycles are generalized. The attention is focused on the intramolecular Ugi reactions of oxocarboxylic acids and the reactions of diaza nucleophiles developed in recent years. The data on the biological activities of the products are presented and the advantages of this method as a convenient and effective tool of medicinal chemistry are demonstrated.

  9. SOURCE ASSESSMENT: SYNTHETIC AMMONIA PRODUCTION

    EPA Science Inventory

    The report describes a study of air emissions from the production of synthetic ammonia. In 1976, 90 synthetic ammonia plants in 30 states produced 15.2 million metric tons of anhydrous ammonia. Ammonia is synthesized by the reaction of nitrogen and hydrogen. Most plants produce h...

  10. Intermixing criteria for reaction synthesis of Ni/Al multilayered microfoils

    E-print Network

    Hong, Soon Hyung

    Intermixing criteria for reaction synthesis of Ni/Al multilayered microfoils Hee Y. Kim a , Dong S are proposed for determining the microstructure of the reaction products during the reaction synthesis of Ni of the element foil. Zhu et al. [10,11] studied the reaction synthesis of multilayered Ni and Al foils in the TE

  11. Organic synthesis by quench reactions. [in prebiotic simulation experiment

    NASA Technical Reports Server (NTRS)

    Park, W. K.; Hochstim, A. R.; Ponnamperuma, C.

    1975-01-01

    Study of the effects of chemical quench reactions on the formation of organic compounds at a water surface under simulated primordial earth conditions. A mixture of gaseous methane and ammonia over a water surface was exposed to an arc discharge between an electrode and the water surface, generating reactive species. Various organic molecules were formed by a subsequent quenching of these species generated on the water surface. The effects of these water-surface quench reactions were assessed by comparing the amounts of synthesized molecules to the amounts which formed during the discharge of an arc above the water level. It is concluded that the quench (or wet) discharge led to faster rates of reactions, higher-molecular-weight organic compounds, and one-order-of-magnitude larger yields than the dry discharge.

  12. Model Catalysis of Ammonia Synthesis ad Iron-Water Interfaces - ASum Frequency Generation Vibrational Spectroscopic Study of Solid-GasInterfaces and Anion Photoelectron Spectroscopic Study of Selected Anionclusters

    SciTech Connect

    Ferguson, Michael James

    2005-12-15

    The ammonia synthesis reaction has been studied using single crystal model catalysis combined with sum frequency generation (SFG) vibrational spectroscopy. The adsorption of gases N{sub 2}, H{sub 2}, O{sub 2} and NH{sub 3} that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH{sub 2} ({approx}3325 cm{sup -1}) and NH ({approx}3235 cm{sup -1}) under high pressure of ammonia or equilibrium concentrations of reactants and products on Fe(111) surfaces. Special attention was paid to understand how potassium promotion of the iron catalyst affects the intermediates of ammonia synthesis. An Fe(111) surface promoted with 0.2 monolayers of potassium red shifts the vibrational frequencies of the reactive surface intermediates, NH and NH{sub 2}, providing evidence for weakened the nitrogen-hydrogen bonds relative to clean Fe(111). Spectral features of these surface intermediates persisted to higher temperatures for promoted iron surfaces than for clean Fe(111) surfaces implying that nitrogen-iron bonds are stronger for the promoted surface. The ratio of the NH to NH{sub 2} signal changed for promoted surfaces in the presence of equilibrium concentrations of reactants and products. The order of adding oxygen and potassium to promoted surfaces does not alter the spectra indicating that ammonia induces surface reconstruction of the catalyst to produce the same surface morphology. When oxygen is co-adsorbed with nitrogen, hydrogen, ammonia or potassium on Fe(111), a relative phase shift of the spectra occurs as compared to the presence of adsorbates on clean iron surfaces. Water adsorption on iron was also probed using SFG vibrational spectroscopy. For both H{sub 2}O and D{sub 2}O, the only spectral feature was in the range of the free OH or free OD. From the absence of SFG spectra of ice-like structure we conclude that surface hydroxides are formed and no liquid water is present on the surface. Other than model catalysis, gas phase anion photoelectron spectroscopy of the Cl + H{sub 2} van der Waals well, silicon clusters, germanium clusters, aluminum oxide clusters and indium phosphide clusters were studied. The spectra help to map out the neutral potential energy surfaces of the clusters. For aluminum oxide, the structures of the anions and neutrals were explored and for silicon, germanium and indium phosphide the electronic structure of larger clusters was mapped out.

  13. Detection of nerve agents using proton transfer reaction mass spectrometry with ammonia as reagent gas.

    PubMed

    Ringer, Joachim M

    2013-01-01

    The chemical warfare agents (CWA) Sarin, Soman, Cyclosarin and Tabun were characterised by proton transfer mass spectrometry (PTRMS). It was found that PTRMS is a suitable technique to detect nerve agents highly sensitively, highly selectively and in near real-time. Methods were found to suppress molecule fragmentation which is significant under PTRMS hollow cathode ionisation conditions. In this context, the drift voltage (as one of the most important system parameters) was varied and ammonia was introduced as an additional chemical reagent gas. Auxiliary chemicals such as ammonia affect ionisation processes and are quite common in context with detectors for CWAs based on ion mobility spectrometry (IMS). With both, variation of drift voltage and ammonia as the reagent gas, fragmentation can be suppressed effectively. Suppression of fragmentation is crucial particularly concerning the implementation of an algorithm for automated agent identification in field applications. On the other hand, appearance of particular fragments might deliver additional information. Degradation and rearrangement products of nerve agents are not distinctive for the particular agent but for the chemical class they belong to. It was found that switching between ammonia doped and ordinary water ionisation chemistry can easily be performed within a few seconds. Making use of this effect it is possible to switch between fragment and molecular ion peak spectra. Thus, targeted fragmentation can be used to confirm identification based only on single peak detection. PTRMS turned out to be a promising technique for future CWA detectors. In terms of sensitivity, response time and selectivity (or confidence of identification, respectively) PTRMS performs as a bridging technique between IMS and GC-MS. PMID:24308198

  14. Shock-induced reaction synthesis (SRS) of nickel aluminides

    SciTech Connect

    Thadhani, N.N.; Work, S. , New Mexico Tech, Socorro, New Mexico 87801 ); Graham, R.A.; Hammetter, W.F. )

    1992-05-01

    Shock-induced chemical reactions between nickel and aluminum powders (mixed in Ni{sub 3}Al stoichiometry) are used for the synthesis of nickel aluminides. It is shown that the extent of shock-induced chemical reactions and the nature of the shock-synthesized products are influenced by the morphology of the starting powders. Irregular (flaky type) and fine morphologies of the powders undergo complete reactions in contrast to partial reactions occurring in coarse and uniform morphology powders under identical shock loading conditions. Furthermore, irregular morphology powders result in the formation of the equiatomic (B2 phase) NiAl compound while the Ni{sub 3}Al (L1{sub 2} phase) compound is the reaction product with coarse and regular morphology powders. Shock-induced reaction synthesis can be characterized as a bulk reaction process involving an intense mechanochemical'' mechanism. It is a process in which shock compression induces fluid-like plastic flow and mixing, and enhances the reactivity due to the introduction of defects and cleansing of particle surfaces, which strongly influence the synthesis process.

  15. Synthesis of porous gold nanoshells by controlled transmetallation reaction

    NASA Astrophysics Data System (ADS)

    Pattabi, Manjunatha; M, Krishnaprabha

    2015-06-01

    Aqueous synthesis of porous gold nanoshells in one step is carried out through controlled transmetallation (TM) reaction using a naturally available egg shell membrane (ESM) as a barrier between the sacrificial silver particles (AgNPs) and the gold precursor solution (HAuCl4). The formation of porous gold nanoshells via TM reaction is inferred from UV-Vis spectroscopy and the scanning electron microscopic (SEM) studies.

  16. A photochemical study of the kinetics of the reactions of NH2 with phosphine, ethylene, and acetylene using flash photolysis-laser induced fluorescence. Ph.D. Thesis Catholic Univ. of America; [ammonia in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.

    1982-01-01

    The photochemistry of the reactions of NH2 was investigated in an attempt to explain the existence of an abundance of ammonia in the Jovian atmosphere. The production of ammonia reservoirs from the coupling of ammonia with other atmospheric constituents was considered. The rate constants for the reactions of NH2 radicals with phosphine, acetylene, and ethylene were measured. Flash photolysis was used for the production of NH2 radicals and laser induced fluorescence was employed for radical detection. It was determined that the rates of the reactions were too slow to be significant as a source of ammonia reservoirs in the Jovian atmosphere.

  17. The Chemistry of Liquid Ammonia.

    ERIC Educational Resources Information Center

    Lagowski, J. J.

    1978-01-01

    The solvent and chemical properties of liquid ammonia are presented. In a certain sense, ammonia is a more versatile solvent than is water because of its ability to solubilize, without reaction, highly negative or reducing species. (Author/BB)

  18. Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection.

    PubMed

    Pandey, Sadanand; Goswami, Gopal K; Nanda, Karuna K

    2012-11-01

    Biopolymer used for the production of nanoparticles (NPs) has attracted increasing attention. In the presence article we use aqueous solution of polysaccharide Cyamopsis tetragonaloba commonly known as guar gum (GG), from plants. GG acts as reductive preparation of silver nanoparticles which are found to be <10 nm in size. The uniformity of the NPs size was measured by the SEM and TEM, while a face centered cubic structure of crystalline silver nanoparticles was characterized using powder X-ray diffraction technique. Aqueous ammonia sensing study of polymer/silver nanoparticles nanocomposite (GG/AgNPs NC) was performed by optical method based on surface plasmon resonance (SPR). The performances of optical sensor were investigated which provide the excellent result. The response time of 2-3 s and the detection limit of ammonia solution, 1 ppm were found at room temperature. Thus, in future this room temperature optical ammonia sensor can be used for clinical and medical diagnosis for detecting low ammonia level in biological fluids, such as plasma, sweat, saliva, cerebrospinal liquid or biological samples in general for various biomedical applications in human. PMID:22750580

  19. The Diels--Alder reaction in total synthesis.

    PubMed

    Nicolaou, K C; Snyder, Scott A; Montagnon, Tamsyn; Vassilikogiannakis, Georgios

    2002-05-17

    The Diels-Alder reaction has both enabled and shaped the art and science of total synthesis over the last few decades to an extent which, arguably, has yet to be eclipsed by any other transformation in the current synthetic repertoire. With myriad applications of this magnificent pericyclic reaction, often as a crucial element in elegant and programmed cascade sequences facilitating complex molecule construction, the Diels-Alder cycloaddition has afforded numerous and unparalleled solutions to a diverse range of synthetic puzzles provided by nature in the form of natural products. In celebration of the 100th anniversary of Alder's birth, selected examples of the awesome power of the reaction he helped to discover are discussed in this review in the context of total synthesis to illustrate its overall versatility and underscore its vast potential which has yet to be fully realized. PMID:19750686

  20. Computational study of TNT synthesis in solvated nitration reaction systems

    NASA Astrophysics Data System (ADS)

    Liu, Min-Hsien; Cheng, Ken-Fa; Chen, Cheng; Hong, Yaw-Sun

    Mononitrotoluene (MNT) was incorporated into solvated reaction systems and was subjected to subsequent nitration (electrophilic and free radical substitution) to obtain corresponding dinitrotoluene (DNT) and trinitrotoluene (TNT) products. In the electrophilic nitration system, the energy barrier of the reaction to produce o,p-dinitrotoluene from p-nitrotoluene was found to decrease from 62.7 to 14.7 kJ/mol to 9.2 kJ/mol in solventless, hydrated, and methanol-solvated molecular reaction systems, respectively. Further nitration to produce TNT in related solventless and solvated systems also led to a stepwise decreasing trend in the required energy, from 297.6 to 118.6 kJ/mol to 42.8 kJ/mol. Comparative synthesis using ·NO2 as the nitrating reagent to obtain o,p-DNT or TNT in the hydrated system shows a lower reaction energy barrier than that of the same reaction in the solventless system.

  1. Facile and controllable synthesis of hydroxyapatite/graphene hybrid materials with enhanced sensing performance towards ammonia.

    PubMed

    Zhang, Qing; Liu, Yong; Zhang, Ying; Li, Huixia; Tan, Yanni; Luo, Lanlan; Duan, Junhao; Li, Kaiyang; Banks, Craig E

    2015-08-01

    In this work, needle-like and micro-spherical agglomerates of nanocrystalline hydroxyapatite (HA) were successfully assembled on the surface of graphene sheets with the aid of dopamine having two roles, as a template and a reductant for graphite oxide during the process of self-polymerization. The crystalline structure and micromorphology of HA can be conveniently regulated by controlling the mineralization route either with a precipitation (cHA/GR) or biomimetic methodology (bHA/GR). Both the composites exhibit improvements of ?150% and ?250% in sensitivity towards the sensing of ammonia at room temperature, compared with that of bare graphene. The combination of the multi-adsorption capability of HA and the electric conductivity of graphene is proposed to be the major reason for the observed enhancements. Gas sensing tests demonstrated that the HA/GR composites exhibit excellent selectivity, high sensitivity and repeatable stability towards the analytical sensing of ammonia. PMID:26066071

  2. Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2006-01-01

    Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…

  3. Aqueous solution synthesis of Pt-M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane.

    PubMed

    Wang, Shuai; Zhang, Duo; Ma, Yanyun; Zhang, Hui; Gao, Jing; Nie, Yuting; Sun, Xuhui

    2014-08-13

    Platinum-based bimetallic nanocatalysts have attracted much attention due to their high-efficiency catalytic performance in energy-related applications such as fuel cell and hydrogen storage, for example, the hydrolytic dehydrogenation of ammonia borane (AB). In this work, a simple and green method has been demonstrated to successfully prepare Pt-M (M = Fe, Co, Ni) NPs with tunable composition (nominal Pt/M atomic ratios of 4:1, 1:1, and 1:4) in aqueous solution under mild conditions. All Pt-M NPs with a small size of 3-5 nm show a Pt fcc structure, suggesting the bimetallic formation (alloy and/or partial core-shell), examined by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray absorption fine structure (XAFS) analysis. The catalytic activities of Pt-M NPs in the hydrolytic dehydrogenation of AB reveal that Pt-Ni NPs with a ratio of 4:1 show the best catalytic activity and even better than that of pure Pt NPs when normalized to Pt molar amount. The Ni oxidation state in Pt-Ni NPs has been suggested to be responsible for the corresponding catalytic activity for hydrolytic dehydrogenation of AB by XAFS study. This strategy for the synthesis of Pt-M NPs is simple and environmentally benign in aqueous solution with the potential for scale-up preparation and the in situ catalytic reaction. PMID:25058566

  4. Synthesis of bimetallic systems using replacement reactions

    NASA Astrophysics Data System (ADS)

    Wang, Songrui; He, Jian'an; Xie, Jinglin; Zhu, Yuexiang; Xie, Youchang; Chen, Jingguang G.

    2008-01-01

    Series of bimetallic systems were prepared by replacement reactions and characterized by XRD and XPS. The results suggest that the ad-metals are monolayer dispersed on the surface of sub-metal in Pd(Pt, Cu)/Co(Ni) systems, while in Pd(Pt, Au)/Cu systems surface solid solution is formed. In Ag(Au)/Co(Ni) and Ag/Cu systems no interaction between the metals is observed just as in the simple mixture of the respective crystallites. The outermost electronic configurations, the atomic radius of the metals, and the low-preparation temperature seem to be important factors for the different states of these bimetallic catalysts.

  5. Multistep One-Pot Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis

    E-print Network

    Zhao, Huimin

    as to more sustainable synthetic routes. In addition, multistep one-pot reactions can improve stereochemicalMultistep One-Pot Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis are developed are generally fine-tuned for individual reactions. In a multistep synthesis, each reaction

  6. Collective synthesis of humulanolides using a metathesis cascade reaction.

    PubMed

    Han, Jing-chun; Li, Fuzhuo; Li, Chuang-chuang

    2014-10-01

    A new method has been developed for the concise and asymmetric synthesis of seven humulanolides in 5-7 steps without the need for protecting groups. Notably, the challenging 11-membered ring and bridged butenolide moieties in asteriscunolide D and 6,7,9,10-tetrahydroasteriscunolide were introduced in one step using a ring-opening/ring-closing metathesis cascade reaction. Asteriscunolide D was used as a versatile synthetic precursor to prepare asteriscunolides A-C via a photoinduced isomerization reaction, asteriscanolide via a unique transannular Michael reaction, and 6,7,9,10-tetradehydroasteriscanolide via a transannular Morita-Baylis-Hillman-type reaction. The unique bicyclo[6.3.0]undecane core was introduced diastereoselectively. PMID:25228021

  7. The impact of the Mukaiyama aldol reaction in total synthesis.

    PubMed

    Kan, S B Jennifer; Ng, Kenneth K-H; Paterson, Ian

    2013-08-26

    Four decades since Mukaiyama's first reports on the successful application of silicon and boron enolates in directed aldol reactions, the ability of this highly controlled carbon-carbon bond-forming method to simultaneously define stereochemistry, introduce complexity, and construct the carbon skeleton with a characteristic 1,3-oxygenation pattern has made it a powerful tool for natural product synthesis. This Minireview highlights a number of representative total syntheses that demonstrate the impact of the Mukaiyama aldol reaction and discusses the underlying mechanistic rationale that determines the stereochemical outcomes. PMID:23893491

  8. Nuclear reactions and synthesis of new transuranium species

    SciTech Connect

    Seaborg, G.T.

    1983-01-01

    In this short review, I shall describe the special aspects of heavy ion nuclear reaction mechanisms operative in the transuranium region, the role of new techniques, possible nuclear reactions for the production of additional transuranium elements and nuclear species and the importance of work in this region for the development of nuclear models and theoretical concepts. This discussion should make it clear that a continuing supply of leements and isotopes, some fo them relatively short-lived, produced by the HFIR-TRU facilities, will be a requirement for future synthesis of new elements and isotopes.

  9. Flexible synthesis of anthracycline aglycone mimics via domino carbopalladation reactions

    PubMed Central

    Leibeling, Markus

    2013-01-01

    Summary A synthesis of anthracycline aglycone derivatives is described. The key step utilizes a powerful domino carbopalladation approach and subsequent ring closure. During this process two of the four rings of the anthracycline scaffold are formed. Differently substituted carbohydrates and dialkyne chains serve as versatile and simple starting materials for the reaction sequence. Diverse building blocks lead to a variety of different products and a broad range of structural diversity. PMID:24204433

  10. Measurement and estimation of ammonia emissions from lagoon-atmosphere interface using a coupled mass transfer and chemical reactions model, and an equilibrium model

    NASA Astrophysics Data System (ADS)

    Bajwa, Kanwardeep S.; Aneja, Viney P.; Pal Arya, S.

    Ammonia has recently gained importance for its increasing atmospheric concentrations and its role in the formation of aerosols. The anaerobic lagoon and spray method, commonly used for waste storage and disposal in confined animal feeding operations (CAFO), is a significant source of ammonia emissions. An accurate emission model for ammonia from aqueous surfaces can help in the development of emission factors. Data collected from field measurements made at hog waste lagoons in south eastern North Carolina, using the flow through dynamic chamber technique, were used to evaluate the Coupled mass transfer and Chemical reactions model and Equilibrium model developed by Aneja et al. [2001a. Measurement and modeling of ammonia emissions at waste treatment lagoon-Atmospheric Interface. Water, Air and Soil pollution: Focus 1, 177-188]. Sensitivity analysis shows that ammonia flux increases exponentially with lagoon temperature and pH, but a linear increase was observed with an increase in total ammoniacal nitrogen (TAN). Ammonia flux also shows a nonlinear increase with increasing wind speed. Observed ammonia fluxes were generally lower in the cold season than in the warm season when lagoon temperatures are higher. About 41% of the equilibrium model predictions and 43% of the Coupled model predictions are found to be within a factor of two of the observed fluxes. Several model performance statistics were used to evaluate the performance of the two models against the observed flux data. These indicate that the simpler Equilibrium model does as well as the Coupled model. The possible effects of the "artificial" environment within the chamber, which is different from that in the ambient atmospheric conditions above the open lagoon surface, on the measured fluxes are also recognized.

  11. Applied reaction dynamics: Efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh,,111...

    E-print Network

    Sibener, Steven

    Applied reaction dynamics: Efficient synthesis gas production via single collision partial fuel production Fischer-Tropsch or methanol synthesis . Moreover, under the reaction conditions dissociation. These results demonstrate the efficient conversion of methane to synthesis gas, CO+2H2

  12. Optimal reaction for synthesis of superheavy element 117

    SciTech Connect

    Liu, Z. H.; Bao Jingdong

    2009-09-15

    Fusion reactions leading to the formation of superheavy element 117 are systematically analyzed. Among the reactions considered, the {sup 250}Bk({sup 48}Ca,4n){sup 294}117 reaction has the largest evaporation residue (ER) cross section of about 2 pb. However, this reaction is hard to realize experimentally because it is difficult to accumulate sufficient amount of target material due to the short lifetime of {sup 250}Bk nucleus. For the reaction {sup 48}Ca+{sup 249}Bk, our estimation shows that the ER cross sections in 3n and 4n channels may be expected to be greater than 1 pb. Therefore, {sup 48}Ca and {sup 249}Bk should be the optimal projectile-target combination for synthesis of superheavy element 117 in practice. In addition, as a main result of systematic analysis, we find that the ER cross section exponentially depends on the mass difference (in unit of temperature) of fission and neutron emission saddle points. Therefore, it is of essential importance for the successful synthesis of superheavy nuclei to select the isotopic composition of projectile and/or target so as the mass difference of fission and neutron emission saddle points as large as possible. Entrance channel effects are examined by means of a comparison of the reactions {sup 48}Ca+{sup 245}Bk, {sup 50}Ti+{sup 243}Am, and {sup 55}Mn+{sup 238}U leading to the same compound nucleus {sup 293}117. The ER cross sections of the reactions {sup 50}Ti+{sup 243}Am and {sup 55}Mn+{sup 238}U are much smaller than that of {sup 48}Ca+{sup 245}Bk.

  13. Rational design of metal nitride redox materials for solar-driven ammonia synthesis.

    PubMed

    Michalsky, Ronald; Pfromm, Peter H; Steinfeld, Aldo

    2015-06-01

    Fixed nitrogen is an essential chemical building block for plant and animal protein, which makes ammonia (NH3) a central component of synthetic fertilizer for the global production of food and biofuels. A global project on artificial photosynthesis may foster the development of production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This article presents an alternative path for the production of NH3 from nitrogen, water and solar energy. The process is based on a thermochemical redox cycle driven by concentrated solar process heat at 700-1200°C that yields NH3 via the oxidation of a metal nitride with water. The metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at atmospheric pressure. We employ electronic structure theory for the rational high-throughput design of novel metal nitride redox materials and to show how transition-metal doping controls the formation and consumption of nitrogen vacancies in metal nitrides. We confirm experimentally that iron doping of manganese nitride increases the concentration of nitrogen vacancies compared with no doping. The experiments are rationalized through the average energy of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox materials to produce sustainable solar thermochemical ammonia. PMID:26052421

  14. A Theoretical Investigation of the Plausibility of Reactions Between Ammonia and Carbonyl Species (Formaldehyde, Acetaldehyde, and Acetone) in Interstellar Ice Analogs at Ultracold Temperatures

    NASA Technical Reports Server (NTRS)

    Chen, Lina; Woon, David E.

    2011-01-01

    We have reexamined the reaction between formaldehyde and ammonia, which was previously studied by us and other workers in modestly sized cluster calculations. Larger model systems with up to 12H2O were employed, and reactions of two more carbonyl species, acetaldehyde and acetone, were also carried out. Calculations were performed at the B3LYP/6-31+G** level with bulk solvent effects treated with a polarizable continuum model; limited MP2/6-31+G** calculations were also performed. We found that while the barrier for the concerted proton relay mechanism described in previous work remains modest, it is still prohibitively high for the reaction to occur under the ultracold conditions that prevail in dense interstellar clouds. However, a new pathway emerged in more realistic clusters that involves at least one barrierless step for two of the carbonyl species considered here: ammonia reacts with formaldehyde and acetaldehyde to form a partial charge transfer species in small clusters (4H2O) and a protonated hydroxyamino intermediate species in large clusters (9H2O, 12H2O); modest barriers that decrease sharply with cluster size are found for the analogous processes for the acetone-NH3 reaction. Furthermore, if a second ammonia replaces one of the water molecules in calculations in the 9H2O clusters, deprotonation can occur to yield the same neutral hydroxyamino species that is formed via the original concerted proton relay mechanism. In at least one position, deprotonation is barrierless when zero-point energy is included. In addition to describing the structures and energetics of the reactions between formaldehyde, acetaldehyde, and acetone with ammonia, we report spectroscopic predictions of the observable vibrational features that are expected to be present in ice mixtures of different composition.

  15. [Synthesis of carbohydrate related compounds by using aldolase catalyzed reaction].

    PubMed

    Kajimoto, T

    2000-01-01

    Enzymes proceed the reaction with high regio- and stereoselectivity under mild conditions, i.e. in an aqueous medium at room temperature. However, enzymatic reactions that catalyze carbon-carbon bond formation have not been utilized in organic synthesis until recently. We had an interest in an aldolase-catalyzed reaction which proceed carbon-carbon bond formation referred to aldol condensation, by which many bioactive compounds have been rationally synthesized. On the other hand, recent biological studies on cell recognition (cell adhesion) have disclosed the important roles of oligosaccharides on cell surfaces, especially which include glucuronic acid, 3-deoxy-D-manno-oct-2-ulosonic acid (KDO), and sialic acid in the structures e.g., sialyl Lewis X and endotoxins, in differentiation, induction, viral and bacterial infections, and immune response. As well as acidic oligosaccharides, basic ones have been utilized as practical medicines in the clinical level, like acarbose that acts as an amylase inhibitor. Based on these background, we embarked the synthesis of carbohydrate related compounds which can control the interaction between carbohydrates and carbohydrate recognition protein by the use of several aldolases. Azasugars, potent inhibitors toward glycosidases, were synthesized using fructose-1,6-diphosphate (FDP)-aldolase and other dihdroxyacetonephosphate (DHAP)-dependent aldolases in the key step. Sialyl Lewis X mimetic, peptidic mimetic of RNA having anti-Vero toxin activity, mycestericin D, and aza-idulonic acid were prepared by taking advantage of L-threonine aldolase catalyzed reaction, which afford beta-hydroxy-alpha-L-amino acids. A precursor of KDO, featured acidic sugar of endotoxins was provided by the reaction catalyzed with kynureninase, which generates beta-anion of L-alanine in its active site during the metabolic reaction from kynurenine to anthranilic acid. PMID:10655781

  16. Photosynthesis of ammonia

    SciTech Connect

    Mallow, W.A.

    1984-09-24

    This study has demonstrated the technical feasibility of producing ammonia using an innovative technique of combining air, water and sunlight. The technique involves passing moist air over a catalyst-doped, open-celled silica foam bed illuminated by concentrated sunlight. A catalytic reaction results in tounts of ammonia. The work summarized in this report included testing of a pilot (small scale) ammonia production system located on the roof of a Southwest Research Institute (SwRI) Laboratory located in San Antonio, Texas. The system consisted of a catalyst foam bed located in a glass tube about three meters long and 5 centimeters in diameter and mounted on the focal line of a parabolic trough solar collector focused at the sun. The primary active ingredient in the catalyst was titanium dioxide. Moist air was blown through the glass tube, over illuminated catalyst foam bed. A catalytic reaction took place in the foam bed resulting in the production of ammonia gas. The ammonia gas was bubbled through a water scrubber where the ammonia was dissolved. The ammonia concentration in the scrubber water was then measured using chemiluminescence and spectrophotometry techniques to determine the ammonia production rate. Thirty-one tests were conducted in the roof top facility. A number of important process parameters were evaluated. The ammonia production rate from these tests varied from several milligrams per hour to a few micrograms per hour. The tests showed that ammonia production was possible although the yields were relatively low. Several aspects of the process could be improved to increase the yield rates. Specifically, better techniques for illuminating the catalyst with concentrated sunlight and for providing moisture at the catalyst surface should enhance the ammonia production rate. 13 references, 7 figures, 1 table.

  17. Pressure-reaction synthesis of titanium composite materials

    DOEpatents

    Oden, Laurance L. (Albany, OR); Ochs, Thomas L. (Albany, OR); Turner, Paul C. (Albany, OR)

    1993-01-01

    A pressure-reaction synthesis process for producing increased stiffness and improved strength-to-weight ratio titanium metal matrix composite materials comprising exothermically reacting a titanium powder or titanium powder alloys with non-metal powders or gas selected from the group consisting of C, B, N, BN, B.sub.4 C, SiC and Si.sub.3 N.sub.4 at temperatures from about 900.degree. to about 1300.degree. C., for about 5 to about 30 minutes in a forming die under pressures of from about 1000 to 5000 psi.

  18. Synthesis, Characterization and Reactions of (Azidoethynyl)trimethylsilane.

    PubMed

    Banert, Klaus; Hagedorn, Manfred; Wu, Zhuang; Zeng, Xiaoqing

    2015-01-01

    Synthesis of azido(trimethylsilyl)acetylene (6) was performed by treating the iodonium salt 5 with highly soluble hexadecyltributylphosphonium azide (QN?) at -40 °C. Although this product is very unstable, it can nevertheless be trapped by the click reaction with cyclooctyne to give the corresponding 1,2,3-triazole, and also directly characterized by ¹H- and (13)C-NMR data as well as IR-spectra, which were measured in solution at low temperature and in the gas phase. The thermal or photochemical decay of azide 6 leads to cyano(trimethylsilyl)carbene. This is demonstrated not only by quantum chemical calculations, but also by the trapping reactions with the help of isobutene. PMID:26633330

  19. Isocyanide-Based Multicomponent Reactions for the Synthesis of Heterocycles.

    PubMed

    Váradi, András; Palmer, Travis C; Notis Dardashti, Rebecca; Majumdar, Susruta

    2015-01-01

    Multicomponent reactions (MCRs) are extremely popular owing to their facile execution, high atom-efficiency and the high diversity of products. MCRs can be used to access various heterocycles and highly functionalized scaffolds, and thus have been invaluable tools in total synthesis, drug discovery and bioconjugation. Traditional isocyanide-based MCRs utilize an external nucleophile attacking the reactive nitrilium ion, the key intermediate formed in the reaction of the imine and the isocyanide. However, when reactants with multiple nucleophilic groups (bisfunctional reactants) are used in the MCR, the nitrilium intermediate can be trapped by an intramolecular nucleophilic attack to form various heterocycles. The implications of nitrilium trapping along with widely applied conventional isocyanide-based MCRs in drug design are discussed in this review. PMID:26703561

  20. Ammonia causes decreased brain monoamines in fathead minnows (Pimephales promelas)

    USGS Publications Warehouse

    Ronan, P.J.; Gaikowski, M.P.; Hamilton, S.J.; Buhl, K.J.; Summers, C.H.

    2007-01-01

    Hyperammonemia, arising from variety of disorders, leads to severe neurological dysfunction. The mechanisms of ammonia toxicity in brain are not completely understood. This study investigated the effects of ammonia on monoaminergic systems in brains of fathead minnows (Pimephales promelas). Fish serve as a good model system to investigate hyperammonemic effects on brain function since no liver manipulations are necessary to increase endogenous ammonia concentrations. Using high performance liquid chromatography with electrochemical detection, monoamines and some associated metabolites were measured from whole brain homogenate. Adult males were exposed for 48??h to six different concentrations of ammonia (0.01-2.36??mg/l unionized) which bracketed the 96-h LC50 for this species. Ammonia concentration-dependent decreases were found for the catecholamines (norepinephrine and dopamine) and the indoleamine serotonin (5-HT). After an initial increase in the 5-HT precursor 5-hydroxytryptophan it too decreased with increasing ammonia concentrations. There were also significant increases in the 5-HIAA/5-HT and DOPAC/DA ratios, often used as measures of turnover. There were no changes in epinephrine (Epi) or monoamine catabolites (DOPAC, 5-HIAA) at any ammonia concentrations tested. Results suggest that ammonia causes decreased synthesis while also causing increased release and degradation. Increased release may underlie behavioral reactions to ammonia exposure in fish. This study adds weight to a growing body of evidence demonstrating that ammonia leads to dysfunctional monoaminergic systems in brain which may underlie neurological symptoms associated with human disorders such as hepatic encephalopathy. ?? 2007 Elsevier B.V. All rights reserved.

  1. Reduced phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities and lignin synthesis in wheat grown under low pressure sodium lamps

    NASA Technical Reports Server (NTRS)

    Guerra, D.; Anderson, A. J.; Salisbury, F. B.

    1985-01-01

    Wheat (Triticum aestivum L. cv Fremont) grown in hydroponic culture under 24-hour continuous irradiation at 560 to 580 micromoles per square meter per second from either metalhalide (MH), high pressure sodium (HPS), or low pressure sodium (LPS) lamps reached maturity in 70 days. Grain yields were similar under all three lamps, although LPS-grown plants lodged at maturity. Phenylalanine ammonia-lyase (PAL) and a tyrosine ammonia lyase (TAL) with lesser activity were detected in all extracts of leaf, inflorescence, and stem. Ammonia-lyase activities increased with age of the plant, and plants grown under the LPS lamp displayed PAL and TAL activities lower than wheat cultured under MH and HPS radiation. Greenhouse solar-grown wheat had the highest PAL and TAL activities. Lignin content of LPS-grown wheat was also significantly reduced from that of plants grown under MH or HPS lamps or in the greenhouse, showing a correlation with the reduced PAL and TAL activities. Ratios of far red-absorbing phytochrome to total phytochrome were similar for all three lamps, but the data do not yet warrant a conclusion about specific wavelengths missing from the LPS lamps that might have induced PAL and TAL activities in plants under the other lamps.

  2. Tris(Cyclopentadienyl)Uranium-t-Butyl: Synthesis, reactions, and mechanisms

    SciTech Connect

    Weydert, M.

    1993-04-01

    Compounds (RC[sub 5]H[sub 4])[sub 3]U(t-Bu) were prepared for R = H, Me, Et. Their decomposition products in aromatic solvents are consistent with a radical decomposition pathway induced by solvent-assisted U-C bond homolysis. NMR was used to study the reactions of (RC[sub 5]H[sub 4])[sub 3]UCl with t-BuLi (R = t-Bu, Me[sub 3]Si). Reactions of (MeC[sub 5]H[sub 4])[sub 3]U(t-Bu) with Lewis bases and fluorocarbons were studied. Analogous reaction chemistry between (RC[sub 5]H[sub 4])[sub 3]ThX systems and t-BuLi was also studied, and reactivity differences between U and Th are discussed. Synthesis of sterically crowded (RC[sub 5]H[sub 4])[sub 4]U compounds is next considered. Reaction of the trivalent (RC[sub 5]H[sub 4])[sub 3]U with (RC[sub 5]H[sub 4])[sub 2]Hg results in formation of (RC[sub 5]H[sub 4])[sub 4]U. Steric congestion, cyclopentadienyl ligand exchange, and electron transfer are discussed. (DLC)

  3. Tris(Cyclopentadienyl)Uranium-t-Butyl: Synthesis, reactions, and mechanisms

    SciTech Connect

    Weydert, M.

    1993-04-01

    Compounds (RC{sub 5}H{sub 4}){sub 3}U(t-Bu) were prepared for R = H, Me, Et. Their decomposition products in aromatic solvents are consistent with a radical decomposition pathway induced by solvent-assisted U-C bond homolysis. NMR was used to study the reactions of (RC{sub 5}H{sub 4}){sub 3}UCl with t-BuLi (R = t-Bu, Me{sub 3}Si). Reactions of (MeC{sub 5}H{sub 4}){sub 3}U(t-Bu) with Lewis bases and fluorocarbons were studied. Analogous reaction chemistry between (RC{sub 5}H{sub 4}){sub 3}ThX systems and t-BuLi was also studied, and reactivity differences between U and Th are discussed. Synthesis of sterically crowded (RC{sub 5}H{sub 4}){sub 4}U compounds is next considered. Reaction of the trivalent (RC{sub 5}H{sub 4}){sub 3}U with (RC{sub 5}H{sub 4}){sub 2}Hg results in formation of (RC{sub 5}H{sub 4}){sub 4}U. Steric congestion, cyclopentadienyl ligand exchange, and electron transfer are discussed. (DLC)

  4. A combined intramolecular Diels-Alder/intramolecular Schmidt reaction: Formal synthesis of (+/-)-stenine

    E-print Network

    Golden, Jennifer E.; Aubé , Jeffrey

    2002-01-01

    Intramolecular Diels-Alder/Intramolecular Schmidt Reaction Process: A Formal Synthesis of (?)-Stenine ** Jennifer E. Golden and Jeffrey Aub?* [*] Prof. Dr. J. Aub? University of Kansas Department of Medicinal Chemistry Malott Hall 1251 Wescoe Hall Dr... Schmidt reaction of azides and ketones in total synthesis. [2] Herein, we describe the combination of an intramolecular Schmidt reaction with an intramolecular Diels-Alder process ? two efficient reactions that benefit from Lewis acid promotion...

  5. Ammonia from iron(II) reduction of nitrite and the Strecker synthesis: do iron(II) and cyanide interfere with each other?

    NASA Technical Reports Server (NTRS)

    Summers, D. P.; Lerner, N.

    1998-01-01

    The question of whether the production of ammonia, from the reduction of nitrite by iron(II), is compatible with its use in the Strecker synthesis of amino acids, or whether the iron and the cyanide needed for the Strecker synthesis interfere with each other, is addressed. Results show that the presence of iron(II) appears to have little, or no, effect on the Strecker synthesis. The presence of cyanide does interfere with reduction of nitrite, but the reduction proceeds at cyanide/iron ratios of less than 4:1. At ratios of about 2:1 and less there is only a small effect. The reduction of nitrite and the Strecker can be combined to proceed in each other's presence, to yield glycine from a mixture of nitrite, Fe+2, formaldehyde, and cyanide.

  6. Synthesis and chemical reactions of the steroidal hormone 17?-methyltestosterone.

    PubMed

    El-Desoky, El-Sayed Ibrahim; Reyad, Mahmoud; Afsah, Elsayed Mohammed; Dawidar, Abdel-Aziz Mahmoud

    2016-01-01

    Structural modifications of natural products with complex structures like steroids require great synthetic effort. A review of literature is presented on the chemistry of the steroidal hormone 17?-methyltestosterone that is approved by Food and Drug Administration (FDA) in the United States as an androgen for estrogen-androgen hormone replacement therapy treatment. The analog also offers special possibilities for the prevention/treatment of hormone-sensitive cancers. The testosterone skeleton has important functionalities in the molecule that can act as a carbonyl component, an active methylene compound, ?,?-unsaturated enone and tertiary hydroxyl group in various chemical reactions to access stereoisomeric steroidal compounds with potent activity. In addition, microbiological methods of synthesis and transformation of this hormone are presented. PMID:26639430

  7. Synthesis of Ethers via Reaction of Carbanions and Monoperoxyacetals

    PubMed Central

    2015-01-01

    Although transfer of electrophilic alkoxyl (“RO+”) from organic peroxides to organometallics offers a complement to traditional methods for etherification, application has been limited by constraints associated with peroxide reactivity and stability. We now demonstrate that readily prepared tetrahydropyranyl monoperoxyacetals react with sp3 and sp2 organolithium and organomagnesium reagents to furnish moderate to high yields of ethers. The method is successfully applied to the synthesis of alkyl, alkenyl, aryl, heteroaryl, and cyclopropyl ethers, mixed O,O-acetals, and S,S,O-orthoesters. In contrast to reactions of dialkyl and alkyl/silyl peroxides, the displacements of monoperoxyacetals provide no evidence for alkoxy radical intermediates. At the same time, the high yields observed for transfer of primary, secondary, or tertiary alkoxides, the latter involving attack on neopentyl oxygen, are inconsistent with an SN2 mechanism. Theoretical studies suggest a mechanism involving Lewis acid promoted insertion of organometallics into the O–O bond. PMID:26560686

  8. Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup 

    E-print Network

    Ming, Pingjia

    2014-06-05

    C) and atmospheric pressure. For an EPE gas mixture, a high conversion and low specific energy cost is desirable. Variation in discharge power density, air and, water addition were tested, in order to find conditions which were energetically feasibility, efficiency...

  9. Method for polymer synthesis in a reaction well

    DOEpatents

    Brennan, Thomas M. (San Francisco, CA)

    1998-01-01

    A method of synthesis for building a polymer chain, oligonucleotides in particular, by sequentially adding monomer units to at least one solid support for growing and immobilizing a polymer chain thereon in a liquid reagent solution. The method includes the step of: A) depositing a liquid reagent in a reaction well (26) in contact with at least one solid support and at least one monomer unit of the polymer chain affixed to the solid support. The well (26) includes at least one orifice (74) extending into the well (26), and is of a size and dimension to form a capillary liquid seal to retain the reagent solution in the well (26) to enable polymer chain growth on the solid support. The method further includes the step of B) expelling the reagent solution from the well (26), while retaining the polymer chain therein. This is accomplished by applying a first gas pressure to the reaction well such that a pressure differential between the first gas pressure and a second gas pressure exerted on an exit (80) of the orifice (74) exceeds a predetermined amount sufficient to overcome the capillary liquid seal and expel the reagent solution from the well (26) through the orifice exit (80).

  10. Method for polymer synthesis in a reaction well

    DOEpatents

    Brennan, T.M.

    1998-09-29

    A method of synthesis is described for building a polymer chain, oligonucleotides in particular, by sequentially adding monomer units to at least one solid support for growing and immobilizing a polymer chain thereon in a liquid reagent solution. The method includes the step of: (A) depositing a liquid reagent in a reaction well in contact with at least one solid support and at least one monomer unit of the polymer chain affixed to the solid support. The well includes at least one orifice extending into the well, and is of a size and dimension to form a capillary liquid seal to retain the reagent solution in the well to enable polymer chain growth on the solid support. The method further includes the step of (B) expelling the reagent solution from the well, while retaining the polymer chain therein. This is accomplished by applying a first gas pressure to the reaction well such that a pressure differential between the first gas pressure and a second gas pressure exerted on an exit of the orifice exceeds a predetermined amount sufficient to overcome the capillary liquid seal and expel the reagent solution from the well through the orifice exit. 9 figs.

  11. Action Reaction Learning: Analysis and Synthesis of Human Tony Jebara Alex Pentland

    E-print Network

    Jebara, Tony

    Action Reaction Learning: Analysis and Synthesis of Human Behaviour Tony Jebara Alex Pentland://jebara.www.media.mit.edu/people/jebara/arl Abstract We propose Action-Reaction Learning as an ap- proach for analyzing and synthesizing human and its reaction by observing time sequences. We apply this method to analyze human interaction

  12. Action Reaction Learning: Automatic Visual Analysis and Synthesis of Interactive Behaviour

    E-print Network

    Jebara, Tony

    Action Reaction Learning: Automatic Visual Analysis and Synthesis of Interactive Behaviour Tony/arl Abstract We propose Action-Reaction Learning as an approach for analyzing and synthesizing human be and its reaction by observing time sequences. We apply this method to analyze human interaction

  13. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl ethers: enantioselective synthesis of diarylethanes.

    PubMed

    Taylor, Buck L H; Swift, Elizabeth C; Waetzig, Joshua D; Jarvo, Elizabeth R

    2011-01-26

    Secondary benzylic ethers undergo stereospecific substitution reactions with Grignard reagents in the presence of nickel catalysts. Reactions proceed with inversion of configuration and high stereochemical fidelity. This reaction allows for facile enantioselective synthesis of biologically active diarylethanes from readily available optically enriched carbinols. PMID:21155567

  14. Analysis of Instability in an Industrial Ammonia Reactor

    E-print Network

    Skogestad, Sigurd

    Analysis of Instability in an Industrial Ammonia Reactor John C. Morud and Sigurd Skogestad Dept point for this study was an incident in an industrial plant, where the ammonia synthesis reactor became of this work was an incident in an indus- trial ammonia fixed-bed synthesis reactor in Germany in 1989. After

  15. Effect of primary degradation-reaction products from Ammonia Fiber Expansion (AFEX)-treated corn stover on the growth and fermentation of Escherichia coli KO11.

    PubMed

    Lau, Ming W; Dale, Bruce E

    2010-10-01

    The primary degradation-reaction products (DRP) identified in Ammonia Fiber Expansion (AFEX)-pretreated corn stover are acetate, lactate, 4-hydroxybenzaldehyde (4HBD) and acetamide. The effects of these products at a broad concentration range were tested on Escherichia coli KO11, a strain engineered for cellulosic ethanol production. Fermentations using glucose or xylose as the sole carbohydrate source and a sugar mixture of glucose and xylose were conducted to determine how these products and sugar selection affected fermentation performance. Co-fermentation of the sugar mixture exhibited the lowest overall ethanol productivity compared to single-sugar fermentations and was more susceptible to inhibition. Metabolic ethanol yield increased with the increasing initial concentration of acetate. Although these degradation-reaction products (with exception of acetamide) are generally perceived to be inhibitory, organic acids and 4-hydroxybenzaldehyde at low levels stimulated fermentation. Adaptation of cells to these products prior to fermentation increased overall fermentation rate. PMID:20627718

  16. Biomimetic synthesis of Pd nanocatalysts for the Stille coupling reaction.

    PubMed

    Pacardo, Dennis B; Sethi, Manish; Jones, Sharon E; Naik, Rajesh R; Knecht, Marc R

    2009-05-26

    Here we report on the biomimetic synthesis of Pd nanoparticles for use as models of green catalytic systems. The nanomaterials are synthesized using peptides isolated via phage-display techniques that are specific to Pd surfaces. Using this synthetic strategy, peptide-functionalized Pd nanoparticles of 1.9 +/- 0.3 nm in diameter are produced, which are soluble and stable in aqueous solutions. Once characterized, these biobased materials were then used as catalysts to drive the formation of C-C bonds using the Stille coupling reaction. Under the conditions of an aqueous solvent at room temperature, quantitative product yields were achieved within 24.0 h employing catalyst loadings of > or = 0.005 mol % of Pd. Additionally, high TOF values of 3207 +/- 269 mol product x (mol Pd x h)(-1) have been determined for these materials. The catalytic reactivity was then examined over a set of substrates with substitutions for both functional group and halide substituents, demonstrating that the peptide-based Pd nanoparticles are reactive toward a variety of functionalities. Taken together, these bioinspired materials represent unique model systems for catalytic studies to elucidate ecologically friendly reactive species and conditions. PMID:19422199

  17. Ammonia Monitor

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)

    1999-01-01

    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.

  18. Synthesis of pyroglutamic acid derivatives via double Michael addition reactions of alkynones. 

    E-print Network

    Scansetti, Myriam

    2009-01-01

    I. Synthesis of pyroglutamic acid derivatives via double Michael reactions of alkynones Pyroglutamic acids and their derivatives are common structural units of widespread chemical significance and they have been heavily ...

  19. A Concise Approach to the Synthesis of opp-Dibenzoporphyrins through the Heck Reaction

    SciTech Connect

    Deshpande, Rohit; Jiang, Lin; Schmidt, Gregory; Rakovan, John; Wang, Xiaoping; Wheeler, Kraig; Wang, Hong

    2009-01-01

    A concise approach to the synthesis of functionalized opp-dibenzoporphyrins is described. In this method, introduction of alkenyl groups to the porphyrin periphery through the vicinal 2-fold Heck reaction, 6- electrocyclization, and subsequent aromatization occur in one pot.

  20. Benzannulation via the Reaction of Ynamides and Vinylketenes. Application to the Synthesis of Highly Substituted Indoles

    E-print Network

    Lam, Tin Yiu

    A two-stage “tandem strategy” for the synthesis of indoles with a high level of substitution on the six-membered ring is described. Benzannulation based on the reaction of cyclobutenones with ynamides proceeds via a cascade ...

  1. [UO2(NH3)5]Br2·NH3: synthesis, crystal structure, and speciation in liquid ammonia solution by first-principles molecular dynamics simulations.

    PubMed

    Woidy, Patrick; Bühl, Michael; Kraus, Florian

    2015-04-28

    Pentaammine dioxido uranium(VI) dibromide ammonia (1/1), [UO2(NH3)5]Br2·NH3, was synthesized in the form of yellow crystals by the reaction of uranyl bromide, UO2Br2, with dry liquid ammonia. The compound crystallizes orthorhombic in space group Cmcm and is isotypic to [UO2(NH3)5]Cl2·NH3 with a = 13.2499(2), b = 10.5536(1), c = 8.9126(1) Å, V = 1246.29(3) Å(3) and Z = 4 at 123 K. The UO2(2+) cation is coordinated by five ammine ligands and the coordination polyhedron can be best described as pentagonal bipyramid. Car-Parrinello molecular dynamics simulations are reported for [UO2(NH3)5](2+) in the gas phase and in liquid NH3 solution (using the BLYP density functional). According to free-energy simulations, solvation by ammonia has only a small effect on the uranyl-NH3 bond strength. PMID:25797497

  2. Synthesis of nitrogen-containing heterocycles of an iron catalyst. 2. The conversions of 1,4-butanediol and diethylene glycol in the presence of ammonia and hydrogen

    SciTech Connect

    Kliger, G.A.; Lesik, O.A.; Marchevskaya, E.V.; Mikaya, A.I.; Zaikin, V.G.; Glebov, L.S.; Loktev, S.M.

    1987-08-01

    The gas-phase interaction of 1,4-butanediol and diethylene glycol with ammonia and/or hydrogen on a reduced, fused, iron catalyst has been investigated. We carried out the investigation in a high-pressure, laboratory flow apparatus. We fed into the reactor, at the necessary rate, a previously heated, gaseous mixture of diol, NH/sub 3/, and H/sub 2/. The reaction products formed, along with unreacted diol, were condensed in a condenser-separator. The compounds obtained were analyzed by GLC on a Chrom-5 chromatograph. We carried out the identification of the catalysate components by a chromatography-mass spectrometric technique.

  3. Green synthesis of silver nanoparticles in xylan solution via Tollens reaction and their detection for Hg2+

    NASA Astrophysics Data System (ADS)

    Luo, Yuqiong; Shen, Suqin; Luo, Jiwen; Wang, Xiaoying; Sun, Runcang

    2014-12-01

    This work reported a facile and green method to prepare highly stable and uniformly distributed Ag nanoparticles (AgNPs), in which a biopolymer xylan was used as the stabilizing and reducing agent via the Tollens reaction under microwave irradiation. Different variables were evaluated to optimize the reaction conditions. Complete characterization was performed using UV-Vis, XRD, TEM, size distribution analysis and XPS. The results revealed that AgNPs were well dispersed with diameters of 20-35 nm due to the packing of xylan. The optimal conditions were as follows: microwave irradiation temperature was 60-70 °C, microwave power was 800 W, microwave time was 30 min, the ratio of xylan to AgNO3 was 50 mg: 0.13 mmol, and ammonia concentration was 2%. In addition, the AgNPs were collected via high-speed centrifugal separation, and the supernatant was tested by HPAEC, GPC, FT-IR, and NMR. By comparing the structure of xylan before and after the reaction, the reaction mechanism was discussed. It was noted that the xylan-AgNPs composites showed high selectivity and sensitivity for Hg2+ detection. The other 15 metal ions used had no obvious effect on the detection of Hg2+, and the limit of detection (LOD) was 4.6 nM, which is lower than the allowed maximum level of 30 nM for drinking water by WHO. In addition, the xylan-AgNPs composites can be applied for Hg2+ detection in real water samples. This study provides a novel way for the high-value utilization of a rich biomass resource, and a green method for the synthesis of AgNPs for the selective and sensitive detection of harmful heavy metals.This work reported a facile and green method to prepare highly stable and uniformly distributed Ag nanoparticles (AgNPs), in which a biopolymer xylan was used as the stabilizing and reducing agent via the Tollens reaction under microwave irradiation. Different variables were evaluated to optimize the reaction conditions. Complete characterization was performed using UV-Vis, XRD, TEM, size distribution analysis and XPS. The results revealed that AgNPs were well dispersed with diameters of 20-35 nm due to the packing of xylan. The optimal conditions were as follows: microwave irradiation temperature was 60-70 °C, microwave power was 800 W, microwave time was 30 min, the ratio of xylan to AgNO3 was 50 mg: 0.13 mmol, and ammonia concentration was 2%. In addition, the AgNPs were collected via high-speed centrifugal separation, and the supernatant was tested by HPAEC, GPC, FT-IR, and NMR. By comparing the structure of xylan before and after the reaction, the reaction mechanism was discussed. It was noted that the xylan-AgNPs composites showed high selectivity and sensitivity for Hg2+ detection. The other 15 metal ions used had no obvious effect on the detection of Hg2+, and the limit of detection (LOD) was 4.6 nM, which is lower than the allowed maximum level of 30 nM for drinking water by WHO. In addition, the xylan-AgNPs composites can be applied for Hg2+ detection in real water samples. This study provides a novel way for the high-value utilization of a rich biomass resource, and a green method for the synthesis of AgNPs for the selective and sensitive detection of harmful heavy metals. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05999a

  4. Direct Analysis of Gene Synthesis Reactions Using Solid-State Nanopores.

    PubMed

    Carson, Spencer; Wick, Scott T; Carr, Peter A; Wanunu, Meni; Aguilar, Carlos A

    2015-12-22

    Synthetic nucleic acids offer rich potential to understand and engineer new cellular functions, yet an unresolved limitation in their production and usage is deleterious products, which restrict design complexity and add cost. Herein, we employ a solid-state nanopore to differentiate molecules of a gene synthesis reaction into categories of correct and incorrect assemblies. This new method offers a solution that provides information on gene synthesis reactions in near-real time with higher complexity and lower costs. This advance can permit insights into gene synthesis reactions such as kinetics monitoring, real-time tuning, and optimization of factors that drive reaction-to-reaction variations as well as open venues between nanopore-sensing, synthetic biology, and DNA nanotechnology. PMID:26580227

  5. Surfactant-free synthesis of plasmonic tungsten oxide nanowires with visible-light-enhanced hydrogen generation from ammonia borane.

    PubMed

    Lou, Zaizhu; Gu, Quan; Xu, Lin; Liao, Yusen; Xue, Can

    2015-06-01

    WO3-x nanowires were successfully synthesized through a simple surfactant-free solvothermal method. These nanowires exhibit strong plasmonic absorption in the visible and near-infrared region owing to the abundant oxygen vacancies. The plasmon excitation of these WO3-x nanowires provide five times enhancement on the hydrogen generation from ammonia borane. PMID:25873477

  6. Microwave-assisted organic synthesis and transformations using benign reaction media.

    PubMed

    Polshettiwar, Vivek; Varma, Rajender S

    2008-05-01

    A nonclassical heating technique using microwaves, termed "Bunsen burner of the 21st century", is rapidly becoming popular and is dramatically reducing reaction times. The significant outcomes of microwave (MW)-assisted green chemistry endeavors, which have resulted in the development of synthetic protocols for drugs and fine chemicals synthesis that are relatively more sustainable, are summarized. The use of emerging microwave-assisted chemistry techniques in conjunction with greener reaction media is dramatically reducing chemical waste and reaction times in several organic syntheses and chemical transformations. A brief historic account of our own experiences in developing MW-assisted organic transformations, which involve various benign alternatives, such as solid-supported reagents, and greener reaction media, namely, aqueous, ionic liquid, and solvent-free, for the synthesis of various heterocycles, coupling reactions, oxidation-reduction reactions, and some name reactions are described. Synthesis of Heterocycles. The synthetic chemistry community has been under increased pressure to produce, in an environmentally benign fashion, the myriad of heterocyclic systems required by society in a short span of time, and one of the best options to accelerate these synthetic processes is to use MW technology. The efficient use of the MW heating approach for the synthesis of various heterocyclic compounds in aqueous and solvent-free medium is discussed. Organic Named Reactions. The application of MW chemistry for various named reaction such as the Prins reaction, the Suzuki reaction, the Heck reaction, the Aza-Michael reaction, Trost's gamma-addition, and the Cannizzaro reaction are summarized. Synthesis and Application of Ionic Liquids. Ionic liquids (ILs), being polar and ionic, in character couple with MW irradiation very efficiently and are, therefore, ideal MW-absorbing candidates for expediting chemical reactions. MW-assisted solvent-free synthesis and application of ILs are discussed. Oxidation-Reduction Reactions. MW protocols using mineral oxides such as alumina, silica, and clay to immobilize reagents on such solid supports have been extensively explored under "dry" media conditions. Various solvent-free examples of oxidation reactions are discussed that involve mixing of neat substrates with clay-supported iron(III) nitrate (clayfen) or iodobenzene diacetate (IBD) as an oxidant; some interesting MW reduction protocols using borohydrides are also discussed. Protection-Deprotection Reactions. The protection and deprotection of alcohols and amines are common events in multistep organic syntheses. Various protection and deprotection protocols under MW irradiation are discussed, including tetrahydropyranylation and (benzyloxycarbonyl) (Cbz)-protection, which are the most frequently employed methods. PMID:18419142

  7. Synthesis of Triarylmethane and Xanthene Dyes Using Electrophilic Aromatic Substitution Reactions

    ERIC Educational Resources Information Center

    McCullagh, James V.; Daggett, Kelly A.

    2007-01-01

    The synthesis of dyes has long been a popular topic in organic chemistry laboratory experiments because it allows students to see first hand that reactions learned in class can be used to make compounds with useful applications. In this experiment electrophilic aromatic substitution reactions are used to synthesize several triarylmethane and…

  8. Synthesis of Chiral Hydroxyl Phospholanes from D-mannitol and Their Use in Asymmetric Catalytic Reactions

    E-print Network

    Zhang, Xumu

    Synthesis of Chiral Hydroxyl Phospholanes from D-mannitol and Their Use in Asymmetric Catalytic Reactions Wenge Li, Zhaoguo Zhang, Dengming Xiao, and Xumu Zhang* Department of Chemistry, The Pennsylvania explored. Rate acceleration in the Baylis-Hillman reaction was observed when a hydroxyl phosphine was used

  9. Synthesis of 1,4:3,6-dianhydrohexitols diesters from the palladium-catalyzed hydroesterification reaction.

    PubMed

    Pruvost, Romain; Boulanger, Jérôme; Léger, Bastien; Ponchel, Anne; Monflier, Eric; Ibert, Mathias; Mortreux, André; Chenal, Thomas; Sauthier, Mathieu

    2014-11-01

    The hydroesterification of alpha olefins has been used to synthesize diesters from bio-based secondary diols: isosorbide, isomannide, and isoidide. The reaction was promoted by 0.2% palladium catalyst generated in?situ from palladium acetate/triphenylphosphine/para-toluene sulfonic acid. Optimized reaction conditions allowed the selective synthesis of the diesters with high yields and the reaction conditions could be scaled up to the synthesis of hundred grams of diesters from isosorbide and 1-octene with solvent-free conditions. PMID:25209303

  10. Synthesis of tetrasubstituted 1-silyloxy-3-aminobutadienes and chemistry beyond Diels–Alder reactions

    PubMed Central

    Li, Xijian; Peng, Siyu; Li, Li; Huang, Yong

    2015-01-01

    Electron-rich dienes have revolutionized the synthesis of complex compounds since the discovery of the legendary Diels–Alder cycloaddition reaction. This highly efficient bond-forming process has served as a fundamental strategy to assemble many structurally formidable molecules. Amino silyloxy butadienes are arguably the most reactive diene species that are isolable and bottleable. Since the pioneering discovery by Rawal, 1-amino-3-silyloxybutadienes have been found to undergo cycloaddition reactions with unparalleled mildness, leading to significant advances in both asymmetric catalysis and total synthesis of biologically active natural products. In sharp contrast, this class of highly electron-rich conjugated olefins has not been studied in non-cycloaddition reactions. Here we report a simple synthesis of tetrasubstituted 1-silyloxy-3-aminobutadienes, a complementarily substituted Rawal's diene. This family of molecules is found to undergo a series of intriguing chemical transformations orthogonal to cycloaddition reactions. Structurally diverse polysubstituted ring architectures are established in one step from these dienes. PMID:25898310

  11. Synthesis of transactinide nuclei in cold fusion reactions using radioative beams

    E-print Network

    Robert Smolanczuk

    2009-12-04

    Chances of synthesis of transactinide nuclei in cold fusion reactions (one-neutron-out) reactions using radioactive beams are evaluated. Because intensities of radioactive beams are in most of the cases significantly lower than the ones of the stable beams, reactions with the highest radioactive beam intensities for the particular elements are considered. The results are compared with the recent ones obtained by Loveland who investigated the same nuclei.

  12. Synthesis of transactinide nuclei in cold fusion reactions using radioative beams

    E-print Network

    Smolanczuk, Robert

    2009-01-01

    Chances of synthesis of transactinide nuclei in cold fusion reactions (one-neutron-out) reactions using radioactive beams are evaluated. Because intensities of radioactive beams are in most of the cases significantly lower than the ones of the stable beams, reactions with the highest radioactive beam intensities for the particular elements are considered. The results are compared with the recent ones obtained by Loveland who investigated the same nuclei.

  13. Synthesis of transactinide nuclei in cold fusion reactions using radioactive beams

    SciTech Connect

    Smolanczuk, Robert

    2010-06-15

    Chances of synthesis of transactinide nuclei in cold fusion reactions (one-neutron-out reactions) using radioactive beams are evaluated. Because in most of the cases intensities of radioactive beams are significantly less than those of the stable beams, reactions with the greatest radioactive-beam intensities for the particular elements are considered. The results are compared with the recent ones obtained by Loveland [Phys. Rev. C 76, 014612 (2007)], who investigated the same nuclei.

  14. Samarium Diiodide-Mediated Reactions in Total Synthesis

    PubMed Central

    Nicolaou, K. C.; Ellery, Shelby P.; Chen, Jason S.

    2009-01-01

    Introduced by Henri Kagan more than three decades ago, samarium diiodide (SmI2) has found increasing applications in chemical synthesis. This single-electron reducing agent has been particularly useful in C–C bond formations, including those found in total synthesis endeavors. This Review highlights selected applications of SmI2 in total synthesis, with special emphasis on novel transformations and mechanistic considerations. The examples discussed are both illustrative of the power of this reagent in complex molecule construction and inspirational for the design of synthetic strategies toward such targets, both natural and designed. PMID:19714695

  15. Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand

    NASA Astrophysics Data System (ADS)

    Askevold, Bjorn; Nieto, Jorge Torres; Tussupbayev, Samat; Diefenbach, Martin; Herdtweck, Eberhardt; Holthausen, Max C.; Schneider, Sven

    2011-07-01

    Bioinspired hydrogenation of N2 to ammonia at ambient conditions by stepwise nitrogen protonation/reduction with metal complexes in solution has experienced remarkable progress. In contrast, the highly desirable direct hydrogenation with H2 remains difficult. In analogy to the heterogeneously catalysed Haber-Bosch process, such a reaction is conceivable via metal-centred N2 splitting and unprecedented hydrogenolysis of the nitrido ligands to ammonia. We report the synthesis of a ruthenium(IV) nitrido complex. The high nucleophilicity of the nitrido ligand is demonstrated by unusual N-C coupling with ?-acidic CO. Furthermore, the terminal nitrido ligand undergoes facile hydrogenolysis with H2 at ambient conditions to produce ammonia in high yield. Kinetic and quantum chemical examinations of this reaction suggest cooperative behaviour of a phosphorus-nitrogen-phosphorus pincer ligand in rate-determining heterolytic hydrogen splitting.

  16. The synthesis and benzannulation reactions of (trialkylsilyl)vinylketenes

    E-print Network

    Austin, Wesley F

    2008-01-01

    (Trialkylsilyl)vinylketenes ("TAS-vinylketenes") are versatile four-carbon building blocks in a variety of methods for the synthesis of carbocyclic and heterocyclic compounds. This thesis discusses the development of a new ...

  17. Single Polypyrrole Nanowire Ammonia Gas Sensor Sandra C. Hernandez, Debangshu Chaudhuri, Wilfred Chen, Nosang V. Myung,* Ashok Mulchandani*

    E-print Network

    Chen, Wilfred

    Full Paper Single Polypyrrole Nanowire Ammonia Gas Sensor Sandra C. Hernandez, Debangshu Chaudhuri report the synthesis, electrical characterization and ammonia gas sensing with single nanowire nanowire exhibited good sensitivity towards ammonia, and provided a reliable detection at concentration

  18. Advances in understanding the mechanism and improved stability of the synthesis of ammonia from air and water in hydroxide suspensions of nanoscale Fe?O?.

    PubMed

    Li, Fang-Fang; Licht, Stuart

    2014-10-01

    We report a mechanism of electrochemical ammonia (NH3) production via an iron intermediate in which H2 and NH3 are cogenerated by different electron-transfer pathways. Solar thermal can contribute to the energy to drive this synthesis, resulting in a STEP, solar thermal electrochemical process, for NH3. Enhancements are presented to this carbon dioxide (CO2)-free synthesis, which uses suspensions of nano-Fe2O3 in high-temperature hydroxide electrolytes at nickel and Monel electrodes. In a 200 °C molten eutectic Na(0.5)K(0.5)OH electrolyte, the 3 Faraday efficiency per mole of synthesized NH3, ?(NH3), increases with decreasing current density, and at j(electrolysis) = 200, 25, 2, and 0.7 mA cm(-2), ?(NH3) = 1%, 7%, 37%, and 71%, respectively. At 200 mA cm(-2), over 90% of applied current drives H2, rather than NH3, formation. Lower temperature supports greater electrolyte hydration. At 105 °C in the hydrated Na(0.5)K(0.5)OH electrolyte, ?(NH3) increases and then is observed to be highly stable at ?(NH3) = 24(+2)%. PMID:25247873

  19. Divergent dendrimer synthesis via the Passerini three-component reaction and olefin cross-metathesis.

    PubMed

    Kreye, Oliver; Kugele, Dennis; Faust, Lorenz; Meier, Michael A R

    2014-02-01

    The combination of the Passerini reaction and olefin cross-metathesis is shown to be a very useful approach for the divergent synthesis of dendrimers. Castor oil-derived platform chemicals, such as 10-undecenoic acid and 10-undecenal, are reacted in a Passerini reaction with an unsaturated isocyanide to obtain a core unit having three terminal double bonds. Subsequent olefin cross-metathesis with tert-butyl acrylate, followed by hydrogenation of the double bonds and hydrolysis of the tert-butyl ester, leads to an active core unit bearing three carboxylic acid groups as reactive sites. Iterative steps of the Passerini reaction with 10-undecenal and 10-isocyanodec-1-ene for branching, and olefin cross-metathesis with tert-butyl acrylate, followed by hydrogenation and hydrolysis allow the synthesis of a third-generation dendrimer. All steps of the synthesis are carefully characterized by NMR, GPC, MS, and IR. PMID:24356926

  20. Divergent synthesis of chiral heterocycles via sequencing of enantioselective three-component reactions and one-pot subsequent cyclization reactions.

    PubMed

    Tang, Min; Xing, Dong; Huang, Haoxi; Hu, Wenhao

    2015-07-01

    A highly efficient sequencing of catalytic asymmetric three-component reactions of alcohols, diazo compounds and aldimines/aldehydes with one-pot subsequent cyclization reactions was reported. The development of a robust and versatile Rh(ii)/Zr(iv)-BINOL co-catalytic system not only gives high diastereo- and enantioselective controls of the three-component reaction, but also shows excellent functionality tolerances that allow a wide range of functionalities to be pre-installed in each component and readily undergo one-pot subsequent cyclization reactions, thus providing rapid and diversity-oriented synthesis (DOS) of different types of chiral nitrogen- and/or oxygen-containing polyfunctional heterocycles. PMID:25864421

  1. C-N coupling in the gas-phase reactions of ammonia and [M(CH)]+ (M = Ni, Pd, Pt): a combined experimental/computational exercise.

    PubMed

    Kretschmer, Robert; Schlangen, Maria; Schwarz, Helmut

    2013-03-28

    Electrospray ionization (ESI) of methanolic solutions of monomeric nickel(II) acetate, [Ni(CH(3)COO)(2)], and tetrameric platinum(II) acetate, [Pt(4)(CH(3)COO)(8)], leads to the formation of the corresponding methylidyne complexes [M(CH)](+) (M = Ni, Pt), which react with ammonia under C-N coupling. While the product couples M/[CH(4)N](+) and [M(CH(2)N)](+)/H(2) are observed for both metals, hydrogen-atom expulsion to generate [M(CHNH(2))](+)/H is only observed in the case of the nickel-containing system, and the proton transfer leading to M/[NH(4)](+) is limited to platinum. Attempts to conduct related experiments with [Pd(CH)](+)/NH(3) failed. The mechanisms that explain the experimentally observed reaction channels have been investigated computationally using the B3LYP functional for all metals of the nickel group (M = Ni, Pd, Pt). In line with labeling experiments using the reaction pairs [M(CD)](+)/NH(3) and [M(CH)](+)/ND(3) (M = Ni, Pt), two different mechanistic scenarios of the dehydrogenation process are operative for the Ni and Pt systems, respectively. PMID:23348512

  2. Microwave assisted rapid synthesis of N-methylene phosphonic chitosan via Mannich-type reaction.

    PubMed

    Dadhich, Prabhash; Das, Bodhisatwa; Dhara, Santanu

    2015-11-20

    Bio-conjugation or functional group substitutions are well-explored methods to enhance the physico-chemical and biochemical functionality of chitosan. N-Methylene phosphonic chitosan (NMPC) is one of the major substituted forms of chitosan, which has significant bioactivity and promising biomedical application. However, the reported synthesis methods of NMPC have limitations alike poor yield, higher degradation rate and most importantly long synthesis time (?14h). In the current study, rapid synthesis of NMPC via a Mannich type reaction route using microwave irradiation has been reported. This method of NMPC synthesis offers significantly less synthesis time with competitive product yield. Synthesized NMPC was characterized via NMR, FTIR, EDS, XRD and thermal analysis. Further, viscosity average molecular weight, solubility, and conductivity of the substituted polymer were measured. Preliminary cyto-compatibility results of synthesized NMPC were promising for further exploration in biomedical applications. PMID:26344290

  3. The effects of processing variables on reaction synthesis of Fe-Al alloys

    SciTech Connect

    Joslin, D.L.; Easton, D.S.; Liu, C.T.; David, S.A.

    1994-12-31

    The effects of alloy composition and reaction atmosphere on reaction synthesis of binary FeAl alloys were studied. Reactions were observed in an open (air) furnace, under static vacuum (in an evacuated quartz tube) and in a dynamic vacuum furnace. High-speed videotapes of reaction syntheses of compacts formed from 45-{mu}m Fe and 10-{mu}m Al powders reacted in air and under static vacuum revealed that an unusual ``two-stage`` reaction exists in this system under these conditions. The first stage of the two-stage reaction lasts several seconds and starts at around 650 C. The second stage begins at about 900 C, reaching temperatures between 1,250 and 1,350 C. The progress of the reaction to the second stage is sensitive to the alloy composition and reaction environment. The reaction behavior is explained in terms of thermodynamics and heat transfer, which control the delicate balance between beat accumulation and heat loss during reaction synthesis.

  4. Enhanced chemical synthesis at soft interfaces: a universal reaction-adsorption mechanism in microcompartments.

    PubMed

    Fallah-Araghi, Ali; Meguellati, Kamel; Baret, Jean-Christophe; El Harrak, Abdeslam; Mangeat, Thomas; Karplus, Martin; Ladame, Sylvain; Marques, Carlos M; Griffiths, Andrew D

    2014-01-17

    A bimolecular synthetic reaction (imine synthesis) was performed compartmentalized in micrometer-diameter emulsion droplets. The apparent equilibrium constant (Keq) and apparent forward rate constant (k1) were both inversely proportional to the droplet radius. The results are explained by a noncatalytic reaction-adsorption model in which reactants adsorb to the droplet interface with relatively low binding energies of a few kBT, react and diffuse back to the bulk. Reaction thermodynamics is therefore modified by compartmentalization at the mesoscale--without confinement on the molecular scale--leading to a universal mechanism for improving unfavorable reactions. PMID:24484045

  5. Kinetics of the ammonia synthesis over Fe/TiO sub 2 , hydrazine-pretreated Fe/TiO sub 2 , and hydrazine-pretreated alkali-promoted Fe/TiO sub 2 catalysts

    SciTech Connect

    Nobile, A. Jr.; Brunt, V.V.; Davis, M.W. Jr. )

    1991-01-01

    The kinetics of the synthesis of ammonia from its elements over Fe/TiO{sub 2}, and hydrazine-pretreated alkali-promoted Fe/TiO{sub 2} catalysts was studied in a flow microreactor at 101 kPa pressure. The kinetic model was modified to account for deactivation of supported catalyst particles by Ostwald ripening. Pretreatment of Fe/TiO{sub 2} with hydrazine increased the ammonia synthesis turnover frequency by more than an order of magnitude over unpretreated Fe/TiO{sub 2}. The ammonia partial pressure dependence and apparent activation energy over hydrazine-pretreated Fe/TiO{sub 2} were more representative of iron uninfluenced by the strong metal-support interaction (SMSI) which occurs in Metal-titania systems. In situ CO chemisorption measurements following the ammonia synthesis kinetics measurements showed higher CO uptake with hydrazine-pretreated Fe/TiO{sub 2} then with unpretreated Fe/TiO{sub 2}. The increased turnover frequency, altered kinetic parameters, and higher CO uptake suggest that hydrazine pretreatment inhibited the onset of SMSI, which is attributed to titanium nitride formation on the support surface. Addition of the alkali promoters K and Cs to the catalysts not only increased the turnover frequency and decreased the apparent activation energy and ammonia partial pressure dependence, but acted to stabilize supported iron particles against growth by Ostwald ripening. The data suggest that physical covering of the surface by alkali inhibits Ostwald ripening of iron particles by blocking dissociation of iron atoms from supported particles thus suppressing their migration over the support surface to form larger particles.

  6. Fischer-Tropsch synthesis in supercritical reaction media

    SciTech Connect

    Subramaniam, B.; Bochniak, D.; Snavely, K.

    1993-01-01

    Our goals for this quarter were to complete construction of the reactor and analytical units for carrying out Fischer-Tropsch (F-T) synthesis in liquid (n-hexadecane) and in supercritical n-hexane phases. Progress during this quarter was slower than expected.

  7. Synthesis of Single-Crystalline Niobate Nanorods via Ion-Exchange Based on Molten-Salt Reaction

    E-print Network

    Wang, Zhong L.

    Synthesis of Single-Crystalline Niobate Nanorods via Ion-Exchange Based on Molten-Salt Reaction by employing hydrothermal reaction2 or templates,3 molten-salt syn- thesis,4 and composite- exchange approach for the synthesis of single-crystal sodium and calcium niobates nanorods based on molten-salt

  8. Dynamics of ammonia exchange with cut grassland: synthesis of results and conclusions of the GRAMINAE Integrated Experiment

    NASA Astrophysics Data System (ADS)

    Sutton, M. A.; Nemitz, E.; Milford, C.; Campbell, C.; Erisman, J. W.; Hensen, A.; Cellier, P.; David, M.; Loubet, B.; Personne, E.; Schjoerring, J. K.; Mattsson, M.; Dorsey, J. R.; Gallagher, M. W.; Horvath, L.; Weidinger, T.; Meszaros, R.; Dämmgen, U.; Neftel, A.; Herrmann, B.; Lehman, B. E.; Flechard, C.; Burkhardt, J.

    2009-12-01

    Improved data on biosphere-atmosphere exchange are fundamental to understanding the production and fate of ammonia (NH3) in the atmosphere. The GRAMINAE Integrated Experiment combined novel measurement and modelling approaches to provide the most comprehensive analysis of the interactions to date. Major inter-comparisons of micrometeorological parameters and NH3 flux measurements using the aerodynamic gradient method and relaxed eddy accumulation (REA) were conducted. These showed close agreement, though the REA systems proved insufficiently precise to investigate vertical flux divergence. Grassland management had a large effect on fluxes: emissions increased after grass cutting (-50 to 700 ng m-2 s-1 NH3) and after N-fertilization (0 to 3800 ng m-2 s-1) compared with before the cut (-60 to 40 ng m-2 s-1). Effects of advection and air chemistry were investigated using horizontal NH3 profiles, acid gas and particle flux measurements. Inverse modelling of NH3 emission from an experimental farm agreed closely with inventory estimates, while advection errors were used to correct measured grassland fluxes. Advection effects were caused both by the farm and by emissions from the field, with an inverse dispersion-deposition model providing a reliable new approach to estimate net NH3 fluxes. Effects of aerosol chemistry on net NH3 fluxes were small, while the measurements allowed NH3-induced particle growth rates to be calculated and aerosol fluxes to be corrected. Bioassays estimated the emission potential ? = [NH4+]/[H+] for different plant pools, with the apoplast having the smallest values (30-1000). The main within-canopy sources of NH3 emission appeared to be leaf litter and the soil surface, with ? up to 3 million and 300 000, respectively. Cuvette and within-canopy analyses confirmed the role of leaf litter NH3 emission, which, prior to cutting, was mostly recaptured within the canopy. Measured ammonia fluxes were compared with three models: an ecosystem model (PaSim), a soil vegetation atmosphere transfer model (SURFATM-NH3) and a dynamic leaf chemistry model (DCC model). The different models each reproduced the main temporal dynamics in the flux, highlighting the importance of canopy temperature dynamics (Surfatm-NH3), interactions with ecosystem nitrogen cycling (PaSim) and the role of leaf surface chemistry (DCC model). Overall, net above-canopy fluxes were mostly determined by stomatal and cuticular uptake (before the cut), leaf litter emissions (after the cut) and fertilizer and litter emissions (after fertilization). The dynamics of ammonia emission from leaf litter are identified as a priority for future research.

  9. Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of ?-Fluoromethylated Tertiary Alcohols.

    PubMed

    Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi

    2015-12-01

    A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of ?-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields. PMID:26486488

  10. Synthesis of Programmable Reaction-Diffusion Fronts Using DNA Catalyzers

    NASA Astrophysics Data System (ADS)

    Zadorin, Anton S.; Rondelez, Yannick; Galas, Jean-Christophe; Estevez-Torres, André

    2015-02-01

    We introduce a DNA-based reaction-diffusion (RD) system in which reaction and diffusion terms can be precisely and independently controlled. The effective diffusion coefficient of an individual reaction component, as we demonstrate on a traveling wave, can be reduced up to 2.7-fold using a self-assembled hydrodynamic drag. The intrinsic programmability of this RD system allows us to engineer, for the first time, orthogonal autocatalysts that counterpropagate with minimal interaction. Our results are in excellent quantitative agreement with predictions of the Fisher-Kolmogorov-Petrovskii-Piscunov model. These advances open the way for the rational engineering of pattern formation in pure chemical RD systems.

  11. Formation of ammonia from dinitrogen under primordial conditions

    NASA Astrophysics Data System (ADS)

    Weigand, W.; Dörr, M.; Robl, C.; Kreisel, G.; Grunert, R.; Käßbohrer, J.; Brand, W.; Werner, R.; Popp, J.; Tarcea, N.

    2002-11-01

    Ammonia is one of the most largely industrially produced basic compounds, leading to a variety of important secondary products. In the chemical industry, ammonia is produced in large amounts via the HABER-BOSCH-process. In contrast to the industrial process, the nitrogenase enzyme operates in organisms under very mild conditions at atmospheric pressure and ambient temperature. In this article, we describe a method for the synthesis of ammonia from molecular nitrogen using H2S and freshly precipitated iron sulfide as a mediator thus serving as a primordial inorganic substitute for the enzyme nitrogenase. The reductand, as well as the reaction conditions (atmospheric nitrogen pressure and temperatures on the order of 70 - 80°C) are rather mild and therefore comparable to the biological processes. The driving force of the overall reaction is believed to be the oxidation of iron sulfide to iron disulfide, and the formation of hydrogen from H2S. The reactions reported in this article may support the theory of an archaic nitrogen-fixing Fe-S cluster.

  12. Reaction intermediates of methanol synthesis and the water-gas-shift reaction on the ZnO(0001) surface

    NASA Astrophysics Data System (ADS)

    Chuasiripattana, Katawut; Warschkow, Oliver; Delley, Bernard; Stampfl, Cathy

    2010-09-01

    The polar Zn-ZnO(0001) surface is involved in the catalysis of methanol synthesis and the water-gas-shift reaction. We use density functional theory calculations to explore the favorable binding geometries and energies of adsorption of several molecular species relevant to these reactions, namely carbon monoxide (CO), carbon dioxide (CO 2), water (H 2O) and methanol (CH 3OH). We also consider several proposed reaction intermediates, including hydroxymethyl (CH 2OH), methoxyl (CH 3), formaldehyde (CH 2O), methyl (CH 3), methylene (CH 2), formic acid (HCOOH), formate (HCOO), formyl (HCO), hydroxyl (OH), oxygen (O) and hydrogen (H). For each, we identify the preferred binding geometry at a coverage of 1/4 monolayers (ML), and report calculated vibrational frequencies that could aid in the identification of these species in experiment. We further explore the effects on the binding energy when the adsorbate coverage is lowered to 1/9 and 1/16 ML.

  13. Ammonia formation from NO reaction with surface hydroxyls on rutile TiO2 (110) - 1×1

    SciTech Connect

    Kim, Boseong; Kay, Bruce D.; Dohnalek, Zdenek; Kim, Yu Kwon

    2015-01-15

    The reaction of NO with hydroxylated rutile TiO2(110)-1×1 surface (h-TiO2) was investigated as a function of NO coverage using temperature-programmed desorption. Our results show that NO reaction with h-TiO2 leads to formation of NH3 which is observed to desorb at ~ 400 K. Interestingly, the amount of NH3 produced depends nonlinearly on the coverage of NO. The yield increases up to a saturation value of ~1.3×1013 NH3/cm2 at a NO dose of 5×1013 NO/cm2, but subsequently decreases at higher NO doses. Preadsorbed H2O is found to have a negligible effect on the NH3 desorption yield. Additionally, no NH3 is formed in the absence of surface hydroxyls (HOb’s) upon coadsorption of NO and H2O on a stoichiometric TiO2(110) (s-TiO2(110)). Based on these observations, we conclude that nitrogen from NO has a strong preference to react with HOb’s on the bridge-bonded oxygen rows (but not with H2O) to form NH3. The absolute NH3 yield is limited by competing reactions of HOb species with titanium-bound oxygen adatoms to form H2O. Our results provide new mechanistic insight about the interactions of NO with hydroxyl groups on TiO2(110) .

  14. Solid phase synthesis of hydantoins by thermal cyclization and screening of reaction conditions using APOS 1200.

    PubMed

    Karnbrock, W; Deeg, M; Gerhardt, J; Rapp, W

    1998-01-01

    A novel strategy for solid-phase synthesis of hydantoins with high optical purity is described using a thermal pH-neutral cyclization and simultaneous release from resin. Hereby even hydantoins bearing a pH-sensitive side chain (protection) are available. The reaction conditions are well screened applying the parallel organic synthesizer APOS 1200. PMID:10729901

  15. A novel rhodium-catalyzed domino-hydroformylation-reaction for the synthesis of sulphonamides.

    PubMed

    Dong, Kaiwu; Fang, Xianjie; Jackstell, Ralf; Beller, Matthias

    2015-03-25

    An efficient and highly selective method for the synthesis of sulphonamides by a domino hydroformylation-reductive sulphonamidation reaction has been developed. Various olefins and sulphonamides are converted into the desired products in good yields and with excellent selectivities in the presence of a rhodium/Naphos catalyst. PMID:25712242

  16. A proposed reaction channel for the synthesis of the superheavy nucleus Z = 109

    E-print Network

    K. Wang; Y. G. Ma; G. L. Ma; Y. B. Wei; X. Z. Cai; J. G. Chen; W. Guo; C. Zhong; W. Q. Shen

    2004-02-28

    We apply a statistical-evaporation model (HIVAP) to calculate the cross sections of superheavy elements, mainly about actinide targets and compare with some available experimental data. A reaction channel $^{30}$Si + $^{243}$Am is proposed for the synthesis of the element Z = 109 and the cross section is estimated.

  17. Synthesis of Terminal Allenes via a Copper-Catalyzed Decarboxylative Coupling Reaction of Alkynyl Carboxylic Acids.

    PubMed

    Lim, Jeongah; Choi, Jinseop; Kim, Han-Sung; Kim, In Seon; Nam, Kye Chun; Kim, Jimin; Lee, Sunwoo

    2016-01-01

    Synthesis of terminal allenes via a copper-catalyzed decarboxylative coupling reaction was developed. Aryl alkynyl carboxylic acid, paraformaldehyde, and dicyclohexylamine were reacted with CuI (20 mol %) in diglyme at 100 °C for 2 h to produce the terminal allene in moderate to good yields. The method showed good functional group tolerance. PMID:26618610

  18. Synthesis, characterization, and CH/CC cleavage reactions of two rhodiumtrispyrazolylborate dihydrides

    E-print Network

    Jones, William D.

    Synthesis, characterization, and C­H/C­C cleavage reactions of two rhodium of Prof. Jerry Trofimenko Keywords: Trispyrazolylborate Rhodium C­H cleavage C­C cleavage Photochemistry dicarbonyl and dihydride rhodium complexes. Preparative routes to rhodium dicarbonyl complexes of the type

  19. Fiber-optic ammonia sensor using Ag/SnO2 thin films: optimization of thickness of SnO2 film using electric field distribution and reaction factor.

    PubMed

    Pathak, Anisha; Mishra, Satyendra K; Gupta, Banshi D

    2015-10-10

    A highly sensitive ammonia gas sensor exploiting the gas sensing characteristics of tin oxide (SnO2) has been reported. The methodology of the sensor is based on the phenomenon of surface plasmon resonance (SPR) with a fiber-optic probe consisting of coatings of silver as a plasmonic material and SnO2 as the sensing layer. The sensing principle relies on the change in refractive index of SnO2 upon its reaction with ammonia gas. The capability of the sensor has been tested for a 10 to 100 ppm concentration range of ammonia gas. To enhance the sensitivity, probes with different thicknesses of SnO2 have been fabricated and characterized for ammonia sensing. It has been found that at a particular thickness the sensitivity is highest. The reason for the highest sensitivity at a particular thickness has been evinced theoretically. The electromagnetic field distribution for the multilayer structure of the probe reveals the enhancement of the evanescent field at the tin oxide-ammonia gas interface, which in turn manifests the highest shift in resonance wavelength at a particular thickness. The selectivity of the probe has been tested for various gases, and it has been found to be most accurate for the sensing of ammonia. A sensor utilizing optical fiber, the SPR technique, and metal oxide as sensing element combines the advantages of a miniaturized probe, online monitoring, and remote sensing on one hand and stability, high sensitivity and selectivity, ruggedness, and low cost on the other. PMID:26479808

  20. Prebiotic synthesis and reactions of nucleosides and nucleotides

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Yanagawa, H.; Hagan, W. J., Jr.

    1983-01-01

    The potential of diiminosuccinonitrile (DISN) as a prebiotic phosphorylating agent is studied. This compound is formed readily by the oxidation of diaminomaleonitrile, a tetramer of HCN. DISN is shown to produce the cyclization of 3'-adenosine monophosphate to adenosine 2',3'-cyclic phosphate in up to 40 percent yield. The DISN-mediated phosphorylation of uridine to uridine monophosphate is determined not to proceed efficiently in aqueous solution. The reaction of DISN and BrCN with uridine-5'-phosphate and uridine is found to result in the formation of 2,2'-anhydronucleotides and 2,2'-anhydronucleosides, respectively, and other reaction products resulting from an initial reaction at the 2' and 3'-hydroxyl groups. Homoionic montmorillonites were employed to study the clay mineral catalysis of the cyclization of adenosine-3'-phosphate.

  1. Hiyama cross-coupling reaction in the stereospecific synthesis of retinoids.

    PubMed

    Montenegro, Javier; Bergueiro, Julián; Saá, Carlos; López, Susana

    2009-01-01

    The first application of the Hiyama reaction to the synthesis of retinoids is reported. A range of organosilicon moieties (siloxanes, silanols and three kinds of "safety-catch" silanols) were successfully coupled, under activation, to obtain trans-retinol or 11-cis-retinol with high yield and stereoselectivity. The advantageous properties of the silicon-based coupling partners and the mild reaction conditions firmly establish the Hiyama reaction as a viable (even superior) alternative to the traditional Suzuki and Stille couplings in the retinoid field. PMID:19067594

  2. Organocatalytic Michael and Friedel-Crafts reactions in enantioselective synthesis of biologically active compounds

    NASA Astrophysics Data System (ADS)

    Maltsev, O. V.; Beletskaya, Irina P.; Zlotin, Sergei G.

    2011-11-01

    Recent applications of organocatalytic Michael and Friedel-Crafts reactions in enantioselective synthesis of biologically active compounds: natural products, pharmaceutical agents and plant protection agents are reviewed. The key mechanisms of stereoinduction, types of organocatalysts and reagents used in these reactions are considered. The material is classified according to the type of newly formed bonds incorporating the asymmetric carbon atom, and the information for the most numerous C-C coupling reactions is systematized according to the natures of the electrophile and the nucleophile. The bibliography includes 433 references. Dedicated to Academician O M Nefedov on the occasion of his 80th birthday.

  3. Synthesis of Zinc Oxide Nanoparticles by the Reaction of Zinc Metal with Ethanol

    NASA Astrophysics Data System (ADS)

    Shah, M. A.

    A novel approach has been described for the synthesis of zinc oxide nanoparticles by a very simple reaction of zinc metal with ethanol at 200°C. The diameters of the nanoparticles range from 50-200 nm. The reaction involves the cleavage of C-O bond of the alcohol, which occurs readily on the zinc metal surface. Addition of ethylenediamine to the reaction yields nanorods, thus acting as a shape-directing agent. A plausible mechanism is proposed for the formation of these nanostructures and it is expected that this synthetic technique can be extended to obtain other metal oxides.

  4. Synergistic rhodium(II) carboxylate and brønsted acid catalyzed multicomponent reactions of enalcarbenoids: direct synthesis of ?-pyrrolylbenzylamines.

    PubMed

    Dawande, Sudam Ganpat; Kanchupalli, Vinaykumar; Lad, Bapurao Sudam; Rai, Jyoti; Katukojvala, Sreenivas

    2014-07-18

    The design of a synergistic rhodium(II) carboxylate and BINOL phosphoric acid catalyzed efficient multicomponent reaction of enaldiazo compounds, arylamines, and aryl aldehydes leading to the first transition-metal-catalyzed direct synthesis of valuable ?-pyrrolylbenzylamines is disclosed. The reaction is proposed to involve a transient ammonium ylide of a new class of electrophilic rhodium enalcarbenoid, its regioselective Mannich reaction, and a cyclocondensation cascade. The methodology was used in a highly diastereoselective synthesis of a binaphthyl based chiral pyrrole. PMID:24988365

  5. Modular Synthesis of Pyrazolones Using an Alkene Aminocarbonylation Reaction.

    PubMed

    Lavergne, Kaitlyn; Bongers, Amanda; Betit, Lyanne; Beauchemin, André M

    2015-07-17

    A variety of pyrazolones were synthesized from enol ethers and hydrazones using a reaction sequence involving aminocarbonylation of enol ethers followed by nucleophile-induced aromatization of the azomethine imines intermediates. Using bases to catalyze the in situ formation of imino isocyanates allowed alkene aminocarbonylation to proceed under milder conditions with reactive substrates and enabled aminocarbonylation reactions of sensitive enol ethers. Aromatization of the azomethine imines could be induced by reduction using NaBH4, or by addition of NH2OH to afford the parent (?)N-H products. PMID:26126788

  6. Dynamics of ammonia exchange with cut grassland: synthesis of results and conclusions of the GRAMINAE Integrated Experiment

    NASA Astrophysics Data System (ADS)

    Sutton, M. A.; Nemitz, E.; Milford, C.; Campbell, C.; Erisman, J. W.; Hensen, A.; Cellier, P.; David, M.; Loubet, B.; Personne, E.; Schjoerring, J. K.; Mattsson, M.; Dorsey, J. R.; Gallagher, M. W.; Horvath, L.; Weidinger, T.; Meszaros, R.; Dämmgen, U.; Neftel, A.; Herrmann, B.; Lehman, B. E.; Flechard, C.; Burkhardt, J.

    2009-01-01

    Improved data on biosphere-atmosphere exchange are fundamental to understanding the production and fate of ammonia (NH3) in the atmosphere. The GRAMINAE Integrated Experiment combined novel measurement and modelling approaches to provide the most comprehensive analysis of the interactions to date. Major inter-comparisons of micrometeorological parameters and NH3 flux measurements using the aerodynamic gradient method and relaxed eddy accumulation (REA) were conducted. These showed close agreement, though the REA systems proved insufficiently precise to investigate vertical flux divergence. Grassland management had a large effect on fluxes: Emissions increased after grass cutting (-50 to 700 ng m-2 s-1 NH3) and after N-fertilization (0 to 3800 ng m-2 sammonia emission from leaf litter are identified as a priority for future research.

  7. MICROWAVE EFFECTS IN ORGANIC SYNTHESIS: MECHANISTIC AND REACTION MEDIUM CONSIDERATIONS

    EPA Science Inventory

    The scope of applications of microwave irradiation relates to a wide spectrum of organic syntheses with numerous benefits (reduction in reaction times, improved purity of products and better yields) encompassing advantages of both thermal and (or) specific non-purely thermal effe...

  8. Synthesis and Reactions of 3-(Nosyloxy)-2-keto Esters.

    PubMed

    Hoffman, Robert V.; Johnson, M. Catherine; Okonya, John F.

    1997-04-18

    A series of 3-(nosyloxy)-2-keto esters 7a-j were prepared from the corresponding alpha-keto esters by conversion to the trimethylsilyl enol ether and reaction with p-nitrobenzenesulfonyl peroxide. Conversion of these materials to 1,2,3-trifunctionalized compounds is described, and comparison of their properties with isomeric 2-(nosyloxy)-3-keto esters is discussed. PMID:11671582

  9. Synthesis of Phenyl-Adducted Cyclodextrin through the Click Reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new derivative of ß-cyclodextrin (CD) has been made incorporating the phenyl group through the use of click reaction. The resulting product exhibits a self-association phenomenon through the formation of inclusion compound between the phenyl group and CD. The product has been characterized by 1H...

  10. A new direct single-molecule observation method for DNA synthesis reaction using fluorescent replication protein A.

    PubMed

    Takahashi, Shunsuke; Kawasaki, Shohei; Miyata, Hidefumi; Kurita, Hirofumi; Mizuno, Takeshi; Matsuura, Shun-ichi; Mizuno, Akira; Oshige, Masahiko; Katsura, Shinji

    2014-01-01

    Using a single-stranded region tracing system, single-molecule DNA synthesis reactions were directly observed in microflow channels. The direct single-molecule observations of DNA synthesis were labeled with a fusion protein consisting of the ssDNA-binding domain of a 70-kDa subunit of replication protein A and enhanced yellow fluorescent protein (RPA-YFP). Our method was suitable for measurement of DNA synthesis reaction rates with control of the ss?DNA form as stretched ss?DNA (+flow) and random coiled ss?DNA (-flow) via buffer flow. Sequentially captured photographs demonstrated that the synthesized region of an ss?DNA molecule monotonously increased with the reaction time. The DNA synthesis reaction rate of random coiled ss?DNA (-flow) was nearly the same as that measured in a previous ensemble molecule experiment (52 vs. 50 bases/s). This suggested that the random coiled form of DNA (-flow) reflected the DNA form in the bulk experiment in the case of DNA synthesis reactions. In addition, the DNA synthesis reaction rate of stretched ss?DNA (+flow) was approximately 75% higher than that of random coiled ss?DNA (-flow) (91 vs. 52 bases/s). The DNA synthesis reaction rate of the Klenow fragment (3'-5'exo-) was promoted by DNA stretching with buffer flow. PMID:24625741

  11. Synthesis and reactions of fluorous carbobenzyloxy (FCbz) derivatives of alpha-amino acids.

    PubMed

    Curran, Dennis P; Amatore, Muriel; Guthrie, David; Campbell, Matthew; Go, Eisan; Luo, Zhiyong

    2003-06-13

    Fluorous carbobenzyloxy ((F)Cbz) reagents RfCH(2)CH(2)C(6)H(4)CH(2)OC(O)OSu (where Su is succinimidoyl and Rf is C(6)F(13) and C(8)F(17)) have been used to make (F)Cbz derivatives of 18 of the 20 natural amino acids. The potential utility of this new family of reagents in both standard fluorous synthesis with spe separation and fluorous quasiracemic synthesis is illustrated with representative reactions of the (F)Cbz-Phe derivatives. PMID:12790566

  12. Ammonia Production Using Pressure Swing Adsorption

    SciTech Connect

    2009-02-01

    This factsheet describes a research project whose overall objective is to develop and demonstrate a technically feasible and commercially viable system that integrates reaction to produce ammonia along with recovery of the products by adsorption separation methods and significantly decrease the energy requirement in ammonia production.

  13. Regeneration of ammonia borane from polyborazylene

    DOEpatents

    Sutton, Andrew; Gordon, John C; Ott, Kevin C; Burrell, Anthony K

    2013-02-05

    Method of producing ammonia borane, comprising providing a reagent comprising a dehydrogenated material in a suitable solvent; and combining the reagent with a reducing agent comprising hydrazine, a hydrazine derivative, or combinations thereof, in a reaction which produces a mixture comprising ammonia borane.

  14. Initial Reaction in CVD Nanotube Synthesis by FT-ICR Shuhei Inoue, Satoshi Yoshinaga and Shigeo Maruyama

    E-print Network

    Maruyama, Shigeo

    Initial Reaction in CVD Nanotube Synthesis by FT-ICR Shuhei Inoue, Satoshi Yoshinaga and Shigeo is necessary to generate high quality SWNTs. In this paper we have explored the basic reaction mechanisms reaction process of transition metal clusters (Fe, Co, Ni) also change in order of atomic number

  15. Basic distinctions between cold- and hot-fusion reactions in the synthesis of superheavy elements

    NASA Astrophysics Data System (ADS)

    Nasirov, A. K.; Muminov, A. I.; Giardina, G.; Mandaglio, G.

    2014-07-01

    Superheavy elements (SHE) of charge number in the range of Z = 106-112 were synthesized in so-called cold-fusion reactions. The smallness of the excitation energy of compound nuclei is the main advantage of cold-fusion reactions. However, the synthesis of SHEs of charge number in the region of Z ? 112 is strongly complicated in cold-fusion reactions by a sharp decrease in the cross section of a compound nucleus formation in the entrance channel because of superiority of quasifission in the competition with complete fusion. Two favorable circumstances contributed to the success of the experiments aimed at the synthesis of the Z = 113-118 elements and performed at the Laboratory of Nuclear Reactions at the Joint Institute for Nuclear Research: large cross sections for the production of a compound nucleus, which are characteristic of hot-fusion reactions, and an increase in the fission barrier for nuclei toward the stability island. The factor that complicates the formation of a compound nucleus in cold-fusion reactions is discussed.

  16. Prebiotic synthesis of histidine

    NASA Technical Reports Server (NTRS)

    Shen, C.; Yang, L.; Miller, S. L.; Oro, J.

    1990-01-01

    The prebiotic formation of histidine (His) has been accomplished experimentally by the reaction of erythrose with formamidine followed by a Strecker synthesis. In the first step of this reaction sequence, the formation of imidazole-4-acetaldehyde took place by the condensation of erythrose and formamidine, two compounds that are known to be formed under prebiotic conditions. In a second step, the imidazole-4-acetaldehyde was converted to His, without isolation of the reaction products by adding HCN and ammonia to the reaction mixture. LC, HPLC, thermospray liquid chromatography-mass spectrometry, and tandem mass spectrometry were used to identify the product, which was obtained in a yield of 3.5% based on the ratio of His/erythrose. This is a new chemical synthesis of one of the basic amino acids which had not been synthesized prebiotically until now.

  17. Reaction Pairing: A Diversity-Oriented Synthesis Strategy for the Synthesis of Diverse Benzofused Sultams

    PubMed Central

    Samarakoon, Thiwanka B.; Loh, Joanna K.; Rolfe, Alan; Le, Lisa S.; Yoon, Sun Young; Lushington, Gerald H.; Hanson, Paul. R.

    2011-01-01

    A reaction pairing strategy centered on utilization of a reaction triad (sulfonylation, SNAr addition and Mitsunobu alkylation) generating skeletally diverse benzofused tricyclic and bicyclic sultams is reported. Pairing sulfonylation and SNAr reactions yields bridged, tricyclic and bicyclic benzofused sultams. Application of the Mitsunobu reaction in a sulfonylation–Mitsunobu–SNAr pairing allows access to benzo-oxathiazocine-1,1-dioxides, while a simple change in the order of pairing to sulfonylation–SNAr–Mitsunobu affords structurally different, benzofused bridged tricyclic sultams. PMID:21899284

  18. Reaction synthesis and processing of nickel and iron aluminides

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1996-12-31

    Composites of Ni and Fe aluminides were obtained by hot pressing and hot extrusion of a blended mixture of Ni and Al or Fe and Al with ceramic phases such as TiC, ZrO{sub 2}, and Al{sub 2}O{sub 3}. Aluminides were analyzed by XRD to determine the phase structures, and optical and scanning electron microscopies were used to determine the grain sizes of the aluminides and dispersion of ceramics. Tensile properties (0.2% YS, UTS, total elong., RIA) were measured on buttonhead and sheet specimens of Ni and Fe aluminides and their composites at room and high temperatures in air at a strain rate of 1. 2x10{sup -3}/s. Tensile properties of Fe-8 wt% Al from partial mechanical alloying and then combustion synthesis compare very well with oxide-dispersed alloys of Fe. Fe aluminides of FeAl and their composites, based on Fe-24 wt% Al from hot pressing of Fe and Al powders with or without ceramic phases, exhibited full densities and uniform grain sizes. Tensile properties of FeAl and composites (hot pressing of elemental powders) were excellent compared to those of FeAl alloys from hot extrusion of water-atomized powders. Fe aluminides were also obtained by hot extrusion of Fe and Al powders at 950, 1000, and 1100 C.

  19. Polymerase chain reaction-mediated gene synthesis: synthesis of a gene coding for isozyme c of horseradish peroxidase.

    PubMed Central

    Jayaraman, K; Fingar, S A; Shah, J; Fyles, J

    1991-01-01

    The synthesis of a gene coding for horseradish peroxidase (HRP, isozyme c; EC 1.11.1.7) is described using a polymerase chain reaction (PCR)-mediated gene synthesis approach developed in our laboratory. In this approach, all the oligonucleotides making up the gene are ligated in a single step by using the two outer oligonucleotides as PCR primers and the crude ligation mixture as the target. The PCR facilitates synthesis and purification of the gene simultaneously. The gene for HRP was synthesized by ligating all 40 oligonucleotides in a single step followed by PCR amplification. The gene was also synthesized from its fragments by using an overlap extension method similar to the procedure as described [Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. (1989) Gene 77, 61-68]. A method for combining different DNA fragments, in-frame, by using the PCR was also developed and used to synthesize the HRP gene from its gene fragments. This method is applicable to the synthesis of even larger genes and to combine any DNA fragments in-frame. After the synthesis, preliminary characterization of the HRP gene was also carried out by the PCR to confirm the arrangement of oligonucleotides in the gene. This was done by carrying out the PCR with several sets of primers along the gene and comparing the product sizes with the expected sizes. The gene and the fragments generated by PCR were cloned in Escherichia coli and the sequence was confirmed by manual and automated DNA sequencing. Images PMID:1851991

  20. Reaction design, discovery, and development as a foundation to function-oriented synthesis.

    PubMed

    Micalizio, Glenn C; Hale, Sarah B

    2015-03-17

    Convergent C-C bond-forming reactions define the fabric of organic synthesis and, when applied in complex molecule synthesis, can have a profound impact on efficiency by decreasing the longest linear sequence of transformations required to convert simple starting materials to complex targets. Despite their well-appreciated strategic significance, campaigns in natural product synthesis typically embrace only a small suite of reactivity to achieve such bond construction (i.e., nucleophilic addition to polarized ?-bonds, nucleophilic substitution, cycloaddition, and metal-catalyzed "cross-coupling"), therefore limiting the sites at which convergent coupling chemistry can be strategically employed. In our opinion, it is far too often that triumphs in the field are defined by chemical sequences that do not address the challenges associated with discovery, development, and production of natural product-inspired agents. We speculated that advancing an area of chemical reactivity not represented in the few well-established strategies for convergent C-C bond formation may lead to powerful new retrosynthetic relationships that could simplify approaches to the syntheses of a variety of different classes of natural products. Our studies ultimately embraced the pursuit of strategies to control the course of metallacycle-mediated "cross-coupling" between substrates containing sites of simple ?-unsaturation (ubiquitous functionality in organic chemistry including alkenes, alkynes, allenes, aldehydes, and imines, among others). In just eight years since our initial publication in this area, we have defined over 20 stereoselective intermolecular C-C bond-forming reactions that provide access to structural motifs of relevance for the synthesis of polyketides, fatty acids, alkaloids, and terpenes, while doing so in a direct and stereoselective fashion. These achievements continue to serve as the foundation of my group's activity in natural product and function-oriented synthesis, where our achievements in reaction development are challenged in the context of complex targets. Among our early efforts, we achieved the most concise synthesis of a benzoquinone ansamycin ever described (macbecin I), and moved beyond this achievement to explore the role of our chemistry in function-oriented synthesis targeting the discovery of natural product-inspired Hsp90 inhibitors. These later efforts have led to the discovery of a uniquely selective benzoquinone ansamycin-inspired Hsp90 inhibitor that lacks the problematic quinone present in the natural series. This achievement was made possible by a concise chemical synthesis pathway that had at its core the application of metallacycle-mediated cross-coupling chemistry. PMID:25668752

  1. Stereoselective synthesis of 4-dehydroxydiversonol employing enantioselective palladium-catalysed domino reactions.

    PubMed

    Tietze, Lutz F; Spiegl, Dirk A; Stecker, Florian; Major, Julia; Raith, Christian; Grosse, Christian

    2008-01-01

    The stereoselective synthesis of 4-dehydroxydiversonol (4) employing enantioselective palladium-catalysed domino processes such as the domino Wacker-Heck and the domino Wacker-carbonylation reaction for the formation of the central chroman moiety is described. Thus, reaction of 8 with palladium(II) trifluoroacetate [Pd(OTFA)2] in the presence of carbon monoxide, methanol and the 2,2'- bis(oxazolin-2-yl)-1,1'-binaphthyl (BOXAX) ligand 17 led to 19 in 80% yield and 96% ee. Similarly, the chroman 7 was prepared using 8 and methyl acrylate (9) as starting material. Hydrogenation of the double bond, oxidation of the benzylic methylene group and intramolecular acylation of chromanone 6 provided the tetrahydroxanthenone core 5, from which the synthesis of 4 was completed. The relative configuration of 4 could be established by crystal structure analysis. PMID:18698572

  2. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    NASA Astrophysics Data System (ADS)

    Yao, Qilu; Lu, Zhang-Hui; Zhang, Zhujun; Chen, Xiangshu; Lan, Yaqian

    2014-12-01

    Ultrafine copper nanoparticles (Cu NPs) within porous silica nanospheres (Cu@SiO2) were prepared via a simple one-pot synthetic route in a reverse micelle system and characterized by SEM, TEM, EDX, XRD, N2 adsorption-desorption, CO-TPD, XPS, and ICP methods. The characterized results show that ultrafine Cu NPs with diameter of around 2 nm are effectively embedded in the center of well-proportioned spherical SiO2 NPs of about 25 nm in diameter. Compared to commercial SiO2 supported Cu NPs, SiO2 nanospheres supported Cu NPs, and free Cu NPs, the synthesized core-shell nanospheres Cu@SiO2 exhibit a superior catalytic activity for the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3) and hydrazine borane (HB, N2H4BH3) under ambient atmosphere at room temperature. The turnover frequencies (TOF) for the hydrolysis of AB and HB in the presence of Cu@SiO2 nanospheres were measured to be 3.24 and 7.58 mol H2 (mol Cu min)-1, respectively, relatively high values for Cu nanocatalysts in the same reaction. In addition, the recycle tests show that the Cu@SiO2 nanospheres are still highly active in the hydrolysis of AB and HB, preserving 90 and 85% of their initial catalytic activity even after ten recycles, respectively.

  3. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    PubMed Central

    Yao, Qilu; Lu, Zhang-Hui; Zhang, Zhujun; Chen, Xiangshu; Lan, Yaqian

    2014-01-01

    Ultrafine copper nanoparticles (Cu NPs) within porous silica nanospheres (Cu@SiO2) were prepared via a simple one-pot synthetic route in a reverse micelle system and characterized by SEM, TEM, EDX, XRD, N2 adsorption-desorption, CO-TPD, XPS, and ICP methods. The characterized results show that ultrafine Cu NPs with diameter of around 2?nm are effectively embedded in the center of well-proportioned spherical SiO2 NPs of about 25?nm in diameter. Compared to commercial SiO2 supported Cu NPs, SiO2 nanospheres supported Cu NPs, and free Cu NPs, the synthesized core-shell nanospheres Cu@SiO2 exhibit a superior catalytic activity for the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3) and hydrazine borane (HB, N2H4BH3) under ambient atmosphere at room temperature. The turnover frequencies (TOF) for the hydrolysis of AB and HB in the presence of Cu@SiO2 nanospheres were measured to be 3.24 and 7.58?mol H2 (mol Cu min)?1, respectively, relatively high values for Cu nanocatalysts in the same reaction. In addition, the recycle tests show that the Cu@SiO2 nanospheres are still highly active in the hydrolysis of AB and HB, preserving 90 and 85% of their initial catalytic activity even after ten recycles, respectively. PMID:25534772

  4. Treatment of ammonia contaminated water by ozone and hydrogen peroxide

    SciTech Connect

    Yuan, F.; Hill, D.O.; Kuo, C.H.

    1995-12-31

    The present research concerns kinetics of oxidation of ammonia by ozone and ozone-hydrogen peroxide mixtures in alkaline solutions. Experiments were carried out at 15 to 35{degrees}C in solutions with pH values varying from 8 to 10 utilizing a stopped-flow spectrophotometer system. Fractions of free ammonia present in acidic and neutral solutions are negligible, and the reaction is very slow. This confirms that only free ammonia can react with ozone in the aqueous phase. The reaction proceeds at moderate rates in the alkaline solutions requiring four moles of ozone to react with each mole of ammonia. The free ammonia is oxidized and converted completely to nitrate in the solutions. The overall reaction between ammonia and ozone is second order with first order in each reactant. The reaction rate constant increases with temperature and pH value of the solution. The average activation energy is 59 Kcal/gmol for all systems investigated at different pH values. The results of the kinetic experiments suggest that the reaction is predominated by the direct oxidation between ammonia and ozone molecules, and that the hydroxyl radical reactions play insignificant roles in the ozonation process. The oxidation rate of ammonia is enhanced considerably in the presence of hydrogen peroxide and ozone mixtures. The formation of hydroxyl radical from interactions between ozone and hydrogen peroxide and the subsequent free radical reactions of ammonia seem important in controlling the destruction rate of free ammonia, as suggested by the results of this study.

  5. Synthesis of o-Aminophenols via a Formal Insertion Reaction of Arynes into Hydroxyindolinones.

    PubMed

    Chen, Zhilong; Wang, Qiu

    2015-12-18

    A novel approach toward the synthesis of sterically hindered o-aminophenols has been achieved by a formal aryne insertion into hydroxyindolinones. This transformation offers a rapid and efficient entry to diverse o-aminophenol scaffolds under mild transition-metal-free conditions. The reaction involves the addition of hydroxyindolinones to arynes followed by a chemo- and regioselective [1,3]-rearrangement. Furthermore, the reactions of N-hydroxyindoles and arynes were found to provide the C3-aryl indole products via an alternative [3,3]-rearrangement pathway. PMID:26646410

  6. Synthesis of novel N-cyclopentenyl-lactams using the Aubé reaction

    PubMed Central

    Shinde, Madhuri V; Ople, Rohini S; Sangtani, Ekta; Gonnade, Rajesh

    2015-01-01

    Summary A novel and convenient method utilizing the Aubé reaction to access a new class of compounds that are similar to carbocyclic nucleosides is reported. The azido alcohol derived from Vince lactam undergoes the Aubé reaction with various cyclic ketones to give cyclopentenyl-substituted lactams. Upon dihydroxylation, this affords the N-cyclopentenyl-lactam compounds in racemic form. Given the numerous uses of nucleosides and related compounds, we were interested in the synthesis of carbocylic nucleoside mimics. The attempts and results are described herein. PMID:26199661

  7. Photocatalytic synthesis of anilides from nitrobenzenes under visible light irradiation: 2 in 1 reaction.

    PubMed

    Zand, Zahra; Kazemi, Foad; Partovi, Adel

    2015-11-01

    An efficient method has been developed for the synthesis of a series of anilides via a two in one reaction of nitrobenzenes with anhydride in the presence of TiO2 as a nanocatalyst and photocatalyst under sunlight or blue LED irradiation. In this method simultaneously, nitrobenzenes convert to the corresponding anilines via photocatalytic reduction on the TiO2 surface, and a condensation of aniline with the anhydride performed on the Lewis acid site of the TiO2 surface. Interestingly amidation step leads to the promotion of better reaction and good selectivity in reduction of nitrocompounds. This method is simple, rapid, high yield, and green. PMID:25744492

  8. Synthesis of Sultams and Related Sulfur Heterocycles Using the Ring-Closing Metathesis Reaction

    E-print Network

    Jimenez, Maria del Sol

    2007-09-19

    the synthesis of ?/ - and ?? -sultams via the Diels-Alder cycloaddition reaction starting from N-benzylaminoalkyl substituted furans. 52 Benzylamines 1.11 and 1.12 were prepared from their respective racemic alcohols by nucleophilic displacement... of their tosylates with benzylamine. These amines were then treated with vinylsulfonyl chloride, forming the sulfonamide intermediates 1.13 and 1.14 that readily underwent the cycloaddition reaction to provide bicyclic sultams 1.15 and 1.16 in high yields as a...

  9. Low-Temperature Synthesis of Actinide Tetraborides by Solid-State Metathesis Reactions

    SciTech Connect

    Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB,), plutonium tetraboride (PUB,) and thorium tetraboride (ThB{sub 4}) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to {approx_equal}850 C. As an example, when UCl{sub 4}, is reacted with an excess of MgB{sub 2}, at 850 C, crystalline UB, is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl{sub 3}, as the initial step in the reaction. The UB, product is purified by washing water and drying.

  10. Benzannulation via the Reaction of Ynamides and Vinylketenes. Application to the Synthesis of Highly Substituted Indoles

    PubMed Central

    Lam, Tin Yiu; Wang, Yu-Pu

    2013-01-01

    A two-stage “tandem strategy” for the synthesis of indoles with a high level of substitution on the six-membered ring is described. Benzannulation based on the reaction of cyclobutenones with ynamides proceeds via a cascade of four pericyclic reactions to produce multiply substituted aniline derivatives in which the position ortho to the nitrogen can bear a wide range of functionalized substituents. In the second stage of the tandem strategy, highly substituted indoles are generated via acid-, base-, and palladium-catalyzed cyclization and annulation processes. PMID:23952525

  11. Asymmetric Synthesis of Fully Substituted Cyclopentane-Oxindoles through an Organocatalytic Triple Michael Domino Reaction

    PubMed Central

    Zou, Liang-Hua; Philipps, Arne R; Raabe, Gerhard; Enders, Dieter

    2015-01-01

    An efficient, highly stereoselective asymmetric synthesis of fully functionalized cyclopentanes bearing an oxindole moiety and several other functional groups in one pot has been developed. Key step is an organocatalytic triple Michael domino reaction forming three C–C bonds and six stereocenters, including a quaternary one. Starting from equimolar amounts of simple substrates, a high molecular complexity can be reached after a Wittig olefination in one pot. The new protocol can easily be scaled up to gram amounts. PMID:25470781

  12. H(3)PW(12)O(40)-catalyzed multicomponent reaction for efficient synthesis of highly substituted piperidines.

    PubMed

    Khaksar, Samad; Baghbanian, Seyed Meysam; Barsan, Nastaran

    2014-01-01

    A simple, diastereoselective, inexpensive, and efficient route for the synthesis of highly functionalized piperidines by the condensation of ?-keto-esters, aromatic aldehydes and anilines using H3PW12O40 as a catalyst is described. The catalyst could be easily recovered after completion of the reaction and reused without a considerable change in its activity. Furthermore, in most cases the piperidine precipitates out of solution. PMID:24372051

  13. A Review of Study on Thermal Energy Transport System by Synthesis and Decomposition Reactions of Methanol

    NASA Astrophysics Data System (ADS)

    Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya

    The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid-phase chemical reaction by varying the development time of the catalyst. Investigation results of the catalyst such as surface area, pore radius, lattice size, and photographs of scanning electron microscope (SEM) were also given. In the simulation of energy transport efficiency of this system, by simulating the energy transfer system using two-step liquid phase methanol decomposition and synthetic reactions, and comparing with the technology so far, it can be expected that an innovative energy transfer system is possible to realize.

  14. Stereoselective synthesis of multisubstituted alkenes via ring opening reactions of cyclopropenes. Enantioselective copper catalysed asymmetric reduction of alkenylheteroarenes. 

    E-print Network

    Wang, Yi

    2010-01-01

    A catalytic organometallic addition-ring opening sequence of cyclopropenes that enables the efficient and highly stereoselective synthesis of multisubstituted alkenes has been developed. A possible mechanism of organoaluminium reaction is proposed...

  15. Witting Reaction Using a Stabilized Phosphorus Ylid: An Efficient and Stereoselective Synthesis of Ethyl Trans-Cinnamate

    ERIC Educational Resources Information Center

    Speed, Traci J.; Mclntyre, Jean P.; Thamattoor, Dasan M.

    2004-01-01

    An instructive experiment for the synthesis of ethyl trans-cinnamate, a pleasant smelling ester used in perfumery and flavoring by the reaction of benzaldehyde with the stable ylid triphenylphosphorane is described. The synthesis, workup and characterization of trans-cinnamate may be accomplished in a single laboratory session with commonly…

  16. A simple synthesis of urchin-like Pt-Ni bimetallic nanostructures as enhanced electrocatalysts for the oxygen reduction reaction.

    PubMed

    Choi, Kwang-Hyun; Jang, Youngjin; Chung, Dong Young; Seo, Pilseon; Jun, Samuel Woojoo; Lee, Ji Eun; Oh, Myoung Hwan; Shokouhimehr, Mohammadreza; Jung, Namgee; Yoo, Sung Jong; Sung, Yung-Eun; Hyeon, Taeghwan

    2016-01-11

    The synthesis of urchin-like Pt-Ni bimetallic nanostructures is achieved by a controlled one-pot synthesis. Pt-Ni nanostructures have superior oxygen reduction reaction activities in both with and without specific anion adsorption electrolytes due to the geometric and alloying effects. PMID:26553584

  17. Mass Spectroscopy of Chemical Reaction of 3d Metal Clusters Involved in Chemical Vapor Deposition Synthesis of Carbon Nanotubes

    E-print Network

    Maruyama, Shigeo

    nanotubes (CNTs), 1) which were discovered in 1991, are classified into two types: single-walled carbon Synthesis of Carbon Nanotubes Shuhei Inoue* and Shigeo Maruyama Department of Mechanical Engineering importance. For example, these reactions are involved in the synthesis of single-walled carbon nanotubes

  18. Efficient synthesis of dihydropyrimidinones via a three-component Biginelli-type reaction of urea, alkylaldehyde and arylaldehyde

    PubMed Central

    Qu, Haijun; Li, Xuejian; Mo, Fan

    2013-01-01

    Summary A one-pot three-component synthesis of dihydropyrimidinones via a molecular iodine-catalyzed tandem reaction of simple readily available mono-substituted urea, alkylaldehyde, and arylaldehyde has been developed. The reaction proceeds with high chemo- and regioselectivity to give highly diverse dihydropyrimidinones in reasonable yields under mild reaction conditions. Moreover, the first catalytic enantioselective version of this reaction was also realized by using chiral spirocyclic SPINOL-phosphoric acids. PMID:24367449

  19. Samarium Iodide-Mediated Reformatsky Reactions for the Stereoselective Preparation of ?-hydroxy-?-amino Acids: Synthesis of Isostatine and Dolaisoleucine

    PubMed Central

    Nelson, Christopher G.; Burke, Terrence R.

    2011-01-01

    The synthesis of ?-hydroxy-?-amino acids via SmI2-mediated Reformatsky reactions of ?-chloroacetyloxazolidinones with aminoaldehydes is reported. Diastereoselective coupling is demonstrated to depend on the absolute configuration of the Evans chiral auxiliary employed in the reaction, allowing erythro or threo products to be obtained selectively. The potential utility of the methodology is exemplified by the facile synthesis of biologically relevant N-Boc-isostatine (2b) and N-Boc-dolaisoleucine (3c). PMID:22136325

  20. Samarium iodide-mediated Reformatsky reactions for the stereoselective preparation of ?-hydroxy-?-amino acids: synthesis of isostatine and dolaisoleucine.

    PubMed

    Nelson, Christopher G; Burke, Terrence R

    2012-01-01

    The synthesis of ?-hydroxy-?-amino acids via SmI(2)-mediated Reformatsky reactions of ?-chloroacetyloxazolidinones with aminoaldehydes is reported. Diastereoselective coupling is demonstrated to depend on the absolute configuration of the Evans chiral auxiliary employed in the reaction, allowing erythro or threo products to be obtained selectively. The potential utility of the methodology is exemplified by the facile synthesis of biologically relevant N-Boc-isostatine (2b) and N-Boc-dolaisoleucine (3c). PMID:22136325

  1. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei

    SciTech Connect

    Wang Ning; Scheid, Werner; Wu Xizhen; Liu Min; Li Zhuxia

    2006-10-15

    The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

  2. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei

    E-print Network

    Ning Wang; Xizhen Wu; Zhuxia Li; Min Liu; Werner Scheid

    2006-09-18

    The Skyrme energy-density functional approach has been extended to study the massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parameterized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with $Z_1Z_2reactions, for example, the $^{238}$U-induced reactions and $^{48}$Ca+$^{208}$Pb the capture excitation functions have been reproduced remarkable well. The influence of structure effects in the reaction partners on the capture cross sections are studied with our parameterized barrier distribution. Through comparing the reactions induced by double-magic nucleus $^{48}$Ca and by $^{32}$S and $^{35}$Cl, the 'threshold-like' behavior in the capture excitation function for $^{48}$Ca induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with $^{36}$S, $^{37}$Cl, $^{48}$Ca and $^{50}$Ti bombarding on $^{248}$Cm, $^{247,249}$Bk, $^{250,252,254}$Cf and $^{252,254}$Es, and as well as the reactions lead to the same compound nucleus with Z=120 and N=182 are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

  3. Hangman corroles: efficient synthesis and oxygen reaction chemistry.

    PubMed

    Dogutan, Dilek K; Stoian, Sebastian A; McGuire, Robert; Schwalbe, Matthias; Teets, Thomas S; Nocera, Daniel G

    2011-01-12

    The construction of a new class of compounds--the hangman corroles--is provided efficiently by the modification of macrocyclic forming reactions from bilanes. Hangman cobalt corroles are furnished in good yields from a one-pot condensation of dipyrromethane with the aldehyde of a xanthene spacer followed by metal insertion using microwave irradiation. In high oxidation states, X-band EPR spectra and DFT calculations of cobalt corrole axially ligated by chloride are consistent with the description of a Co(III) center residing in the one-electron oxidized corrole macrocycle. These high oxidation states are likely accessed in the activation of O-O bonds. Along these lines, we show that the proton-donating group of the hangman platform works in concert with the redox properties of the corrole to enhance the catalytic activity of O-O bond activation. The hangman corroles show enhanced activity for the selective reduction of oxygen to water as compared to their unmodified counterparts. The oxygen adduct, prior to oxygen reduction, is characterized by EPR and absorption spectroscopy. PMID:21142043

  4. Reaction calorimetry study of the liquid-phase synthesis of tert-butyl methyl ether

    SciTech Connect

    Sola, L.; Pericas, M.A.; Cunill, F.; Iborra, M. . Dept. d'Enginyeria Quimica)

    1994-11-01

    The liquid-phase addition of methanol to isobutene to give tert-butyl methyl ether (MTBE) on the ion-exchange resin Lewatit K2631 has been studied in a calorimetric reactor. Heat capacity of MTBE and enthalpy of the MTBE synthesis reaction in the temperature range 312--333 K have been determined. MTBE heat capacity in the liquid phase has been found to obey the equation c[sub P] (J/mol[center dot]K) = 472.34 [minus] 2.468(T/K) + 0.005071(T/K)[sup 2]. At 298 K the standard molar reaction enthalpy is [Delta]H[degree] = [minus]33.8 kJ/mol. A method to estimate apparent activation energies from heat flow rate in a given reaction has been developed and proved to be valid for the MTBE synthesis. Using this method, an apparent activation energy of 91.1--95.2 kJ/mol is calculated. A [minus]3.8 kJ/mol value has been found for the adsorption enthalpy of methanol on the ion-exchange resin Lewatit K2631 by a combination of reaction calorimetry and thermogravimetry. This allows the calculation of an activation energy on the gel phase of the resin of 91 kJ/mol.

  5. Dearomative Indole (3 + 2) Reactions with Azaoxyallyl Cations – New Method for the Synthesis of Pyrroloindolines

    PubMed Central

    2015-01-01

    Herein, we report the first examples of the synthesis of pyrroloindolines by means of (3 + 2) dearomative annulation reactions between 3-substituted indoles and highly reactive azaoxyallyl cations. Computational studies using density functional theory (DFT) (B3LYP-D3/6-311G**++) support a stepwise reaction pathway in which initial C–C bond formation takes place at C3 of indole, followed by ring closure to give the observed products. Insights gleaned from these calculations indicate that the solvent, either TFE or HFIP, can stabilize the transition state through H-bonding interactions with oxygen of the azaoxyallyl cation and other relevant intermediates, thereby increasing the rates of these reactions. PMID:26562355

  6. Dearomative Indole (3 + 2) Reactions with Azaoxyallyl Cations - New Method for the Synthesis of Pyrroloindolines.

    PubMed

    DiPoto, Maria C; Hughes, Russell P; Wu, Jimmy

    2015-12-01

    Herein, we report the first examples of the synthesis of pyrroloindolines by means of (3 + 2) dearomative annulation reactions between 3-substituted indoles and highly reactive azaoxyallyl cations. Computational studies using density functional theory (DFT) (B3LYP-D3/6-311G**++) support a stepwise reaction pathway in which initial C-C bond formation takes place at C3 of indole, followed by ring closure to give the observed products. Insights gleaned from these calculations indicate that the solvent, either TFE or HFIP, can stabilize the transition state through H-bonding interactions with oxygen of the azaoxyallyl cation and other relevant intermediates, thereby increasing the rates of these reactions. PMID:26562355

  7. Synthesis and reactions of a nucleoside derivative of phosphoric sulfonic anhydride. Studies related to the mechanisms of coupling reactions in the chemical synthesis of oligodeoxyribonucleotides by phosphotriester procedures.

    PubMed Central

    Dabkowski, W; Skrzypczynski, Z; Michalski, J; Piel, N; McLaughlin, L W; Cramer, F

    1984-01-01

    The synthesis of a model compound, diphenylphosphoric toluene-p-sulfonic anhydride, an arylsubstituted phosphoric sulfonic mixed anhydride, is described. Using the same procedure a thymidyl substituted derivative was prepared. The phosphoric sulfonic anhydride is the presumed intermediate in oligonucleotide coupling reactions involving phosphodiester activation by arenesulfonyl derivatives. This mixed anhydride reacts with a variety of nucleophiles. It can be converted to phophotriester derivatives in the presence of simple alcohols. Phosphotriester formation using the 5'-hydroxyl of a thymidine derivative requires additionally a catalyst such as N-methylimidazole. The reactive intermediate produced upon the addition of N-methylimidazole to the phosphoric sulfonic anhydride has been observed spectroscopically using 31P-NMR. PMID:6549065

  8. Methanol synthesis on ZnO(0001{sup ¯}). IV. Reaction mechanisms and electronic structure

    SciTech Connect

    Frenzel, Johannes Marx, Dominik

    2014-09-28

    Methanol synthesis from CO and H{sub 2} over ZnO, which requires high temperatures and high pressures giving rise to a complex interplay of physical and chemical processes over this heterogeneous catalyst surface, is investigated using ab initio simulations. The redox properties of the surrounding gas phase are known to directly impact on the catalyst properties and thus, set the overall catalytic reactivity of this easily reducible oxide material. In Paper III of our series [J. Kiss, J. Frenzel, N. N. Nair, B. Meyer, and D. Marx, J. Chem. Phys. 134, 064710 (2011)] we have qualitatively shown that for the partially hydroxylated and defective ZnO(0001{sup ¯}) surface there exists an intricate network of surface chemical reactions. In the present study, we employ advanced molecular dynamics techniques to resolve in detail this reaction network in terms of elementary steps on the defective surface, which is in stepwise equilibrium with the gas phase. The two individual reduction steps were investigated by ab initio metadynamics sampling of free energy landscapes in three-dimensional reaction subspaces. By also sampling adsorption and desorption processes and thus molecular species that are in the gas phase but close to the surface, our approach successfully generated several alternative pathways of methanol synthesis. The obtained results suggest an Eley-Rideal mechanism for both reduction steps, thus involving “near-surface” molecules from the gas phase, to give methanol preferentially over a strongly reduced catalyst surface, while important side reactions are of Langmuir-Hinshelwood type. Catalyst re-reduction by H{sub 2} stemming from the gas phase is a crucial process after each reduction step in order to maintain the catalyst's activity toward methanol formation and to close the catalytic cycle in some reaction channels. Furthermore, the role of oxygen vacancies, side reactions, and spectator species is investigated and mechanistic details are discussed based on extensive electronic structure analysis.

  9. Methanol synthesis on ZnO(000overline{1}). IV. Reaction mechanisms and electronic structure

    NASA Astrophysics Data System (ADS)

    Frenzel, Johannes; Marx, Dominik

    2014-09-01

    Methanol synthesis from CO and H2 over ZnO, which requires high temperatures and high pressures giving rise to a complex interplay of physical and chemical processes over this heterogeneous catalyst surface, is investigated using ab initio simulations. The redox properties of the surrounding gas phase are known to directly impact on the catalyst properties and thus, set the overall catalytic reactivity of this easily reducible oxide material. In Paper III of our series [J. Kiss, J. Frenzel, N. N. Nair, B. Meyer, and D. Marx, J. Chem. Phys. 134, 064710 (2011)] we have qualitatively shown that for the partially hydroxylated and defective ZnO(000overline{1}) surface there exists an intricate network of surface chemical reactions. In the present study, we employ advanced molecular dynamics techniques to resolve in detail this reaction network in terms of elementary steps on the defective surface, which is in stepwise equilibrium with the gas phase. The two individual reduction steps were investigated by ab initio metadynamics sampling of free energy landscapes in three-dimensional reaction subspaces. By also sampling adsorption and desorption processes and thus molecular species that are in the gas phase but close to the surface, our approach successfully generated several alternative pathways of methanol synthesis. The obtained results suggest an Eley-Rideal mechanism for both reduction steps, thus involving "near-surface" molecules from the gas phase, to give methanol preferentially over a strongly reduced catalyst surface, while important side reactions are of Langmuir-Hinshelwood type. Catalyst re-reduction by H2 stemming from the gas phase is a crucial process after each reduction step in order to maintain the catalyst's activity toward methanol formation and to close the catalytic cycle in some reaction channels. Furthermore, the role of oxygen vacancies, side reactions, and spectator species is investigated and mechanistic details are discussed based on extensive electronic structure analysis.

  10. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher ?13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of ?13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ?31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of ?13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic compounds is critical for understanding deep subsurface ecosystems and the origin of organic compounds on Mars and other planets.

  11. Reaction parameters for the synthesis of N,N-dimethyl fatty hydrazides from oil.

    PubMed

    Ahmad, Norashikin; Azizul Hasan, Zafarizal Aldrin; Hassan, Hazimah Abu; Ahmad, Mansor; Zin Wan Yunus, Wan Md

    2015-01-01

    Hydrazide derivatives have been synthesized from methyl esters, hydrazones and vegetable oils. They are important due to their diverse applications in pharmaceutical products, detergents as well as in oil and gas industries. The chemical synthesis of fatty hydrazides is well-established; however, only a few publications described the synthesis of fatty hydrazide derivatives, particularly, when produced from refined, bleached and deodorized palm olein. Here, the synthesis and characterization of N,N-dimethyl fatty hydrazides are reported. The N,N-dimethyl fatty hydrazides was successfully synthesized from fatty hydrazides and dimethyl sulfate in the presence of potassium hydroxide with the molar ratio of 1:1:1, 6 hours reaction time and 80? reaction temperature in ethanol. The product yield and purity were 22% and 89%, respectively. The fatty hydrazides used were synthesized from refined, bleached and deodorized palm olein with hydrazine monohydrate at pH 12 by enzymatic route. Fourier transform infrared, gas chromatography and nuclear magnetic resonance (NMR) spectroscopy techniques were used to determine the chemical composition of N,N-dimethyl fatty hydrazides. Proton NMR confirmed the product obtained were N,N-dimethyl fatty hydrazides. PMID:25519290

  12. Synthesis of chemically-modified single-walled carbon nanotubes by counter-current ammonia gas injection into the induction thermal plasma process

    NASA Astrophysics Data System (ADS)

    Shahverdi, Ali

    Pristine single-walled carbon nanotubes (SWCNTs) are poorly dispersible and insoluble in many solvents and need to be chemically modified prior to their use in many applications. This work is focused on the investigation of the synthesis of chemically modified SWCNTs material through an in situ approach. The main objectives of the presented research are: 1) to explore the in situ chemical process during the synthesis of SWCNT and 2) to closely examine the effect of a reactive environment on SWCNTs. Effects of the catalyst type and content on the SWCNTs final product, synthesized by induction thermal plasma (ITP), were studied to replace toxic cobalt (Co) in the feedstock. In this regard, three different catalyst mixtures (i.e. Ni-Y2O3, Ni-Co-Y2O3, and Ni-Mo-Y2O3) were used. Experimental results showed that the catalyst type affects the quality of the SWCNT final product. Similar quality SWCNTs can be produced when the same amount of Co was replaced by Ni. Moreover, the results observed in this experimental work were further explained by thermodynamic calculation results. Thermogravimetry (TG) was used throughout the work to characterize the SWCNTs product. TG was firstly standardized by studying the effects of three main instrumental parameters (temperature ramp, TR, initial mass of the sample, IM, and gas flow rate, FR) on the Tonset and full-width half maximum (FWHM) obtained from TG and derivative TG graphs of carbon black, respectively. Therefore, a two-level factorial statistical design was performed. The statistical analysis showed that the effect of TR, IM, and to a lower extent, FR, is significant on FWHM and insignificant on Tonset. A methodology was then developed based upon the SWCNTs synthesis using the ITP system, through an in situ chemistry approach. Ammonia (NH3) was selected and counter-currently injected into the ITP reactor at three different flow rates and by four different nozzle designs. Numerical simulation indicated a better mixing of NH3 in the ITP reactor when a certain nozzle was used. The experimental results showed the increase of D-band intensity in the Raman spectra of SWCNT samples upon the NH3 injection. NH3 could increase the nitrogen content of the SWCNTs final product up to 10 times. The SWCNTs sample treated with 15 vol% NH3 showed an enhanced dispersibility in Dimethylformamide and Isopropanol. Onion-like and planar carbon nanostructures were also observed. Complementary characterization on the SWCNT samples treated by 15 vol% NH3 indicated the surface modification of nanotubes. Metallic tubes showed a higher reactivity with NH3 than semiconducting ones. The model including the reactor thermo-flow field and NH3 thermal decomposition kinetics suggested a two-step SWCNT surface modification in which nanotubes firstly react with H and NH2 intermediates and later, NH3 chemisorbs on the nanotubes. The model also suggested that the intermediate species, like NNH and N2H2, play a role primarily in driving the NH3 decomposition rather than the chemical modification of SWCNTs. Keywords: Single-walled carbon nanotube, Induction thermal plasma, Thermogravimetry, Kinetic, Computational fluid dynamic, Thermodynamic, modification, Functionalization

  13. Copper-mediated tandem reaction of ?-ketoesters/ketones with tertiary amines for the synthesis of 2,3-dihydrofurans.

    PubMed

    Guo, Shengmei; Lu, Lin; Gong, Jiuhan; Zhu, Zheng; Xu, Feng; Wei, Zhenhong; Cai, Hu

    2015-04-21

    A copper-mediated tandem reaction of ?-ketoesters/ketones with tertiary amines was achieved, which provides a simple and efficient approach to the synthesis of 2,3-dihydrofuran derivatives. In this tandem reaction, the tertiary amine not only offers the methylene moiety but also serves as the base. PMID:25785570

  14. Brønsted Acid-Catalyzed Three-Component Reaction of Anilines, ?-Oxoaldehydes, and ?-Angelicalactone for the Synthesis of Complex Pyrrolidones.

    PubMed

    Huo, Congde; Yuan, Yong

    2015-12-18

    A green and efficient three-component reaction of easily available anilines, ?-oxoaldehydes, and ?-angelicalactone was developed for the synthesis of highly functionalized pyrrolidones using dilute sulfuric acid as the catalyst. Products were obtained in good to high yields at room temperature and under solvent-free conditions. The reaction could also be performed on a multigram scale with the same efficiency. PMID:26619185

  15. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions

    NASA Technical Reports Server (NTRS)

    McCollom, T. M.; Ritter, G.; Simoneit, B. R.

    1999-01-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  16. Development of a Quantitative Real-Time Polymerase Chain Reaction Assay to Target a Novel Group of Ammonia-Producing Bacteria Found in Poultry Litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia production in poultry houses has serious implications for flock health and performance, nutrient value of poultry litter, and energy costs for running poultry operations. The urease enzyme is responsible for the final step in the conversion of organic N (specifically uric acid and urea) to ...

  17. Comparison of solid-state reaction and modified citrate process for Bi-2212 ceramics synthesis

    NASA Astrophysics Data System (ADS)

    Pignon, B.; Veron, E.; Noudem, J.; Ruyter, A.; Ammor, L.; Monot-Laffez, I.

    2006-02-01

    Bi2Sr2CaCu2O8+d (Bi-2212) superconductive ceramics powders were prepared using a modified citrate process which consists in forming powders from a gel. The obtained powders were characterised by X-ray diffraction and scanning electronic microscopy in order to determine their phase purity and their microstructure. Dilatometric tests have been carried out to study the sintering behaviour. The magnetic and resistivity curves of the investigated compositions will be also discussed. The obtained results were systematically confronted with the ones obtained from powders synthesized by the conventional solid-state reaction in the same conditions of temperature and calcination time. It has been found that the densification of Bi-2212 is very weak during sintering whatever the synthesis process. In both cases the critical temperature was determined approximately at 80 K but the comparison shows that the modified citrate process is an interesting way of elaboration in terms of purity, homogeneity and synthesis time.

  18. A General Strategy for Nanohybrids Synthesis via Coupled Competitive Reactions Controlled in a Hybrid Process

    NASA Astrophysics Data System (ADS)

    Wang, Rongming; Yang, Wantai; Song, Yuanjun; Shen, Xiaomiao; Wang, Junmei; Zhong, Xiaodi; Li, Shuai; Song, Yujun

    2015-03-01

    A new methodology based on core alloying and shell gradient-doping are developed for the synthesis of nanohybrids, realized by coupled competitive reactions, or sequenced reducing-nucleation and co-precipitation reaction of mixed metal salts in a microfluidic and batch-cooling process. The latent time of nucleation and the growth of nanohybrids can be well controlled due to the formation of controllable intermediates in the coupled competitive reactions. Thus, spatiotemporal-resolved synthesis can be realized by the hybrid process, which enables us to investigate nanohybrid formation at each stage through their solution color changes and TEM images. By adjusting the bi-channel solvents and kinetic parameters of each stage, the primary components of alloyed cores and the second components of transition metal doping ZnO or Al2O3 as surface coatings can be successively formed. The core alloying and shell gradient-doping strategy can efficiently eliminate the crystal lattice mismatch in different components. Consequently, varieties of gradient core-shell nanohybrids can be synthesized using CoM, FeM, AuM, AgM (M = Zn or Al) alloys as cores and transition metal gradient-doping ZnO or Al2O3 as shells, endowing these nanohybrids with unique magnetic and optical properties (e.g., high temperature ferromagnetic property and enhanced blue emission).

  19. A General Strategy for Nanohybrids Synthesis via Coupled Competitive Reactions Controlled in a Hybrid Process

    PubMed Central

    Wang, Rongming; Yang, Wantai; Song, Yuanjun; Shen, Xiaomiao; Wang, Junmei; Zhong, Xiaodi; Li, Shuai; Song, Yujun

    2015-01-01

    A new methodology based on core alloying and shell gradient-doping are developed for the synthesis of nanohybrids, realized by coupled competitive reactions, or sequenced reducing-nucleation and co-precipitation reaction of mixed metal salts in a microfluidic and batch-cooling process. The latent time of nucleation and the growth of nanohybrids can be well controlled due to the formation of controllable intermediates in the coupled competitive reactions. Thus, spatiotemporal-resolved synthesis can be realized by the hybrid process, which enables us to investigate nanohybrid formation at each stage through their solution color changes and TEM images. By adjusting the bi-channel solvents and kinetic parameters of each stage, the primary components of alloyed cores and the second components of transition metal doping ZnO or Al2O3 as surface coatings can be successively formed. The core alloying and shell gradient-doping strategy can efficiently eliminate the crystal lattice mismatch in different components. Consequently, varieties of gradient core-shell nanohybrids can be synthesized using CoM, FeM, AuM, AgM (M = Zn or Al) alloys as cores and transition metal gradient-doping ZnO or Al2O3 as shells, endowing these nanohybrids with unique magnetic and optical properties (e.g., high temperature ferromagnetic property and enhanced blue emission). PMID:25818342

  20. Synthesis of marine polyacetylenes callyberynes A-C by transition-metal-catalyzed cross-coupling reactions to sp centers.

    PubMed

    López, Susana; Fernandez-Trillo, Francisco; Midón, Pilar; Castedo, Luis; Saa, Carlos

    2006-03-31

    Efficient total syntheses of the sponge-derived hydrocarbon polyacetylenes callyberynes A-C have been achieved using metal-catalyzed cross-coupling reactions of highly unsaturated 1,3-diyne fragments as the key steps, namely: Cadiot-Chodkiewicz reaction under Alami's optimized conditions (sp-sp), sequential Sonogashira reaction of a cis,cis-divinyl dihalide (sp2-sp), and Kumada-Corriu reaction of an unactivated alkyl iodide (sp3-sp). This last approach constitutes the first application of a metal-catalyzed sp3-sp Kumada-Corriu cross-coupling reaction to the synthesis of a natural product. PMID:16555835

  1. Fusion reactions and experimental approaches to the synthesis of superheavy nuclei

    SciTech Connect

    Yeremin, A. V.; Utyonkov, V. K.; Oganessian, Yu. Ts.

    1998-02-15

    The question whether the asymmetric actinide based heavy ion reactions could be used for the synthesis of heavy (Z{>=}106) nuclides is essential from the point of view of the study of limitation on fusion, it is also important in such reactions new nuclides close to the magic number N=162 can be produced. Thus as the problem of a hindrance to fusion still remains unsolved the high excitation energy of the compound nucleus looks to be an obvious obstacle to using these reactions. Using the gas-filled recoil separator and electrostatic recoil separator VAS-SILISSA installed at the beam lines of the U-400 heavy ion cyclotron of the FLNR JINR we investigated the fusion reactions leading to 102, 103, 104, 105 and heaviest isotopes of the 106, 108 and 110 elements. The analysis of the measured cross-sections did not reveal any evidence of a hindrance to fusion at the ion bombarding energy close to the Coulomb barrier. {sup 48}Ca+{sup 232}Th{yields}{sup 280}110*, {sup 48}Ca+{sup 238}U{yields}{sup 286}112*, {sup 48}Ca+{sup 244}Pu{yields}{sup 292}114* appear to be the best reactions from the point of view of their cross-sections.

  2. Neutral and Cationic Alkyl Tantalum Imido Complexes: Synthesis and Migratory Insertion Reactions

    PubMed Central

    Anderson, Laura L.; Schmidt, Joseph A. R.; Arnold, John; Bergman, Robert G.

    2008-01-01

    The synthesis and reactivity of dibenzyl cationic tantalum imido complexes is described. The trialkyl tantalum imido compounds Bn3Ta=NCMe3 (1) and Np3Ta=NCMe3 (2) were synthesized as starting materials for the study of dialkyl cationic tantalum imido complexes. Compound 1 undergoes insertion reactions with diisopropylcarbodiimide and 2,6-dimethylphenylisocyanide to give (bisamidinate)imido complex 5 and (bisimino-acyl)imido complex 6, respectively. Treatment of compound 1 with B(C6F5)3 gives the zwitterionic tantalum complex [Bn2Ta=NCMe3][BnB(C6F5)3] (7) which is stabilized by ?6-coordination of the benzyl triaryl borate anion. Coordination of the aryl anion can be displaced by three equivalents of pyridine to give the Lewis base complex 8. Treatment of compound 1 with [Ph3C][B(C6F5)4] gives the cationic tantalum imido complex [Bn2Ta=NCMe3][B(C6F5)4] (3). This salt forms insoluble aggregates unless trapped by THF coordination or an insertion reaction with an alkyne or an alkene. Cation 3 undergoes migratory insertion reactions with diphenylacetylene, phenylacetylene, norbornene, and cis-cyclooctene to give the corresponding alkenyl or modified alkyl imido complexes. The characterization of these products and the significance of these insertion reactions with respect to Ziegler-Natta polymerizations and hydroamination reactions are described. PMID:19079787

  3. Radical Coupling Reactions in Lignin Synthesis: A Density Functional Theory Study

    SciTech Connect

    Sangha, A. K.; Parks, J. M.; Standaert, R. F.; Ziebell, A.; Davis, M.; Smith, J. C.

    2012-04-26

    Lignin is a complex, heterogeneous polymer in plant cell walls that provides mechanical strength to the plant stem and confers resistance to degrading microbes, enzymes, and chemicals. Lignin synthesis initiates through oxidative radical-radical coupling of monolignols, the most common of which are p-coumaryl, coniferyl, and sinapyl alcohols. Here, we use density functional theory to characterize radical-radical coupling reactions involved in monolignol dimerization. We compute reaction enthalpies for the initial self- and cross-coupling reactions of these monolignol radicals to form dimeric intermediates via six major linkages observed in natural lignin. The 8-O-4, 8-8, and 8-5 coupling are computed to be the most favorable, whereas the 5-O-4, 5-5, and 8-1 linkages are less favorable. Overall, p-coumaryl self- and cross-coupling reactions are calculated to be the most favorable. For cross-coupling reactions, in which each radical can couple via either of the two sites involved in dimer formation, the more reactive of the two radicals is found to undergo coupling at its site with the highest spin density.

  4. Vinylogous Nicholas reactions in the synthesis of bi- and tricyclic cycloheptynedicobalt complexes.

    PubMed

    Kolodziej, Izabela; Green, James R

    2015-11-28

    The Lewis acid mediated intramolecular Nicholas reactions of allylic acetate enyne-Co2(CO)6 complexes afford cycloheptenyne-Co2(CO)6 complexes in three manifestations. Electron rich aryl substituted alkyne complexes give tricyclic 6,7,x-benzocycloheptenyne complexes, with x = 5, 6, or 7. Allylsilane substituted complexes afford exo methylene bicyclic x,7-cycloheptenyne complexes (x = 6,7). The allyl acetate function may also be replaced by a benzylic acetate, to afford dibenzocycloheptyne-Co2(CO)6 complexes. Following reductive complexation, the methodology may be applied to the synthesis of the icetexane diterpene carbon framework. PMID:26365914

  5. Precision synthesis of functional materials via RAFT polymerization and click-type chemical reactions

    NASA Astrophysics Data System (ADS)

    Flores, Joel Diez

    2011-12-01

    The need to tailor polymeric architectures with specific physico-chemical properties via the simplest, cleanest, and most efficient synthetic route possible has become the ultimate goal in polymer synthesis. Recent progress in macromolecular science, such as the discoveries of controlled/"living" free radical polymerization (CRP) methods, has brought about synthetic capabilities to prepare (co)polymers with advanced topologies, predetermined molecular weights, narrow molecular weight distributions, and precisely located functional groups. In addition, the establishment of click chemistry has redefined the selected few highly efficient chemical reactions that become highly useful in post-polymerization modification strategies. Hence, the ability to make well-defined topologies afforded by controlled polymerization techniques and the facile incorporation of functionalities along the chain via click-type reactions have yielded complex architectures, allowing the investigation of physical phenomena which otherwise could not be studied with systems prepared via conventional methods. The overarching theme of the research work described in this dissertation is the fusion of the excellent attributes of reversible addition-fragmentation chain transfer (RAFT) polymerization method, which is one of the CRP techniques, and click-type chemical reactions in the precision of synthesis of advanced functional materials. Chapter IV is divided into three sections. In Section I, the direct RAFT homopolymerization of 2-(acryloyloxy)ethyl isocyanate (AOI) and subsequent post-polymerization modifications are described. The polymerization conditions were optimized in terms of the choice of RAFT chain transfer agent (CTA), polymerization temperature and the reaction medium. Direct RAFT polymerization of AOI requires a neutral CTA, and relatively low reaction temperature to yield AOI homopolymers with low polydispersities. Efficient side-chain functionalization of PAOI homopolymers was achieved via reaction with model amine, thiol and alcohol compounds yielding urea, thiourethane and urethane derivatives, respectively. Reactions with amines and thiols (in the presence of base) were rapid, quantitative and efficient. However, the reaction with alcohols catalyzed by dibutyltin dilaurate (DBTDL) was relatively slow but proceeded to completion. Selective reaction pathways for the addition of difunctional ethanolamine and mercaptoethanol were also investigated. A related strategy is described in Section II wherein a hydroxyl-containing diblock copolymer precursor was transformed into a library of functional copolymers via two sequential post-polymerization modification reactions. A diblock copolymer scaffold, poly[(N,N-dimethylacrylamide)-b-( N-(2-hydroxyethyl)acrylamide] (PDMA-b-PHEA) was first prepared. The hydroxyl groups of the HEA block were then reacted with 2-(acryloyloxy)ethylisocyanate (AOI) and allylisocyanate (AI) resulting in acrylate- and allyl-functionalized copolymer precursors, respectively. The efficiencies of Michael-type and free radical thiol addition reactions were investigated using selected thiols having alkyl, aryl, hydroxyl, carboxylic acid, amine and amino acid functionalities. The steps of RAFT polymerization, isocyanate-hydroxyl coupling and thiol-ene addition are accomplished under mild conditions, thus offering facile and modular routes to synthesize functional copolymers. The synthesis and solution studies of pH- and salt-responsive triblock copolymer are described in Section III. This system is capable of forming self-locked micellar structures which may be controlled by changing solution pH as well as ionic strength. A triblock copolymer containing a permanently hydrophilic poly(N,N-dimethylacrylamide) (PDMA) outer block, a salt-sensitive zwitterionic poly(3[2-(N-methylacrylamido)ethyl dimethylammonio]propanesulfonate) (PMAEDAPS) middle block and a pH-responsive 3-acrylamido-3-methylbutanoic acid (PAMBA) core block was synthesized using aqueous RAFT polymerization. A facile formation of "self-locking&quo

  6. Hydrophobic Encapsulated Phosphonium Salts-Synthesis of Weakly Coordinating Cations and their Application in Wittig Reactions.

    PubMed

    Moritz, Ralf; Wagner, Manfred; Schollmeyer, Dieter; Baumgarten, Martin; Müllen, Klaus

    2015-06-15

    Large and rigid tetraarylphosphonium tetrafluoroborate salts have been synthesized representing weakly coordinating cations with diameters of several nanometers. Divergent dendritic growth by means of thermal Diels-Alder cycloaddition was employed for the construction of the hydrophobic polyphenylene framework up to the third generation. X-ray crystal structure analysis of first-generation phosphonium tetrafluoroborate supported the rigidity of the non-collapsible shell around the phosphorus center and gave insight into solid-state packing and cation-anion distances. Copper(I)-catalyzed azide-alkyne ligation served as reliable method for the preparation of a first-generation triazolylphenyl hybrid phosphonium cation under mild reaction conditions. Furthermore, from the synthesis of triarylbenzylphosphonium bromides, Wittig precursors with unprecedented bulky substituents in the ?-position were accessible. Employment of these precursors under Wittig conditions by treatment with base and subsequent reaction with aldehydes preferentially provided (Z)-olefins with bulky polyphenylene substituents. PMID:25965029

  7. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules.

    PubMed

    Xu, Liang; Zhang, Shuai; Li, Pengfei

    2015-12-21

    In the context of modular and rapid construction of molecular diversity and complexity for applications in organic synthesis, biomedical and materials sciences, a generally useful strategy has emerged based on boron-selective chemical transformations. In the last decade, these types of reactions have evolved from proof-of-concept to some advanced applications in the efficient preparation of complex natural products and even automated precise manufacturing on the molecular level. These advances have shown the great potential of boron-selective reactions in simplifying synthetic design and experimental operations, and should inspire new developments in related chemical and technological areas. This tutorial review will highlight the original contributions and representative advances in this emerging field. PMID:26393673

  8. Multicomponent reactions for de novo synthesis of BODIPY probes: in vivo imaging of phagocytic macrophages.

    PubMed

    Vázquez-Romero, Ana; Kielland, Nicola; Arévalo, María J; Preciado, Sara; Mellanby, Richard J; Feng, Yi; Lavilla, Rodolfo; Vendrell, Marc

    2013-10-30

    Multicomponent reactions are excellent tools to generate complex structures with broad chemical diversity and fluorescent properties. Herein we describe the adaptation of the fluorescent BODIPY scaffold to multicomponent reaction chemistry with the synthesis of BODIPY adducts with high fluorescence quantum yields and good cell permeability. From this library we identified one BODIPY derivative (PhagoGreen) as a low-pH sensing fluorescent probe that enabled imaging of phagosomal acidification in activated macrophages. The fluorescence emission of PhagoGreen was proportional to the degree of activation of macrophages and could be specifically blocked by bafilomycin A, an inhibitor of phagosomal acidification. PhagoGreen does not impair the normal functions of macrophages and can be used to image phagocytic macrophages in vivo. PMID:24111937

  9. Modeling of reaction kinetics for reactor selection in the case of L-erythrulose synthesis.

    PubMed

    Vasic-Racki, D; Bongs, J; Schörken, U; Sprenger, G A; Liese, A

    2003-03-01

    To choose the most effective process design in enzyme process development it is important to find the most effective reactor mode of operation. This goal is achieved by modeling of the reaction kinetics as a tool of enzyme reaction engineering. With the example of the transketolase catalyzed L-erythrulose synthesis we demonstrate how the most effective reactor mode can be determined by kinetic simulations. This is of major importance if the biocatalyst deactivation is caused by one of the substrates as in this case by glycolaldehyde. The cascade of two membrane reactors in series with soluble enzyme is proposed as a solution for the enzyme deactivation by one of the substrates. PMID:14505172

  10. Origin of fatty acid synthesis - Thermodynamics and kinetics of reaction pathways

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1991-01-01

    The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, an alternative pathway of primitive fatty acid synthesis is proposed that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy. Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.

  11. Vulcanism, mercury-sensitized photo-reactions and abiogenetic synthesis - A theoretical treatment

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Siegel, B. Z.

    1976-01-01

    Attention is called to the photodynamic and thermodynamic properties of Periodic Group IIb elements, most notably Hg, as they relate to ultra-violet sensitization in organic chemical reactions. The energy levels of 6 1P1 and 6 3P1 resonance states and the high vapor pressure (greater than 0.001 mm) of the metal at temperatures as low as 293 K bring Hg with the range of bond dissociation energies in most organic molecules and many inorganics. These capabilities considered together with recent evidence for Hg emission as a regular part of volcanic and geothermal processes provide the basis for a proposal that Hg-sensitized ultraviolet photo-reactions may have played a significant part in abiogenetic organic synthesis on the primative earth.

  12. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    DOEpatents

    Lupinetti, Anthony J. (Los Alamos, NM); Garcia, Eduardo (Los Alamos, NM); Abney, Kent D. (Los Alamos, NM)

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  13. The densities and reaction heat of methanol synthesis System from cornstalk syngas

    NASA Astrophysics Data System (ADS)

    Zhu, Ling-feng; Zhao, Qing-ling; Chen, Jing; Zhang, Le; Zhang, Run-tao; Liu, Li-li; Zhang, Zhao-yue

    2010-11-01

    Methanol can be used as possibole replacement for conventional gasoline and Diesel fuel. In order to produce methanol, it is necessary to decompose biomass, including cornstalks, which is a raw material from agricultural residues. A promising route for processing cornstals is made cornstalks gasficated with thermochemical method to prepare the syngas, which has been conducted under a down-flow fixed bed gasifier. While the low-heat-value cornstalk gas produced in the down-flow fixed bed gasifier needs purified and a variety of technical procedures such as deoxygenation, desulfurization, catalytic cracking of tar and hydrogenation. In this paper, the catalytic experiments of methanol synthesis with cornstalk syngas were carried out in a tubular-flow integral and isothermal reactor. The effect of reaction temperature, pressure, catalyst types, catalyst particle size, syngas flow at entering end and composition of syngas was determind. The experimental results indicated that the proper catalyst of the synthetic reaction was C301 and the optimum catalyst size (?) was 0.833 mm×0.351 mm. The optimal operating temperature and pressure were found to be 235° C and 5 MPa, respectively. The suitable syngas flow 0.9-1.10 mol/h at entering end was selected and the suitable composition of syngas were CO 10.49%, CO28.8%, N237.32%, CnHm0.95% and H240.49%. The methanol yield is 0.418 g/g cornstalk. Moreover, the densities, state equation parameters and the total reaction heat ?HT,P, of methanol reacting system was calculated by SHBWR state equation under givern reaction pressure. The calculation results provided basic data for the design of the industrial equipments in which catalyzed synthesis of methanol from cornstalk gases is operated.

  14. Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water.

    PubMed

    Akizuki, Makoto; Fujii, Tatsuya; Hayashi, Rumiko; Oshima, Yoshito

    2014-01-01

    Current research analyzing the effects of water in the field of homogeneous and heterogeneous reactions of organics in sub- and supercritical water are reviewed in this article. Since the physical properties of water (e.g., density, ion product and dielectric constants) can affect the reaction rates and mechanisms of various reactions, understanding the effects that water can have is important in controlling reactions. For homogeneous reactions, the effects of water on oxidation, hydrolysis, aldol condensation, Beckman rearrangement and biomass refining were introduced including recent experimental results up to 100 MPa using special pressure-resistance equipment. For heterogeneous reactions, the effects of ion product on acid/base-catalyzed reactions, such as hydrothermal conversion of biomass-related compounds, organic synthesis in the context of bio-refinery, and hydration of olefins were described and how the reaction paths are controlled by the concentration of water and hydrogen ions was summarized. PMID:23867097

  15. Trimethylaluminum-Triflimide Complexes for the Catalysis of Highly Hindered Diels-Alder Reactions and Their Use Towards the Enantiospecific Total Synthesis of Rhodexin A

    E-print Network

    Guzaev, Mikhail

    2012-01-01

    was based on the established synthesis of the TBS ether 43,based complexes. The reaction of the silyl enol ether 63ether, and THF was highly prone to polymerization under the reaction conditions. Based

  16. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation

    EPA Science Inventory

    Sustainable synthetic processes developed during the past two decades involving the use of alternate energy inputs and greener reaction media are summarized. These processes include examples of coupling reactions, the synthesis of heterocyclic compounds, and a variety of reactio...

  17. Ammonia Affects Astroglial Proliferation in Culture

    PubMed Central

    Bodega, Guillermo; Segura, Berta; Ciordia, Sergio; Mena, María del Carmen; López-Fernández, Luis Andrés; García, María Isabel; Trabado, Isabel; Suárez, Isabel

    2015-01-01

    Primary cultures of rat astroglial cells were exposed to 1, 3 and 5 mM NH4Cl for up to 10 days. Dose- and time-dependent reductions in cell numbers were seen, plus an increase in the proportion of cells in the S phase. The DNA content was reduced in the treated cells, and BrdU incorporation diminished. However, neither ammonia nor ammonia plus glutamine had any effect on DNA polymerase activity. iTRAQ analysis showed that exposure to ammonia induced a significant reduction in histone and heterochromatin protein 1 expression. A reduction in cell viability was also noted. The ammonia-induced reduction of proliferative activity in these cultured astroglial cells seems to be due to a delay in the completion of the S phase provoked by the inhibition of chromatin protein synthesis. PMID:26421615

  18. Formation of Hydroxylamine (NH2OH) in Electron-Irradiated Ammonia-Water Ices Weijun Zheng,,

    E-print Network

    Kaiser, Ralf I.

    Formation of Hydroxylamine (NH2OH) in Electron-Irradiated Ammonia-Water Ices Weijun ZhengVed: February 10, 2010 We investigated chemical and physical processes in electron-irradiated ammonia-water ices in electron- irradiated ammonia-water ices. The synthesis of molecular hydrogen (H2), molecular nitrogen (N2

  19. Synthesis of nanocrystalline yttrium iron garnet by low temperature solid state reaction

    SciTech Connect

    Yu Hongtao Zeng Liwen; Lu Chao; Zhang Wenbo; Xu Guangliang

    2011-04-15

    In this work, nanocrystalline yttrium iron garnet powders were produced by low temperature solid state reaction. The phase evolution during the procedure was determined from the thermogravimetric and differential thermal analysis, and the x-ray diffraction patterns. The results of transmission electron microscopy indicated that the prepared powders exhibited grain size at the nano-level of 20 {approx} 40 nm. Dense ceramics with a theoretical density of around 98% were obtained from the prepared powders after sintering at 1280 deg. C, a relative low sintering temperature compared with conventional ceramic processes, and the saturation magnetizations of sintered samples were also determined. - Research Highlights: {yields}No sol or gel form during the synthesis processing using nitrates and citric acid as raw materials. {yields}The synthesis method needs a low heating temperature (700 deg. C) compared with conventional solid state reaction. {yields}The product is a single phase with homogeneous size distribution and nano grains (20 {approx} 40 nm) confirmed by TEM. {yields}Dense YIG ceramic can be sintered at a low temperature (1280 deg. C) compared with that in conventional processing.

  20. Synthesis and Biological Activities of 4-Aminoantipyrine Derivatives Derived from Betti-Type Reaction

    PubMed Central

    Meshram, Jyotsna

    2014-01-01

    The present work deals with the synthesis and evaluation of biological activities of 4-aminoantipyrine derivatives derived from a three-component Betti reaction. The synthesis was initiated by the condensation of aromatic aldehyde, 4-aminoantipyrine, and 8-hydroxyquinoline in presence of fluorite as catalyst in a simple one-step protocol. The reactions were stirred at room temperature for 10–15?min achieving 92–95% yield. The structures of synthesized derivatives were established on the basis of spectroscopic and elemental analysis. All derivatives 4(a–h) were screened in vivo and in vitro for anti-inflammatory and anthelmintic activity against a reference drug, Diclofenac and Albendazole, respectively. The screening results show that compounds 4c, 4d, 4f, and 4h were found to possess potential anti-inflammatory activity while compounds 4a, 4b, 4e, and 4g are potent anthelmintic agents when compared with reference drugs, respectively. The bioactivity of these derivatives has also been evaluated with respect to Lipinski's rule of five using molinspiration cheminformatics software. PMID:24955256

  1. Elucidating the Reaction Pathways in the Synthesis of Organolead Trihalide Perovskite for High-Performance Solar Cells

    PubMed Central

    Wang, Baohua; Young Wong, King; Xiao, Xudong; Chen, Tao

    2015-01-01

    The past two years have witnessed unprecedentedly rapid development of organic–inorganic halide perovskite–based solar cells. The solution–processability and high efficiency make this technology extraordinarily attractive. The intensive investigations have accumulated rich experiences in the perovskite fabrication; while the mechanism of the chemical synthesis still remains unresolved. Here, we set up the chemical equation of the synthesis and elucidate the reactions from both thermodynamic and kinetic perspectives. Our study shows that gaseous products thermodynamically favour the reaction, while the activation energy and “collision” probability synergistically determine the reaction rate. These understandings enable us to finely tune the crystal size for high-quality perovskite film, leading to a record fill factor among similar device structures in the literature. This investigation provides a general strategy to explore the mechanism of perovskite synthesis and benefits the fabrication of high–efficiency perovskite photoactive layer. PMID:26020476

  2. Elucidating the Reaction Pathways in the Synthesis of Organolead Trihalide Perovskite for High-Performance Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Baohua; Young Wong, King; Xiao, Xudong; Chen, Tao

    2015-05-01

    The past two years have witnessed unprecedentedly rapid development of organic-inorganic halide perovskite-based solar cells. The solution-processability and high efficiency make this technology extraordinarily attractive. The intensive investigations have accumulated rich experiences in the perovskite fabrication; while the mechanism of the chemical synthesis still remains unresolved. Here, we set up the chemical equation of the synthesis and elucidate the reactions from both thermodynamic and kinetic perspectives. Our study shows that gaseous products thermodynamically favour the reaction, while the activation energy and “collision” probability synergistically determine the reaction rate. These understandings enable us to finely tune the crystal size for high-quality perovskite film, leading to a record fill factor among similar device structures in the literature. This investigation provides a general strategy to explore the mechanism of perovskite synthesis and benefits the fabrication of high-efficiency perovskite photoactive layer.

  3. The Synthesis of "N"-Benzyl-2-Azanorbornene via Aqueous Hetero Diels-Alder Reaction: An Undergraduate Project in Organic Synthesis and Structural Analysis

    ERIC Educational Resources Information Center

    Sauvage, Xavier; Delaude, Lionel

    2008-01-01

    The synthesis of "N"-benzyl-2-azanorbornene via aqueous hetero Diels-Alder reaction of cyclopentadiene and benzyliminium chloride formed in situ from benzylamine hydrochloride and formaldehyde is described. Characterization of the product was achieved by IR and NMR spectroscopies. The spectral data acquired are thoroughly discussed. Numerous…

  4. Oxydesulfurization of a Turkish hard lignite with ammonia solutions

    SciTech Connect

    Yaman, S.; Kuecuekbayrak, S.

    1996-09-01

    In this study the desulfurization of a high pyritic and high organic sulfur lignite taken from the Gediz area (western Turkey) was investigated by the oxydesulfurization method using ammonia solutions. The influence of such parameters as the concentration of ammonia solution, partial pressure of oxygen, temperature, and reaction time were studied. The ranges of these parameters were selected as 0--10 M concentration of ammonia solution, 0--1.5 MPa partial pressure of oxygen, 403--473 K temperature, and 10--60 min reaction time. It was concluded that the use of ammonia solution as an extraction solution increased the efficiency of the oxydesulfurization process.

  5. Efficient synthesis of ?- and ?-carbolines by sequential Pd-catalyzed site-selective C-C and twofold C-N coupling reactions.

    PubMed

    Hung, Tran Quang; Dang, Tuan Thanh; Janke, Julia; Villinger, Alexander; Langer, Peter

    2015-02-01

    Two concise and efficient approaches were developed for the synthesis of ?- and ?-carboline derivatives. The success of the synthesis relies on site-selective Suzuki-Miyaura reactions of 1-chloro-2-bromopyridine or 2,3-dibromopyridine with 2-bromophenylboronic acid and subsequent cyclization with amines which proceeds by twofold Pd-catalyzed C-N coupling reactions. PMID:25464277

  6. NMR Study of the Synthesis of Alkyl-Terminated Silicon Nanoparticles from the Reaction of SiCl4 with the Zintl

    E-print Network

    Augustine, Mathew P.

    NMR Study of the Synthesis of Alkyl-Terminated Silicon Nanoparticles from the Reaction of SiCl4 The synthesis of silicon nanoclusters and their characterization by multinuclear solid- state nuclear magnetic cross polarization to 1H nuclei have been used to investigate the reaction of sodium silicide (Na

  7. Ring Walking/Oxidative Addition Reactions for the Controlled Synthesis of Conjugated Polymers

    SciTech Connect

    Bazan, Guillermo C

    2012-04-03

    Power conversion efficiencies of plastic solar cells depend strongly on the molecular weight characteristics of the semiconducting polymers used for their fabrication. The synthesis of these materials typically relies on transition metal mediated catalytic reactions. In many instances, the ideal structures cannot be attained because of deficiencies in these reactions, particularly when it comes to being able to achieve high number average molecular weights and narrow molecular weight distributions. Another important conjugated polymer structure of interest is one in which a single functional group is attached at the end group of the chain. Such systems would be ideal for modifying surface properties at interfaces and for labeling biomolecular probes used in fluorescent biosensors. To respond to the challenges above, our efforts have centered on the design of homogenous transition metal complexes that are easy to prepare and effective in carrying out living, or quasi-living, condensative chain polymerization reactions. The key mechanistic challenge for the success of this reaction is to force the insertion of one monomer unit at a time via a process that involves migration of the transition metal-containing fragment to one terminus of the polymer chain. Chain growth characteristics are therefore favored when the metal does not dissociate from the newly formed reductive elimination product. We have proposed that dissociation is disfavored by the formation of a Ï?-complex, in which the metal can sample various locations of the electronically delocalized framework, a process that we term â??ring-walkingâ?, and find the functionality where oxidative addition takes place. Success has been achieved in the nickel-mediated cross coupling reaction of Grignard reagents with aromatic halides by using bromo[1,2-bis(diphenylphosphino)ethane]phenylnickel. This reagent can yield poly(thiophene)s (one of the most widely used type of polymer in plastic solar cells) with excellent stereoregularity and molecular weight distributions with polydispersities that are consistent with a living polymerization sequence. Another important objective of this program concerned the use of these new catalysts and improved mechanistic insight for the synthesis of specific polymeric materials with prespecified properties.

  8. Efficient Rhodium-Catalyzed Multicomponent Reaction for the Synthesis of Novel Propargylamines.

    PubMed

    Rubio-Pérez, Laura; Iglesias, Manuel; Munárriz, Julen; Polo, Victor; Pérez-Torrente, Jesús J; Oro, Luis A

    2015-12-01

    [{Rh(?-Cl)(H)2 (IPr)}2 ] (IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazole-2-ylidene) was found to be an efficient catalyst for the synthesis of novel propargylamines by a one-pot three-component reaction between primary arylamines, aliphatic aldehydes, and triisopropylsilylacetylene. This methodology offers an efficient synthetic pathway for the preparation of secondary propargylamines derived from aliphatic aldehydes. The reactivity of [{Rh(?-Cl)(H)2 (IPr)}2 ] with amines and aldehydes was studied, leading to the identification of complexes [RhCl(CO)IPr(MesNH2 )] (MesNH2 = 2,4,6-trimethylaniline) and [RhCl(CO)2 IPr]. The latter shows a very low catalytic activity while the former brought about reaction rates similar to those obtained with [{Rh(?-Cl)(H)2 (IPr)}2 ]. Besides, complex [RhCl(CO)IPr(MesNH2 )] reacts with an excess of amine and aldehyde to give [RhCl(CO)IPr{MesN?CHCH2 CH(CH3 )2 }], which was postulated as the active species. A mechanism that clarifies the scarcely studied catalytic cycle of A3 -coupling reactions is proposed based on reactivity studies and DFT calculations. PMID:26490447

  9. Biotransformations Utilizing ?-Oxidation Cycle Reactions in the Synthesis of Natural Compounds and Medicines

    PubMed Central

    Œwizdor, Alina; Panek, Anna; Milecka-Tronina, Natalia; Ko?ek, Teresa

    2012-01-01

    ?-Oxidation cycle reactions, which are key stages in the metabolism of fatty acids in eucaryotic cells and in processes with a significant role in the degradation of acids used by microbes as a carbon source, have also found application in biotransformations. One of the major advantages of biotransformations based on the ?-oxidation cycle is the possibility to transform a substrate in a series of reactions catalyzed by a number of enzymes. It allows the use of sterols as a substrate base in the production of natural steroid compounds and their analogues. This route also leads to biologically active compounds of therapeutic significance. Transformations of natural substrates via ?-oxidation are the core part of the synthetic routes of natural flavors used as food additives. Stereoselectivity of the enzymes catalyzing the stages of dehydrogenation and addition of a water molecule to the double bond also finds application in the synthesis of chiral biologically active compounds, including medicines. Recent advances in genetic, metabolic engineering, methods for the enhancement of bioprocess productivity and the selectivity of target reactions are also described. PMID:23443116

  10. One-pot quadruple/triple reaction sequence: a useful tool for the synthesis of natural products.

    PubMed

    Kashinath, K; Reddy, D Srinivasa

    2015-01-28

    Multiple reactions in one pot has always been a useful technique for synthetic organic chemists, as it can minimizes solvent usage, time and the number of purification steps when compared to individual multi-step syntheses. In line with this, here in this perspective we discuss a one-pot quadruple/triple reaction sequence comprising an enyne ring-closing metathesis/cross-metathesis/Diels-Alder/aromatization for the synthesis of natural products setting. PMID:25407375

  11. Synthesis and structural characterization of monomeric and dimeric peptide nucleic acids prepared by using microwave-promoted multicomponent reactions.

    PubMed

    Ovadia, Reuben; Lebrun, Aurélien; Barvik, Ivan; Vasseur, Jean-Jacques; Baraguey, Carine; Alvarez, Karine

    2015-12-01

    A solution phase synthesis of peptide nucleic acid monomers and dimers was developed by using microwave-promoted Ugi multicomponent reactions. A mixture of a functionalized amine, a carboxymethyl nucleobase, paraformaldehyde and an isocyanide as building blocks generates PNA monomers which are then partially deprotected and used in a second Ugi 4CC reaction, leading to PNA dimers. Conformational rotamers were identified by using NMR and MD simulations. PMID:26394794

  12. Toward synthesis of third-generation spin-labeled podophyllotoxin derivatives using isocyanide multicomponent reactions

    PubMed Central

    Kou, Liang; Wang, Mei-Juan; Wang, Li-Ting; Zhao, Xiao-Bo; Nan, Xiang; Yang, Liu; Liu, Ying-Qian; Morris-Natschke, Susan L.; Lee, Kuo-Hsiung

    2014-01-01

    Spin-labeled podophyllotoxins have elicited widespread interest due to their far superior antitumor activity compared to podophyllotoxin. To extend our prior studies in this research area, we synthesized a new generation of spin-labeled podophyllotoxin analogs via isocyanide multicomponent reactions and evaluated their cytotoxicity against four human cancer cell lines (A-549, DU-145, KB and KBvin). Most of the compounds exhibited potent cytotoxic activity against all four cell lines, notably against the drug resistant KBvin cancer cell line. Among the new analogs, compounds 12e (IC50: 0.60–0.75 µM) and 12h (IC50: 1.12–2.03 µM) showed superior potency to etoposide (IC50: 2.03 – >20 µM), a clinically available anticancer drug. With a concise efficient synthesis and potent cytotoxic profiles, compounds 12e and 12h merit further development as a new generation of epipodophyllotoxin-derived antitumor clinical trial candidates. PMID:24553146

  13. Toward synthesis of third-generation spin-labeled podophyllotoxin derivatives using isocyanide multicomponent reactions.

    PubMed

    Kou, Liang; Wang, Mei-Juan; Wang, Li-Ting; Zhao, Xiao-Bo; Nan, Xiang; Yang, Liu; Liu, Ying-Qian; Morris-Natschke, Susan L; Lee, Kuo-Hsiung

    2014-03-21

    Spin-labeled podophyllotoxins have elicited widespread interest due to their far superior antitumor activity compared to podophyllotoxin. To extend our prior studies in this research area, we synthesized a new generation of spin-labeled podophyllotoxin analogs via isocyanide multicomponent reactions and evaluated their cytotoxicity against four human cancer cell lines (A-549, DU-145, KB and KBvin). Most of the compounds exhibited potent cytotoxic activity against all four cell lines, notably against the drug resistant KBvin cancer cell line. Among the new analogs, compounds 12e (IC50: 0.60-0.75 ?M) and 12h (IC50: 1.12-2.03 ?M) showed superior potency to etoposide (IC50: 2.03 to >20 ?M), a clinically available anticancer drug. With a concise efficient synthesis and potent cytotoxic profiles, compounds 12e and 12h merit further development as a new generation of epipodophyllotoxin-derived antitumor clinical trial candidates. PMID:24553146

  14. A new synthesis of TATB using inexpensive starting materials and mild reaction conditions

    SciTech Connect

    Mitchell, A.R.; Pagoria, P.F.; Schmidt, R.D.

    1996-04-01

    TATB is currently manufactured in US by nitration of the expensive TCB to give 2,4,6-trichloro-1,3,5-trinitrobenzene which is then aminated to yield TATB. Elevated temperatures (150 C) are required for both reactions. There is a need for a more economical synthesis of TATB that also addresses current environmental issues. We have recently found that 1,1,1-trimethylhydrazinium iodide (TMHI) allows the amination of nitroarenes at ambient temperature via Vicarious Nucleophilic Substitution of hydrogen. TMHI reacts with picramide in presence of strong base (NaOMe or t-BuOK) to give TATB in over 95% yield. TMHI and picramide can be obtained from either inexpensive starting materials or surplus energetic materials from demilitarization activities, such as the 30,000 metric tons of UDMH (surplus rocket propellant) from the former Soviet Union.

  15. Enantioselective Synthesis of Highly Substituted Chromans via the Oxa-Michael-Michael Cascade Reaction with a Bifunctional Organocatalyst.

    PubMed

    Saha, Prasenjit; Biswas, Arnab; Molleti, Nagaraju; Singh, Vinod K

    2015-11-01

    A highly enantioselective synthesis of chiral chroman derivatives via an oxa-Michael-Michael cascade reaction has been developed using a bifunctional thiourea organocatalyst. The products were obtained with excellent enantioselectivities (up to >99%), good yields (up to 95%), and diastereoselectivities (up to 5:1). PMID:26470031

  16. Synthesis of a Biologically Active Oxazol-5-(4H)-One via an Erlenmeyer-Plo¨chl Reaction

    ERIC Educational Resources Information Center

    Rodrigues, Catarina A. B.; Martinho, Jose´ M. G.; Afonso, Carlos A. M.

    2015-01-01

    The synthesis of (Z)-4-(4-nitrobenzylidene)-2- phenyloxazol-5(4"H")-one, which is a potent immunomodulator and tyrosinase inhibitor, is described as an experiment for an upper-division undergraduate organic chemistry laboratory course. This compound is produced via an Erlenmeyer-Plo¨chl reaction in the absence of any additional solvents…

  17. Microwave-Enhanced Organic Syntheses for the Undergraduate Laboratory: Diels-Alder Cycloaddition, Wittig Reaction, and Williamson Ether Synthesis

    ERIC Educational Resources Information Center

    Baar, Marsha R.; Falcone, Danielle; Gordon, Christopher

    2010-01-01

    Microwave heating enhanced the rate of three reactions typically performed in our undergraduate organic chemistry laboratory: a Diels-Alder cycloaddition, a Wittig salt formation, and a Williamson ether synthesis. Ninety-minute refluxes were shortened to 10 min using a laboratory-grade microwave oven. In addition, yields improved for the Wittig…

  18. Photochemical Synthesis and Ligand Exchange Reactions of Ru(CO)[subscript 4] (Eta[superscript 2]-Alkene) Compounds

    ERIC Educational Resources Information Center

    Cooke, Jason; Berry, David E.; Fawkes, Kelli L.

    2007-01-01

    The photochemical synthesis and subsequent ligand exchange reactions of Ru(CO)[subscript 4] (eta[superscript2]-alkene) compounds has provided a novel experiment for upper-level inorganic chemistry laboratory courses. The experiment is designed to provide a system in which the changing electronic properties of the alkene ligands could be easily…

  19. Synthesis of 2-thioxoimidazolines via reaction of 1-unsubstituted 3-aminoquinoline-2,4-diones with isothiocyanates

    E-print Network

    Miksik, Ivan

    Republic b Research Institute for Organic Syntheses (VUOS), Rybitvi´ 296, 533 54 Pardubice 20, CzechSynthesis of 2-thioxoimidazolines via reaction of 1-unsubstituted 3-aminoquinoline-2,4-diones e a Department of Chemistry, Faculty of Technology, Tomas Bata University, 762 72 Zli´n, Czech

  20. Synthesis of Acyclic r, -Unsaturated Ketones via Pd(II)-Catalyzed Intermolecular Reaction of Alkynamides and Alkenes

    E-print Network

    Liu, David R.

    to additional organic functionality. We recently used DNA-templated synthesis and in vitro selection to discover was omitted from the reaction (Table 1, entry 3). The use of p-benzoquinone as a stoichiometric oxidant, and alkyl bromide function- alities. The high stereoselectivity

  1. Synthesis of quinoline-3-carboxylates by a Rh(II)-catalyzed cyclopropanation-ring expansion reaction of indoles with halodiazoacetates

    PubMed Central

    Mortén, Magnus; Hennum, Martin

    2015-01-01

    Summary In this letter, we report a novel synthesis of ethyl quinoline-3-carboxylates from reactions between a series of indoles and halodiazoacetates. The formation of the quinoline structure is probably the result of a cyclopropanation at the 2- and 3-positions of the indole followed by ring-opening of the cyclopropane and elimination of H–X. PMID:26664614

  2. Nanocomposite of a chromium Prussian blue with TiO2. Redox reactions and the synthesis of Prussian blue

    E-print Network

    Girolami, Gregory S.

    Nanocomposite of a chromium Prussian blue with TiO2. Redox reactions and the synthesis of Prussian similar to those of the ``all-chromium'' Prussian blue CrII [CrIII (CN)6]0.67 Æ 6H2O. All data, including to generate the crystalline all-chromium PB species. The electrochemical potentials suggest that the [Cr

  3. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    EPA Science Inventory

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  4. One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Eid, Kamel; Wang, Hongjing; He, Pei; Wang, Kunmiao; Ahamad, Tansir; Alshehri, Saad M.; Yamauchi, Yusuke; Wang, Liang

    2015-10-01

    The design of porous bimetallic nanocrystals (NCs) is very important for electrochemical energy conversion. Herein, we report an aqueous solution method for one-step fabrication of porous PtCu NCs assembled by spatially interconnected arms in high yield by a simple ultrasonic treatment of the reaction mixture at room temperature. The proposed method, without the need for multi-step synthesis, high temperatures, and organic solvents, shows an obvious advantage of simplicity for the feasible synthesis of bimetallic PtCu NCs with a porous structure. The as-made porous PtCu NCs are highly active and durable catalysts for the methanol oxidation reaction due to their porous structure and bimetallic composition.The design of porous bimetallic nanocrystals (NCs) is very important for electrochemical energy conversion. Herein, we report an aqueous solution method for one-step fabrication of porous PtCu NCs assembled by spatially interconnected arms in high yield by a simple ultrasonic treatment of the reaction mixture at room temperature. The proposed method, without the need for multi-step synthesis, high temperatures, and organic solvents, shows an obvious advantage of simplicity for the feasible synthesis of bimetallic PtCu NCs with a porous structure. The as-made porous PtCu NCs are highly active and durable catalysts for the methanol oxidation reaction due to their porous structure and bimetallic composition. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04557f

  5. Enantioselective Synthesis of 3-Methyleneindan-1-ols via a One-Pot Allylboration-Heck Reaction of 2-Bromobenzaldehydes.

    PubMed

    Calder, Ewen D D; Sutherland, Andrew

    2015-05-15

    A novel, one-pot allylboration-Heck reaction of 2-bromobenzaldehydes has been developed for the general and efficient synthesis of 3-methyleneindan-1-ols. Modification of the one-pot procedure to include chiral Brønsted acid catalyzed allylation has allowed the preparation of these building blocks in high enantioselectivity and excellent yields. PMID:25933177

  6. A stereoselective synthesis of (+)-physoperuvine using a tandem aza-Claisen rearrangement and ring closing metathesis reaction.

    PubMed

    Zaed, Ahmed M; Swift, Michael D; Sutherland, Andrew

    2009-07-01

    A stereoselective synthesis of (+)-physoperuvine, a tropane alkaloid from Physalis peruviana Linne has been developed using a one-pot tandem aza-Claisen rearrangement and ring closing metathesis reaction to form the key amino-substituted cycloheptene ring. PMID:19532981

  7. Studies of stereocontrolled allylation reactions for the total synthesis of phorboxazole A

    PubMed Central

    Williams, David R.; Kiryanov, Andre A.; Emde, Ulrich; Clark, Michael P.; Berliner, Martin A.; Reeves, Jonathan T.

    2004-01-01

    A highly convergent total synthesis of the potent anticancer agent (+)-phorboxazole A (1) is accomplished. Four components (3–6) are assembled with considerations for control of absolute and relative stereochemistry. Iterative asymmetric allylation methodology addresses key stereochemical features in the preparation of the 2,6-cis- and 2,6-trans-tetrahydropyranyl rings of the C3–C19 component (3). The stereocontrolled asymmetric allylation process is also used for development of the C28–C41 fragment (4). Novel Barbier coupling reactions of ?-iodomethyl oxazoles and related thiazoles are described with samarium iodide. The convergent assembly of components 4 and 5 features formation of the fully substituted C22–C26 pyran by intramolecular capture of an allyl cation intermediate with high facial selectivity, and further efforts lead to E-C19/C20 olefination. The synthesis culminates with use of a modified Julia olefination for attachment of the C42–C46 segment and subsequent late-stage macrocyclization by installation of the (Z)-C2/C3 ?,?-unsaturated lactone. PMID:15277662

  8. Multicomponent versus domino reactions: One-pot free-radical synthesis of ?-amino-ethers and ?-amino-alcohols

    PubMed Central

    Rossi, Bianca; Prosperini, Simona

    2015-01-01

    Summary Following an optimized multicomponent procedure, an aryl amine, a ketone, and a cyclic ether or an alcohol molecule are assembled in a one-pot synthesis by nucleophilic radical addition of ketyl radicals to ketimines generated in situ. The reaction occurs under mild conditions by mediation of the TiCl4/Zn/t-BuOOH system, leading to the formation of quaternary ?-amino-ethers and -alcohols. The new reaction conditions guarantee good selectivity by preventing the formation of secondary products. The secondary products are possibly derived from a competitive domino reaction, which involves further oxidation of the ketyl radicals. PMID:25670994

  9. Sodium dodecyl benzene sulfonate-assisted synthesis through a hydrothermal reaction

    SciTech Connect

    Sobhani, Azam; Salavati-Niasari, Masoud; Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317–51167, Islamic Republic of Iran

    2012-08-15

    Graphical abstract: Reaction of a SeCl{sub 4} aqueous solution with a NiCl{sub 2}·6H{sub 2}O aqueous solution in presence of sodium dodecyl benzene sulfonate (SDBS) as capping agent and hydrazine (N{sub 2}H{sub 4}·H{sub 2}O) as reductant, produces nanosized nickel selenide through a hydrothermal method. The effect of temperature, reaction time and amounts of reductant on the morphology, particle sizes of NiSe nanostructures has been investigated. Highlights: ? NiSe nanostructures were synthesized by hydrothermal method. ? A novel Se source was used to synthesize NiSe. ? SDBS as capping agent plays a crucial role on the morphology of products. ? A mixture of Ni{sub 3}Se{sub 2} and NiSe was prepared in the presence of 2 ml hydrazine. ? A pure phase of NiSe was prepared in the presence of 4 or 6 ml hydrazine. -- Abstract: The effects of the anionic surfactant on the morphology, size and crystallization of NiSe precipitated from NiCl{sub 2}·6H{sub 2}O and SeCl{sub 4} in presence of hydrazine (N{sub 2}H{sub 4}·H{sub 2}O) as reductant were investigated. The products have been successfully synthesized in presence of sodium dodecyl benzene sulfonate (SDBS) as surfactant via an improved hydrothermal route. A variety of synthesis parameters, such as reaction time and temperature, capping agent and amount of reducing agent have a significant effect on the particle size, phase purity and morphology of the obtained products. The sample size became bigger with decreasing reaction temperature and increasing reaction time. In the presence of 2 ml hydrazine, the samples were found to be the mixture of Ni{sub 3}Se{sub 2} and NiSe. With increasing the reaction time and amount of hydrazine a pure phase of hexagonal NiSe was obtained. X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images indicate phase, particle size and morphology of the products. Chemical composition and purity of the products were characterized by X-ray energy dispersive spectroscopy (EDS). Photoluminescence (PL) was used to study the optical properties of NiSe samples.

  10. Biochemistry of Ammonia Monoxygenase from Nitrosomonas

    SciTech Connect

    Alan Hooper

    2009-07-15

    Major results. 1. CytochromecM552, a protein in the electron transfer chain to ammonia monooxygenase. Purification, modeling of protein structure based on primary structure, characterization of 4 hemes by magnetic spectroscopy, potentiometry, ligand binding and turnover. Kim, H. J., ,Zatsman, et al. 2008). 2. Characterization of proteins which thought to be involved in the AMO reaction or to protect AMO from toxic nitrogenous intermediates such as NO. Nitrosocyanin is a protein present only in bacteria which catalyze the ammonia monoxygenase reaction (1). Cytochrome c P460 beta and cytochrome c’ beta.

  11. In situ formation of the amino sugars 1-amino-1-deoxy-fructose and 2-amino-2-deoxy-glucose under Maillard reaction conditions in the absence of ammonia.

    PubMed

    Nashalian, Ossanna; Yaylayan, Varoujan A

    2016-04-15

    Replacing amino acids with their binary metal complexes during the Maillard reaction can initiate various processes, including the oxidative degradation of their glucose conjugates, generating 1-amino-1-deoxy-fructose and its derivatives. These reactive amino sugars are not easily accessible under Maillard reaction conditions and are only formed in the presence of ammonia. To explore the generality of this observation and to study in particular the ability of fructose to generate glucosamine, the amino acid-metal complexes were heated in aqueous solutions with three aldohexoses and two ketohexoses at 110°C for 2h and the dry residues were analysed by ESI/qTOF/MS/MS. All the sugars generated relatively intense ions at [M+H](+) 180 (C6H14NO5); those ions originating from ketohexoses exhibited MS/MS fragmentations identical to glucosamine and those originating form aldohexoses showed ions identical to fructosamine. Furthermore, the amino sugars were found to form fructosazine, react with other sugars and undergo dehydration reactions. PMID:26616979

  12. Microwave Assisted Synthesis of Ferrite Nanoparticles: Effect of Reaction Temperature on Particle Size and Magnetic Properties.

    PubMed

    Kalyani, S; Sangeetha, J; Philip, John

    2015-08-01

    The preparation of ferrite magnetic nanoparticles of different particle sizes by controlling the reaction temperature using microwave assisted synthesis is reported. The iron oxide nanoparticles synthesized at two different temperatures viz., 45 and 85 °C were characterized using techniques such as X-ray diffraction (XRD), small angle X-ray scattering (SAXS), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The average size of iron oxide nanoparticles synthesized at 45 and 85 °C is found to be 10 and 13.8 nm, respectively, and the nanoparticles exhibited superparamagantic behavior at room temperature. The saturation magnetization values of nanoparticles synthesized at 45 and 85 °C were found to be 67 and 72 emu/g, respectively. The increase in particle size and saturation magnetization values with increase in incubation temperature is attributed to a decrease in supersaturation at elevated temperature. The Curie temperature was found to be 561 and 566 0C for the iron oxide nanoparticles synthesized at 45 and 85 °C, respectively. The FTIR spectrum of the iron oxide nanoparticles synthesized at different temperatures exhibited the characteristic peaks that corresponded to the stretching of bonds between octahedral and tetrahedral metal ions to oxide ions. Our results showed that the ferrite nanoparticle size can be varied by controlling the reaction temperature inside a microwave reactor. PMID:26369150

  13. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In addition, Pt-mesoporous silica core-shell structured NPs (Pt{at}mSiO{sub 2}) were prepared, where the individual Pt NP is encapsulated by the mesoporous silica layer. The Pt{at}mSiO{sub 2} catalysts showed promising catalytic activity in high temperature CO oxidation. The design of catalytic structures with tunable parameters by rational synthetic methods presents a major advance in the field of catalyst synthesis, which would lead to uncover the structure-function relationships in heterogeneous catalytic reactions.

  14. Streamlined ammonia removal from wastewater using biological deammonification process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work we evaluated biological deammonification process to more economically remove ammonia from livestock wastewater. The process combines partial nitritation (PN) and anammox. The anammox is a biologically mediated reaction that oxidizes ammonia (NH4+) and releases di-nitrogen gas (N2) unde...

  15. Determination of Ammonia in Household Cleaners: An Instrumental Analysis Experiment.

    ERIC Educational Resources Information Center

    Graham, Richard C.; DePew, Steven

    1983-01-01

    Briefly discusses three techniques for assessing amount of ammonia present in household cleaners. Because of disadvantages with these methods, the thermometric titration technique is suggested in which students judge the best buy based on relative cost of ammonia present in samples. Laboratory procedures, typical results, and reactions involved…

  16. Homochiral Selectivity in RNA Synthesis: Montmorillonite-catalyzed Quaternary Reactions of D, L-Purine with D, L- Pyrimidine Nucleotides

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash C.; Aldersley, Michael F.; Ferris, James P.

    2011-06-01

    Selective adsorption of D, L-ImpA with D, L-ImpU on the platelets of montmorillonite demonstrates an important reaction pathway for the origin of homochirality in RNA synthesis. Our earlier studies have shown that the individual reactions of D, L-ImpA or D, L-ImpU on montmorillonite catalyst produced oligomers which were only partially inhibited by the incorporation of both D- and L-enantiomers. Homochirality in these reactions was largely due to the formation of cyclic dimers that cannot elongate. We investigated the quaternary reactions of D, L-ImpA with D, L-ImpU on montmorillonite. The chain length of these oligomers increased from 9-mer to 11-mer as observed by HPLC, with a concominant increase in the yield of linear dimers and higher oligomers in the reactions involving D, L-ImpA with D, L-ImpU as compared to the similar reactions carried out with D-enantiomers only. The formation of cyclic dimers of U was completely inhibited in the quaternary reactions. The yield of cyclic dimers of A was reduced from 60% to 10% within the dimer fraction. 12 linear dimers and 3 cyclic dimers were isolated and characterized from the quaternary reaction. The homochirality and regioselectivity of dimers were 64.1% and 71.7%, respectively. Their sequence selectivity was shown by the formation of purine-pyrimidine (54-59%) linkages, followed by purine-purine (29-32%) linkages and pyrimidine-pyrimidine (9-13%) linkages. Of the 16 trimers detected, 10 were homochiral with an overall homochirality of 73-76%. In view of the greater homochirality, sequence- and regio- selectivity, the quaternary reactions on montmorillonite demonstrate an unexpectedly favorable route for the prebiotic synthesis of homochiral RNA compared with the separate reactions of enantiomeric activated mononucleotides.

  17. Stability and Conversion of Tin Zintl Anions in Liquid Ammonia Investigated by NMR Spectroscopy.

    PubMed

    Fendt, Franziska; Koch, Carina; Neumeier, Maria; Gärtner, Stefanie; Gschwind, Ruth M; Korber, Nikolaus

    2015-10-01

    Homoatomic polyanions of post-transition main-group metals, namely, Zintl anions, are precast in analogous Zintl phases and can react in solution to form new materials. Despite comprehensible reaction approaches, the formed products cannot be planned in advance, as hitherto undetected and therefore disregarded side reactions take place. The outcomes and interpretations of the reactions of Zintl anions are so far based mainly on crystal structures, which only allow characterization of the product that has the lowest solubility. Here we present the results of our investigation of the stability of highly charged tin Zintl anions in liquid ammonia, which is not exclusively based on solution effects but also on the oxidative influence of the solvent. This allows for a deeper understanding of the ongoing processes in solution and opens doors to the directed synthesis of transition metal complexes of Sn4 (4-) , here shown by its reactivity towards MesCu. PMID:26286370

  18. Concise diastereoselective synthesis of calcaripeptide C via asymmetric transfer hydrogenation/Pd-induced chiral allenylzinc as a key reaction.

    PubMed

    Kumaraswamy, Gullapalli; Narayanarao, Vykunthapu; Raju, Ragam

    2015-08-21

    Synthesis of the natural product calcaripeptide C derived from the fungal metabolite mycelium KF525 of Calcarisporium sp. has been achieved. This complementary approach avoids the use of a stoichiometric amount of chiral auxiliary reagents as commonly used to generate enantioenriched advanced precursors. The enantioselective synthesis of calcaripeptide C is remarkable in that using catalytic reactions sets the two stereogenic centers efficiently with good levels of enantioselectivity. Further diversification of the calcaripeptide C structures is possible by employing a complementary catalytic enantioenriched Ru-catalyst. PMID:26156428

  19. Five-membered cyclic metal carbyne: synthesis of osmapentalynes by the reactions of osmapentalene with allene, alkyne, and alkene.

    PubMed

    Zhu, Congqing; Yang, Yuhui; Wu, Jingjing; Luo, Ming; Fan, Jinglan; Zhu, Jun; Xia, Haiping

    2015-06-01

    The synthesis of small cyclic metal carbynes is challenging due to the large angle strain associated with the highly distorted nonlinear triple bonds. Herein, we report a general route for the synthesis of five-membered cyclic metal carbyne complexes, osmapentalynes, by the reactions of an osmapentalene derivative with allene, alkyne, and alkene. Experimental observations and theoretical calculations document the aromaticity in the fused five-membered rings of osmapentalynes. The realization of transforming osmapentalene to osmapentalyne through this general route would not only allow further exploration of metallapentalyne chemistry but also show promising applications of this novel aromatic system with broad absorption band and high molar absorption coefficient. PMID:25917530

  20. Synthesis of Unsymmetrical Diarylureas via Pd-Catalyzed C–N Cross-Coupling Reactions

    E-print Network

    Breitler, Simon

    A facile synthesis of unsymmetrical N,N?-diarylureas is described. The utilization of the Pd-catalyzed arylation of ureas enables the synthesis of an array of diarylureas in good to excellent yields from benzylurea via a ...

  1. Reaction Routes for the Synthesis of CuInSe2 Using Bilayer Compound Precursors

    SciTech Connect

    Krishnan, Rangarajan; Wood, David; Chaudhari, Vaibhav U.; Payzant, E Andrew; Noufi, Rommel; Rozeveld, Steve; Kim, Woo Kyoung; Anderson, Timothy J

    2012-01-01

    The reaction pathways and phase evolution during synthesis of CuInSe{sub 2} (CIS) by a novel bilayer approach were investigated using in situ high-temperature X-ray diffraction. Two bilayer precursor structures, glass/Mo/{gamma}-In{sub 2}Se{sub 3}/{beta}-CuSe + {beta}-Cu{sub 2}Se/Se and glass/Mo/{gamma}-In{sub 2}Se{sub 3}/{beta}-Cu{sub 2}Se/Se, were examined in this study. Temperature ramp experiments revealed that the phase transformation sequence for each bilayer precursor qualitatively follows that predicted by the phase diagram and that the onset temperatures for decomposition of the sub-binary compounds depend on the Se partial pressure. Measurement of the isothermal rate of formation of CuInSe{sub 2} at six temperatures in the range 260 to 310 C for the {gamma}-In{sub 2}Se{sub 3}/{beta}-CuSe + {beta}-Cu{sub 2}Se/Se bilayer suggests relatively slow nucleation followed by diffusion-limited reaction with estimated activation energy of 162({+-}7) and 225 ({+-}16) kJ/mol from Avrami and parabolic models, respectively. Interestingly, the measured activation energy for the same precursor in a 4 mol % H{sub 2}/He ambient (108 ({+-}8) kJ/mol) was lower than that observed in pure N{sub 2} (158 ({+-}16) kJ/mol). The results of isothermal measurements in the temperature range 250 to 300 C for the {gamma}-In{sub 2}Se{sub 3}/{beta}-Cu{sub 2}Se/Se precursor film in an inert ambient are consistent with one-dimensional diffusion-limited growth with estimated activation energy from the Avrami and parabolic models of 194 ({+-}10) and 203 ({+-}12) kJ/mol, respectively.

  2. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications.

    PubMed

    Wang, Hong-Yin; Hua, Xian-Wu; Wu, Fu-Gen; Li, Bolin; Liu, Peidang; Gu, Ning; Wang, Zhifei; Chen, Zhan

    2015-04-01

    Copper-based nanomaterials have broad applications in electronics, catalysts, solar energy conversion, antibiotics, tissue imaging, and photothermal cancer therapy. However, it is challenging to prepare ultrasmall and ultrastable CuS nanoclusters (NCs) at room temperature. In this article, a simple method to synthesize water-soluble, monodispersed CuS NCs is reported based on the strategy of trapping the reaction intermediate using thiol-terminated, alkyl-containing short-chain poly(ethylene glycol)s (HS-(CH2)11-(OCH2CH2)6-OH, abbreviated as MUH). The MUH-coated CuS NCs have superior stability in solutions with varied pH values and are stable in pure water for at least 10 months. The as-prepared CuS NCs were highly toxic to A549 cancer cells at a concentration of higher than 100 ?M (9.6 ?g/mL), making them be potentially applicable as anticancer drugs via intravenous administration by liposomal encapsulation or by direct intratumoral injection. Besides, for the first time, CuS NCs were used for antibacterial application, and 800 ?M (76.8 ?g/mL) CuS NCs could completely kill the E. coli cells through damaging the cell walls. Moreover, the NCs synthesized here have strong near-infrared (NIR) absorption and can be used as a candidate reagent for photothermal therapy and photoacoustic imaging. The method of trapping the reaction intermediate for simple and controlled synthesis of nanoclusters is generally applicable and can be widely used to synthesize many metal-based (such as Pt, Pd, Au, and Ag) nanoclusters and nanocrystals. PMID:25785786

  3. Biochemical aspects of renal ammonia formation in metabolic acidosis.

    PubMed

    Hems, D A

    1975-01-01

    In omnivorous creatures, the diet is acidogenic, especially as a result of the meat content, which gives rise to phosphoric and sulphuric acids, i.e., to metabolic acidosis. In the short term, metabolic acids are buffered by tissue proteins and bicarbonate (the 'alkali reserve'). In the longer term, acid must be excreted, or neutralized with base which is also generated from the diet, by conversion of dietary amino-nitrogen to ammonia. The final steps of this process occur in the kidney, which converts circulating glutamine to ammonia, and to carbon products such as glucose and carbon dioxide, by metabolic reactions which adapt during acidosis to generate more ammonia and maintain an increased renal ammonia content. The complex mechanisms which govern the formation of ammonia, glucose and carbon dioxide from glutamine, involving the reactions of amino acids, the tricarboxylic acid cycle, and gluconeogenesis, are reviewed. PMID:231

  4. Activity-Directed Synthesis with Intermolecular Reactions: Development of a Fragment into a Range of Androgen Receptor Agonists

    PubMed Central

    Karageorgis, George; Dow, Mark; Aimon, Anthony; Warriner, Stuart; Nelson, Adam

    2015-01-01

    Activity-directed synthesis (ADS), a novel discovery approach in which bioactive molecules emerge in parallel with associated syntheses, was exploited to develop a weakly binding fragment into novel androgen receptor agonists. Harnessing promiscuous intermolecular reactions of carbenoid compounds enabled highly efficient exploration of chemical space. Four substrates were prepared, yet exploited in 326 reactions to explore diverse chemical space; guided by bioactivity alone, the products of just nine of the reactions were purified to reveal diverse novel agonists with up to 125-fold improved activity. Remarkably, one agonist stemmed from a novel enantioselective transformation; this is the first time that an asymmetric reaction has been discovered solely on the basis of the biological activity of the product. It was shown that ADS is a significant addition to the lead generation toolkit, enabling the efficient and rapid discovery of novel, yet synthetically accessible, bioactive chemotypes. PMID:26358926

  5. Activity-Directed Synthesis with Intermolecular Reactions: Development of a Fragment into a Range of Androgen Receptor Agonists.

    PubMed

    Karageorgis, George; Dow, Mark; Aimon, Anthony; Warriner, Stuart; Nelson, Adam

    2015-11-01

    Activity-directed synthesis (ADS), a novel discovery approach in which bioactive molecules emerge in parallel with associated syntheses, was exploited to develop a weakly binding fragment into novel androgen receptor agonists. Harnessing promiscuous intermolecular reactions of carbenoid compounds enabled highly efficient exploration of chemical space. Four substrates were prepared, yet exploited in 326 reactions to explore diverse chemical space; guided by bioactivity alone, the products of just nine of the reactions were purified to reveal diverse novel agonists with up to 125-fold improved activity. Remarkably, one agonist stemmed from a novel enantioselective transformation; this is the first time that an asymmetric reaction has been discovered solely on the basis of the biological activity of the product. It was shown that ADS is a significant addition to the lead generation toolkit, enabling the efficient and rapid discovery of novel, yet synthetically accessible, bioactive chemotypes. PMID:26358926

  6. Cobalt- versus ruthenium-catalyzed Alder-ene reaction for the synthesis of credneramide A and B.

    PubMed

    Erver, Florian; Hilt, Gerhard

    2012-06-01

    The first synthesis of the natural products credneramide A and B was accomplished by utilizing Alder-ene reactions between a terminal alkene and an internal alkyne to generate the rather uncommon 1,4-diene substructure of these compounds. Moreover, two different short linear sequences toward these targets are evaluated using either a cobalt-catalyzed Alder-ene reaction of 1-chloropent-1-yne or a ruthenium-catalyzed Alder-ene reaction of 1-trimethylsilyl-1-pentyne with 5-hexenoic acid derivatives in the key step transformation. In addition, saponification of the primary Alder-ene product derived from the cobalt-catalyzed Alder-ene reaction led to credneric acid, the biological precursor of both natural products. PMID:22568728

  7. One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction.

    PubMed

    Eid, Kamel; Wang, Hongjing; He, Pei; Wang, Kunmiao; Ahamad, Tansir; Alshehri, Saad M; Yamauchi, Yusuke; Wang, Liang

    2015-10-01

    The design of porous bimetallic nanocrystals (NCs) is very important for electrochemical energy conversion. Herein, we report an aqueous solution method for one-step fabrication of porous PtCu NCs assembled by spatially interconnected arms in high yield by a simple ultrasonic treatment of the reaction mixture at room temperature. The proposed method, without the need for multi-step synthesis, high temperatures, and organic solvents, shows an obvious advantage of simplicity for the feasible synthesis of bimetallic PtCu NCs with a porous structure. The as-made porous PtCu NCs are highly active and durable catalysts for the methanol oxidation reaction due to their porous structure and bimetallic composition. PMID:26411637

  8. Composition-Controlled Synthesis of Bimetallic PdPt Nanoparticles and Their Electrocatalysis for Methanol Oxidation Reaction

    SciTech Connect

    Liu, Yi; Chi, Miaofang; Mazumder, Vismadeb; More, Karren Leslie; Sun, Shouheng

    2011-01-01

    PdPt alloy nanoparticles (NPs) are promising catalysts for various chemical reactions because of the presence of powerful catalytic components of Pt and Pd on the surface of one nanostructure. In this paper, we report a facile synthesis of polyhedral PdPt alloy NPs via coreduction of Pd(acac){sub 2} (acac = acetylacetonate) and Pt(acac)2 with morpholine borane in oleylamine at 90 and 180 C. In the synthesis, the molar ratio of the two metal precursors added in the reaction mixture was carried over to the final PdPt NP product, and compositions of the PdPt NPs were readily tuned from Pd{sub 88}Pt{sub 12} to Pd{sub 34}Pt{sub 66}. These PdPt NPs show the composition-dependent catalytic activity for methanol oxidation, with NPs in 40-60 atomic % Pt exhibiting the superior activity and durability.

  9. Assessing Ammonia Treatment Options

    EPA Science Inventory

    This is the second of three articles to help water system operators understand ammonia and how to monitor and control its effects at the plant and in the distribution system. The first article (Opflow, April 2012) provided an overview of ammonia's chemistry, origins, and water sy...

  10. Diastereoselective synthesis of pitavastatin calcium via bismuth-catalyzed two-component hemiacetal/oxa-Michael addition reaction.

    PubMed

    Xiong, Fangjun; Wang, Haifeng; Yan, Lingjie; Xu, Lingjun; Tao, Yuan; Wu, Yan; Chen, Fener

    2015-10-14

    An efficient and concise asymmetric synthesis of pitavastatin calcium (1) starting from commercially available (S)-epichlorohydrin is described. A convergent C1 + C6 route allowed for the assembly of the pitavastatin C7 side chain via a Wittig reaction between phosphonium salt 2 and the enantiomerically pure C6-formyl side chain 3. The 1,3-syn-diol acetal motif in 3 was established with excellent stereo control by a diastereoselective bismuth-promoted two-component hemiacetal/oxa-Michael addition reaction of (S)-?,?-unsaturated ketone 4 with acetaldehyde. PMID:26275074

  11. One-Pot Synthesis of N-(?-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere.

    PubMed

    Wang, Xinbo; Pan, Yupeng; Huang, Kuo-Wei; Lai, Zhiping

    2015-11-20

    A facile one-pot synthesis of N-(?-peroxy)indole and N-(?-peroxy)carbazole has been developed using metal-free, organo-acid-catalyzed three-component condensation reactions of indole/carbazole, aldehyde, and peroxide. Based on the reaction discovered, a new synthetic proposal for Fumitremorgin A and Verruculogen is introduced. Such a protocol could be easily handled and scaled up in an open atmosphere with a wide substrate scope, enabling the construction of a new molecule library. PMID:26541059

  12. Palladium-catalyzed Heck-type reaction of oximes with allylic alcohols: synthesis of pyridines and azafluorenones.

    PubMed

    Zheng, Meifang; Chen, Pengquan; Wu, Wanqing; Jiang, Huanfeng

    2015-12-15

    We describe herein a palladium-catalyzed Heck-type reaction of O-acetyl ketoximes and allylic alcohols to synthesise pyridines. This protocol allows the robust synthesis of pyridines and azafluorenones in good to excellent yields with tolerance of various functional groups under mild conditions. The reaction is supposed to go through an oxidative addition of oximes to palladium(0) complexes, generating an alkylideneamino-palladium(ii) species, which is utilized as a key intermediate to capture the nonbiased alkenes for carbon-carbon bond formation. PMID:26496814

  13. Unusual regioselection in the Mitsunobu reactions of syn-2,3-dihydroxy esters: synthesis of statine and its diastereomer.

    PubMed

    Ko, Soo Y

    2002-04-19

    Mitsunobu reactions of syn-2,3-dihydroxy esters exhibit a complete regioselection for the beta-hydroxyl group. Benzoylation, azidation, and tosylation have been performed under these conditions. Beta-functionalizations of syn-2,3-dihydroxy esters are uncommon, and the Mitsunobu reactions are complementary to other diol chemistries in the regioselection. In addition, the configurational inversion accompanying the Mitsunobu protocol offers a means for diastereochemical diversity, as exemplified by a synthesis of statine and its anti diastereomer. These findings will further expand the synthetic utilities of the Sharpless AD process. PMID:11950319

  14. Synthesis of a Library of “Lead-Like” ?-Lactams by a One Pot, Four-Component Reaction

    PubMed Central

    Martin, Kevin S.; Di Maso, Michael J.; Fettinger, James C.

    2013-01-01

    The synthesis of a pilot scale library of 116 structurally diverse ?-lactams is reported. The library core structure emanates from a ?-lactam forming one-pot, four-component reaction of ammonium acetate, p-methoxythiophenol, p-methoxybenzaldehyde and maleic anhydride. Structural diversity then arises from amide coupling, thioaryl cleavage, N-functionalization and heterocycle forming reactions on this core structure. Computational analysis reveals that the library contains molecular properties and shape diversity suitable for drug lead and biological probe discovery. PMID:23682712

  15. Synthesis of 4-Methylumbellifer-7-yl-?-D-Mannopyranoside: An Introduction to Modern Glycosylation Reactions

    NASA Astrophysics Data System (ADS)

    Penverne, Christophe; Ferrières, Vincent

    2002-11-01

    The present work is aimed at introducing fourth-year organic chemistry students to glycochemistry and in particular to the diastereocontrolled synthesis of glycosides. In this context, we have elaborated a hemisynthetic work starting from carbohydrates easily available as natural renewable resources using a modern approach to glycosylation. These reactions led the instructors to highlight how the anomeric center of a glycosyl donor is able to be activated and the role of protecting groups that stabilizes the cationic intermediate and so controls the formation of the new glycosidic linkage. In practice, students are induced to perform successively: (1) a selective deacetylation under mild conditions, (2) the activation of the resulting free hydroxyl that yields an anomeric trichloroacetimidate, (3) the mannosylation of a natural coumarin, and (4) a final deprotection step. This sequence leads to an aromatic glycoside which has potential for biological applications since some inhibition properties have already been established. Consequently, this experiment is suitable to demonstrate the connection between chemistry and life sciences.

  16. Prediction of Reaction Kinetic in Mechanically Activated Self-Propagating High-Temperature Synthesis Process

    NASA Astrophysics Data System (ADS)

    Razavi, Mansour

    2012-12-01

    In this paper we have tried to develop a semi-empirical formula for estimation of starting time of reactions during mechanical alloying process according to self-propagating high temperature synthesis (SHS) mechanism. For this purpose, three SHS systems containing Ti-C, Mo-Si and Si-C were selected and their behaviors were observed. Aforementioned systems were milled in a planetary ball mill equipped with temperature sensor detector of cups. Samplings were done at different times of discontinuously milling. To change mills' energy, stainless steel and tungsten carbide balls were used. In order to detect the phases and characterizations of milled powder, XRD instrument was utilized. Results showed that all productions were synthesized after sudden increase in temperature. Maximum measured temperature and critical time had up and downtrends for production of TiC, MoSi2 and SiC, respectively. Crystalline size of milled powder had nano-meter scale. By using experimental data along with theoretical equations, a semi-empirical formula between critical time for transformation of raw materials to productions, type of milled system and ball mill parameter can be presented with high accuracy. According to calculated formula, critical time was related to ball mill energy and Gibbs free energy of milled system with direct and inverse proportionality, respectively.

  17. The hydroboration reaction as a key for a straightforward synthesis of new MRI-NCT agents.

    PubMed

    Boggio, Paolo; Toppino, Antonio; Geninatti Crich, Simonetta; Alberti, Diego; Marabello, Domenica; Medana, Claudio; Prandi, Cristina; Venturello, Paolo; Aime, Silvio; Deagostino, Annamaria

    2015-03-21

    In this study the hydroboration reaction has been exploited to produce in only four steps a new lipophilic GdBNCT/MRI agent (PB01). As a matter of fact, the formation of a new B–C bond to link the decaborane with the lipophilic moiety greatly simplifies the synthesis of PB01 with respect to the previously reported dual agents. The complexes obtained (PB01a and PB01b) have been fully characterised from the relaxometric point of view and, after disaggregation with HP?CD, both isomers display high affinity for low density lipoproteins (LDLs) that can be exploited as specific carriers of these therapeutic and diagnostic agents for tumour cells. The LDL loading capacity is different for the two isomers. In fact, LDL can be loaded with 75 and 300 units of PB01a and PB01b, respectively, and for this reason, the isomer PB01b results to be the best candidate to perform MRI guided BNCT. PMID:25645198

  18. A divergent approach to the synthesis of simplexides and congeners via a late-stage olefin cross-metathesis reaction.

    PubMed

    Li, Jiakun; Li, Wei; Yu, Biao

    2013-08-14

    Simplexides constitute a unique group of immunosuppressive glycolipids that demonstrate antiproliferative activities against activated T-cell lymphocytes via a unique non-cytotoxic inhibition. To investigate the structure-activity relationship of the varied long-chain secondary alcohols on simplexides, we developed an efficient and divergent route to the synthesis of simplexides and congeners, taking advantage of a late-stage olefin cross-metathesis reaction. PMID:23774893

  19. Enantioselective nickel-catalyzed reductive coupling reactions of alkynes and aldehydes. Synthesis of amphidinolides T1 and T4 via catalytic, stereoselective macrocyclizations

    E-print Network

    Colby Davie, Elizabeth A. (Elizabeth Anne)

    2005-01-01

    I. Enantioselective Nickel-Catalyzed Reductive Couplings of Alkynes and Aldehydes Allylic alcohol synthesis via a nickel-catalyzed reductive coupling reaction of alkylsubstituted alkynes and aldehydes was studied for ligand ...

  20. Studies in asymmetric ?-lactone synthesis: extensions of the chiral nucleophile catalyzed aldol-lactonization (NCAL) reaction and new transformations of chlorinated ?-lactones 

    E-print Network

    Tennyson, Reginald L.

    2001-01-01

    Expansion of Wynberg's procedure for the asymmetric synthesis of ?-lactones has been extended to the use of in situ generated ketene. Reaction with dichlorinated aldehydes in the presence of quinidine yielded ?-lactone products in good yield (40...

  1. Chemical pathways for the formation of ammonia in Hanford wastes

    SciTech Connect

    Stock, L.M.; Pederson, L.R.

    1997-09-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important). Reduction of nitrite ions is believed to be the most important source of ammonia. Whether by radiolytic or thermal routes, nitrite reduction reactions proceed through nitrogen dioxide, nitric oxide, the nitrosyl anion, and the hyponitrite anion. Nitrite ion is also converted into hydroxylamine, another important intermediate on the pathway to form ammonia. These reaction pathways additionally result in the formation of nitrous oxide and molecular nitrogen, whereas hydrogen formation is produced in a separate reaction sequence.

  2. Microwave (MW) irradiated Ugi four-component reaction (Ugi-4CR): Expedited synthesis of steroid-amino acid conjugates--A novel class of hybrid compounds.

    PubMed

    Borah, Preetismita; Borah, Juri Moni; Chowdhury, Pritish

    2015-06-01

    Microwave (MW) assisted chemical reactions are currently gaining considerable importance in organic synthesis to contribute in green technology. Considering the importance of peptidomimetic steroid-amino acid conjugates - a novel class of hybrid compounds having diverse biological properties, we report here synthesis of these compounds of alanine and valine methyl esters with seco-steroids (A, B and D ring cleavage) in expedited way by MW promoted Ugi-four-component reaction (Ugi-4CR). PMID:25701096

  3. Synthesis of a new class of Betti bases by the Mannich-type reaction: efficient, facile, solvent-free and one-pot protocol.

    PubMed

    Shahrisa, Aziz; Teimuri-Mofrad, Reza; Gholamhosseini-Nazari, Mahdi

    2015-02-01

    A variety of organocatalysts has been screened for the synthesis of arylaminonaphthols. It has been shown that (N,N-dimethylethanolamine) is a highly efficient organocatalyst for the direct synthesis of a novel class of arylaminonaphthols via three-component condensation of 2-naphthol, aldehydes, and arylamines under solvent-free conditions. Mild, one-pot, and green reaction conditions, relatively short reaction times and good yields make this protocol highly significant. 25 new compounds have been synthesized by this method. PMID:25528441

  4. Highly convergent, stereospecific synthesis of 11-cis-retinoids by metal-catalyzed cross-coupling reactions of (Z)-1-alkenylmetals.

    PubMed

    López, Susana; Montenegro, Javier; Saá, Carlos

    2007-12-01

    A stereospecific synthesis of 11-cis-retinoids has as its key step the hitherto unexplored palladium-catalyzed cross-coupling of trans-trienyl electrophiles and (1Z,3E)-penta-1,3-dienyl boronates (a Suzuki-Miyaura reaction) or stannanes (a Stille reaction). This highly convergent approach constitutes the first application of cis-organometallic moieties to the synthesis of 11-cis-retinoids and represents a general, straightforward route to the visual chromophore. PMID:18001096

  5. Nitrogen and Hydrogen on a Palladium-covered proton conductor: a first principle study of Ammonia catalysis

    NASA Astrophysics Data System (ADS)

    Paulatto, Lorenzo; de Gironcoli, Stefano

    2009-03-01

    Being liquid at ambient conditions Ammonia would be an ideal Hydrogen vector. However, the industrial Haber process for Ammonia synthesis involves high pressures ( 100 bar) and temperatures (450-500 ^oC), making the process very expensive. Recently, ambient pressure Ammonia production, in the 570-750 ^oC temperature range, has been reported at the Palladium cathode of a proton conducting cell-reactor [1]. The rate limiting step in the Haber process is N2 dissociation, while the observed limiting factor in Ref. [1] appears to be the proton transfer through the conductor and it has been proposed that Nitrogen hydrogenation may in this case precede dissociation. We use first-principles techniques to study Nitrogen, Hydrogen and Ammonia interaction with flat and stepped Pd surfaces, in presence of external electric fields. Our aim is to study the effect of electrochemically provided protons on the catalysis of the reaction. [1]G. Marnellos and M. Stoukides, Science 282, 98 (1998); G. Marnellos, S. Zisekas, and M. Stoukides, J. of Catalysis 193, 80-87 (2000)

  6. Chemical pathways for the formation of ammonia in Hanford wastes

    SciTech Connect

    Stock, L.M.; Pederson, L.R.

    1997-12-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important).

  7. Ammonia Leak Locator Study

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Wuest, Martin P.; Deffenbaugh, Danny M.

    1995-01-01

    The thermal control system of International Space Station Alpha will use liquid ammonia as the heat exchange fluid. It is expected that small leaks (of the order perhaps of one pound of ammonia per day) may develop in the lines transporting the ammonia to the various facilities as well as in the heat exchange equipment. Such leaks must be detected and located before the supply of ammonia becomes critically low. For that reason, NASA-JSC has a program underway to evaluate instruments that can detect and locate ultra-small concentrations of ammonia in a high vacuum environment. To be useful, the instrument must be portable and small enough that an astronaut can easily handle it during extravehicular activity. An additional complication in the design of the instrument is that the environment immediately surrounding ISSA will contain small concentrations of many other gases from venting of onboard experiments as well as from other kinds of leaks. These other vapors include water, cabin air, CO2, CO, argon, N2, and ethylene glycol. Altogether, this local environment might have a pressure of the order of 10(exp -7) to 10(exp -6) torr. Southwest Research Institute (SwRI) was contracted by NASA-JSC to provide support to NASA-JSC and its prime contractors in evaluating ammonia-location instruments and to make a preliminary trade study of the advantages and limitations of potential instruments. The present effort builds upon an earlier SwRI study to evaluate ammonia leak detection instruments [Jolly and Deffenbaugh]. The objectives of the present effort include: (1) Estimate the characteristics of representative ammonia leaks; (2) Evaluate the baseline instrument in the light of the estimated ammonia leak characteristics; (3) Propose alternative instrument concepts; and (4) Conduct a trade study of the proposed alternative concepts and recommend promising instruments. The baseline leak-location instrument selected by NASA-JSC was an ion gauge.

  8. Synthesis and x-ray characterization of cobalt phosphide (Co?P) nanorods for the oxygen reduction reaction

    DOE PAGESBeta

    Doan-Nguyen, Vicky V.T.; Su, Dong; Zhang, Sen; Trigg, Edward B.; Agarwal, Rahul; Li, Jing; Winey, Karen I.; Murray, Christopher B.

    2015-07-14

    Low temperature fuel cells are clean, effective alternative fuel conversion technology. Oxygen reduction reaction (ORR) at the fuel cell cathode has required Pt as the electrocatalyst for high activity and selectivity of the four-electron reaction pathway. Targeting a less expensive, earth abundant alternative, we have developed the synthesis of cobalt phosphide (Co?P) nanorods for ORR. Characterization techniques that include total X-ray scattering and extended X-ray absorption fine structure revealed a deviation of the nanorods from bulk crystal structure with a contraction along the b orthorhombic lattice parameter. The carbon supported nanorods have comparable activity but are remarkably more stable thanmore »conventional Pt catalysts for the oxygen reduction reaction in alkaline environments.« less

  9. Synthesis and x-ray characterization of cobalt phosphide (Co?P) nanorods for the oxygen reduction reaction

    SciTech Connect

    Doan-Nguyen, Vicky V.T.; Su, Dong; Zhang, Sen; Trigg, Edward B.; Agarwal, Rahul; Li, Jing; Winey, Karen I.; Murray, Christopher B.

    2015-07-14

    Low temperature fuel cells are clean, effective alternative fuel conversion technology. Oxygen reduction reaction (ORR) at the fuel cell cathode has required Pt as the electrocatalyst for high activity and selectivity of the four-electron reaction pathway. Targeting a less expensive, earth abundant alternative, we have developed the synthesis of cobalt phosphide (Co?P) nanorods for ORR. Characterization techniques that include total X-ray scattering and extended X-ray absorption fine structure revealed a deviation of the nanorods from bulk crystal structure with a contraction along the b orthorhombic lattice parameter. The carbon supported nanorods have comparable activity but are remarkably more stable than conventional Pt catalysts for the oxygen reduction reaction in alkaline environments.

  10. Synthesis and X-ray Characterization of Cobalt Phosphide (Co2P) Nanorods for the Oxygen Reduction Reaction.

    PubMed

    Doan-Nguyen, Vicky V T; Zhang, Sen; Trigg, Edward B; Agarwal, Rahul; Li, Jing; Su, Dong; Winey, Karen I; Murray, Christopher B

    2015-08-25

    Low temperature fuel cells are clean, effective alternative fuel conversion technology. Oxygen reduction reaction (ORR) at the fuel cell cathode has required Pt as the electrocatalyst for high activity and selectivity of the four-electron reaction pathway. Targeting a less expensive, earth abundant alternative, we have developed the synthesis of cobalt phosphide (Co2P) nanorods for ORR. Characterization techniques that include total X-ray scattering and extended X-ray absorption fine structure revealed a deviation of the nanorods from bulk crystal structure with a contraction along the b orthorhombic lattice parameter. The carbon supported nanorods have comparable activity but are remarkably more stable than conventional Pt catalysts for the oxygen reduction reaction in alkaline environments. PMID:26171574

  11. Fully diastereoselective synthesis of polysubstituted, functionalized piperidines and decahydroquinolines based on multicomponent reactions catalyzed by cerium(IV) ammonium nitrate.

    PubMed

    Suryavanshi, Padmakar A; Sridharan, Vellaisamy; Maiti, Swarupananda; Menéndez, J Carlos

    2014-07-01

    The cerium(IV) ammonium nitrate (CAN)-catalyzed, three-component reaction between primary amines, ?-dicarbonyl compounds, and ?,?-unsaturated aldehydes in ethanol heated to reflux, constitutes a general, one-pot synthesis of 1,4-dihydropyridines. Their reduction with sodium triacetoxyborohydride furnished piperidine derivatives bearing up to five substituents with full diastereoselectivity in a hitherto inaccessible stereochemical arrangement. The reaction proceeded with no significant loss of enantiomeric purity under mild reduction conditions that are compatible with several functional groups that are normally sensitive to reduction. Octahydroquinolin-5-one derivatives, which were prepared by a modified version of the initial multicomponent reaction, were not suitable substrates for the sodium triacetoxyborohydride mediated reduction, but they were transformed into the corresponding decahydroquinolines, including a precursor of the amphibian alkaloid pumiliotoxin?C, by catalytic hydrogenation under a variety of conditions. PMID:24909665

  12. Ammonia Release on ISS

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2009-01-01

    Crew: Approximately 53% metabolic load Product of protein metabolism Limit production of ammonia by external regulation NOT possbile Payloads Potential source Scientific experiments Thorough safety review ensures sufficient levels of containment

  13. Reactor for removing ammonia

    DOEpatents

    Luo, Weifang (Livermore, CA); Stewart, Kenneth D. (Valley Springs, CA)

    2009-11-17

    Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.

  14. In-situ synthesis of MoSi{sub 2}-Al{sub 2}O{sub 3} composite by a thermite reaction

    SciTech Connect

    Deevi, S.C.; Deevi, S.

    1995-08-01

    In this paper, the authors discuss the reaction mechanism involved in the thermite reaction leading to the synthesis of a composite since in an actual combustion synthesis, the reaction propagates at a velocity of 10 to 20 mm/sec. Reaction mechanism was determined by using a differential thermal analysis (DTA) and X-ray diffraction (XRD). During the combustion synthesis of MoSi{sub 2}-{alpha}Al{sub 2}O{sub 3}, reaction of MoO{sub 3}, Al and Si occurs rapidly and the reactants and products are expected to be in the liquid state at the combustion temperature. MoO{sub 3} is first reduced to MoO{sub 2}, and the reaction between MoO{sub 2}, Al and Si leads to a composite of MoSi{sub 2}-{alpha}Al{sub 2}O{sub 3}. Differential thermal analysis reveals that the onset of exothermic reactions is preceded by melting indicating the necessity of molten Al for the synthesis of the composite. The reaction between MoO{sub 2} + 2Al +2Si can be moderated with Mo-Si mixtures such that the ratio of MoSi{sub 2} to Al{sub 2}O{sub 3} can be increased in the composite of MoSi{sub 2}-{alpha}Al{sub 2}O{sub 3}.

  15. Ammonia Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter

    In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.

  16. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  17. Palladium-catalyzed enolate arylation as a key C-C bond-forming reaction for the synthesis of isoquinolines.

    PubMed

    Pilgrim, Ben S; Gatland, Alice E; Esteves, Carlos H A; McTernan, Charlie T; Jones, Geraint R; Tatton, Matthew R; Procopiou, Panayiotis A; Donohoe, Timothy J

    2016-01-21

    The palladium-catalyzed coupling of an enolate with an ortho-functionalized aryl halide (an ?-arylation) furnishes a protected 1,5-dicarbonyl moiety that can be cyclized to an isoquinoline with a source of ammonia. This fully regioselective synthetic route tolerates a wide range of substituents, including those that give rise to the traditionally difficult to access electron-deficient isoquinoline skeletons. These two synthetic operations can be combined to give a three-component, one-pot isoquinoline synthesis. Alternatively, cyclization of the intermediates with hydroxylamine hydrochloride engenders direct access to isoquinoline N-oxides; and cyclization with methylamine, gives isoquinolinium salts. Significant diversity is available in the substituents at the C4 position in four-component, one-pot couplings, by either trapping the in situ intermediate after ?-arylation with carbon or heteroatom-based electrophiles, or by performing an ?,?-heterodiarylation to install aryl groups at this position. The ?-arylation of nitrile and ester enolates gives access to 3-amino and 3-hydroxyisoquinolines and the ?-arylation of tert-butyl cyanoacetate followed by electrophile trapping, decarboxylation and cyclization, C4-functionalized 3-aminoisoquinolines. An oxime directing group can be used to direct a C-H functionalization/bromination, which allows monofunctionalized rather than difunctionalized aryl precursors to be brought through this synthetic route. PMID:26632484

  18. The synthesis of methanol and the reverse water-gas shift reaction over Zn-deposited Cu(100) and Cu(110) surfaces: comparison with Zn/Cu(111)

    NASA Astrophysics Data System (ADS)

    Nakamura, I.; Fujitani, T.; Uchijima, T.; Nakamura, J.

    1998-03-01

    The catalytic activity of Zn vapor-deposited Cu(100) and Cu(110) surfaces for methanol synthesis by the hydrogenation of CO 2 and the reverse water-gas shift reaction were studied using an XPS apparatus combined with a high-pressure flow reactor (18 atm). At a reaction temperature of 523 K, no promotional effect of Zn was observed for the methanol synthesis on both Zn/Cu(100) and Zn/Cu(110). The results were quite different from those for Zn/Cu(111), on which a significant promotion of methanol synthesis activity appeared to be due to the deposition of Zn, indicating that the promotional effect of Zn was sensitive to the surface structure of Cu. However, hysteresis was observed in the catalytic activity for methanol synthesis over the Zn/Cu(110) surface upon heating above 543 K in the reaction mixture. The activity became twice that measured before heating, which was close to the methanol synthesis activity of Zn/Cu(111) at the same Zn coverage. On the other hand, no such hysteresis was observed for the reverse water-gas shift reaction on Zn/Cu(110), indicating that the active site for methanol synthesis was not identical to that for the reverse water-gas shift reaction. In the post-reaction surface analysis, formate species was detected on both Zn/Cu(100) and Zn/Cu(110), whose coverage increased with increasing Zn coverage at 0< ?Zn<0.2. No correlation between the formate coverage and the methanol synthesis activity was obtained, which was in contrast to the results for Zn/Cu(111). Thus, the structure sensitivity observed in the catalytic activity of methanol synthesis over Zn-deposited Cu surfaces is ascribed to the significant difference in the reactivity of the formate intermediate.

  19. Multistep Synthesis of a Terphenyl Derivative Showcasing the Diels-Alder Reaction

    ERIC Educational Resources Information Center

    Davie, Elizabeth A. Colby

    2015-01-01

    An adaptable multistep synthesis project designed for the culmination of a second-year organic chemistry laboratory course is described. The target compound is a terphenyl derivative that is an intermediate in the synthesis of compounds used in organic light-emitting devices. Students react a conjugated diene with dimethylacetylene dicarboxylate…

  20. Design and Synthesis of Chiral Zn2+ Complexes Mimicking Natural Aldolases for Catalytic C–C Bond Forming Reactions in Aqueous Solution

    PubMed Central

    Itoh, Susumu; Sonoike, Shotaro; Kitamura, Masanori; Aoki, Shin

    2014-01-01

    Extending carbon frameworks via a series of C–C bond forming reactions is essential for the synthesis of natural products, pharmaceutically active compounds, active agrochemical ingredients, and a variety of functional materials. The application of stereoselective C–C bond forming reactions to the one-pot synthesis of biorelevant compounds is now emerging as a challenging and powerful strategy for improving the efficiency of a chemical reaction, in which some of the reactants are subjected to successive chemical reactions in just one reactor. However, organic reactions are generally conducted in organic solvents, as many organic molecules, reagents, and intermediates are not stable or soluble in water. In contrast, enzymatic reactions in living systems proceed in aqueous solvents, as most of enzymes generally function only within a narrow range of temperature and pH and are not so stable in less polar organic environments, which makes it difficult to conduct chemoenzymatic reactions in organic solvents. In this review, we describe the design and synthesis of chiral metal complexes with Zn2+ ions as a catalytic factor that mimic aldolases in stereoselective C–C bond forming reactions, especially for enantioselective aldol reactions. Their application to chemoenzymatic reactions in aqueous solution is also presented. PMID:24481060

  1. Synthesis of Pyrroloquinones via a CAN Mediated Oxidative Free Radical Reaction of 1,3-Dicarbonyl Compounds with Aminoquinones

    PubMed Central

    Nguyen, Thao; Nadkarni, Dwayaja; Dutta, Shilpa; Xu, Su; Kim, Sanghun; Murugesan, Srinivasan; Velu, Sadanandan

    2015-01-01

    Pyrroloquinone ring systems are important structural units present in many biologically active molecules including a number of marine alkaloids. For example, they are found in a series of marine metabolites, such as tsitsikammamines, zyzzyanones, wakayin, and terreusinone. Several of these alkaloids have exhibited antimicrobial, antimalarial, antifungal, antitumor, and photoprotecting activities. Synthesis of pyrroloquinone unit is the key step in the synthesis of many of these important organic molecules. Here, we present a ceric (IV) ammonium nitrate (CAN) mediated oxidative free radical cyclization reaction of 1,3-dicarbonyl compounds with aminoquinones as a facile methodology for making various substituted pyrroloquinones. 1,3-dicarbonyl compounds used in this study are ethyl acetoacetate, acetylacetone, benzoyl acetone, and N,N-dimethyl acetoacetamide. The aminoquinones used in this study are 2-(benzylamino)naphthalene-1,4-dione and 6-(benzylamino)-1-tosyl-1H-indole-4,7-dione. The yields of the synthesized pyrroloquinones ranged from 23–91%. PMID:25705550

  2. Synthesis of peptide thioesters via an N-S acyl shift reaction under mild acidic conditions on an N-4,5-dimethoxy-2-mercaptobenzyl auxiliary group.

    PubMed

    Nakamura, Ken'ichiroh; Kanao, Tomoki; Uesugi, Tomoya; Hara, Toshiaki; Sato, Takeshi; Kawakami, Toru; Aimoto, Saburo

    2009-11-01

    An efficient method of peptide thioester synthesis is described. The reaction is based on an N-4,5-dimethoxy-2-mercaptobenzyl (Dmmb) auxiliary-assisted N-S acyl shift reaction after assembling a peptide chain by Fmoc-solid phase peptide synthesis. The Dmmb-assisted N-S acyl shift reaction proceeded efficiently under mildly acidic conditions, and the peptide thioester was obtained by treating the resulting S-peptide with sodium 2-mercaptoethanesulfonate. No detectable epimerization of the amino acid residue adjacent to the thioester moiety in the case of Leu was found. The reactions were also amenable to the on-resin preparation of peptide thioesters. The utility was demonstrated by the synthesis of a 41-mer peptide thioester, a phosphorylated peptide thioester and a 33-mer peptide thioester containing a trimethylated lysine residue. PMID:19735084

  3. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    NASA Astrophysics Data System (ADS)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  4. M{prime}-RTaO{sub 4} synthesis: Activation of the precursor oxides by the reaction flux

    SciTech Connect

    Hedden, D.B.; Zegarski, W.; Torardi, C.C.

    1995-09-01

    Studies of the M{prime}-RTaO{sub 4} (R = Gd, Y, Lu) phosphor synthesis reaction show that, contrary to previous views, the flux (e.g., Li{sub 2}SO{sub 4}, LiCl, Na{sub 2}SO{sub 4}) serves as in important reactant. Through a combination of techniques (DTA, TGA, XRPD, and mass balance), the authors find that close to its melting point, the flux reacts exothermically with the blended tantalum and yttrium oxides to give intermediate compounds. These reactive intermediates then combine to make M`-REaO{sub 4} and to regenerate the flux. Thus, the flux serves a dual purpose; it first activates the oxide reaction mixture and then serves as a classical flux in the growth of RTaO{sub 4} crystals. In light of this discovery, a more appropriate term for these flux compounds is catalyst or reactive flux because they facilitate the synthesis of RTaO{sub 4} through chemical reaction.

  5. Ammonia in comet P/Halley

    NASA Technical Reports Server (NTRS)

    Meier, R.; Eberhardt, P.; Krankowsky, D.; Hodges, R. R.

    1994-01-01

    In comet P/Halley the abundances of ammonia relative to water reported in the literature differ by about one order of magnitude from roughly 0.1% up to 2%. Different observational techniques seem to have inherent systematic errors. Using the ion mass channels m/q = 19 amu/e, 18 amu/e and 17 amu/e of the Neutral Mass Spectrometer experiment aboard the spacecraft Giotto, we derive a production rate of ammonia of (1.5(sub -0.7)(sup +0.5))% relative to water. Inside the contact surface we can explain our data by a nuclear source only. The uncertainty in our abundance of ammonia is primarily a result of uncertainties in some key reaction coefficients. We discuss in detail these reactions and the range of error indicated results from extreme assumptions in the rate coefficients. From our data, even in the worst case, we can exclude the ammonia abundance to be only of the order of a few per mill.

  6. Synthesis of superheavy element 120 via {sup 50}Ti+{sup A}Cf hot fusion reactions

    SciTech Connect

    Liu, Z. H.; Bao Jingdong

    2009-11-15

    Synthesis of superheavy element 120 in terms of the {sup 50}Ti+{sup 249-252}Cf fusion-evaporation reactions is evaluated and discussed. It is found that the reactions of {sup 250,251}Cf({sup 50}Ti,3n){sup 297,298}120 and {sup 251,252}Cf({sup 50}Ti,4n){sup 297,298}120 are relatively favorable with the maximum evaporation-residue cross sections of 0.12, 0.09, 0.11, and 0.25 pb, respectively. However, {sup 252}Cf may be difficult to be target because its spontaneous fission will bring about serious background in the experiment. Fusion probabilities for different target-projectile combinations leading to the formation of surperheavy nucleus {sup 302}120 are estimated with the ''fusion-by-diffusion'' model and presented as a function of the Coulomb parameter Z{sub 1}Z{sub 2}/(A{sub 1}{sup 1/3}+A{sub 2}{sup 1/3}). Among the reactions {sup 50}Ti+{sup 252}Cf, {sup 54}Cr+{sup 248}Cm, {sup 58}Fe+{sup 244}Pu, and {sup 64}Ni+{sup 238}U, the reaction {sup 50}Ti+{sup 252}Cf has the largest fusion probability. Synthesis of superheavy element 120 is of essential importance for determining whether the magic proton shell should be at Z=114 or at higher proton numbers Z=120-126. Therefore, the experiment to produce isotopes with Z=120 in the fusion reactions {sup 50}Ti+{sup 250,251}Cf is of great interest.

  7. Maximum production of fermentable sugars from barley straw using optimized soaking in aqueous ammonia (SAA) pretreatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soaking in aqueous ammonia (SAA) pretreatment was investigated to improve enzymatic digestibility and consequently to increase total fermentable sugar production from barley straw. Various effects of pretreatment process parameters, such as reaction temperature, reaction time, solid:liquid ratio, an...

  8. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    SciTech Connect

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.

  9. Microwave-assisted intramolecular dehydrogenative Diels-Alder reactions for the synthesis of functionalized naphthalenes/solvatochromic dyes.

    PubMed

    Kocsis, Laura S; Benedetti, Erica; Brummond, Kay M

    2013-01-01

    Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields. PMID:23609566

  10. Spin-state chemistry of deuterated ammonia

    E-print Network

    Sipilä, O; Caselli, P; Schlemmer, S

    2015-01-01

    Aims. We aim to develop a chemical model that contains a consistent description of spin-state chemistry in reactions involving chemical species with multiple deuterons. We apply the model to the specific case of deuterated ammonia, to derive values for the various spin-state ratios. Methods. We apply symmetry rules in the complete scrambling assumption to calculate branching ratio tables for reactions between chemical species that include multiple protons and/or deuterons. Reaction sets for both gas-phase and grain-surface chemistry are generated using an automated routine that forms all possible spin-state variants of any given reaction with up to six H/D atoms. Single-point and modified Bonnor-Ebert models are used to study the density and temperature dependence of ammonia and its isotopologs, and the associated spin-state ratios. Results. We find that the spin-state ratios of the ammonia isotopologs are, at late times, very different from their statistical values. The ratios are rather insensitive to varia...

  11. Enantioselective synthesis of triarylmethanes by chiral imidodiphosphoric acids catalyzed Friedel-Crafts reactions.

    PubMed

    Zhuo, Ming-Hua; Jiang, Yi-Jun; Fan, Yan-Sen; Gao, Yang; Liu, Song; Zhang, Suoqin

    2014-02-21

    The first enantioselective synthesis of pyrrolyl-substituted triarylmethanes has been accomplished using a novel imidodiphosphoric acid catalyst, which is derived from two (R)-BINOL frameworks with different 3,3'-substituents. This strategy was also expanded to the synthesis of bis(indolyl)-substituted triarylmethanes with high enantioselectivities, which could only be obtained with moderate ee values in previous reports. These two efficient Friedel-Crafts alkylation processes feature low catalyst loading, broad functional group compatibilities, and the potential to provide practical pathways for the synthesis of enantioenriched bioactive triarylmethanes. PMID:24490630

  12. A Sustainable Multicomponent Pyrimidine Synthesis.

    PubMed

    Deibl, Nicklas; Ament, Kevin; Kempe, Rhett

    2015-10-14

    Since alcohols are accessible from indigestible biomass (lignocellulose), the development of novel preferentially catalytic reactions in which alcohols are converted into important classes of fine chemicals is a central topic of sustainable synthesis. Multicomponent reactions are especially attractive in organic chemistry as they allow the synthesis of large libraries of diversely functionalized products in a short time when run in a combinatorial fashion. Herein, we report a novel, regioselective, iridium-catalyzed multicomponent synthesis of pyrimidines from amidines and up to three (different) alcohols. This reaction proceeds via a sequence of condensation and dehydrogenation steps which give rise to selective C-C and C-N bond formations. While the condensation steps deoxygenate the alcohol components, the dehydrogenations lead to aromatization. Two equiv of hydrogen and water are liberated in the course of the reactions. PN5P-Ir-pincer complexes, recently developed in our laboratory, catalyze this sustainable multicomponent process most efficiently. A total of 38 different pyrimidines were synthesized in isolated yields of up to 93%. Strong points of the new protocol are its regioselectivity and thus the immediate access to pyrimidines that are highly and unsymmetrically decorated with alkyl or aryl substituents. The combination of this novel protocol with established methods for converting alcohols to nitriles now allows to selectively assemble pyrimidines from four alcohol building blocks and 2 equiv of ammonia. PMID:26414993

  13. Hydrothermal reactions: From the synthesis of ligand to new lanthanide 3D-coordination polymers

    SciTech Connect

    Silva, Fausthon Fred da; Fernandes de Oliveira, Carlos Alberto; Lago Falcão, Eduardo Henrique; Gatto, Claudia Cristina; Bezerra da Costa, Nivan; Oliveira Freire, Ricardo; Chojnacki, Jaros?aw; Alves Júnior, Severino

    2013-11-15

    The organic ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) was synthesized under hydrothermal conditions starting from the iminodiacetic acid and catalyzed by oxalic acid. The X-ray powder diffraction data indicates that the compound crystallizes in the P2{sub 1}/c monoclinic system as reported in the literature. The ligand was also characterized by elemental analysis, magnetic nuclear resonance, infrared spectroscopy and thermogravimetric analysis. Two new coordination networks based on lanthanide ions were obtained with this ligand using hydrothermal reaction. In addition to single-crystal X-ray diffraction, the compounds were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis. Single-crystal XRD showed that the compounds are isostructural, crystallizing in P2{sub 1}/n monoclinic system with chemical formula [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+}(1) and Eu{sup 3+}(2)).The luminescence properties of both compounds were studied. In the compound (1), a broad emission band was observed at 479 nm, redshifted by 70 nm in comparison of the free ligand. In (2), the typical f–f transition was observed with a maximum peak at 618 nm, related with the red emission of the europium ions. Computational methods were performed to simulate the crystal structure of (2). The theoretical calculations of the intensity parameters are in good agreement with the experimental values. - Graphical abstract: Scheme of obtaining the ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) and two new isostructural 3D-coordination polymers [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+} and Eu{sup 3+}) by hydrothermal synthesis. Display Omitted - Highlights: • The ligand 2,5-piperazinedione-1,4-diacetic acid was synthetized using the hydrothermic method and characterized. • Two new 3D-coordination polymers with this ligand containing Gd{sup 3+} and Eu{sup 3+} ions were also obtained. • The compounds are isostructural and the typical luminescent properties were observed in both structures.

  14. Synthesis, reactions and biological activity of some new bis-heterocyclic ring compounds containing sulphur atom

    PubMed Central

    2013-01-01

    Background The derivatives of thieno[2,3-b]thiophene belong to a significant category of heterocyclic compounds, which have shown a wide spectrum of medical and industrial application. Results A new building block with two electrophilic center of thieno[2,3-b]thiophene derivatives 2 has been reported by one-pot reaction of diketone derivative 1 with Br2/AcOH in excellent yield. A variety of heteroaromatics having bis(1H-imidazo[1,2a] benzimidazole), bis(1H-imidazo[1,2-b][1,2,4]triazole)-3-methyl-4-phenylthieno[2,3-b]thiophene derivatives, dioxazolo-, dithiazolo-, and 1H-imidazolo-3-methyl-4-phenylthieno[2,3-b]thiophene derivatives as well pyrrolo, thiazolo -3-methyl-4-phenylthieno[2,3-b]thiophene derivatives have been designed, synthesized, characterized, and evaluated for their biological activity. Compounds 3–9 showed good bioassay result. These new derivatives were evaluated for anti-cancer activity against PC-3 cell lines, in vitro antioxidant potential and ?-glucuronidase and ?-glucosidase inhibitory activities. Compound 3 (IC50?=?56.26?±?3.18??M) showed a potent DPPH radical scavenging antioxidant activity and found to be more active than standard N-acetylcystein (IC50?=?105.9?±?1.1??M). Compounds 8a (IC50?=?13.2?±?0.34??M) and 8b (IC50?=?14.1?±?0.28??M) found as potent inhibitor of ?-glucusidase several fold more active than the standard acarbose (IC50?=?841?±?1.73??M). Most promising results were obtained in ?-glucuronidase enzyme inhibition assay. Compounds 5 (IC50?=?0.13?±?0.019??M), 6 (IC50?=?19.9?±?0.285??M), 8a (IC50?=?1.2?±?0.0785??M) and 9 (IC50?=?0.003?±?0.09??M) showed a potent inhibition of ?-glucuronidase. Compound 9 was found to be several hundred fold more active than standard D-Saccharic acid 1,4-lactone (IC50?=?45.75?±?2.16??M). Conclusions Synthesis, characterization, and in vitro biological activity of a series of thieno[2,3-b]thiophene have been investigated. PMID:23829861

  15. Synthesis of diverse indole libraries on polystyrene resin – Scope and limitations of an organometallic reaction on solid supports

    PubMed Central

    Knepper, Kerstin; Vanderheiden, Sylvia

    2012-01-01

    Summary The synthesis of diverse substituted indole structures on solid supports is described. The immobilization of nitrobenzoic acid onto Merrifield resin and the subsequent treatment with alkenyl Grignard reagents delivered indole carboxylates bound to solid supports. In contrast to results in the liquid phase, ortho,ortho-unsubstituted nitroarenes also delivered indole moieties in good yields. Subsequent palladium-catalyzed reactions (Suzuki, Heck, Sonogashira, Stille) delivered, after cleavage, the desired molecules in moderate to good yields over four steps. The scope and limitations are presented. PMID:23019447

  16. In situ measurement of activation energy for pyrolysis of ethanol as a first reaction in the synthesis of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ohga, Yosuke; Inoue, Shuhei; Matsumura, Yukihiko

    2015-10-01

    Using a quadrupole mass spectrometer we measured the activation energy of ethanol decomposition with various catalysts. In order to quantitatively evaluate the catalysts we subtracted their effect from that of the catalyst-free pyrolysis. As a result we derived the activation energies using iron, cobalt, nickel, and molybdenum catalysts. These metals are typical catalysts in carbon nanotube synthesis, with two of them usually mixed empirically. This empirical preparation and use of catalysts is consistent with our results. Among these catalysts, iron reduced the activation energy most. Conversely, cobalt achieved a reduction of only 0.3 eV compared to the catalyst-free reaction.

  17. Synthesis of pyrazole containing ?-amino acids via a highly regioselective condensation/aza-Michael reaction of ?-aryl ?,?-unsaturated ketones.

    PubMed

    Gilfillan, Lynne; Artschwager, Raik; Harkiss, Alexander H; Liskamp, Rob M J; Sutherland, Andrew

    2015-04-21

    A synthetic approach for the preparation of a new class of highly conjugated unnatural ?-amino acids bearing a 5-arylpyrazole side-chain has been developed. Horner-Wadsworth-Emmons reaction of an aspartic acid derived ?-keto phosphonate ester with a range of aromatic aldehydes gave ?-aryl ?,?-unsaturated ketones. Treatment of these with phenyl hydrazine followed by oxidation allowed the regioselective synthesis of pyrazole derived ?-amino acids. As well as evaluating the fluorescent properties of the ?-amino acids, their synthetic utility was also explored with the preparation of a sulfonyl fluoride derivative, a potential probe for serine proteases. PMID:25774874

  18. Core-structure-inspired asymmetric addition reactions: enantioselective synthesis of dihydrobenzoxazinone- and dihydroquinazolinone-based anti-HIV agents.

    PubMed

    Li, Shen; Ma, Jun-An

    2015-11-01

    Dihydrobenzoxazinones and dihydroquinazolinones are the core units present in many anti-HIV agents, such as Efavirenz, DPC 961, DPC 963, and DPC 083. All these molecules contain a trifluoromethyl moiety at the quaternary stereogenic carbon center with S configuration. The enantioselective addition of carbon nucleophiles to ketones or cyclic ketimines could serve as a key step to access these molecules. This tutorial review provides an overview of significant advances in the synthesis of dihydrobenzoxazinone- and dihydroquinazolinone-based anti-HIV agents and relative analogues, with an emphasis on asymmetric addition reactions for the establishment of the CF3-containing quaternary carbon centers. PMID:26177889

  19. An infrared spectroscopy method to detect ammonia in gastric juice.

    PubMed

    Giovannozzi, Andrea M; Pennecchi, Francesca; Muller, Paul; Balma Tivola, Paolo; Roncari, Silvia; Rossi, Andrea M

    2015-11-01

    Ammonia in gastric juice is considered a potential biomarker for Helicobacter pylori infection and as a factor contributing to gastric mucosal injury. High ammonia concentrations are also found in patients with chronic renal failure, peptic ulcer disease, and chronic gastritis. Rapid and specific methods for ammonia detection are urgently required by the medical community. Here we present a method to detect ammonia directly in gastric juice based on Fourier transform infrared spectroscopy. The ammonia dissolved in biological liquid samples as ammonium ion was released in air as a gas by the shifting of the pH equilibrium of the ammonium/ammonia reaction and was detected in line by a Fourier transform infrared spectroscopy system equipped with a gas cell for the quantification. The method developed provided high sensitivity and selectivity in ammonia detection both in pure standard solutions and in a simulated gastric juice matrix over the range of diagnostic concentrations tested. Preliminary analyses were also performed on real gastric juice samples from patients with gastric mucosal injury and with symptoms of H. pylori infection, and the results were in agreement with the clinicopathology information. The whole analysis, performed in less than 10 min, can be directly applied on the sample without extraction procedures and it ensures high specificity of detection because of the ammonia fingerprint absorption bands in the infrared spectrum. This method could be easily used with endoscopy instrumentation to provide information in real time and would enable the endoscopist to improve and integrate gastroscopic examinations. PMID:26377936

  20. Ammonia production in nitrogen seeded plasma discharges in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rohde, V.; Oberkofler, M.

    2015-08-01

    In present tokamaks nitrogen seeding is used to reduce the power load onto the divertor tiles. Some fraction of the seeded nitrogen reacts with hydrogen to form ammonia. The behaviour of ammonia in ASDEX Upgrade is studied by mass spectrometry. Injection without plasma shows strong absorption at the inner walls of the vessel and isotope exchange reactions. During nitrogen seeding in H-mode discharges the onset of a saturation of the nitrogen retention is observed. The residual gas consists of strongly deuterated methane and ammonia with almost equal amounts of deuterium and protium. This confirms the role of surface reactions in the ammonia formation. The results are consistent with findings in previous investigations. A numerical decomposition of mass spectra is under development and will be needed for quantitative evaluation of the results obtained.

  1. Novel reactions of a neutral organic reductant : reductive coupling and nanoparticle synthesis

    E-print Network

    Mork, Anna Jolene

    2012-01-01

    A recently developed bis-pyridinylidene neutral organic electron donor captured our interest as a potential source of new chemistries for reductive coupling and the synthesis of group IV nanoparticles. This super electron ...

  2. [4 + 1] annulation reactions of (trialkylsilyl)ketenes : synthesis of substituted indanones and cyclopentenones

    E-print Network

    Davie, Christopher P

    2005-01-01

    (Trialkylsilyl)vinylketenes ("(TAS)vinylketenes") and (trialkylsilyl)arylketenes ("(TAS)- arylketenes") function as versatile four-carbon building blocks for the synthesis of carbocyclic and heterocyclic compounds. A new ...

  3. Microwave-Assisted Organic Synthesis in the Organic Teaching Lab: A Simple, Greener Wittig Reaction

    ERIC Educational Resources Information Center

    Martin, Eric; Kellen-Yuen, Cynthia

    2007-01-01

    A greener, microwave-assisted Wittig reaction has been developed for the second-semester organic teaching laboratory. Utilizing this microwave technique, a variety of styrene derivatives have been successfully synthesized from aromatic aldehydes in good yields (41-68%). The reaction not only occurs under neat reaction conditions, but also employs…

  4. Facile synthesis of functionalized tetrahydroquinolines via domino Povarov reactions of arylamines, methyl propiolate and aromatic aldehydes

    PubMed Central

    Sun, Jing; Gao, Hong; Wu, Qun

    2012-01-01

    Summary In the presence of p-toluenesulfonic acid as catalyst the domino reaction of arylamines, methyl propiolates and aromatic aldehydes in ethanol proceeded smoothly to give polysubstituted 1,2,3,4-tetrahydroquinolines in moderate yields. The reaction is believed to involve the Povarov reaction of in situ generated ?-enamino ester with the in situ formed aromatic imine. PMID:23209520

  5. A novel oxy-oxonia(azonia)-cope reaction: serendipitous discovery and its application to the synthesis of macrocyclic musks.

    PubMed

    Zou, Yue; Zhou, Lijun; Ding, Changming; Wang, Quanrui; Kraft, Philip; Goeke, Andreas

    2014-10-01

    This brief review, including new experimental results, is the summary of a talk at the GDCh conference 'flavors & fragrances 2013' in Leipzig, Germany, 11th-13th September, 2013. Musk odorants are indispensable in perfumery to lend sensuality to fine fragrances, a nourishing effect to cosmetics, and a comforting feeling to laundry. We have recently found serendipitously a new oxy-oxonia-Cope rearrangement. In this account, we review the background of oxonia-sigmatropic rearrangements and the discovery of this novel reaction. Special attention is focused on the versatile lactone and lactam formation reactions via [n+4] ring enlargement and the macrocyclization in the synthesis of new macrocyclic musks. The synthesized structures provide new insights into the structure-odor relationships of musks. PMID:25329787

  6. Optimization of reaction parameters in hydrothermal synthesis: a strategy towards the formation of CuS hexagonal plates

    PubMed Central

    2013-01-01

    Background For decades, copper sulphide has been renowned as the superior optical and semiconductor materials. Its potential applications can be ranged from solar cells, lithium-ion batteries, sensors, and catalyst systems. The synthesis methodologies of copper sulphide with different controlled morphology have been widely explored in the literature. Nevertheless, the understanding on the formation chemistry of CuS is still limited. The ultimate approach undertaking in this article is to investigate the formation of CuS hexagonal plates via the optimization of reaction parameters in hydrothermal reaction between copper (II) nitrate and sodium thiosulphate without appending any assistant agent. Results Covellite (CuS) hexagonal plates were formed at copper ion: thiosulphate ion (Cu2+:S2O32?) mole ratio of 1:2 under hydrothermal treatment of 155°C for 12 hours. For synthesis conducted at reaction temperature lower than 155°C, copper sulphate (CuSO4), krohnite (NaCu2(SO4)(H2O)2] and cyclooctasulphur (S8) were present as main impurities with covellite (CuS). When Cu2+:S2O32? mole ratio was varied to 1: 1 and 1: 1.5, phase pure plate-like natrochalcite [NaCu2(SO4)(H2O)] and digenite (Cu9S5) were produced respectively. Meanwhile, mixed phases of covellite (CuS) and cyclooctasulphur (S8) were both identified when Cu2+:S2O32? mole ratio was varied to 1: 2.5, 1: 3 and 1: 5 as well as when reaction time was shortened to 1 hour. Conclusions CuS hexagonal plates with a mean edge length of 1 ?m, thickness of 100 nm and average crystallite size of approximately (45?±?2) nm (Scherrer estimation) were successfully synthesized via assisting agent- free hydrothermal method. Under a suitable Cu2+:S2O32? mole ratio, we evidenced that the formation of covellite (CuS) is feasible regardless of the reaction temperature applied. However, a series of impurities were attested with CuS if reaction temperature was not elevated high enough for the additional crystallite phase decomposition. It was also identified that Cu2+:S2O32? mole ratio plays a vital role in controlling the amount of cyclooctasulphur (S8) in the final powder obtained. Finally, reaction time was recognized as an important parameter in impurity decomposition as well as increasing the crystallite size and crystallinity of the CuS hexagonal plates formed. PMID:23575312

  7. Computational studies on the regioselectivity of metal-catalyzed synthesis of 1,2,3 triazoles via click reaction: a review.

    PubMed

    Hosseinnejad, Tayebeh; Fattahi, Bahareh; Heravi, Majid M

    2015-10-01

    Recently, the experimental and computational chemists have been attracted widely to the click synthesis of 1,2,3 triazoles and their derivatives, mainly due to the fact that they are interesting from structural and mechanistic points of view. Moreover, catalyzed click have been well established as a successful strategy showing high regioselectivity and high yield for the synthesis of 1,2,3-triazoles. In this review, we try to highlight the recently reported computational assessments on the origins and predection of regioselectivity in the catalyzed click synthesis of triazoles from the mechanistic and thermodynamical points of view. In this light, density functional theory (DFT) calculations on the free energy profiles of azide-alkyne cycloaddition reactions have been underscored. The stereoelectronic features for the role of copper, ruthenium, and iridium as catalyst on regioselectivity of click reactions have also be discussed. Graphical Abstract Computational origins for the regioselective behavior of 1,2,3 triazoles click synthesis. PMID:26385849

  8. Application of carbon dioxide towards the development of smart materials, green reaction schemes and metallic nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Mohammed, Fiaz S.

    Global carbon dioxide (CO2) emissions have steadily risen over the last 50 years, with 34 billion tons of CO2 released in 2009 alone. Its potential as a greenhouse gas has negatively affected of our lives and environment by the resulting ocean acidification and climate change. To mitigate atmospheric CO2, various strategies have been implemented for CO2 separation, capture, storage and use as a chemical feedstock. The use of CO2 in various chemical industries is attractive as its non-flammable, non-toxic, and relatively inert properties have made it an inherently safer alternative to traditional organic solvents, as well as, a greener carbon feedstock. Also, the accessible critical properties, appreciable critical density, high diffusivity and tunable thermophysical properties make liquid and supercritical CO2 an attractive solvent for industrial applications. In recent years, significant progress has been made in the field of tunable solvent media by employing the reversible reaction of CO2 with amines to produce carbamates. This class of compounds possesses ionic properties that are significantly different from their amines resulting in a non-ionic to ionic switching mechanism that provides for switchable solvent properties, reversible surfactants, low molecular weight organogelators and stimuli responsive materials. The focus of this dissertation is therefore the implementation of the reversible CO2—amine reaction for the formation of smart surfaces, greener amine protection mechanisms, and cationic metallic nanoparticle synthesis. Chapter 2 of this dissertation demonstrates the reversible reaction of CO2 with amine-containing self-assembled monolayers to yield "smart" surfaces that undergo a reversible change in structure, charge, and wettability upon reaction with CO2. The formation carbamate esters are also a widely implemented mechanism for amine protection during organic synthesis. However, traditional methods of protection incur increased solvent use and energy consumption due to a separate deprotection reaction. To solve this dilemma, the reversible protection of amines using CO2 induced carbamates was demonstrated in chapter 3; by reducing n-alkyl benzophenone imine and n-phenyl, nalkylurea yields by up to 67% compared to non-protected amines. The applicability of this chemistry to these classes of nucleophilic substitution reactions and has significant potential to alter the way we approach amine protection in organic synthesis. Another research area that has grown popularity over the last decade is the development of metallic nanoparticles, specifically gold nanoparticles (GNPs), due to their size and shape dependent optical and catalytic properties. Chapter 4 of this dissertation demonstrates the successful application of polyethylene imine (PEI) in the synthesis of cationic GNPs, which are of significant interest for biomedical applications. In this work, we investigated the effect of pH, PEI concentration and reduction method on the size and stability of amine-stabilized gold and silver nanoparticles. Furthermore the potential of carbon dioxide as a stabilizing aid through reversible carbamate formation was explored, leading to a decrease in particle size at ambient temperature along with an increase in stability. In summary, this work has demonstrated the great potential of employing the reversible reaction of carbon dioxide with primary and secondary amines as an effective and greener alternative to conventional methods in a diversity of fields that include "smart" materials, organic chemistry, and functional nanomaterials.

  9. The Ammonia-Soda Process.

    ERIC Educational Resources Information Center

    Tingle, M.

    1979-01-01

    This article is a condensed version of a commentary written to accompany a set of slides which describes the ammonia-soda process used by the ammonia-soda plant at Northwich of the United Kingdom. (HM)

  10. Synthesis of ?,?-unsaturated esters via a chemo-enzymatic chain elongation approach by combining carboxylic acid reduction and Wittig reaction

    PubMed Central

    Duan, Yitao; Yao, Peiyuan; Du, Yuncheng; Feng, Jinhui

    2015-01-01

    Summary ?,?-Unsaturated esters are versatile building blocks for organic synthesis and of significant importance for industrial applications. A great variety of synthetic methods have been developed, and quite a number of them use aldehydes as precursors. Herein we report a chemo-enzymatic chain elongation approach to access ?,?-unsaturated esters by combining an enzymatic carboxylic acid reduction and Wittig reaction. Recently, we have found that Mycobacterium sp. was able to reduce phenylacetic acid (1a) to 2-phenyl-1-ethanol (1c) and two sequences in the Mycobacterium sp. genome had high identity with the carboxylic acid reductase (CAR) gene from Nocardia iowensis. These two putative CAR genes were cloned, overexpressed in E. coli and one of two proteins could reduce 1a. The recombinant CAR was purified and characterized. The enzyme exhibited high activity toward a variety of aromatic and aliphatic carboxylic acids, including ibuprofen. The Mycobacterium CAR catalyzed carboxylic acid reduction to give aldehydes, followed by a Wittig reaction to afford the products ?,?-unsaturated esters with extension of two carbon atoms, demonstrating a new chemo-enzymatic method for the synthesis of these important compounds. PMID:26664647

  11. Spin-state chemistry of deuterated ammonia

    NASA Astrophysics Data System (ADS)

    Sipilä, O.; Harju, J.; Caselli, P.; Schlemmer, S.

    2015-09-01

    Aims: We aim to develop a chemical model that contains a consistent description of spin-state chemistry in reactions involving chemical species with multiple deuterons. We apply the model to the specific case of deuterated ammonia, to derive values for the various spin-state ratios. Methods: We applied symmetry rules in the context of the complete scrambling assumption to calculate branching ratio tables for reactions between chemical species that include multiple protons and/or deuterons. New reaction sets for both gas-phase and grain-surface chemistry were generated using an automated routine that forms all possible spin-state variants of any given reaction with up to six H/D atoms, using the predetermined branching ratios. Both a single-point and a modified Bonnor-Ebert model were considered to study the density and temperature dependence of ammonia and its isotopologs, and the associated spin-state ratios. Results: We find that the spin-state ratios of the ammonia isotopologs are, at late times, very different from their statistical values. The ratios are rather insensitive to variations in the density, but present strong temperature dependence. We derive high peak values (~0.1) for the deuterium fraction in ammonia, in agreement with previous (gas-phase) models. The deuterium fractionation is strongest at high density, corresponding to a high degree of depletion, and also presents temperature dependence. We find that in the temperature range 5 K to 20 K, the deuterium fractionation peaks at ~15 K, while most of the ortho/para (and meta/para for ND3) ratios present a minimum at 10 K (ortho/para NH2D has instead a maximum at this temperature). Conclusions: Owing to the density and temperature dependence found in the abundances and spin-state ratios of ammonia and its isotopologs, it is evident that observations of ammonia and its deuterated forms can provide important constraints on the physical structure of molecular clouds. Appendix A is available in electronic form at http://www.aanda.org

  12. Synthesis and Reactivity Comparisons of 1-Methyl-3-Substituted Cyclopropene Mini-tags for Tetrazine Bioorthogonal Reactions

    PubMed Central

    Yang, Jun; Liang, Yong; Še?kut?, Jolita

    2014-01-01

    Substituted cyclopropenes have recently attracted attention as stable “mini-tags” that are highly reactive dienophiles with the bioorthogonal tetrazine functional group. Despite this interest, the synthesis of stable cyclopropenes is not trivial and their reactivity patterns are poorly understood. Here, the synthesis and comparison of the reactivity of a series of 1-methyl-3-substituted cyclopropenes with different functional handles is described. The rates at which the various substituted cyclopropenes undergo Diels–Alder cycloadditions with 1,2,4,5-tetrazines were measured. Depending on the substituents, the rates of cycloadditions vary by over two orders of magnitude. The substituents also have a dramatic effect on aqueous stability. An outcome of these studies is the discovery of a novel 3-amidomethyl substituted methylcyclopropene tag that reacts twice as fast as the fastest previously disclosed 1-methyl-3-substituted cyclopropene while retaining excellent aqueous stability. Furthermore, this new cyclopropene is better suited for bioconjugation applications and this is demonstrated through using DNA templated tetrazine ligations. The effect of tetrazine structure on cyclopropene reaction rate was also studied. Surprisingly, 3-amidomethyl substituted methylcyclopropene reacts faster than trans-cyclooctenol with a sterically hindered and extremely stable tert-butyl substituted tetrazine. Density functional theory calculations and the distortion/interaction analysis of activation energies provide insights into the origins of these reactivity differences and a guide to the development of future tetrazine coupling partners. The newly disclosed cyclopropenes have kinetic and stability advantages compared to previously reported dienophiles and will be highly useful for applications in organic synthesis, bioorthogonal reactions, and materials science. PMID:24615990

  13. Asymmetric synthesis of trans-?-lactams by a Kinugasa reaction on water.

    PubMed

    Chen, Zhenling; Lin, Lili; Wang, Min; Liu, Xiaohua; Feng, Xiaoming

    2013-06-01

    The asymmetric Kinugasa reaction was performed on pure water for the first time without the need for any organic co-solvents. In contrast to most asymmetric Kinugasa reactions, trans-?-lactams were obtained as the major products in good yields, enantioselectivities, and diastereoselectivities (up to 90?% yield, 98?% ee, and >99:1 d.r.). This reaction is atom-economical, environmentally friendly, and affords synthetically useful but challenging products. PMID:23576446

  14. Computational Study of Field Initiated Surface Reactions for Synthesis of Diamond and Silicon

    NASA Technical Reports Server (NTRS)

    Musgrave, Charles Bruce

    1999-01-01

    This project involves using quantum chemistry to simulate surface chemical reactions in the presence of an electric field for nanofabrication of diamond and silicon. A field delivered by a scanning tunneling microscope (STM) to a nanometer scale region of a surface affects chemical reaction potential energy surfaces (PES) to direct atomic scale surface modification to fabricate sub-nanometer structures. Our original hypothesis is that the applied voltage polarizes the charge distribution of the valence electrons and that these distorted molecular orbitals can be manipulated with the STM so as to change the relative stabilities of the electronic configurations over the reaction coordinates and thus the topology of the PES and reaction kinetics. Our objective is to investigate the effect of applied bias on surface reactions and the extent to which STM delivered fields can be used to direct surface chemical reactions on an atomic scale on diamond and silicon. To analyze the fundamentals of field induced chemistry and to investigate the application of this technique for the fabrication of nanostructures, we have employed methods capable of accurately describing molecular electronic structure. The methods we employ are density functional theory (DFT) quantum chemical (QC) methods. To determine the effect of applied bias on surface reactions we have calculated the QC PESs in various applied external fields for various reaction steps for depositing or etching diamond and silicon. We have chosen reactions which are thought to play a role in etching and the chemical vapor deposition growth of Si and diamond. The PESs of the elementary reaction steps involved are then calculated under the applied fields, which we vary in magnitude and configuration. We pay special attention to the change in the reaction barriers, and transition state locations, and search for low energy reaction channels which were inaccessible without the applied bias.

  15. Optical reaction cell and light source for ›18F! fluoride radiotracer synthesis

    DOEpatents

    Ferrieri, Richard A. (Patchogue, NY); Schlyer, David (Bellport, NY); Becker, Richard J. (Islip, NY)

    1998-09-15

    Apparatus for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-›.sup.18 F!fluoro-2-deoxy-D-glucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of ›.sup.18 F!-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-›.sup.18 F!fluoro-2-deoxy-D-glucose in higher yields than previously possible.

  16. Optical reaction cell and light source for [18F] fluoride radiotracer synthesis

    DOEpatents

    Ferrieri, R.A.; Schlyer, D.; Becker, R.J.

    1998-09-15

    An apparatus is disclosed for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-[{sup 18}F]fluoro-2-deoxy-Dglucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of [{sup 18}F]-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose in higher yields than previously possible. 4 figs.

  17. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    NASA Astrophysics Data System (ADS)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fired power plants would be exposed to. Hf and Y were chosen as dispersoid forming elements due to their increased thermal stability and potential to avoid decreased strength caused by additions of Al to traditional ODS materials. W was used as an additive due to benefits as a strengthener as well as its benefits for creep rupture time. The final composition chosen for the alloy was Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at%. The aforementioned alloy, GA-1-198, was created through gas atomization with atomization gas of Ar-300ppm O2. The actual composition created was found to be Fe-15Cr-12.3Al-0.9W-0.24Hf-0.19Y at%. An additional alloy that was nominally the same without the inclusion of aluminum was created as a comparison for the effects on mechanical and corrosion properties. The actual composition of the comparison alloy, GA-1-204, was Fe-16Cr-0Al-0.9W-0.25Hf-0.24Y at%. An investigation on the processing parameters for these alloys was conducted on the GA-1-198 alloy. In order to predict the necessary amount of time for heat treatment, a diffusion study was used to find the diffusion rate of oxygen in cast alloys with similar composition. The diffusion rate was found to be similar to that of other GARS compositions that have been created without the inclusion of aluminum. The effect of heat treatment time was investigated with temperatures of 950°C, 1000°C, 1100°C, and 1200°C. A large precipitate phase, FeHf2 ht, was found in the 950°C and 1000°C samples through SEM. This was confirmed through XRD analysis where it was found that the 1100°C sample may have had clusters. These clusters could act as a location for the origination of cracks during future rolling operations. For this reason, an attempt to look at the hold time and ramp rates on the formation this phase. It was found that a 1200°C hold for 5 hours was able to homogenize the sample to prevent precipitation of the FeHf2 ht phase during a subsequent hold at 1000°C, the rolling temperature used in this study. For this reason a heat treatment at 1200°C for 5 hours was used in both alloys. Both alloys were rolled to 70% reduction in thickness and evaluated through microhardness, tensile testing, and corrosion testing. Microhardness showed high strength for the aluminum containing GA-1-198 and significantly more isotropic properties than mechanically alloyed ODS materials. Tensile testing showed GA-1-198 strength between MA956 and PM2000 for temperatures below 600°C and slightly lower strengths than MA856 at 800°C. GA-1-204 was not protective in either atmosphere; air at 1200°C and air with 10 vol% H2O at 1100°C. GA-1-198 showed increased mass gains due to sub-optimal oxygen content in the alloy. GA-1-198 had spallation in the air at 1200°C atmosphere, but remained protective up to 1000 hr in the water containing atmosphere.

  18. Raman spectroscopy as a tool for monitoring mesoscale continuous-flow organic synthesis: Equipment interface and assessment in four medicinally-relevant reactions

    PubMed Central

    Hamlin, Trevor A

    2013-01-01

    Summary An apparatus is reported for real-time Raman monitoring of reactions performed using continuous-flow processing. Its capability is assessed by studying four reactions, all involving formation of products bearing ?,?-unsaturated carbonyl moieties; synthesis of 3-acetylcoumarin, Knoevenagel and Claisen–Schmidt condensations, and a Biginelli reaction. In each case it is possible to monitor the reactions and also in one case, by means of a calibration curve, determine product conversion from Raman spectral data as corroborated by data obtained using NMR spectroscopy. PMID:24062851

  19. A one-pot three-component reaction involving 2-aminochromone in aqueous micellar medium: a green synthesis of hexahydrochromeno[2,3-b]quinolinedione.

    PubMed

    Ghosh, Jaydip; Biswas, Pritam; Drew, Michael G B; Bandyopadhyay, Chandrakanta

    2015-08-01

    An efficient and green synthesis of hitherto unreported 11-(chromen-3-yl)-8,8-dimethyl-8,9-dihydro-6H-chromeno[2,3-b]quinoline-10,12(7H,11H)-dione has been accomplished by a three-component reaction involving 2-aminochromone, chromone-3-carbaldehyde, and 5,5-dimethyl-1,3-cyclohexanedione (dimedone) in 0.5 M aqueous SDS solution. The mechanism of the reaction has been studied by isolating the reaction intermediate. This methodology features eco-friendly reaction conditions, a simple working procedure, high atom-economy and high efficiency in product formation. PMID:25758539

  20. Amine-catalyzed direct aldol reactions of hydroxy- and dihydroxyacetone: biomimetic synthesis of carbohydrates.

    PubMed

    Popik, Oskar; Pasternak-Suder, Monika; Le?niak, Katarzyna; Jawiczuk, Magdalena; Górecki, Marcin; Frelek, Jadwiga; Mlynarski, Jacek

    2014-06-20

    This article presents comprehensive studies on the application of primary, secondary, and tertiary amines as efficient organocatalysts for the de novo synthesis of ketoses and deoxyketoses. Mimicking the actions of aldolase enzymes, the synthesis of selected carbohydrates was accomplished in aqueous media by using proline- and serine-based organocatalysts. The presented methodology also provides direct access to unnatural L-carbohydrates from the (S)-glyceraldehyde precursor. Determination of the absolute configuration of all obtained sugars was feasible using a methodology consisting of concerted ECD and VCD spectroscopy. PMID:24837738

  1. The Construction of All-Carbon Quaternary Stereocenters by Use of Pd-Catalyzed Asymmetric Allylic Alkylation Reactions in Total Synthesis

    PubMed Central

    Hong, Allen Y.

    2014-01-01

    All-carbon quaternary stereocenters have posed significant challenges in the synthesis of complex natural products. These important structural motifs have inspired the development of broadly applicable palladium-catalyzed asymmetric allylic alkylation reactions of unstabilized non-biased enolates for the synthesis of enantioenriched ?-quaternary products. This microreview outlines key considerations in the application of palladium-catalyzed asymmetric allylic alkylation reactions and presents recent total syntheses of complex natural products that have employed these powerful transformations for the direct, catalytic, enantioselective construction of all-carbon quaternary stereocenters. PMID:24944521

  2. Ice chemistry of acetaldehyde reveals competitive reactions in the first step of the Strecker synthesis of alanine: formation of HO-CH(CH3)-NH2 vs. HO-CH(CH3)-CN

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry

    2015-08-01

    The understanding of compound formation in laboratory simulated astrophysical environments is an important challenge in obtaining information on the chemistry occurring in these environments. We here investigate by means of both laboratory experiments and quantum chemical calculations the ice-based reactivity of acetaldehyde (CH3CHO) with ammonia (NH3) and hydrogen cyanide (HCN) in excess of water (H2O) promoted by temperature. A priori, this study should give information on alanine (2HN-CH(CH3)-COOH) formation (the simplest chiral amino acid detected in meteorites), since these reactions concern the first steps of its formation through the Strecker synthesis. However, infrared spectroscopy, mass spectrometry with HC14N or HC15N isotopologues and B3LYP-D3 results converge to indicate that an H2O-dominated ice containing CH3CHO, NH3 and HCN not only leads to the formation of ?-aminoethanol (2HN-CH(CH3)-OH, the product compound of the first step of the Strecker mechanism) and its related polymers (2HN-(CH(CH3)-O)n-H) due to reaction between CH3CHO and NH3, but also to the 2-hydroxypropionitrile (HO­-CH(CH3)-CN) and its related polymers (H-(O-CH(CH3))n-CN) from direct reaction between CH3CHO and HCN. The ratio between these two species depends on the initial NH3/HCN ratio in the ice. Formation of ?-aminoethanol is favoured when the NH3 concentration is larger than HCN. We also show that the presence of water is essential for the formation of HO­-CH(CH3)-CN, contrarily to 2HN-CH(CH3)-OH whose formation also takes place in absence of H2O ice. As in astrophysical ices NH3 is more abundant than HCN, formation of ?-aminoethanol should consequently be favoured compared to 2-hydroxypropionitrile, thus pointing out ?-aminoethanol as a plausible intermediate species for alanine synthesis through the Strecker mechanism in astrophysical ices.

  3. Ammonia Can Crush

    NASA Astrophysics Data System (ADS)

    Vitz, Ed

    1999-07-01

    When a 12-oz aluminum soft drink can filled with ammonia or hydrogen chloride gas is inverted and dipped into water, the rapidly dissolving gas evacuates the can and the can is crushed before water can be drawn into it. This demonstrates, among other things, the remarkable strength of hydrogen bonds.

  4. Microwave-Assisted Synthesis of 5-Phenyl-2-Hydroxyacetophenone Derivatives by a Green Suzuki Coupling Reaction

    ERIC Educational Resources Information Center

    Soares, Pedro; Fernandes, Carlos; Chavarria, Daniel; Borges, Fernanda

    2015-01-01

    In recent years, the use of boron-containing reagents in palladium-assisted C-C coupling reactions (the Suzuki reaction) has gained prominence due to the vast array of reagents commercially available. Consequently, the generation of carbon-carbon bonds, namely of functionalized biphenyl systems, is at present considered the backbone of organic…

  5. Reaction of Corey ylide with ?,?-unsaturated ketones: tuning of chemoselectivity toward dihydrofuran synthesis.

    PubMed

    Chagarovsky, Alexey O; Budynina, Ekaterina M; Ivanova, Olga A; Villemson, Elena V; Rybakov, Victor B; Trushkov, Igor V; Melnikov, Mikhail Ya

    2014-06-01

    A straightforward, efficient, and reliable approach to synthetically valuable 2,3-dihydrofurans via a reaction between Corey ylide and ?,?-unsaturated ketones has been developed. The use of simple and widely spread starting materials as well as mild reaction conditions and scalability provide a broad scope of 2,3-dihydrofurans. PMID:24819312

  6. Synthesis of cyclopropyl-substituted furans by brønsted Acid promoted cascade reactions.

    PubMed

    Clark, J Stephen; Romiti, Filippo; Hogg, Kirsten F; Hamid, Malai Haniti S A; Richter, Sven C; Boyer, Alistair; Redman, Joanna C; Farrugia, Louis J

    2015-05-01

    Chloroacetic acid promotes an efficient and diastereoselective intramolecular cascade reaction of electron-deficient ynenones to deliver products featuring a 2,3,5-trisubstituted furan bearing a fused cyclopropyl substituent at the 5-position. Synthetically relevant polycyclic building blocks featuring rings of various sizes and heteroatoms have been synthesized in high yield using this mild acid-catalyzed reaction. PMID:25782604

  7. Fischer-Tropsch synthesis in supercritical reaction media. Progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Subramaniam, B.; Bochniak, D.; Snavely, K.

    1993-01-01

    Our goals for this quarter were to complete construction of the reactor and analytical units for carrying out Fischer-Tropsch (F-T) synthesis in liquid (n-hexadecane) and in supercritical n-hexane phases. Progress during this quarter was slower than expected.

  8. Synthesis of a Fluorescent Acridone Using a Grignard Addition, Oxidation, and Nucleophilic Aromatic Substitution Reaction Sequence

    ERIC Educational Resources Information Center

    Goodrich, Samuel; Patel, Miloni; Woydziak, Zachary R.

    2015-01-01

    A three-pot synthesis oriented for an undergraduate organic chemistry laboratory was developed to construct a fluorescent acridone molecule. This laboratory experiment utilizes Grignard addition to an aldehyde, alcohol oxidation, and iterative nucleophilic aromatic substitution steps to produce the final product. Each of the intermediates and the…

  9. Total synthesis of atrochamins F, H, I, and J through cascade reactions

    PubMed Central

    Nicolaou, K. C.; Lister, Troy; Denton, Ross M.; Gelin, Christine F.

    2008-01-01

    A concise and efficient cascade-based total synthesis of artochamins F, H, I, and J is described. The potential biogenetic connection between artochamin F, or a derivative thereof, and artochamins H, I, and J, through an unusual formal [2+2] cycloaddition process, was shown to be feasible. An alternative mechanism for this transformation is also proposed. PMID:19461992

  10. Reaction of diazocompounds with C70: unprecedented synthesis and characterization of isomeric [5,6]-fulleroids.

    PubMed

    Vidal, Sara; Izquierdo, Marta; Filippone, Salvatore; Brunetti, Fulvio G; Martín, Nazario

    2015-12-01

    The synthesis of a variety of PCBM-type [5,6]-fulleroids and their further highly selective photoisomerization to the respective [6,6]-methanofullerenes is presented. Interestingly, the chemical reactivity of [5,6]-fulleroids reveals the same trend (a > b > c > d) to that observed for pristine C70 (? > ? > ? > ?). PMID:26434725

  11. Synthesis of Spirocyclic Indolines by Interruption of the Bischler–Napieralski Reaction

    PubMed Central

    Medley, Jonathan William; Movassaghi, Mohammad

    2013-01-01

    The development of a versatile method for the synthesis of spirocyclic pyrrolidinoindolines is discussed. Treatment of N-acyltryptamines with trifluoromethanesulfonic anhydride–2-chloropyridine reagent combination affords highly persistent spiroindoleninium ions which are subject to intra- and intermolecular addition at C2 by nucleophiles. PMID:23829389

  12. Surface-Limited Synthesis of Pt Nanocluster Decorated Pd Hierarchical Structures with Enhanced Electrocatalytic Activity toward Oxygen Reduction Reaction.

    PubMed

    Yang, Tao; Cao, Guojian; Huang, Qingli; Ma, Yanxia; Wan, Sheng; Zhao, Hong; Li, Na; Sun, Xia; Yin, Fujun

    2015-08-12

    Exploring superior catalysts with high catalytic activity and durability is of significant for the development of an electrochemical device involving the oxygen reduction reaction. This work describes the synthesis of Pt-on-Pd bimetallic heterogeneous nanostructures, and their high electrocatalytic activity toward the oxygen reduction reaction (ORR). Pt nanoclusters with a size of 1-2 nm were generated on Pd nanorods (NRs) through a modified Cu underpotential deposition (UPD) process free of potential control and a subsequent surface-limited redox reaction. The Pt nanocluster decorated Pd nanostructure with a ultralow Pt content of 1.5 wt % exhibited a mass activity of 105.3 mA mg(-1) (Pt-Pd) toward ORR, comparable to that of the commercial Pt/C catalyst but 4 times higher than that of carbon supported Pd NRs. More importantly, the carbon supported Pt-on-Pd catalyst displays relatively small losses of 16% in electrochemical surface area (ECSA) and 32% in mass activity after 10?000 potential sweeps, in contrast to respective losses of 46 and 64% for the commercial Pt/C catalyst counterpart. The results demonstrated that Pt decoration might be an efficient way to improve the electrocatalytic activity of Pd and in turn allow Pd to be a promising substitution for commercial Pt catalyst. PMID:26181191

  13. Palladium-Catalyzed Carbonylative Annulation Reactions Using Aryl Formate as a CO Source: Synthesis of 2-Substituted Indene-1,3(2H)-dione Derivatives.

    PubMed

    Zhang, Ying; Chen, Jing-Lei; Chen, Zhen-Bang; Zhu, Yong-Ming; Ji, Shun-Jun

    2015-11-01

    An efficient synthesis of 2-substituted indene-1,3(2H)-diones from stable and readily available 1-(2-halophenyl)-1,3-diones by employing phenyl formate as a CO source has been developed. The reaction occurred via palladium-catalyzed intramolecular carbonylative annulation using K3PO4 as a base and DMSO as a solvent at 95 °C. In this protocol, the reaction showed a broad substrate scope with good to excellent yields. PMID:26452462

  14. Palladium-catalyzed intramolecular asymmetric C-H functionalization/cyclization reaction of metallocenes: an efficient approach toward the synthesis of planar chiral metallocene compounds.

    PubMed

    Deng, Ruixian; Huang, Yunze; Ma, Xinna; Li, Gencheng; Zhu, Rui; Wang, Bin; Kang, Yan-Biao; Gu, Zhenhua

    2014-03-26

    A palladium-catalyzed asymmetric synthesis of planar chiral metallocene compounds is reported. The reaction stereoselectively functionalized one of the ortho C-H bonds of Cp rings by intramolecular cyclization to form indenone derivatives in high yields with excellent enantioselectivity. The mild set of reaction conditions allowed a wide variety of chiral metallocene compounds to be synthesized with broad functional group tolerance. The influences of preinstalled chiralities on the other Cp-ring were also investigated. PMID:24617772

  15. Synthesis and reactions of a stable 1,2-diaryl-1,2-dibromodisilene: a precursor for substituted disilenes and a 1,2-diaryldisilyne.

    PubMed

    Sasamori, Takahiro; Hironaka, Koji; Sugiyama, Yusuke; Takagi, Nozomi; Nagase, Shigeru; Hosoi, Yoshinobu; Furukawa, Yukio; Tokitoh, Norihiro

    2008-10-22

    Synthesis and isolation of the stable diaryldibromodisilene, Bbt(Br)SiSi(Br)Bbt, has been accomplished for the first time. The dibromodisilene underwent substitution reactions with organometallic reagents on the low-coordinated silicon atom to afford the corresponding substituted disilenes. Furthermore, the reaction of 1 with t-BuLi afforded the corresponding 1,2-diaryldisilyne, BbtSi[triple bond]SiBbt, the characters of which were revealed by spectroscopic and crystallographic analyses. PMID:18817398

  16. Synthesis of two distinct pyrrole moiety-containing arenes from nitroanilines using Paal-Knorr followed by an indium-mediated reaction.

    PubMed

    Kim, Byeong Hyo; Bae, Seolhee; Go, Ahra; Lee, Hyunseung; Gong, Cheoloh; Lee, Byung Min

    2015-12-15

    Synthesis of arenes substituted with two differently substituted-pyrrole moieties was investigated. A Paal-Knorr condensation reaction of nitroanilines with 1,4-diketone to nitrophenyl-1H-pyrroles followed by an indium-mediated reduction-triggered coupling reaction with another kind of 1,4-diketone resulted in two distinct pyrrole-containing arenes, variously substituted 1-((1H-pyrrol-1-yl)phenyl)-1H-pyrroles, in reasonable yield. PMID:26593044

  17. Z/E Stereoselective synthesis of b-bromo BaylisHillman ketones using MgBr2 as promoter via a one-pot three-component reaction

    E-print Network

    Paré, Paul W.

    the chalogeno-Baylis­Hillman reaction to the synthesis of (Z)-b-halo Baylis­Hillman hydroxy ketones and esters the scope of this reaction to determine if MgI2 can be replaced by MgBr2 as a Lewis acid for the synthesisZ/E Stereoselective synthesis of b-bromo Baylis­Hillman ketones using MgBr2 as promoter via a one

  18. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O

    SciTech Connect

    Zhao, Yafan; Yang, Yong; Mims, Charles A.; Peden, Charles HF; Li, Jun; Mei, Donghai

    2011-05-31

    Methanol synthesis from CO2 hydrogenation on supported Cu catalysts is of considerable importance in the chemical and energy industries. Although extensive experimental and theoretical efforts have been carried out in the past decades, the most fundamental questions such as the reaction mechanisms and the key reaction intermediates are still in debate. In the present work, a comprehensive reaction network for CO2 hydrogenation to methanol on Cu(111) was studied using periodic density functional theory (DFT) calculations. All of the elementary reaction steps in the reaction network were identified in an unbiased way with the dimer method. Our calculation results show that methanol synthesis from direct hydrogenation of formate on Cu(111) is not feasible due to the high activation barriers for some of the elementary steps. Instead, we find that CO2 hydrogenation to hydrocarboxyl (trans-COOH) is kinetically more favorable than formate in the presence of H2O via a unique proton transfer mechanism. The trans-COOH is then converted into hydroxymethylidyne (COH) via dihydroxycarbene (COHOH) intermediates, followed by three consecutive hydrogenation steps to form hydroxymethylene (HCOH), hydroxymethyl (H2COH), and methanol. This is consistent with recent experimental observations [1], which indicate that direct hydrogenation of formate will not produce methanol under dry hydrogen conditions. Thus, both experiment and computational modeling clearly demonstrate the important role of trace amounts of water in methanol synthesis from CO2 hydrogenation on Cu catalysts. The proposed methanol synthesis route on Cu(111) not only provides new insights into methanol synthesis chemistry, but also demonstrates again that spectroscopically observed surface species are often not critical reaction intermediates but rather spectator species. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. Toward the Total Synthesis of Norzoanthamine: The Development of a Transannular Michael Reaction Cascade 

    E-print Network

    Xue, Haoran

    2013-03-06

    and stereochemically complex ABC core structure of the natural product poses a significant challenge. As part of our efforts to develop a practical synthetic route to norzoanthamine, we systematically explored a transannular Michael reaction cascade in the context...

  20. Development of odd-Z-projectile reactions for transactinide element synthesis

    SciTech Connect

    Folden III, Charles Marvin

    2004-11-04

    The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile 208Pb(64Ni, n)271Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to 271Ds were observed. These data, combined with previous results, establish an excitation function for the production of 271Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the 271Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile 208Pb(65Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile 208Pb(55Mn, n)262Bh reaction was studied at three different projectile energies, and 33 decay chains of 262Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile 209Bi(54Cr, n)262Bh reaction, which may be because the 54Cr projectile energies in the latter reaction were too high for optimum production of the 1n product. At the highest projectile energy of 268.0 MeV in the target center, two decay chains from 261Bh were observed as a result of the 208Pb(55Mn, 2n) reaction. In summary, this work shows that odd-Z-projectile reactions can have cross sections comparable to analogous even-Z-projectile reactions, and that the energy of the maximum cross section for 1n reactions can be estimated simply.

  1. In-situ synchrotron microtomography reveals multiple reaction pathways during soda-lime glass synthesis

    E-print Network

    Emmanuelle Gouillart; Michael J. Toplis; Julien Grynberg; Marie. -Helene Chopinet; Elin Sondergard; Luc Salvo; Michel Suéry; Marco Di Michiel; Gael Varoquaux

    2012-01-11

    Ultrafast synchrotron microtomography has been used to study in-situ and in real time the initial stages of silicate glass melt formation from crystalline granular raw materials. Significant and unexpected rearrangements of grains occur below the nominal eutectic temperature, and several drastically different solid-state reactions are observed to take place at different types of intergranular contacts. These reactions have a profound influence on the formation and the composition of the liquids produced, and control the formation of defects.

  2. Rh-Catalyzed Reactions of 3-Diazoindolin-2-imines: Synthesis of Pyridoindoles and Tetrahydrofuropyrroloindoles.

    PubMed

    Wang, Chen; Zhang, Haojie; Lang, Bo; Ren, Anni; Lu, Ping; Wang, Yanguang

    2015-09-18

    The rhodium-catalyzed reactions of 3-diazoindolin-2-imines with furans and dihydrofuran furnished 9H-pyrido[2,3-b]indoles and tetrahydrofuro[3',2':4,5]pyrrolo[2,3-b]indoles, respectively. A cascade reaction mechanism involving an ?-imino rhodium carbene intermediate is proposed. The starting materials are readily available, and the procedure is facile and efficient. PMID:26349028

  3. AMMONIA CONCENTRATION IN SALTSTONE HEADSPACE SUMMARY REPORT

    SciTech Connect

    Zamecnik, J; Alex Cozzi, A

    2008-09-26

    The Saltstone Facility Documented Safety Analysis (DSA) is under revision to accommodate changes in the Composite Lower Flammability Limit (CLFL) from the introduction of Isopar into Tank 50. Saltstone samples were prepared with an 'MCU' type salt solution spiked with ammonia. The ammonia released from the saltstone was captured and analyzed. The ammonia concentration found in the headspace of samples maintained at 95 C and 1 atm was, to 95% confidence, less than or equal to 3.9 mg/L. Tank 50 is fed by several influent streams. The salt solution from Tank 50 is pumped to the salt feed tank (SFT) in the Saltstone Production Facility (SPF). The premix materials cement, slag and fly ash are blended together prior to transfer to the grout mixer. The premix is fed to the grout mixer in the SPF and the salt solution is incorporated into the premix in the grout mixer, yielding saltstone slurry. The saltstone slurry drops into a hopper and then is pumped to the vault. The Saltstone Facility Documented Safety Analysis (DSA) is under revision to accommodate changes in the Composite Lower Flammability Limit (CLFL) from the introduction of Isopar{reg_sign} L into Tank 50. Waste Solidification-Engineering requested that the Savannah River National Laboratory (SRNL) perform testing to characterize the release of ammonia in curing saltstone at 95 C. The test temperature represents the maximum allowable temperature in the Saltstone Disposal Facility (SDF). Ammonia may be present in the salt solution and premix materials, or may be produced by chemical reactions when the premix and salt solution are combined. A final report (SRNS-STI-2008-00120, Rev. 0) will be issued that will cover in more depth the information presented in this report.

  4. Ultrasound assisted lipase catalyzed synthesis of cinnamyl acetate via transesterification reaction in a solvent free medium.

    PubMed

    Tomke, Prerana D; Rathod, Virendra K

    2015-11-01

    Cinnamyl acetate is known for its use as flavor and fragrance material in different industries such as food, pharmaceutical, cosmetic etc. This work focuses on ultrasound assisted lipase (Novozym 435) catalyzed synthesis of cinnamyl acetate via transesterification of cinnamyl alcohol and vinyl acetate in non-aqueous, solvent free system. Optimization of various parameters shows that a higher yield of 99.99% can be obtained at cinnamyl alcohol to vinyl acetate ratio of 1:2 with 0.2% of catalyst, at 40°C and 150 rpm, with lower ultrasound power input of 50 W (Ultrasound intensity 0.81 W/cm(2)), at 25 kHz frequency, 50% duty cycle. Further, the time required for the maximum conversion is reduced to 20 min as compared to 60 min of conventional process. Similarly, the enzyme can be successfully reused seven times without loss of enzyme activity. Thus, ultrasound helps to enhance the enzyme catalyzed synthesis of flavors. PMID:26186841

  5. Ammonia-(Dinitramido)boranes: High-Energy-Density Materials.

    PubMed

    Bélanger-Chabot, Guillaume; Rahm, Martin; Haiges, Ralf; Christe, Karl O

    2015-09-28

    Two ammonia-(dinitramido)boranes were synthesized by the reaction of dinitroamine with ammonia-borane. These compounds are the first reported examples of (dinitramido)boranes. Ammonia-mono(dinitramido)borane is a perfectly oxygen-balanced high-energy-density material (HEDM) composed of an ammonia-BH2 fuel group and a strongly oxidizing dinitramido ligand. Although it is thermally not stable enough for practical applications, its predicted specific impulse as a solid rocket propellant would be 333 s. Its predicted performance as an explosive matches that of pentaerythtritol tetranitrate (PETN) and significantly exceeds that of trinitrotoluene (TNT). Its structure was established by X-ray crystallography and vibrational and multinuclear NMR spectroscopy. Additionally, the over-oxidized ammoniabis(dinitramido)borane was detected by NMR spectroscopy. PMID:26276906

  6. The production of ammonia by multiheme cytochromes C.

    PubMed

    Simon, Jörg; Kroneck, Peter M H

    2014-01-01

    The global biogeochemical nitrogen cycle is essential for life on Earth. Many of the underlying biotic reactions are catalyzed by a multitude of prokaryotic and eukaryotic life forms whereas others are exclusively carried out by microorganisms. The last century has seen the rise of a dramatic imbalance in the global nitrogen cycle due to human behavior that was mainly caused by the invention of the Haber-Bosch process. Its main product, ammonia, is a chemically reactive and biotically favorable form of bound nitrogen. The anthropogenic supply of reduced nitrogen to the biosphere in the form of ammonia, for example during environmental fertilization, livestock farming, and industrial processes, is mandatory in feeding an increasing world population. In this chapter, environmental ammonia pollution is linked to the activity of microbial metalloenzymes involved in respiratory energy metabolism and bioenergetics. Ammonia-producing multiheme cytochromes c are discussed as paradigm enzymes. PMID:25416396

  7. Reactions of Heterocycles -Denksport June 20, 2011 Part 1: Synthesis of Heterocycles

    E-print Network

    (5 equiv) n-Bu4NCl (1 equiv) DMF, 100 oC N Me TMS Ac 98% JOC, 1998, 63, 7652. SH CO2Me CO2Me MeO2C 1 tetrahydroisoquinoline synthesis 71% Me CH2OH Pd(OAc)2 (5 mol %) K2CO3 (5 equiv) n-Bu4NCl (1 equiv) DMF, 100 oCN H Me 60

  8. Protease-catalyzed peptide synthesis using inverse substrates: the influence of reaction conditions on the trypsin acyl transfer efficiency.

    PubMed

    Schellenberger, V; Jakubke, H D; Zapevalova, N P; Mitin, Y V

    1991-06-01

    Benzyloxycarbonyl-L-alanine p-guanidinophenyl ester behaves as a trypsin "inverse substrate," i.e., a cationic center is included in the leaving group instead of being in the acyl moiety. Using this substrate as an acyl donor, trypsin catalyzes the synthesis of peptide bonds that cannot be split by this enzyme. An optimal acyl transfer efficiency was achieved between pH 8 and 9 at 30 degrees C.The addition of as much as 50% cosolvent was shown to be of minor influence on the acyl transfer efficiency, whereas the reaction velocity decreases by more than one order of magnitude. The efficiency of H-Leu-NH(2) and H-Val-NH(2) in deacylation is almost the same for "inverse" and normal type substrates. PMID:18600704

  9. A New Reaction Manifold for the Barton Radical Intermediates: Synthesis of N-Heterocyclic Furanosides and Pyranosides via the Formation of the C1-C2

    E-print Network

    RajanBabu, T. V. "Babu"

    A New Reaction Manifold for the Barton Radical Intermediates: Synthesis of N-Heterocyclic the heterocyclic moiety is retained in the product 5 (eq 1). With an appropriately substituted carbohydrate precursor this could lead to N-heterocyclic glycosides8 of 2-amino- or C2-branched sugars.9 Additionally

  10. Synthesis of unnatural amino acids via microwave-assisted regio-selective one-pot multi-component reactions of sulfamidates

    EPA Science Inventory

    Synthesis of triazole-based unnatural amino acids, triazole bisaminoacids and ?-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW irradiation conditions. The developed method is app...

  11. Synthesis of Functionalized Chromeno[2,3-b]pyrrol-4(1H)-ones by Silver-Catalyzed Cascade Reactions of Chromones/Thiochromones and Isocyanoacetates.

    PubMed

    Qi, Xueyu; Xiang, Haoyue; Yang, Chunhao

    2015-11-20

    A novel and convenient approach to the synthesis of chromeno[2,3-b]pyrrol-4(1H)-ones has been developed. Furthermore, the method involves a facile silver-catalyzed cascade cyclization reaction including an intramolecular C-O bond formation. The silver salt acts as a key promoter. PMID:26562216

  12. CATALYST-FREE REACTIONS UNDER SOLVENT-FEE CONDITIONS: MICROWAVE-ASSISTED SYNTHESIS OF HETEROCYCLIC HYDRAZONES BELOW THE MELTING POINT OF NEAT REACTANTS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1437 Jeselnik, M., Varma*, R.S., Polanc, S., and Kocevar, M. Catalyst-free Reactions under Solvent-fee Conditions: Microwave-assisted Synthesis of Heterocyclic Hydrazones below the Melting Point of Neat Reactants. Published in: Chemical Communications 18:1716-1717 (200...

  13. SOLID-LIQUID PHASE TRANSFER CATALYZED SYNTHESIS OF CINNAMYL ACETATE-KINETICS AND ANALYSIS OF FACTORS AFFECTING THE REACTION IN A BATCH REACTOR

    EPA Science Inventory

    The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...

  14. ATP-synthase of Rhodobacter capsulatus: coupling of proton ow through FH to reactions in FI under the ATP synthesis and slip conditions

    E-print Network

    Steinhoff, Heinz-Jürgen

    ATP-synthase of Rhodobacter capsulatus: coupling of proton £ow through FH to reactions in FI under the ATP synthesis and slip conditions Boris A. FenioukY , Dmitry A. CherepanovY , Wolfgang Junge , Armen Y. Proton transfer through ATP-synthase (measured by electrochromic carotenoid bandshift and by p

  15. Designed synthesis of size-tunable Ag2S nanoclusters via distinguishable C-S bond cleavage reaction of alkyl- and aryl-thiolates.

    PubMed

    Chen, Hang-Qing; He, Xin; Guo, Hui; Fu, Nan-Yan; Zhao, Liang

    2015-03-01

    We report herein the synthesis of two different silver clusters of aryl- and alkyl-thiolates. These two cluster complexes exhibited biased C-S bond cleavage reaction rates upon removing protective hexamethylazacalix[6]pyridine (Py[6]) ligands, which was applied in the fabrication of silver sulfide nanoclusters with variable and controllable sizes. PMID:25652650

  16. Synthesis of a Self-Healing Polymer Based on Reversible Diels-Alder Reaction: An Advanced Undergraduate Laboratory at the Interface of Organic Chemistry and Materials Science

    ERIC Educational Resources Information Center

    Weizman, Haim; Nielsen, Christian; Weizman, Or S.; Nemat-Nasser, Sia

    2011-01-01

    This laboratory experiment exposes students to the chemistry of self-healing polymers based on a Diels-Alder reaction. Students accomplish a multistep synthesis of a monomer building block and then polymerize it to form a cross-linked polymer. The healing capability of the polymer is verified by differential scanning calorimetry (DSC) experiments.…

  17. Synthesis, Properties, and Reactions of Trinuclear Macrocyclic Nickel(II) and Nickel(I) Complexes: Electrocatalytic Reduction of CO2 by Nickel(II) Complex

    E-print Network

    Paik Suh, Myunghyun

    FULL PAPER Synthesis, Properties, and Reactions of Trinuclear Macrocyclic Nickel(II) and Nickel(I) Complexes: Electrocatalytic Reduction of CO2 by Nickel(II) Complex Eun Young Lee,[a] Daewon Hong,[a] Han Woong Park,[a] and Myunghyun Paik Suh*[a] Keywords: Nickel / Macrocyclic compounds / Carbon dioxide

  18. Synthesis of high specific activity (+)- and (-)-6-( sup 18 F)fluoronorepinephrine via the nucleophilic aromatic substitution reaction

    SciTech Connect

    Ding, Y.S.; Fowler, J.S.; Gatley, S.J.; Dewey, S.L.; Wolf, A.P. )

    1991-02-01

    The first example of a no-carrier-added {sup 18}F-labeled catecholamine, 6-({sup 18}F)fluoronorepinephrine (6-({sup 18}F)FNE), has been synthesized via nucleophilic aromatic substitution. The racemic mixture was resolved on a chiral HPLC column to obtain pure samples of (-)-6-({sup 18}F)FNE and (+)6-({sup 18}F)FNE. Radiochemical yields of 20% at the end of bombardment (EOB) for the racemic mixture (synthesis time 93 min), 6% for each enantiomer (synthesis time 128 min) with a specific activity of 2-5 Ci/mumol at EOB were obtained. Chiral HPLC peak assignment for the resolved enantiomers was achieved by using two independent methods: polarimetric determination and reaction with dopamine beta-hydroxylase. Positron emission tomography (PET) studies with racemic 6-({sup 18}F)FNE show high uptake and retention in the baboon heart. This work demonstrates that nucleophilic aromatic substitution by ({sup 18}F)fluoride ion is applicable to systems having electron-rich aromatic rings, leading to high specific activity radiopharmaceuticals. Furthermore, the suitably protected dihydroxynitrobenzaldehyde 1 may serve as a useful synthetic precursor for the radiosynthesis of other complex {sup 18}F-labeled radiotracers.

  19. Wet chemical synthesis of quantum confined nanostructured tin oxide thin films by successive ionic layer adsorption and reaction technique

    SciTech Connect

    Murali, K.V.; Ragina, A.J.; Preetha, K.C.; Deepa, K.; Remadevi, T.L.

    2013-09-01

    Graphical abstract: - Highlights: • Quantum confined SnO{sub 2} thin films were synthesized at 80 °C by SILAR technique. • Film formation mechanism is discussed. • Films with snow like crystallite morphology offer high specific surface area. • The blue-shifted value of band gap confirmed the quantum confinement effect. • Present synthesis has advantages – low cost, low temperature and green friendly. - Abstract: Quantum confined nanostructured SnO{sub 2} thin films were synthesized at 353 K using ammonium chloride (NH{sub 4}Cl) and other chemicals by successive ionic layer adsorption and reaction technique. Film formation mechanism is discussed. Structural, morphological, optical and electrical properties were investigated and compared with the as-grown and annealed films fabricated without NH{sub 4}Cl solution. SnO{sub 2} films were polycrystalline with crystallites of tetragonal structure with grain sizes lie in the 5–8 nm range. Films with snow like crystallite morphology offer high specific surface area. The blue-shifted value of band gap of as-grown films confirmed the quantum confinement effect of grains. Refractive index of the films lies in the 2.1–2.3 range. Films prepared with NH{sub 4}Cl exhibit relatively lower resistivity of the order of 10{sup 0}–10{sup ?1} ? cm. The present synthesis has advantages such as low cost, low temperature and green friendly, which yields small particle size, large surface–volume ratio, and high crystallinity SnO{sub 2} films.

  20. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 ?M, high sensitivity of 162.69 ?A mM(-1) cm(-2), and wide linear range of 0.05 ?M-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication. PMID:26647786

  1. Experiments on the synthesis of superheavy nuclei 284Fl and 285Fl in the Pu,240239+48Ca reactions

    NASA Astrophysics Data System (ADS)

    Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; Rykaczewski, K. P.; Abdullin, F. Sh.; Dmitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu. S.; Voinov, A. A.; Subbotin, V. G.; Sukhov, A. M.; Sabel'nikov, A. V.; Vostokin, G. K.; Hamilton, J. H.; Stoyer, M. A.; Strauss, S. Y.

    2015-09-01

    Irradiations of 239Pu and 240Pu targets with 48Ca beams aimed at the synthesis of Z =114 flerovium isotopes were performed at the Dubna Gas Filled Recoil Separator. A new spontaneously fissioning (SF) isotope 284Fl was produced for the first time in the 240Pu+48Ca (250 MeV) and 239Pu+48Ca (245 MeV) reactions. The cross section of the 239Pu(48Ca,3 n )284Fl reaction channel was about 20 times lower than predicted by theoretical models and about 50 times lower than the maximum fusion-evaporation cross section for the 3 n and 4 n channels measured in the 244Pu+48Ca reaction. In the 240Pu+48Ca experiment, performed at 245 MeV in order to maximize the 3 n -evaporation channel, three decay chains of 285Fl were detected. The ? -decay energy of 285Fl was measured for the first time and decay properties of its descendants 281Cn, 277Ds, 273Hs, 269Sg, and 265Rf were determined with higher accuracy. The assignment of SF events observed during the irradiation of the 240Pu target with a 250 MeV 48Ca beam to 284Fl decay is presented and discussed. The cross sections at both 48Ca energies are similar and exceed that observed in the reaction with the lighter isotope 239Pu by a factor of 10. The decay properties of the synthesized nuclei and their production cross sections indicate a rapid decrease of stability of superheavy nuclei as the neutron number decreases from the predicted magic neutron number N =184 .

  2. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener "nanoparticle-catalyzed organic synthesis enhancement" approach.

    PubMed

    Das, Vijay K; Borah, Madhurjya; Thakur, Ashim J

    2013-04-01

    Nano-S prepared by an annealing process showed excellent catalytic activity for the synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition at 50 °C. The catalyst could be reused up to the fifth cycle without loss in its action. The green-ness of the present protocol was also measured using green metrics drawing its superiority. PMID:23472638

  3. Synthesis, optimization and structural characterization of a chitosan-glucose derivative obtained by the Maillard reaction.

    PubMed

    Gullón, Beatriz; Montenegro, María I; Ruiz-Matute, Ana I; Cardelle-Cobas, Alejandra; Corzo, Nieves; Pintado, Manuela E

    2016-02-10

    Chitosan (Chit) was submitted to the Maillard reaction (MR) by co-heating a solution with glucose (Glc). Different reaction conditions as temperature (40, 60 and 80°C), Glc concentration (0.5%, 1%, and 2%, w/v), and reaction time (72, 52 and 24h) were evaluated. Assessment of the reaction extent was monitored by measuring changes in UV absorbance, browning and fluorescence. Under the best conditions, 2% (w/v) of Chit, 2% (w/v) of Glc at 60°C and 32h of reaction time, a chitosan-glucose (Chit-Glc) derivative was purified and submitted to structural characterization to confirm its formation. Analysis of its molecular weight (MW) and the degree of substitution (DS) was carried out by HPLC-Size Exclusion Chromatography (SEC) and a colloid titration method, respectively. FT-IR and (1)H NMR were also used to analyze the functional groups and evaluate the introduction of Glc into the Chit molecule. According to our objectives, the results obtained in this work allowed to better understand the key parameters influencing the MR with Chit as well as to confirm the successful introduction of Glc into the Chit molecule obtaining a Chit-Glc derivative with a DS of 64.76±4.40% and a MW of 210.37kDa. PMID:26686142

  4. Industrial ammonia gassing

    PubMed Central

    Walton, M.

    1973-01-01

    Walton, M. (1972).British Journal of Industrial Medicine,30, 78-86. Industrial ammonia gassing. Seven cases of ammonia gassing are described with follow-up for five years of the six survivors and the post-mortem findings of the fatal case. All the survivors attributed continuing symptoms to the gassing. The study failed to demonstrate permanent ill effects in the one case of mild exposure. Of the more serious cases one has stopped smoking and taken up physical training teaching. He now has above average lung function. Two serious cases who continued to smoke have the lung function abnormalities expected from their smoking. In the other two seriously exposed cases, who also continued to smoke, there is a persistent reduction in ventilation and gas transfer which seems to be due to the ammonia gassing. The post-mortem findings in the fatal case showed acute congestion and oedema of the mucosa of the respiratory tract, the bronchial walls being stripped of their lining epithelium and the alveoli stuffed with red blood cells and oedema fluid. Images PMID:4685304

  5. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Rodean, H.C.; Chan, S.T.; Ermak, D.L.

    1983-01-01

    A simplification to the two-phase ammonia vapor-droplet fog problem has been implemented to study the dispersion of a spill of 40 tons of ammonia. We have circumvented the necessity of adding the partial differential equations for mass, momentum, and energy for the ammonia in the liquid phase by certain assumptions. It is assumed that the ammonia fog behaves as an ideal gas including the droplets. A temperature-dependent molecular weight was introduced to simulate the transition from a vapor-droplet cloud to a pure vapor cloud of ammonia. Likewise, the vaporization of ammonia was spread out over a temperature range. Mass, momentum, energy, and total ammonia is conserved rigorously. The observed features of the ammonia spill simulation have pointed out phenomena that could not be predicted in simpler calculations. Perhaps the most obvious feature is the cloud bifurcation due to the strength of the gravity current relative to the ambient wind. The gravity spreading of the denser ammonia fog significantly perturbs the unidirectional windfield in the vicinity of the spill, setting up complex eddy patterns in the cloud which are enhanced by ground heating and warm dry air entrainment. The lower concentrations appear to lift off by a buoyancy-induced flow. The ammonia cloud, rather than being cigar shaped as assumed in simpler models, ranges from pancake shaped to pear shaped, depending upon the ambient windfield. The fact that the ammonia cloud remains cold, very low, and wide is in qualitative agreement with some of the large-scale ammonia spill accidents. 14 figures.

  6. A separation-integrated cascade reaction to overcome thermodynamic limitations in rare-sugar synthesis.

    PubMed

    Wagner, Nina; Bosshart, Andreas; Failmezger, Jurek; Bechtold, Matthias; Panke, Sven

    2015-03-27

    Enzyme cascades combining epimerization and isomerization steps offer an attractive route for the generic production of rare sugars starting from accessible bulk sugars but suffer from the unfavorable position of the thermodynamic equilibrium, thus reducing the yield and requiring complex work-up procedures to separate pure product from the reaction mixture. Presented herein is the integration of a multienzyme cascade reaction with continuous chromatography, realized as simulated moving bed chromatography, to overcome the intrinsic yield limitation. Efficient production of D-psicose from sucrose in a three-step cascade reaction using invertase, D-xylose isomerase, and D-tagatose epimerase, via the intermediates D-glucose and D-fructose, is described. This set-up allowed the production of pure psicose (99.9%) with very high yields (89%) and high enzyme efficiency (300?g of D-psicose per g of enzyme). PMID:25688873

  7. Nitrogen isotope fractionations in the Fischer-Tropsch synthesis and in the Miller-Urey reaction

    NASA Technical Reports Server (NTRS)

    King, C.-C.; Clayton, R. N.; Hayatsu, R.; Studier, M. H.

    1979-01-01

    Nitrogen isotope fractionations have been measured in Fischer-Tropsch and Miller-Urey reactions in order to determine whether these processes can account for the large N-15/N-14 ratios found in organic matter in carbonaceous chondrites. Polymeric material formed in the Fischer-Tropsch reaction was enriched in N-15 by only 3 per mil relative to the starting material (NH3). The N-15 enrichment in polymers from the Miller-Urey reaction was 10-12 per mil. Both of these fractionations are small compared to the 80-90 per mil differences observed between enstatite chondrites and carbonaceous chondrites. These large differences are apparently due to temporal or spatial variations in the isotopic composition of nitrogen in the solar nebula, rather than to fractionation during the production of organic compounds.

  8. Design and synthesis of N-vinylacetamide derivative with bulky group by nucleophilic substitution reaction

    NASA Astrophysics Data System (ADS)

    Ajiro, Hiroharu; Hongo, Chizuru; Akashi, Mitsuru

    2010-02-01

    Cyclohexyl, adamantyl, and triphenylmethyl groups were employed for the nucleophilic substitution reaction with N-vinylacetamide (NVA), in order to investigate the bulky substituents effects on molecular structures in N-vinyl monomers. Although normal alkyl halides were known to produce N-substituted NVA, alkyl halides with secondary and tertiary carbons did not occur nucleophilic substitution reaction. On the contrary, triphenylmethyl group was introduced into ?-position on NVA, accompanied with hydrogen transfer. The refined crystal structure of ?-triphenylmethyl- N-vinylacetamide revealed intermolecular linear hydrogen bonds and aromatic bulky triphenylmethyl group supported the structure.

  9. Regioselective synthesis of multisubstituted isoquinolones and pyridones via Rh(iii)-catalyzed annulation reactions.

    PubMed

    Shi, Liangliang; Yu, Ke; Wang, Baiquan

    2015-11-24

    A mild and efficient Rh(iii)-catalyzed regioselective synthesis of isoquinolones and pyridones has been developed. The protocol uses readily available N-methoxybenzamide or N-methoxymethacrylamide and diazo compounds as starting materials. The process involving tandem C-H activation, cyclization, and condensation steps proceeds under mild conditions, and the corresponding isoquinolone and pyridone derivatives were obtained in good to excellent yields with excellent regioselectivities. The process provides a facile approach for the construction of isoquinolone and pyridone derivatives containing various functional groups. PMID:26463232

  10. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-01

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  11. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    PubMed Central

    Guo, Wei; Vlachos, Dionisios G.

    2015-01-01

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N?H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design. PMID:26443525

  12. Thermodynamic and kinetic studies of the liquid phase synthesis of tert-butyl ethyl ether using a reaction calorimeter

    SciTech Connect

    Sola, L.; Pericas, M.A.; Cunill, F.; Tejero, J.

    1995-11-01

    The liquid-phase addition of ethanol to isobutene to give tert-butyl ethyl ether (ETBE) on the ion-exchange resin Lewatit K2631 has been studied in a calorimetric reactor. The heat capacity of ETBE and the enthalpy change of the ETBE synthesis reaction in the temperature range 312--333 K have been determined. ETBE heat capacity in the liquid phase has been found to follow the equation C{sub p} = 486.73 {minus} 2.253 (T/K) + 0.00479 (T/K){sup 2}. At 298 K the standard molar reaction enthalpy is {Delta}H{degree} = {minus}32.0 kJ/mol. A determination of the apparent activation energy of 86.5--89.2 kJ/mol has been performed graphically from the plots of heat flow rate versus time. An Eley-Rideal mechanism, with two active sites involved in the rate determining step, has been proved to be correct. From this model an apparent activation energy of 80.6 kJ/mol is deduced. A {minus}3.0 kJ/mol value has been found for the adsorption enthalpy of ethanol. This allows the estimation of the actual gel-phase activation energy of 77.6 kJ/mol.

  13. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction.

    PubMed

    Guo, Shaojun; Zhang, Sen; Sun, Xiaolian; Sun, Shouheng

    2011-10-01

    We report a facile synthesis of ultrathin (2.5 nm) trimetallic FePtPd alloy nanowires (NWs) with tunable compositions and controlled length (<100 nm). The NWs were made by thermal decomposition of Fe(CO)(5) and sequential reduction of Pt(acac)(2) (acac = acetylacetonate) and Pd(acac)(2) at temperatures from 160 to 240 °C. These FePtPd NWs showed composition-dependent catalytic activity and stability for methanol oxidation reaction. Among FePtPd and FePt NWs as well as Pd, Pt, and PtPd nanoparticles (NPs) studied in 0.2 M methanol and 0.1 M HClO(4) solution, the Fe(28)Pt(38)Pd(34) NWs showed the highest activity, with their mass current density reaching 488.7 mA/mg Pt and peak potential for methanol oxidation decreasing to 0.614 V from 0.665 V (Pt NP catalyst). The NW catalysts were also more stable than the NP catalysts, with the Fe(28)Pt(38)Pd(34) NWs retaining the highest mass current density (98.1 mA/mg Pt) after a 2 h current-time test at 0.4 V. These trimetallic NWs are a promising new class of catalyst for methanol oxidation reaction and for direct methanol fuel cell applications. PMID:21894999

  14. Bacillus amyloliquefaciens levansucrase-catalyzed the synthesis of fructooligosaccharides, oligolevan and levan in maple syrup-based reaction systems.

    PubMed

    Li, Mengxi; Seo, Sooyoun; Karboune, Salwa

    2015-11-20

    Maple syrups with selected degree Brix (°Bx) (15, 30, 60) were investigated as reaction systems for levansucrase from Bacillus amyloliquefaciens. The enzymatic conversion of sucrose present in the maple syrup and the production of the transfructosylation products were assessed over a time course of 48h. At 30°C, the use of maple syrup 30°Bx led to the highest levansucrase activity (427.53?mol/mg protein/min), while maple syrup 66°Bx led to the highest converted sucrose concentration (1.53M). In maple syrup 30°Bx, oligolevans (1080%). In maple syrup 66°Bx, the most abundant products were oligolevans at 30°C and levans (DP?30) at 8°C. The acceptor specificity study revealed the ability of B. amyloliquefaciens levansucrase to synthesize a variety of hetero-fructooligosaccharides (FOSs) in maple syrups 15°Bx and 30°Bx enriched with various disaccharides, with lactose being the preferred fructosyl acceptor. The current study is the first to investigate maple-syrup-based reaction systems for the synthesis of FOSs/oligolevans/levans. PMID:26344273

  15. Microwave-Assisted Organic Synthesis Using Benign Reaction Medium and Reagents

    EPA Science Inventory

    Account of chemical reactions expedited by microwave (MW) exposure of neat reactants for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermediates via enamines or using hypervalent iodine reagents will be described that can be adapted for ...

  16. Microwave-Assisted Organic Synthesis and Transformations using Benign Reaction Media

    EPA Science Inventory

    The nonclassical heating technique using microwaves, termed as 'Bunsen burner of the 21st century, is rapidly becoming popular and is dramatically reducing the reaction times. The significant outcomes of microwave (MW)-assisted green chemistry endeavors are summarized that have r...

  17. Synthesis of nanostructured AlN by solid state reaction of Al and diaminomaleonitrile

    SciTech Connect

    Rounaghi, S.A.; Eshghi, H.; Kiani Rashid, A.R.; Vahdati Khaki, J.; Samadi Khoshkhoo, M.; Scudino, S.; Eckert, J.; TU Dresden, Institut fuer Werkstoffwissenschaft, Dresden D-01062

    2013-02-15

    The solid state reaction of diaminomaleonitrile (DAMN) with aluminum via both mechanochemical and thermal treatment routes was studied by X-ray diffraction and Fourier transform infrared spectroscopy. During the milling process, the reaction starts with the deammoniation of the DAMN molecules, followed by the formation of nanostructured AlN powder as the main solid product after milling for 7 h. The reactivity of the mixed powder was also investigated during the conventional thermal treatment process using differential scanning calorimetry, derivative thermogravimetry and thermogravimetric analysis. The results reveal that DAMN starts to polymerize at 192 Degree-Sign C by the elimination of the amine groups. Furthermore, increasing the annealing temperature leads to the formation of a nitrogen-containing carbonaceous material with the structure similar to non-crystalline carbon. However, no evidence for the formation of AlN was observed in the annealed samples even at temperatures as high as the Al melting point. - Graphical abstract: AlN nanoparticles obtained after milling of Al and diaminomaleonitrile (DAMN) for 12 h. Highlights: Black-Right-Pointing-Pointer Solid state reaction of diaminomaleonitrile (DAMN) with Al was studied via mechanochemical and thermal treatment routs. Black-Right-Pointing-Pointer Nanocrystalline AlN was successfully synthesized by the mechanochemical process. Black-Right-Pointing-Pointer The C/N material was formed by polymerization of DAMN during the thermal treatment process. Black-Right-Pointing-Pointer No reaction between DAMN and Al was detected during the thermal treatment method.

  18. Synthesis of Efficiently Green Luminescent CdSe/ZnS Nanocrystals Via Microfluidic Reaction

    NASA Astrophysics Data System (ADS)

    Luan, Weiling; Yang, Hongwei; Fan, Ningning; Tu, Shan-Tung

    2008-04-01

    Quantum dots with emission in the spectral region from 525 to 535 nm are of special interest for their application in green LEDs and white-light generation, where CdSe/ZnS core-shell structured nanocrystals (NCs) are among promising candidates. In this study, triple-ligand system (trioctylphosphine oxide oleic acid oleylamine) was designed to improve the stability of CdSe NCs during the early reaction stage. With the precisely controlled reaction temperature (285 °C) and residence time (10 s) by the recently introduced microfluidic reaction technology, green luminescent CdSe NCs (? = 522 nm) exhibiting narrow FWHM of PL (30 nm) was reproducibly obtained. After that, CdSe/ZnS core-shell NCs were achieved with efficient luminescence in the pure green spectral region, which demonstrated high PL QY up to 70% and narrow PL FWHM as 30 nm. The strengthened mass and heat transfer in the microchannel allowed the formation of highly luminescent CdSe/ZnS NCs under low reaction temperature and short residence time ( T = 120 °C, t = 10 s). The successful formation of ZnS layer was evidence of the substantial improvement of PL intensity, being further confirmed by XRD, HRTEM, and EDS study.

  19. The Petasis Reaction: Microscale Synthesis of a Tertiary Amine Antifungal Analog

    ERIC Educational Resources Information Center

    Koroluk, Katherine J.; Jackson, Derek A.; Dicks, Andrew P.

    2012-01-01

    Students prepare a tertiary amine antifungal analog in an upper-level undergraduate organic laboratory. A microscale Petasis reaction is performed to generate a liquid compound readily characterized via IR and proton NMR spectroscopy. The biological relevance of the product is highlighted, with the tertiary amine scaffold being an important…

  20. Convenient synthesis of alkyl amines via the reaction of organoboranes with ammonium hydroxide

    SciTech Connect

    Kabalka, G.W.; Sastry, K.A.R.; McCollum, G.W.; Yoshioka, H.

    1981-10-09

    A process for the preparation of alkyl amines in which the reagents are generated in situ under mild and convenient reaction conditions is described. An organoborane is prepared via hydroboration, aqueous ammonium hydroxide is added, and then aqueous sodium hypochlorite is added to the mixture. Two of the alkyl groups in the trialkylborane are converted to the corresponding amines in good yield. (BLM)

  1. System and method for determining an ammonia generation rate in a three-way catalyst

    SciTech Connect

    Sun, Min; Perry, Kevin L; Kim, Chang H

    2014-12-30

    A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.

  2. A Francisella Virulence Factor Catalyzes an Essential Reaction of Biotin Synthesis

    PubMed Central

    Feng, Youjun; Napier, Brooke A.; Manandhar, Miglena; Henke, Sarah K; Weiss, David S.; Cronan, John E.

    2014-01-01

    Summary We recently identified a gene (FTN_0818) required for Francisella virulence that seemed likely involved in biotin metabolism. However, the molecular function of this virulence determinant was unclear. Here we show that this protein named BioJ is the enzyme of the biotin biosynthesis pathway that determines the chain length of the biotin valeryl side chain. Expression of bioJ allows growth of an E. coli bioH strain on biotin-free medium, indicating functional equivalence of BioJ to the paradigm pimeloyl-ACP methyl ester carboxyl-esterase, BioH. BioJ was purified to homogeneity, shown to be monomeric and capable of hydrolysis of its physiological substrate methyl pimeloyl-ACP to pimeloyl-ACP, the precursor required to begin formation of the fused heterocyclic rings of biotin. Phylogenetic analyses confirmed that distinct from BioH, BioJ represents a novel sub-clade of the ?/?-hydrolase family. Structure-guided mapping combined with site-directed mutagenesis revealed that the BioJ catalytic triad consists of Ser151, Asp248 and His278, all of which are essential for activity and virulence. The biotin synthesis pathway was reconstituted in vitro and the physiological role of BioJ directly assayed. To the best of our knowledge, these data represent further evidence linking biotin synthesis to bacterial virulence. PMID:24313380

  3. Direct synthesis of thermochromic VO{sub 2} through hydrothermal reaction

    SciTech Connect

    Alie, David; Gedvilas, Lynn; Wang, Zhiwei; Tenent, Robert; Engtrakul, Chaiwat; Yan, Yanfa; Shaheen, Sean E.; Dillon, Anne C.; Ban, Chunmei

    2014-04-01

    Thermochromic VO{sub 2} was directly synthesized using hydrothermal techniques. The effects of formation conditions on the structure and morphology of the final product were studied through X-ray diffraction (XRD), and scanning electron microscopy (SEM). Unique hollow sphere morphology was observed for the synthesized VO{sub 2} powders. Ex-situ XRD studies after heat treatment confirmed the thermal stability of the VO{sub 2} structure. Thermochromic properties, as a consequence of the reversible structural transformation between monoclinic VO{sub 2} and tetragonal phases, were observed by Fourier transform infrared spectroscopy (FTIR). - Graphical abstract: Thermochromic VO{sub 2} crystals with hollow spherical and asterisk shape were directly synthesized using hydrothermal techniques. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) studies confirmed the thermal stability and the reversible thermochromic properties of the VO{sub 2} structure. - Highlights: • One-step synthesis of thermochromic VO{sub 2} monoclinic phase, and VO{sub 2} (A and B phases) using hydrothermal technique. VO{sub 2} (A), VO{sub 2} (B). • Identification of the relationship between synthesis conditions and the morphology/structure of the final products. • Formation of VO{sub 2} monoclinic phase with an interesting hollow sphere shape. • Demonstration of superior thermal stability of the VO{sub 2} monoclinic phase. • Characterizing the thermochromic properties of VO{sub 2} monoclinic phase.

  4. Low-temperature synthesis of ZrC powder by cyclic reaction of Mg in ZrO[sub 2]-Mg-CH[sub 4

    SciTech Connect

    Kobayashi, Hidehiko; Shimosaka, Kenichi; Saitoh, Miki; Mitamura, Takashi . Dept. of Applied Chemistry, Faculty of Engineering)

    1993-09-01

    The authors investigated the conditions for low-temperature synthesis of ZrC fine powder from ZrO[sub 2]-Mg-CH[sub 4]. The synthesis utilizes a thermite-type reaction, with Mg as the reducing agent, and a reaction between Mg and CH[sub 4] gas as a carbon source. The Mg/ZrO[sub 2] molar ratio as well as the heating rate were varied. Because C can be continuously fed into the reaction group by the cyclic reaction of Mg through the formation and decomposition of Mg[sub 2]C[sub 3] (2Mg + 3CH[sub 4] [r arrow] Mg[sub 2]C[sub 3] + 6H[sub 2] [r arrow] 2Mg + 3C), a molar ratio of 2.2 for Mg/ZrO[sub 2] was sufficient for the synthesis of single-phase ZrC. ZrC powders were synthesized under the following conditions: Mg/ZrO[sub 2] molar ratio = 2.2, heating rate = 20 C/min, and temperature maintained at 750 C for 30 min. The amount of reaction heat produced in the reduction reaction of ZrO[sub 2] by Mg depended on the Mg/ZrO[sub 2] molar ratio, specifically, the amount of ZrO[sub 2] contained. Moreover, the cyclic reaction of Mg-Mg[sub 2]C[sub 3]-Mg was influenced by the amount of reaction heat described above and by the heating rate. The ZrC fine powder showed little aggregation and high dispersibility.

  5. Synthesis of polymer-supported dendritic palladium nanoparticle catalysts for Suzuki coupling reaction

    NASA Astrophysics Data System (ADS)

    Murugan, Eagambaram; Jebaranjitham, J. Nimita; Usha, A.

    2012-09-01

    New bead-shaped heterogeneous nanoparticle catalysts viz., amino-terminated poly(amidoamine) (PAMAM) grafted on poly(styrene)-co-Poly(vinylbenzylchloride) (PS-Poly(VBC)) matrices immobilized/stabilized with palladium nanoparticle were prepared by simplified procedure. The first step is the preparation of PS-Poly(VBC) beads by suspension polymerization method. Second, the PAMAM G(0) G(1) and G(2) dendrimers were grafted individually onto the PS-Poly(VBC) matrices via divergent method by repeating two reactions, i.e., Michael addition of methyl acrylate to surface amino groups of aminomethylated PS-Poly(VBC) matrixes followed by amidation of the resulting esters with ethylene diamine. The resulting three types of PAMAM G(0), G(1) and G(2) grafted on PS-Poly(VBC) matrices were complexed individually with PdCl2 and thus yielded the corresponding new bead-shaped heterogeneous nanoparticle catalyst immobilized with PdNPs. The appearance of surface plasmon resonance band noticed at 547 nm in UV confirms the formation of PdNPs. The SEM result shows that the intensity of white patches due to immobilization of PdNPs increases with generation number and XRD reveals that the crystalline nature was decreased against generation number of the PAMAM. The catalytic efficiency of PS-Poly(VBC)-NH2-PdNPs-G(0), G(1) and G(2) catalysts were examined by Suzuki coupling reaction performed in mixture of water/ethanol. The observed reaction yield reveals that the activity was proportional to the generation number of PAMAM grafted onto the PS-Poly(VBC) matrices. The percentage of reaction yield (biphenyl) is sustained to ?70 % even up to five cycles and this in turn confirms the stability of the catalysts. These catalysts can be used to conduct the Suzuki-coupling reaction in continuous mode operation in industrial scale.

  6. Surfactant-free synthesis of nickel nanoparticles in near-critical water

    SciTech Connect

    Hald, Peter; Bremholm, Martin; Iversen, Steen Brummerstedt

    2008-10-15

    Nickel nanoparticles have been produced by combining two well-tested methods: (i) the continuous flow supercritical reactor and (ii) the reduction of a nickel salt with hydrazine. The normal precipitation of a nickel-hydrazine complex, which would complicate pumping and mixing of the precursor, was controlled by the addition of ammonia to the precursor solution, and production of nickel nanoparticles with average sizes from 40 to 60 nm were demonstrated. The method therefore provides some size control and enables the production of nickel nanoparticles without the use of surfactants. The pure nickel nanoparticles can be easily isolated using a magnet. - Graphical abstract: A surfactant-free synthesis route to nickel nanoparticles has been successfully transferred to near-critical water conditions reducing synthesis times from hours to seconds. Nickel nanoparticles in the 40-60 nm range have been synthesised from an ammonia stabilised hydrazine complex with the average size controlled by reaction temperature.

  7. On-chip automation of cell-free protein synthesis: new opportunities due to a novel reaction mode.

    PubMed

    Georgi, V; Georgi, L; Blechert, M; Bergmeister, M; Zwanzig, M; Wüstenhagen, D A; Bier, F F; Jung, E; Kubick, S

    2016-01-01

    Many pharmaceuticals are proteins or their development is based on proteins. Cell-free protein synthesis (CFPS) is an innovative alternative to conventional cell based systems which enables the production of proteins with complex and even new characteristics. However, the short lifetime, low protein production and expensive reagent costs are still limitations of CFPS. Novel automated microfluidic systems might allow continuous, controllable and resource conserving CFPS. The presented microfluidic TRITT platform (TRITT for Transcription - RNA Immobilization & Transfer - Translation) addresses the individual biochemical requirements of the transcription and the translation step of CFPS in separate compartments, and combines the reaction steps by quasi-continuous transfer of RNA templates to enable automated CFPS. In detail, specific RNA templates with 5' and 3' hairpin structures for stabilization against nucleases were immobilized during in vitro transcription by newly designed and optimized hybridization oligonucleotides coupled to magnetizable particles. Transcription compatibility and reusability for immobilization of these functionalized particles was successfully proven. mRNA transfer was realized on-chip by magnetic actuated particle transfer, RNA elution and fluid flow to the in vitro translation compartment. The applicability of the microfluidic TRITT platform for the production of the cytotoxic protein Pierisin with simultaneous incorporation of a non-canonical amino acid for fluorescence labeling was demonstrated. The new reaction mode (TRITT mode) is a modified linked mode that fulfills the precondition for an automated modular reactor system. By continual transfer of new mRNA, the novel procedure overcomes problems caused by nuclease digestion and hydrolysis of mRNA during TL in standard CFPS reactions. PMID:26554896

  8. Catalytic Asymmetric Iterative/Domino Aldehyde Cross-Aldol Reactions for the Rapid and Flexible Synthesis of 1,3-Polyols.

    PubMed

    Lin, Luqing; Yamamoto, Kumiko; Mitsunuma, Harunobu; Kanzaki, Yamato; Matsunaga, Shigeki; Kanai, Motomu

    2015-12-16

    We report here catalytic asymmetric iterative and domino cross-aldol reactions between aldehydes, endowed with a high level of robustness, flexibility, and generality. A Cu(I)-DTBM-SEGPHOS complex catalyzes an asymmetric cross-aldol reaction between acceptor aldehydes and boron enolates derived from donor aldehydes, which are generated through Ir-catalyzed isomerization of allyloxyboronates. The unit process can be repeated using the aldol products in turn as acceptor substrates for the subsequent asymmetric aldol reaction. The donor aldehydes and stereoselectivity can be flexibly switched in a stepwise manner for the double-aldol reaction. Furthermore, asymmetric triple- and quadruple-aldol reactions are possible in one-pot using the appropriate amounts of donors and amine additives, rapidly elongating the carbon skeleton with controlling up to eight stereocenters. The method should be useful for straightforward synthesis of enantiomerically and diastereomerically enriched 1,3-polyols. PMID:26632863

  9. Metalloporphyrin-based oxidation systems: from biomimetic reactions to application in organic synthesis.

    PubMed

    Che, Chi-Ming; Huang, Jie-Sheng

    2009-07-21

    The oxidation of organic substrates catalyzed by metalloporphyrins constitutes a major class of biomimetic oxidation reactions used in modern synthetic chemistry. Ruthenium porphyrins are among the most extensively studied metalloporphyrin oxidation catalysts. This article provides a brief outline of the metalloporphyrin-based oxidation systems and is focused on the oxidation reactions catalyzed by ruthenium porphyrins performed in the author's laboratory. A series of ruthenium porphyrin catalysts, including those immobilized onto insoluble supports and covalently attached to soluble supports, promote the oxidation of a wide variety of organic substrates such as styrenes, cycloalkenes, alpha,beta-unsaturated ketones, steroids, benzylic hydrocarbons and arenes with 2,6-dichloropyridine-N-oxide or air in up to >99% yields, with high regio-, chemo- and/or stereoselectivity, and with product turnovers of up to 3.0x10(4), demonstrating the potential application of ruthenium porphyrin-based oxidation systems in organic syntheses. PMID:19568617

  10. Synthesis of the dendritic type ?-cyclodextrin on primary face via click reaction applicable as drug nanocarrier.

    PubMed

    Toomari, Yousef; Namazi, Hassan; Akbar, Entezami Ali

    2015-11-01

    The objective of this study was the syntheses of well-defined glycodendrimer with entrapment efficiency by click reactions, with ?-cyclodextrins (?-CDs) moiety to keep the biocompatibility properties, besides especially increase their capacity to load numerous appropriate sized guests. The original dendrimer containing ?-CD in both periphery and central was synthesized using click reaction. The entrapment property of the ?-CD-dendrimer was studied by methotrexate (MTX) drug. The chemical structure of ?-CD-dendrimer was characterized by (1)H NMR, (13)C NMR and FTIR and its inclusion complex structure were investigated by SEM, DLS, DSC and FTIR techniques. The cytotoxic effect of obtained compound and its inclusion complex with MTX was analyzed using MTT test. The MTT test exhibited that the synthesized compound was not cytotoxic to the cell line considered. The in vitro drug release study turned out that the obtained ?-CD dendrimer could be a suitable controlled drug delivery system for cancer treatment. PMID:26256342

  11. Carbamoyl anion-initiated cascade reaction for stereoselective synthesis of substituted ?-hydroxy-?-amino amides.

    PubMed

    Lin, Chao-Yang; Ma, Peng-Ju; Sun, Zhao; Lu, Chong-Dao; Xu, Yan-Jun

    2016-01-01

    A carbamoyl anion-initiated cascade reaction with acylsilanes and imines has been used to rapidly construct substituted ?-hydroxy-?-amino amides. The Brook rearrangement-mediated cascade allows the formation of two C-C bonds and one O-Si bond in a single pot. Using this approach, a range of ?-aryl ?-hydroxy-?-amino amides has been synthesized in high yields with excellent diastereoselectivities. PMID:26579609

  12. Synthesis of polyaniline with low polydispersity by using a supramolecular ionic assembly as the reaction medium.

    PubMed

    Xu, Shaoan; Das, Sanjib; Ogi, Soichiro; Sugiyasu, Kazunori; Okazaki, Hiroyuki; Takano, Yoshihiko; Yasuda, Takeshi; Deguchi, Kenzo; Ohki, Shinobu; Shimizu, Tadashi; Takeuchi, Masayuki

    2013-05-01

    A supramolecular ionic assembly comprised of an anionic oligo(phenylene ethynylene) and anilinium cations provides a unique reaction medium in which anilinum cations are concentrated and aligned. The oxidative polymerization (see figure) of aniline using the supramolecular ionic assembly (gray) yielded polyaniline (green/blue) with a number-average molar mass of 20,500 and polydispersity of 1.3. PMID:23520047

  13. Divergent Reaction Pathways for Phenol Arylation by Arynes: Synthesis of Helicenes and 2-Arylphenols

    PubMed Central

    Truong, Thanh; Daugulis, Olafs

    2013-01-01

    Two reactions of phenols with arynes have been developed. If LiTMP base is employed, arynes generated from aryl chlorides react with phenols to form helicenes. o-Arylation of phenols can be achieved by employing tBuONa base in the presence of AgOAc. Direct arylation of binol was achieved leading to the shortest pathway to o,o’-diarylbinols. PMID:24077102

  14. Facile Synthesis of 5-Arylidene Thiohydantoin by Sequential Sulfonylation/Desulfination Reaction

    PubMed Central

    Han, Jintao; Dong, Hongbo; Xu, Zhihong; Lei, Jianping; Wang, Mingan

    2013-01-01

    The sequential sulfonylation/desulfination reactions of 5-benzylthiohydantoin with excess arylsulfonyl chlorides in the presence of triethylamine have been developed to afford a wide range of 5-arylidene thiohydantoin derivatives in moderate to excellent yields. A plausible sulfonylation/desulfination mechanism was proposed. The bioassay showed that these compounds exhibit certain fungicidal activities with the 71.9% inhibition rate of 2K against B. cinerea, and 57.6% inhibition rate of 2m against A. solani, respectively. PMID:23765221

  15. Facile synthesis of 5-arylidene thiohydantoin by sequential sulfonylation/desulfination reaction.

    PubMed

    Han, Jintao; Dong, Hongbo; Xu, Zhihong; Lei, Jianping; Wang, Mingan

    2013-01-01

    The sequential sulfonylation/desulfination reactions of 5-benzylthiohydantoin with excess arylsulfonyl chlorides in the presence of triethylamine have been developed to afford a wide range of 5-arylidene thiohydantoin derivatives in moderate to excellent yields. A plausible sulfonylation/desulfination mechanism was proposed. The bioassay showed that these compounds exhibit certain fungicidal activities with the 71.9% inhibition rate of 2K against B. cinerea, and 57.6% inhibition rate of 2m against A. solani, respectively. PMID:23765221

  16. Aminoacyl-nucleotide reactions - Studies related to the origin of the genetic code and protein synthesis

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Senaratne, N.; Lacey, J. C., Jr.

    1984-01-01

    In the present paper, a report is presented on the effect of pH and carbonate on the hydrolysis rate constants of N-blocked and free aminoacyl adenylate anhydrides. Whereas the hydrolysis of free aminoacyl adenylates seems principally catalyzed by OH(-), the hydrolysis of the N-blocked species is also catalyzed by H(+), giving this compound a U-shaped hydrolysis vs. pH curve. Furthermore, at pH's less than 8, carbonate has an extreme catalytic effect on the hydrolysis of free aminoacyl-AMP anhydride, but essentially no effect on the hydrolysis of N-blocked aminoacyl-AMP anhydride. Furthermore, the N-blocked aminoacyl-AMP anhydride is a very efficient generator of peptides using free glycine as acceptor. The possible significance of the observations to prebiological peptide synthesis is discussed.

  17. Replica exchange reactive molecular dynamics simulations of initial reactions in zeolite synthesis.

    PubMed

    Jing, Zhifeng; Xin, Liang; Sun, Huai

    2015-10-14

    Molecular simulation is a promising tool for the study of zeolite formation. However, sufficient sampling remains a grand challenge for the practical use of molecular simulation for this purpose. Here, we investigate the initial stage of zeolite synthesis under realistic conditions by using the replica-exchange method and the ReaxFF reactive force field. After a total simulation time of 480 ns, both energetic and structural properties approach convergence. Analyses of data collected at 600 K show that the inorganic structure directing agent NaOH promotes the aggregation of silicate, the formation of branched Si atoms and the formation of 5-membered rings. With the trajectories collected simultaneously at different temperatures, the effect of temperature is discussed. PMID:26365615

  18. Fischer-Tropsch Synthesis: Characterization and Reaction Testing of Cobalt Carbide

    SciTech Connect

    Khalid S.; Mohandas J.C.; Gnanamani M.K.; Jacobs G.; Ma W.; Ji Y.; Davis B.H.

    2011-08-15

    Hydrogenation of carbon monoxide was investigated for cobalt carbide synthesized from Co{sub 3}O{sub 4} by CO carburization in a fixed-bed reactor. The cobalt carbide synthesized was characterized by BET surface area, X-ray diffraction, scanning electron microscopy, X-ray absorption near edge spectroscopy, and extended X-ray absorption fine structure spectroscopy. The catalysts were tested in the slurry phase using a continuously stirred tank reactor at P = 2.0 MPa, H{sub 2}/CO = 2:1 in the temperature range of 493-523 K, and with space velocities varying from 1 to 3 Nl h{sup -1} g{sub cat}{sup -1}. The results strongly suggest that a fraction of cobalt converts to a form with greater metallic character under the conditions employed. This was more pronounced on a Fischer-Tropsch synthesis run conducted at a higher temperature (523 versus 493 K).

  19. Synthesis of Cryptophanes with Two Different Reaction Sites: Chemical Platforms for Xenon Biosensing.

    PubMed

    Chapellet, Laure-Lise; Cochrane, James R; Mari, Emilie; Boutin, Céline; Berthault, Patrick; Brotin, Thierry

    2015-06-19

    We report the synthesis of new water-soluble cryptophane host molecules that can be used for the preparation of (129)Xe NMR-based biosensors. We show that the cryptophane-223 skeleton can be modified to introduce a unique secondary alcohol to the propylenedioxy linker. This chemical functionality can then be exploited to introduce a functional group that is different from the six chemical groups attached to the aromatic rings. In this approach, the generation of a statistical mixture when trying to selectively functionalize a symmetrical host molecule is eliminated, which enables the efficient large-scale production of new cryptophanes that can be used as chemical platforms ready to use for the preparation of xenon biosensors. To illustrate this approach, two molecular platforms have been prepared, and the ability of these new derivatives to bind xenon has been investigated. PMID:26020365

  20. Synthesis of Metal Oxide Particles Using Reaction Route from Rare-Earth Metal-EDTA Complexes

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Tsuchiya, Takaaki; Hasebe, Yasuhiro; Sekiya, Tetsuo; Toyama, Ayumu; Nakamura, Atsushi; Akasaka, Hiroki; Saitoh, Hidetoshi

    2014-06-01

    Highly dense, spherical yttria (Y2O3) and erbia (Er2O3) particles were synthesized from their corresponding metal-ethylenediaminetetraacetic (EDTA) complexes. The EDTA·Y·H and EDTA·Er·H complexes were prepared in powdered form. These complexes were used as the staring materials for synthesis of the Y2O3 and Er2O3 particles. The particles were synthesized using an H2-O2 flame produced with a commercial flame spray apparatus. Crystalline structure, surface and cross-sectional morphologies, and elemental distribution of the synthesized particles were investigated. It was confirmed that the crystalline phases of the Y2O3 and Er2O3 particles were homogeneous. In addition, the elemental distribution of the particles was uniform. These results indicate that dense, spherical particles of Y2O3 and Er2O3 have been synthesized with EDTA·Y·H and EDTA·Er·H complexes, respectively.

  1. Cross-coupling reactions of organosilicon compounds in the stereocontrolled synthesis of retinoids.

    PubMed

    Bergueiro, Julián; Montenegro, Javier; Cambeiro, Fermín; Saá, Carlos; López, Susana

    2012-04-01

    This paper presents a full account of the use of Hiyama cross-coupling reactions in a highly convergent approach to retinoids in which the key step is construction of the central C10-C11 bond. Representatives of two families of oxygen-activated dienyl silanes (ethoxysilanes and silanols) and of all reported families of "safety-catch" silanols (siletanes, silyl hydrides, allyl-, benzyl-, aryl-, 2-pyridyl- and 2-thienylsilanes) were regio- and stereoselectively prepared and stereospecifically coupled to an appropriate electrophile by treatment with a palladium catalyst and a nucleophilic activator. Both all-trans and 11-cis-retinoids, and their chain-demethylated analogues, were obtained in good yields regardless of the geometry (E/Z) and of the steric congestion in each fragment. This comprehensive study conclusively establishes the Hiyama cross-coupling reaction, with its mild reaction conditions and stable, easily prepared, ecologically advantageous silicon-based coupling partners, as the most effective route to retinoids reported to date. PMID:22374918

  2. 21 CFR 573.180 - Anhydrous ammonia.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Anhydrous ammonia. 573.180 Section 573.180 Food and...Additive Listing § 573.180 Anhydrous ammonia. (a) The food additive anhydrous ammonia is applied directly to corn plant...

  3. 21 CFR 573.180 - Anhydrous ammonia.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Anhydrous ammonia. 573.180 Section 573.180 Food and...Additive Listing § 573.180 Anhydrous ammonia. (a) The food additive anhydrous ammonia is applied directly to corn plant...

  4. 21 CFR 573.180 - Anhydrous ammonia.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Anhydrous ammonia. 573.180 Section 573.180 Food and...Additive Listing § 573.180 Anhydrous ammonia. (a) The food additive anhydrous ammonia is applied directly to corn plant...

  5. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Ammonia, aqueous. 21.96 Section 21...Specifications for Denaturants § 21.96 Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30...

  6. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Ammonia, aqueous. 21.96 Section 21...Specifications for Denaturants § 21.96 Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30...

  7. 21 CFR 573.180 - Anhydrous ammonia.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Anhydrous ammonia. 573.180 Section 573.180 Food and...Additive Listing § 573.180 Anhydrous ammonia. (a) The food additive anhydrous ammonia is applied directly to corn plant...

  8. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Ammonia, aqueous. 21.96 Section 21...Specifications for Denaturants § 21.96 Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30...

  9. 21 CFR 573.180 - Anhydrous ammonia.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Anhydrous ammonia. 573.180 Section 573.180 Food and...Additive Listing § 573.180 Anhydrous ammonia. (a) The food additive anhydrous ammonia is applied directly to corn plant...

  10. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Ammonia, aqueous. 21.96 Section 21...Specifications for Denaturants § 21.96 Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30...

  11. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Ammonia, aqueous. 21.96 Section 21...Specifications for Denaturants § 21.96 Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30...

  12. QUANTIFIED DETRIMENT OF AMMONIA TO BROILERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia levels in broiler houses can reduce bird performance, increase susceptibility to disease and increase subsequent mortality. House management, season, humidity, stocking density, and litter properties influence ammonia concentrations. Though it is widely known that ammonia is detrimental to p...

  13. Facile synthesis of Rh-Pd alloy nanodendrites as highly active and durable electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Wu, Jianbo; Zhang, Hui; Jiang, Yingying; Jin, Chuanhong; Fu, Maoshen; Yang, Hong; Yang, Deren

    2014-05-01

    In addition to activity, durability of Pd-based catalysts in a highly corrosive medium has become one of the most important barriers to limit their industrial applications such as low-temperature fuel cell technologies. Here, Rh with a unique capability to resist against oxidation etching was incorporated into Pd-based catalysts to enhance both their activity and durability for oxygen reduction reaction (ORR). This idea was achieved through the synthesis of the Rh-Pd alloy nanodendrites by co-reducing Rh and Pd salt precursors in oleylamine (OAm) containing cetyltrimethylammonium bromide (CTAB). In this synthesis, Rh-Pd alloy nanostructures with Rh-Pd atomic ratios from 19 : 1 to 1 : 4 were generated by varying the molar ratios of Rh and Pd salt precursors. Interestingly, this variation of the molar ratios of the precursors from Rh rich to Pd rich would lead to the shape evolution of Rh-Pd alloy from dendritic nanostructures to spherical aggregations. We found that Br- ions derived from CTAB were also indispensible to the production of Rh-Pd alloy nanodendrites. Owing to the addition of highly stable Rh as well as the radical structure with a large number of low-coordinated sites on the arms, Rh-Pd alloy nanodendrites with a Rh-Pd atomic ratio of 4 : 1 (Rh80Pd20) exhibited a substantially enhanced electrocatalytic performance towards ORR with a 5% loss of mass activity during the accelerated stability test for 10 000 cycles compared to ~50% loss of the commercial Pt/C (E-TEK).In addition to activity, durability of Pd-based catalysts in a highly corrosive medium has become one of the most important barriers to limit their industrial applications such as low-temperature fuel cell technologies. Here, Rh with a unique capability to resist against oxidation etching was incorporated into Pd-based catalysts to enhance both their activity and durability for oxygen reduction reaction (ORR). This idea was achieved through the synthesis of the Rh-Pd alloy nanodendrites by co-reducing Rh and Pd salt precursors in oleylamine (OAm) containing cetyltrimethylammonium bromide (CTAB). In this synthesis, Rh-Pd alloy nanostructures with Rh-Pd atomic ratios from 19 : 1 to 1 : 4 were generated by varying the molar ratios of Rh and Pd salt precursors. Interestingly, this variation of the molar ratios of the precursors from Rh rich to Pd rich would lead to the shape evolution of Rh-Pd alloy from dendritic nanostructures to spherical aggregations. We found that Br- ions derived from CTAB were also indispensible to the production of Rh-Pd alloy nanodendrites. Owing to the addition of highly stable Rh as well as the radical structure with a large number of low-coordinated sites on the arms, Rh-Pd alloy nanodendrites with a Rh-Pd atomic ratio of 4 : 1 (Rh80Pd20) exhibited a substantially enhanced electrocatalytic performance towards ORR with a 5% loss of mass activity during the accelerated stability test for 10 000 cycles compared to ~50% loss of the commercial Pt/C (E-TEK). Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06888a

  14. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural

    PubMed Central

    Pacheco, Joshua J.; Davis, Mark E.

    2014-01-01

    Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed. PMID:24912153

  15. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural.

    PubMed

    Pacheco, Joshua J; Davis, Mark E

    2014-06-10

    Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed. PMID:24912153

  16. Thermodynamics of Strecker synthesis in hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Shock, Everett

    1995-01-01

    Submarine hydrothermal systems on the early Earth may have been the sites from which life emerged. The potential for Strecker synthesis to produce biomolecules (amino and hydroxy acids) from starting compounds (ketones, aldehydes, HCN and ammonia) in such environments is evaluated quantitatively using thermodynamic data and parameters for the revised Helgeson-Kirkham-Flowers (HKF) equation of state. Although there is an overwhelming thermodynamic drive to form biomolecules by the Strecker synthesis at hydrothermal conditions, the availability and concentration of starting compounds limit the efficiency and productivity of Strecker reactions. Mechanisms for concentrating reactant compounds could help overcome this problem, but other mechanisms for production of biomolecules may have been required to produce the required compounds on the early Earth. Geochemical constraints imposed by hydrothermal systems provide important clues for determining the potential of these and other systems as sites for the emergence of life.

  17. ROADSIDE AMMONIA MEASUREMENTS USING OPTICAL REMOTE SENSING INSTRUMENTS

    EPA Science Inventory

    Fine particles less than 2.5 microns in diameter have been identified as a causal agent of excess mortality and other undesirable health impacts. A large part of these airborne particles, generally more than one-half, are formed in the atmosphere by reactions of ammonia with acid...

  18. Ammonia Emissions from Dairy Production Systems in Wisconsin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia (NH3) gas is reactive and is the major basic gas that neutralizes atmospheric acid gases produced from combustion of fossil fuels. This reaction produces an aerosol that is a component of atmospheric haze and is implicated in nitrogen (N) deposition and as a potential human health hazard. T...

  19. Reaction between lawsone and aminophenol derivatives: Synthesis, characterization, molecular structures and antiproliferative activity

    NASA Astrophysics Data System (ADS)

    Kathawate, Laxmi; Joshi, Pranya V.; Dash, Tapan Kumar; Pal, Sanjima; Nikalje, Milind; Weyhermüller, Thomas; Puranik, Vedavati G.; Konkimalla, V. Badireenath; Salunke-Gawali, Sunita

    2014-10-01

    Reaction between two bioreductive reactants lawsone (2-hydroxy-1,4-napthoquinone) and derivatives 2-aminophenol without catalyst is reported. The reaction between lawsone and 4-chloro-2-aminophenol leads to formation of red colored major product 1A:[2-[(5-chloro-hydroxyphenyl)amino]naphthalene-1,4-dione] and fluorescent orange colored minor compound 1B:[10-chloro-benzo[?]phenoxazine-5-one]. Molecular structure of 1A and 1B were determined by single crystal X-ray diffraction. Two mechanisms were proposed to the formation of red 1A and 1B. ‘Ortho-para’ tautomeric equilibrium was observed in DMSO-d6 solution in 1A, which was revealed by 1H, 13C NMR and LC-MS studies. Molecules of 1A formed dimers via Nsbnd H⋯O interaction and polymeric chain of dimers was formed by Osbnd H⋯O interactions. Cl⋯Cl interactions were observed between the polymeric chains of dimers in 1A. Molecules of 1B show Cl⋯N interaction. Antiproliferative properties is studied for 1A-5A compounds (obtained by the reaction of lawsone with 2-amino-4-methylphenol;2A, 2-aminophenol;3A, 3-aminophenol;4A and 4-aminophenol;5A) and evaluated against two cancer cell lines, THP1 (human monocytic leukemia cells) and COLO205 (colorectal adenocarcinoma) and one normal cell line, HEK293T (human embryonic kidney). The values of 50% inhibitory concentration (IC50) of compounds 1A-5A was determined using XTT assay. The cytotoxic effects of compounds 2A and 3A were observed against COLO205 and compounds 4A and 5A on THP1 were observed to be higher in comparison to their effect on HEK293T cell lines.

  20. Complementary isonitrile-based multicomponent reactions for the synthesis of diversified cytotoxic hemiasterlin analogues.

    PubMed

    Lesma, Giordano; Bassanini, Ivan; Bortolozzi, Roberta; Colletto, Chiara; Bai, Ruoli; Hamel, Ernest; Meneghetti, Fiorella; Rainoldi, Giulia; Stucchi, Mattia; Sacchetti, Alessandro; Silvani, Alessandra; Viola, Giampietro

    2015-12-28

    A small family of structural analogues of the antimitotic tripeptides, hemiasterlins, have been designed and synthesized as potential inhibitors of tubulin polymerization. The effectiveness of a multicomponent approach was fully demonstrated by applying complementary versions of the isocyanide-based Ugi reaction. Compounds strictly related to the lead natural products, as well as more extensively modified analogues, have been synthesized in a concise and convergent manner. In some cases, biological evaluation provided evidence for strong cytotoxic activity (six human tumor cell lines) and for potent inhibition of tubulin polymerization. PMID:26467486

  1. Shape-controlled synthesis of nickel phosphide nanocrystals and their application as hydrogen evolution reaction catalyst

    NASA Astrophysics Data System (ADS)

    Li, Hua; Wang, Wenzhong; Gong, Zhaoyuan; Yu, Yanmin; Piao, lijin; Chen, Huiying; Xia, Jianxin

    2015-05-01

    Monodisperse nickel phosphide (Ni2P) nanorods and nanoparticles were synthesized by one step solution-phase route, in which the mixture of trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP) was used as solvent, capping agent and phosphor source. The morphologies of the Ni2P nanocrystals were controlled simply by varying the dropping rate of metal source. The as-prepared Pt-free Ni2P nanocrystals exhibit the enhanced electrocatalytic activity toward hydrogen evolution reaction (HER) compared to pure commercial Ni nanoparticles. Therefore, the obtained Ni2P nanocrystals appear to be promising non precious metal electrocatalysts for HER.

  2. Diverse microbial species survive high ammonia concentrations

    NASA Astrophysics Data System (ADS)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  3. Synthesis of Y1Ba2Cu3O(sub x) superconducting powders by intermediate phase reaction

    NASA Technical Reports Server (NTRS)

    Moore, C.; Fernandez, J. F.; Recio, P.; Duran, P.

    1990-01-01

    One of the more striking problems for the synthesis of the Y1Ba2Cu3Ox compound is the high-temperature decomposition of the BaCO3. This compound is present as raw material or as an intermediate compound in chemical processes such as amorphous citrate, coprecipitation oxalate, sol-gel process, acetate pyrolisis, etc. This fact makes difficult the total formation reaction of the Y1Ba2Cu3Ox phase and leads to the presence of undesirable phases such as the BaCuO2 phase, the 'green phase', Y2BaCuO5 and others. Here, a new procedure to overcome this difficulty is studied. The barium cation is previously combined with yttrium and/or copper to form intermediate compounds which can react between them to give Y1Ba2Cu3Ox. BaY2O4 and BaCu2O3 react according to the equation BaY2O4+3BaCu2O3 yields 2Y1Ba2Cu3Ox. BaY2O4 is a stable compound of the Y2O3-BaO system; BaCu2O3 is an intimate mixture of BaCuO2 and uncombined CuO. The reaction kinetics of these phases have been established between 860 and 920 C. The phase evolution has been determined. The crystal structure of the Y1Ba2Cu3Ox obtained powder was studied. According to the results obtained from the kinetics study the Y1Ba2Cu3Ox the synthesis was performed at temperatures of 910 to 920 C for short treatment times (1 to 2 hours). Pure Y1Ba2Cu3Ox was prepared, which develops orthorombic type I structure despite of the cooling cycle. Superconducting transition took place at 91 K. The sintering behavior and the superconducting properties of sintered samples were studied. Density, microstructure and electrical conductivity were measured. Sintering densities higher than 95 percent D(sub th) were attained at temperatures below 940 C. Relatively fine grained microstructure was observed, and little or no-liquid phase was detected.

  4. Synthesis of 250-253No in 206Pb+48Ca reaction

    NASA Astrophysics Data System (ADS)

    Niyti; Gupta, Raj K.

    2014-03-01

    The dynamical cluster-decay model (DCM) is used to calculate the fusion evaporation residue cross-sections ?xn for x=1-4 neutron emissions in the fusion reaction 206Pb+48Ca? 254No* at various incident energies. Considering the multipole deformations up to hexadecapole deformations ?4i and configurations with "compact" orientation angles ?ci (?c=20 for 206Pb), the model is shown to give a good description of the measured individual light-particle decay channels, within one parameter fitting, the neck-length ?R. Considering 204,206,207,208Pb-based reactions, the dependence of 2n-emission yields on the isotopic composition of compound nucleus (CN) is also studied within the DCM. Of the four Pb-isotopes considered, at a fixed excitation energy E*~20 MeV, ?R is largest for CN with mass number 256, followed by 255, 254 and smallest for 252, which means to suggest that neutrons emission occurs earliest for 256, then for 255, 254 and finally for 252, in complete agreement with experimental data where 256No* has the highest crosssection and 252No* the lowest with 255,254No* lying in between. This result arises due to the penetrability factor, and is related to double magicity of both target and projectile nuclei.

  5. Synthesis and structures of ruthenium–NHC complexes and their catalysis in hydrogen transfer reaction

    PubMed Central

    Chen, Chao; Lu, Chunxin; Zheng, Qing; Zhang, Min

    2015-01-01

    Summary Ruthenium complexes [Ru(L1)2(CH3CN)2](PF6)2 (1), [RuL1(CH3CN)4](PF6)2 (2) and [RuL2(CH3CN)3](PF6)2 (3) (L1= 3-methyl-1-(pyrimidine-2-yl)imidazolylidene, L2 = 1,3-bis(pyridin-2-ylmethyl)benzimidazolylidene) were obtained through a transmetallation reaction of the corresponding nickel–NHC complexes with [Ru(p-cymene)2Cl2]2 in refluxing acetonitrile solution. The crystal structures of three complexes determined by X-ray analyses show that the central Ru(II) atoms are coordinated by pyrimidine- or pyridine-functionalized N-heterocyclic carbene and acetonitrile ligands displaying the typical octahedral geometry. The reaction of [RuL1(CH3CN)4](PF6)2 with triphenylphosphine and 1,10-phenanthroline resulted in the substitution of one and two coordinated acetonitrile ligands and afforded [RuL1(PPh3)(CH3CN)3](PF6)2 (4) and [RuL1(phen)(CH3CN)2](PF6)2 (5), respectively. The molecular structures of the complexes 4 and 5 were also studied by X-ray diffraction analysis. These ruthenium complexes have proven to be efficient catalysts for transfer hydrogenation of various ketones.

  6. Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction.

    PubMed

    Hijazi, Ismail; Bourgeteau, Tiphaine; Cornut, Renaud; Morozan, Adina; Filoramo, Arianna; Leroy, Jocelyne; Derycke, Vincent; Jousselme, Bruno; Campidelli, Stéphane

    2014-04-30

    The development of innovative techniques for the functionalization of carbon nanotubes that preserve their exceptional quality, while robustly enriching their properties, is a central issue for their integration in applications. In this work, we describe the formation of a covalent network of porphyrins around MWNT surfaces. The approach is based on the adsorption of cobalt(II) meso-tetraethynylporphyrins on the nanotube sidewalls followed by the dimerization of the triple bonds via Hay-coupling; during the reaction, the nanotube acts as a template for the formation of the polymeric layer. The material shows an increased stability resulting from the cooperative effect of the multiple ?-stacking interactions between the porphyrins and the nanotube and by the covalent links between the porphyrins. The nanotube hybrids were fully characterized and tested as the supported catalyst for the oxygen reduction reaction (ORR) in a series of electrochemical measurements under acidic conditions. Compared to similar systems in which monomeric porphyrins are simply physisorbed, MWNT-CoP hybrids showed a higher ORR activity associated with a number of exchanged electrons close to four, corresponding to the complete reduction of oxygen into water. PMID:24717022

  7. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.

    PubMed

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere

    2015-02-16

    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the ?-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology. PMID:25640727

  8. Solid-phase reaction synthesis of mesostructured tungsten disulfide material with a high specific surface area

    SciTech Connect

    An, Gaojun; Lu, Changbo; Xiong, Chunhua

    2011-09-15

    Highlights: {yields} WS{sub 2} material was synthesized through solid-phase reaction. {yields} (NH{sub 4}){sub 2}WS{sub 4} as precursor and n-octadecylamine as template. {yields} WS{sub 2} material has high specific surface area (145.9 m{sup 2}/g). {yields} The whole preparation process is simple, convenient, green and clean. -- Abstract: A mesostructured tungsten disulfide (WS{sub 2}) material was prepared through a solid-phase reaction utilizing ammonium tetrathiotungstate as the precursor and n-octadecylamine as the template. The as-synthesized WS{sub 2} material was characterized by X-ray powder Diffraction (XRD), Low-temperature N{sub 2} Adsorption (BET method), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The characterization results indicate that the WS{sub 2} material has the typical mesopore structure (3.7 nm) with a high specific surface area (145.9 m{sup 2}/g), and large pore volume (0.18 cm{sup 3}/g). This approach is novel, green and convenient. The plausible mechanism for the formation of the mesostructured WS{sub 2} material is discussed herein.

  9. Riley oxidation: A forgotten name reaction for synthesis of selenium nanoparticles

    SciTech Connect

    Shah, Chetan P.; Dwivedi, Charu; Singh, Krishan K.; Kumar, Manmohan; Bajaj, Parma N.

    2010-09-15

    A simple wet chemical method, involving reaction of acetone with selenium dioxide, has been developed, to synthesize polyvinyl alcohol-stabilized selenium nanoparticles. The method is capable of producing nanoparticles in the size range of about 100-300 nm, under ambient conditions. The synthesized nanoparticles can be separated easily from the aqueous sols by a high-speed centrifuge, and can be re-dispersed in aqueous medium by a sonicator. The effect of concentrations of selenium dioxide, acetone and PVA on the size of the selenium nanoparticles has been studied. The size of the selenium nanoparticles has been found to increase with increase in the reaction time as well as the concentration of selenium dioxide, while it decreases with increase in the concentration of the stabilizer, PVA. The synthesized selenium nanoparticles have been characterized by UV-visible optical absorption spectroscopy, X-ray diffraction, energy dispersive X-ray analysis, differential scanning calorimetry, atomic force microscopy, scanning electron microscopy and transmission electron microscopy techniques.

  10. Synthesis of alginate derivative via the Ugi reaction and its characterization.

    PubMed

    Yan, Huiqiong; Chen, Xiuqiong; Li, Jiacheng; Feng, Yuhong; Shi, Zaifeng; Wang, Xianghui; Lin, Qiang

    2016-01-20

    In this research, the systematic evaluation of fundamental properties of the alginate derivative (Ugi-Alg) synthesized by the Ugi reaction is presented. The structure of Ugi-Alg with the degree of substitution of 23.24% was confirmed by FT-IR and (1)H NMR spectrometers. The X-ray diffraction (XRD) results indicate the amorphous structure and the crystal structure change of Ugi-Alg, which is possibly ascribed to the destruction of inter- and intra-molecular hydrogen bonding interactions during the Ugi reaction. From thermal gravimetric analysis (TGA) and fluorescence spectrophotometer, Ugi-Alg shows high thermal stability and good amphiphilic functionality with the critical aggregation concentration of 0.07g/L in 0.15mol/L aqueous NaCl solution. Transmission electron microscope (TEM) image and dynamic light scattering (DLS) reveal that stable Ugi-Alg self-aggregated micelle with the average size of 162.3nm and ? potential at about -31.7mV could form in the aqueous media, which presents tremendous potential in pharmacology and tissue engineering. PMID:26572410

  11. Regio- and Stereoselective Synthesis of Spiropyrrolizidines and Piperazines through Azomethine Ylide Cycloaddition Reaction.

    PubMed

    Haddad, Saoussen; Boudriga, Sarra; Porzio, François; Soldera, Armand; Askri, Moheddine; Knorr, Michael; Rousselin, Yoann; Kubicki, Marek M; Golz, Christopher; Strohmann, Carsten

    2015-09-18

    A series of original spiropyrrolizidine derivatives has been prepared by a one-pot three-component [3 + 2] cycloaddition reaction of (E)-3-arylidene-1-phenyl-pyrrolidine-2,5-diones, l-proline, and the cyclic ketones 1H-indole-2,3-dione (isatin), indenoquinoxaline-11-one and acenaphthenequinone. We disclose an unprecedented isomerization of some spiroadducts leading to a new family of spirooxindolepyrrolizidines. Furthermore, these cycloadducts underwent retro-1,3-dipolar cycloaddition yielding unexpected regioisomers. Upon treatment of the dipolarophiles with in situ generated azomethine ylides from l-proline or acenaphthenequinone, formation of spiroadducts and unusual polycyclic fused piperazines through a stepwise [3 + 3] cycloaddition pathway is observed. The stereochemistry of these N-heterocycles has been confirmed by several X-ray diffraction studies. Some of these compounds exhibit extensive hydrogen bonding in the crystalline state. To enlighten the observed regio- and stereoselectivity of the [3 + 2] cycloaddition, calculations using the DFT approach at the B3LYP/6-31G(d,p) level were carried out. It was found that this reaction is under kinetic control. PMID:26291879

  12. Abiotic synthesis of purines and other heterocyclic compounds by the action of electrical discharges

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    The synthesis of purines and pyrimidines using Oparin-Urey-type primitive earth atmospheres has been demonstrated by reacting methane, ethane, and ammonia in electrical discharges. Adenine, guaine, 4-aminoimidazole-5-carboxamide (AICA), and isocytosine have been identified by UV spectrometry and paper chromatography as the products of the reaction. The total yields of the identified heterocyclic compounds are 0.0023 percent. It is concluded that adenine synthesis occurs at a much lower concentration of hydrogen cyanide than has been shown by earlier studies. Pathways for the synthesis of purines from hydrogen cyanide are discussed, and a comparison of the heterocyclic compounds that have been identified in meteorites and in prebiotic reactions is presented.

  13. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances.

    PubMed

    Chen, Qiaoli; Zhang, Jiawei; Jia, Yanyan; Jiang, Zhiyuan; Xie, Zhaoxiong; Zheng, Lansun

    2014-06-21

    Platinum based alloy nanocrystals are promising catalysts for a variety of important practical process. However, it remains a great challenge to synthesize platinum-based intermetallic compound nanocrystals with well-defined surface structures. In this communication, taking the synthesis of concave cubic intermetallic Pt3Zn nanocrystals with {hk0} facets as an example, we proposed a new synthesis strategy for intermetallic compounds by reduction of noble metal precursors via a slow reduction process and reduction of transition metal ions via an underpotential deposition (UPD) process in wet chemical synthesis. The as-prepared intermetallic Pt3Zn nanocrystals exhibited superior CO poisoning tolerance and high electro-catalytic activity in both methanol and formic acid oxidation reactions in comparison with solid solution Pt3Zn nanocrystals and Pt/C. PMID:24841616

  14. Imino Acids in the Murchison Meteorite: Evidence of Strecker Reactions

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cooper, G. W.

    2003-01-01

    Both alpha-amino acids and alpha-hydroxy acids occur in aqueous extracts of the Murchison carbonaceous meteorite. The Strecker-cyanohydrin reaction, the reaction of carbonyl compounds, cyanide, and ammonia to produce amino and hydroxy acids, has been proposed as a source of such organic acids in meteorites. Such syntheses are consistent with the suggestion that interstellar precursors of meteoritic organic compounds accreted on the meteorite parent body together with other ices. Subsequent internal heating of the parent body melted these ices and led to the formation of larger compounds in synthetic reactions during aqueous alteration, which probably occurred at temperatures between 273K and 298K. In the laboratory, imino acids are observed as important by-products of the Strecker synthesis.

  15. (Phenoxyimidazolyl-salicylaldimine)iron complexes: synthesis, properties and iron catalysed ethylene reactions.

    PubMed

    Yankey, Margaret; Obuah, Collins; Guzei, Ilia A; Osei-Twum, Emmanuel; Hearne, Giovanni; Darkwa, James

    2014-10-01

    The reaction of 2-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L1), 2,4-di-tert-butyl-6-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L2) or 4-tert-butyl-2-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L3) with iron(ii) precursors produced either iron(ii) or iron(iii) complexes, depending on the nature of the anions in the iron(ii) precursor and the ligand. When the anion is chloride and the ligand L1, the product is [(L1)2Fe][FeCl4] (1), but when the anion is triflate (OTf(-)) and the ligand is L2, the product is [(L2)2Fe][OTf]2 (2). With iron(ii) halides and tert-butyl groups on the phenoxy ligands L2 and L3, the iron(iii) complexes [(L2)FeX2] {where X = Cl (3), Br (4) and I = (5)} and [(L3)FeCl2] (6) were formed. Complexes 1-6 were characterised by a combination of elemental analyses, IR spectroscopy and mass spectrometry; and in selected cases (3 and 4) by single crystal X-ray crystallography. The crystal structures of 3 and 4 indicated that the iron(ii) precursors oxidised to iron(iii) in forming complexes 3-6; an observation that was corroborated by the magnetic properties and the (57)Fe Mössbauer spectra of 3 and 4. The iron(iii) complexes 3-6 were used as pre-catalysts for the oligomerisation and polymerisation of ethylene. Products of these ethylene reactions depended on the solvent used. In toluene ethylene oligomerised mainly to 1-butene and was followed by the 1-butene alkylating the solvent to form butyl-toluenes via a Friedel-Crafts alkylation reaction. In chlorobenzene, ethylene oligomerised mainly to a mixture of C4-C12 alkenes. Interestingly small amounts of butyl-chlorobenzenes and hexyl-chlorobenzenes were also formed via a Friedel-Crafts alkylation with butenes and hexenes from the oligomerisation of ethylene. PMID:25111396

  16. Novel Synthesis of Cellulose-Based Diblock Copolymer of Poly(hydroxyethyl methacrylate) by Mechanochemical Reaction

    PubMed Central

    Tsutaki, Yusaku; Sakaguchi, Masato

    2014-01-01

    The mechanical fracture of polymer produces polymeric free radical chain-ends, by which liner block copolymers have been synthesized. A diblock copolymer of microcrystalline cellulose (MCC) and poly 2-hydroxyethyl methacrylate (pHEMA) was produced by the mechanochemical polymerization under vacuum and room temperature. The fraction of pHEMA in MCC-block-pHEMA produced by the mechanochemical polymerization increased up to 21?mol% with increasing fracture time (~6?h). Then, the tacticities of HEMA sequences in MCC-block-pHEMA varied according to the reaction time. In the process of mechanochemical polymerization, cellulose could play the role of a radical polymerization initiator capable of controlling stereoregularity. PMID:24741340

  17. Revisiting the symmetric reactions for synthesis of super-heavy nuclei of Z?120

    NASA Astrophysics Data System (ADS)

    Choudhury, R. K.; Gupta, Y. K.

    2014-04-01

    Extensive efforts have been made experimentally to reach nuclei in the super-heavy mass region of Z=110 and above with suitable choices of projectile and target nuclei. The cross sections for production of these nuclei are seen to be in the range of a few picobarn or less, and pose great experimental challenges. Theoretically, there have been extensive calculations for highly asymmetric (hot-fusion) and moderately asymmetric (cold-fusion) collisions and only a few theoretical studies are available for near-symmetric collisions to estimate the cross sections for production of super-heavy nuclei. In the present article, we revisit the symmetric heavy ion reactions with suitable combinations of projectile and target nuclei in the rare-earth region, that will lead to super-heavy nuclei of Z?120 with measurable fusion cross sections.

  18. Rational design, synthesis of reaction-based dual-channel cyanide sensor in aqueous solution.

    PubMed

    Li, Jun-Jian; Wei, Wei; Qi, Xiao-Liang; Xu, Xiao; Liu, Yu-Cheng; Lin, Qiu-Han; Dong, Wei

    2016-01-01

    A new dual-channel sensor for the detection of cyanide was developed based on the conjugated of naphthalene and malononitrile. Upon the addition of CN(-), the sensor displayed very large blue-shift in both fluorescence (80nm) and absorption (120nm) spectra. The sensor of cyanide was performed via the nucleophilic attack of cyanide anion to vinylic groups of the sensor with a 1:1 binding stoichiometry and the color changed of the sensor is mainly due to the intramolecular charge transfer process improvement. The intramolecular charge transfer progress was blocked with color changed and fluorescence blue-shift. The mechanism of sensor reaction with CN(-) ion was studied using (1)H NMR and mass spectrometry. PMID:26231779

  19. Synthesis, Characterization, and Nitrogenase-Relevant Reactions of an Iron Sulfide Complex with a Bridging Hydride.

    PubMed

    Arnet, Nicholas A; Dugan, Thomas R; Menges, Fabian S; Mercado, Brandon Q; Brennessel, William W; Bill, Eckhard; Johnson, Mark A; Holland, Patrick L

    2015-10-21

    The FeMoco of nitrogenase is an iron-sulfur cluster with exceptional bond-reducing abilities. ENDOR studies have suggested that E4, the state that binds and reduces N2, contains bridging hydrides as part of the active-site iron-sulfide cluster. However, there are no examples of any isolable iron-sulfide cluster with a hydride, which would test the feasibility of such a species. Here, we describe a diiron sulfide hydride complex that is prepared using a mild method involving C-S cleavage of added thiolate. Its reactions with nitrogenase substrates show that the hydride can act as a base or nucleophile and that reduction can cause the iron atoms to bind N2. These results add experimental support to hydride-based pathways for nitrogenase. PMID:26457740

  20. Rational design, synthesis of reaction-based dual-channel cyanide sensor in aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Jun-Jian; Wei, Wei; Qi, Xiao-Liang; Xu, Xiao; Liu, Yu-Cheng; Lin, Qiu-Han; Dong, Wei

    2016-01-01

    A new dual-channel sensor for the detection of cyanide was developed based on the conjugated of naphthalene and malononitrile. Upon the addition of CN-, the sensor displayed very large blue-shift in both fluorescence (80 nm) and absorption (120 nm) spectra. The sensor of cyanide was performed via the nucleophilic attack of cyanide anion to vinylic groups of the sensor with a 1:1 binding stoichiometry and the color changed of the sensor is mainly due to the intramolecular charge transfer process improvement. The intramolecular charge transfer progress was blocked with color changed and fluorescence blue-shift. The mechanism of sensor reaction with CN- ion was studied using 1H NMR and mass spectrometry.

  1. Revisiting the symmetric reactions for synthesis of super heavy nuclei of $Z\\geq $120

    E-print Network

    R. K. Choudhury; Y. K. Gupta

    2013-08-26

    Extensive efforts have been made experimentally to reach nuclei in the super heavy mass region of Z = 110 and above with suitable choices of projectile and target nuclei. The cross sections for production of these nuclei are seen to be in the range of a few picobarn or less, and pose great experimental challenges. Theoretically, there have been extensive calculations for highly asymmetric (hot-fusion) and moderately asymmetric (cold-fusion) collisions and only a few theoretical studies are available for near symmetric collisions to estimate the cross sections for production of super-heavy nuclei. In the present article, we revisit the symmetric heavy ion reactions with suitable combinations of projectile and target nuclei in the rare-earth region, that will lead to compound systems with very low excitation energy and with better neutron-to-proton ratio for higher stability.

  2. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    DOE PAGESBeta

    Sun, Yu; Hsieh, Yu -Chi; Chang, Li -Chung; Wu, Pu -Wei; Lee, Jyh -Fu

    2014-11-22

    Nanoparticles of PdRu, Pd?Ru, and Pd?Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x=1/3/9), suggest succesful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd?Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1more »M aqueous HClO? solution. Subsequently, the Pd?Ru/C undegoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd?Ru surface (Pd?Ru@Pt). The Pd?Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA ?g?¹ Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA ?g?¹ Pt). Thus, the mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd?Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.« less

  3. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hsieh, Yu-Chi; Chang, Li-Chung; Wu, Pu-Wei; Lee, Jyh-Fu

    2015-03-01

    Nanoparticles of PdRu, Pd3Ru, and Pd9Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x = 1/3/9), suggest successful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd9Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1 M aqueous HClO4 solution. Subsequently, the Pd9Ru/C undergoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd9Ru surface (Pd9Ru@Pt). The Pd9Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA ?g-1Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA ?g-1Pt). The mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd9Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.

  4. Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. [deuterium-carbon monoxide reaction catalysis

    NASA Technical Reports Server (NTRS)

    Nooner, D. W.; Gibert, J. M.; Gelpi, E.; Oro, J.

    1976-01-01

    Experiments were performed in which meteoritic iron, iron ore and nickel-iron alloy were used to catalyze (in Fischer-Tropsch synthesis) the reaction of deuterium and carbon monoxide in a closed vessel. Normal alkanes and alkenes and their monomethyl substituted isomers and aromatic hydrocarbons were synthesized. Iron oxide and oxidized-reduced Canyon Diablo used as Fischer-Tropsch catalysts were found to produce aromatic hydrocarbons in distributions having many of the features of those observed in carbonaceous chondrites, but only at temperatures and reaction times well above 300 C and 6-8 h.

  5. Synthesis of 1,2,3-Substituted Pyrroles from Propargylamines via a One-Pot Tandem Enyne Cross Metathesis-Cyclization Reaction.

    PubMed

    Chachignon, Helene; Scalacci, Nicolò; Petricci, Elena; Castagnolo, Daniele

    2015-05-15

    Enyne cross metathesis of propargylamines with ethyl vinyl ether enables the one-pot synthesis of substituted pyrroles. A series of substituted pyrroles, bearing alkyl, aryl, and heteroaryl substituents, has been synthesized in good yields under microwave irradiation. The reactions are rapid and procedurally simple and also represent a facile entry to the synthetically challenging 1,2,3-substituted pyrroles. The value of the methodology is further corroborated by the conversion of pyrroles into 3-methyl-pyrrolines and the derivatization of the 3-methyl-substituent arising from the metathesis reaction. PMID:25897951

  6. The synthesis of benzo[f]isoindole-1,3-dicarboxylates via an i2-induced 1,3-dipolar cycloaddition reaction.

    PubMed

    Li, Yu-Jin; Huang, Huan-Ming; Dong, Hua-Qing; Jia, Jian-Hong; Han, Liang; Ye, Qing; Gao, Jian-Rong

    2013-09-20

    An I2-induced 1,3-dipolar cycloaddition reaction has been developed for the synthesis of benzo[f]isoindole-1,3-dicarboxylates from quinones and N-substituted amino esters. The reaction proceeds in good to excellent yields in one step from 3 equiv of amino ester to react with the quinone structure. The utility of this transformation has been highlighted by its use for the construction of benzo[f]isoindole-1,3-dicarboxylates, which have been identified in natural products exhibiting important biological activities. PMID:23977993

  7. Reaction synthesis of MoSi{sub 2}-Al{sub 2}O{sub 3} composite using MoO{sub 3}, Al and Si powders

    SciTech Connect

    Deevi, S.C.; Deevi, S.

    1995-10-01

    In-situ synthesis of a composite of MoSi{sub 2}-Al{sub 2}O{sub 3} was carried out by reacting a thermite mixture consisting of MoO{sub 3}, Al, and Si powders. The reaction was found to be extremely fast and violent, and a diluent was required to moderate the reaction. Thermal behavior of the thermite mixture was studied using DTA at different heating rates, and DTA was interrupted at different temperatures to determine the reaction mechanism. X-ray characterization of the products obtained at different temperatures reveals that the mechanism consists of a reduction of MoO{sub 3} by Al to MoO{sub 2} followed by a simultaneous oxidation of Al to Al{sub 2}O{sub 3} and synthesis reaction between reduced Mo and Si to form MoSi{sub 2}. The rate determining step is found to be reduction of MoO{sub 2} by Al and oxidation of Al to Al{sub 2}O{sub 3}. The thermite reaction was moderated by adding Mo and Si to the mixture of MoO{sub 3}, Al, and Si such that the ratio of MoSi{sub 2} to the thermite was in the range of 60:40 to 90:10.

  8. Design and synthesis of laser-activatable tetrazoles for a fast and fluorogenic red-emitting 1,3-dipolar cycloaddition reaction

    PubMed Central

    An, Peng; Yu, Zhipeng; Lin, Qing

    2013-01-01

    The design and synthesis of a new class of laser light activatable tetrazoles with extended ? systems is reported. Upon 405 nm laser light irradiation, these bithiophene-substituted tetrazoles underwent extremely fast 1,3-dipolar cycloaddition reactions with dimethyl fumarate with second-order rate constants approaching 4000 M?1 s?1. The resulting pyrazoline cycloadducts exhibited solvent-dependent red fluorescence, making these tetrazoles potentially useful as fluorogenic probes for detecting alkenes in vivo. PMID:24111736

  9. Retrofits: A Means for Reducing Energy Consumption in Ammonia Manufacture 

    E-print Network

    LeBlanc, J. R.; Moore, D. O.; Schneider, R. V., III

    1982-01-01

    is removed in the C02 removal system thereby reducing the hy drogen consumption for methanation and the ammonia synthesis loop purge rate. This process is more attractive when a substantial quantity of CO is present in the LTS effluent and when synthesis... loop purge treatment is not employed. C02 Removal and Methanation Heat is recovered from the shift converter effluent and then the gas is sent to the purifica tion section. First, C02 is removed in a mono ethanolamine (MEA) system, hot carbonate...

  10. Fabrication, strength and oxidation of molybdenum-silicon-boron alloys from reaction synthesis

    NASA Astrophysics Data System (ADS)

    Middlemas, Michael Robert

    Mo-Si-B alloys are a leading candidate for the next generation of jet turbine engine blades and have the potential to raise the operating temperatures by 300-400°C, which would dramatically increase power and efficiency. The alloys of interest are a three-phase mixture of the molybdenum solid solution (Moss) and two intermetallic phases, Mo3Si (A15) and Mo5SiB2 (T2). A novel powder metallurgical method was developed which uses the reaction of molybdenum, silicon nitride (Si3N4) and boron nitride (BN) powders to synthesize a fine dispersion of the intermetallic phases in a Moss matrix. The covalent nitrides are stable in oxidizing environments up to 1000ºC, allowing for fine particle processing without the formation of silicon and boron oxides. The process developed uses standard powder processing techniques to create Mo-Si-B alloys in a less complex and expensive manner than previously demonstrated. The formation of the intermetallic phases was examined by thermo-gravimetric analysis and x-ray diffraction. The start of the reactions to form the T2 and A15 phases were observed at 1140°C and 1193°C and the reactions have been demonstrated to be complete in as little as two hours at 1300°C. This powder metallurgy approach yields a fine dispersion of intermetallics in the Moss matrix, with average grain sizes of 2-4mum. Densities up to 95% of theoretical were attained from pressureless sintering at 1600°C and full theoretical density was achieved by hot-isostatic pressing (HIP). Low temperature sintering and HIPing was attempted to limit grain growth and to reduce the equilibrium silicon concentration in the Moss matrix. Sintering and HIPing at 1300°C reduced the grain sizes of all three phases by over a factor of two. Powder metallurgy provides an opportunity for microstructure control through changes in raw materials and processing parameters. Microstructure examination by electron back-scatter diffraction (EBSD) imaging was used to precisely define the location of all three phases and to measure the volume fractions and grain size distributions. Microstructural quantification techniques including two-point correlation functions were used to quantify microstructural features and correlate the BN powder size and morphology to the distribution of the intermetallic phases. High-temperature tensile tests were conducted and yield strengths of 580MPa at 1100°C and 480MPa at 1200°C were measured for the Mo-2Si-1B wt.% alloy. The yield strength of the Mo-3Si-1B wt.% alloy was 680MPa at 1100°C and 420MPa at 1300°C. A review of the pertinent literature reveals that these are among the highest yield strengths measured for these compositions. The oxidation resistance in air at 1000 and 1100°C was found to be comparable to the best values reported in the literature. The protective borosilicate surface layer was formed quickly due to the close spacing of intermetallic particles and pre-oxidation treatment was developed to further limit the transient oxidation behavior. An oxidation model was developed which factors in the different stages of oxidation to predict compositions which minimize the total metal recession due to oxidation.

  11. Total synthesis of (+)-asteriscanolide: further exploration of the rhodium(I)-catalyzed [(5+2)+1] reaction of ene-vinylcyclopropanes and CO.

    PubMed

    Liang, Yong; Jiang, Xing; Fu, Xu-Fei; Ye, Siyu; Wang, Tao; Yuan, Jie; Wang, Yuanyuan; Yu, Zhi-Xiang

    2012-03-01

    The total synthesis of (+)-asteriscanolide is reported. The synthetic route features two key reactions: 1) the rhodium(I)-catalyzed [(5+2)+1] cycloaddition of a chiral ene-vinylcyclopropane (ene-VCP) substrate to construct the [6.3.0] carbocyclic core with excellent asymmetric induction, and 2) an alkoxycarbonyl-radical cyclization that builds the bridging butyrolactone ring with high efficiency. Other features of this synthetic route include the catalytic asymmetric alkynylation of an aldehyde to synthesize the chiral ene-VCP substrate, a highly regioselective conversion of the [(5+2)+1] cycloadduct into its enol triflate, and the inversion of the inside-outside tricycle to the outside-outside structure by an ester-reduction/elimination to enol-ether/hydrogenation procedure. In addition, density functional theory (DFT) rationalization of the chiral induction of the [(5+2)+1] reaction and the diastereoselectivity of the radical annulation has been presented. Equally important is that we have also developed other routes to synthesize asteriscanolide using the rhodium(I)-catalyzed [(5+2)+1] cycloaddition as the key step. Even though these routes failed to achieve the total synthesis, these experiments gave further useful information about the scope of the [(5+2)+1] reaction and paved the way for its future application in synthesis. PMID:22223465

  12. Design and modification of zeolite capsule catalyst, a confined reaction field, and its application in one-step isoparaffin synthesis from syngas

    SciTech Connect

    Guohui Yang; Jingjiang He; Yi Zhang; Yoshiharu Yoneyama; Yisheng Tan; Yizhuo Han; Tharapong Vitidsant; Noritatsu Tsubaki

    2008-05-15

    Four kinds of zeolite capsule catalyst with different crystallization conditions were prepared and utilized for the middle isoparaffin direct synthesis via Fischer-Tropsch synthesis (FTS) reaction. Characterization results exhibited that these capsule catalysts had a compact, integral H-ZSM-5 shell. In FTS reactions on these zeolite capsule catalysts, hydrocarbons of C11+ were totally suppressed, accompanied by a sharp anti-Anderson-Schultz-Flory (ASF) law product distribution. The selectivity of light isoparaffin was improved obviously, but with the increase of the olefin's selectivity. Two-stage isoparaffin synthesis reaction, using the combination of zeolite capsule catalyst with hydrogenation catalyst of Pd/SiO{sub 2} in a single reactor as dual-bed catalyst, was also conducted for converting the residual olefins produced by the single zeolite capsule catalyst. Dependent on the palladium role of hydrogenation and hydrogen spillover, almost all the olefins effused from the first stage of zeolite capsule catalyst were hydrogenated, mostly converted to isoparaffin. The selectivity of isoparaffin in the final products was increased markedly as expected. 10 refs., 7 figs., 2 tabs.

  13. Ammonia metabolism and hyperammonemic disorders.

    PubMed

    Walker, Valerie

    2014-01-01

    Human adults produce around 1000 mmol of ammonia daily. Some is reutilized in biosynthesis. The remainder is waste and neurotoxic. Eventually most is excreted in urine as urea, together with ammonia used as a buffer. In extrahepatic tissues, ammonia is incorporated into nontoxic glutamine and released into blood. Large amounts are metabolized by the kidneys and small intestine. In the intestine, this yields ammonia, which is sequestered in portal blood and transported to the liver for ureagenesis, and citrulline, which is converted to arginine by the kidneys. The amazing developments in NMR imaging and spectroscopy and molecular biology have confirmed concepts derived from early studies in animals and cell cultures. The processes involved are exquisitely tuned. When they are faulty, ammonia accumulates. Severe acute hyperammonemia causes a rapidly progressive, often fatal, encephalopathy with brain edema. Chronic milder hyperammonemia causes a neuropsychiatric illness. Survivors of severe neonatal hyperammonemia have structural brain damage. Proposed explanations for brain edema are an increase in astrocyte osmolality, generally attributed to glutamine accumulation, and cytotoxic oxidative/nitrosative damage. However, ammonia neurotoxicity is multifactorial, with disturbances also in neurotransmitters, energy production, anaplerosis, cerebral blood flow, potassium, and sodium. Around 90% of hyperammonemic patients have liver disease. Inherited defects are rare. They are being recognized increasingly in adults. Deficiencies of urea cycle enzymes, citrin, and pyruvate carboxylase demonstrate the roles of isolated pathways in ammonia metabolism. Phenylbutyrate is used routinely to treat inherited urea cycle disorders, and its use for hepatic encephalopathy is under investigation. PMID:25735860

  14. Factors influencing breath ammonia determination.

    PubMed

    Solga, Steven F; Mudalel, Matthew; Spacek, Lisa A; Lewicki, Rafal; Tittel, Frank; Loccioni, Claudio; Russo, Adolfo; Risby, Terence H

    2013-09-01

    Amongst volatile compounds (VCs) present in exhaled breath, ammonia has held great promise and yet it has confounded researchers due to its inherent reactivity. Herein we have evaluated various factors in both breath instrumentation and the breath collection process in an effort to reduce variability. We found that the temperature of breath sampler and breath sensor, mouth rinse pH, and mode of breathing to be important factors. The influence of the rinses is heavily dependent upon the pH of the rinse. The basic rinse (pH 8.0) caused a mean increase of the ammonia concentration by 410 ± 221 ppb. The neutral rinse (pH 7.0), slightly acidic rinse (pH 5.8), and acidic rinse (pH 2.5) caused a mean decrease of the ammonia concentration by 498 ± 355 ppb, 527 ± 198 ppb, and 596 ± 385 ppb, respectively. Mode of breathing (mouth-open versus mouth-closed) demonstrated itself to have a large impact on the rate of recovery of breath ammonia after a water rinse. Within 30 min, breath ammonia returned to 98 ± 16% that of the baseline with mouth open breathing, while mouth closed breathing allowed breath ammonia to return to 53 ± 14% of baseline. These results contribute to a growing body of literature that will improve reproducibly in ammonia and other VCs. PMID:23774041

  15. Ammonia Ice Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The top cloud layer on Jupiter is thought to consist of ammonia ice, but most of that ammonia 'hides' from spectrometers. It does not absorb light in the same way ammonia does. To many scientists, this implies that ammonia churned up from lower layers of the atmosphere 'ages' in some way after it condenses, possibly by being covered with a photochemically generated hydrocarbon mixture. The New Horizons Linear Etalon Imaging Spectral Array (LEISA), the half of the Ralph instrument that is able to 'see' in infrared wavelengths that are absorbed by ammonia ice, spotted these clouds and watched them evolve over five Jupiter days (about 40 Earth hours). In these images, spectroscopically identified fresh ammonia clouds are shown in bright blue. The largest cloud appeared as a localized source on day 1, intensified and broadened on day 2, became more diffuse on days 3 and 4, and disappeared on day 5. The diffusion seemed to follow the movement of a dark spot along the boundary of the oval region. Because the source of this ammonia lies deeper than the cloud, images like these can tell scientists much about the dynamics and heat conduction in Jupiter's lower atmosphere.

  16. A Palladium- and Copper-Catalyzed Synthesis of Dihydro[1,2-b]indenoindole-9-ol and Benzofuro[3,2-b]indolines: Metal-Controlled Intramolecular C?C and C?O Bond-Forming Reactions.

    PubMed

    Boominathan, Siva Senthil Kumar; Wang, Jeh-Jeng

    2015-11-16

    A palladium- and copper-catalyzed synthesis of dihydro[1,2-b]indenoindole-9-ol and benzofuro[3,2-b]indolines has been developed, whereby the same starting material is employed for the synthesis of both heterocyclic scaffolds and the selectivity of the product is controlled by switching the choice of metal. Salient features of these cascade reactions include wide-ranging functional group tolerance, simple reaction conditions, and moderate to high yields. PMID:26442882

  17. Neutrino-Nucleus Reaction Cross Sections for Light Element Synthesis in Supernova Explosions

    E-print Network

    Yoshida, T; Chiba, S; Kajino, T; Yokomakura, H; Kimura, K; Takamura, A; Hartmann, D H

    2008-01-01

    The neutrino-nucleus reaction cross sections of 4He and 12C are evaluated using new shell model Hamiltonians. Branching ratios of various decay channels are calculated to evaluate the yields of Li, Be, and B produced through the nu-process in supernova explosions. The new cross sections enhance the yields of 7Li and 11B produced during the supernova explosion of a 16.2 M_odot star model compared to the case using the conventional cross sections by about 10%. On the other hand, the yield of 10B decreases by a factor of two. The yields of 6Li, 9Be, and the radioactive nucleus 10Be are found at a level of 10^{-11} M_odot. The temperature of nu_{mu,tau}- and bar{nu}_{mu,tau}-neutrinos inferred from the supernova contribution of 11B in Galactic chemical evolution models is constrained to the 4.3 MeV to 6.5 MeV range. The increase in the 7Li and 11B yields due to neutrino oscillations is demonstrated with the new cross sections.

  18. Solid-state reaction synthesis and aqueous durability of Ce-doped zirconolite-rich ceramics

    NASA Astrophysics Data System (ADS)

    Wen, Guanjun; Zhang, Kuibao; Yin, Dan; Zhang, Haibin

    2015-11-01

    In this study, Ce-doped zirconolite-rich ceramics were prepared by solid-state reaction process using cerium as the surrogate of tetravalence actinide nuclide. The occupancy of Ce in the waste forms was investigated. The aqueous durability of Ce-doped zirconolite-rich ceramic was examined as well. The results show that zirconolite and pseudobrookite coexisted after being sintered at 1200 °C for 6 h. Meanwhile, perovskite is inevitable generated during the process. CeO2 can be successfully incorporated into the lattice structure of the zirconolite-rich ceramics. The maximum containing capacity of CeO2 is up to 14.95 wt% or y = 0.4. The normalized elemental leaching rates of Ce and Ca are fairly constant in low values of 1.2 × 10-6 and 2.3 × 10-2 g m-2 d-1 after 28 days. The normalized leaching rate of Fe is also in a low value of 2.9 × 10-4 g m-2 d-1 after 7 days.

  19. Neutrino-Nucleus Reaction Cross Sections for Light Element Synthesis in Supernova Explosions

    E-print Network

    T. Yoshida; T. Suzuki; S. Chiba; T. Kajino; H. Yokomakura; K. Kimura; A. Takamura; D. H. Hartmann

    2008-08-27

    The neutrino-nucleus reaction cross sections of 4He and 12C are evaluated using new shell model Hamiltonians. Branching ratios of various decay channels are calculated to evaluate the yields of Li, Be, and B produced through the nu-process in supernova explosions. The new cross sections enhance the yields of 7Li and 11B produced during the supernova explosion of a 16.2 M_odot star model compared to the case using the conventional cross sections by about 10%. On the other hand, the yield of 10B decreases by a factor of two. The yields of 6Li, 9Be, and the radioactive nucleus 10Be are found at a level of 10^{-11} M_odot. The temperature of nu_{mu,tau}- and bar{nu}_{mu,tau}-neutrinos inferred from the supernova contribution of 11B in Galactic chemical evolution models is constrained to the 4.3-6.5 MeV range. The increase in the 7Li and 11B yields due to neutrino oscillations is demonstrated with the new cross sections.

  20. Direct synthesis of nanocrystalline silver from the reaction between silver carboxylates and n-trioctylphosphine.

    PubMed

    Charan, Shobhit; Singh, Narendra; Khanna, P K; Patil, K R

    2006-07-01

    Neat n-Trioctylphosphine (TOP) has been used for the first ever time for reduction of silver nitrate and silver carboxylates (citrate, oleate, and myristate) under mild thermal reaction conditions. UV-visible absorption measurements of re-dispersible silver particles that were obtained by reduction of silver myristrate (product-IV) and silver nitrate (product-I) showed surface plasmon resonance absorption peak at 400 nm. The powder XRD pattern of fcc zero-valent silver resulted in diameters in the range of about 25-30 nm. TEM analysis showed particle diameter similar to that was observed by the XRD. FTIR spectroscopy revealed that the organics from the carboxylate group are retained by the nano-particles in case of product-IV however, presence of TOP is observed in product-I. It is found that when silver nitrate is reduced by TOP, spherical silver nano-particles with poor redispersity are formed but extended heating results in formation of long silver rods of micrometer size however, the re-dispersible nano-particles are easily formed when silver carboxylates are reduced by TOP. PMID:17025132