Science.gov

Sample records for amorphous base alloy

  1. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  2. Salt Fog Testing Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-07-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  3. Amorphous phase formation in mechanically alloyed iron-based systems

    NASA Astrophysics Data System (ADS)

    Sharma, Satyajeet

    Bulk metallic glasses have interesting combination of physical, chemical, mechanical, and magnetic properties which make them attractive for a variety of applications. Consequently there has been a lot of interest in understanding the structure and properties of these materials. More varied applications can be sought if one understands the reasons for glass formation and the methods to control them. The glass-forming ability (GFA) of alloys can be substantially increased by a proper selection of alloying elements and the chemical composition of the alloy. High GFA will enable in obtaining large section thickness of amorphous alloys. Ability to produce glassy alloys in larger section thicknesses enables exploitation of these advanced materials for a variety of different applications. The technique of mechanical alloying (MA) is a powerful non-equilibrium processing technique and is known to produce glassy (or amorphous) alloys in several alloy systems. Metallic amorphous alloys have been produced by MA starting from either blended elemental metal powders or pre-alloyed powders. Subsequently, these amorphous alloy powders could be consolidated to full density in the temperature range between the glass transition and crystallization temperatures, where the amorphous phase has a very low viscosity. This Dissertation focuses on identifying the various Fe-based multicomponent alloy systems that can be amorphized using the MA technique, studying the GFA of alloys with emphasis on improving it, and also on analyzing the effect of extended milling time on the constitution of the amorphous alloy powder produced at earlier times. The Dissertation contains seven chapters, where the lead chapter deals with the background, history and introduction to bulk metallic glasses. The following four chapters are the published/to be published work, where the criterion for predicting glass formation, effect of Niobium addition on glass-forming ability (GFA), lattice contraction on

  4. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  5. Bulk amorphous steels based on Fe alloys

    DOEpatents

    Lu, ZhaoPing; Liu, Chain T.

    2006-05-30

    A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.

  6. Application of Laser Design of Amorphous Feco-Based Alloys for the Formation of Amorphous-Crystalline Composites

    NASA Astrophysics Data System (ADS)

    Permyakova, I. E.; Glezer, A. M.; Ivanov, A. A.; Shelyakov, A. V.

    2016-01-01

    Morphological and fractographic features of change of FeCo-based amorphous alloy surfaces after laser treatment are studied in detail. Regimes of laser treatment that allow various degrees of crystallization of the examined alloys to be obtained, including thin (<1 •m) crystal layers on amorphous alloy surfaces, amorphous-crystalline composites, and completely crystalline alloys are adjusted. The Vickers hardness is estimated in zones of selective laser irradiation. The structure of the examined alloys attendant to the change of their mechanical properties is analyzed.

  7. Crystallization kinetics of Fe based amorphous alloy

    NASA Astrophysics Data System (ADS)

    Shanker Rao, T.; Lilly Shanker Rao, T.

    2015-02-01

    Differential Scanning Calorimetry(DSC) experimental data under non-isothermal conditions for Fe based Metglas 2605SA1 (wt% Fe=85-95, Si=5-10, B=1-5) metallic glass ribbons are reported and discussed. The DSC Scans performed at different heating rates showed two step crystallization processes and are interpreted in terms of different models like Kissinger, Ozawa, Boswell, Augis & Bennett and Gao & Wang. From the heating rate dependence of the onset temperature (To) and the crystallization peak temperature (Tp), the kinetic triplet, activation energy of crystallization (E), Avrami exponent (n) and the frequency factor (A) are determined. The determined E for peak I is 354.5 ± 2.5 kJ/mol and for the peak II is 348.2 ± 2.2 kJ/mol, respectively. The frequency factor for peak I is 1.1 × 1023sec-1 and for peak II is 6.1 × 1020sec-1.

  8. Amorphous silicon alloy-based roof integrated photovoltaic systems

    SciTech Connect

    Nath, P.; Vogeli, C.; Singh, A.; Call, J.

    1994-12-31

    A roll-to-roll process is used to deposit tandem amorphous silicon alloy solar cell onto thin (0.005 inch) stainless steel substrate. Using this solar cell material, the authors have designed and fabricated a photovoltaic (PV) module which can be integrated into building roofs. The module is fabricated by laminating the large area amorphous silicon on stainless steel solar cell material onto a 0.03 inch thick coated galvanized steel support plate. The module is then formed in such a way to allow installation as a batten and seam roofing system. This paper describes the fabrication and installation details of such PV systems.

  9. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  10. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  11. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  12. Imprinting bulk amorphous alloy at room temperature.

    PubMed

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T; Lograsso, Thomas A; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  13. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  14. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    SciTech Connect

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  15. Microstructure Evaluation of Fe-BASED Amorphous Alloys Investigated by Doppler Broadening Positron Annihilation Technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Huang, Ping; Wang, Yuxin; Yan, Biao

    2013-07-01

    Microstructure of Fe-based amorphous and nanocrystalline soft magnetic alloy has been investigated by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and Doppler broadening positron annihilation technique (PAT). Doppler broadening measurement reveals that amorphous alloys (Finemet, Type I) which can form a nanocrystalline phase have more defects (free volume) than alloys (Metglas, Type II) which cannot form this microstructure. XRD and TEM characterization indicates that the nanocrystallization of amorphous Finemet alloy occurs at 460°C, where nanocrystallites of α-Fe with an average grain size of a few nanometers are formed in an amorphous matrix. With increasing annealing temperature up to 500°C, the average grain size increases up to around 12 nm. During the annealing of Finemet alloy, it has been demonstrated that positron annihilates in quenched-in defect, crystalline nanophase and amorphous-nanocrystalline interfaces. The change of line shape parameter S with annealing temperature in Finemet alloy is mainly due to the structural relaxation, the pre-nucleation of Cu nucleus and the nanocrystallization of α-Fe(Si) phase during annealing. This study throws new insights into positron behavior in the nanocrystallization of metallic glasses, especially in the presence of single or multiple nanophases embedded in the amorphous matrix.

  16. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  17. Tensile stress distribution sensors based on amorphous alloys

    NASA Astrophysics Data System (ADS)

    Hristoforou, E.; Reilly, R. E.

    1993-02-01

    In this paper, we report experimental results on the response of tensile stress sensors based on the magnetostrictive delay line technique, operating under pulsed field excitation. Their operation is based on the change of the magnetic circuit due to the change of the relative permeability of an amorphous ribbon when tensile stress is applied on it. They are low compliance sensors and can be used in cases where large displacement of the active core is not desirable.

  18. Densification behavior, nanocrystallization, and mechanical properties of spark plasma sintered Fe-based bulk amorphous alloys

    NASA Astrophysics Data System (ADS)

    Singh, Ashish Kumar

    Fe-based amorphous alloys are gaining increasing attention due to their exceptional wear and corrosion resistance for potential structural applications. Two major challenges that are hindering the commercialization of these amorphous alloys are difficulty in processing of bulk shapes (diameter > 10 mm) and lack of ductility. Spark plasma sintering (SPS) is evolving as a promising technique for processing bulk shapes of amorphous and nanocrystalline materials. The objective of this work is to investigate densification behavior, nanocrystallization, and mechanical properties of SPS sintered Fe-based amorphous alloys of composition Fe48Cr15Mo14Y2C15B6. SPS processing was performed in three distinct temperature ranges of amorphous alloys: (a) below glass transition temperature (Tg), (b) between Tg and crystallization temperature (Tx), and (c) above Tx. Punch displacement data obtained during SPS sintering was correlated with the SPS processing parameters such as temperature, pressure, and sintering time. Powder rearrangement, plastic deformation below T g, and viscous flow of the material between Tg and Tx were observed as the main densification stages during SPS sintering. Micro-scale temperature distributions at the point of contact and macro-scale temperature distribution throughout the sample during SPS of amorphous alloys were modeled. The bulk amorphous alloys are expected to undergo structural relaxation and nanocrystallization during SPS sintering. X-ray diffraction (XRD), small angle neutron scattering (SANS), and transmission electron microscopy (TEM) was performed to investigate the evolution of nanocrystallites in SPS sintered Fe-based bulk amorphous alloys. The SANS analysis showed significant scattering for the samples sintered in the supercooled region indicating local structural and compositional changes with the profuse nucleation of nano-clusters (~4 nm). Compression tests and microhardness were performed on the samples sintered at different

  19. SYNTHESIS AND PERFORMANCE OF FE-BASED AMORPHOUS ALLOYS FOR NUCLEAR WASTE REPOSITORY APPLICATIONS

    SciTech Connect

    Kaufman, L; Perepezko, J; Hildal, K

    2007-02-08

    In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s that exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. Moreover, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys with increased cross-section for thermal neutron capture will be outlined to demonstrate that through careful design of alloy composition it is possible to tailor the material properties of the thermally spray-formed amorphous coating to accommodate the challenges anticipated in typical nuclear waste storage applications over tens of thousands of years in a variety of corrosive environments.

  20. Synthesis and Performance of Fe-based Amorphous Alloys for Nuclear Waste Applications

    SciTech Connect

    Kaufman, L; Perepezko, J; Hildal, K

    2007-02-06

    Recent developments in multi-component Fe-based amorphous alloys have shown that these novel materials exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. During the past decade, amorphous alloy synthesis has advanced to allow for the casting of bulk metallic glasses. In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s. At such low cooling rates, there is an opportunity to produce amorphous solids through industrial processes such as thermal spray-formed coatings. Moreover, since cooling rates in typical thermal spray processing exceed 1000 K/s, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. For example, a wedge casting technique has been applied to examine bulk glass forming alloys by combining multiple thermal probes with a measurement based kinetics analysis and a computational thermodynamics evaluation to elucidate the phase selection competition and critical cooling rate conditions. Based upon direct measurements and kinetics modeling it is evident that a critical cooling rate range should be considered to account for nucleation behavior and that the relative heat flow characteristics as well as nucleation kinetics are important in judging ease of glass formation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys

  1. Electronic structure of Fe-based amorphous alloys studied using electron-energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, H. J.; Gu, X. J.; Poon, S. J.; Shiflet, G. J.

    2008-01-01

    The local atomic electronic structures of Fe-Mo-C-B metallic glasses are investigated using electron energy-loss spectroscopy (EELS). The fracture behavior of this Fe-based amorphous alloy system undergoes the transition from being ductile to exhibiting brittleness when alloyed with Cr or Er atoms. In addition, the glass-forming ability is also enhanced. This plastic-to-brittle transition is suggested to correlate with the change of local atomic short-range order or bonding configurations. Therefore, the bonding configuration of Fe-Mo-C-B-Er(Cr) amorphous alloys is investigated by studying the electronic structure of Fe and C atoms using electron energy-loss spectroscopy. It is shown that the normalized EELS white line intensities of Fe-L2,3 edges decrease slightly with an increasing amount of Er additions, while no noticeable difference is obtained with Cr additions. As for the C K edge, a prominent change of edge shape is observed for both alloy systems, where the first peak corresponding to a 1s→1π* transition increases with increasing Er and Cr additions. Accordingly, it is concluded that changes in the local atomic and electronic structure occur around Fe and C atoms when Er and Cr are introduced into the alloys. Furthermore, it is pointed out that the formation of Er-C and Cr-C carbide like local order inferred from the observed C K edge spectra can provide a plausible explanation for the plastic-to-brittle transition observed in these Fe-based amorphous alloys. In spite of the complexity of electronic and atomic structure in this multicomponent Fe-based metallic glass system, this study could serve as a starting point for providing a qualitative interpretation between electronic structure and plasticity in the Fe-Mo-C-B amorphous alloy system. Complimentary techniques, such as x-ray diffraction and high-resolution transmission electron microscope are also employed, providing a more complete structural characterization.

  2. Ballistic Impact Properties of Zr-Based Amorphous Alloy Composites Reinforced with Woven Continuous Fibers

    NASA Astrophysics Data System (ADS)

    Kim, Gyeong Su; Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Song, Young Buem; Lee, Sunghak

    2012-03-01

    This study aims at investigating ballistic impact properties of Zr-based amorphous alloy (LM1 alloy) matrix composites reinforced with woven stainless steel or glass continuous fibers. The fiber-reinforced composites with excellent fiber/matrix interfaces were fabricated without pores and misinfiltration by liquid pressing process, and contained 35 to 41 vol pct of woven continuous fibers homogeneously distributed in the amorphous matrix. The woven-STS-continuous-fiber-reinforced composite consisted of the LM1 alloy layer of 1.0 mm in thickness in the upper region and the fiber-reinforced composite layer in the lower region. The hard LM1 alloy layer absorbed the ballistic impact energy by forming many cracks, and the fiber-reinforced composite layer interrupted the crack propagation and blocked the impact and traveling of the projectile, thereby resulting in the improvement of ballistic performance by about 20 pct over the LM1 alloy. According to the ballistic impact test data of the woven-glass-continuous-fiber-reinforced composite, glass fibers were preferentially fragmented to form a number of cracks, and the amorphous matrix accelerated the fragmentation of glass fibers and the initiation of cracks. Because of the absorption process of ballistic impact energy by forming very large amounts of cracks, fragments, and debris, the glass-fiber-reinforced composite showed better ballistic performance than the LM1 alloy.

  3. Industrial Environmental Testing of Coupons and Prototype Cylinders Coated With Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, R B; Aprigliano, L F; Day, S D; Lian, T; Farmer, J C

    2007-03-06

    Iron-based amorphous alloys are desirable for many industrial applications due to their dual capacity to resist corrosion and wear. These alloys may also contain a significant amount of boron which makes them candidates for criticality control, for example, in high-level nuclear waste disposition applications. The Fe-based amorphous alloys can be produced in powder form and then deposited using a HVOF thermal spray process on any surface that needs to be protected. For the current testing coupons of 316L stainless steels were coated with the amorphous alloy SAM2X5 and then tested for corrosion resistance in the salt-fog chamber and in other industrial environments. Prototype cylinders were also prepared and environmentally tested. One cylinder was 30-inch diameter, 88-inch long, and 3/8-inch thick. The coating thickness was 0.015 to 0.019-inch thick. The cylinder was in good condition after the test. Along the body of the cylinder only two pinpoint spot sized signs of rust were seen. Test results will be compared with the behavior of witness materials under the same tested conditions.

  4. Imprinting bulk amorphous alloy at room temperature

    DOE PAGESBeta

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  5. Effect of residual strain in Fe-based amorphous alloys on field induced magnetic anisotropy and domain structure

    NASA Astrophysics Data System (ADS)

    Azuma, Daichi; Hasegawa, Ryusuke; Saito, Shin; Takahashi, Migaku

    2013-05-01

    Field induced magnetic anisotropy in two Fe-based amorphous alloys with different saturation induction levels (1.56 T and 1.64 T) was investigated by varying magnetic field strength and annealing temperature and domain images were taken on these samples. Residual strain was evaluated by measuring coercivities of the materials after stress-relief annealing. These results are discussed, clarifying the difference between the two Fe-based amorphous alloys.

  6. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders

    NASA Astrophysics Data System (ADS)

    He, Jinghua; Wang, Wei; Wang, Aimin; Guan, Jianguo

    2012-09-01

    Fe74Ni3Si13Cr6W4 amorphous alloy powders were annealed at different temperature (T) for 1.5 h to fabricate the corresponding amorphous and nanocrystalline powders. The influences of T on the crystalline structure, morphology, magnetic and microwave electromagnetic properties of the resultant samples were investigated via X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer. The results show that the powder samples obtained at T of 650 °C or more are composed of lots of ultra-fine α-Fe(Si) grains embedded in an amorphous matrix. When T increases from 350 to 750 °C, the saturated magnetization and coercivity of the as-annealed powder samples both increase monotonously whereas the relative real permittivity shows a minimal value and the relative real permeability shows a maximal value at T of 650 °C. Thus the powder samples annealed at 650 °C show optimal reflection loss under -10 dB in the whole C-band. These results here suggest that the annealing heat treatment of Fe-based amorphous alloy is an effective approach to fabricate high performance microwave absorber with reasonable permittivity and large permeability simultaneously via adjusting T.

  7. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  8. Laser Processing of Fe-Based Bulk Amorphous Alloy Coatings on Titanium

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu; Dittrick, Stanley A.; Bandyopadhyay, Amit

    2013-11-01

    Laser Engineered Net Shaping (LENS™), a solid freeform fabrication technique, was employed for the processing of Fe-based bulk amorphous alloy (Fe BAA) powder on titanium. One and two layers of the Fe BAA were deposited with the same processing parameters. SEM and XRD analyses of the Fe BAA coatings revealed the retention of the feedstock powder's amorphous nature. The mixing of the feedstock powder in the titanium substrate was very small. A crystalline-amorphous composite microstructure evolved from the laser processing in all types of coatings. The coatings were further laser remelted. The amorphous character was found to increase and the crystallites were found to grow during remelting. The Fe BAA coatings showed higher hardness and smaller wear volume compared to the Ti substrate. A further increase in these properties was observed after laser remelting treatment. During the wear testing in NaCl solution, Ti substrate showed intergranular corrosion, whereas the Fe BAA coatings showed signs of low and localized fretting corrosion in a saline environment. Our results demonstrate that using LENS™, amorphous coatings can be deposited on metallic substrates.

  9. Development of amorphous Fe-B based alloys for choke and inductor applications

    SciTech Connect

    Major, R.V.; Cruickshank, K.J.; Jasko, T.M.

    1984-09-01

    This paper describes a method of obtaining linear permeability characteristics from Fe-B based amorphous alloys, suitable for choke and inductor applications. The properties are developed by heat treatment at temperatures above those conventionally used to develop the optimum low or high frequency magnetic properties in these alloys. Within a narrow heat treatment temperature range it is possible to develop permeabilities of between 200 and 700, linear up to high flux density levels. D.C. Energy Storage Curves are presented for Fe /sub 77.5/ B/sub 13/ Si /sub 9.5/ alloy, toroidal tape wound cores, heat treated in this manner. These curves indicate the potential advantages of these cores over powder cores and gapped ferrites in D.C. choke applications.

  10. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  11. CORROSION OF AMORPHOUS AND NANOCRYSTALLINE Fe-BASED ALLOYS IN NaCl AND H2SO4 SOLUTIONS

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Lu, Wei; Wang, Yuxin; Yan, Biao; Pan, Deng

    2013-07-01

    Corrosion resistance of nanocrystalline Fe73.5Si13.5B9Nb3Cu1 alloy was investigated and compared to its amorphous counterpart. Low-temperature crystallization occurred during the annealing of amorphous tapes was used to obtain a nanocrystalline structure. The influence of annealing condition on the structure and corrosion resistance of the alloy in NaCl and H2SO4 solutions was investigated. Based on the testing results, it was found that nanocrystalline tapes have higher corrosion resistance than amorphous counterpart and H2SO4 can promote the occurrence of corrosion compared with NaCl.

  12. Preliminary Study of Fabricating Bulk Fe-Based Amorphous Alloy by Cold Gas Dynamic Spraying

    NASA Astrophysics Data System (ADS)

    Guan, Leding; Yan, Biao; Long, Ling; Yang, Sha

    Cold gas dynamic spraying (CGDS) technique makes use of high-speed gas current to spray diversified metal, alloy and composite materials under room temperature or with a little heated. It is one kind of novel surface engineering technologies, aimed at eliminating such negative influences as oxidation, gasification, melt, crystallization and gas decomposition and so on existing in hot spraying technologies. Due to its peculiar characteristics such as low spraying temperature, non-oxidation, low stress among coating layers, compactification, and high utilization rate of raw materials, as well as effective applications in the domain of fabricating coatings, the CGDS technique has attracted great attention. As it has the advantages aforementioned, especially avoiding the changes of material properties resulted from high spraying temperature, CGDS provides a kind of revolutionary means for fabricating such heat-sensitive materials as amorphous alloys. The paper reviews the current situation and application development of the CGDS technique, and presents our preliminary exploration of fabricating bulk Fe-based amorphous alloy via CGDS together with mechanical milling process.

  13. Corrosion behaviors of amorphous and nanocrystalline Fe-based alloys in NaCl solution.

    PubMed

    Li, Xiang; Wang, Yuxin; Du, Chunfeng; Yan, Biao

    2010-11-01

    Amorphous Fe(73.5)Si(13.5)B9Nb3Cu1 alloy was prepared by the chill block melt-spinning process and nanocrystalline Fe(73.5)Si(13.5)B9Nb3Cu1 alloy was obtained by annealing. The crystallization behaviors were analysed by DSC, XRD and TEM. The electrochemical corrosion behaviors in different annealed states were performed by linear polarization method and electrochemical impedance spectroscopy in 3.5% NaCl solution. The results show that the crystallization of amorphous alloy occurs in the two steps. Some nanometer crystals appear when annealing in 550 degrees C and 600 degrees C, respectively with grain size 13 nm and 15 nm. The nanocrystalline alloy has a tendency to passivation and lower anodic current density than amorphous alloy. It indicates that nanocrystalline alloy has a higher corrosion resistance. Amorphous Fe(73.5)Si(13.5)B9Nb3Cu1 alloy consisted of only single semi-circle. When the alloy was annealed in 600 degrees C, its EIS consisted of two time constants, i.e., high frequency and low frequency capacitive loops. The charge transfer reaction resistances increases as annealing temperature rises. PMID:21137903

  14. Effects of Phosphorus and Carbon Contents on Amorphous Forming Ability in Fe-based Amorphous Alloys Used for Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Do, Jeonghyeon; Jung, Seungmun; Lee, Hyuk-Joong; Lee, Byeong-Joo; Cha, Gil-up; Jo, Chang Yong; Lee, Sunghak

    2013-06-01

    Cost-effective Fe-based amorphous alloys used for thermal spray coatings were developed by varying contents of P and C, and their microstructure, hardness, and corrosion resistance were analyzed. In order to achieve chemical compositions having high amorphous forming ability, thermodynamically calculated phase diagrams of Fe-Al-P-C-B five-component system were used, from which compositions of super-cooled liquid having the lowest driving force of formation of crystalline phases were obtained. The thermodynamic calculation results showed that only phases of Fe3P and Fe3C were formed in the Fe78Al2P(18.3- x)C x B1.7 alloy system. Considering driving force curves of Fe3P and Fe3C, the carbon contents were selected to be 6.90 and 7.47 at. pct, when the thermodynamic calculation temperatures were 697 K (414 °C) and 715 K (442 °C), respectively. According to the microstructural analysis of suction-cast alloys, the Fe78Al2P10.83C7.47B1.7 alloy showed a fully amorphous microstructure, whereas the Fe78Al2P11.40C6.9B1.7 and Fe78Al2P10.3C8.0B1.7 alloys contained Fe3P and Fe3C phases. This Fe78Al2P10.83C7.47B1.7 alloy showed the better hardness and corrosion resistance than those of conventional thermal spray coating alloys, and its production cost could be lowered using cheaper alloying elements, thereby leading to the practical application to amorphous thermal spray coatings.

  15. Domain structure and magnetization loss in a toroidal core based on an Fe-based amorphous alloy

    NASA Astrophysics Data System (ADS)

    Azuma, Daichi; Hasegawa, Ryusuke; Saito, Shin; Takahashi, Migaku

    2012-04-01

    By utilizing a wide-view Kerr-effect magnetic domain observation system designed for domain observation on curved surfaces, domain images were taken on the surface of a toroidal core based on an Fe-based amorphous alloy. The results of the observation are discussed in terms of Bertotti's eddy-current loss model, helping to clarify the concept of magnetic objects proposed by the model.

  16. Sample-Size Effects on the Compression Behavior of a Ni-BASED Amorphous Alloy

    NASA Astrophysics Data System (ADS)

    Liang, Weizhong; Zhao, Guogang; Wu, Linzhi; Yu, Hongjun; Li, Ming; Zhang, Lin

    Ni42Cu5Ti20Zr21.5Al8Si3.5 bulk metallic glasses rods with diameters of 1 mm and 3 mm, were prepared by arc melting of composing elements in a Ti-gettered argon atmosphere. The compressive deformation and fracture behavior of the amorphous alloy samples with different size were investigated by testing machine and scanning electron microscope. The compressive stress-strain curves of 1 mm and 3 mm samples exhibited 4.5% and 0% plastic strain, while the compressive fracture strength for 1 mm and 3 mm rod is 4691 MPa and 2631 MPa, respectively. The compressive fracture surface of different size sample consisted of shear zone and non-shear one. Typical vein patterns with some melting drops can be seen on the shear region of 1 mm rod, while fish-bone shape patterns can be observed on 3 mm specimen surface. Some interesting different spacing periodic ripples existed on the non-shear zone of 1 and 3 mm rods. On the side surface of 1 mm sample, high density of shear bands was observed. The skip of shear bands can be seen on 1 mm sample surface. The mechanisms of the effect of sample size on fracture strength and plasticity of the Ni-based amorphous alloy are discussed.

  17. Structural Relaxation and Nanocrystallization-Induced Laser Surface Hardening of Fe-Based Bulk Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Singh, Ashish K.; Alavi, S. Habib; Paital, Sameer R.; Dahotre, Narendra B.; Harimkar, Sandip P.

    2014-06-01

    Amorphous metallic alloys or bulk metallic glasses are emerging as promising materials for a range of structural, microelectromechanical systems, and biomedical applications. With the recent developments in spark plasma sintering and superplastic forming of the amorphous alloys, it is likely that the amorphous alloys will find a place in new applications. In this article, surface hardening of spark plasma sintered Fe48Cr15Mo14Y2C15B6 bulk amorphous alloys using a continuous-wave Nd:YAG laser is reported. Depending on the processing parameters, the laser surface irradiation causes structural relaxation (enhanced medium-range ordering and/or annihilation of excess free volume) and nanocrystallization of hard carbides (M23C6 and M7C3), resulting in surface hardening. Detailed investigations on the thermal effects, microstructural modifications, and hardness improvements due to laser surface irradiation with laser fluence in the range of 1.77-2.36 J/mm2 are presented. An increase in hardness in the range of 1360-1560 HV for laser surface-treated alloys compared to 1200 HV for as-sintered alloys over a hardening depth of about 50-80 µm is observed.

  18. Intensity dependence of the minority-carrier difusion length in amorphous silicon based alloys

    NASA Astrophysics Data System (ADS)

    Hack, M.; Shur, M.

    1984-04-01

    Many of the recent measurements of the minority-carrier diffusion length (Lp) in amorphous silicon based alloys have been based on a utilization of the surface photovoltage (SPV). In this case an equation relating photon flux and Lp under ideal conditions has to be modified because of the back diffusion of carriers and the effects of high field regions. To account for the high field region, the 'aparent' diffusion length has been determined for varying intensities of bias light. In the present investigation, a theoretical analysis shows that the zero field diffusion length is indeed intensity dependent and that this dependence can be directly related to the slope of the density of states near the valence band edge. The intensity dependence of the minority carrier diffusion length and the energy slope of the density of states near the valence band edge are obtained on the basis of experimental results.

  19. Advances in amorphous silicon alloy-based multijunction cells and modules

    SciTech Connect

    Guha, S.; Yang, J.; Banerjee, A.; Glatfelter, T.; Xu, X. )

    1992-12-01

    Multijunction amorphous silicon alloy-based solar cells and modules offer the potential of obtaining high efficiency with long-term stability against light-induced degradation. We have studied the stability of the component cells of the multijunction devices prepared under different deposition conditions. We observe a definite correlation between the microstructure of the intrinsic material and initial and light-degraded performance of the cells. Using suitable deposition conditions and optimum matching of the component cells, we have fabricated double-junction dual-bandgap cells which show stabilized active-area efficiency of 11% after 600 hours of one-sun illumination at 50 [degree]C. Double-junction and triple-junction modules of 900 cm[sup 2] area have been fabricated, and the performance of these panels will be discussed.

  20. Synthesis and characterization of Mg-based amorphous alloys and their use for decolorization of Azo dyes

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wang, W. H.

    2014-06-01

    Mg-based alloys are light weight and have wide range of applications in the automotive industry. These alloys are widely used because of their very attractive physical and mechanical properties and corrosion resistance. The properties and applications can be further improved by changing the nature of materials from crystalline to amorphous. In this study, melt spun ribbons (MSRs) of Mg70Zn25Ca5 Mg68Zn27Ca5 alloys were prepared by melt spinning technique by using 3-4N pure metals. Characterization of the samples was done by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and energy dispersive x-ray analyzer (EDAX). Microstructural investigations were conducted by using scanning electron microscopy (SEM), atomic force microscopy (AFM) as well as optical and stereo scan microscopy techniques. DSC results showed multistage crystallization. Activation energy was found to be 225 kJ/mol by Kissinger method indicating good thermal stability against crystallization. XRD, DSC, SEM and EDS (energy dispersive spectroscopy) results are agreed very well. In order to study decolorization, the MSRs of Mg70Zn25Ca5 Mg68Zn27Ca5 alloys were treated repeatedly with various azo dyes at room temperature. In order to compare the results, MSRs of amorphous Zr- and Ni-based metallic glasses were also treated. Reaction of MSRs with azo dyes results in their decolorization in a few hours. Decolorization of azo dyes takes place by introducing amorphous MSRs which results in breaking the -N=N- bonds that exist in dye contents. It is concluded that Mg-based alloys are useful for paint and dye industries and will be beneficial to control water pollution. Comparison of results showed that Mg-based alloys are more efficient than Zr- and Ni-based amorphous alloys for decolorization of azo dyes.

  1. Fe-based bulk amorphous alloys with iron contents as high as 82 at%

    NASA Astrophysics Data System (ADS)

    Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu; Yao, Ke-Fu

    2015-07-01

    Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe81P8.5C5.5B2Si3 BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe82Mo1P6.5C5.5B2Si3 BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications.

  2. Surface morphology study of Zr-based amorphous alloys after immersion in boiling nitric acid medium

    NASA Astrophysics Data System (ADS)

    Sharma, Poonam; Dhawan, Anil; Sharma, S. K.

    2016-05-01

    Weight loss studies have been performed to determine the corrosion resistance of amorphous Zr60Nb2Al10Ni8Cu20 and Zr59Nb3Al10Ni8Cu20 alloys in aqueous HNO3 media at boiling temperature. The FESEM micrographs has been obtained to know the surface morphology of specimens after immersion in 11.5M boiling aqueous HNO3 media. Zr59Nb3Al10Ni8Cu20 alloy shows better corrosion resistance in nitric acid media than Zr60Nb2Al10Ni8Cu20 alloy.

  3. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    SciTech Connect

    Kalay, Yunus Eren

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  4. Amorphous and nanocrystalline phase formation in highly-driven aluminum-based binary alloys

    NASA Astrophysics Data System (ADS)

    Kalay, Yunus Eren

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 microm with a Peclet number of ~0.2, JH and TMK deviate from each other. This deviation

  5. Production feature of soft magnetic amorphous alloys

    NASA Astrophysics Data System (ADS)

    Tyagunov, A. G.; Baryshev, E. E.; Shmakova, K. Yu

    2016-06-01

    Methods for making nanocrystalline alloys have been discussed. Temperature dependences of the surface tension (σ), electric resistivity (ρ), magnetic susceptibility (χ) and kinematic viscosity (ν) have been obtained. Comparison of the properties of amorphous ribbons obtained by the pilot and serial technologies has been conducted. Science-based technology of multi-component alloy smelting makes it possible to prepare equilibrium smelt, the structure of which has a significant effect on the properties of the amorphous ribbon before spinning and kinetics of its crystallization has been offered.

  6. Effect of chemically active medium on frequency dependence of magnetic losses in soft magnetic Fe-based amorphous alloys

    NASA Astrophysics Data System (ADS)

    Skulkina, N. A.; Ivanov, O. A.; Stepanova, E. A.; Pavlova, I. O.

    2013-03-01

    The effects of the electrolytic hydrogenation and oxidation and of the interaction of the surface ribbon with water and vapor on the frequency dependence of magnetic losses per magnetization-reversal cycle are studied based on the example of soft magnetic Fe81B13Si4C2 amorphous alloy, which exhibits a positive saturation magnetostriction. It was shown that, after the hydrogenation and oxidation of soft magnetic amorphous alloys, their frequency dependences of magnetic losses per magnetization-reversal cycle, which are reduced to unit induction, exhibit groups of hydrogen- and oxygen-related peaks in the frequency ranges of 35-55 and 55-80 Hz, which can be explained by the formation of O- A and H- A atomic pairs (where A are atoms of alloy components) and their reorientation in a magnetic field in the course of magnetization reversal at certain frequencies. The formation of analogous groups of peaks for samples of soft magnetic Fe-based amorphous alloys was observed after the interaction of the ribbon surface with water and vapor and after heat treatment in air. This fact confirms the possibility of the hydrogenation and oxidation of the alloys during the aforementioned processes.

  7. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    SciTech Connect

    Degmova, J.; Sitek, J.

    2010-07-13

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Moessbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Moessbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A{sub 23} parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A{sub 23} parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A{sub 23} parameter increased from 0.4 to 2.5 in the external magnetic fields. The A{sub 23} parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  8. General laws of the effect of hydrogen on the crystallization of amorphous alloys based on the quasi-binary TiNi-TiCu system

    NASA Astrophysics Data System (ADS)

    Spivak, L. V.; Shelyakov, A. V.; Shchepina, N. E.

    2014-02-01

    The crystallization processes that occur during heating of hydrogen-containing melt-quenched alloys based on the quasi-binary TiNi-TiCu system alloyed with aluminum, iron, hafnium, and zirconium are studied by high-resolution differential scanning calorimetry. The general laws of the transition of the hydrogen-containing alloys from an amorphous into a crystalline state are determined.

  9. Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy

    SciTech Connect

    Shan, X; Ha, H; Payer, J H

    2008-07-24

    The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl at 100 C with cyclic potentiodynamic polarization and constant potential tests. The corrosion damage morphologies, corrosion products and the compositions of corroded surfaces of these two alloys were studied with optical 3D reconstruction, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Auger Electron Spectroscopy (AES). It was found that the Fe-based bulk metallic glass (amorphous alloy) SAM1651 had a more positive breakdown potential and repassivation potential than crystalline alloy C-22 in cyclic potentiodynamic polarization tests and required a more positive oxidizing potential to initiate crevice corrosion in constant potential test. Once crevice corrosion initiated, the corrosion propagation of C-22 was more localized near the crevice border compared to SAM1651, and SAM1651 repassivated more readily than C-22. The EDS results indicated that the corrosion products of both alloys contained high amount of O and were enriched in Mo and Cr. The AES results indicated that a Cr-rich oxide passive film was formed on the surfaces of both alloys, and both alloys were corroded congruently.

  10. Influence of the chemical composition of Al-based amorphous alloys on thermally induced embrittlement

    NASA Astrophysics Data System (ADS)

    Sviridova, E. A.; Maksimov, V. V.; Rassolov, S. G.; Nosenko, V. K.; Tkach, V. I.

    2014-07-01

    Structural changes of rapidly cooled ribbons of the amorphous alloys Al88-86(Ni,Co,Fe)6-8(Y,Gd,Nd,La)5-6, which occur during heating at a rate of 10 K/min and lead to a loss of ductility, have been investigated experimentally. It has been shown that samples of the studied alloys are divided into two groups, in the first of which the loss of ductility is due to the formation of a nanocomposite structure, whereas the embrittlement of samples in the second group is caused by processes of structural relaxation in the amorphous phase (decrease in the concentration of a free volume). It has been established for the first time that there is an empirical correlation between the dynamic temperature, after heating to which the alloys lose their ductility at room temperature, and the ratio of the shear modulus to the elastic modulus of the alloys, which is calculated from the nominal chemical composition.

  11. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    NASA Astrophysics Data System (ADS)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  12. Study of the effects of metalloid elements (P, C, B) on Fe-based amorphous alloys by ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbiao; Li, Qiang; Duan, Haiming

    2015-03-01

    In order to understand the effects of the metalloid elements M (M: P, C, B) on the atomic structure, glass formation ability (GFA) and magnetic properties of Fe-based amorphous alloys, Fe80P13C7, Fe80P14B6 and Fe80B14C6 amorphous alloys are chosen to study through first-principle simulations in the present work. The atomic structure characteristic of the three amorphous alloys is investigated through the pair distribution functions (PDFs) and Voronoi Polyhedra (VPs) analyses. The PDFs and VPs analyses suggest that the GFA of the three alloys dropped in the order of Fe80P13C7, Fe80P14B6, and Fe80B14C6, which is well consistent with the experimental results. The density of state (DOS) of the three amorphous alloys is calculated to investigate their magnetic properties. Based on the DOS analysis, the average magnetic moment of Fe atom in Fe80P13C7 and Fe80P14B6 amorphous alloys can be estimated to be 1.71 μB and 1.70 μB, respectively, which are in acceptable agreement with the experimental results. However, the calculated average magnetic moment of Fe atom in Fe80B14C6 amorphous alloy is about 1.62 μB, which is far less than the experimental result.

  13. High efficiency multijunction amorphous silicon alloy-based solar cells and modules

    SciTech Connect

    Guha, S.; Yang, J.; Banerjeee, A.; Glatfelter, T.; Hoffman, K.; Xu, X. )

    1994-06-30

    We have achieved initial efficiency of 11.4% as confirmed by National Renewable Energy Laboratory (NREL) on a multijunction amorphous silicon alloy photovoltaic module of one-square-foot-area. [bold This] [bold is] [bold the] [bold highest] [bold initial] [bold efficiency] [bold confirmed] [bold by] [bold NREL] [bold for] [bold any] [bold thin] [bold film] [bold photovoltaic] [bold module]. After light soaking for 1000 hours at 50 [degree]C under one-sun illumination, a module with initial efficiency of 11.1% shows a stabilized efficiency of 9.5%. Key factors that led to this high performance are discussed.

  14. Fabrication of MEMS-based Micro-fluxgate Sensor with Runway-shaped Co-based Amorphous Alloy Core

    NASA Astrophysics Data System (ADS)

    Wu, Shaobin; Chen, Shi; Ouyang, Jun; Zuo, Chao; Yu, Lei; Yang, Xiaofei

    2011-01-01

    High-precision magnetic micro-sensor is an interdisciplinary subject of magnetic field measurement techniques and micro-electromechanical systems (MEMS) technology. A micro-fluxgate magnetic sensor based MEMS technology was designed and fabricated in this paper. This device is a micro-magnetic sensor with a symmetric construction, closed magnetic circuits and differential form. A 25μm thick Fluxgate core of runway model, made by Co-based amorphous alloy, was etched by laser and pasted on the substrate accurately. Excitation coil and sensing coil of 3D solenoid structure were prepared by RF magnetron sputtering and UV-lithography. The minimum line width of the coil is 50 μm. The experimental result shows that micro-fluxgate devices with the size of 5.7mm×7.1mm×60μm had a stable structure.

  15. New Amorphous Silicon Alloy Systems

    NASA Astrophysics Data System (ADS)

    Kapur, Mridula N.

    1990-01-01

    The properties of hydrogenated amorphous silicon (a-Si:H) have been modified by alloying with Al, Ga and S respectively. The Al and Ga alloys are in effect quaternary alloys as they were fabricated in a carbon-rich discharge. The alloys were prepared by the plasma assisted chemical vapor deposition (PACVD) method. This method has several advantages, the major one being the relatively low defect densities of the resulting materials. The PACVD system used to grow the alloy films was designed and constructed in the laboratory. It was first tested with known (a-Si:H and a-Si:As:H) materials. Thus, it was established that device quality alloy films could be grown with the home-made PACVD setup. The chemical composition of the alloys was characterized by secondary ion mass spectrometry (SIMS), and electron probe microanalysis (EPMA). The homogeneous nature of hydrogen distribution in the alloys was established by SIMS depth profile analysis. A quantitative analysis of the bulk elemental content was carried out by EPMA. The analysis indicated that the alloying element was incorporated in the films more efficiently at low input gas concentrations than at the higher concentrations. A topological model was proposed to explain the observed behavior. The optical energy gap of the alloys could be varied in the 0.90 to 1.92 eV range. The Al and Ga alloys were low band gap materials, whereas alloying with S had the effect of widening the energy gap. It was observed that although the Si-Al and Si-Ga alloys contained significant amounts of C and H, the magnitude of the energy gap was determined by the metallic component. The various trends in optical properties could be related to the binding characteristics of the respective alloy systems. A quantitative explanation of the results was provided by White's tight binding model. The dark conductivity-temperature dependence of the alloys was examined. A linear dependence was observed for the Al and Ga systems. Electronic conduction in

  16. Magnetization kinetics in tension and field annealed Fe-based amorphous alloys

    NASA Astrophysics Data System (ADS)

    Hasegawa, Ryusuke; Takahashi, Kengo; Francoeur, Bruno; Couture, Pierre

    2013-05-01

    Magnetization kinetics in tension-annealed and field-annealed amorphous magnetic materials indicates that strain and magnetic fields are equally effective in inducing and relaxing local structural and magnetic anisotropy changes. This observation is based on the thermomagnetic aging of the magnetic properties obtained in the materials studied.

  17. Interpretation of Fracture Toughness and R-Curve Behavior by Direct Observation of Microfracture Process in Ti-Based Dendrite-Containing Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Jeon, Changwoo; Kim, Choongnyun Paul; Kim, Hyoung Seop; Lee, Sunghak

    2015-04-01

    Fracture properties of Ti-based amorphous alloys containing ductile β dendrites were explained by directly observing microfracture processes. Three Ti-based amorphous alloys were fabricated by adding Ti, Zr, V, Ni, Al, and Be into a Ti-6Al-4V alloy by a vacuum arc melting method. The effective sizes of dendrites varied from 63 to 104 μm, while their volume fractions were almost constant within the range from 74 to 76 pct. The observation of the microfracture of the alloy containing coarse dendrites revealed that a microcrack initiated at the amorphous matrix of the notch tip and propagated along the amorphous matrix. In the alloy containing fine dendrites, the crack propagation was frequently blocked by dendrites, and many deformation bands were formed near or in front of the propagating crack, thereby resulting in a zig-zag fracture path. Crack initiation toughness was almost the same at 35 to 36 MPa√m within error ranges in the three alloys because it was heavily affected by the stress applied to the specimen at the time of crack initiation at the crack tip as well as strength levels of the alloys. According to the R-curve behavior, however, the best overall fracture properties in the alloy containing fine dendrites were explained by mechanisms of blocking of the crack growth and crack blunting and deformation band formation at dendrites.

  18. Influence of Kinetic and Thermodynamic Factors on the Glass-Forming Ability of Zirconium-Based Bulk Amorphous Alloys

    SciTech Connect

    Mukherjee, S.; Johnson, W.L.; Rhim, W.-K.; Schroers, J.

    2005-06-24

    The time-temperature-transformation curves for three zirconium-based bulk amorphous alloys are measured to identify the primary factors influencing their glass-forming ability. The melt viscosity is found to have the most pronounced influence on the glass-forming ability compared to other thermodynamic factors. Surprisingly, it is found that the better glass former has a lower crystal-melt interfacial tension. This contradictory finding is explained by the icosahedral short-range order of the undercooled liquid, which on one hand reduces the interfacial tension, while on the other hand increases its viscosity.

  19. Study of the effects of metalloid elements (P, C, B) on Fe-based amorphous alloys by ab initio molecular dynamics simulations

    SciTech Connect

    Zhang, Wenbiao; Li, Qiang E-mail: dhm@xju.edu.cn; Duan, Haiming E-mail: dhm@xju.edu.cn

    2015-03-14

    In order to understand the effects of the metalloid elements M (M: P, C, B) on the atomic structure, glass formation ability (GFA) and magnetic properties of Fe-based amorphous alloys, Fe{sub 80}P{sub 13}C{sub 7}, Fe{sub 80}P{sub 14}B{sub 6} and Fe{sub 80}B{sub 14}C{sub 6} amorphous alloys are chosen to study through first-principle simulations in the present work. The atomic structure characteristic of the three amorphous alloys is investigated through the pair distribution functions (PDFs) and Voronoi Polyhedra (VPs) analyses. The PDFs and VPs analyses suggest that the GFA of the three alloys dropped in the order of Fe{sub 80}P{sub 13}C{sub 7}, Fe{sub 80}P{sub 14}B{sub 6}, and Fe{sub 80}B{sub 14}C{sub 6}, which is well consistent with the experimental results. The density of state (DOS) of the three amorphous alloys is calculated to investigate their magnetic properties. Based on the DOS analysis, the average magnetic moment of Fe atom in Fe{sub 80}P{sub 13}C{sub 7} and Fe{sub 80}P{sub 14}B{sub 6} amorphous alloys can be estimated to be 1.71 μ{sub B} and 1.70 μ{sub B}, respectively, which are in acceptable agreement with the experimental results. However, the calculated average magnetic moment of Fe atom in Fe{sub 80}B{sub 14}C{sub 6} amorphous alloy is about 1.62 μ{sub B}, which is far less than the experimental result.

  20. Comparative Study on the Corrosion Resistance of Fe-Based Amorphous Metal, Borated Stainless Steel and Ni-Cr-Mo-Gd Alloy

    SciTech Connect

    Lian, Tiangan; Day, Daniel; Hailey, Phillip; Choi, Jor-Shan; Farmer, Joseph

    2007-07-01

    Iron-based amorphous alloy Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} was compared to borated stainless steel and Ni-Cr-Mo-Gd alloy on their corrosion resistance in various high-concentration chloride solutions. The melt-spun ribbon of this iron-based amorphous alloy have demonstrated a better corrosion resistance than the bulk borated stainless steel and the bulk Ni-Cr-Mo-Gd alloy, in high-concentration chloride brines at temperatures 90 deg. C or higher. (authors)

  1. Amorphous silicon-tellurium alloys

    NASA Astrophysics Data System (ADS)

    Shufflebotham, P. K.; Card, H. C.; Kao, K. C.; Thanailakis, A.

    1986-09-01

    Amorphous silicon-tellurium alloy thin films were fabricated by coevaporation over the composition range of 0-82 at. % Te. The electronic and optical properties of these films were systematically investigated over this same range of composition. The optical gap of these films was found to decrease monotonically with increasing Te content. Conduction near room temperature was due to extended state conduction, while variable range hopping dominated below 250 K. The incorporation of Te in concentrations of less than 1 at. % was found to produce an increase in the density of localized states at the Fermi level and a decrease in the activation energy. This was attributed to the Te being incorporated as a substitutional, fourfold coordinated, double donor in a-Si. At approximately 60 at. % Te, a decrease in the density of localized states at the Fermi level, and an increase in the activation energy and photoresponse was indicated. This was attributed to the possible formation of a less defective a-Si:Te compound.

  2. Characterization of atomic-level structure in Fe-based amorphous and nanocrystalline alloy by experimental and modeling methods

    SciTech Connect

    Babilas, Rafał

    2015-09-15

    The atomic structure of Fe{sub 70}Nb{sub 10}B{sub 20} alloy in “as-cast” state and after annealing was investigated using high-energy X-ray diffraction (XRD), Mössbauer spectroscopy (MS) and high resolution transmission electron microscopy (HRTEM). The HRTEM observations allowed to indicate some medium-range order (MRO) regions about 2 nm in size and formation of some kinds of short-range order (SRO) structures represented by atomic clusters with diameter ca. 0.5 nm. The Reverse Monte Carlo (RMC) method basing on the results of XRD measurements was used in modeling the atomic structure of Fe-based alloy. The structural model was described by peak values of partial pair correlation functions and coordination numbers determined by Mössbauer spectroscopy investigations. The three-dimensional configuration box of atoms was obtained from the RMC simulation and the representative Fe-centered clusters were taken from the calculated structure. According to the Gonser et al. approach, the measured spectra of alloy studied were decomposed into 5 subspectra representing average Fe–Fe coordination numbers. Basing on the results of disaccommodation of magnetic permeability, which is sensitive to the short order of the random packing of atoms, it was stated that an occurrence of free volume is not detected after nanocrystallization process. - Highlights: • Atomic cluster model of amorphous structure was proposed for studied glassy alloy. • Short range order (ca. 0.5 nm) regions interpreted as clusters were identified by HREM. • Clusters correspond to coordination numbers (N = 4,6,8,9) calculated by using Gonser approach. • Medium-range order (ca. 2 nm) could be referred to few atomic clusters. • SRO regions are able to grow up as nuclei of crystalline bcc Fe and iron borides. • Crystalline particles have spherical morphology with an average diameter of 20 nm.

  3. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  4. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, Auda K.

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  5. Development of radiation detectors based on hydrogenated amorphous silicon and its alloys

    SciTech Connect

    Hong, Wan-Shick

    1995-04-01

    Hydrogenated amorphous silicon and related materials have been applied to radiation detectors, utilizing their good radiation resistance and the feasibility of making deposits over a large area at low cost. Effects of deposition parameters on various material properties of a-Si:H have been studied to produce a material satisfying the requirements for specific detection application. Thick(-{approximately}50 {mu}m), device quality a-Si:H p-i-n diodes for direct detection of minimum ionizing particles have been prepared with low internal stress by a combination of low temperature growth, He-dilution of silane, and post annealing. The structure of the new film contained voids and tiny crystalline inclusions and was different from the one observed in conventional a-Si:H. Deposition on patterned substrates was attempted as an alternative to controlling deposition parameters to minimize substrate bending and delamination of thick a-Si:H films. Growth on an inversed-pyramid pattern reduced the substrate bending by a factor of 3{approximately}4 for the same thickness film. Thin (0.1 {approximately} 0.2 {mu}m) films of a-Si:H and a-SiC:H have been applied to microstrip gas chambers to control gain instabilities due to charges on the substrate. Light sensitivity of the a-Si:H sheet resistance was minimized and the surface resistivity was successfully` controlled in the range of 10{sup 12} {approximately} 10{sup 17} {Omega}/{four_gradient} by carbon alloying and boron doping. Performance of the detectors with boron-doped a-Si:C:H layers was comparable to that of electronic-conducting glass. Hydrogen dilution of silane has been explored to improve electrical transport properties of a-Si:H material for high speed photo-detectors and TFT applications.

  6. Annealing behavior of high permeability amorphous alloys

    SciTech Connect

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co/sub 71/ /sub 4/Fe/sub 4/ /sub 6/Si/sub 9/ /sub 6/B/sub 14/ /sub 4/ were investigated. Annealing this alloy below 400/sup 0/C results in magnetic hardening; annealing above 400/sup 0/C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation.

  7. Crystallization of amorphous Zr-Be alloys

    NASA Astrophysics Data System (ADS)

    Golovkova, E. A.; Surkov, A. V.; Syrykh, G. F.

    2015-02-01

    The thermal stability and structure of binary amorphous Zr100 - x Be x alloys have been studied using differential scanning calorimetry and neutron diffraction over a wide concentration range (30 ≤ x ≤ 65). The amorphous alloys have been prepared by rapid quenching from melt. The studied amorphous system involves the composition range around the eutectic composition with boundary phases α-Zr and ZrBe2. It has been found that the crystallization of alloys with low beryllium contents ("hypoeutectic" alloys with x ≤ 40) proceeds in two stages. Neutron diffraction has demonstrated that, at the first stage, α-Zr crystallizes and the remaining amorphous phase is enriched to the eutectic composition; at the second stage, the alloy crystallizes in the α-Zr and ZrBe2 phases. At higher beryllium contents ("hypereutectic" alloys), one phase transition of the amorphous phase to a mixture of the α-Zr and ZrBe2 phases has been observed. The concentration dependences of the crystallization temperature and activation energy have been revealed.

  8. Enhancing the efficiency of wastewater treatment by addition of Fe-based amorphous alloy powders with H2O2 in ferrofluid

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Cheng; Bian, Xiu-Fang; Yang, Jian-Fei

    2014-03-01

    Using combination of ferrofluid (FF) and Fe-based amorphous alloy in the advanced treatment of high concentration, organic wastewater was investigated. The addition of Fe73.5Nb3Cu1Si13.5B9 amorphous alloy powders into a FF give rise to a dramatic enhancement in decreasing chemical oxygen demand (COD) and decolorization. The removal rate of COD by using FF that combined Fe73.5Nb3Cu1Si13.5B9 metallic glass (MG) particles reached 92% in the presence of H2O2, nearly more than 50% higher than that by using only FF. Furthermore, compared with the FF, the decolorizing effect of the combination was 20% higher. It has been found that MG powders with the amorphous structures have high efficiency of waste water treatment and lead to high catalytic ability.

  9. Phonon Dispersion in Amorphous Ni-Alloys

    NASA Astrophysics Data System (ADS)

    Vora, A. M.

    2007-06-01

    The well-known model potential is used to investigate the longitudinal and transverse phonon dispersion curves for six Ni-based binary amorphous alloys, viz. Ni31Dy69, Ni33Y67, Ni36Zr64, Ni50Zr50, Ni60 Nb40, and Ni81B19. The thermodynamic and elastic properties are also computed from the elastic limits of the phonon dispersion curves. The theoretical approach given by Hubbard-Beeby is used in the present study to compute the phonon dispersion curves. Five local field correction functions proposed by Hartree, Taylor, Ichimaru-Utsumi, Farid et al. and Sarkar et al. are employed to see the effect of exchange and correlation in the aforesaid properties.

  10. Thermal evolution of short-range order in Cu-Hf-based amorphous alloys

    NASA Astrophysics Data System (ADS)

    Damonte, L. C.; Pasquevich, A. F.; Mendoza-Zélis, L.

    2010-04-01

    A Perturbed Angular Correlation study on melt-spun Cu60Hf20Ti20 and Cu60Hf40 is presented. The influence of Ti addition on thermal stability and crystallization mechanism is followed by differential scanning calorimetry. The evolution of quadrupole parameters with measurement temperature is analyzed in both alloys in order to get insight into the crystallization process. Although an intricate crystallization mechanism is observed for the Ti containing alloy, the final stage is similar, irrespective of minority atom.

  11. Neutron-absorbing amorphous alloys for cladding coatings

    NASA Astrophysics Data System (ADS)

    Sevryukov, O. N.; Fedotov, V. T.; Polyansky, A. A.

    2016-04-01

    This paper shows developed compositions of neutron-absorbing cladding alloys based on nickel and containing such elements as B, Gd, Hf, and Mn. The techniques for application of coatings from these alloys on the surface of structural steels have been improved. It has been shown that the amorphous neutron-absorbing coating is more uniform than the crystalline one. The experimental data on the adhesion of cladding coatings with a steel substrate and their neutron-absorbing capacity have been obtained.

  12. Amorphous alloys resistant to corrosion in artificial saliva solution.

    PubMed

    Kwokal, A; Metikos-Huković, M; Radić, N; Poljak-Guberina, R; Catović, A

    2003-07-01

    The tailoring of new corrosion-resistant alloys with specific properties has recently been performed mostly by the sputter deposition technique. The aim of this work was to investigate corrosion resistance of aluminum-tungsten (Al-W) amorphous alloys in artificial saliva solution, pH=5.5, based on the electrochemical methods of cyclic voltammetry and linear polarization. Thin alloy films were prepared on a sapphire substrate by magnetron codeposition. Completely amorphous films were obtained in the Al(80)W(20)-Al(67)W(33) composition range. Amorphous Al-W alloys exhibit very high corrosion resistance due to their homogeneous single-phase nature. The passive films spontaneously formed at their surface are uniform with characteristics of an insulator film and prevent corrosion progression in the bulk in a very demanding oral environment. The mechanism of increasing resistivity of Al-W alloys to pitting corrosion and generalized corrosion has been discussed in the view of increasing tungsten content in the alloy. Considering these exceptional corrosion properties and microhardness which falls in the range 7.5+/-1.6 Pa, Al-W alloys represent promising materials for dental applications. PMID:15348422

  13. A Comparison of the Corrosion Resistance of Iron-Based Amorphous Metals and Austenitic Alloys in Synthetic Brines at Elevated Temperature

    SciTech Connect

    Farmer, J C

    2008-11-25

    Several hard, corrosion-resistant and neutron-absorbing iron-based amorphous alloys have now been developed that can be applied as thermal spray coatings. These new alloys include relatively high concentrations of Cr, Mo, and W for enhanced corrosion resistance, and substantial B to enable both glass formation and neutron absorption. The corrosion resistances of these novel alloys have been compared to that of several austenitic alloys in a broad range of synthetic brines, with and without nitrate inhibitor, at elevated temperature. Linear polarization and electrochemical impedance spectroscopy have been used for in situ measurement of corrosion rates for prolonged periods of time, while scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDAX) have been used for ex situ characterization of samples at the end of tests. The application of these new coatings for the protection of spent nuclear fuel storage systems, equipment in nuclear service, steel-reinforced concrete will be discussed.

  14. Multiple cell photoresponsive amorphous alloys and devices

    SciTech Connect

    Ovshinsky, S.R.; Adler, D.

    1990-01-02

    This patent describes an improved photoresponsive tandem multiple solar cell device. The device comprising: at least a first and second superimposed cell of various materials. The first cell being formed of a silicon alloy material. The second cell including an amorphous silicon alloy semiconductor cell body having an active photoresponsive region in which radiation can impinge to produce charge carriers, the amorphous cell body including at least one density of states reducing element. The element being fluorine. The amorphous cell body further including a band gap adjusting element therein at least in the photoresponsive region to enhance the radiation absorption thereof, the adjusting element being germanium: the second cell being a multi-layer body having deposited semiconductor layers of opposite (p and n) conductivity type; and the first cell being formed with the second cell in substantially direct Junction contact therebetween. The first and second cells designed to generate substantially matched currents from each cell from a light source directed through the first cell and into the second cell.

  15. Developments in the Ni-Nb-Zr amorphous alloy membranes

    NASA Astrophysics Data System (ADS)

    Sarker, S.; Chandra, D.; Hirscher, M.; Dolan, M.; Isheim, D.; Wermer, J.; Viano, D.; Baricco, M.; Udovic, T. J.; Grant, D.; Palumbo, O.; Paolone, A.; Cantelli, R.

    2016-03-01

    Most of the global H2 production is derived from hydrocarbon-based fuels, and efficient H2/CO2 separation is necessary to deliver a high-purity H2 product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H2/CO2 separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD ~31,000 kg-1) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni60Nb40)100- x Zr x alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane.

  16. Characterization of oxide layers on amorphous Zr-based alloys by Auger electron spectroscopy with sputter depth profiling

    NASA Astrophysics Data System (ADS)

    Baunack, S.; Mudali, U. Kamachi; Gebert, A.

    2005-09-01

    Amorphous Zr-Cu-Ni-Al-[Ti, Nb] ribbons prepared by melt spinning under argon atmosphere were subjected to electrochemical investigations. Passive films developed at potentiostatic anodic polarization in sulphuric acid solution were investigated by Auger electron spectroscopy (AES) and sputter depth profiling. Changes in the shape of the Auger peaks have been analyzed by factor analysis of the spectra obtained during depth profiling. Pronounced changes in shape and position occur for the Zr, Al, and Ti Auger transitions, but not for Cu and Ni. At least three different peak shapes for O(KVV) were found and attributed to different oxygen binding states. The alloy composition has no significant effect on the thickness and composition of the oxide layer. In multi-element alloys preferential sputtering is a common phenomenon. In the steady state of sputtering, a significant depletion in Cu is found. At the oxide/metal interface, a distinct enrichment of copper is found for all alloys and treatments. The degree of this Cu enrichment depends on the pretreatment. It is higher for the electrochemically-passivated samples than for samples with oxide layers grown during melt spinning.

  17. Cold Spraying of Amorphous Cu50Zr50 Alloys

    NASA Astrophysics Data System (ADS)

    List, A.; Gärtner, F.; Mori, T.; Schulze, M.; Assadi, H.; Kuroda, S.; Klassen, T.

    2015-01-01

    A new range of applications in cold spraying is expected for bulk metallic glass (BMG) coatings. For retaining amorphous structures in cast multi-component BMG parts, typically high purity raw material must be used. The present investigation explores an alternative approach, where cold spraying is used to deposit a technical-grade binary amorphous alloy. This approach is shown to be potentially cost-effective and suitable for rapid manufacturing. For this purpose, amorphous Cu50Zr50 was chosen as a model alloy system, and cold spraying was performed using nitrogen as process gas. By a systematic variation of the spray parameter sets, the critical velocities for coating formation were determined experimentally. Based on the current models of bonding of amorphous Cu50Zr50 powder in cold spraying, a new, more comprehensive concept of bonding and rebound is presented, which also considers the presence of liquefied interfaces and quenching rates for resolidification. Results concerning impact morphologies and coating formation demonstrate that under suitable choice of spray conditions, well-adhering coatings with amorphous structure of the Cu50Zr50 powders can be obtained by cold spraying.

  18. Amorphous Alloy Surpasses Steel and Titanium

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the same way that the inventions of steel in the 1800s and plastic in the 1900s sparked revolutions for industry, a new class of amorphous alloys is poised to redefine materials science as we know it in the 21st century. Welcome to the 3rd Revolution, otherwise known as the era of Liquidmetal(R) alloys, where metals behave similar to plastics but possess more than twice the strength of high performance titanium. Liquidmetal alloys were conceived in 1992, as a result of a project funded by the California Institute of Technology (CalTech), NASA, and the U.S. Department of Energy, to study the fundamentals of metallic alloys in an undercooled liquid state, for the development of new aerospace materials. Furthermore, NASA's Marshall Space Flight Center contributed to the development of the alloys by subjecting the materials to testing in its Electrostatic Levitator, a special instrument that is capable of suspending an object in midair so that researchers can heat and cool it in a containerless environment free from contaminants that could otherwise spoil the experiment.

  19. Time of isothermal holding in the course of in-air heat treatment of soft magnetic Fe-based amorphous alloys and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Skulkina, N. A.; Ivanov, O. A.; Pavlova, I. O.; Minina, O. A.

    2011-12-01

    On the example of soft magnetic Fe81B13Si4C2 and Fe77Ni1Si9B13 amorphous alloys, the relation between the level of magnetic properties and duration of isothermal holding in the course of heat treatment in air has been studied. The optimum temperature-dependent time τ of isothermal holding has been shown to be related to the volume fraction of domains ( V orth) with orthogonal magnetization in the initial (quenched) ribbon by equation V orth = ττ1/3. A temperature dependence of the proportionality coefficient α, which determines the degree of diffusion-process activity, has been determined. The results obtained allow us to substantially simplify the choice of optimum conditions of atmospheric heat treatment of soft magnetic Fe-based amorphous ribbons.

  20. Glass formation and magnetic properties in the Co and Fe-based amorphous alloy with small Mo or Nb additions

    NASA Astrophysics Data System (ADS)

    Jo, Hye-In; Choi-Yim, Haein

    2012-02-01

    The ferromagnetic metallic glass alloys in the Co-Fe-B-Si-M (M = Mo or Nb) system were investigated. Ingots of [(Co1- x Fe x )0.75B0.2Si0.05]96Mo4 ( x = 0, 0.2, 0.5, 0.8, 1.0) and [(Co1- x Fe x )0.75 B0.2Si0.05]96Nb4 ( x = 0, 0.2, 0.5, 0.8, 1.0) alloys were cast into about 30 µm-thick ribbons by using a melt spinning method. As-spun ribbons were identified as being fully amorphous by using X-ray diffraction (XRD). The thermal stability parameters, such as the supercooled liquid region (Δ T x = T g - T x ) and the exothermic heat (Δ H Exo ), were measured by using differential scanning calorimetry (DSC). For Co-Fe-B-Si-Mo alloys, Δ T x and Δ H Exo were in the range of 41.4-81.7 K and 23.40-104.21 J/g, and for Co-Fe-B-Si-Nb alloys, Δ T x and Δ H Exo were in the range of 60.4-88.0 K and 18.45-62.05 J/g, respectively. These glassy ribbons also exhibited semi-hard magnetic properties, i.e., a coercive force ( H c ) of 67.26-100.68 Oe and a saturation magnetization ( M s ) of 341.288-746.176 emu·cm3.

  1. Unexpected magnetic behavior in amorphous Co{sub 90}Sc{sub 10} alloy

    SciTech Connect

    Ghafari, M. E-mail: skamali@utsi.edu; Gleiter, H.; Sakurai, Y.; Itou, M.; Peng, G.; Fang, Y. N.; Feng, T.; Hahn, H.; Kamali, S. E-mail: skamali@utsi.edu

    2015-09-28

    An amorphous alloy Co{sub 90}Sc{sub 10} has been prepared by rapid quenching from the melt. The results of magnetization measurements show that this alloy has the highest Curie temperature reported for any amorphous transition metal based alloys. Furthermore, for a Co based amorphous alloy, the magnetic moment is remarkably high. Moreover, the alloy exhibits soft magnetic properties. Based on the findings, amorphous Co{sub 90}Sc{sub 10} appears to be an attractive candidate for applications as a soft magnetic material. The temperature dependence of the reduced magnetization can be described by the Bloch power law. The results show that the B coefficient of the amorphous Co{sub 90}Sc{sub 10} alloy, which is a measure of the rigidity of spin waves, exhibits the lowest value observed until now for any amorphous alloy and is comparable to crystalline alloys. It is found that the Sc atoms in the Co{sub 90}Sc{sub 10} alloy lead to an increase of the itinerant spin moment of Co atoms, and, in contrast to this behaviour, to a decrease of the local 3d-electrons of Co.

  2. Hydrogenated amorphous silicon-germanium alloys

    SciTech Connect

    Luft, W.

    1988-02-01

    This report describes the effects of the germanium fraction in hydrogenated amorphous silicon-germanium alloys on various parameters, especially those that are indicators of film quality, and the impact of deposition methods, feedgas mixtures, and other deposition parameters on a SiGe:H and a-SiGe:H:F film characteristics and quality. Literature data show the relationship between germanium content, hydrogen content, deposition method (various glow discharges and CVD), feedgas lmixture, and other parameters and properties, such as optical band gap, dark and photoconductivities, photosensitivity, activation energy, Urbach parameter, and spin density. Some of these are convenient quality indicators; another is the absence of microstructure. Examining RF glow discharge with both a diode and triode geometry, DC proximity glow discharge, microwave glow discharge, and photo-CVD, using gas mixtures such as hydrogen-diluted and undiluted mixtures of silane/germane, disilane/germane, silane/germaniumtetrafluoride, and others, it was observed that hydrogen dilution (or inert gas dilution) is essential in achieving high photosensitivity in silicon-germanium alloys (in contradistinction to amorphous hydrogenated silicon). Hydrogen dilution results in a higher photosensitivity than do undiluted gas mixtures. 81 refs., 42 figs., 7 tabs.

  3. Parametrized dielectric functions of amorphous GeSn alloys

    NASA Astrophysics Data System (ADS)

    D'Costa, Vijay Richard; Wang, Wei; Schmidt, Daniel; Yeo, Yee-Chia

    2015-09-01

    We obtained the complex dielectric function of amorphous Ge1-xSnx (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge0.75Sn0.25 and Ge0.50Sn0.50 alloys from literature. The compositional dependence of band gap energy Eg and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  4. Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy

    NASA Astrophysics Data System (ADS)

    Zhu, Peng-Zhe; Qiu, Chen; Fang, Feng-Zhou; Yuan, Dan-Dan; Shen, Xue-Cen

    2014-10-01

    Molecular dynamics simulations are employed to study the nanometric cutting process of Cu50Zr50 amorphous alloy. The effects of cutting depth, cutting speed and tool edge radius on the cutting force, workpiece pile-up and temperature of the cutting region are studied to investigate the mechanisms of the material removal and surface formation in the nanometric cutting process. It is found that the material removal of amorphous alloy workpiece is mainly based on extrusion at the nanoscale instead of shearing at the macroscale. The plastic deformation of amorphous alloy is mainly due to the formation of shear transformation zones during the nanometric cutting process. The results also suggest that bigger cutting depth and cutting speed will lead to larger tangential force and normal force. However, the tool edge radius has a negligible effect on the tangential force although the normal force increases with the increase of tool edge radius. The workpiece pile-up increases with an increase of the cutting depth, but decreases with an increase of the edge radius of the tool. The workpiece pile-up is not significantly affected by the cutting speed. It is also found that larger cutting depth and cutting speed will result in higher temperature in the cutting region of workpiece and the average Newtonian layer temperature of the tool. Tool edge radius has no significant effect on the temperature distribution of the workpiece and the average Newtonian layer temperature of the tool.

  5. Formation of Fe-Nb-X (X=Zr, Ti) amorphous alloys from pure metal elements by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyu; Tang, Cuiyong; Leo Ngai, Tungwai; Yang, Chao; Li, Yuanyuan

    2012-01-01

    Fe-based amorphous powders of Fe 56Nb 6Zr 38 and Fe 60Nb 6Ti 34 based on binary eutectic were prepared by mechanical alloying starting from mixtures of pure metal powders. The amorphization behavior and thermal stability were examined by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry. Results show that Fe 56Nb 6Zr 38 alloy has a better glass forming ability and a relatively lower thermal stability comparing with Fe 60Nb 6Ti 34 alloy. The prepared amorphous powders have homogeneous element distribution and no obvious contaminants coming from mechanical alloying. The synthesized amorphous powders offer the potential for consolidation to full density with desirable mechanical properties through the powder metallurgy methods.

  6. Comparison of high temperature, high frequency core loss and dynamic B-H loops of two 50 Ni-Fe crystalline alloys and an iron-based amorphous alloy

    SciTech Connect

    Wieserman, W.R.; Schwarze, G.E.; Niedra, J.M.

    1994-09-01

    The availability of experimental data that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency is almost non-existent. An experimental investigation was conducted over the temperature range of 23 to 300 C and frequency range of 1 to 50 kHz to determine the effects of temperature and frequency on the core loss and dynamic B-H loops of three different soft magnetic materials; an oriented-grain 50Ni-50Fe alloy, a nonoriented-grain 50Ni-50Fe alloy, and an iron-based amorphous material (Metglas 2605SC). A comparison of these materials show that the nonoriented-grain 50Ni-50Fe alloy tends to have either the lowest or next lowest core loss for all temperatures and frequencies investigated.

  7. Comparison of high temperature, high frequency core loss and dynamic B-H loops of two 50 Ni-Fe crystalline alloys and an iron-based amorphous alloy

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1991-01-01

    The availability of experimental data that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency is almost nonexistent. An experimental investigation was conducted over the temperature range of 23 to 300 C and frequency range of 1 to 50 kHz to determine the effects of temperature and frequency on the core loss and dynamic B-H loops of three different soft magnetic materials; and oriented grain 50Ni-50Fe alloy, a nonoriented grain 50Ni-Fe alloy, and an iron based amorphous material (Metglas 2605SC). A comparison of these materials shows that the nonoriented grain 50Ni-50Fe alloy tends to have either the lowest or next lowest core loss for all temperatures and frequencies investigated.

  8. Comparison of high temperature, high frequency core loss and dynamic B-H loops of two 50 Ni-Fe crystalline alloys and an iron-based amorphous alloy

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1991-01-01

    The availability of experimental data that characterize the performance of soft magnetic materials for the combined conditions of high temperature and high frequency is almost nonexistent. An experimental investigation was conducted over the temperature range of 23 to 300 C and frequency range of 1 to 50 kHz to determine the effects of temperature and frequency on the core loss and dynamic B-H loops of three different soft magnetic materials: an oriented-grain 50Ni-50Fe alloy, a nonoriented-grain 50Ni-50Fe alloy, and an iron-based amorphous material (Metglas 2605SC). A comparison of these materials shows that the nonoriented-grain 50Ni-50Fe alloy tends to have either the lowest or the next lowest core loss for all temperatures and frequencies investigated.

  9. High-Velocity Oxygen Fuel Thermal Spray of Fe-Based Amorphous Alloy: a Numerical and Experimental Study

    NASA Astrophysics Data System (ADS)

    Ajdelsztajn, L.; Dannenberg, J.; Lopez, J.; Yang, N.; Farmer, J.; Lavernia, E. J.

    2009-09-01

    The fabrication of dense coatings with appropriate properties using a high velocity oxygen fuel (HVOF) spray process requires an in-depth understanding of the complete gas flow field and particle behavior during the process. A computational fluid dynamics (CFD) model is implemented to investigate the gas flow behavior that occurs during the HVOF process and a simplified one-dimensional decoupled model of the in-flight thermal behavior of the amorphous Fe-based powder particles was developed and applied for three different spray conditions. The numerical results were used to rationalize the different coating microstructures described in the experimental results. Low porosity and amorphous coatings were produced using two different particle size distributions (16 to 25 μm and 25 to 53 μm). The amorphous characteristics of the powder were retained in the coating due to melting and rapid solidification in the case of very fine powder or ligaments (<16 μm) and to the fact that the crystallization temperature was not reached in the case of the large particles (16 to 53 μm).

  10. In situ detection method for obtaining permeability of Fe-based amorphous alloys: ac resistance measurement for Fe{sub 84}Nb{sub 7}B{sub 9}

    SciTech Connect

    Ichitsubo, Tetsu; Matsubara, Eiichiro; Tanaka, Satoshi; Nishiyama, Nobuyuki; Amiya, Kenji

    2005-01-17

    In this letter, we propose an in situ detection method for obtaining permeability of soft magnetic Fe-based amorphous alloys. The temperature dependence of ac resistance was measured at different frequencies during heat treatment of Fe{sub 84}Nb{sub 7}B{sub 9} amorphous alloys. A significant increase in the ac ({approx}1000 kHz) resistance appears at around 920 K during the heating process, which arises from the skin effect caused by a marked increase in sample permeability. This skin effect diminishes when the sample is heated to approximately 1100 K, which corresponds to the decrease in its permeability. Consequently, we note that the ac resistance measurement is useful for quick in situ assessment to achieve the soft magnetic property of an Fe-based amorphous alloy.

  11. High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005

    SciTech Connect

    Guha, S.; Yang, J.

    2005-10-01

    The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

  12. Amorphous powders of Al-Hf prepared by mechanical alloying

    SciTech Connect

    Schwarz, R.B.; Hannigan, J.W.; Sheinberg, H.; Tiainen, T.

    1988-01-01

    We synthesized amorphous Al/sub 50/Hf/sub 50/ alloy powder by mechanically alloying an equimolar mixture of crystalline powders of Al and Hf using hexane as a dispersant. We characterized the powder as a function of mechanical-alloying time by scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. Amorphous Al/sub 50/Hf/sub 50/ powder heated at 10 K s/sup /minus/1/ crystallizes polymorphously at 1003 K into orthorhombic AlHf (CrB-type structure). During mechanical alloying, some hexane decomposes and hydrogen and carbon are incorporated into the amorphous alloy powder. The hydrogen can be removed by annealing the powder by hot pressing at a temperature approximately 30 K below the crystallization temperature. The amorphous compacts have a diamond pyramidal hardness of 1025 DPH. 24 refs., 7 figs., 1 tab.

  13. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    NASA Astrophysics Data System (ADS)

    Xu, Hu-ping; Wang, Ru-wu; Wei, Ding; Zeng, Chun

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis-Bennett model were 476 kJ/mol and 5.5×1018 s-1, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson-Mehl-Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μe, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a "percent permeability" of more than 82% at H=100 Oe.

  14. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    SciTech Connect

    Ganjeh, E.; Sarkhosh, H.; Bajgholi, M.E.; Khorsand, H.; Ghaffari, M.

    2012-09-15

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni and Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for brazing Ti

  15. HRTEM and TEM studies of amorphous structures in ZrNiTiCu base alloys obtained by rapid solidification or ball milling.

    PubMed

    Dutkiewicz, J; Lityńska, L; Maziarz, W; Kocisko, R; Molnarová, M; Kovácová, A

    2009-01-01

    Amorphous structure of Ti(25)Zr(17)Ni(29)Cu(29) composition was studied. Alloys were prepared either by rapid solidification using melt spinning or by high-energy ball milling. The composition of multi-component eutectic in slowly cooled samples of ZrNiTiCu alloy was determined using EDS measurements in scanning microscope of slowly cooled cast samples. The alloys of eutectic composition were melt-spun or ball-milled. Transmission electron microscopy (TEM) studies of melt-spun ribbons from alloys near eutectic composition did not show presence of nanocrystals within the amorphous structure. TEM studies of ball-milled powders showed presence of nanocrystallites of size 2-5 nm. The electron diffraction pattern showed intense diffused ring due to the presence of the amorphous phase and a weak spot due to crystalline phases which were difficult to identify. The high temperature high-pressure compaction in vacuum of amorphous ball-milled powders resulted in a similar structure like in the powders showing nanocrystals embedded in the amorphous matrix. The crystallites were imaged using HREM. Interplanar distances were measured in pictures obtained by inverse fast Fourier transform (IFFT) of atomic planes to obtain better contrast. Analysis of the IFFT from high-resolution micrographs allowed to identify Cu(10)Zr(7) phase. Point analysis and elemental mapping performed using nondispersive X-ray energy spectroscopy showed uniform elements distribution indicating that chemical segregation to nanocrystals is within measurement error. PMID:18614372

  16. Special features of structural changes of amorphizing nickel alloys in liquid and heterogeneous state

    NASA Astrophysics Data System (ADS)

    Tyagunov, G. B.; Baryshev, E. E.; Shmakova, K. Yu

    2016-06-01

    Polytherms of kinematic viscosity of nickel-based alloys with Cr, Si, Fe and B additives have been studied. It was found out that the first liquid phase volumes appear when temperatures are well below the tabular values of the solidus temperature ts. The critical temperature of the alloy was defined. The ways of obtaining materials of higher amorphization ability were suggested.

  17. Amorphization of C-implanted Fe(Cr) alloys

    SciTech Connect

    Knapp, J.A.; Follstaedt, D.M.; Sorensen, N.R.; Pope, L.E.

    1990-01-01

    The amorphous phase formed by implanting C into Fe alloyed with Cr, which is prototype for the amorphous phase formed by implanting C into stainless steels, is compared to that formed by implanting C plus Ti into Fe and steels. The composition range of the phase has been examined; higher Cr and C concentrations are required than needed with Ti and C. The friction and wear benefits obtained by implanting stainless steels with C alone do not persist for the long durations and high wear loads found with Ti and C. However, the amorphous Fe-Cr-C alloys exhibits good aqueous corrosion resistance. 9 refs., 3 figs., 1 tabs.

  18. Comparison of the Crystallization Behavior of Fe-Si-B-Cu and Fe-Si-B-Cu-Nb-Based Amorphous Soft Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Smith, Casey; Katakam, Shravana; Nag, Soumya; Zhang, Y. R.; Law, J. Y.; Ramanujan, Raju V.; Dahotre, Narendra B.; Banerjee, Rajarshi

    2014-06-01

    The role of the solute elements, copper, and niobium, on the different stages of de-vitrification or crystallization of two amorphous soft magnetic alloys, Fe73.5Si13.5B9Nb3Cu1, also referred to as FINEMET, and a Fe76.5Si13.5B9Cu1 alloy, a model composition without Nb, has been investigated in detail by coupling atom probe tomography and transmission electron microscopy. The effects of copper clustering and niobium pile-up at the propagating interface between the α-Fe3Si nanocrystals and the amorphous matrix, on the nucleation and growth kinetics have been addressed. The results demonstrate that while Cu clustering takes place in both alloys in the early stages, the added presence of Nb in FINEMET severely restricts the diffusivity of solute elements such as Cu, Si, and B. Therefore, the kinetics of solute partitioning and mobility of the nanocrystal/amorphous matrix interface is substantially slower in FINEMET as compared to the Fe76.5Si13.5B9Cu1 alloy. Consequently, the presence of Nb limits the growth rate of the α-Fe3Si nanocrystals in FINEMET and results in the activation of a larger no. of nucleation sites, leading to a substantially more refined microstructure as compared to the Fe76.5Si13.5B9Cu1 alloy.

  19. Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys

    SciTech Connect

    Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.

    2010-07-13

    Novel amorphous Fe{sub 80}(Zr{sub x}Si{sub 20-x-y})Cu{sub y} boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Moessbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Moessbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Moessbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.

  20. Parametrized dielectric functions of amorphous GeSn alloys

    SciTech Connect

    D'Costa, Vijay Richard Wang, Wei; Yeo, Yee-Chia; Schmidt, Daniel

    2015-09-28

    We obtained the complex dielectric function of amorphous Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge{sub 0.75}Sn{sub 0.25} and Ge{sub 0.50}Sn{sub 0.50} alloys from literature. The compositional dependence of band gap energy E{sub g} and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  1. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    SciTech Connect

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  2. Effect of Viscosity on the Microformability of Bulk Amorphous Alloy in Supercooled Liquid Region

    SciTech Connect

    Cheng Ming; Zhang Shihong; Wang Ruixue

    2010-06-15

    Previously published results have shown that viscosity greatly influences on the deformation behavior of the bulk amorphous alloy in supercooled liquid region during microforming process. And viscosity is proved to be a component of the evaluation index which indicating microformability. Based on the fluid flow theory and assumptions, bulk amorphous alloy can be regarded as the viscous materials with a certain viscosity. It is helpful to understand how the viscosity plays an important role in viscous materials with various viscosities by numerical simulation on the process. Analysis is carried out by linear state equation in FEM with other three materials, water, lubricant oil and polymer melt, whose viscosities are different obviously. The depths of the materials flow into the U-shaped groove during the microimprinting process are compared in this paper. The result shows that the deformation is quite different when surface tension effect is not considered in the case. With the lowest viscosity, water can reach the bottom of micro groove in a very short time. Lubricant oil and polymer melt slower than it. Moreover bulk amorphous alloys in supercooled liquid state just flow into the groove slightly. Among the alloys of different systems including Pd-, Mg- and Zr-based alloy, Pd-based alloy ranks largest in the depth. Mg-based alloy is the second. And Zr-based alloy is the third. Further more the rank order of the viscosities of the alloys is Pd-, Mg- and Zr-based. It agrees well with the results of calculation. Therefore viscosity plays an important role in the microforming of the bulk amorphous alloy in the supercooled liquid state.

  3. New class of Si-based superlattices - Alternating layers of crystalline Si and porous amorphous Si(1-x)Ge(x) alloys

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Jones, E. W.; Pike, W. T.; Ksendzov, A.; Vasquez, R. P.

    1992-01-01

    Superlattices consisting of alternating layers of crystalline Si and porous amorphous Si(1-x)Ge(x) have been fabricated. This is accomplished by first growing a Si/Si(0.7)Ge(0.3) superlattice by molecular beam epitaxy, followed by Ar-ion milling to form mesa structures, and finally by immersion in HF:HNO3:H2O. This solution creates a porous structure similar to that created by anodic etching, and a high selectivity is observed for the conversion of the alloy layers relative to the Si layers. The degree of selectivity is found to depend on alloy-layer thickness and strain. Superlattices have been fabricated from 1-micron wide mesas with Si(0.7)Ge(0.3) layers fully converted to 5-nm thick porous amorphous material.

  4. Catalytic applications of amorphous alloys: Expectations, achievements, and disappointments

    NASA Astrophysics Data System (ADS)

    Molnár, Árpád

    2011-07-01

    This review intends to summarize the major achievements in the application of amorphous alloys as precursors of catalyst materials. This non-traditional catalyst preparation method may provide supported catalysts with novel chemical and structural properties. Selected examples for both glassy alloy precursors and those fabricated by mechanochemistry include CO oxidation over binary and ternary alloys, dehydrogenation over Cu-M (M = Ti, Zr or Hf), one-step synthesis of methyl isobutyl ketone, and selective hydrogenation of unsaturated carbonyl compounds. Ni alloys for methanation developed for the project to solve global warming by recycling carbon dioxide are also discussed.

  5. Magnetostriction behavior of Co-Fe-Si-B amorphous alloys

    SciTech Connect

    Gomez-Polo, C.; Pulido, E. ); Rivero, G.; Hernando, A. )

    1990-05-01

    It is well known that the saturation magnetostriction constant of nearly-zero-magnetostriction amorphous alloys exhibits a dependence on both magnetic field and applied stress. Therefore the anisotropy field induced by the applied stress does not depend linearly on the stress strength. Experiments carried out on Co-rich amorphous alloys show a stress dependence of the anisotropy field as that expected by assuming long-range fluctuations of the magnetoelastic anisotropy. In this report the existence of local fluctuations of saturation magnetostriction is shown to be a reasonable cause of the stress dependence of magnetostriction.

  6. Comparison of high frequency, high temperature core loss and B-H loop characteristics of an 80 Ni-Fe crystalline alloy and two iron-based amorphous alloys. [Ni; Fe

    SciTech Connect

    Wieserman, W.R. ); Schwarze, G.E. ); Niedra, J.M. )

    1991-01-10

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H characteristics of a nickel-iron crystalline magnetic alloy (Supermalloy) and two-iron-based amorphous magnetic materials (Metglas 2605S-3A and Metglas 2605SC) over the frequency range of 1--50 kHz and temperature range of 23--300 C under sinusoidal voltage excitation. The effects of maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined. The Supermalloy and Metglas 2605S-3A and 2605SC data are used to compare the core loss of transformers with identical kVA and voltage ratings.

  7. Comparison of high frequency, high temperature core loss and B-H loop characteristics of an 80 Ni-Fe crystalline alloy and two iron-based amorphous alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, William R.; Schwarze, Gene E.; Niedra, Janis M.

    1991-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H characteristics of a nickel-iron crystalline magnetic alloy (Supermalloy) and two iron-based amorphous magnetic materials (Metglas 2605S-3A and Metglas 2605SC) over the frequency range of 1-50 kHz and temperature range of 23-300 C under sinusoidal voltage excitation. The effects of maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined. The Supermalloy and Metglass 2605S-3A and 2605SC data are used to compare the core loss of transformers with identical kVA and voltage ratings.

  8. Hydrogen storage characteristics of mechanically alloyed amorphous metals

    SciTech Connect

    Harris, J.H.; Curtin, W.A.; Schultz, L.

    1988-09-01

    The hydrogen storage properties of a series of mechanically alloyed (MA) amorphous Ni/sub 1//sub --//sub x/Zr/sub x/ alloys are studied, using both gas phase and electrochemical techniques, and are compared to H storage of rapidly quenched (RQ) amorphous Ni/sub 1-//sub x/Zr/sub x/. In the MA alloys, hydrogen resides in the Ni/sub 4-//sub n/Zr/sub n/ (n = 4,3,2) tetrahedral interstitial sites, with a maximum hydrogen-to-metal ratio of 1.9(/sup 4//sub n/)x/sup n/(1-x)/sup 4-//sup n/. These features are identical to those of the RQ alloys and indicate that the topological and chemical order of the MA and RQ materials are essentially the same. However, the typical binding energy of hydrogen in a Ni/sub 4-//sub n/Zr/sub n/ site, E/sub n/, is shifted in the MA alloys relative to the RQ alloys and the distribution of binding energies centered on E/sub n/ is significantly broader in the MA samples. Thus, the MA and RQ alloys are not identical and sample annealing does not alter this subtle distinction. The sensitivity of H storage to the presence of chemical order in binary alloys are analyzed theoretically and the data is found to be most consistent with little or no chemical order (random alloys).

  9. Integral bypass diodes in an amorphous silicon alloy photovoltaic module

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Flaisher, H.

    1991-01-01

    Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.

  10. Pressure-induced transformations in amorphous Si-Ge alloy

    SciTech Connect

    Coppari, F.; Polian, A.; Menguy, N.; Trapananti, A.; Congeduti, A.; Newville, M.; Prakapenka, V.B.; Choi, Y.; Principi, E.; Di Cicco, A.

    2012-03-14

    The pressure behavior of an amorphous Si-rich SiGe alloy ({alpha}-Si{sub x}Ge{sub 1-x}, x = 0.75) has been investigated up to about 30 GPa, by a combination of Raman spectroscopy, x-ray absorption spectroscopy, and x-ray diffraction measurements. The trends of microscopic structural properties and of the Raman-active phonon modes are presented in the whole pressure range. Nucleation of nanocrystalline alloy particles and metallization have been observed above 12 GPa, with a range of about 2 GPa of coexistence of amorphous and crystalline phases. Transformations from the amorphous tetrahedral, to the crystalline tetragonal ({beta}-Sn) and to the simple hexagonal structures have been observed around 13.8 and 21.8 GPa. The recovered sample upon depressurization, below about 4 GPa, shows a local structure similar to the as-deposited one. Inhomogeneities of the amorphous texture at the nanometric scale, probed by high-resolution transmission electron microscopy, indicate that the recovered amorphous sample has a different ordering at this scale, and therefore the transformations can not be considered fully reversible. The role of disordered grain boundaries at high pressure and the possible presence of a high-density amorphous phase are discussed.

  11. Magnetocaloric response of amorphous and nanocrystalline Cr-containing Vitroperm-type alloys

    NASA Astrophysics Data System (ADS)

    Moreno-Ramírez, L. M.; Blázquez, J. S.; Franco, V.; Conde, A.; Marsilius, M.; Budinsky, V.; Herzer, G.

    2016-07-01

    The broad compositional range in which transition metal (TM) based amorphous alloys can be obtained, yields an easily tunable magnetocaloric effect (MCE) in a wide temperature range. In some TM-based alloys, anomalous behaviors are reported, as a non-monotonous trend with magnetic moment (e.g. FeZrB alloys). Moreover, in certain Cr-containing Vitroperm alloys anomalously high values of the magnetic entropy change were published. In this work, a systematic study on MCE response of Cr-containing amorphous alloys of composition Fe74-xCrxCu1Nb3Si15.5B6.5 (with x=2, 8, 10, 12, 13, 14 and 20) has been performed in a broad Curie temperature range from 100 K to 550 K. Curie temperature and magnetic entropy change peak of the amorphous alloys decrease with the increase of Cr content at rates of -25.6 K/at% Cr and -54 mJ kg-1 K-1/at% Cr, respectively, following a linear trend with the magnetic moment in both cases. The presence of nanocrystalline phases has been considered as a possible cause in order to explain the anomalies. The samples were nanocrystallized in different stages, however, the magnetocaloric response decreases as crystallization progresses due to the large separation of the Curie temperatures of the two phases.

  12. Structural difference rule for amorphous alloy formation by ion mixing

    NASA Technical Reports Server (NTRS)

    Liu, B.-X.; Johnson, W. L.; Nicolet, M.A.; Lau, S. S.

    1983-01-01

    A rule is formulated which establishes a sufficient condition that an amorphous binary alloy will be formed by ion mixing of multilayered samples when the two constituent metals are of different crystalline structure, regardless of their atomic sizes and electronegativities. The rule is supported by the experimental results obtained on six selected binary metal systems, as well as by the previous data reported in the literature. The amorphization mechanism is discussed in terms of the competition between two different structures resulting in frustration of the crystallization process.

  13. Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys

    NASA Technical Reports Server (NTRS)

    Aning, A. O.; Wang, Z.; Courtney, T. H.

    1993-01-01

    The kinetics of solution of W, and the subsequent amorphization of Ni, in mechanically alloyed Ni-W alloys has been investigated. As W is a highly abrasive material in the energy intensive devices used for mechanical alloying, we studied the above reactions in different mills. One used hardened steel balls as the grinding media, and the other Al2O3. Abrasion is common to both mills, but Fe wear debris from the hardened steel enters into solution in the Ni rich phases whereas Al2O3 debris is present as small dispersoids. The kinetics of W solution and those of subsequent amorphization do not appear strongly affected by the Fe in solution or the Al2O3 dispersoid. Tungsten dissolves in crystalline Ni in amounts in excess of the equilibrium solubility during alloying. Amorphization of the Ni phase occurs if the W content in this phase exceeds ca. 28 at. pct.

  14. Amorphous Alloy Membranes Prepared by Melt-Spin methods for Long-Term use in Hydrogen Separation Applications

    SciTech Connect

    Chandra, Dhanesh; Kim, Sang-Mun; Adibhatla, Anasuya; Dolan, Michael; Paglieri, Steve; Flanagan, Ted; Chien, Wen-Ming; Talekar, Anjali; Wermer, Joseph

    2013-02-28

    Amorphous Ni-based alloy membranes show great promise as inexpensive, hydrogenselective membrane materials. In this study, we developed membranes based on nonprecious Ni-Nb-Zr alloys by adjusting the alloying content and using additives. Several studies on crystallization of the amorphous ribbons, in-situ x-ray diffraction, SEM and TEM, hydrogen permeation, hydrogen solubility, hydrogen deuterium exchange, and electrochemical studies were conducted. An important part of the study was to completely eliminate Palladium coatings of the NiNbZr alloys by hydrogen heattreatment. The amorphous alloy (Ni0.6Nb0.4)80Zr20 membrane appears to be the best with high hydrogen permeability and good thermal stability.

  15. Correlation of atomic packing with the boson peak in amorphous alloys

    SciTech Connect

    Yang, W. M.; Liu, H. S. E-mail: blshen@seu.edu.cn E-mail: jiangjz@zju.edu.cn; Zhao, Y. C.; Liu, X. J.; Chen, G. X.; Man, Q. K.; Chang, C. T.; Li, R. W. E-mail: blshen@seu.edu.cn E-mail: jiangjz@zju.edu.cn; Dun, C. C.; Shen, B. L. E-mail: blshen@seu.edu.cn E-mail: jiangjz@zju.edu.cn; Inoue, A.; and others

    2014-09-28

    Boson peaks (BP) have been observed from phonon specific heats in 10 studied amorphous alloys. Two Einstein-type vibration modes were proposed in this work and all data can be fitted well. By measuring and analyzing local atomic structures of studied amorphous alloys and 56 reported amorphous alloys, it is found that (a) the BP originates from local harmonic vibration modes associated with the lengths of short-range order (SRO) and medium-range order (MRO) in amorphous alloys, and (b) the atomic packing in amorphous alloys follows a universal scaling law, i.e., the ratios of SRO and MRO lengths to solvent atomic diameter are 3 and 7, respectively, which exact match with length ratios of BP vibration frequencies to Debye frequency for the studied amorphous alloys. This finding provides a new perspective for atomic packing in amorphous materials, and has significant implications for quantitative description of the local atomic orders and understanding the structure-property relationship.

  16. Ultralight amorphous silicon alloy photovoltaic modules for space applications

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Chen, Englade; Fulton, C.; Myatt, A.; Woodyard, J. R.

    1987-01-01

    Ultralight and ultrathin, flexible, rollup monolithic PV modules have been developed consisting of multijunction, amorphous silicon alloys for either terrestrial or aerospace applications. The rate of progress in increasing conversion efficiency of stable multijunction and multigap PV cells indicates that arrays of these modules can be available for NASA's high power systems in the 1990's. Because of the extremely light module weight and the highly automated process of manufacture, the monolithic a-Si alloy arrays are expected to be strongly competitive with other systems for use in NASA's space station or in other large aerospace applications.

  17. Properties of amorphous FeCoB alloy particles (abstract)

    NASA Astrophysics Data System (ADS)

    Charles, S. W.; Wells, S.; Meagher, A.; Mørup, S.; van Wonterghem, J.

    1988-11-01

    Amorphous and crystalline alloy particles (0.05-0.5 nm) of FexCoyBz in which the ratio x:y ranges from 0 to 1 have been prepared by the borohydride reduction of iron and cobalt salts in aqueous solution. The structure of the particles has been studied using Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements of the saturation magnetization, coercivity, and remanence of the particles have been measured. The transition from the amorphous-to-crystalline state has been studied using differential scanning calorimetry (DSC) and thermomagnetometry up to a temperature of 450 °C (see Fig. 1). It has been shown that the fraction of boron in the alloys (10-35 at. %) is dependent upon the rate of addition of salts to borohydride and the concentration of cobalt present; this in turn influences the crystallinity and magnetic properties .

  18. Sonochemical preparation of nanosized amorphous Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Shafi, K. V. P. M.; Gedanken, A.; Goldfarb, R. B.; Felner, I.

    1997-05-01

    Nanosized amorphous alloy powders of Fe20Ni80, Fe40Ni60, and Fe60Ni40 were prepared by sonochemical decomposition of solutions of volatile organic precursors, Fe(CO)5 and Ni(CO)4 in decalin, under an argon pressure of 100 to 150 kPa at 273 K. Magnetic susceptibility of Fe40Ni60 and Fe60Ni40 indicates blocking temperatures of 35 K and a magnetic particle size of about 6 nm. Thermogravimetric measurements of Fe20Ni80 give Curie temperatures of 322 °C for amorphous and 550 °C for crystallized forms. Differential scanning calorimetry exhibits an endothermic transition at 335 °C from a combination of the magnetic phase transition and alloy crystallization. The Mössbauer spectrum of crystallized Fe20Ni80 shows a sextet pattern with a hyperfine field of 25.04 T.

  19. Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy

    DOEpatents

    Guilinger, Terry R.

    1990-01-01

    Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.

  20. Formation of amorphous metal alloys by chemical vapor deposition

    DOEpatents

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  1. Formation of amorphous metal alloys by chemical vapor deposition

    DOEpatents

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  2. Advances in amorphous silicon alloy multijunction cells and modules

    SciTech Connect

    Guha, S.; Yang, J.; Banerjee, A.; Glatfelter, T.; Hoffman, K.; Xu, X.

    1996-01-01

    We discuss the research directions taken to improve the stable efficiency of amorphous silicon alloy multijunction modules. Use of hydrogen dilution during deposition has resulted in improvement of initial efficiency and stability of the component cells in the triple-junction structure. An innovative laser-interconnected module design has resulted in the reduction of optical and electrical losses in the module down to 1{percent}. {copyright} {ital 1996 American Institute of Physics.}

  3. Iron-based amorphous and nanocrystalline nanocomposite soft ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Um, Changyong

    Synthesis → structure → properties relationships have been studied and compared for new multicomponent amorphous alloy systems and amorphous precursors to state of the art magnetic nanocomposite alloys. The research was aimed at comparing and contrasting the crystallization mechanisms (in both bulk and thin film form) in these systems as well as the technical magnetic and mechanical properties deriving from the as-cast and crystallized microstructures. The ultimate goal was to synthesize new alloys with properties which exceeded those of state of the art materials at higher operational frequencies and temperatures of operation. Fe-based multicomponent amorphous alloys with nominal compositions of Fe82-xCoxNb3Ta1Mo1B 13 (x = 0, 6, 12, 18, 20.5, 24, 30, 36, and 41) have been evaluated for soft magnetic applications. Preferential Co partitioning into the amorphous matrix during primary crystallization is inferred from thermomagnetic measurements. The alloy with x = 20.5 composition is shown to be the best candidate for soft magnetic applications. In this alloy system, precipitation of nonmagnetic (FeCo)23B6 phase is found to be responsible for an abrupt decrease in magnetization at secondary crystallization temperature. However, a different mechanism of secondary crystallization is demonstrated for the alloy with x = 20.5 composition. The core loss of the alloy with x = 20.5 is found to exceed the commercial Fe-based amorphous magnetic cores in high frequency (higher than 300 kHz) condition and predicted to be comparable with FINEMET nanocomposite cores in high magnetic induction condition (larger than 12 kG). Nanocrystallization kinetics of NANONPERM thin films with various thicknesses have been investigated. Thickness-dependent crystallization kinetics were observed from thermomagnetic and time-dependent magnetization measurements. Formation of crystallization layer at the interface between Si substrate and NANOPERM layer affects the crystallization during a

  4. Low-band-gap, amorphous-silicon-based alloys by photochemical vapor deposition: Final report, 1 October 1985--30 November 1986

    SciTech Connect

    Baron, B.N.; Hegedus, S.S.; Jackson, S.C.

    1988-02-01

    Thin films of hydrogenated amorphous silicon-germanium alloys were deposited by mercury-sensitized photochemical vapor deposition using a novel photo-CVD reactor. Thin films of a-Si/sub 1-x/Ge/sub x/:H with 0 less than or equal to x less than or equal to 1 and 1.0 less than E/sub g/ less than 1.8 eV were deposited from mixtures of silane and disilane with germane and inert gas diluents at substrate temperatures from 160/degree/ to 200/degree/C. Alloy films were characterized by measurements of photo- and dark conductivity, electron mobility-lifetime product, sub-band-gap absorption, and density of states. Dilution with hydrogen increased the photoconductivity to 10/sup /minus/5/ Scm and mobility-lifetime product to 6 /times/ 10/sup /minus/8/ cm/sup 2/V for alloys having a band gap of 1.4 eV.

  5. In Situ Nanocrystallization-Induced Hardening of Amorphous Alloy Matrix Composites Consolidated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Paul, Tanaji; Katakam, Shravana; Dahotre, Narendra B.; Harimkar, Sandip P.

    2016-04-01

    In situ nanocrystallization of amorphous alloys has recently emerged as a suitable technique for forming nanocomposites with improved mechanical properties. In this paper, we report on the spark plasma sintering (SPS) of Fe-based amorphous alloys with in situ-formed nanocrystals of (Fe,Cr)23(C,B)6. The SPS was performed with a range of sintering temperatures (570-800°C) in and above the supercooled liquid region of the alloy. Significant enhancement in relative density was observed with increasing sintering temperature due to particle deformation and improved interparticle contacts. The formation of nanocrystalline particles and enhanced densification resulted in an increase in the hardness of the nanocomposites from about 1150-1375 VHN.

  6. In Situ Nanocrystallization-Induced Hardening of Amorphous Alloy Matrix Composites Consolidated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Paul, Tanaji; Katakam, Shravana; Dahotre, Narendra B.; Harimkar, Sandip P.

    2016-07-01

    In situ nanocrystallization of amorphous alloys has recently emerged as a suitable technique for forming nanocomposites with improved mechanical properties. In this paper, we report on the spark plasma sintering (SPS) of Fe-based amorphous alloys with in situ-formed nanocrystals of (Fe,Cr)23(C,B)6. The SPS was performed with a range of sintering temperatures (570-800°C) in and above the supercooled liquid region of the alloy. Significant enhancement in relative density was observed with increasing sintering temperature due to particle deformation and improved interparticle contacts. The formation of nanocrystalline particles and enhanced densification resulted in an increase in the hardness of the nanocomposites from about 1150-1375 VHN.

  7. Nucleation of shear bands in amorphous alloys

    PubMed Central

    Perepezko, John H.; Imhoff, Seth D.; Chen, Ming-Wei; Wang, Jun-Qiang; Gonzalez, Sergio

    2014-01-01

    The initiation and propagation of shear bands is an important mode of localized inhomogeneous deformation that occurs in a wide range of materials. In metallic glasses, shear band development is considered to center on a structural heterogeneity, a shear transformation zone that evolves into a rapidly propagating shear band under a shear stress above a threshold. Deformation by shear bands is a nucleation-controlled process, but the initiation process is unclear. Here we use nanoindentation to probe shear band nucleation during loading by measuring the first pop-in event in the load–depth curve which is demonstrated to be associated with shear band formation. We analyze a large number of independent measurements on four different bulk metallic glasses (BMGs) alloys and reveal the operation of a bimodal distribution of the first pop-in loads that are associated with different shear band nucleation sites that operate at different stress levels below the glass transition temperature, Tg. The nucleation kinetics, the nucleation barriers, and the density for each site type have been determined. The discovery of multiple shear band nucleation sites challenges the current view of nucleation at a single type of site and offers opportunities for controlling the ductility of BMG alloys. PMID:24594599

  8. Spectral analysis of creep recovery process in finemet type amorphous alloy

    NASA Astrophysics Data System (ADS)

    Juríková, A.; Csach, K.; Ocelík, V.; Miškuf, J.; Bengus, V. Z.

    2002-01-01

    The creep recovery process in Finemet type amorphous alloy has been analyzed using the method for calculating the relaxation time spectra. The influence of structural relaxation and temperature on the spectra shape has been studied. The creep recovery spectrum of the anelastic deformation of the multicomponent Fe-Nb-Cu-Si-B amorphous alloy seems to be more complex in comparison with standard amorphous alloys.

  9. Characterization of mechanical nanocrystallization process of amorphous Fe{endash}Mo{endash}Si{endash}B alloy by transmission Moessbauer spectroscopy

    SciTech Connect

    Liu, X.D.; Lu, K.; Umemoto, M.

    1997-03-01

    The nanocrystallization process of the amorphous Fe{endash}Mo{endash}Si{endash}B alloy under ball milling is characterization by means of transmission M{umlt o}ssbauer spectroscopy in the present paper. It was found that a single {alpha}-Fe phase with the bcc structure is formed under ball-milling the amorphous Fe{endash}Mo{endash}Si{endash}B alloy. A significant increase in the relative area of the subspectra of 8 Fenn and 7 Fenn and a remarkable decrease in isomer shift and half linewidth of the subspectra of various Fe configurations, especially in the case of 6 Fenn, were observed during the ball milling process. The diffusion of metalloid atoms from the bcc {alpha}-Fe phase to the remaining amorphous phase and {alpha}-Fe/{alpha}-Fe grain boundaries is suggested to occur during the mechanical crystallization of the current amorphous alloy based on the above TMES investigations. {copyright} {ital 1997 Materials Research Society.}

  10. Low-band-gap, amorphous-silicon-based alloys by chemical vapor deposition: Annual subcontract report, 1 October 1985-31 January 1986

    SciTech Connect

    Baron, B.N.; Jackson, S.C.

    1986-12-01

    This research was conducted to determine the potential of photochemical vapor deposition (photo-CVD) for producing high-quality, low-band-gap amorphous silicon germanium alloys for use in high-efficiency, multijunction, thin-film photovoltaic solar cells. A photo-CVD reactor for mercury-sensitized photolysis of silane-germane and disilane-germane mixtures was developed. Alloy thin films of undoped a-Si/sub 1-x/Ge/sub x/:H were deposited using mercury vapor mixed with SiH/sub 4/ or Si/sub 2/H/sub 6/, GeH/sub 4/, and diluent gas of Ar, He, or H/sub 2/. Materials properties were characterized by measurements of Ge content, optical transmission and reflection, and dark and photo-conductivity. Opto-electronic properties of photo-CVD a-Si/sub 1-x/Ge/sub x/:H were found to be comparable to glow discharge and sputtered materials. Moreover, p-i-n solar cells with low-band-gap i-layers were able to be fabricated by photo-CVD.

  11. Effect of bending stresses on the high-frequency magnetic properties and their time stability in a cobalt-based amorphous alloy with an extremely low magnetostriction

    NASA Astrophysics Data System (ADS)

    Kekalo, I. B.; Mogil'nikov, P. S.

    2015-12-01

    An unusual effect of the stresses of bending (toroidal sample diameter D) on the hysteretic magnetic properties ( H c , μ5) of an amorphous Co69Fe3.7Cr3.8Si12B11 alloy with an extremely low magnetostriction (|λ s | ≤ 10-7) is revealed. These properties are measured in a dynamic regime at a magnetic-field frequency f = 0.1-20 kHz. The coercive force of the alloy H c weakly depends on D at low frequencies ( f < 1 kHz), and permeability μ5 ( H = 5 mOe), in contrast, is independent of D at high frequencies and is dependent on D at low frequencies. The samples subjected to high-temperature (390°C) annealing followed by water quenching exhibit "anomalous" dependences: permeability μ5 increases with decreasing toroidal sample radius, i.e., with increasing bending stresses. The detected dependences are related to the fact that magnetization reversal via the displacement of rigid domain walls is predominant at low frequencies and during static measurements and magnetization reversal via the displacement of flexible domain walls is predominant at high frequencies.

  12. Nano-crystallization and magnetic mechanisms of Fe85Si2B8P4Cu1 amorphous alloy by ab initio molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wang, Yaocen; Takeuchi, Akira; Makino, Akihiro; Liang, Yunye; Kawazoe, Yoshiyuki

    2014-05-01

    Iron-based amorphous and nano-crystalline alloys have attracted a growing interest due to their potential in the application of magnetic coil production. However, fundamental understanding of the nano-crystallization mechanisms and magnetic features in the amorphous structure are still lack of knowledge. In the present work, we performed ab initio molecular dynamics simulation to clarify the ionic and electronic structure in atomic scale, and to derive the origin of the good magnetic property of Fe85Si2B8P4Cu1 amorphous alloy. The simulation gave a direct evidence of the Cu-P bonding preference in the amorphous alloy, which may promote nucleation in nano-crystallization process. On the other hand, the electron transfer and the band/orbital features in the amorphous alloy suggests that alloying elements with large electronegativity and the potential to expand Fe disordered matrix are preferred for enhancing the magnetization.

  13. Bulk amorphous metallic alloys: Synthesis by fluxing techniques and properties

    SciTech Connect

    He, Yi; Shen, Tongde; Schwarz, R.B.

    1997-05-01

    Bulk amorphous alloys having dimensions of at least 1 cm diameter have been prepared in the Pd-Ni-P, Pd-Cu-P, Pd-Cu-Ni-P, and Pd-Ni-Fe-P systems using a fluxing and water quenching technique. The compositions for bulk glass formation have been determined in these systems. For these bulk metallic glasses, the difference between the crystallization temperature T{sub x}, and the glass transition temperature T{sub g}, {Delta}T = T{sub x} - T{sub g}, ranges from 60 to 1 10 K. These large values of {Delta}T open the possibility for the fabrication of amorphous near net-shape components using techniques such as injection molding. The thermal, elastic, and magnetic properties of these alloys have been studied, and we have found that bulk amorphous Pd{sub 40}Ni{sub 22.5}Fe{sub 17.5}P{sub 20} has spin glass behavior for temperatures below 30 K. 65 refs., 14 figs., 3 tabs.

  14. Structural and thermal properties of Cu-Hf-Ti bulk amorphous alloys

    NASA Astrophysics Data System (ADS)

    Rontó, V.; Nagy, E.; Svéda, M.; Roósz, A.; Tranta, F.

    2009-01-01

    Cu-Hf-Ti amorphous alloys are high strength and wear resistant materials. Master alloys of Cu57.5Hf27.5Ti15 and Cu57.5Hf25Ti17.5 ternary alloys have been prepared by arc melting, and wedge and rod shaped samples have been cast by centrifugal casting. Liquidus and solidus temperatures of the alloys were determined by DTA. The fully amorphous size was determined by X-ray diffraction. Thermodynamic properties of the amorphous alloys were studied by DSC measurements and Kissinger analyses were performed.

  15. First-principle simulation on the crystallization tendency and enhanced magnetization of Fe76B19P5 amorphous alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yaocen; Zhang, Yan; Takeuchi, Akira; Makino, Akihiro; Liang, Yunye; Kawazoe, Yoshiyuki

    2015-01-01

    Iron-based amorphous alloys have attracted a growing interest due to their potential in the application of magnetic coil production. However, the magnetization of this kind of material is usually low due to the lack of long range ordering and high alloying element content. In this paper, an Fe76B19P5 amorphous alloy was simulated with ab initio molecular dynamics based on a previous simulation work on an Fe76Si9B10P5 amorphous alloy exhibiting that electron absorbers such as B and P can help enhance the magnetization of nearby Fe atoms. The present simulation results show that replacing Si with B can destabilize the amorphous structure, making it easier to crystallize, but no separate α-Fe participation can be observed in experiments during annealing due to its high B/P content. The results also show an increase in saturation magnetization by 8% can be expected due to the intensified electron transfer from Fe to B/P, and the glass forming ability decreases correspondingly. The idea of enhancing electron transfer can be applied to the development of other Fe-based amorphous alloys for the purpose of larger saturation magnetization.

  16. Amorphous silicon-carbon alloys and amorphous carbon from direct methane and ethylene activation by ECR

    SciTech Connect

    Conde, J.P.; Chu, V.; Giorgis, F.; Pirri, C.F.; Arekat, S.

    1997-07-01

    Hydrogenated amorphous silicon-carbon alloys are prepared using electron-cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition. Hydrogen is introduced into the source resonance cavity as an excitation gas. Silane is introduced in the main chamber in the vicinity of the plasma stream, whereas the carbon source gases, methane or ethylene, are introduced either with the silane or with the hydrogen as excitation gases. The effect of the type of carbon-source gas, excitation gas mixture and silane-to-carbon source gas flow ratio on the deposition rate, bandgap, subgap density of states, spin density and hydrogen evolution are studied.

  17. Spectroscopic ellipsometry-based study of optical properties of amorphous and crystalline ZnSnO alloys and Zn2SnO4 thin films grown using sputtering deposition: Dielectric function and subgap states

    NASA Astrophysics Data System (ADS)

    Ko, Kun Hee; So, Hyeon Seob; Jung, Dae Ho; Park, Jun Woo; Lee, Hosun

    2016-04-01

    We investigated the optical properties of amorphous and crystalline zinc tin oxide (ZTO) thin films grown on SiO2/Si substrates with varying compositions via a co-sputtering deposition method at room temperature. The co-sputtering targets consist of SnO2 and ZnO. By varying the relative power ratio of the two targets, we demonstrate the ability to control the Sn and Zn composition of the resulting ZTO thin films. The ratio of [Sn]/([Sn] + [Zn]) atomic compositions was estimated at 11%, 29%, 42%, 54%, and 60%. Using a 600 °C annealing process, the as-grown amorphous ZTO films were transformed into crystalline ZTO films. The dielectric functions were obtained based on the measured ellipsometric angles, ψ and Δ. We determined the dielectric functions, absorption coefficients, and optical gap energies of ZTO thin films with varying compositions. The dielectric functions, absorption coefficients, and optical gap energies of amorphous and crystalline Zn2SnO4 thin films were obtained at 29 at. % of Sn. Subgap states at 1.6 eV (A) and 2.8 eV (B) of ZnSnO alloys and Zn2SnO4 films were found in the imaginary part of the dielectric function spectra. The subgap state intensities were reduced via a nitrogen gas annealing. Possible origins of the observed subgap states will be discussed.

  18. Localized excitations in amorphous silicon alloys

    SciTech Connect

    Not Available

    1987-10-01

    The valence band edge of a-Si:H is sensitive to H content, while the conduction band edge is not. The optical gap increases 50% going from the isolated SiH group to the polysilane configuration; the smallest energy gap was for the polycrystal models for a-Si:H. Only the complexes involving the Si dangling bond give rise to active states deep in he a-Si fundamental energy gap. Positions of dangling bond defect state agree with photoluminescence of undoped and oxidized a-Si:H films. Incorporation of halogens into a-Si:H increases the optical gap, quasi-localized states near conduction band tail, and resonances deep in the valence band. Carbon increases the optical gap and produces resonances deep in both bands, while tin does not increase the optical gap and produces resonances in upper part of a-Si:H valence band; this is consistent with a model based on relative strength of Si-Si bond to Si-impurity bond. Effects of P dopant are consistent with models based on P in a-Si:H producing dopant-defect pairs, increased Fermi energy, etc. B substitutional dopants (tetrahedral) produces states near the valence band edge which resemble the show impurity levels in crystalline Si. Trigonally bonded B gives rise to states within the a-Si:H fundamental gap. B-H complexes suggest B-H bonds in B-doped a-Si:H, even at low B contents. Figs, 22 refs. (DLC)

  19. Corrosion behavior of amorphous fe-cr-al-p-c ribbon alloys

    NASA Astrophysics Data System (ADS)

    Cho, Kangjo; Hwang, Choll-Hong; Ryeom, Yeong-Jo; Pak, Chang-Su

    1982-05-01

    Corrosion resistance of amorphous Fe72Cr8-xAlxP13C7 ribbons produced by a rapid quenching method has been investigated in several solutions. The corrosion test for amorphous ribbons was carried out, and anodic polarization curves have been measured in the solutions. Resultantly, even in the amorphous Fe72Cr8-xAlxP13C7 ribbons containing a low Cr content, this composition of amorphous alloys showed the high corrosion resistance.

  20. Amorphous structure and properties in laser-clad Ni-Cr-Al coating on Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Liang, Gongying; Wong, T. T.; Su, J. Y.; Woo, C. H.

    1999-09-01

    A Ni-Cr-Al coating was clad by a 5 kW CO2 laser with different laser power on Al-Si alloy. Using transmission electron microscopy, a mixing microstructure containing Ni- based amorphous structures was observed in the laser clad zones. As the uniformity of chemical composition and temperature is poor in the laser cladding, the amorphous structure with some Ni3Al crystals coexisted in the cladding. According to the morphologies of Ni-based amorphous structures, the amorphous structure existed not only in the net-like boundaries surrounding the granular structure but also in the granular structure. The microhardness of the mixture amorphous structure is between HV 600 - 800, which is lower than that of crystal phases in the coating. A differential thermal analysis showed that Ni- based amorphous structure exhibits a higher initial crystallizing temperature (about 588 degree(s)C), which is slightly higher than that of the eutectic temperature of Al- Si alloy. The wear experimental results showed that some amorphous structure exist in the laser cladding can reduce the peeling of the granular phases from matrix, and improve the its wear resistance.

  1. Barkhausen noise in FeCoB amorphous alloys (abstract)

    NASA Astrophysics Data System (ADS)

    Durin, G.; Bertotti, G.

    1996-04-01

    In recent years, the Barkhausen effect has been indicated as a promising tool to investigate and verify the ideas about the self-organization of physical complex systems displaying power law distributions and 1/f noise. When measured at low magnetization rates, the Barkhausen signal displays 1/fα-type spectra (with α=1.5÷2) and power law distributions of duration and size of the Barkhausen jumps. These experimental data are quite well described by the model of Alessandro et al. which is based on a stochastic description of the domain wall dynamics over a pinning field with brownian properties. Yet, this model always predicts a 1/f 2 spectrum, and, at the moment, it is not clear if it can take into account possible effects of self-organization of the magnetization process. In order to improve the power of the model and clarify this problem, we have performed a thorough investigation of the noise spectra and the amplitude distributions of a wide set of FeCoB amorphous alloys. The stationary amplitude distribution of the signal is very well fitted by the gamma distribution P(ν)=νc-1 exp(-ν)/Γ(c), where ν is proportional to the domain wall velocity, and c is a dimensionless parameter. As predicted in Ref. , this parameter is found to have a parabolic dependence on the magnetization rate. In particular, the linear coefficient is related to the amplitude of the fluctuations of the pinning field, a parameter which can be measured directly from the power spectra. In all measured cases, the power spectra show α exponents less than 2, and thus poorly fitted by the model. Actually, the absolute value of the high frequency spectral density is not consistent with the c parameter determined from the amplitude distribution data. This discrepancy requires to introduce effects not taken into account in the model, as the propagation of the jumps along the domain wall. This highly enhances the fit of the data and indicates effects of propagation on the scale of a few

  2. Calculating formation range of binary amorphous alloys fabricated by electroless plating

    NASA Astrophysics Data System (ADS)

    Zhang, Bangwei; Liao, Shuzhi; Shu, Xiaolin; Xie, Haowen

    2016-06-01

    A lot of amorphous alloy deposits in the binary (Ni, Co, Cu)-(P, B) alloy systems fabricated by electroless plating (EP) have been reported up to date. But no one reported their theoretical modeling of the amorphous formation and calculated their concentration range of amorphous formation (RAF). Using Miedema model and subregular model scheme, the RAFs for the six EP (Ni, Co, Cu)-(P, B) alloys and three Ni-Cu, Ni-Co and Co-Cu alloys have been calculated systematically for the first time. The calculated results are in agreement with experimental observations. Experiments and calculations for the RAFs in the latter three alloy systems reveal that not any RAF formed except crystalline states. The huge difference between the six metal-metalloid alloys and three metal-metal alloys in RAF has been discussed in detail in the paper.

  3. Electrical transport properties of amorphous Ni32Pd53P15 alloy

    NASA Astrophysics Data System (ADS)

    Prakruti, Chaudhari; Joshi, R. H.; Bhatt, N. K.; Thakore, B. Y.

    2015-08-01

    A ternary alloy containing nickel, palladium and phosphorous in amorphous form has been studied. The electrical transport properties viz. electrical resistivity, thermoelectrical power (TEP), thermal conductivity are computed using our recently proposed potential. In the present work, five screening functions have been employed to incorporate the exchange and correlation effects. The theoretical structure factors due to hard core fluid theory have been used in the calculations. The liquid alloy is studied as a function of its composition at temperature 294 K. The partial structure factors of the compound-forming Ni32Pd53P15 ternary alloy has been calculated by considering Hoshino's m-component hard-sphere mixture, which is based on Percus-Yevic equation of Hiroike.

  4. Radiation Resistance Studies of Amorphous Silicon Alloy Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys was investigated. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below lE14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  5. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  6. Measurement of Crystallization Temperature Using Thermography for Thin Film Amorphous Alloy Samples

    NASA Astrophysics Data System (ADS)

    Hata, Seiichi; Aono, Yuko; Sakurai, Junpei; Shimokohbe, Akira

    2009-03-01

    This report describes a new non-contact measurement method for the crystallization temperature (Tx) of a thin film amorphous alloy. The thermal emissivity of the amorphous alloy sample is predicted to be modified when it crystallizes. It was attempted to relate this modification to changes in the apparent temperature by thermography. Thin film amorphous alloys of Pt67Si33 and Pt73Si27 were sputtered onto an Al2O3 substrate and then heated at 20 K/min in vacuum, and the film temperature was monitored by thermography. The Tx indicated by the proposed method coincided with the temperature measured by conventional differential scanning calorimeter within 8 K.

  7. Fabrication of nanoporous silver by de-alloying Cu-Zr-Ag amorphous alloys

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Xiao, Shang-gang; Zhang, Tao

    2016-07-01

    Nanoporous silver (NPS) with a ligament size ranging from 15 to 40 nm was fabricated by de-alloying (Cu50Zr50)100- x Ag x ( x = 10at%, 20at%, 30at%, and 40at%) amorphous ribbons in a mixed aqueous solution of hydrofluoric (HF) acid and nitric acid under free corrosion conditions. Nanoporous silver ligaments and pore sizes were able to be fine-tuned through tailoring the chemical composition, corrosion conditions, and de-alloying time. The ligament size increases with an increase in Ag content and de-alloying time, but decreases with an increase in HF concentration. This phenomenon may be attributed to the dissolution of Zr/Cu and the diffusion, aggregation, nucleation, and recrystallization of Ag, leading to an oriented attachment of adjacent nanocrystals as revealed by TEM analysis.

  8. Relaxation of bending stresses and the reversibility of residual stresses in amorphous soft magnetic alloys

    SciTech Connect

    Kekalo, I. B.; Mogil’nikov, P. S.

    2015-06-15

    The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co{sub 69}Fe{sub 3.7}Cr{sub 3.8}Si{sub 12.5}B{sub 11} and Fe{sub 57}Co{sub 31}Si{sub 2.9}B{sub 9.1}: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons is shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys.

  9. Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction

    PubMed Central

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-01-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum–nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum–nickel catalyst, and this composite catalyst composed of crystalline platinum–nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon. PMID:27503412

  10. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-08-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.

  11. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction.

    PubMed

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-01-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon. PMID:27503412

  12. The use of amorphous boron powder enhances mechanical alloying in soft magnetic FeNbB alloy: A magnetic study

    NASA Astrophysics Data System (ADS)

    Ipus, J. J.; Blázquez, J. S.; Franco, V.; Conde, A.

    2013-05-01

    Saturation magnetization and magnetic anisotropy have been studied during mechanical alloying of Fe75Nb10B15 alloys prepared using crystalline and commercial amorphous boron. The evolution of saturation magnetization indicates a more efficient dissolution of boron into the matrix using amorphous boron, particularly for short milling times. The magnetization of the crystalline phase increases as boron is incorporated into this phase. Two milling time regimes can be used to describe the evolution of magnetic anisotropy: a first regime governed by microstrains and a second one mainly governed by crystal size and amorphous fraction.

  13. The use of amorphous boron powder enhances mechanical alloying in soft magnetic FeNbB alloy: A magnetic study

    SciTech Connect

    Ipus, J. J.; Blazquez, J. S.; Franco, V.; Conde, A.

    2013-05-07

    Saturation magnetization and magnetic anisotropy have been studied during mechanical alloying of Fe{sub 75}Nb{sub 10}B{sub 15} alloys prepared using crystalline and commercial amorphous boron. The evolution of saturation magnetization indicates a more efficient dissolution of boron into the matrix using amorphous boron, particularly for short milling times. The magnetization of the crystalline phase increases as boron is incorporated into this phase. Two milling time regimes can be used to describe the evolution of magnetic anisotropy: a first regime governed by microstrains and a second one mainly governed by crystal size and amorphous fraction.

  14. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies

  15. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  16. Anisotropic phase separation in amorphous Fe--Ge alloys

    SciTech Connect

    Regan, M.J.; Bienenstock, A.

    1993-04-01

    Magnetron sputtered amorphous Fe{sub x}Ge{sub 100-x} films have been examined with anomalous small-angle x-ray scattering (ASAXS) in an attempt to characterize composition fluctuations which have been previously reported in this system. Films grown under various deposition conditions have been studied, with the scattering vector both in and oblique to the plane of the films, to search for anisotropy. By manipulating the deposited power flux and rates of growth, films which have the same composition can be grown to different states of phase separation. The total correlation functions have been calculated from the oblique scattering experiments. The anisotropy can be successfully modeled as a close-packing of oriented prolate ellipsoidal particles, with the elongated axis along the direction of film growth. A method for using these measurements to determine the compositions of the phase-separating species has been developed and utilized. The results indicate phase separation into a-Ge and a-FeGe{sub 2} for the a-Fe{sub x}Ge{sub 100-x} (x<33) alloy.

  17. Anisotropic phase separation in amorphous Fe--Ge alloys

    SciTech Connect

    Regan, M.J.; Bienenstock, A.

    1993-04-01

    Magnetron sputtered amorphous Fe[sub x]Ge[sub 100-x] films have been examined with anomalous small-angle x-ray scattering (ASAXS) in an attempt to characterize composition fluctuations which have been previously reported in this system. Films grown under various deposition conditions have been studied, with the scattering vector both in and oblique to the plane of the films, to search for anisotropy. By manipulating the deposited power flux and rates of growth, films which have the same composition can be grown to different states of phase separation. The total correlation functions have been calculated from the oblique scattering experiments. The anisotropy can be successfully modeled as a close-packing of oriented prolate ellipsoidal particles, with the elongated axis along the direction of film growth. A method for using these measurements to determine the compositions of the phase-separating species has been developed and utilized. The results indicate phase separation into a-Ge and a-FeGe[sub 2] for the a-Fe[sub x]Ge[sub 100-x] (x<33) alloy.

  18. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  19. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  20. CuZrAl amorphous alloys prepared by casting and milling

    NASA Astrophysics Data System (ADS)

    Tomolya, K.; Janovszky, D.; Sveda, M.; Hegman, N.; Solyom, J.; Roosz, A.

    2009-01-01

    Several preparation methods are available for the production of amorphous alloys. During the experiment described in this paper (Cu58Zr42)100-xAlx (x = 0-14,8; in at%) amorphous alloys were prepared by casting and ball-milling. The ingots were produced by arc melting. Wedge-shaped samples were prepared from the ingots by centrifugal casting into copper mould. The microstructures of these samples were defined by SEM. The amorphous samples were analysed by DSC and the activation energy of the crystallization processes was calculated from the measured temperatures. The master alloys of identical composition were milled by ball-mill for different periods of time. The powders were analysed by XRD in order to define the amorphous fractions.

  1. Semiquantitative study of amorphous structures in laser cladding of ZL111 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Xianqin; Cheng, Zhaogu; Liang, Gongying; Xia, Jin'an; Xu, Guoliang

    2000-02-01

    This paper deals with amorphous structures in the laser cladding. A kind of Ni-Cr-Al alloy was sprayed on the substrate, which was ZL111 alloy, to be the coating material. The coating was clad by 5 kW transverse flow CO2 laser. The observation of SEM and TEM revealed that in the laser cladding there were amorphous structures which appeared two different morphologies: one was space curved flake-like, which existed in the white web-like structures; the other was fir leaf-like, which existed in the grain-like structures. Differential thermal analysis (DTA) was used to semi- quantitatively determine the content of the amorphous structures. A curve relation was obtained between the content of amorphous structures and the dimensionless laser cladding parameter C. The changes of the amorphous structures after annealing were also shown.

  2. Achieving tailorable magneto-caloric effect in the Gd-Co binary amorphous alloys

    NASA Astrophysics Data System (ADS)

    Wu, C.; Ding, D.; Xia, L.; Chan, K. C.

    2016-03-01

    Tailorable magnetic properties and magneto-caloric effect were achieved in the Gd-Co binary amorphous alloys. It was found that the Curie temperature (Tc) of the GdxCo100-x (x=50, 53, 56, 58, 60) metallic glasses can be tuned by changing the concentration of Gd as Tc =708.8-8.83x, and the mechanism involved was investigated. On the other hand, a linear correlation between the peak value of magnetic entropy change (-Δ Smpeak) and Tc-2/3 is found in the amorphous alloys with a linear correlation coefficients of above 0.992. Therefore, the -ΔSmpeak of the Gd-Co binary amorphous alloys under different magnetic fields can be easily tailored by adjusting the composition of the alloy.

  3. Calorimetry study of the synthesis of amorphous Ni-Ti alloys by mechanical alloying. [Ni33 Ti67

    SciTech Connect

    Schwarz, R.B.; Petrich, R.R.

    1988-01-01

    We synthesized amorphous Ni/sub 33/Ti/sub 67/ alloy powder by ball milling (a) a mixture of elemental nickel and titanium powders and (b) powders of the crystalline intermetallic NiTi/sub 2/. We characterized the reaction products as a function of ball-milling time by differential scanning calorimetry and x-ray diffraction. The measurements suggest that in process (a) the amorphous alloy forms by a solid-state interdiffusion reaction at the clean Ni/Ti interfaces generated by the mechanical attrition. In process (b), the crystalline alloy powder stores energy in the form of chemical disorder and lattice and point defects. The crystal-to-amorphous transformation occurs when the stored energy reaches a critical value. The achievement of the critical stored energy competes with the dynamic recovery of the lattice. 23 refs., 7 figs.

  4. EXAFS Measurements and Reverse Monte Carlo Modeling of Atomic Structure in Amorphous Ni80P20 Alloys

    SciTech Connect

    Luo,W.; Ma, E.

    2008-01-01

    This paper presents a full account of the EXAFS measurements and reverse Monte Carlo (RMC) modeling of the atomic arrangements and short-to-medium range structure in an amorphous Ni-P alloy, expanding on the description included in our recent publication. The atomic packing is analyzed from the standpoint of solute atoms. The short-to-medium range structure is discussed based on single-solute-centered quasi-equivalent clusters that form due to strong chemical short-range ordering, and the topological order is described in terms of both intra-cluster and inter-cluster dense packing for efficient filling of space. This analysis is also conducted for amorphous Ni80P20 prepared via different processing routes, to observe if the polyamorphism suggested in literature for amorphous Ni-P can be confirmed from the local structure perspective. The structural differences between the proposed polymorphs are apparently subtle and a full resolution of this issue is found to be beyond the capabilities of our EXAFS/RMC modeling approach. The amorphous structural features uncovered are also compared briefly with those observed before in amorphous alloy systems with positive heat of mixing.

  5. Synthesis of Amorphous Alloy Nanoparticles by Thermal Plasma Jet in a Quenching Tube

    NASA Astrophysics Data System (ADS)

    Choi, Sooseok; Park, Dong-Wha

    2015-09-01

    Recently, amorphous alloy nanoparticles have received a great attention in various applications such as catalysts, compact and highly efficient transformers, electrode material for Li-ion batteries, etc. Several methods such as microwave heating, laser ablation, and sonification have been studied to synthesize amorphous metal nanoparticles. In the present work, a high velocity thermal plasma jet generated by an arc plasma torch was used to produce iron alloy nanoparticles from an amorphous raw material which was a spherical shaped powder with the mean size of 25 μm. In order to synthesize amorphous alloy nanoparticles, a quenching tube where cooling gas was injected in different axial positions. Alloy nanoparticles were produced in a relatively high input power of higher than 10 kW in a fixed powder feeding at 300 mg/min. The crystallinity of synthesized nanoparticles was decreased with increasing the quenching gas flow rate. The amorphous alloy nanoparticles were found when the quenching gas injection position was 200 mm away from the exit of the plasma torch with the highest quenching gas flow rate of 20 L/min. In the numerical analysis, the highest quenching rate was also expected at the same condition.

  6. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  7. The formation of hysteretic magnetic properties in amorphous alloys of various classes upon thermomagmetic treatment in a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Kekalo, I. B.; Mogil'nikov, P. S.

    2016-06-01

    In this paper, we have studied the effects of the thermomagnetic treatment in a transverse magnetic field (TMaT⊥) on the permeability of the amorphous alloy Co69Fe3.7Cr3.8Si12.5B11 with such a low saturation magnetostriction ( λ s 10-7) that, in the ribbons of this alloy rolled into a toroid, a sharp longitudinal magnetic texture is observed ( K sq > 0.90). It has been revealed that the permeability μ4 ( H = 4 mOe, f = 1 kHz) as a function of the annealing temperature or time of holding at a temperature is described by a curve with a maximum. This maximum is observed at a coefficient of the squareness of the hysteresis loop K sq,m in the range of 0.2 ≤ K sq,m ≤ 0.4. The regimes of the TMaT have been determined that provide optimum values of the permeability μ4 (15000) without a loss of the ductile state of the ribbons of this alloy. Based on the example of an iron-based alloy of composition Fe57Co31Si2.9B9.1 with λs = 35 × 10-6, it has been shown that the formation of the hysteretic magnetic properties upon the TMaT⊥ depends substantially on the magnitude of the magnetostriction and the Curie temperature of the amorphous alloys.

  8. Prediction of Failure Due to Thermal Aging, Corrosion and Environmental Fracture in Amorphous and Titanium Alloys

    SciTech Connect

    Farmer, J C

    2003-04-15

    DARPA is exploring a number of advanced materials for military applications, including amorphous metals and titanium-based alloys. Equipment made from these materials can undergo degradation due to thermal aging, uniform corrosion, pitting, crevice corrosion, denting, stress corrosion cracking, corrosion fatigue, hydrogen induced cracking and microbial influenced corrosion. Amorphous alloys have exceptional resistance to corrosion, due in part to the absence of grain boundaries, but can undergo crystallization and other phase instabilities during heating and welding. Titanium alloys are extremely corrosion resistant due to the formation of a tenacious passive film of titanium oxide, but is prone to hydrogen absorption in crevices, and hydrogen induced cracking after hydrogen absorption. Accurate predictions of equipment reliability, necessary for strategic planning, requires integrated models that account for all relevant modes of attack, and that can make probabilistic predictions. Once developed, model parameters must be determined experimentally, and the validity of models must be established through careful laboratory and field tests. Such validation testing requires state-of-the-art surface analytical techniques, as well as electrochemical and fracture mechanics tests. The interaction between those processes that perturb the local environment on a surface and those that alter metallurgical condition must be integrated in predictive models. The material and environment come together to drive various modes of corrosive attack (Figure 1). Models must be supported through comprehensive materials testing capabilities. Such capabilities are available at LLNL and include: the Long Term Corrosion Test Facility (LTCTF) where large numbers of standard samples can be exposed to realistic test media at several temperature levels; a reverse DC machine that can be used to monitor the propagation of stress corrosion cracking (SCC) in situ; and banks of potentiostats with

  9. Relaxation process of Fe(CuNb)SiB amorphous alloys investigated by dynamical calorimetry

    SciTech Connect

    Zhu, J.; Clavaguera-Mora, M.T.; Clavaguera, N.

    1997-03-01

    Differential scanning calorimetry and dynamic differential scanning calorimetry were used to analyze the relaxation process of Fe(CuNb)SiB amorphous alloys. The Curie temperature (T{sub C}) evolution of the amorphous phase during relaxation as a function of heating rate, time and pre-annealing temperature were measured. Two distinct relaxation processes are observed, consequent with topological and chemical short range order changes. {copyright} {ital 1997 American Institute of Physics.}

  10. Magnetic, magnetocaloric properties and phenomenological model in amorphous Fe60Ru20B20 alloy

    NASA Astrophysics Data System (ADS)

    Boutahar, A.; Lassri, H.; Hlil, E. K.

    2015-11-01

    Magnetic, magnetocaloric properties and phenomenological model of amorphous Fe60Ru20B20 alloy are investigated in detail. The amorphous alloy has been synthesized using melt spinning method. The magnetic transition nature undergoes a second-order magnetic phase transition from ferromagnetic to paramagnetic states with a Curie temperature of 254 K. Basis on the thermodynamic Maxwell's relation, magnetic entropy change (-ΔSM) is calculated. Further, we also report a theoretical investigation of the magnetocaloric effect using a phenomenological model. The best model parameters and their variation with temperature and the magnetic field were determined. The theoretical predictions are found to agree closely with experimental measurements.

  11. Synthesis and Thermal Stability of Amorphous Be-B-X Alloy Coatings

    SciTech Connect

    Jankowski, A F; Wall, M A; Nieh, T G

    2004-10-14

    Amorphous Be-B-X alloys are vapor deposited as coatings. The microstructure and hardness of the Be-B-X coatings are examined using transmission electron microscopy and nanoindentation, respectively. Whereas a Be-B-2.5 at.% Cu amorphous coating is found to crystallize to a cubic Be-33 at.% B phase at 673 K, a coating of Be-B-1.8 at.% Fe-0.4 at.% Cr-0.3 at.% Co does not crystallize until at a higher temperature of 748 K. The hardness of the amorphous Be-B-X coating increases with B content but is less than its crystalline counterparts.

  12. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon.

    PubMed

    Xin, Yunchang; Jiang, Jiang; Huo, Kaifu; Tang, Guoyi; Tian, Xiubo; Chu, Paul K

    2009-06-01

    The fast degradation rates in the physiological environment constitute the main limitation for the applications of surgical magnesium alloys as biodegradable hard-tissue implants. In this work, a stable and dense hydrogenated amorphous silicon coating (a-Si:H) with desirable bioactivity is deposited on AZ91 magnesium alloy using magnetron sputtering deposition. Raman spectroscopy and Fourier transform infrared spectroscopy reveal that the coating is mainly composed of hydrogenated amorphous silicon. The hardness of the coated alloy is enhanced significantly and the coating is quite hydrophilic as well. Potentiodynamic polarization results show that the corrosion resistance of the coated alloy is enhanced dramatically. In addition, the deterioration process of the coating in simulated body fluids is systematically investigated by open circuit potential evolution and electrochemical impedance spectroscopy. The cytocompatibility of the coated Mg is evaluated for the first time using hFOB1.19 cells and favorable biocompatibility is observed. PMID:18449935

  13. Crystal nucleation in amorphous (Au/100-y/Cu/y/)77Si9Ge14 alloys

    NASA Technical Reports Server (NTRS)

    Thompson, C. V.; Greer, A. L.; Spaepen, F.

    1983-01-01

    Because, unlike most metallic glasses, melt-spun alloys of the series (Au/100-y/Cu/y/)77Si9Ge14 exhibit well separated glass transition and kinetic crystallization temperatures, crystallization can be studied in the fully relaxed amorphous phase. An isothermal calorimetric analysis of the devitrification kinetics of the amorphous alloy indicates sporadic nucleation and a constant growth rate. It is found for the cases of alloys with y values lower than 25 that the classical theory of homogeneous nucleation is consistent with observations, including transient effects. An analysis of the crystallization kinetics shows that slow crystal growth rates play an important role in glass formation in these alloys. Although the reduced glass transition temperature increases with Cu content, glass formation is more difficult at high Cu contents, perhaps because of a difference in nucleus composition.

  14. Phase transformation during mechano-synthesis of nanocrystalline/amorphous Fe–32Mn–6Si alloys

    SciTech Connect

    Amini, Rasool; Shamsipoor, Ali; Ghaffari, Mohammad; Alizadeh, Morteza; Okyay, Ali Kemal

    2013-10-15

    Mechano-synthesis of Fe–32Mn–6Si alloy by mechanical alloying of the elemental powder mixtures was evaluated by running the ball milling process under an inert argon gas atmosphere. In order to characterize the as-milled powders, powder sampling was performed at predetermined intervals from 0.5 to 192 h. X-ray florescence analyzer, X-ray diffraction, scanning electron microscope, and high resolution transmission electron microscope were utilized to investigate the chemical composition, structural evolution, morphological changes, and microstructure of the as-milled powders, respectively. According to the results, the nanocrystalline Fe–Mn–Si alloys were completely synthesized after 48 h of milling. Moreover, the formation of a considerable amount of amorphous phase during the milling process was indicated by quantitative X-ray diffraction analysis as well as high resolution transmission electron microscopy image and its selected area diffraction pattern. It was found that the α-to-γ and subsequently the amorphous-to-crystalline (especially martensite) phase transformation occurred by milling development. - Graphical abstract: Mechano-synthesis of nanocrystalline/amorphous Fe–32Mn–6Si shape memory alloys in the powder form: amorphous phase formation, α-to-γ phase transformation, mechano-crystallization of the amorphous, and martensite phase formation during the process. Highlights: • During MA, the α-to-γ phase transformation and amorphization occurred. • Mechano-crystallization of the amorphous phase occurred at sufficient milling time. • The formation of high amount of ε-martensite was evidenced at high milling times. • The platelet, spherical, and then irregular particle shapes was extended by MA. • By MA, the particles size was increased, then reduced, and afterward re-increased.

  15. Cubic AlNi compound dispersed Mg-based amorphous matrix composites prepared by rapid solidification

    SciTech Connect

    Niikura, A.; Tsai, A.P.; Inoue, A.; Masumoto, T. . Inst. for Materials Research)

    1994-06-01

    Magnesium is known as the lightest metal which has been used as a construction material. Recently, a series of amorphous Al-and Mg-based alloys having high strength and a wider supercooled liquid region have been found in Mg (or Al)-Tm (transition metal)-Ln (lanthanide metal) system, with indications of becoming a high specific strength material. Moreover, it was found that the dispersion of ultrafine fcc or hcp particles in the amorphous matrix improved the mechanical strength. On the other hand, a metal matrix composite material is a promising approach to materials development from which one can realize the enhanced mechanical properties of rapidly quenched metals in widespread technical application. The melt-spinning method has been combined with some techniques to incorporate carbide, nitride, and oxide particles into the molten alloy, to prepare an amorphous metal matrix composite. In general, the composite was prepared by consolidation techniques at sufficiently high temperature, which could lead to the crystallization. Thus, the preparation of amorphous composite is rarely achieved of amorphous phase. Recently, the authors have fabricated magnesium amorphous matrix composites with cubic AlNi compound (c-AlNi) as dispersoid by melt-spinning without any extra process. In this communication, they report the fabrication, structure, and hardness of this special amorphous composite.

  16. All-thermal switching of amorphous Gd-Fe alloys: Analysis of structural properties and magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Chimata, Raghuveer; Isaeva, Leyla; Kádas, Krisztina; Bergman, Anders; Sanyal, Biplab; Mentink, Johan H.; Katsnelson, Mikhail I.; Rasing, Theo; Kirilyuk, Andrei; Kimel, Alexey; Eriksson, Olle; Pereiro, Manuel

    2015-09-01

    In recent years there has been an intense interest in understanding the microscopic mechanism of thermally induced magnetization switching driven by a femtosecond laser pulse. Most of the effort has been dedicated to periodic crystalline structures while the amorphous counterparts have been less studied. By using a multiscale approach, i.e., first-principles density functional theory combined with atomistic spin dynamics, we report here on the very intricate structural and magnetic nature of amorphous Gd-Fe alloys for a wide range of Gd and Fe atomic concentrations at the nanoscale level. Both structural and dynamical properties of Gd-Fe alloys reported in this work are in good agreement with previous experiments. We calculated the dynamic behavior of homogeneous and inhomogeneous amorphous Gd-Fe alloys and their response under the influence of a femtosecond laser pulse. In the homogeneous sample, the Fe sublattice switches its magnetization before the Gd one. However, the temporal sequence of the switching of the two sublattices is reversed in the inhomogeneous sample. We propose a possible explanation based on a mechanism driven by a combination of the Dzyaloshinskii-Moriya interaction and exchange frustration, modeled by an antiferromagnetic second-neighbor exchange interaction between Gd atoms in the Gd-rich region. We also report on the influence of laser fluence and damping effects in the all-thermal switching.

  17. Structural transformations in amorphous ↔ crystalline phase change of Ga-Sb alloys

    SciTech Connect

    Edwards, T. G.; Sen, S.; Hung, I.; Gan, Z.; Kalkan, B.; Raoux, S.

    2013-12-21

    Ga-Sb alloys with compositions ranging between ∼12 and 50 at. % Ga are promising materials for phase change random access memory applications. The short-range structures of two such alloys with compositions Ga{sub 14}Sb{sub 86} and Ga{sub 46}Sb{sub 54} are investigated, in their amorphous and crystalline states, using {sup 71}Ga and {sup 121}Sb nuclear magnetic resonance spectroscopy and synchrotron x-ray diffraction. The Ga and Sb atoms are fourfold coordinated in the as-deposited amorphous Ga{sub 46}Sb{sub 54} with nearly 40% of the constituent atoms being involved in Ga-Ga and Sb-Sb homopolar bonding. This necessitates extensive bond switching and elimination of homopolar bonds during crystallization. On the other hand, Ga and Sb atoms are all threefold coordinated in the as-deposited amorphous Ga{sub 14}Sb{sub 86}. Crystallization of this material involves phase separation of GaSb domains in Sb matrix and a concomitant increase in the Ga coordination number from 3 to 4. Results from crystallization kinetics experiments suggest that the melt-quenching results in the elimination of structural “defects” such as the homopolar bonds and threefold coordinated Ga atoms in the amorphous phases of these alloys, thereby rendering them structurally more similar to the corresponding crystalline states compared to the as-deposited amorphous phases.

  18. Triple-junction amorphous silicon alloy solar cell with 14.6{percent} initial and 13.0{percent} stable conversion efficiencies

    SciTech Connect

    Yang, J.; Banerjee, A.; Guha, S.

    1997-06-01

    We have achieved 14.6{percent} initial and 13.0{percent} stable conversion efficiencies using an amorphous silicon-based alloy in a spectrum-splitting, triple-junction structure. These efficiencies have been confirmed independently by the National Renewable Energy Laboratory. Key factors leading to this major advance include improvements made in the low band-gap amorphous silicon{endash}germanium alloy cell, the pn tunnel junction between the component cells, and the top conducting oxide. {copyright} {ital 1997 American Institute of Physics.}

  19. Tribological properties of amorphous alloys and the role of surfaces in abrasive wear of materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The research approach undertaken by the authors relative to the subject, and examples of results from the authors are reviewed. The studies include programs in adhesion, friction, and various wear mechanisms (adhesive and abrasive wear). The materials which have been studied include such ceramic and metallic materials as silicon carbide, ferrites, diamond, and amorphous alloys.

  20. Carrier scattering mechanisms in p-type transparent copper-alloyed ZnS: Crystalline vs. amorphous

    NASA Astrophysics Data System (ADS)

    Woods-Robinson, Rachel; Faghaninia, Alireza; Cooper, Jason K.; Pham, Hieu H.; Lo, Cynthia; Wang, Lin-Wang; Ager, Joel W.

    2015-03-01

    Crystalline (wurtzite and sphalerite) and amorphous forms of copper-alloyed ZnS (CuxZn1-xS) are p-type conducting transparent thin film materials with near-record figures of merit for applications in photovoltaics and optoelectronics. Remarkably, the conductivity of amorphous CuxZn1-xS, 42 S/cm at x = 0.30, is nearly as high as crystalline CuxZn1-xS (54 S/cm at x = 0.21). This contrasts with typical observations of poorer carrier transport in amorphous materials. By combining experiment and computation, we investigate the defect physics underlying hole transport in amorphous and crystalline CuxZn1-xS. Structural probes (EXAFS, TEM and wide-angle XRD) are used to determine bonding characteristics and lattice order, and serve as inputs to ab initio hybrid functional HSE calculations of the electronic band structure. Hall effect, temperature dependent conductivity (15K to 500K), and XPS valence band measurements and ab initio calculations show that hole conduction occurs in a hybridized S-3p and Cu-3d valence band for amorphous and crystalline films. The hole scattering mechanisms which limit the conductivity will be discussed in the context of theoretical carrier transport model based on Boltzmann transport equation, ab initio calculated band structure, and phonon dispersion.

  1. Ion-beam amorphization of semiconductors: A physical model based on the amorphous pocket population

    SciTech Connect

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Barbolla, J.; Srinivasan, M.P.

    2005-08-15

    We introduce a model for damage accumulation up to amorphization, based on the ion-implant damage structures commonly known as amorphous pockets. The model is able to reproduce the silicon amorphous-crystalline transition temperature for C, Si, and Ge ion implants. Its use as an analysis tool reveals an unexpected bimodal distribution of the defect population around a characteristic size, which is larger for heavier ions. The defect population is split in both size and composition, with small, pure interstitial and vacancy clusters below the characteristic size, and amorphous pockets with a balanced mixture of interstitials and vacancies beyond that size.

  2. An amorphous alloy stress sensor for wireless battery-free applications

    NASA Astrophysics Data System (ADS)

    Bowles, Adrian; Gore, Jon; Tomka, George

    2005-05-01

    Battery-free sensor systems would benefit from the availability of a stress or strain sensor that exhibits a large enough property change to allow simplification and power reductions in sensor interface and data transmission circuitry. A new sensor has been developed specifically for this purpose, which uses the large stress induced impedance changes exhibited by ribbons of amorphous magnetic alloy. In comparison to semiconductor strain gauges, which show a change in resistance of 15% when strained to their maximum recommended stress level, the amorphous alloy sensor demonstrates a change in inductance of 315%, when strained to its maximum working level. Although, amorphous magnetic alloys are inherently sensitive to external magnetic fields, a simple, biasing technique renders the stress-sensing device insensitive to modest field strengths. The amorphous magnetic alloys are produced in large volumes and realize an extremely low cost sensor. A low cost and low power analogue electrical circuit has been designed that, in combination with the amorphous alloy sensor, functions as a battery-free sensor 'tag'. The sensor tag can transmit stress data to a transceiver system via an inductive link, negating the need for battery power or a hardwire connection. The system"s range is directly related to the transceiver and tag antenna dimensions; however a system with 20cm diameter antennas has been demonstrated operating over a range of up to 60cm. This range is achieved through the extremely low power demands of the sensor tag (<1mW). A demonstration unit has been developed for vehicle tyre pressure monitoring applications.

  3. Magneto-caloric effect of a Gd50Co50 amorphous alloy near the freezing point of water

    NASA Astrophysics Data System (ADS)

    Xia, L.; Wu, C.; Chen, S. H.; Chan, K. C.

    2015-09-01

    In the present work, we report the magneto-caloric effect (MCE) of a binary Gd50Co50 amorphous alloy near the freezing temperature of water. The Curie temperature of Gd50Co50 amorphous ribbons is about 267.5 K, which is very close to room temperature. The peak value of the magnetic entropy change (-ΔSmpeak) and the resulting adiabatic temperature rise (ΔTad.) of the Gd50Co50 amorphous ribbons is much higher than that of any other amorphous alloys previously reported with a Tc near room temperature. On the other hand, although the -ΔSmpeak of Gd50Co50 amorphous ribbons is not as high as those of crystalline alloys near room temperature, its refrigeration capacity (RC) is still much larger than the RC values of these crystalline alloys. The binary Gd50Co50 amorphous alloy provides a basic alloy for developing high performance multi-component amorphous alloys near room temperature.

  4. Structural Changes of Amorphous Ge1-xSnx Alloy Films by Annealing

    NASA Astrophysics Data System (ADS)

    Fukumoto, Hirofumi; Myoren, Hiroaki; Nakashita, Toshio; Imura, Takeshi; Osaka, Yukio

    1986-09-01

    Microcrystalline (μc-) grains of Ge1-ySny (0.1≲ y≲ 0.4) were precipitated by thermal treatments of amorphous films of a Ge1-xSnx(x≲ 0.4) alloy deposited by co-sputtering. At higher temperatures grains of β-Sn came out, co-existing with those of μc-Ge1-ySny. Mössbauer spectroscopy was used to characterize states of Sn in a Ge-Sn alloy film. Optical properties, such as the real part \\varepsilon1 of the complex dielectric constant for Ge0.65Sn0.35, also changed as the structure change, especially at a photon energy of 1.6˜ 1.8 eV, where \\varepsilon1 took a maximum. It was suggested that an amorphous Ge-Sn alloy might be a good material for archival-type optical storage.

  5. Formation and analysis of amorphous and nanocrystalline phases in Al-Cu-Mg alloy under friction stir processing

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Shi, Qing-yu

    2015-06-01

    Homogeneous amorphous and nanocrystalline phases formed in the nugget zone of a friction stir-processed Al-Cu-Mg alloy have been studied. X-ray diffraction analysis indicated a diffuse scattering peak with characteristics of an amorphous phase existed in the range 15°-29°. Further, TEM analysis proved the existence of an amorphous structure. Friction stir processing provides special physical conditions, such as high temperature, high hydrostatic pressure and large shear stress, which could induce the amorphization of the alloy.

  6. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    SciTech Connect

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-08-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction.

  7. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Tao, Jie; Jiang, Shuyun; Xu, Zhong

    2008-04-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 °C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2O 3, MoO 3, SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer.

  8. High-temperature oxidation of a rapidly solidified amorphous Ta-Ir alloy

    NASA Technical Reports Server (NTRS)

    Cotell, Catherine M.; Yurek, Gregory J.

    1986-01-01

    The oxidation products formed at 500 and 700 C on an amorphous Ta-44.5 at. pct Ir alloy in an Ar-0.1 percent O2 gas mixture were characterized using SEM, XRD, EPMA, TEM, STEM, AES, and XPS. Initially, a thin (3-4 nm) layer of Ta2O5 formed at the surface of the alloy. Continued growth of the Ta2O5, which occurred very rapidly, involved diffusion of oxygen anions from the Ta2O5/gas interface to the alloy/Ta2O5 interface, where tantalum was selectively oxidized. Because the oxide grew more quickly than iridium could diffuse back into the alloy, the iridium coalesced into platelets of crystalline iridium-rich alloy that were oriented approximately parallel to the oxide/alloy interface, and which became embedded in a matrix of Ta2O5. The unoxidized core remained in the glassy state. The oxidation process and/or the dissolution of oxygen into the unoxidized alloy caused the alloy to become embrittled.

  9. Dissolution of amorphous Ti-Zr-Si alloy during anodic oxidation with formation of barrier films

    SciTech Connect

    Isaev, N.I.; Yakovlev, V.B.; Iovdal'skii, A.A.; Gorshkov, T.P.

    1988-07-01

    Radiometric analysis of a solution has been used to study kinetic mechanisms for dissolution of amorphous alloy components in acid aqueous solutions with anodic oxidation in different regimes. In a galvanostatic regime for alloy and crystalline Ti, Zr, and Ta two sections are detected: an initial section of accelerated dissolution and a steady section. An increase in dissolution of zirconium from the alloy has been revealed compared with pure crystalline zirconium. Potentiostatic oxidation is accompanied by a slowdown in dissolution similar to a change in current. Current yield has been analyzed for dissolution of the main elements and nonrectifying impurities of the alloy (for example copper). Gamma spectroscopy using the gamma radiation from neutron-activated isotopes of the components and impurities was performed.

  10. Structure of amorphous Ag/Ge/S alloys: experimentally constrained density functional study.

    PubMed

    Akola, J; Beuneu, B; Jones, R O; Jóvári, P; Kaban, I; Kolář, J; Voleská, I; Wágner, T

    2015-12-01

    Density functional/molecular dynamics simulations have been performed to determine structural and other properties of amorphous Ag/Ge/S and Ge/S alloys. In the former, the calculations have been combined with experimental data (x-ray and neutron diffraction, extended x-ray absorption fine structure). Ag/Ge/As alloys have high ionic conductivity and are among the most promising candidates for future memristor technology. We find excellent agreement between the experimental results and large-scale (500 atoms) simulations in Ag/Ge/S, and we compare and contrast the structures of Ge/S and Ag/Ge/S. The calculated electronic structures, vibrational densities of states, ionic mobilities, and cavity distributions of the amorphous materials are discussed and compared with data on crystalline phases where available. The high mobility of Ag in solid state electrolyte applications is related to the presence of cavities and can occur via jumps to a neighbouring vacant site. PMID:26569035

  11. Structure of amorphous Ag/Ge/S alloys: experimentally constrained density functional study

    NASA Astrophysics Data System (ADS)

    Akola, J.; Beuneu, B.; Jones, R. O.; Jóvári, P.; Kaban, I.; Kolář, J.; Voleská, I.; Wágner, T.

    2015-12-01

    Density functional/molecular dynamics simulations have been performed to determine structural and other properties of amorphous Ag/Ge/S and Ge/S alloys. In the former, the calculations have been combined with experimental data (x-ray and neutron diffraction, extended x-ray absorption fine structure). Ag/Ge/As alloys have high ionic conductivity and are among the most promising candidates for future memristor technology. We find excellent agreement between the experimental results and large-scale (500 atoms) simulations in Ag/Ge/S, and we compare and contrast the structures of Ge/S and Ag/Ge/S. The calculated electronic structures, vibrational densities of states, ionic mobilities, and cavity distributions of the amorphous materials are discussed and compared with data on crystalline phases where available. The high mobility of Ag in solid state electrolyte applications is related to the presence of cavities and can occur via jumps to a neighbouring vacant site.

  12. Behaviour of mirrors fabricated from amorphous alloys under impact of deuterium plasma ions

    NASA Astrophysics Data System (ADS)

    Bardamid, A. F.; Belyaeva, A. I.; Bondarenko, V. N.; Galuza, A. A.; Kolesnyk, O. G.; Konovalov, V. G.; Naidenkova, D. I.; Ryzhkov, I. V.; Shapoval, A. N.; Skinner, C. H.; Shtan, A. F.; Solodovchenko, S. I.; Voitsenya, V. S.; Yakimov, K. I.

    2006-04-01

    In-vessel mirrors are necessary for optical and laser diagnostics of plasmas in next-step fusion devices; however obtaining mirror materials that will maintain their performance in the harsh fusion environment remains problematic. At present, mirrors are fabricated from polycrystals or monocrystals, and metal films on metallic substrate mirrors are also being studied. In this paper, we report on a new family of bulk amorphous alloys that are being investigated in the search for new materials for the fusion environment. Their properties are very different from properties of well-known materials and are insufficiently investigated for scientific and technological applications. We present the results of investigation of modification of the surface and optical properties of amorphous mirror fabricated from Zr(41.2%)Ti(13.8%)Cu(12.5%)Ni(10%)Be(22.5%) alloy after bombardment by ions of deuterium plasma with different fluence and energy.

  13. Ion beam mixing in binary amorphous metallic alloys. [Cu-Er; Ni-Ti

    SciTech Connect

    Hahn, H.; Averback, R.S.; Diaz de la Rubia, T.; Okamoto, P.R.

    1985-12-01

    Ion beam mixing (IM) was measured in homogeneous amorphous metallic alloys of Cu-Er and Ni-Ti as a function of temperature using tracer impurities, i.e., the so-called ''marker geometry''. In Cu-Er, a strong temperature dependence in IM was observed between 80 and 373K, indicating that radiation-enhanced diffusion mechanisms are operative in this metallic glass. Phase separation of the Cu-Er alloy was also observed under irradiation as Er segregated to the vacuum and SiO2 interfaces of the specimen. At low-temperatures, the amount of mixing in amorphous Ni-Ti is similar to that in pure Ni or Ti, but it is much greater in Cu-Er than in either Cu or Er.

  14. Surface mico-structures on amorphous alloys induced by vortex femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ran, Ling-Ling; Qu, Shi-Liang; Guo, Zhong-Yi

    2010-03-01

    This paper investigates the generation of self-organized surface structures on amorphous alloys by vortex femtosecond laser pulses. The scanning electron microscope characterizations show that the as-formed structures are periodic ripples, aperiodic ripples, and 'coral-like' structures. Optimal conditions for forming these surface structures are determined in terms of pulses number at a given pulse energy. The applicable mechanism is suggested to interpret the formation and evolution of the 'coral-like' structures.

  15. Some industrial applications of amorphous and nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Nosenko, V. K.; Maslov, V. V.; Kirilchuk, V. V.; Kochkubey, A. P.

    2008-02-01

    The example of successful realization of developments of Institute for Metal Physics of National Academy of Sciences of Ukraine in the field of nanotechnology is organization and successful, during 14 years, functioning of production of modern precision amorphous and nanocrystalline magnetic cores in the frames of the small research-and-production enterprise MELTA Ltd. The most important, from the practical standpoint, high heat-time stability of initial magnetic permeability of cores is provided by using new methods of final treatment of cores, minimization of their package influence on characteristics of the process using liquid impregnation heat-resistant materials and new polymeric coatings. The most effective fields of industrial use of MELTA® magnetic cores are ground leakage current sensors, current measuring transformers (converters), power medium frequency, broadband and pulse small-size transformers, filter chokes, reactors, storage transformers and ferroprobes.

  16. Corrosion Properties of Ultrasonic Electrodeposited Nanocrystalline and Amorphous Patterned Ni-W Alloy Coatings

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Zhang, Yu; Zhang, Yuhong; Yan, Biao; Mo, Fan

    2013-07-01

    Ni-W alloy coating is a kind of promising environmental friendly alloy to substitute for hard chrome plating, for its excellent functional properties. Their properties depend mainly on the structure and defect, such as cracks. The crack is catastrophe to both physical and chemical properties and crystalline state also affect their properties and application. In this work, nanocrystalline nickel tungsten alloy (nc Ni-W) coating, amorphous nickel tungsten alloy (a Ni-W) coating and crystalline nickel tungsten alloy (c Ni-W) coating were prepared under ultrasonic direct current (UDC) electroplating. The aim of the present study is to achieve structure control and high surface quality of Ni-W alloy coatings, and investigate corrosion properties of these coatings to explain the contradiction of better corrosion resistance of nc Ni-W coating than a Ni-W coating in experiment and theory. Thus X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) were used to examine the composition, crystalline state, microstructures and defects of the samples. Moreover, potentiodynamic polarization test was used to study the corrosion behavior of electroplated nickel-tungsten alloys.

  17. Microstructure and magnetic properties of soft magnetic powder cores of amorphous and nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yapi; Yi, Yide; Shao, Wei; Shao, Yanfang

    2013-03-01

    With the development of modern ferromagnetic technology, soft magnetic powder cores (MPCs) of amorphous and nanocrystalline alloys have been intensively studied for their excellent soft magnetic properties such as high flux density, low coercivity and reduced core loss due to amorphous state and nanocrystalline grains of 10-20 nm dispersed in a residual amorphous matrix. In this paper, the microstructures and soft magnetic properties, i.e., maximum magnetic induction Bm, effective permeability μe, DC-bias properties and volume power losses PCV of MPCs made from amorphous powder of gas atomization and nanocrystalline powder of pulverized melt-spun ribbon were investigated and also compared on the basis of the same level of μe. It is found that μe of both kinds of MPC keeps unchanged up to 1 MHz. The amorphous MPC has lower PCV at lower frequency range, while the nanocrystalline MPC has lower PCV at high frequency range instead. Also, the nanocrystalline MPC has better DC-bias property. Moreover, the DC magnetic properties and the changes of PCV of both MPCs with frequency and flux density are also studied. Furthermore, the electromagnetic characteristics, the microstructures and the mechanisms accounting for these phenomena of both MPCs are also discussed.

  18. Photoassisted amorphization of the phase-change memory alloy Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Fons, P.; Osawa, H.; Kolobov, A. V.; Fukaya, T.; Suzuki, M.; Uruga, T.; Kawamura, N.; Tanida, H.; Tominaga, J.

    2010-07-01

    Subnanosecond time-resolved x-ray absorption measurements have been used to probe dynamical changes in the local structure about Ge atoms in the phase-change alloy Ge2Sb2Te5 during the optical recording (amorphization) process using an optical pump and x-ray probe technique to examine the reversible phase transition from the metastable crystalline phase to the amorphous phase. We provide unambiguous evidence that the amorphization process does not proceed via the molten state but is a photoassisted process. We argue that the transition to the amorphous phase is a consequence of photoassisted destabilization of the resonant bonding present in the crystalline phase. This observation challenges the currently existing paradigm of the phase-change process which implicitly assumes the existence of the molten phase as a prerequisite for the creation of the amorphous phase. Implications from this finding are discussed, including the possibility to use the polarization of light as an extra coordinate for data recording.

  19. Recent improvements in amorphous silicon-based multijunction modules

    SciTech Connect

    Arya, R.R.; Bennett, M.; Yang, L.; Newton, J.; Li, Y.M.; Maley, N.; Fieselmann, B.; Chen, L.F.; Rajan, K.; Wilczynski, A.; Wood, G. )

    1994-06-30

    Advances in intrinsic amorphous silicon and in amorphous silicon carbon alloys have resulted in thin single junction devices with V[sub oc]'s over 1.0 volts and excellent stability with both i-layer materials. Incorporation of improved a-Si:H i-layers and thin microcrystalline n-layers in a-Si/a-Si/a-SiGe triple junction modules has resulted in large area triple junction modules with initial efficiencies as high as 11.35%. These modules exhibit a degradation of [similar to]20% after 1000 hours of light-soaking resulting in [similar to]9% stable modules.

  20. Electrochemical studies of hydrogen storage in amorphous Ni[sub 64]Zr[sub 36] alloy

    SciTech Connect

    Ciureanu, M.; Ryan, D.H.; Stroem-Olsen, J.O. ); Trudeau, M.L. )

    1993-03-01

    The capacity of amorphous Ni-Zr alloys to absorb large amounts of hydrogen has been investigated recently in connection with their possible use for hydrogen storage. This property also makes them possible candidates as anodes in metal hydride-nickel hydroxide rechargeable batteries. The characteristic features of the electrochemical behavior of the amorphous Ni[sub 64]Zr[sub 36] alloy in alkaline media have been investigated. Changes occurring in both the physical state and the composition of the surface layer during chemical etching and electrochemical activation were studied by scanning electron microscopy, Auger electron spectroscopy, x-ray diffraction, and cyclic voltammetry. The kinetics of the hydrogen evolution reaction (HER) on the alloy under investigation was studied in terms of the cathodic polarization curves. The Tafel plots contain two different ranges: (i) a low-overpotential range, in which the slope of the linear [eta] versus log i is characteristic for charge transfer controlled processes; (ii) a high-overvoltage range, in which a combined mechanism, charge transfer and hydrogen diffusion into the bulk, is operative. To get information about the parameters influencing the hydrogen charging and discharging processes, chronopotentiometric experiments were performed. The changes of anodic overvoltage with time during constant current discharge were used to determine the electrochemical parameters i[sub 0] and [beta], as well as the diffusion coefficients (D) of the H atoms in the bulk of the alloy.

  1. Thermal stability of amorphous GaN{sub 1-x}As{sub x} alloys

    SciTech Connect

    Levander, A. X.; Broesler, R.; Dubon, O. D.; Wu, J.; Liliental-Weber, Z.; Hawkridge, M. E.; Walukiewicz, W.; Yu, K. M.; Novikov, S. V.; Foxon, C. T.

    2011-04-18

    GaN{sub 1-x}As{sub x} alloys grown across the composition range by low temperature molecular beam epitaxy have great technological potential for photovoltaic applications owing to their strong absorption coefficient and wide tunability of band gap and band edges. We found that amorphous GaN{sub 1-x}As{sub x} alloys that are formed for the compositions x, in the range of x{approx}0.3-0.7 are stable up to 700 deg. C. This is surprising since growth of GaN{sub 1-x}As{sub x} above 400 deg. C results in phase segregation. At annealing temperatures higher than 700 deg. C the alloy phase segregates into GaAs:N and GaN:As. The relative size of the nanocrystals depends on the initial film composition and annealing conditions.

  2. Temperature dependence of Raman scattering in amorphous films of In 1- xSe x alloys

    NASA Astrophysics Data System (ADS)

    Weszka, J.; Daniel, Ph.; Burian, A. M.; Burian, A.; Żelechower, M.

    2001-08-01

    Raman scattering (RS) in amorphous films of In 1- xSe x with 0.70≥ x≥0.38 has been studied in backscattering geometry with the use of a single channel Raman spectrometer at room and 10 K temperatures. The recorded RS spectra reveal dominant vibrational density-of-states character. They exhibit a continuum, spanning the Rayleigh line up to a shoulder at about 250 cm -1, that moves towards lower frequencies as x decreases from 0.70 to 0.38. The bands at about 104, 125 and at 143 and 237 cm -1 are attributed to In-In, Se 8 ring molecules and Se-chain oscillations, respectively. The structure of In 1- xSe x alloys is deduced to be a continuous random network based on InSe 4/2 tetrahedral clusters interconnected by Se atoms at the shared corners or local Se-chain fragments or Se 8 rings. With growing In content, some Se atoms in such clusters are replaced by In atoms to an extent dependent on In content. The disappearance of the 143 and 237 cm -1 bands in the low temperature spectra taken on the In 0.30Se 0.70 film is attributed to the contraction of interatomic bonds, making conditions favorable for breaking Se polymer chains and Se 8 ring molecule formation.

  3. Magnetic properties of Nd-Fe-Co(Cu)-Al-B amorphous alloys prepared by nonequilibrium techniques

    NASA Astrophysics Data System (ADS)

    Kumar, G.; Eckert, J.; Roth, S.; Löser, W.; Ram, S.; Schultz, L.

    2002-03-01

    The amorphous alloys Nd40Fe40Co5Al8B7, Nd57Fe20Co5Al10B8, and Nd57Fe20Cu5Al10B8 were prepared by copper mold casting, melt spinning, and mechanical alloying. Despite their similar x-ray diffraction patterns, samples display different magnetic and thermal behavior correlated with the method of preparation. The fully amorphous melt-spun ribbons exhibit relatively soft magnetic properties with coercivities ≈40 kA/m at room temperature and a Curie temperature (TC)≈474 K. Apparently only the mold-cast cylinders of 3 mm diameter show hard magnetic behavior with a coercivity in the range of 258-270 kA/m (depending on composition) and have approximately the same TC as that of the melt-spun ribbons. An additional magnetic transition at 585 K due to the presence of Nd2Fe14B phase in the case of Nd40Fe40Co5Al8B7 cast rod has been observed. Heat treatment above crystallization temperature in as-cast Nd57Fe20Co5Al10B8 and Nd57Fe20Cu5Al10B8 samples destroys the hard magnetic properties. In contrast, mechanically alloyed amorphous samples are soft magnetic with maximum coercivity up to 11 kA/m but show an entirely different TC≈680-740 K, which is rather characteristic of an Fe solid solution. The magnetic properties are discussed in terms of different local atomic environment and cluster sizes in amorphous samples prepared by different methods.

  4. Characterization of amorphous selenium alloy detectors for x-rays and high energy nuclear radiation detection

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Mehta, Abhinav; Chaudhuri, Sandeep K.; Cui, Yunlong; Groza, Michael; Burger, Arnold

    2013-09-01

    Synthesized amorphous selenium (a-Se) alloy materials have been characterized for room temperature high-energy nuclear radiation detector and x-ray detection applications. The alloy composition has been optimized to ensure good charge transport properties and detector performance. The synthesis of a-Se (As, Cl) alloys has been carried out by thoroughly mixing zone-refined (ZR) Se (~7N) with previously synthesized a-Se(As) and a-Se(Cl) master alloys (MS). The synthesized alloys have been characterized by x-ray diffraction (XRD), glow discharge mass spectroscopy (GDMS), differential scanning calorimetry (DSC), x-ray photoelectron spectroscopy (XPS), and current-voltage (I-V) characteristics measurements. Raman spectroscopy demonstrated that the a-Se(As) master alloy samples were in metastable monoclinic Se8 states, in which seven vibrational modes are located at 40(41), 59(60), 77, 110, 133, 227(228) and 251(252) cm-1. However, a-Se(Cl) master alloy samples are in stable form of trigonal structure of Se8 ring, in which two modes at 142 and 234 cm-1 were found. Both Raman and energy dispersive spectroscopy (EDS) exhibited that a small amount of tellurium (Te) existed in a-Se (As, Cl) master alloy samples. DSC measurements showed that a-Se (Cl) MS and a-Se (As) MS samples have one melting point, located at ~219.6°C, whereas a-Se-As (0.52%)-Cl and Se- As(10.2%)-Cl(60 ppm) both possess two melting points, located at 221 and 220.3°C respectively. The a-Se alloy plate detectors have been fabricated and tested and the results showed high dark resistivity (1012 - 1013 Ω-cm) with good charge transport properties and cost-effective large-area scalability.

  5. Characterization of amorphous Co-P alloy coatings electrodeposited with pulse current using gluconate bath

    NASA Astrophysics Data System (ADS)

    Bera, Parthasarathi; Seenivasan, H.; Rajam, K. S.; William Grips, V. K.

    2012-10-01

    Co-P alloy coatings were electrodeposited with pulse current using gluconate bath and characterized by XRD, FESEM, AFM, DSC and XPS. Co-P alloy coatings are amorphous in nature as demonstrated by XRD. FESEM exhibits the “cauliflower type” morphology that is distinctive of nanocrystalline metals and alloys. Co-P alloys are found to follow instantaneous growth mechanism as revealed by AFM studies. Two exothermic peaks at 320 and 340 °C in DSC profiles of Co-P deposit correspond to the crystallization of the deposit. Detailed XPS studies of these alloy coatings have shown that as-deposited coatings consist of Co metal as well as oxidized Co species. P has mostly been present as bulk alloy on the surface as Pδ- form. Increase in the amounts of Co metal and Pδ- are observed upon intermittent sputtering. No appreciable increase in microhardness is observed with increase in the phosphorous content, but it increases with heat treatment significantly.

  6. Nanocrystallization in spark plasma sintered Fe48Cr15Mo14Y2C15B6 bulk amorphous alloy

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Katakam, Shravana; Ilavsky, Jan; Dahotre, Narendra B.; Harimkar, Sandip P.

    2013-08-01

    Spark plasma sintering (SPS) is evolving as an attractive process for the processing of multi-component Fe-based bulk amorphous alloys and their in-situ nanocomposites with controlled primary nanocrystallization. Extended Q-range small angle neutron scattering (EQ-SANS) analysis, complemented by x-ray diffraction and transmission electron microscopy, was performed to characterize nanocrystallization behavior of SPS sintered Fe-based bulk amorphous alloys. The SANS experiments show significant scattering for the samples sintered in the supercooled region indicating local structural/compositional changes associated with the profuse nucleation of nanoclusters (˜4 nm). For the samples spark plasma sintered near and above crystallization temperature (>653 °C), the SANS data show the formation of interference maximum indicating the formation and growth of (Fe,Cr)23C6 crystallites. The SANS data also indicate the evolution of bimodal crystallite distribution at higher sintering temperatures (above Tx1). The growth of primary nanocrystallites results in impingement of concentration gradient fields (soft impingement effect), leading to non-random nucleation of crystallites near the primary crystallization.

  7. Ion-implantation-induced amorphization of InxGa1-xP alloys as functions of stoichiometry and temperature

    NASA Astrophysics Data System (ADS)

    Hussain, Z. S.; Wendler, E.; Wesch, W.; Schnohr, C. S.; Ridgway, M. C.

    2016-05-01

    Rutherford Backscattering Spectrometry/Channeling and Extended X-ray Absorption Fine Structure measurements have been combined to investigate the amorphization of InxGa1-xP alloys at 15 and 300 K for selected stoichiometries representative of the entire stoichiometric range. The amorphization kinetics differs considerably for the two temperatures: at 15 K, the amorphization kinetics of InxGa1-xP is intermediate between the two binary extremes while at 300 K, InxGa1-xP is more easily amorphized than both InP and GaP. Direct impact and stimulated amorphization both contribute to the amorphization process at 15 K. Dynamic annealing via thermally induced Frenkel pair recombination reduces the influence of direct impact amorphization at 300 K such that the stimulated amorphization is dominant. At this temperature, stimulated amorphization in ternary InxGa1-xP alloys is supported by the structural disorder inherent from the bimodal bond length distribution.

  8. Electron-Rich Driven Electrochemical Solid-State Amorphization in Li-Si Alloys

    SciTech Connect

    Wang, Zhiguo; Gu, Meng; Zhou, Yungang; Zu, Xiaotao; Connell, Justin G.; Xiao, Jie; Perea, Daniel E.; Lauhon, Lincoln J.; Bang, Junhyeok; Zhang, Shengbai; Wang, Chong M.; Gao, Fei

    2013-08-14

    The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governs the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability and phase equilibrium.

  9. Determination of the location of hydrogen in the CuTi amorphous alloys by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Rodmacq, B.; Billard, L.; Chamberod, A.; Mangin, Ph.

    1986-02-01

    Neutron diffraction experiments have been performed on hydrogenated and deuterated Cu xTi 1- x amorphous alloys ( x = 0.67, 0.50, 0.35). The evolution of the interference functions as a function of hydrogen and deuterium concentration has shown that the hydrogen atoms have no copper atoms as first neighbours but are surrounded only by titanium atoms. The metal-hydrogen first distances compare well to those found in the corresponding crystalline hydrides. A model for the Cu 50Ti 50 amorphous alloy has been built up. The introduction of hydrogen or deuterium atoms in Ti 4 tetrahedra leads to calculated pair correlation functions very close to the experimental ones. Finally, the thermal evolution of CuTiH and CuTiD samples as been studied. Increasing the temperature leads to the precipitation of TiH 2 particles in the amorphous matrix. This is followed by the crystallization of the matrix and by the desorption of hydrogen at still higher temperature.

  10. Impact Ignition and Combustion Behavior of Amorphous Metal-Based Reactive Composites

    NASA Astrophysics Data System (ADS)

    Mason, Benjamin; Groven, Lori; Son, Steven

    2013-06-01

    Recently published molecular dynamic simulations have shown that metal-based reactive powder composites consisting of at least one amorphous component could lead to improved reaction performance due to amorphous materials having a zero heat of fusion, in addition to having high energy densities and potential uses such as structural energetic materials and enhanced blast materials. In order to investigate the feasibility of these systems, thermochemical equilibrium calculations were performed on various amorphous metal/metalloid based reactive systems with an emphasis on commercially available or easily manufactured amorphous metals, such as Zr and Ti based amorphous alloys in combination with carbon, boron, and aluminum. Based on the calculations and material availability material combinations were chosen. Initial materials were either mixed via a Resodyn mixer or mechanically activated using high energy ball milling where the microstructure of the milled material was characterized using x-ray diffraction, optical microscopy and scanning electron microscopy. The mechanical impact response and combustion behavior of select reactive systems was characterized using the Asay shear impact experiment where impact ignition thresholds, ignition delays, combustion velocities, and temperatures were quantified, and reported. Funding from the Defense Threat Reduction Agency (DTRA), Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.

  11. RF cavity with co -based amorphous core

    NASA Astrophysics Data System (ADS)

    Kanazawa, M.; Misu, T.; Sugiura, A.; Sato, K.; Katsuki, K.; Kusaka, T.

    2006-10-01

    A compact cavity for acceleration has been developed with cobalt-based amorphous cores, which is a part of research and development (R&D) for a synchrotron in a cancer therapy facility. This core has high permeability that enables the cavity length to be made short, and its low Q-value of about 0.5 permits an RF system without tuning control of the cavity. The developed acceleration cavity consists of two acceleration gaps; at both sides of the gap there are quarter-wave coaxial resonators. The total length of the cavity is as short as 1.5 m and the inner diameter of the vacuum chamber is 190 mm. Considering the requirements for easy operation and maintenance, a transistor RF amplifier was used instead of the commonly used tetrode in the final stage. Each resonator has a maximum impedance of 400 Ω at 2 MHz, and a 1:9 impedance transformer has been attached to use a solid state amplifier of 50 Ω output impedance. In the frequency range from 0.4 to 8 MHz, an acceleration voltage of more than 4 kV can be obtained with a total input RF power of 8 kW. In this paper the structure of the cavity, the obtained core impedance, and their performances under high-power test are presented.

  12. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    SciTech Connect

    Farmer, J

    2007-07-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  13. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    SciTech Connect

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  14. Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development

    NASA Astrophysics Data System (ADS)

    Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou

    2009-06-01

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear

  15. Invar and Elinvar type amorphous Fe-Cr-B alloys with high corrosion resistance

    NASA Technical Reports Server (NTRS)

    Kikuci, M.; Fukamichi, K.; Masumoto, T.

    1987-01-01

    Amorphous (Fe(1-x)Cr(x))85B15 alloys (x = 0 to 0.15) were prepared from the melts by rapid quenching using a single roller techinque, and their Invar and Elinvar characteristics and corrosion resistance were investigated. With an increase in chromium content the Curie temperature and the saturation magnetic moment per iron atom decreased monotonically, while the crystallization temperature incresed gradually. The thermal expansion coefficient alpha around room temperature became slightly larger with increasing chromium content. Nevertheless, these amorphous alloys exhibited excellent Invar characteristics below the Curie temperature. The value of Young's modulus increased remarkably in a relatively low magnetic field and then saturated at a field of about 80 kA/m, showing a large delta E effect. Its value as well as a longitudinal linear magnetostriction became smaller with an increase in chromium content. The temperature coefficient of Young's modulus changed from postive to negative, and the temperature range showing the Elinvar characteristics became narrower with chromium content. The temperature coefficient of delay time determined from the values of alpha and e was very small. The corrosion resistance of these alloys was extremely improved by chromium addition.

  16. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    SciTech Connect

    Canulescu, S. Schou, J.; Rechendorff, K.; Pleth Nielsen, L.; Borca, C. N.; Jones, N. C.; Hoffmann, S. V.; Bordo, K.; Ambat, R.

    2014-03-24

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms are not located in a TiO{sub 2} unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2 eV (300–135 nm). The results indicate that amorphous anodic Al{sub 2}O{sub 3} has a direct band gap of 7.3 eV, which is about ∼1.4 eV lower than its crystalline counterpart (single-crystal Al{sub 2}O{sub 3}). Upon Ti-alloying, extra bands appear within the band gap of amorphous Al{sub 2}O{sub 3}, mainly caused by Ti 3d orbitals localized at the Ti site.

  17. On the amorphization behavior and hydrogenation performance of high-energy ball-milled Mg{sub 2}Ni alloys

    SciTech Connect

    Kou, Hongchao; Hou, Xiaojiang; Zhang, Tiebang Hu, Rui; Li, Jinshan; Xue, Xiangyi

    2013-06-15

    Amorphous Mg{sub 2}Ni alloy was prepared by high energy ball-milling starting with polycrystalline Mg{sub 2}Ni which was prepared with the help of a metallurgy method by using a SPEX 8000D mill. The microstructural and phase structure characterization of the prepared materials was performed via scanning electron microscopy, transition electron microscope and X-ray diffraction. The thermal stabilities were investigated by differential scanning calorimetry. The apparent activation energies were determined by means of the Kissinger method. The first and second crystallization reactions take place at ∼ 255 °C and ∼ 410 °C, and the corresponding activation energy of crystallization is E{sub a1} = 276.9 and E{sub a2} = 382.4 kJ/mol, respectively. At 3 MPa hydrogen pressure and 250 °C, the hydrogen absorption capacities of crystalline, partially and fully amorphous Mg{sub 2}Ni alloy are 2.0 wt.%, 3.2 wt.% and 3.5 wt.% within 30 min, respectively. - Graphical Abstract: We mainly focus on the amorphization behavior of crystalline Mg{sub 2}Ni alloy in the high energy ball-milling process and the crystallization behavior of the amorphous Mg{sub 2}Ni alloy in a follow-up heating process. The relationship of milling, microstructure and hydrogenation properties is established and explained by models. - Highlights: • Amorphous Mg{sub 2}Ni has been obtained by high energy ball milling the as-cast alloy. • The amorphization behavior of polycrystalline Mg{sub 2}Ni is presented. • The crystallization behavior of the amorphous Mg{sub 2}Ni alloy is illustrated. • Establish the relationship of milling, microstructure and hydrogenation properties.

  18. Reactive wetting of amorphous silica by molten Al-Mg alloys and their interfacial structures

    NASA Astrophysics Data System (ADS)

    Shi, Laixin; Shen, Ping; Zhang, Dan; Jiang, Qichuan

    2016-07-01

    The reactive wetting of amorphous silica substrates by molten Al-Mg alloys over a wide composition range was studied using a dispensed sessile drop method in a flowing Ar atmosphere. The effects of the nominal Mg concentration and temperature on the wetting and interfacial microstructures were discussed. The initial contact angle for pure Al on the SiO2 surface was 115° while that for pure Mg was 35° at 1073 K. For the Al-Mg alloy drop, it decreased with increasing nominal Mg concentration. The reaction zone was characterized by layered structures, whose formation was primarily controlled by the variation in the alloy concentration due to the evaporation of Mg and the interfacial reaction from the viewpoint of thermodynamics as well as by the penetration or diffusion of Mg, Al and Si from the viewpoint of kinetics. In addition, the effects of the reaction and the evaporation of Mg on the movement of the triple line were examined. The spreading of the Al-Mg alloy on the SiO2 surface was mainly attributed to the formation of Mg2Si at the interface and the recession of the triple line to the diminishing Mg concentration in the alloy.

  19. Computational study of structural change through the glass transition in an amorphous and liquid Zr-Ni alloy

    SciTech Connect

    Aihara, Tomoyasu Jr.; Aoki, Kiyoshi; Masumoto, Tsuyoshi )

    1993-04-15

    Amorphous alloys are experimentally or industrially produced by rapid quenching (RQ) from the melt. If a liquid alloy is rapidly cooled at a rate on the order of 10[sup 6]Ks[sup [minus]1], it enters the supercooled liquid regime and its viscosity increases. Finally, the system reaches a state of frozen random structure, which is called the amorphous state. In the attempt to control the properties of amorphous alloys, it is important to understand their structural changes through the glass transition. By a laboratory experiment, however, it is usually difficult to obtain information about the glass transition and supercooled state of an amorphous alloy because of competitive crystallization. Molecular dynamics (MD) simulation, a numerical experiment to solve the N-body problem of Newtonian mechanics, has been performed to investigate the structure of solid and liquid. As the MD simulation can be carried out on the order of picoseconds, one can detect the glass transition without crystallization during RQ. Thus, the authors performed the MD simulation for the production of an amorphous Zr-Ni alloy by RQ and detected static structure and thermodynamic changes through the glass transition. Both properties are related with interatomic potentials.

  20. Superconductivity of amorphous Mg 0.70Zn 0.30-xGa x alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2008-06-01

    The screening dependence theoretical investigations of the superconducting state parameters (SSP) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature TC , isotope effect exponent α and effective interaction strength NOV of five Mg 0.70Zn 0.30-xGa x ( x = 0.0, 0.06, 0.10, 0.15 and 0.20) ternary amorphous alloys viz. Mg 0.70Zn 0.30Ga 0.00, Mg 0.70Zn 0.24Ga 0.06, Mg 0.70Zn 0.20Ga 0.10, Mg 0.70Zn 0.15Ga 0.15 and Mg 0.70Zn 0.10Ga 0.20 have been reported for the first time using Ashcroft’s empty core (EMC) model potential. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. It is observed that the electron-phonon coupling strength λ and the transition temperature TC are quite sensitive to the selection of the local field correction functions, whereas the Coulomb pseudopotential μ∗, isotope effect exponent α and effective interaction strength NOV show weak dependences on the local field correction functions. The transition temperature TC obtained from H-local field correction function is found in an excellent agreement with available experimental data. Quadratic TC equation has been proposed, which provide successfully the TC values of ternary amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the ternary amorphous alloys.

  1. Fim study on the relaxation and crystallization processes of a Cu-Zr amorphous alloy

    NASA Astrophysics Data System (ADS)

    H, Lu; Lu, Hua; D, S. Tang; Tang, Disheng; Y, Y. Xiong; Xiong, Yanyun

    1987-09-01

    The relaxation of the Cu-50at.%Zr amorphous alloy was revealed by FIM as a process of formation of clusters consisting of 2, 3, or 4 atoms, which afterwards migrate towards some definite centers, predominantly the quenched-in "embryos", to construct ordered structure. This dynamic picture, so far as we know, is observed for the first time. Crystallized regions were determined by atom-probe analysis as Cu10Zr7 phase, and the coexisting phase CuZr2 was not revealed simultaneously.

  2. Nanoscale order and crystallization in nitrogen-alloyed amorphous GeTe

    SciTech Connect

    Darmawikarta, Kristof; Abelson, John R.; Raoux, Simone; Bishop, Stephen G.

    2014-11-10

    The nanoscale order in amorphous GeTe thin films is measured using fluctuation transmission electron microscopy (FTEM). The order increases upon annealing at 145 °C, which indicates a coarsening of subcritical nuclei. This correlates with a reduction in the nucleation delay time in laser crystallization. A shift in the FTEM peak positions may indicate a transformation in local bonding. In samples alloyed with 12 at. % nitrogen, the order does not change upon annealing, the peak does not shift, and the nucleation time is longer. The FTEM data indicate that nitrogen suppresses the structural evolution necessary for the nucleation process and increases the thermal stability of the material.

  3. Measurements of the Barkhausen effect in FeCoB amorphous alloys

    NASA Astrophysics Data System (ADS)

    Durin, G.; Magni, A.; Bertotti, G.

    1996-07-01

    The Barkhausen noise of a wide series of amorphous Fe 85- xCo xB 15 alloys is studied. In spite of the great variability of their magnetic properties, the signal amplitude always follows the same type of distribution, while the power spectra show a 1/ω β behavior at high frequencies (with β = 1.5-2), with a transition to a 1/ω behavior at lower frequencies. This transition frequency is found to be strictly related to the parameter describing the amplitude distribution.

  4. New Fe-based amorphous compound powder cores with superior DC-bias properties and low loss characteristics

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyue; Lu, Caowei; Guo, Feng; Lu, Zhichao; Li, Deren; Zhou, Shaoxiong

    2012-09-01

    The Fe-Si-B-P-C metallic glassy alloys exhibit relatively high glass forming ability (GFA) as well as good soft magnetic properties such as ultra-low core loss. In this paper, the metallic glassy alloy (Fe0.76Si0.09B0.10P0.05)98C2 has been newly developed. A new Fe-based amorphous compound powder was prepared from FeSiB amorphous powder by crushing the amorphous ribbons as the first magnetic component and FeSiBPC metallic glassy powder by water atomization as the second magnetic component. Subsequently by adding organic and inorganic binders to the compound powder and cold pressing, the new Fe-based amorphous compound powder cores were fabricated. These new Fe-based amorphous compound powder cores combine the superior DC-bias properties and the excellently low core loss. The core loss of 453 kW/m3 at Bm=0.1 T and f=100 kHz was obtained when the mass ratio of FeSiB/FeSiBPC equals 3:2, and meanwhile the DC-bias properties of the new Fe-based amorphous compound powder cores just increased by 10% at H=100 Oe for μ=60 compared to those of the FeSiBPC powder cores. In addition, with the increase in the content of the FeSiPC metallic glassy powder, the core loss tends to decrease.

  5. Ultrafast crystalline-to-amorphous phase transition in Ge{sub 2}Sb{sub 2}Te{sub 5} chalcogenide alloy thin film using single-shot imaging spectroscopy

    SciTech Connect

    Takeda, Jun Oba, Wataru; Minami, Yasuo; Katayama, Ikufumi; Saiki, Toshiharu

    2014-06-30

    We have observed an irreversible ultrafast crystalline-to-amorphous phase transition in Ge{sub 2}Sb{sub 2}Te{sub 5} chalcogenide alloy thin film using broadband single-shot imaging spectroscopy. The absorbance change that accompanied the ultrafast amorphization was measured via single-shot detection even for laser fluences above the critical value, where a permanent amorphized mark was formed. The observed rise time to reach the amorphization was found to be ∼130–200 fs, which was in good agreement with the half period of the A{sub 1} phonon frequency in the octahedral GeTe{sub 6} structure. This result strongly suggests that the ultrafast amorphization can be attributed to the rearrangement of Ge atoms from an octahedral structure to a tetrahedral structure. Finally, based on the dependence of the absorbance change on the laser fluence, the stability of the photoinduced amorphous phase is discussed.

  6. Enhanced magnetocaloric response in Cr /Mo containing Nanoperm-type amorphous alloys

    NASA Astrophysics Data System (ADS)

    Franco, V.; Conde, C. F.; Conde, A.; Kiss, L. F.

    2007-01-01

    The magnetocaloric effect of Fe76Cr8-xMoxCu1B15 (x=0,4) alloys is studied. Although the combined addition of Cr and Mo is more efficient in tuning the Curie temperature of the alloy, the Mo-free alloy presents a higher magnetocaloric response. The refrigerant capacity (RC) for the Mo-containing alloy is comparable to that of Gd5Ge1.9Si2Fe0.1 (for a field of 50kOe, RC =273Jkg-1 for the Mo alloy vs 240Jkg-1 for the Gd-based one), with a larger temperature span of the optimal refrigeration cycle (250K vs 90K, respectively). The restriction of the temperature span to 90K gives RC =187Jkg-1 for the Mo alloy. A master curve behavior for the magnetic entropy change is also evidenced.

  7. Localized excitations in amorphous silicon alloys. Final report

    SciTech Connect

    Not Available

    1987-10-01

    The valence band edge of a-Si:H is sensitive to H content, while the conduction band edge is not. The optical gap increases 50% going from the isolated SiH group to the polysilane configuration; the smallest energy gap was for the polycrystal models for a-Si:H. Only the complexes involving the Si dangling bond give rise to active states deep in he a-Si fundamental energy gap. Positions of dangling bond defect state agree with photoluminescence of undoped and oxidized a-Si:H films. Incorporation of halogens into a-Si:H increases the optical gap, quasi-localized states near conduction band tail, and resonances deep in the valence band. Carbon increases the optical gap and produces resonances deep in both bands, while tin does not increase the optical gap and produces resonances in upper part of a-Si:H valence band; this is consistent with a model based on relative strength of Si-Si bond to Si-impurity bond. Effects of P dopant are consistent with models based on P in a-Si:H producing dopant-defect pairs, increased Fermi energy, etc. B substitutional dopants (tetrahedral) produces states near the valence band edge which resemble the show impurity levels in crystalline Si. Trigonally bonded B gives rise to states within the a-Si:H fundamental gap. B-H complexes suggest B-H bonds in B-doped a-Si:H, even at low B contents. Figs, 22 refs. (DLC)

  8. Positron annihilation Doppler broadening measurement for bulk amorphous alloy by using high energy positron generated from LCS gamma-ray at NEW SUBARU

    NASA Astrophysics Data System (ADS)

    Hori, F.; Ueno, Y.; Ishii, K.; Ishiyama, T.; Iwase, A.; Miyamoto, S.; Terasawa, T.

    2016-01-01

    A simple positron annihilation measurement apparatus via pair creation has been developed using high energetic gamma beam generated by laser Compton scattering (LCS) of 1 GeV electrons circulated in a storage ring and laser light with the power more than 1 W at the New SUBARU synchrotron radiation facility, University of Hyogo. This MeV ordered energy changeable positron apparatus is useful to study defects in bulk materials. In this study, the average energy of 8MeV positron was selected by the wavelength of laser light and circulated electron energy in photon factory. As a demonstrate of non-destruction positron measurement by this apparatus, positron annihilation Doppler broadening measurement has performed for bulk size of amorphous and crystal structured Zr based alloys. The larger Doppler broadening S parameter for amorphous alloy than that for crystallized one has been successfully measured.

  9. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhu, Qingjun; Qu, Shiyao; Wang, Xinhong; Zou, Zengda

    2007-06-01

    Amorphous composite coatings Fe 38Ni 30- XSi 16B 14V 2M X ( X = 0, 1, 2) (M contains Al, Ti, Mo, and C) were prepared with low purity of raw materials by laser cladding. X-ray diffraction and transmission electron microscopy results show that the coating have an amorphous structure with a few crystalline phase on it. The amorphous phase is the primary phase. The glass forming ability as well as the microhardness of the Fe-based alloy made from low purity raw materials can be much enhanced by adding small amount of multi-components. However, the elements addition has its optimal quantity. When X is equal to 1, the microstructure of the coating contains 97.93% amorphous phase and 2.07% crystalline phase on it. As a result, the microhardness of the coating reaches maximum. With further increasing of the additions, the amorphous phase in the coating lessens instead of augment and the crystalline phase begins to accumulate, which result in the decrease of the microhardness.

  10. Effect of the nanocrystallization of amorphous soft magnetic Fe-P-Nb alloys on corrosion resistance in a damp SO2-polluted atmosphere

    NASA Astrophysics Data System (ADS)

    Vavilova, V. V.; Zabolotnyi, V. T.; Korneev, V. P.; Anosova, M. O.; Baldokhin, Yu. V.

    2014-09-01

    The effect of the nanocrystallization of amorphous soft magnetic Fe-P-Nb alloys on their electrochemical behavior in a damp SO2-polluted industrial atmosphere is studied. It is shown that their electro-chemical characteristics shit toward positive values when the phosphorus content in the Fe-P-Nb alloys increases and when they undergo nanocrystallization from an amorphous state.

  11. Robust hydrophobic Fe-based amorphous coating by thermal spraying

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wu, Y.; Liu, L.

    2012-09-01

    Metallic surface is intrinsically hydrophilic due to its high surface energy. In this work, we present a different picture that highly hydrophobic metallic coatings could be directly fabricated by thermal spraying of Fe-based amorphous powders through the surface roughness control. These hydrophobic coatings are amorphous, exhibiting super-high hardness and excellent corrosion resistance. With low surface energy modification, the coatings become superhydrophobic and exhibit clearly self-cleaning effect. The present work opens a window for the applications of the amorphous coatings.

  12. In Situ Laser Synthesis of Fe-Based Amorphous Matrix Composite Coating on Structural Steel

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana; Hwang, Jun Y.; Paital, Sameer; Banerjee, Rajarshi; Vora, Hitesh; Dahotre, Narendra B.

    2012-12-01

    Iron-based amorphous materials, owing to their very high hardness, elastic modulus, wear resistance, and corrosion resistance, can be potential materials for surface modification and engineering of many structural alloys. The current study focuses on a novel functional coating, synthesized via laser cladding of an iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder, on AISI 4130 steel substrate, using a continuous-wave diode-pumped ytterbium laser. The coatings were characterized by different techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). SEM and TEM studies indicated the presence of Fe-based nanocrystalline dendrites intermixed within an amorphous matrix. A three-dimensional thermal modeling approach based on COMSOL Multiphysics (COMSOL Inc., Burlington, MA) was used to approximately predict the temperature evolution and cooling rates achieved during laser processing. The mechanisms for the formation of crystalline phases and the morphological changes in the microstructure were studied based on the thermal model developed. Although the thermal model predicted substantially high cooling rates as compared to the critical cooling rate required for retaining an amorphous phase, the formation of crystalline phases is attributed to formation of yttrium oxide, reducing the glass-forming ability, and formation of different oxide phases that act as heterogeneous nucleation sites resulting in the composite microstructure.

  13. In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe 2 Zr nanocomposite alloy

    DOE PAGESBeta

    Yu, K. Y.; Fan, Z.; Chen, Y.; Song, M.; Liu, Y.; Wang, H.; Kirk, M. A.; Li, M.; Zhang, X.

    2014-08-26

    Enhanced irradiation tolerance in crystalline multilayers has received significant attention lately. However, little is known on the irradiation response of crystal/amorphous nanolayers. We report on in situ Kr ion irradiation studies of a bulk Fe96Zr4 nanocomposite alloy. Irradiation resulted in amorphization of Fe2Zr and formed crystal/amorphous nanolayers. α-Fe layers exhibited drastically lower defect density and size than those in large α-Fe grains. In situ video revealed that mobile dislocation loops in α-Fe layers were confined by the crystal/amorphous interfaces and kept migrating to annihilate other defects. This study provides new insights on the design of irradiation-tolerant crystal/amorphous nanocomposites.

  14. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    SciTech Connect

    Fukuhara, M.; Kawarada, H.

    2015-02-28

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The I{sub d}-V{sub g} characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} FETs were measured at a gate-drain bias voltage of 0–60 μV in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28 mV, Fabry-Perot interference with a period of 2.35 μV under nonmagnetic conditions, and a Fano effect with a period of 0.26 mV for Vg and 0.2 T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics.

  15. Nano-crystallization and magnetic mechanisms of Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} amorphous alloy by ab initio molecular dynamics simulation

    SciTech Connect

    Wang, Yaocen; Takeuchi, Akira; Makino, Akihiro; Liang, Yunye; Kawazoe, Yoshiyuki

    2014-05-07

    Iron-based amorphous and nano-crystalline alloys have attracted a growing interest due to their potential in the application of magnetic coil production. However, fundamental understanding of the nano-crystallization mechanisms and magnetic features in the amorphous structure are still lack of knowledge. In the present work, we performed ab initio molecular dynamics simulation to clarify the ionic and electronic structure in atomic scale, and to derive the origin of the good magnetic property of Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} amorphous alloy. The simulation gave a direct evidence of the Cu-P bonding preference in the amorphous alloy, which may promote nucleation in nano-crystallization process. On the other hand, the electron transfer and the band/orbital features in the amorphous alloy suggests that alloying elements with large electronegativity and the potential to expand Fe disordered matrix are preferred for enhancing the magnetization.

  16. Dynamic magnetic characteristics of Fe78Si13B9 amorphous alloy subjected to operating temperature

    NASA Astrophysics Data System (ADS)

    He, Aina; Wang, Anding; Yue, Shiqiang; Zhao, Chengliang; Chang, Chuntao; Men, He; Wang, Xinmin; Li, Run-Wei

    2016-06-01

    The operating temperature dependence of dynamic magnetic characteristics of the annealed Fe78Si13B9 amorphous alloy core was systematically investigated. The core loss, magnetic induction intensity and complex permeability of the amorphous core were analyzed by means of AC B-H loop tracer and impedance analyzer. It is found that the operating temperature below 403 K has little impact on core loss when the induction (B) is less than 1.25 T. As B becomes higher, core loss measured at high temperature becomes higher. For the cores measured at power frequency, the B at 80 A/m and the coercivity (Hc) at 1 T decline slightly as the temperature goes up. Furthermore, the real part of permeability (μ‧) increases with the rise of temperature. The imaginary part of permeability (μ″) maxima shifts to lower frequency side with increasing temperature, indicating the magnetic relaxation behavior in the sample. In addition, with the rise in the operating temperature of the annealed amorphous core, the relaxation time tends to increase.

  17. Surface modified amorphous ribbon based magnetoimpedance biosensor.

    PubMed

    Kurlyandskaya, Galina V; Fal Miyar, Vanessa

    2007-04-15

    Magnetoimpedance (MI) changes due to surface modification of the sensitive element caused by human urine, were studied with the aim of creating a robust biosensor working on a principle of electrochemical magnetoimpedance spectroscopy. A biosensor prototype with an as-quenched amorphous ribbon sensitive element was designed and calibrated for a frequency range of 0.5-10 MHz at a current intensity of 60 mA. Measurements as a function of the exposure time were made both in a regime where chemical surface modification and MI measurements were separated as well as in a regime where they were done simultaneously. The MI variation was explained by the change of the surface magnetic anisotropy. It was shown that the magnetoimpedance effect can be successfully employed as a new option to probe the electric features of the Fe(5)Co(70)Si(15)B(10) amorphous ribbon magnetic electrode surface modified by human urine. PMID:16914305

  18. Small Angle Neutron Scattering with Hydrogenated Amorphous Cu50 Ti50 and Ni-Ti-Si Alloys

    NASA Astrophysics Data System (ADS)

    Lamparter, P.; Boucher, B.

    1993-11-01

    The metallic glasses Cu50Ti50, Ni30Ti60Si10, Ni32Ti52Si16 , Ni16Ti68Si16 and Ti84Si16 were produced by melt spinning. The alloys in the blank state as well as after loading with hydrogen or deuterium were investigated by small angle neutron (SANS) and X-ray (SAXS) scattering. The scattering of the different amorphous alloys exhibited common features. SANS follows a power-law with exponent of the scattering vector between -3 and -4. The melt-spun glasses contain extended structural inhomogeneities which are associated rather with the local composition than with the local density. SAXS measurements did not show effects above the background level. Loading the alloys with hydrogen or deuterium causes strong effects in the SANS behaviour. From the results it is concluded that the amorphous alloys contain inner surfaces where the hydrogen atoms segregate.

  19. Anomalous small angle x-ray scattering studies of amorphous metal-germanium alloys

    SciTech Connect

    Rice, M.

    1993-12-01

    This dissertation addresses the issue of composition modulation in sputtered amorphous metal-germanium thin films with the aim of understanding the intermediate range structure of these films as a function of composition. The investigative tool used in this work is anomalous small-angle X-ray scattering (ASAXS). The primary focus of this investigation is the amorphous iron-germanium (a-Fe{sub x}Ge{sub 100-x}) system with particular emphasis on the semiconductor-rich regime. Brief excursions are made into the amorphous tungsten-germanium (a-W{sub x}Ge{sub 100-x}) and the amorphous molybdenum-germanium (a-Mo{sub x}Ge{sub 100-x}) systems. All three systems exhibit an amorphous structure over a broad composition range extending from pure amorphous germanium to approximately 70 atomic percent metal when prepared as sputtered films. Across this composition range the structures change from the open, covalently bonded, tetrahedral network of pure a-Ge to densely packed metals. The structural changes are accompanied by a semiconductor-metal transition in all three systems as well as a ferromagnetic transition in the a-Fe{sub x}Ge{sub 100-x} system and a superconducting transition in the a-Mo{sub x}Ge{sub 100-x} system. A long standing question, particularly in the a-Fe{sub x}Ge{sub 100-x} and the a-Mo{sub x}Ge{sub 100-x} systems, has been whether the structural changes (and therefore the accompanying electrical and magnetic transitions) are accomplished by homogeneous alloy formation or phase separation. The application of ASAXS to this problem proves unambiguously that fine scale composition modulations, as distinct from the simple density fluctuations that arise from cracks and voids, are present in the a-Fe{sub x}Ge{sub 100-x}, a-W{sub x}Ge{sub 100-x}, and a-Mo{sub x}Ge{sub 100-x} systems in the semiconductor-metal transition region. Furthermore, ASAXS shows that germanium is distributed uniformly throughout each sample in the x<25 regime of all three systems.

  20. Formation of Pu amorphous alloys or metastable structures in Pu-Fe, Pu-Ta, and Pu-Si alloys

    SciTech Connect

    Rizzo, H.F.; Echeverria, A.W.

    1985-08-20

    Sputter deposition technique was used to study the possible formation of amorphous structures in Pu-Fe, Pu-Ta, and Pu-Si systems. A triode sputtering system was used to prepare sputtered coatings: 13 to 59 at. % (a/o) Fe, 10 to 50 a/o Si, and 15 to 65 a/o Ta. Structure of the coatings was determined by x-ray diffraction techniques. The temperature stability of the obtained structures was determined by Differential Scanning Calorimetry (DSC) measurements. The Pu-Fe and Pu-Si binary systems showed strong evidence for the formation of amorphous phases in the sputtered coatings. X-ray analyses indicated the presence of Pu6Fe in the 13 to 20 a/o Fe range of Pu-Fe alloys and no apparent crystalline phases over the entire 10 to 50 a/o Si range of Pu-Si alloys. In the Pu-Ta system, the DSC data obtained for compositions below 50 a/o Ta did not show typical crystallization exotherms. At compositions above 50 a/o Ta, a metastable bcc alpha Ta structure was observed with an expanded lattice parameter. The calculated volume expansion (2.9%) corresponds to 29 a/o of Pu in solid solution if the lattice parameter is assumed to follow Vegards Law. After storage in a nitrogen glovebox atmosphere for over two years, the Pu-Si and Pu-Ta coatings have maintained a metallic luster and have shown no visible evidence of surface oxidation.

  1. Fe-Based Amorphous Coatings on AISI 4130 Structural Steel for Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana; Santhanakrishnan, S.; Dahotre, Narendra B.

    2012-06-01

    The current study focuses on synthesizing a novel functional coating for corrosion resistance applications, via laser surface alloying. The iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder is used for laser surface alloying on AISI 4130 steel substrate, with a continuous wave ytterbium Nd-YAG fiber laser. The corrosion resistance of the coatings is evaluated for different processing conditions. The microstructural evolution and the response of the microstructure to the corrosive environment is studied using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Microstructural studies indicate the presence of face-centered cubic Fe-based dendrites intermixed within an amorphous matrix along with fine crystalline precipitates. The corrosion resistance of the coatings decrease with an increase in laser energy density, which is attributed to the precipitation and growth of chromium carbide. The enhanced corrosion resistance of the coatings processed with low energy density is attributed to the self-healing mechanism of this amorphous system.

  2. Corrosion Characterization of Iron-Based High-Performance Amorphous-Metal Thermal-Spray Coatings

    SciTech Connect

    Farmer, J C; Haslam, J J; Day, S D; Branagan, D J; Blue, C A; Rivard, J K; Aprigliano, L F; Yang, N; Perepezko, J H; Beardsley, M B

    2005-03-21

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. One of these compositions, SAM1651, is discussed in detail to illustrate the promise of this general class of materials.

  3. Local structure of amorphous GaN{sub 1-x}As{sub x} semiconductor alloys across the composition range

    SciTech Connect

    Levander, A. X.; Dubon, O. D.; Wu, J.; Yu, K. M.; Liliental-Weber, Z.; Walukiewicz, W.; Novikov, S. V.; Foxon, C. T.

    2013-06-28

    Typically only dilute (up to {approx}10%) highly mismatched alloys can be grown due to the large differences in atomic size and electronegativity of the host and the alloying elements. We have overcome the miscibility gap of the GaN{sub 1-x}As{sub x} system using low temperature molecular beam epitaxy. In the intermediate composition range (0.10 < x < 0.75), the resulting alloys are amorphous. To gain a better understanding of the amorphous structure, the local environment of the As and Ga atoms was investigated using extended x-ray absorption fine structure (EXAFS). The EXAFS analysis shows a high concentration of dangling bonds compared to the crystalline binary endpoint compounds of the alloy system. The disorder parameter was larger for amorphous films compared to crystalline references, but comparable with other amorphous semiconductors. By examining the Ga local environment, the dangling bond density and disorder associated with As-related and N-related bonds could be decoupled. The N-related bonds had a lower dangling bond density and lower disorder.

  4. Effect of nano-crystallization of high velocity oxy-fuel-sprayed amorphous NiCrBSi alloy on properties of the coatings

    NASA Astrophysics Data System (ADS)

    Li, Chang-Jiu; Wang, Yu-Yue; Li, Hua

    2004-09-01

    NiCrBSi self-fluxing alloy coatings were deposited by high velocity oxy-fuel (HVOF) spraying. Annealing treatment was applied to the as-sprayed coatings to develop the microstructure of the Ni-based coating. The microstructure of the coating was characterized using optical microscopy, x-ray diffraction and transmission electron microscopy. The crystallization behavior of the amorphous coating was also characterized by differential scanning calorimetry. The properties of the coating were characterized by microhardness and abrasive wear tests. The results showed that the as-sprayed HVOF coating deposited by well melted spray particles exhibited a dense microstructure of amorphous phase. It was revealed that the crystallization of the amorphous phase in HVOF NiCrBSi coating occurs at a temperature of about 502°C. Annealing at temperature a little higher than recrystallization temperature leads to the formation of the nano-crystalline microstructure. The subsequent nanostructured Ni-based coating presents higher microhardness and excellent wear performance. With the further increase in annealing temperature, the growth of the nano-crystalline grains occurs and, accordingly, the microhardness of the coating and the wear performance decrease. Thereafter, the microstructure and properties of the Ni-based self-fluxing alloy coating can be controlled through postannealing treatment.

  5. Method of casting articles of a bulk-solidifying amorphous alloy

    DOEpatents

    Lin, Xianghong; Johnson, William L.; Peker, Atakan

    1998-01-01

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast.

  6. Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.; Giles, R. C.; Patterson, G.

    1991-01-01

    Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.

  7. Tracer diffusion of /sup 60/Co and /sup 63/Ni in amorphous NiZr alloy

    SciTech Connect

    Hoshino, K.; Averback, R.S.; Hahn, H.; Rothman, S.J.

    1987-01-01

    Tracer diffusion of /sup 60/Co and /sup 63/Ni in equiatomic amorphous NiZr alloy in the temperature range between 486 and 641/sup 0/K can be described by: D/sub Co/sup */ = 3.7 x 10/sup -7/ exp(-(135 +- 14) kJ mole/sup -1//RT) m/sup 2//sec and D/sub Ni//sup */ = 1.7 x 10/sup -7/ exp(-(140 +- 9) kJ mole/sup -1//RT) m/sup 2//sec. The values of D/sub Ni//sup */ are in reasonable agreement with those measured by the Rutherford backscattering technique. The measured diffusivities were independent of time, indicating that no relaxation took place during diffusion. 27 refs., 2 tabs.

  8. High-field magnetization measurements on a ferromagnetic amorphous alloy from 295 to 5K

    SciTech Connect

    Szymczak, P. ); Graham, C.D. Jr. ); Gibbs, M.R.J. )

    1994-11-01

    Magnetization measurements on an amorphous ferromagnetic alloy Fe[sub 78](SiB)[sub 22] have been made over the temperature range from 5 to 295K and in fields to 5T, using a SQUID magnetometer and a superconducting magnet. As-received and field-annealed samples were measured. Having data over a range of temperatures allows the spin-wave contribution to the magnetization to be determined, and then subtracted. When the spin-wave contribution is removed, a substantial high-field susceptibility remains, which is independent of temperature. Attempts to fit the corrected curves to one of two theoretical equations were not conclusive, but the best fit seems to be to M = M[sub 0] + aH[sup [minus]0.5] + bH. The annealing treatment has no significant effect on the high-field magnetization.

  9. Method of casting articles of a bulk-solidifying amorphous alloy

    DOEpatents

    Lin, X.; Johnson, W.L.; Peker, A.

    1998-08-25

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast. 8 figs.

  10. Hydrogenation under high pressure enhancing catalytic activity of Cu-Zr amorphous alloys

    NASA Astrophysics Data System (ADS)

    Szummer, A.; Janik-Czachor, M.; Molnár, Á.; Marchuk, I.; Varga, M.; Filipek, S. M.

    2002-11-01

    High pressures of hydrogen up to 3.0 GPa and temperatures up to 373 K were used as a pretreatment to introduce structural changes in the bulk and on the surface of Cu-Zr amorphous alloys which then were examined by means of x-ray diffraction and microscopy. The hydrogenative pretreatment of high hydrogen fugacity followed by annealing at 623 K, aimed at causing desorption of hydrogen, and an eventual exposure of the samples to air at room temperature to oxidize Zr, resulted in a distinct increase of catalytic activity in the dehydrogenation of 2-propanol. A tentative mechanism to account for the enhancement of the catalytic activity induced by the above combined pretreatment is discussed.

  11. First-principles study of the structural and dynamic properties of the liquid and amorphous Li-Si alloys

    NASA Astrophysics Data System (ADS)

    Chiang, Han-Hsin; Lu, Jian-Ming; Kuo, Chin-Lung

    2016-01-01

    We have performed density functional theory calculations and ab initio molecular dynamics to investigate the structures and dynamic properties of the liquid and amorphous LixSi alloys over a range of composition from x = 1.0 - 4.8. Our results show that Si atoms can form a variety of covalently bonded polyanions with diverse local bonding structures in the liquid alloys. Like in c-LiSi, Si atoms can form a continuous bond network in liquid Li1.0Si at 1050 K, while it gradually disintegrates into many smaller Si polyanions as the Li content increases in the alloys. The average sizes of Si polyanions in these liquid alloys were found to be relatively larger than those in their crystalline counterparts, which can even persist in the highly lithiated Li4.81Si alloy at 1500 K. Our results also show that amorphous LixSi alloys have similar local bonding structures but a largely increased short-range order as compared to their liquid counterparts. The differences between the average coordination number of each atomic pair in amorphous solids and that in the liquids are less than 1.1. Furthermore, our calculations reveal that Li and Si atoms can exhibit very distinct dynamic behaviors in the liquids and their diffusivities appear to be largely dependent on the chemical composition of the alloys. The diffusivity of Li was found to increase with the Li content in the alloys primarily because of the reduced interactions between Li and Si atoms, while the Si diffusivity also increases due to the gradual disintegration of the strongly interconnected Si bond network. The diffusivity of Li in amorphous LixSi was predicted to lie in the range between 10-7 and 10-9 cm2/s at 300 K, which is more than 20-fold larger than that of Si over the composition range considered. Our calculations further show that the diffusivities of both Li and Si can increase by two orders of magnitude as x increases from 1.0 to 3.57 in amorphous LixSi, indicating a more profound dependence on the alloy

  12. First-principles study of the structural and dynamic properties of the liquid and amorphous Li-Si alloys.

    PubMed

    Chiang, Han-Hsin; Lu, Jian-Ming; Kuo, Chin-Lung

    2016-01-21

    We have performed density functional theory calculations and ab initio molecular dynamics to investigate the structures and dynamic properties of the liquid and amorphous LixSi alloys over a range of composition from x = 1.0 - 4.8. Our results show that Si atoms can form a variety of covalently bonded polyanions with diverse local bonding structures in the liquid alloys. Like in c-LiSi, Si atoms can form a continuous bond network in liquid Li1.0Si at 1050 K, while it gradually disintegrates into many smaller Si polyanions as the Li content increases in the alloys. The average sizes of Si polyanions in these liquid alloys were found to be relatively larger than those in their crystalline counterparts, which can even persist in the highly lithiated Li4.81Si alloy at 1500 K. Our results also show that amorphous LixSi alloys have similar local bonding structures but a largely increased short-range order as compared to their liquid counterparts. The differences between the average coordination number of each atomic pair in amorphous solids and that in the liquids are less than 1.1. Furthermore, our calculations reveal that Li and Si atoms can exhibit very distinct dynamic behaviors in the liquids and their diffusivities appear to be largely dependent on the chemical composition of the alloys. The diffusivity of Li was found to increase with the Li content in the alloys primarily because of the reduced interactions between Li and Si atoms, while the Si diffusivity also increases due to the gradual disintegration of the strongly interconnected Si bond network. The diffusivity of Li in amorphous LixSi was predicted to lie in the range between 10(-7) and 10(-9) cm(2)/s at 300 K, which is more than 20-fold larger than that of Si over the composition range considered. Our calculations further show that the diffusivities of both Li and Si can increase by two orders of magnitude as x increases from 1.0 to 3.57 in amorphous LixSi, indicating a more profound dependence on the

  13. Highly mismatched crystalline and amorphous GaN(1-x)As(x) alloys in the whole composition range

    SciTech Connect

    Yu, K. M.; Novikov, S. V.; Broesler, R.; Demchenko, I. N.; Denlinger, J. D.; Liliental-Weber, Z.; Luckert, F.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.

    2009-08-29

    Alloying is a commonly accepted method to tailor properties of semiconductor materials for specific applications. Only a limited number of semiconductor alloys can be easily synthesized in the full composition range. Such alloys are, in general, formed of component elements that are well matched in terms of ionicity, atom size, and electronegativity. In contrast there is a broad class of potential semiconductor alloys formed of component materials with distinctly different properties. In most instances these mismatched alloys are immiscible under standard growth conditions. Here we report on the properties of GaN1-xAsx, a highly mismatched, immiscible alloy system that was successfully synthesized in the whole composition range using a nonequilibrium low temperature molecular beam epitaxy technique. The alloys are amorphous in the composition range of 0.17amorphous films have smooth morphology, homogeneous composition, and sharp, well defined optical absorption edges. The band gap energy varies in a broad energy range from ~;;3.4 eV in GaN to ~;;0.8 eV at x~;;0.85. The reduction in the band gap can be attributed primarily to the downward movement of the conduction band for alloys with x>0.2, and to the upward movement of the valence band for alloys with x<0.2. The unique features of the band structure offer an opportunity of using GaN1-xAsx alloys for various types of solar power conversion devices.

  14. Orbital-free density functional theory study of amorphous Li-Si alloys and introduction of a simple density decomposition formalism

    NASA Astrophysics Data System (ADS)

    Xia, Junchao; Carter, Emily A.

    2016-03-01

    We propose a simple density decomposition formalism within orbital-free (OF) density functional theory (DFT) based on the Wang-Govind-Carter-decomposition (WGCD) kinetic energy density functional (KEDF). The resulting simple-WGCD (sWGCD) KEDF provides efficient density optimization, full cell relaxation, reasonable bulk properties for various materials compared to both the original OFDFT-WGCD and the Kohn-Sham (KS) DFT values, and has various numerical benefits including more stable convergence and lower computational cost (twice as fast as the WGCD KEDF). We also study amorphous (a-) Li-Si alloys with KSDFT and OFDFT using the Huang-Carter (HC), WGCD, and sWGCD KEDFs. The a-Li-Si alloy samples are prepared with the anneal-and-quench method using NVT molecular dynamics simulations. We report structural properties, equilibrium volumes, bulk moduli, and alloy formation energies for each a-alloy. The HC, WGCD, and sWGCD KEDFs within OFDFT all predict accurate equilibrium volumes compared against KSDFT benchmarks. The HC KEDF bulk moduli agree with KSDFT benchmarks whereas the WGCD/sWGCD KEDFs generally overestimate the bulk moduli, especially for alloys with low Li concentrations. All three KEDFs show limited ability to predict alloy formation energies, which indicates the lack of transferability of these KEDFs among such systems and motivates future developments in OFDFT and KEDF formalisms.

  15. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  16. Observation of unique blister-like surface features on amorphous metallic alloys following bombardment with deuterium ions

    NASA Astrophysics Data System (ADS)

    Bardamid, A. F.; Voitsenya, V. S.; Lytvyn, O. S.; Lytvyn, P. M.; Konovalov, V. G.; Shapoval, A. N.; Solodovchenko, S. I.; Yakimov, K. I.

    2008-05-01

    When investigating the impact of deuterium plasma ions (with energy 300 eV) on mirror specimen fabricated of bulk amorphous alloy Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) some unusual surface features were observed. Their shape differs from blisters observed on the surface of amorphous foils bombarded with high energy helium and hydrogen ions (Refs. [9-11]). In this Letter a short description of characteristics of these 'blister-like' features are presented.

  17. Formation of amorphous alloys by ion beam mixing and its multiscale theoretical modeling in the equilibrium immiscible Sc-W system.

    PubMed

    Zhang, R F; Shen, Y X; Yan, H F; Liu, B X

    2005-03-17

    Unique amorphous alloys are synthesized at the compositions of 25 and 40 atom % of W by ion beam mixing in the equilibrium immiscible Sc-W system characterized by a positive heat of formation of +14 kJ/mol. In thermodynamic modeling, a Gibbs free energy diagram is constructed based on Miedema's theory, and the diagram predicts a glass-forming range of the Sc-W system to be within 12-58 atom % of W. To develop an atomistic model, ab initio calculations are first conducted to assist the construction of an n-body Sc-W potential under the embedded atom method. The proven realistic potential is applied in molecular dynamic simulations to study the crystal-to-amorphous transition in the Sc-W solid solutions, thus determining the glass-forming ability of the system to be within 15-50 atom % of W. Apparently, both theoretical predicted glass-forming ranges cover the experimentally measured one, showing an excellent agreement. We report, in this paper, the experimental results from ion beam mixing and the multiscale theoretical modeling concerning the amorphous alloy formation in the Sc-W system together with a brief discussion of the structural transition mechanism. PMID:16851507

  18. Amorphization of Ti1- x Mn x

    NASA Astrophysics Data System (ADS)

    Chu, B.-L.; Chen, C.-C.; Perng, T.-P.

    1992-08-01

    Three amorphous Ti1- x Mn x alloy powders, with x = 0.4, 0.5, and 0.6, were prepared by mechanical alloying (MA) of the elemental powders in a high-energy ball mill. The amorphous powders were characterized by X-ray diffraction (XRD) and high-resolution transmission elec- tron microscopy (HRTEM). The crystallization temperatures for these alloys detected by dif- ferential scanning calorimetry (DSC) varied from 769 to 830 K. The calculated enthalpies of mixing in these amorphous phases are relatively small compared with those for other Ti-base binary alloys. The criteria for solid-state amorphization reaction are examined. It is suggested that the kinetics of nucleation and growth favors the formation of the amorphous phases and the supply of atoms for nucleation and growth is predominantly through the defective regions induced by MA.

  19. Microstructure development and hydrogen gas interaction of oxidized Zr65Pd35 and Zr60Pd35Ce5 amorphous alloys

    NASA Astrophysics Data System (ADS)

    Ozawa, Masakuni; Kato, Shiro; Kobayashi, Katsutoshi; Yogo, Toshinobu; Yamamura, Shin-ichi

    2016-01-01

    The microstructure of composites derived from amorphous Zr65Pd35 and Zr65Pd35Ce5 alloys was studied. X-ray diffractograms, Raman spectroscopy profiles and scanning electron micrographs indicated that the mixtures containing ZrO2, metallic Pd, and PdO were formed for both amorphous alloys after heat treatment in air. The amorphous Zr60Pd35Ce5 alloy at temperatures of 280-400 °C changed to the composites in which very small Pd precipitates with a diameter less than 100 nm were embedded in a ZrO2 matrix. The hydrogen-temperature-programmed reduction was applied to study the reactivity of hydrogen gas with the oxidized Zr60Pd35Ce5 material. A rapid hydrogen absorption and release behavior was observed on the composite derived from the amorphous alloy.

  20. Dependence of the mechanical characteristics of fast-quenched amorphous Zr-Cu-Al alloys on their composition

    NASA Astrophysics Data System (ADS)

    Arutyunyan, N. A.; Zaitsev, A. I.; Dunaev, S. F.; Kalmykov, K. B.; Plokhikh, A. I.; Fedotova, N. L.

    2016-06-01

    The thermal and mechanical characteristics of fast-quenched amorphous Zr-Cu-Al alloys with various concentrations of copper and aluminum are studied. It is shown that the crystallization temperature of glass-like compositions increases when copper is replaced with aluminum in concentrations of up to 10 at %, and that the hardness, Young's modulus, and fracture stress increase only at low concentrations of aluminum (no more than 6 at %). Upon a further increase in the concentration of the alloying element, fracture stress σf decreases because σf the change in the fracture mechanism, despite high hardness and Young's modulus.

  1. Structural and magnetic peculiarities of Al86Ni8Sm6 alloy in amorphous, crystalline, and liquid states

    NASA Astrophysics Data System (ADS)

    Uporov, S. A.; Ryl'tsev, R. E.; Uporova, N. S.; Bykov, V. A.; Murzakaev, A. M.; Pryanichnikov, S. V.

    2015-02-01

    Magnetic, structural, and thermal characteristics of the Al86Ni8Sm6 alloy in amorphous, crystalline, and liquid states have been studied over a wide temperature range of 4-1900 K. It has been found that the amorphous alloy has a pronounced cluster structure with an average cluster size of 2-3 nm. The crystallization process occurs in four stages and no apparent thermal effect at the glass-transition temperature is observed. The amorphous ribbon has no magnetic order up to 4 K but demonstrates superparamagneic behavior. An analysis of isothermal magnetization curves indicates a possible correlation between structural and magnetically ordered clusters. Anomalous changes in the magnetic susceptibility in the liquid state have been found at temperatures substantially higher than the liquidus temperature; the anomalies indicate structural changes in the melt. The magnetic susceptibility in the amorphous, crystalline, and liquid states was found to be characterized by a high Van Vleck paramagnetic contribution and can be described adequately in terms of the classic Van Vleck theory with allowance for mixed valence effects. The obtained results are interpreted using a concept on the existence of a specific covalent-metallic interaction between aluminum and rare-earth metal atoms.

  2. Large Magnetocaloric Effect Around Room Temperature in Amorphous Fe-Gd-Zr Alloy Ribbon with Short-Range Interactions

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Yen, Nguyen Hai; Duc, Nguyen Huu; Phan, The-Long; Dan, Nguyen Huy; Yu, Seong-Cho

    2016-05-01

    In this work, we present a detailed study on the magnetocaloric effect and the critical behaviors of an amorphous Fe88Gd2Zr10 alloy ribbon prepared by using a rapid quenching method. We point out that the value of maximum magnetic entropy change (|∆ S max|) of amorphous Fe88Gd2Zr10 alloy ribbon appeared at near room temperature and versus Δ H obeys a power law, |∆ S max| = a·Δ H n. In addition, all Δ S m( T, Δ H) data measured at different Δ H values are collapsed onto a universal master curve. Interestingly, M 2 versus H/ M curves prove amorphous Fe88Gd2Zr10 ribbon exhibitied a second-order magnetic phase transition. The critical exponents ( β, γ, and δ) obtained from the modified Arrott plots and the Kouvel-Fisher methods, and critical isotherm analysis are very close to those expected for the 3D-Heisenberg model, proving ferromagnetic short-range interactions exist in amorphous Fe88Gd2Zr10 ribbon.

  3. Fabrication and Characterization of Thermal-Sprayed Fe-Based Amorphous/Nanocrystalline Composite Coatings: An Overview

    NASA Astrophysics Data System (ADS)

    Guo, Wenmin; Wu, Yuping; Zhang, Jianfeng; Hong, Sheng; Li, Gaiye; Ying, Guobing; Guo, Ji; Qin, Yujiao

    2014-10-01

    This review focuses on the recent development of iron (Fe)-based amorphous/nanocrystalline composite coatings, which have attracted much attention due to their attractive combination of high hardness/strength, elevated abrasive wear resistance, and enhanced corrosion resistance. Accompanying the advancements in various thermal spray technologies, industrial application fields of Fe-based amorphous/nanocrystalline composite coatings are becoming more diverse. In the main part, the typical empirical rules for the design of amorphous alloys with high glass-forming ability are generalized and discussed at first. Then various thermal spray technologies for the fabrication of Fe-based amorphous/nanocrystalline composite coatings, such as high velocity oxygen/air spray (HVOF/HVAF), air plasma spray (APS), low-pressure plasma spray (LPPS), high-energy plasma spray (HPS), and high velocity arc spray (HVAS) processes, are introduced. The microstructures, hardness, wear resistance, and corrosion resistance of Fe-based amorphous/nanocrystalline composite coatings formed using these thermal spray technologies are reviewed and compared. Finally, the existing challenges and future prospects are proposed.

  4. Microstructures of the silicon carbide nanowires obtained by annealing the mechanically-alloyed amorphous powders

    SciTech Connect

    Zhang, Pengfei Li, Xinli

    2015-07-15

    Silicon, graphite and boron nitride powders were mechanically alloyed for 40 h in argon. The as-milled powders were annealed at 1700 °C in nitrogen for 30 min. The annealed powders are covered by a thick layer of gray–green SiC nanowires, which are 300 nm to 1000 nm in diameter and several hundred microns in length. Trace iron in the raw powders acts as a catalyst, promoting the V–L–S process. It follows that the actual substances contributing to the growth of the SiC nanowires may be silicon, graphite and the metal impurities in the raw powders. The results from HRTEM and XRD reveal that the products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. It is interestingly found that 6H–SiC coexists with 3C–SiC in one nodular nanowire. This novel structure may introduce periodic potential field along the longitudinal direction of the nanowires, and may find applications in the highly integrated optoelectronic devices. - Graphical abstract: Display Omitted - Highlights: • SiC nanowires were prepared by annealing the mechanically alloyed amorphous powders. • SiC nanowires are 300 nm to 1000 nm in diameter and several hundred microns in length. • The products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. • Trace Fe in the raw powders acts as a catalyst, promoting the V–L–S process. • 6H–SiC coexists with 3C–SiC in one nodular SiC nanowire.

  5. Microstructure of amorphous-silicon-based solar cell materials by small-angle x-ray scattering. Annual subcontract report, 6 April 1994--5 April 1995

    SciTech Connect

    Williamson, D.L.

    1995-08-01

    The general objective of this research is to provide detailed microstructural information on the amorphous-silicon-based, thin-film materials under development for improved multijunction solar cells. The experimental technique used is small-angle x-ray scattering (SAXS) providing microstructural data on microvoid fractions, sizes, shapes, and their preferred orientations. Other microstructural features such as alloy segregation, hydrogen-rich clusters and alloy short-range order are probed.

  6. Investigation of thermally evaporated high resistive B-doped amorphous selenium alloy films and metal contact studies

    NASA Astrophysics Data System (ADS)

    Oner, Cihan; Nguyen, Khai V.; Pak, Rahmi O.; Mannan, Mohammad A.; Mandal, Krishna C.

    2015-08-01

    Amorphous selenium (a-Se) alloy materials with arsenic, chlorine, boron, and lithium doping were synthesized for room temperature nuclear radiation detector applications using an optimized alloy composition for enhanced charge transport properties. A multi-step synthetic process has been implemented to first synthesize Se-As and Se-Cl master alloys from zone-refined Se (~ 7N), and then synthesized the final alloys for thermally evaporated large-area thin-film deposition on oxidized aluminum (Al/Al2O3) and indium tin oxide (ITO) coated glass substrates. Material purity, morphology, and compositional characteristics of the alloy materials and films were examined using glow discharge mass spectroscopy (GDMS), inductively coupled plasma mass spectroscopy (ICP-MS), differential scanning calorimetry (DSC), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive analysis by x-rays (EDAX). Current-Voltage (I-V) measurements were carried out to confirm very high resistivity of the alloy thin-films. We have further investigated the junction properties of the alloy films with a wide variety of metals with different work functions (Au, Ni, W, Pd, Cu, Mo, In, and Sn). The aim was to investigate whether the choice of metal can improve the performance of fabricated detectors by minimizing the dark leakage current. For various metal contacts, we have found significant dependencies of metal work functions on current transients by applying voltages from -800 V to +1000 V.

  7. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    SciTech Connect

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  8. Kinetic of crystallization and electrical conductance of Ge 5As 38Te 57 amorphous chalcogenide alloy

    NASA Astrophysics Data System (ADS)

    Elshafie, A.; Abdel-All, A.

    1999-07-01

    DTA measurements were made on Ge 5As 38Te 57 amorphous chalcogenide alloy. The glass transition temperature ( Tg), the first exothermic peak ( Tc1) and the second exothermic peak ( Tc2) were found to increase as the heating rate increases. The kinetic parameters were evaluated from the DTA curves and related to the crystallization mechanism where both the bulk and surface cyrstallization were considered. The crystal nucleation and growth of Ge 5As 38Te 57 glass were studied by three simple methods, and the average activation energy of nucleation was found to be 31.74 kcal/mol. The apparent activation energies for crystallization were estimated to be 59.7 and 42.6 kcal/mol for the 1st and 2nd peak, respectively. X-ray analysis for samples, isothermally annealed at temperatures higher than the glass transition and crystallization temperatures indicates that phases of Te and As 2Te 3 were nucleated and grown. The activation energy of conduction as well as the disordered enegy were also calculated.

  9. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    PubMed

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance. PMID:26080437

  10. Morphology and kinetics of crystallization of amorphous V75Si25 thin-alloy films

    NASA Astrophysics Data System (ADS)

    Nava, F.; Weiss, B. Z.; Tu, K. N.; Smith, D. A.; Psaras, P. A.

    1986-10-01

    Electrical and microstructural changes of coevaporated V75Si25 alloy thin films have been studied as a function of temperature from room temperature to 830 °C. In situ resistivity measurements, hot-stage transmission electron microscopy, Rutherford backscattering spectroscopy and the Seeman-Bohlin glancing angle incidence x-ray diffraction technique were applied. Upon heat treatment at a heating rate of 8 °C/min, a sharp decrease in resistivity occurs at ˜670 °C which results from an amorphous to crystalline phase transformation. The crystallized phase was identified as V3Si. The mechanism of transformation is random nucleation at a rapidly decreasing rate and a fast quasi-isotropic growth. The kinetics of crystallization have been studied by utilizing electrical resistivity measurements during isothermal heat treatment. Six different temperatures between 570 °C and 630 °C were adopted. The apparent activation energy (˜3.6 eV) obtained from isothermal measurements was found to be in agreement with that obtained from nonisothermal treatments at varying rates of heating. The distinct change of the Avrami mode parameter from 4 to 2 at a constant value of t/τ during the process of crystallization is not immediately understood.

  11. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    PubMed Central

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.

    2015-01-01

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor–inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance. PMID:26080437

  12. On-demand release of corrosion-inhibiting ions from amorphous Al-Co-Ce alloys.

    PubMed

    Jakab, M A; Scully, J R

    2005-09-01

    Controlled release technologies are often used to supply chemicals or drugs at given rates. Release often occurs on contact with solution. However, some applications, such as corrosion protection, require containment of the active species in a reservoir and their slow release when needed. Conductive polymers have been used as reservoirs for corrosion inhibitors whose triggered release occurs by galvanic reduction or ion exchange. This work shows one of the first examples of pH-controlled release of corrosion-inhibiting ions from an amorphous metallic coating where the pH change that triggers release is a consequence of the onset of corrosion. This corrosion-inhibition strategy provides further corrosion protection beyond the traditional roles of barrier and sacrificial cathodic protection using a metal coating. For instance, zinc galvanizing provides sacrificial cathodic protection and acts as a barrier, but does not supply inhibitor ions. In the coating described here, protection of an underlying structural alloy exposed at coating defects is demonstrated by inhibitor ion release in addition to barrier function and sacrificial cathodic protection. PMID:16086020

  13. Tunneling Spectroscopy of Amorphous Magnetic Rare Earth-Si Alloys near the Metal-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Xiong, P.; Zink, B. L.; Tran, M. Q.; Gebala, A. E.; Wilcox, E. M.; Hellman, F.; Dynes, R. C.

    1997-03-01

    Amorphous dilute magnetic semiconductors exhibit striking differences in the electrical and magneto-transport behavior from their crystalline or nonmagnetic analogs.(F. Hellman et al., Phys. Rev. Lett. 77, 4652 (1996).) Magnetic impurities cause a large suppression of conductivity below 50 K in a-Si_xGd_1-x and a-Si_xTb_1-x relative to the nonmagnetic a-Si_xY_1-x (x ~ 0.85-0.9). Application of a magnetic field increases the conductivity by orders of magnitude. We have fabricated good quality tunnel junctions on a-Si:Gd and the nonmagnetic a-Si:Y to probe the electronic density of states in these two systems. We present the results of the tunneling spectroscopy and its magnetic field dependence for a series of the two alloys at different compositions. We will discuss the correlation between the tunneling spectra and the transport properties and its implications on the possible origin of the magnetic field tuned insulator-metal transition in a-Si:Gd. Research Supported by ONR Grant No. N000149151320 and NSF Grant No. DMR-9208599.

  14. Polyimide based amorphous silicon solar modules

    NASA Technical Reports Server (NTRS)

    Jeffrey, Frank R.; Grimmer, Derrick P.; Martens, Steven A.; Abudagga, Khaled; Thomas, Michael L.; Noak, Max

    1993-01-01

    Requirements for space power are increasingly emphasizing lower costs and higher specific powers. This results from new fiscal constraints, higher power requirements for larger applications, and the evolution toward longer distance missions such as a Lunar or Mars base. The polyimide based a-Si modules described are being developed to meet these needs. The modules consist of tandem a-Si solar cell material deposited directly on a roll of polyimide. A laser scribing/printing process subdivides the deposition into discrete cell strips which are series connected to produce the required voltage without cutting the polymer backing. The result is a large, monolithic, blanket type module approximately 30 cm wide and variable in length depending on demand. Current production modules have a specific power slightly over 500 W/Kg with room for significant improvement. Costs for the full blanket modules range from $30/Watt to $150/Watt depending on quantity and engineering requirements. Work to date focused on the modules themselves and adjusting them for the AMO spectrum. Work is needed yet to insure that the modules are suitable for the space environment.

  15. Polyimide based amorphous silicon solar modules

    NASA Astrophysics Data System (ADS)

    Jeffrey, Frank R.; Grimmer, Derrick P.; Martens, Steven A.; Abudagga, Khaled; Thomas, Michael L.; Noak, Max

    1993-05-01

    Requirements for space power are increasingly emphasizing lower costs and higher specific powers. This results from new fiscal constraints, higher power requirements for larger applications, and the evolution toward longer distance missions such as a Lunar or Mars base. The polyimide based a-Si modules described are being developed to meet these needs. The modules consist of tandem a-Si solar cell material deposited directly on a roll of polyimide. A laser scribing/printing process subdivides the deposition into discrete cell strips which are series connected to produce the required voltage without cutting the polymer backing. The result is a large, monolithic, blanket type module approximately 30 cm wide and variable in length depending on demand. Current production modules have a specific power slightly over 500 W/Kg with room for significant improvement. Costs for the full blanket modules range from $30/Watt to $150/Watt depending on quantity and engineering requirements. Work to date focused on the modules themselves and adjusting them for the AMO spectrum. Work is needed yet to insure that the modules are suitable for the space environment.

  16. The potential of hydrogenated amorphous silicon-chalcogen alloys for photovoltaic applications: The role of persistent photoconductivity

    SciTech Connect

    Wang, S.L.; Viner, J.M.; Taylor, P.C.; Itoh, T.; Nitta, S.

    1997-02-01

    The potential improvement in stability of hydrogenated silicon-sulfur alloys (a-SiS{sub x}:H) with respect to ordinary hydrogenated amorphous silicon (a-Si:H) has been attributed to the introduction of an additional metastability known as persistent photoconductivity (PPC). In order to examine the PPC process in more detail we examine a series of alloys with large sulfur concentrations (x{gt}0.01). Although these alloys are not useful in photovoltaic devices, the high sulfur concentrations accentuate the PPC effect and allow one to study this effect with little competition from the ordinary Staebler-Wronski effect that dominates the metastable processes that occur in a -Si:H. {copyright} {ital 1997 American Institute of Physics.}

  17. Amorphous silicon based large format uncooled FPA microbolometer technology

    NASA Astrophysics Data System (ADS)

    Schimert, T.; Brady, J.; Fagan, T.; Taylor, M.; McCardel, W.; Gooch, R.; Ajmera, S.; Hanson, C.; Syllaios, A. J.

    2008-04-01

    This paper presents recent developments in next generation microbolometer Focal Plane Array (FPA) technology at L-3 Communications Infrared Products (L-3 CIP). Infrared detector technology at L-3 CIP is based on hydrogenated amorphous silicon (a-Si:H) and amorphous silicon germanium(a-SiGe:H). Large format high performance, fast, and compact IR FPAs are enabled by a low thermal mass pixel design; favorable material properties; an advanced ROIC design; and wafer level packaging. Currently at L-3 CIP, 17 micron pixel FPA array technology including 320x240, 640 x 480 and 1024 x768 arrays is under development. Applications of these FPAs range from low power microsensors to high resolution near-megapixel imager systems.

  18. Enhanced thermoelectric performance of amorphous Nb based oxynitrides

    NASA Astrophysics Data System (ADS)

    Music, Denis; Geyer, Richard W.; Hans, Marcus

    2015-12-01

    Using density functional theory, amorphous Nb0.27Ru0.06O0.56N0.10 was designed to facilitate a combination of an enhanced Seebeck coefficient and low electrical resistivity. Based on a positive Cauchy pressure, ductile behavior is expected. To verify these predictions, the transport and mechanical properties of amorphous thin films were evaluated. Metallic electrical resistivity and the Seebeck coefficient of -94 μV K-1 are obtained, which is consistent with our predictions. As there is no crack formation, these samples can be perceived as ductile. We demonstrate that the power factor can be increased by an order of magnitude, while keeping the thermal fatigue low.

  19. Recent progress in high Bs Fe-based nanocrystalline soft magnetic alloys

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Yoshizawa, Y.

    2011-02-01

    High saturation magnetic flux density (high-Bs) alloy has been developed in an Fe-based nanocrystalline alloy system. A nanocrystalline phase with an average grain size of about 20 nm is obtained by annealing Cu-substituted and/or Cu-and-Si-complex-substituted Fe-B amorphous alloys. The alloy exhibits low coercivity of less than 7 A m-1 and a high Bs of more than 1.8 T. The iron loss at 50 Hz and 1.6 T for a toroidal core made of Fe80.5Cu1.5Si4B14 nanocrystalline alloy is 0.46 W kg-1, which is about 2/3 of that of grain-oriented Si steel. Moreover, the iron loss at 10 kHz and 0.2 T for a wound core made of this alloy is 7.5 W kg-1, which is about 25% of that of non-grain-oriented Si steel and about 60% of that of an Fe-based amorphous alloy. In addition, the cut cores made of the alloy show good superimposed dc-current characteristics and appear promising in applications such as power choke coils (at the high-frequency region).

  20. Examination of Galvanic Action between Fe-Based Bulk Metallic Glass and Crystalline Alloys

    NASA Astrophysics Data System (ADS)

    Ha, Hung M.; Payer, Joe H.

    2009-06-01

    Fe-based bulk metallic glasses (amorphous metals) have been developed, and several compositions are shown to have excellent corrosion resistance in chloride solutions. Further, thermal-spray amorphous metals are being developed for use as a barrier coating layer, to protect substrate materials from corrosion. Galvanic action between dissimilar metals and the coating/substrate for the amorphous-alloy coatings is of practical interest for a number of applications. The mixed-potential theory provides a useful approach for examining the corrosion behavior of the component materials in the galvanic couple and is applied in this study. Galvanic action was studied for an Fe-based structurally amorphous metal (SAM) 1651 and several crystalline alloys that included 1018 C-steel, stainless steel (SS) 316L, and alloy 22. Anodic and cathodic polarization curves of each of the metals were measured by potentiodynamic polarization. Based on the mixed-potential theory, the behavior of the component materials in a galvanic cell was predicted. The predictions are compared to the measured behavior of galvanic couples with the crystalline alloys.

  1. Structural evolution and the kinetics of Cu clustering in the amorphous phase of Fe-Cu-Nb-Si-B alloy

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Gupta, A.; Shukla, A.; Ganguli, Tapas; Sinha, A. K.; Principi, G.; Maddalena, A.

    2011-08-01

    An attempt has been made to investigate the evolution of the structure of the amorphous phase of Fe73.9 Cu0.9 Nb3.1 Si13.2 B8.9 (finemet) alloy by a combination of wide-angle x-ray scattering, small angle x-ray scattering (SAXS), Mössbauer spectroscopy and X-ray absorption near edge spectroscopy on the supposition that they would provide complementary information. Before the onset of nanocrystallization, the amorphous phase undergoes a structural relaxation resulting in small increase in the hyperfine field and a decrease in the width of the first diffraction maxima. There is an increase in the topological ordering in the system, though chemical inhomogeneity sets-in due to the clustering of Cu atoms in the pure amorphous state of this alloy. Annealing at 400 °C (well below the crystallization temperature) for different time durations results in occurrence of Cu clusters having fcc structure. Kinetics of Cu clustering is studied using SAXS. The incubation time for the clustering at 400 °C is ˜120 min. With further annealing, the average cluster size gradually increases from the initial value of ˜0.4 nm, reaching a value of ˜0.6 nm after annealing for 720 min. Cluster size exhibits a t1/2 dependence, suggesting a diffusion controlled growth.

  2. Formation of amorphous Fe 50Si 50 alloy by diffusion reaction

    NASA Astrophysics Data System (ADS)

    Yan, Zhihua; Wang, Wenkui; Li, Jingfeng; Wang, Yuming

    1989-02-01

    The solid state reaction in the multilayer film with alternative polycrystalline Fe and amorphous Si layers has been studied with X-ray diffraction. Amorphous Fe 50Si 50 phase was formed after annealing isothermally at 300°C, which is explained in view of the consideration that an amorphous phase can be more favorable to form than a supersaturated solution in thermodynamics as well as than an equilibrium compound FeSi in kenetics.

  3. Transient photocurrent response of three-color detectors based on amorphous silicon

    NASA Astrophysics Data System (ADS)

    Stannowski, B.; Stiebig, H.; Knipp, D.; Wagner, H.

    1999-04-01

    Color detectors based on multilayers of amorphous-silicon alloys facilitate the detection of the three fundamental components of visible light in one single pixel of a sensor array. In order to achieve sensitivity for the blue, green, and red components of light, three different bias voltages are applied to the device. By switching them sequentially the detector is read out. n-i-p-i-i-n structures with a controlled band gap and mobility-lifetime product exhibit excellent stationary properties, namely: good color separation and have dynamic behaviors above 95 dB. Besides the stationary behavior the transient response of a color detector is a further optimization criterion. The experimentally found transient photocurrent response after switching on monochromatic light at different applied bias voltages showed reasonable delay times in the range of tens of milliseconds before reaching steady state. Numerical simulations have been carried out which reproduce this characteristic behavior and facilitate a study of time dependent processes within the device, such as charge transport and storage in localized states. The delay times can be explained by the recharging of electrical defect states in the amorphous material. Consequently, the electrical potential within the device changes, which remarkably affects the carrier transport. Based on these results optimization criteria for the transient behavior of the color detectors are discussed.

  4. The effects of reactive-element, ion-implantation-induced amorphous layers on the oxidation of Co-12Cr and Ni-12Cr alloys

    SciTech Connect

    Hampikian, J.M.

    1998-08-01

    Nickel-chromium (Ni-12Cr, wt.%) and cobalt-chromium (Co-12Cr, wt.%) alloys were ion implanted with 150 keV yttrium to fluences that ranged between 2 {times} 10{sup 16} and 1 {times} 0{sup 17} ions/cm{sup 2}. The influence of the implantation on the microstructure of the alloy was determined. The effect of the highest dose implantation on the alloys` oxidation response at 1,000 C, 48 hr was measured. Both alloys contained an amorphous surface phase as a result of this fluence and one of the effects of oxidation was to recrystallize the amorphized alloy in the first few minutes of oxidation. The lower doses of 2 {times} 10{sup 16} ions/cm{sup 2} were sufficient to cause amorphization of both the Ni-12Cr and the Co-12Cr. The implantation reduced the isothermal mass gain by a factor of 25% for the Ni-12Cr, but had a negligible effect on the Co-12Cr alloy. Short-term oxidation of experiments at 600 C showed via transmission electron microscopy that, in the absence of the yttrium implant, the Ni-12Cr alloy forms NiO in the first minute of oxidation and the Co-12Cr alloy forms CoO and CoCr{sub 2}O{sub 4}. The implanted Ni-12Cr, on the other hand (1 {times} 10{sup 17} Y{sup +}/cm{sup 2}), forms recrystallized Ni-Cr, Y{sub 2}O{sub 3}, and NiO in the near-surface region, while the implanted Co-12Cr alloy forms CoO, CoCr{sub 2}O{sub 4}, and a recrystallized intermetallic alloy from the amorphized region.

  5. Enhancement of the Thermal Stability and Mechanical Hardness of Zr-Al-Co Amorphous Alloys by Ag Addition

    NASA Astrophysics Data System (ADS)

    Wang, Yongyong; Dong, Xiao; Song, Xiaohui; Wang, Jinfeng; Li, Gong; Liu, Riping

    2016-05-01

    The thermal and mechanical properties of Zr57Al15Co28- X Ag X ( X = 0 and 8) amorphous alloys were investigated using differential scanning calorimetry, in situ high-pressure angle dispersive X-ray diffraction measurements with synchrotron radiation, and nanoindentation. Results show that Ag doping improves effective activation energy, nanohardness, elastic modulus, and bulk modulus. Ag addition enhances topological and chemical short-range orderings, which can improve local packing efficiency and restrain long-range atom diffusion. This approach has implications for the design of the microstructure- and property-controllable functional materials for various applications.

  6. Free-electron-like Hall effect and deviations from free-electron behavior in Ca-Al amorphous alloys

    NASA Astrophysics Data System (ADS)

    Mayeya, F. M.; Hickey, B. J.; Howson, M. A.

    1995-06-01

    The Hall coefficients of Ca-Al amorphous alloys have been measured at 4.2 K over a wide range of compositions. It is shown that the magnitude of the Hall coefficients are close to the nearly-free-electron (NFE) prediction for low Ca concentrations but deviate significantly from the NFE values for Ca concentration greater than 45 at. %. The deviations from the free-electron values have previously been attributed to the effects of s-d hybridization, while a reduction in magnitude by Au doping has been argued to result from the side-jump effect.

  7. Spectroscopic ellipsometry study of hydrogenated amorphous silicon carbon alloy films deposited by plasma enhanced chemical vapor deposition

    SciTech Connect

    Basa, D. K.; Abbate, G.; Ambrosone, G.; Marino, A.; Coscia, U.

    2010-01-15

    The optical properties of the hydrogenated amorphous silicon carbon alloy films, prepared by plasma enhanced chemical vapor deposition technique from silane and methane gas mixture diluted in helium, have been investigated using variable angle spectroscopic ellipsometry in the photon energy range from 0.73 to 4.59 eV. Tauc-Lorentz model has been employed for the analysis of the optical spectra and it has been demonstrated that the model parameters are correlated with the carbon content as well as to the structural properties of the studied films.

  8. {sup 57}Fe and {sup 119}Sn Moessbauer Effect Study of Fe-Sn-B Amorphous Alloys

    SciTech Connect

    Miglierini, M.; Rusakov, V. S.

    2010-07-13

    Ribbons of Fe{sub 100-x}Sn{sub 5}B{sub x} (x = 15, 17, 20) metallic glass are studied using {sup 57}Fe and {sup 119}Sn Moessbauer spectrometry. The obtained Moessbauer spectra are evaluated by distributions of hyperfine magnetic fields in addition to crystalline components. The as-quenched alloys are XRD amorphous for x =15 and 17 whereas for x =20, traces of quenched-in crystallites are revealed. Progress of crystallization is followed on samples annealed for 30 min at temperatures that cover the first crystallization peak. The evolution of crystalline fraction as well as average values of hyperfine magnetic fields and isomer shifts are discussed as a function of the alloy composition and temperature of annealing.

  9. Study on Corrosion Resistance of Fe-based Amorphous Coating by Laser Cladding in Hydrochloric Acid

    NASA Astrophysics Data System (ADS)

    Chen, Q. J.; Guo, S. B.; Yang, X. J.; Zhou, X. L.; Hua, X. Z.; Zhu, X. H.; Duan, Z.

    In this study, the Fe41Co7Cr15Mo14C15B6Y2 bulk amorphous alloy with high glass-forming ability was prepared using the arc- melting copper mold casting technique, and corresponding amorphous coating was obtained using the laser melt amorphous powders on the surface of carbon steel. The corrosion resistance performance of the laser cladding coating in hydrochloric acid was analyzed and tested in experiments under the conditions of different laser cladding speeds. The amorphous alloy coating with different fabrication parameters have the difference internal structure, which lead to the difference corrosion resistance in the same environment to some extent. The nature of amorphous alloy and the corrosion morphology were investigated using XRD and SEM method, respectively. The corrosion experiments showed that: when the laser power was 3300W, the corrosion resistance of four kinds of samples in hydrochloric acid from strong to weak as follows: as-cast sample > the coating with laser cladding speed 110 mm/min > the coating with laser cladding speed 120 mm/min > the coating with laser cladding speed 130 mm/min. The free corrosion current density of casting sample, sample 1, sample 2 and sample 3 is 3.304 × 10-6 A/cm2, 2.600×10-3 A/cm2, 2.030×10-3 A/cm2 and 3.396×10-4 A/cm2, respectively.

  10. Combinatorial studies of silicon-based alloy negatives for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hatchard, Timothy D.

    Si-based materials are promising candidates to replace graphite as the negative electrode in Li-ion batteries. Si and Si-based materials are attractive because they can reversibly alloy with large amounts of Li. This leads to batteries with higher energy density when compared to cells made with graphite negative electrodes. A crucial problem remains to be overcome before Si-based materials can be used in commercial Li-ion cells. Graphite electrodes can withstand up to a thousand or more charge/discharge cycles without losing significant amounts of capacity. The Si-based materials, on the other hand, lose much of their capacity after only a few cycles. This makes them unacceptable for use in rechargeable batteries. Alloy electrodes that are amorphous tend to have better capacity retention than crystalline materials of similar composition. There are many elements that alloy with Li, so there is a large sample space of possible composite electrode materials that can be tested. A method is needed that can produce libraries with large composition ranges that also contain amorphous material. Amorphous films can be produced by sputter deposition that would not be amorphous if created by other means such as physical mixing or melt spinning. Sputter deposition also lends itself easily to combinatorial methods. This thesis describes the development of a combinatorial deposition system that can produce ternary films with linear and orthogonal composition variations and large amorphous ranges. Infrastructure to perform combinatorial electrochemical testing has also been developed. Studies of a-Si and a-Si-based alloys containing Al, Ag, Ge, Sn and Zn have been conducted. Results of combinatorial studies for binary and ternary systems are presented. In-situ XRD studies have been conducted for a-Si and some specific compositions of SiZn. These results are discussed as well as the phases formed during electrochemical cycling of these cells.

  11. Two-current model of the composition dependence of resistivity in amorphous (Fe100-xCox)(89-y)Zr7B4Cuy alloys using a rigid-band assumption

    SciTech Connect

    Shen, S; Ohodnicki, PR; Kernion, SJ; McHenry, ME

    2012-11-15

    Composition dependence of resistivity is studied in amorphous (Fe100-xCox)(89-y)Zr7B4Cuy (0 <= x <= 50, y = 0, 1) alloys. The two-current model proposed by Mott for crystalline materials is extended to a disordered amorphous system where s-d scattering is dominant in electron conduction. A rigid-band assumption is made due to the small atomic number difference between Fe and Co. Band structures with a constant density of states (DOS), parabolic distributed DOS, and Gaussian distributed DOS were investigated to fit experimental data. The Gaussian distributed DOS was found to simulate the resistivity maximum and magnetic moment maximum in the Fe-rich region. The basic concepts presented here can potentially provide insight into the optimization of FeCo-based HITPERM alloys for applications at increased frequencies. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765673

  12. Microstructural and nuclear magnetic resonance studies of solid-state amorphization in Al-Ti-Si composites prepared by mechanical alloying

    SciTech Connect

    Manna, I.; Nandi, P.; Bandyopadhyay, B.; Ghoshray, K.; Ghoshray, A

    2004-08-16

    Three Al{sub 30}Ti{sub 70-x} Si{sub x} (x=10, 20, 30), along with an Al-rich (Al{sub 50}Ti{sub 40}Si{sub 10}) and an Al-lean (Al{sub 10}Ti{sub 60}Si{sub 30}) elemental powder blends were subjected to mechanical alloying by high-energy planetary ball milling to yield a composite microstructure with varying proportions of amorphous and nanocrystalline intermetallic phases. Microstructural characterization at different stages of milling was carried out by X-ray diffraction, high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. Furthermore, {sup 27}Al nuclear magnetic resonance (NMR) studies were undertaken to probe the mechanism of solid-state amorphization. Ball milling leads to alloying, nanocrystallization and partial solid-state amorphization followed/accompanied by strain-induced nucleation of nanocrystalline intermetallic phases from an amorphous solid solution. Both these amorphous and nano-intermetallic phases are associated with characteristic NMR peaks at lower frequencies (than that of pure Al). Thus, mechanical alloying of Al-Ti-Si appears a suitable technique for developing nanocrystalline intermetallic phase/compound dispersed amorphous matrix composites.

  13. Electrical and Magneto-Resistivity Measurements on Amorphous Copper-Titanium Alloys at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Fan, Renyong

    1992-01-01

    The anomalous transport properties of highly disordered metallic glasses, which require corrections to the classical Boltzmann theory, are due to quantum interference effects of the scattered electron waves. These corrections provide new contributions to the resistivity: "weak localization" and "electron-electron interaction". To study these quantum interference effects, we have made the highest-precision measurements, so far, of the resistances of the amorphous rm Cu_{50}Ti_{50 } and rm Cu_{60}Ti _{40} ribbons at much lower temperatures than before (15mK < T < 6K) and in small magnetic fields (0T < B < 0.2T). To measure the resistance and temperature accurately, we developed a novel method: measuring the resistance perpendicular to the ribbons with potassium as the non-superconducting glue between the CuTi ribbons and two Cu electrodes in order to make excellent electrical and thermal contact. With this method, we were able to measure the resistances with a relative precision of Deltarho/rho = 10^{-7}-10 ^{-8} and temperatures reliably down to 15mK with an error of less than 1mK. The zero field resistances and magnetoresistances were analyzed using weak localization theories that include the Zeeman splitting and electron-electron interaction theories. Possible background contributions from the K layers, the Cu electrodes, and their boundaries are quantified in the analysis. In zero field, these background contributions were negligible for T<3K. At zero magnetic field and T<0.15K, we found that electron -electron interaction dominates the resistance, while weak localization makes a nontrivial contribution to the resistance for T>0.15K. In contrast, at the lowest temperatures, the magnetoresistances were dominated by weak localization with Zeeman splitting and Maki-Thompson superconducting fluctuations. For higher magnetic fields and lowest temperatures (B/T > 1 T/K), we find discrepancies between our data and the theoretical calculations. We found that most of the

  14. In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe 2 Zr nanocomposite alloy

    SciTech Connect

    Yu, K. Y.; Fan, Z.; Chen, Y.; Song, M.; Liu, Y.; Wang, H.; Kirk, M. A.; Li, M.; Zhang, X.

    2014-08-26

    Enhanced irradiation tolerance in crystalline multilayers has received significant attention lately. However, little is known on the irradiation response of crystal/amorphous nanolayers. We report on in situ Kr ion irradiation studies of a bulk Fe96Zr4 nanocomposite alloy. Irradiation resulted in amorphization of Fe2Zr and formed crystal/amorphous nanolayers. α-Fe layers exhibited drastically lower defect density and size than those in large α-Fe grains. In situ video revealed that mobile dislocation loops in α-Fe layers were confined by the crystal/amorphous interfaces and kept migrating to annihilate other defects. This study provides new insights on the design of irradiation-tolerant crystal/amorphous nanocomposites.

  15. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    PubMed

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-01-01

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244

  16. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    PubMed Central

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-01-01

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244

  17. Formation of amorphous alloys on 4H-SiC with NbNi film using pulsed-laser annealing

    NASA Astrophysics Data System (ADS)

    De Silva, Milantha; Ishikawa, Seiji; Miyazaki, Takamichi; Kikkawa, Takamaro; Kuroki, Shin-Ichiro

    2016-07-01

    Amorphous alloys containing Ni-Si-Nb-C were formed on 4H-SiC creating a low resistance Ohmic contact electrode. In a conventional nickel silicide (NiSi) electrode on SiC, a carbon agglomeration at the silicide/SiC interface occurs, and contact resistance between NiSi and SiC substrate becomes larger. For carbon agglomeration suppression, nanosecond non-equilibrium laser annealing was introduced, and to form metal carbides, carbon-interstitial type metals Nb and Mo were introduced. Ni, Nb, Mo, Nb/Ni, Mo/Ni multilayer contacts, and NbNi mixed contact were formed on the C-face side of n-type 4H-SiC wafers. The electrical contact properties were investigated after a 45 ns pulse laser annealing in N2 ambient. As a result, with NbNi film, an amorphous alloy with Ni-Si-Nb-C was formed, and a low specific contact resistance of 5.3 × 10-4 Ω cm2 was realized.

  18. Spectra of optical parameters in bulk and film amorphous alloys of the Se{sub 95}As{sub 5} system containing samarium (Sm) impurities

    SciTech Connect

    Djalilov, N. Z.; Damirov, G. M.

    2011-09-15

    Reflectance spectra of bulk and film amorphous alloys of the Se{sub 95}As{sub 5} system containing samarium (Sm) impurities are studied in the energy range of 1-6 eV. Spectral dependences of optical constants and derivatives of optical dielectric functions are calculated by the Kramers-Kronig method. Changes in spectra of optical parameters depending on the content of impurities introduced into Se{sub 95}As{sub 5} and conditions of their preparation are explained based on the cluster model. According to the latter, changes in the electron density of states depends on changes in atomic configurations in clusters, i.e., short-range order changes.

  19. Thermal and magnetic properties of melt-spun Co-Fe-B-Si-(Cr/Ta) amorphous alloys

    NASA Astrophysics Data System (ADS)

    Jo, Hye-in; Han, Bokyeong; Yim, Haein Choi; Kwon, Woojun

    2013-02-01

    The ferromagnetic amorphous alloys Co-Fe-B-Si-Cr and Co-Fe-B-Si-Ta were systemically investigated. [(Co1- x Fe x )0.75B0.2Si0.05]96Cr4 ( x = 0, 0.1, 0.4, 0.7, 1.0) and [(Co1- x Fe x )0.75B0.2Si0.05]96Ta4 ( x = 0, 0.1, 0.3, 0.5, 1.0) ribbons were prepared by using the melt-spinning technique. Amorphous structures were confirmed by the presence of a broad and halo peak in X-ray diffraction (XRD). The thermal characteristics, such as the glass transition temperature ( T g ), the crystallization temperature ( T x ) and the supercooled liquid region (Δ T x = T x - T g ), were measured by means of a differential scanning calorimeter (DSC). For the Co-Fe-B-Si-Cr alloys, the values of Δ T x were in the range of 51.6-61.4 K, and for Co-Fe-B-Si-Ta alloys, they were in the range of 39.3-55.5 K. The magnetic properties were examined by means of a vibrating sample magnetometer (VSM) at a maximum field strength of 3000 Oe. These glassy ribbons exhibited soft magnetic properties. The saturation magnetization ( M s ) and the coercive force ( H c ) were in the ranges of 307.85-854.52 emu·cm3 and 0.64-0.89 Oe, respectively.

  20. Microstructure and Wear Behavior of Laser Clad Multi-layered Fe-based Amorphous Coatings on Steel Substrates

    NASA Astrophysics Data System (ADS)

    Paul, Tanaji; Alavi, S. Habib; Biswas, Sourabh; Harimkar, Sandip P.

    2015-12-01

    Single and multi-layered (with two and three layers) coatings of Fe48Cr15Mo14Y2C15B6 amorphous alloy were applied to AISI 1018 steel substrates via laser cladding. XRD analysis indicated partial retention of the amorphous phase along with the formation of oxide and carbide phases. Cross-sectional SEM micrographs revealed relatively sound coatings laser clad with single layer of amorphous alloy; however, cracks and voids were observed in the two and three layered amorphous coatings. The specimens with single and two layered amorphous coatings exhibited surface hardness of about 650 VHN while the hardness of the specimens with three layered amorphous coatings (~1100 VHN) nearly equaled the hardness of previously reported sintered amorphous alloys of similar compositions. The ball-on-disc wear analysis demonstrated a reverse trend wherein the single and two layered amorphous coatings exhibited lower weight loss during the wear test cycle due to superior surface soundness while the three layered amorphous coatings showed aggravated wear due to internal voids and cracks.

  1. Formation ranges of icosahedral, amorphous and crystalline phases in rapidly solidified Ti-Zr-Hf-Ni alloys

    SciTech Connect

    Chen, N. . E-mail: asyzxy@imr.edu; Louzguine, D.V.; Ranganathan, S.; Inoue, A.

    2005-02-01

    From the quaternary Ti-Zr-Hf-Ni phase diagram, the cross-section at 20 at.% Ni was selected for investigation. The icosahedral quasicrystalline, crystalline and amorphous phases were observed to form in nine kinds of rapidly solidified (Ti{sub x}Zr{sub y}Hf{sub z}){sub 80}Ni{sub 20} (x + y + z = 1) alloys at different compositions. The quasilattice constants of 0.519 and 0.531 nm were obtained for the icosahedral phase formed in the melt-spun Ti{sub 40}Zr{sub 20}Hf{sub 20}Ni{sub 20} and Ti{sub 20}Zr{sub 40}Hf{sub 20}Ni{sub 20} alloys, respectively. The icosahedral phase formed in the melt-spun Ti{sub 40}Zr{sub 20}Hf{sub 20}Ni{sub 20} alloy especially is thermodynamically stable. The supercooled liquid region of the Ti{sub 20}Zr{sub 20}Hf{sub 40}Ni{sub 20} glassy alloy reached 64 K. From these results a comparison of quasicrystal-forming and glass-forming abilities was carried out. The quasicrystal-forming ability was reduced and glass-forming ability was improved with an increase in Hf and Zr contents in the (Ti{sub x}Zr{sub y}Hf{sub z}){sub 80}Ni{sub 20} alloys. On the other hand, an increase in Ti content caused an improvement in quasicrystal-forming ability.

  2. The effect of mechanical milling on the soft magnetic properties of amorphous FINEMET alloy

    NASA Astrophysics Data System (ADS)

    Gheiratmand, T.; Hosseini, H. R. Madaah; Davami, P.; Gjoka, M.; Song, M.

    2015-05-01

    The effect of milling time on the magnetic properties of FINEMET amorphous ribbons has been investigated using X-ray diffraction, Mössbauer spectroscopy, thermo-magnetic measurements, transmission electron microscopy and SQUID magnetometery. Ribbons were melt-spun at a wheel speed of 38 ms-1 and then mechanically milled for different periods up to 45 min. The results showed that the partially crystallization of the amorphous powder occurs during milling. TEM observations confirmed the formation of small volume fraction of the crystalline phase with ~9 nm crystallite size in the amorphous matrix for the ribbon milled for 45 min. Thermo-magnetic measurements indicated the enhancement of the Curie temperature of amorphous phase during milling which is due to the annihilation of free volumes and microstructural ordering. The Hopkinson effect led to the monotonic increase of magnetization with respect to the temperature before reaching the Curie temperature of the milled samples. Moreover; the magnetization increased with the formation of the Fe(Si) phase while the coercivity decreased. Mössbauer spectroscopy and thermo-magnetic measurements revealed the existence of 13% Fe in crystalline phase. The composition of crystalline phase was determined as Fe-16.5Si. Hyperfine field values increased with milling time, suggesting the ordering of the structure and enhancement of the number of Fe-Fe atomic pairs in the crystalline phase comparing to the primary amorphous ribbon.

  3. Microstructure and Electrochemical Behavior of Fe-Based Amorphous Metallic Coatings Fabricated by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Wang, L.; He, D. Y.; Wang, F. C.; Liu, Y. B.

    2011-01-01

    A Fe48Cr15Mo14C15B6Y2 alloy with high glass forming ability (GFA) was selected to prepare amorphous metallic coatings by atmospheric plasma spraying (APS). The as-deposited coatings present a dense layered structure and low porosity. Microstructural studies show that some nanocrystals and a fraction of yttrium oxides formed during spraying, which induced the amorphous fraction of the coatings decreasing to 69% compared with amorphous alloy ribbons of the same component. High thermal stability enables the amorphous coatings to work below 910 K without crystallization. The results of electrochemical measurement show that the coatings exhibit extremely wide passive region and relatively low passive current density in 3.5% NaCl and 1 mol/L HCl solutions, which illustrate their superior ability to resist localized corrosion. Moreover, the corrosion behavior of the amorphous coatings in 1 mol/L H2SO4 solution is similar to their performance under conditions containing chloride ions, which manifests their flexible and extensive ability to withstand aggressive environments.

  4. Partial amorphization of a Cu-Zr-Ti alloy by high pressure torsion

    SciTech Connect

    Revesz, Adam; Hobor, Sandor; Labar, Janos L.; Zhilyaev, Alex P.; Kovacs, Zsolt

    2006-11-15

    High pressure torsion was applied to produce disk-shape specimen of Cu{sub 60}Zr{sub 20}Ti{sub 20} composition. Radial dependence of the microstructure was monitored by x-ray diffraction, scanning, and transmission electron microscopies. The disk consists of a top surface layer, homogeneous on a micrometer scale with an average thickness of 10-20 {mu}m, and an inhomogeneous bulk region of 200 {mu}m thickness. Calorimetric studies revealed that the disk contains detectable amount of amorphous phase. Characteristics of this amorphous content were compared to a fully amorphous melt-quenched Cu{sub 60}Zr{sub 20}Ti{sub 20} ribbon.

  5. A record setting amorphous silicon alloy triple-junction solar cell with 14.6{percent} initial and 12.8{percent} stable efficiencies

    SciTech Connect

    Yang, J.; Banerjee, A.; Guha, S.

    1997-02-01

    World record 14.6{percent} initial and 12.8{percent} stable conversion efficiencies have been achieved using amorphous silicon based alloy in a spectrum-splitting, triple-junction structure. This performance exceeds our previous record of 13.2{percent} initial and 11.8{percent} stable efficiencies and establishes a new milestone toward reaching the 15{percent} stable module goal. Key factors leading to this major advance include: (a) Improvement in the low bandgap amorphous silicon-germanium component cell that resulted in enhanced red response and provided desired current mismatching, (b) improvement in the pn tunnel junction between component cells by incorporating microcrystalline p and n layers in a multilayered structure that resulted in reduced optical and electrical losses, and (c) improvement in the top conducting oxide that resulted in reduced absorption and enhanced blue response without increasing the top cell thickness. Details of these advances along with light-soaking data for high efficiency cells will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  6. Tendency of metallic crystals to amorphization in the process of severe (Megaplastic) deformation

    NASA Astrophysics Data System (ADS)

    Glezer, A. M.; Sundeev, R. V.; Shalimova, A. V.

    2012-11-01

    The main features of the transition of crystalline Ni50Ti30Hf20, Ti50Ni25Cu25, Zr50Ni18Ti17Cu15, and Fe78B8.5Si9P4.5 alloys with various tendencies to amorphization into an amorphous state upon melt quenching and in the course of severe deformation in Bridgman anvils have been considered. The crystalline state of these alloys has been produced using various methods of annealing. In the iron-based alloy, single-phase and two-phase crystalline states have been studied. The nickel- and titanium-based alloys after annealing were in a single-phase crystalline state; the zirconium-based alloy, in a two-phase state. It is shown that at the same degree of deformation the rates of amorphization of crystalline alloys differ substantially; namely, the single-phase crystalline titanium- and iron-based alloys amorphize easily, whereas the Zr-based alloy amorphizes only poorly, just like the two-phase iron-based alloy. It can be assumed that the tendency to deformation-induced amorphization of crystalline alloys and the corresponding crystalline phases is mainly determined by three factors: mechanical, thermodynamic, and concentration-related.

  7. Mössbauer study on surface crystallization behavior of amorphous Fe90Zr10 alloy ribbon

    NASA Astrophysics Data System (ADS)

    Fujinami, Masanori; Ujihira, Yusuke

    1986-03-01

    The precipitous drop of crystallization temperature at the surface of amorphous Fe90Zr10 ribbon is confirmed by TMS and CEMS. The deficiency in Zr at the surface amorphous phase, caused by the absorption and the diffusion of oxygen, is found to be responsible for it. The final crystalline products are assigned to α-Fe, Fe3Zr and Fe2Zr, whereas only α-Fe precipitates at the surfaces. Moreover, it is indicated that the crystallization behavior of the bulk is influenced by the ambient gases during annealing and quite different between in vacuum and in air.

  8. Pressure tunes electrical resistivity by four orders of magnitude in amorphous Ge2Sb2Te5 phase-change memory alloy.

    PubMed

    Xu, M; Cheng, Y Q; Wang, L; Sheng, H W; Meng, Y; Yang, W G; Han, X D; Ma, E

    2012-05-01

    Ge-Sb-Te-based phase-change memory is one of the most promising candidates to succeed the current flash memories. The application of phase-change materials for data storage and memory devices takes advantage of the fast phase transition (on the order of nanoseconds) and the large property contrasts (e.g., several orders of magnitude difference in electrical resistivity) between the amorphous and the crystalline states. Despite the importance of Ge-Sb-Te alloys and the intense research they have received, the possible phases in the temperature-pressure diagram, as well as the corresponding structure-property correlations, remain to be systematically explored. In this study, by subjecting the amorphous Ge(2)Sb(2)Te(5) (a-GST) to hydrostatic-like pressure (P), the thermodynamic variable alternative to temperature, we are able to tune its electrical resistivity by several orders of magnitude, similar to the resistivity contrast corresponding to the usually investigated amorphous-to-crystalline (a-GST to rock-salt GST) transition used in current phase-change memories. In particular, the electrical resistivity drops precipitously in the P = 0 to 8 GPa regime. A prominent structural signature representing the underlying evolution in atomic arrangements and bonding in this pressure regime, as revealed by the ab initio molecular dynamics simulations, is the reduction of low-electron-density regions, which contributes to the narrowing of band gap and delocalization of trapped electrons. At P > 8 GPa, we have observed major changes of the average local structures (bond angle and coordination numbers), gradually transforming the a-GST into a high-density, metallic-like state. This high-pressure glass is characterized by local motifs that bear similarities to the body-centered-cubic GST (bcc-GST) it eventually crystallizes into at 28 GPa, and hence represents a bcc-type polyamorph of a-GST. PMID:22509004

  9. Pressure tunes electrical resistivity by four orders of magnitude in amorphous Ge[subscript 2]Sb[subscript 2]Te[subscript 5] phase-change memory alloy

    SciTech Connect

    Xu, M.; Cheng, Y.Q.; Wang, L.; Sheng, H.W.; Meng, Y.; Yang, W.G.; Hang, X.D.; Ma, E.

    2012-05-22

    Ge-Sb-Te-based phase-change memory is one of the most promising candidates to succeed the current flash memories. The application of phase-change materials for data storage and memory devices takes advantage of the fast phase transition (on the order of nanoseconds) and the large property contrasts (e.g., several orders of magnitude difference in electrical resistivity) between the amorphous and the crystalline states. Despite the importance of Ge-Sb-Te alloys and the intense research they have received, the possible phases in the temperature-pressure diagram, as well as the corresponding structure-property correlations, remain to be systematically explored. In this study, by subjecting the amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} (a-GST) to hydrostatic-like pressure (P), the thermodynamic variable alternative to temperature, we are able to tune its electrical resistivity by several orders of magnitude, similar to the resistivity contrast corresponding to the usually investigated amorphous-to-crystalline (a-GST to rock-salt GST) transition used in current phase-change memories. In particular, the electrical resistivity drops precipitously in the P = 0 to 8 GPa regime. A prominent structural signature representing the underlying evolution in atomic arrangements and bonding in this pressure regime, as revealed by the ab initio molecular dynamics simulations, is the reduction of low-electron-density regions, which contributes to the narrowing of band gap and delocalization of trapped electrons. At P > 8 GPa, we have observed major changes of the average local structures (bond angle and coordination numbers), gradually transforming the a-GST into a high-density, metallic-like state. This high-pressure glass is characterized by local motifs that bear similarities to the body-centered-cubic GST (bcc-GST) it eventually crystallizes into at 28 GPa, and hence represents a bcc-type polyamorph of a-GST.

  10. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    PubMed

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution. PMID:26692360

  11. Temperature effects in Co-based amorphous wires

    NASA Astrophysics Data System (ADS)

    Montero, O.; Raposo, V.; García, D.; Iñiguez, J.

    2006-09-01

    Irreversible temperature effects in the magneto impedance (MI) ratio of Co-based amorphous wires take place for temperatures below the Curie point. Results show that anisotropy changes are activated in a relatively low temperature range. As the temperature grows, [4] irreversible processes take place [A. Radkovskaya, A.A. Rakhmanov, N. Perov, P. Sheverdyaeva, A.S. Antonov, J. Magn. Magn. Mater. 249 (2002) 113] and the MI response is affected when the temperature sweep passes over 375 K as previously reported [O. Montero, V. Raposo, D. García, H. Chiriac, J. Íñiguez, J. Magn. Magn. Mater. 290-291 (2005) 1075]. Thermal stability for several Co-based compositions after several sweeps is studied when passing 375 K. Co-based samples are 12 cm long and diameters about 125 μm. Cr and Mn are introduced in the compositions in order to observe different thermal behaviours. MI measurements were obtained with 1 mA of amplitude at four frequencies: 25, 50, 75 and 100 kHz for all wires. Magnetic after-effect (MAE) is also used to support the thermal activation of the irreversible processes.

  12. A sourcebook of titanium alloy superconductivity

    NASA Astrophysics Data System (ADS)

    Collings, E. W.

    1983-09-01

    The development, properties, and applications of Ti-based superconducting alloys are presented in a handbook based on an extensive review of published investigations. The literature is compiled and characterized in a table arranged by alloy, and individual chapters are devoted to unalloyed Ti; Ti-V binary alloys; binary Ti-Cr, Ti-Mn, Ti-Fe, Ti-Co, and Ti-Ni alloys; binary alloys of Ti with the 4d and 5d transition elements; ternary alloys of Ti with simple and transition metals; Ti-Nb binary alloys; Ti-Nb alloys with small amounts of B, C, N, or O; ternary alloys of Ti-Nb with simple metals; Soviet technical alloys; Ti-Zr-Nb alloys; other Ti-Nb-transition-metal alloys; Ti-Nb-based quaternary alloys; and amorphous Ti-alloy superconductors. Tables, graphs, diagrams, and micrographs are provided.

  13. Effect of annealing on atomic ordering of amorphous ZrTaTiNbSi alloy

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Han; Huang, Rong-Tang; Wu, Cheng-An; Chen, Fu-Rong; Gan, Jon-Yiew; Yeh, Jien-Wei; Narayan, Jagdish

    2009-12-01

    In this letter, we have reported on initial stages of atomic ordering in ZrTaTiNbSi amorphous films during annealing. The atomic ordering and structure evolution were studied in Zr17Ta16Ti19Nb22Si26 amorphous films as a function of annealing temperature in the temperature range from 473 to 1173 K. Up to annealing temperature of 1173 K, the films retained amorphous structure, but the degree of disorder is increased with the increase in temperature. The formation of Si-M covalent bonds, which contributed to the local atomic arrangement, occurred in the initial stages of ordering. The bonding reactions between Si and other metal species explain the anomalous structural changes which were observed in x-ray diffraction and transmission electron microscopy. We discuss the stages of phase transformation for amorphous films as a function of annealing temperature. From these results, we propose that annealing leads to formation of random Si-M4 tetrahedron, and two observed rings, a first and second in the electron diffraction patterns compared to M-M and Si-M bond length, respectively.

  14. Deuterium dynamics in the icosahedral and amorphous phases of the Ti40Zr40Ni20 hydrogen-absorbing alloy studied by 2H NMR

    NASA Astrophysics Data System (ADS)

    Gradišek, A.; Kocjan, A.; McGuiness, P. J.; Apih, T.; Kim, Hae Jin; Dolinšek, J.

    2008-11-01

    The Ti40Zr40Ni20 hydrogen-absorbing alloy was prepared in the icosahedral and amorphous phases by controlling the rotation speed of the melt-spinning method of sample preparation, and the deuterium dynamics was investigated by 2H NMR dynamic lineshape and spin-lattice relaxation. The results were analysed by the lineshape and relaxation models that assume deuterium thermally activated hopping within a manifold of different chemical environments. The observed 8% larger activation energy for the deuterium hopping over the interstitial sites and the 10% larger static spectrum width of the amorphous phase, as compared to the icosahedral phase, can be accounted for by the larger deuterium content of the investigated amorphous sample. From the deuterium dynamics point of view, the icosahedral phase is not special with respect to the amorphous modification of the same material.

  15. A tunable amorphous p-type ternary oxide system: The highly mismatched alloy of copper tin oxide

    SciTech Connect

    Isherwood, Patrick J. M. Walls, John M.; Butler, Keith T.; Walsh, Aron

    2015-09-14

    The approach of combining two mismatched materials to form an amorphous alloy was used to synthesise ternary oxides of CuO and SnO{sub 2}. These materials were analysed across a range of compositions, and the electronic structure was modelled using density functional theory. In contrast to the gradual reduction in optical band gap, the films show a sharp reduction in both transparency and electrical resistivity with copper contents greater than 50%. Simulations indicate that this change is caused by a transition from a dominant Sn 5s to Cu 3d contribution to the upper valence band. A corresponding decrease in energetic disorder results in increased charge percolation pathways: a “compositional mobility edge.” Contributions from Cu(II) sub band-gap states are responsible for the reduction in optical transparency.

  16. Morphology and magnetic behavior of cobalt rich amorphous/nanocrystalline (Co-Ni)70Ti10B20 alloyed powders

    NASA Astrophysics Data System (ADS)

    Raanaei, Hossein; Mohammad-Hosseini, Vahid

    2016-09-01

    The effect of milling time on microstructural and magnetic behavior of mechanically alloyed Co49Ni21Ti10B20 is investigated by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, differential scanning calorimetry and vibrating sample magnetometer. It is shown, with increasing milling time, the crystallite size decreases and finally reaches to a low value after 190 h of milling time. The increase in microstrain is also observed during the milling process. The results indicate the coexistence between amorphous and nanocrystalline phases after 190 h of milling time. Moreover, the lowest magnetic coercivity of about 39 Oe at the final milling stage is observed. The results of annealed sample reveal structural ordering of constituent elements.

  17. Corrosion of nickel-base alloys

    SciTech Connect

    Scarberry, R.C.

    1985-01-01

    The volume consists of three tutorial lectures and 18 contributed papers. The three tutorial lectures provide state-of-the-art background on the physical metallurgy of nickel-base alloys as it relates to corrosion. Also featured are the mechanisms and applications of these alloys and an insight into the corrosion testing techniques. The three tutorial lecture papers will help acquaint newcomers to this family of alloys with a thorough overview. The contributed papers are categorized into four major topics: general corrosion, stress corrosion cracking, fatigue and localized corrosion. Each topic is key-noted by one invited lecture followed by several contributed papers. The papers in the general corrosion section are wide ranging and cover the aspects of material selection, development of galvanic series in corrosive environments, corrosion resistance characteristics, hydrogen permeation and hydrogen embrittlement of nickel and some nickel-base alloys.

  18. Impact of corrosive mediums on mechanical properties of amorphous alloys under influence of impulse current

    NASA Astrophysics Data System (ADS)

    Pluzhnikova, Tatyana; Fedorov, Victor; Sidorov, Sergey; Gubanova, Victoria; Pluzhnikov, Sergey

    2016-01-01

    Impact of corrosion mediums (solutions of NACE and H2SO4, HCl) on σ - ɛ graphs for alloys has been studied at synchronous passage of electrical current impulses accompanying momentary dropping of mechanical stress. Relations between dropping of mechanical stress and density of impulse electrical current have been established in studied materials. Structural and morphological condition of surface has been researched after influence of corrosive mediums with different concentration in studied alloys.

  19. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness.

    PubMed

    Douglass, Ian; Hudson, Toby; Harrowell, Peter

    2016-04-14

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point. PMID:27083733

  20. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness

    NASA Astrophysics Data System (ADS)

    Douglass, Ian; Hudson, Toby; Harrowell, Peter

    2016-04-01

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point.

  1. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  2. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  3. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-01

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  4. Optical position detectors based on thin film amorphous silicon

    NASA Astrophysics Data System (ADS)

    Henry, Jasmine; Livingstone, John

    2001-10-01

    Thin film optical position sensitive detectors (PSDs) based on novel hydrogenated amorphous silicon Schottky barrier (SB) structures are compared in this work. The three structures reported here have been tested under different light sources to measure their linear properties and wavelength response characteristics. The sputtered a-Si sensors were configured as layered structures of platinum, a-Si and indium tin oxide, forming SB-i-n devices and exhibited linear properties similar to multi-layer a-Si p-i- n devices produced by complex chemical vapor deposition procedures, which involve flammable and toxic gases. All structures were test4ed as possible configurations for 2D sensors. The devices were tested under white light, filtered white light and also a red diode laser. Each of the three structures responded quite differently to each of the sources. Results, based on the correlation coefficient, which measures the linearity of output and which has a maximum value of 1, produced r values ranging between 0.992 to 0.999, in the best performances.

  5. Structural Properties of Amorphous Indium-Based Oxides

    NASA Astrophysics Data System (ADS)

    Khanal, Rabi; Medvedeva, Julia

    2014-03-01

    Amorphous transparent conducting and semiconducting oxides exhibit similar or even superior properties to those observed in their crystalline counterparts. To understand how the structural properties change upon amorphization and how chemical composition affects the local and long-range structure of the amorphous oxides, we employ first-principles molecular dynamics to generate amorphous In-X-O with X =Zn, Ga, Sn, Ge, Y, or Sc, and compare their local structure features to those obtained for amorphous and crystalline indium oxide. The results reveal that the short-range structure of the Metal-O polyhedra is generally preserved in the amorphous oxides; however, different metals (In and X) show quantitatively or qualitatively different behavior. Some of the metals retain their natural distances and/or coordination; while others allow for a highly distorted environment and thus favor ``defect'' formation under variable oxygen conditions. At the same time, we find that the presence of X increases both the average In-O coordination and the number of the 6-coordinated In atoms as compared to those in IO. The improved In coordination may be responsible for the observed reduction in the carrier concentration as the substitution level in In-X-O increases.

  6. Transient oxidation of multiphase Ni-Cr base alloys

    SciTech Connect

    Baran, G.; Meraner, M.; Farrell, P.

    1988-06-01

    Four commercially available Ni-Cr-based alloys used with porcelain enamels were studied. Major alloying elements were Al, Be, Si, B, Nb, and Mo. All alloys were multiphase. During heat treatments simulating enameling conditions, phase changes occurred in most alloys and were detected using hardness testing, differential thermal analysis (DTA), and microscopy. Oxidation of these alloys at 1000/degrees/C for 10 min produced an oxide layer consisting principally of chromium oxide, but the oxide morphology varied with each alloy depending on the alloy microstructure. Controlling alloy microstructure while keeping the overall composition unchanged may be a means of preventing wrinkled poorly adherent scales from forming.

  7. Iron cobalt boride and iron zirconium silicide-based nanocomposite soft magnetic alloys and application

    NASA Astrophysics Data System (ADS)

    Long, Jianguo

    Nanocrystalline composite soft magnetic materials, which consist of nanoscale crystalline ferromagnetic phases (typical 10 nm) homogeneously dispersed in an amorphous matrix are derived from crystallizing amorphous ribbons. The excellent soft magnetic properties, such as extremely low coercivities, high permeabilities, low energy losses, etc, have attracted the major interest and research activity in both academic community and industrial community in the past two decades. In this thesis, two classes of nanocrystalline composite soft magnetic alloys are developed from their amorphous precursors, accompanying the analysis on their sturctural evolution, thermal kinetics and variou magnetic properties. FeCoB based nanocrystalline composite soft magnetic alloy is developed, in collaboration with Magnetics Division at Spang & Company, for application in high frequency and high temperature. This class of nanocrystalline composite alloy has the nominal composition (FeCo)80Nb4[BGe(Si)] 15Cu1. The crystallization products are bcc FeCo for primary crystallization at 410°C and (FeCoNb)23B 6 for second crystallization. The average grain size is below 10 nm after annealed at 500°C for 1 hour. After transverse field annealing at its primary crystallization temperature, the core loss significantly decreased to the value which can comparable with other commercial soft magnetic alloy. Another class of nanocrystalline composite soft magnetic alloy is Fe based and Boron free alloy. This class of soft magnetic alloy with the nominal composition Fe79ZrxSi20- xCu1 was developed for low cost on raw materials. The nanocrystalline phase alpha-Fe(Si) with average grain size 10 nm was observed in this kind alloy annealed at 460°C for 1 hour. Cu acts as the nucleation agent for making the precipitated nanocrystals uniform and very fine. The measurement of core loss shows the alloy annealed at 460°C for 2 hour has the relatively core loss which can be comparable that of other commericial

  8. Superior magnetic softness at elevated temperature of Si-rich Fe-based nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Shi, Rui-min; Wang, Zhi; Jia, Yun-yun; Wen, Zhuan-ping; Wang, Bo-wen; Zhang, Tao

    2012-10-01

    An excellent high-temperature magnetic softness was observed in a Si-rich nanocrystalline Fe74.5Cu1Nb2Si17.5B5 alloy. The Curie temperatures of amorphous and crystal phases, TCA* and TCcry, for this alloy were detected to be 365 °C and 580 °C, respectively. For the 480 °C-annealed alloy, the initial permeability μi drops to nearly zero just above TCA*; however, for the 540 °C-annealed alloy, the μi of about 10 000 at f = 10 kHz has no perceivable decline in this temperature range and can hold up to more than 400 °C. Such a magnetic softness at elevated temperature is superior to that of Finemet-type Fe-based nanocrystalline alloys ever reported. The origin of the high temperature magnetic softness was interpreted by the enhancement effect of Curie temperature in residual amorphous matrix.

  9. Nanocrystalline Fe-Pt-B base hard magnets with high coercive force obtained from amorphous precursor

    SciTech Connect

    Inoue, Akihisa; Zhang, Wei

    2005-05-15

    Nanocomposite alloys of fct {gamma}{sub 1}-Fe(Co)Pt, fcc {gamma}-Fe(Co)Pt, and Fe(Co){sub 2}B phases with good permanent magnet properties have been formed by melt spinning followed by annealing. An amorphous phase was formed for Fe{sub 56.25-x}Co{sub x}Pt{sub 18.75}B{sub 25} (x=0-20) alloys by melt spinning. The thermal stability of the amorphous alloys increases gradually with increasing Co content. The structure crystallized by annealing for 900 s at 785 K consisted of fct {gamma}{sub 1}-Fe(Co)Pt, fcc {gamma}-Fe(Co)Pt, and Fe(Co){sub 2}B phases, and their average grain sizes were about 20 nm. The nanocomposite alloys exhibit good hard magnetic properties. As the Co content increases, the coercivity {sub i}H{sub c} increases, the remanence B{sub r} and maximum energy product (BH){sub max} decrease. The B{sub r}, reduced remanence M{sub r}/M{sub s}, {sub i}H{sub c}, and (BH){sub max} were 0.96 T, 0.83, 340 kA/m, and 102.2 kJ/m{sup 3}, respectively, for the 0 at. % Co alloy. Higher coercivity (426 kA/m) was obtained for the 20 at. % Co alloy albeit with lower B{sub r}(0.68 T), M{sub r}/M{sub s}(0.80), and energy product (66.7 kJ/m{sup 3}). The good hard magnetic properties for the low Pt-containing alloys are interpreted as resulting from exchange magnetic coupling between nanoscale hard fct {gamma}{sub 1}-Fe(Co)Pt and soft fcc {gamma}-Fe(Co)Pt or Fe(Co){sub 2}B magnetic phase.

  10. Anomalous small-angle X-ray scattering of nanoporous two-phase atomistic models for amorphous silicon–germanium alloys

    SciTech Connect

    Chehaidar, A.

    2015-09-15

    The present work deals with a detailed analysis of the anomalous small-angle X-ray scattering in amorphous silicon–germanium alloy using the simulation technique. We envisage the nanoporous two-phase alloy model consisting in a mixture of Ge-rich and Ge-poor domains and voids at the nanoscale. By substituting Ge atoms for Si atoms in nanoporous amorphous silicon network, compositionally heterogeneous alloys are generated with various composition-contrasts between the two phases. After relaxing the as-generated structure, we compute its radial distribution function, and then we deduce by the Fourier transform technique its anomalous X-ray scattering pattern. Using a smoothing procedure, the computed X-ray scattering patterns are corrected for the termination errors due to the finite size of the model, allowing so a rigorous quantitative analysis of the anomalous small-angle scattering. Our simulation shows that, as expected, the anomalous small-angle X-ray scattering technique is a tool of choice for characterizing compositional heterogeneities coexisting with structural inhomogeneities in an amorphous alloy. Furthermore, the sizes of the compositional nanoheterogeneities, as measured by anomalous small-angle X-ray scattering technique, are X-ray energy independent. A quantitative analysis of the separated reduced anomalous small-angle X-ray scattering, as defined in this work, provided a good estimate of their size.

  11. Electric and magnetic properties of Al86Ni8R6 (R=Sm, Gd, Ho) alloys in liquid and amorphous states

    NASA Astrophysics Data System (ADS)

    Sidorov, V.; Svec, P.; Svec, P.; Janickovic, D.; Mikhailov, V.; Sidorova, E.; Son, L.

    2016-06-01

    Electrical resistivity and magnetic susceptibility of Al86Ni8Sm6, Al86Ni8Gd6 and Al86Ni8Ho6 alloys are studied in a wide temperature range including amorphous, crystalline and liquid states. The negative value of resistivity temperature coefficient in amorphous ribbons is explained by the structural separation starting much before the beginning of their crystallization. The effective magnetic moments per Gd and Ho atoms are found to be essentially lower than for R3+ ions. The results are discussed in supposition of directed bonds between rare earth and aluminum atoms.

  12. Correlation between hereditary structures and properties of an Fe50Cr15Mo14C15B6 bulk-amorphous alloy in the solid and liquid states

    NASA Astrophysics Data System (ADS)

    Filippov, K. S.

    2010-05-01

    An attempt is made to find the effect of a hereditary structure on the physicochemical and structural properties of a solid and liquid Fe50Cr15Mo14C15B6 bulk-amorphous alloy in order to evaluate the possibility of using a precursor, i.e., a solid metal that has a genetic relation to the liquid phase, as an the initial metal of a heat involved in the formation of an amorphous structure. The structural state of the melt is estimated from the temperature dependence of the structural parameters, density, and surface tension with allowance for the validation criterion of the approximation of experimental points R 2.

  13. An observation of amorphous-crystalline phase transitions at severe plastic deformation of the Ti{sub 50}Ni{sub 25}Cu{sub 25} alloy

    SciTech Connect

    Nosova, G. I.; Shalimova, A. V.; Sundeev, R. V.; Glezer, A. M. Pankova, M. N.; Shelyakov, A. V.

    2009-11-15

    The features of structural and phase transitions during severe plastic deformation (in Bridgman anvils) of the amorphous Ti{sub 50}Ni{sub 25}Cu{sub 25} alloy have been studied by X-ray diffraction and transmission electron microscopy. Application of successively increasing deformation has revealed three cycles of successive phase transitions from amorphous to crystalline state and vice versa. The results obtained are explained in terms of the superposition of the different channels of elastic energy dissipation, which are activated during severe plastic deformation.

  14. [Superplastic forming of titanium alloy denture base].

    PubMed

    Okuno, O; Nakano, T; Hamanaka, H; Miura, I; Ito, M; Ai, M; Okada, M

    1989-03-01

    Ti-6Al-4V alloy has both excellent biocompatibility and superior mechanical properties. This Ti-6Al-4V can be deformed greatly and easily at the superplastic temperature of 800 degrees C to 900 degrees C. The superplastic forming of Ti-6Al-4V was made to apply to fabrication of denture base. Almost the same procedure as for dental casting mold was employed in producing the superplastic forming die by the improved phosphate bonded investment. In the pressure vessel of heat resistant alloy, Ti-6Al-4V plate was formed superplastically on the die by argon gas pressure at 850 degrees C. The fit of superplactic forming Ti-6Al-4V denture base was better than that of casting Co-Cr alloy denture bases. The Ti-6Al-4V alloy might react a little with the die. Because micro Vikers hardness of the cross-section did not go up too much near the surfaces. Even just after being formed, the surfaces were much smoother than that of Co-Cr alloy casting. The tensile strength and yield strength of superplastic forming Ti-6Al-4V were higher than those of Co-Cr castings. The elongation was about 10%. These results show that superplastic forming of Ti-6Al-4V would be suitable for a denture base. PMID:2603084

  15. Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al-Si-Mg alloys

    NASA Astrophysics Data System (ADS)

    Bahrami, A.; Pech-Canul, M. I.; Gutiérrez, C. A.; Soltani, N.

    2015-12-01

    A study of the wetting behavior of three substrate types (SiC, SiO2-derived RHA and SiC/SiO2-derived RHA) by two Al-Si-Mg alloys using the sessile drop method has been conducted, using amorphous and crystalline SiO2 in the experiment. Mostly, there is a transition from non-wetting to wetting contact angles, being the lowest θ values achieved with the alloy of high Mg content in contact with amorphous SiO2. The observed wetting behavior is attributed to the deposited Mg on the substrates. A strong diffusion of Si from the SiC/Amorphous RHA substrate into the metal drop explains the free Si segregated at the drop/substrate interface and drop surface. Although incorporation of both SiO2-derived RHA structures into the SiC powder compact substrates increases the contact angles in comparison with the SiC substrate alone, the still observed acute contact angles in RHA/SiC substrates make them promising for fabrication of composites with high volume fraction of reinforcement by the pressureless infiltration technique. The observed wetting characteristics, with decrease in surface tension and contact angles is explained by surface related phenomena. Based on contact angle changes, drop dimensions and surface tension values, as well as on the interfacial elemental mapping, and XRD analysis of substrates, some wetting and reaction pathways are proposed and discussed.

  16. Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery anode material.

    PubMed

    Hashimoto, Hideki; Kobayashi, Genki; Sakuma, Ryo; Fujii, Tatsuo; Hayashi, Naoaki; Suzuki, Tomoko; Kanno, Ryoji; Takano, Mikio; Takada, Jun

    2014-04-23

    Amorphous Fe(3+)-based oxide nanoparticles produced by Leptothrix ochracea, aquatic bacteria living worldwide, show a potential as an Fe(3+)/Fe(0) conversion anode material for lithium-ion batteries. The presence of minor components, Si and P, in the original nanoparticles leads to a specific electrode architecture with Fe-based electrochemical centers embedded in a Si, P-based amorphous matrix. PMID:24689687

  17. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE PAGESBeta

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  18. Optical multilayer films based on an amorphous fluoropolymer

    SciTech Connect

    Chow, R.; Loomis, G.E.; Ward, R.L.

    1996-01-01

    Multilayered coatings were made by physical vapor deposition (PVD) of a perfluorinated amorphous polymer, Teflon AF2400, and with other optical materials. A high reflector for 1064 nm light was made with ZnS and AF2400. An all-organic 1064 nm reflector was made from AF2400 and polyethylene. Oxide (HfO{sub 2} and SiO{sub 2}) compatibility with AF2400 was also tested. The multilayer morphologies were influenced by coating stress and unintentional temperature rises from the PVD process. Analysis by liquid nuclear magnetic resonance of the thin films showed slight compositional variations between the coating and starting materials of perfluorinated amorphous polymers.

  19. Magnetocaloric effect and refrigeration cooling power in amorphous Gd7Ru3 alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Pramod; Kumar, Rachana

    2015-07-01

    In this paper, we report the magnetic, heat capacity and magneto-caloric effect (MCE) of amorphous Gd7Ru3 compound. Both, temperature dependent magnetization and heat capacity data reveals that two transitions at 58 K and 34 K. MCE has been calculated in terms of isothermal entropy change (ΔSM) and adiabatic temperature change (ΔTad) using the heat capacity data in different fields. The maximum values of ΔSM and ΔTad are 21 Jmol-1K-1 and 5 K respectively, for field change of 50 kOe whereas relative cooling power (RCP) is ˜735 J/kg for the same field change.

  20. Growth mechanisms and characterization of hydrogenated amorphous- silicon-alloy films

    SciTech Connect

    Gallagher, A.; Ostrom, R.: Stutzin, G.; Tanenbaum, D. )

    1993-02-01

    This report describes an apparatus, constructed and tested, that allows measurement of the surface morphology of as-grown hydrogenated amorphous silicon films with atomic resolution using a scanning tunneling microscope. Surface topologies of 100-[degree][Lambda]-thick intrinsic films, deposited on atomically flat, crystalline Si and GaAs, are reported. These films surfaces are relatively flat on the atomic scale, indicating fairly homogeneous, compact initial film growth. The effect of probe-tip size on the observed topology and the development of atomically sharp probes is discussed. 17 refs, 9 figs.

  1. Low-Energy Amorphization of Ti1Sb2Te5 Phase Change Alloy Induced by TiTe2 Nano-Lamellae.

    PubMed

    Ding, Keyuan; Rao, Feng; Lv, Shilong; Cheng, Yan; Wu, Liangcai; Song, Zhitang

    2016-01-01

    Increasing SET operation speed and reducing RESET operation energy have always been the innovation direction of phase change memory (PCM) technology. Here, we demonstrate that ∼87% and ∼42% reductions of RESET operation energy can be achieved on PCM cell based on stoichiometric Ti1Sb2Te5 alloy, compared with Ge2Sb2Te5 and non-stoichiometric Ti0.4Sb2Te3 based PCM cells at the same size, respectively. The Ti1Sb2Te5 based PCM cell also shows one order of magnitude faster SET operation speed compared to that of the Ge2Sb2Te5 based one. The enhancements may be caused by substantially increased concentration of TiTe2 nano-lamellae in crystalline Ti1Sb2Te5 phase. The highly electrical conduction and lowly thermal dissipation of the TiTe2 nano-lamellae play a major role in enhancing the thermal efficiency of the amorphization, prompting the low-energy RESET operation. Our work may inspire the interests to more thorough understanding and tailoring of the nature of the (TiTe2)n(Sb2Te3)m pseudobinary system which will be advantageous to realize high-speed and low-energy PCM applications. PMID:27469931

  2. Low-Energy Amorphization of Ti1Sb2Te5 Phase Change Alloy Induced by TiTe2 Nano-Lamellae

    PubMed Central

    Ding, Keyuan; Rao, Feng; Lv, Shilong; Cheng, Yan; Wu, Liangcai; Song, Zhitang

    2016-01-01

    Increasing SET operation speed and reducing RESET operation energy have always been the innovation direction of phase change memory (PCM) technology. Here, we demonstrate that ∼87% and ∼42% reductions of RESET operation energy can be achieved on PCM cell based on stoichiometric Ti1Sb2Te5 alloy, compared with Ge2Sb2Te5 and non-stoichiometric Ti0.4Sb2Te3 based PCM cells at the same size, respectively. The Ti1Sb2Te5 based PCM cell also shows one order of magnitude faster SET operation speed compared to that of the Ge2Sb2Te5 based one. The enhancements may be caused by substantially increased concentration of TiTe2 nano-lamellae in crystalline Ti1Sb2Te5 phase. The highly electrical conduction and lowly thermal dissipation of the TiTe2 nano-lamellae play a major role in enhancing the thermal efficiency of the amorphization, prompting the low-energy RESET operation. Our work may inspire the interests to more thorough understanding and tailoring of the nature of the (TiTe2)n(Sb2Te3)m pseudobinary system which will be advantageous to realize high-speed and low-energy PCM applications. PMID:27469931

  3. Low-Energy Amorphization of Ti1Sb2Te5 Phase Change Alloy Induced by TiTe2 Nano-Lamellae

    NASA Astrophysics Data System (ADS)

    Ding, Keyuan; Rao, Feng; Lv, Shilong; Cheng, Yan; Wu, Liangcai; Song, Zhitang

    2016-07-01

    Increasing SET operation speed and reducing RESET operation energy have always been the innovation direction of phase change memory (PCM) technology. Here, we demonstrate that ∼87% and ∼42% reductions of RESET operation energy can be achieved on PCM cell based on stoichiometric Ti1Sb2Te5 alloy, compared with Ge2Sb2Te5 and non-stoichiometric Ti0.4Sb2Te3 based PCM cells at the same size, respectively. The Ti1Sb2Te5 based PCM cell also shows one order of magnitude faster SET operation speed compared to that of the Ge2Sb2Te5 based one. The enhancements may be caused by substantially increased concentration of TiTe2 nano-lamellae in crystalline Ti1Sb2Te5 phase. The highly electrical conduction and lowly thermal dissipation of the TiTe2 nano-lamellae play a major role in enhancing the thermal efficiency of the amorphization, prompting the low-energy RESET operation. Our work may inspire the interests to more thorough understanding and tailoring of the nature of the (TiTe2)n(Sb2Te3)m pseudobinary system which will be advantageous to realize high-speed and low-energy PCM applications.

  4. Irradiation creep of vanadium-base alloys

    SciTech Connect

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L.; Matsui, H.

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  5. Ti-based glassy alloys in Ti-Cu-Zr-Sn system

    NASA Astrophysics Data System (ADS)

    Wang, ZengRui; Dong, DanDan; Qiang, JianBing; Wang, Qing; Wang, YingMin; Dong, Chuang

    2013-07-01

    Bulk amorphous formation in Ti-Cu-based multicomponent alloys, free of Ni, Pd and Be elements, were studied using the cluster-plus-glue-atom model. The basic cluster formula was revealed as [Ti9Cu6]Cu3 to explain the best binary glass forming composition Ti50Cu50=Ti9Cu9, where the CN14 rhombi-dodecahedron Ti9Cu6 was the principal cluster in the devitrification phase CuTi. This basic cluster formula was further alloyed with Zr and Sn and a critical glass forming ability was reached at (Ti7.2Zr1.8)(Cu8.72Sn0.28) and (Ti7.2Zr1.8)(Cu8.45Sn0.55) up to 5 mm in diameter by suction casting, which was the largest in Ti-Cu-based and Ni-, Pd- and Be-free alloys.

  6. Triple-junction amorphous silicon alloy PV manufacturing plant of 5 MW annual capacity

    SciTech Connect

    Guha, S.; Yang, J.; Banerjee, A.

    1997-12-31

    A spectral-splitting, triple-junction a-Si alloy solar cell processor has been designed, built and optimized. A roll-to-roll process has been used to deposit two layers of back reflector, a triple-cell structure with nine layers of a-Si and a-SiGe alloys and a single layer of antireflection coating consecutively on a half-a-mile roll of stainless steel. The coated web is next slabbed and processed to make a variety of products. The design of the machine and processes used incorporate several key features developed for improving cell efficiency. In order to reduce manufacturing cost, higher deposition rates and thinner cells than are used in R and D have been used. The back reflector also consists of Al/ZnO rather than Ag/ZnO. Large-scale production has begun, and products are being shipped for a wide range of applications.

  7. Constant permeability properties of Fe-based amorphous ribbon with inorganic coating

    NASA Astrophysics Data System (ADS)

    Okazaki, Y.; Kitagawa, H.; Yanase, S.; Handa, S.

    2000-06-01

    Magnetic properties of Fe-based amorphous ribbon with an inorganic coating of lithium silicate have been investigated in a single sheet at 50 Hz. The high-permeability characteristics of Fe-based amorphous ribbons deteriorated by the coating and constant permeability of μ≅900 at H=900 A/m and μ≅330 at H=2500 A/m was obtained after annealing at 425 °C and 450 °C, respectively.

  8. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  9. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  10. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  11. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  12. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  13. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  14. Critical behavior and its correlation with magnetocaloric effect in amorphous Fe80-xVxB12Si8 (x=8, 10 and 13.7) alloys

    NASA Astrophysics Data System (ADS)

    Boutahar, A.; Lassri, H.; Hlil, E. K.; Fruchart, D.

    2016-01-01

    The critical exponents in Fe80-xVxB12Si8 (x=8, 10 and 13.7) amorphous alloys were investigated near ferromagnetic to paramagnetic phase transition temperature. All amorphous alloys exhibit a second order ferromagnetic to paramagnetic phase transition (SOMT). The critical exponents (β, γ and δ) were estimated using the modified Arrott plot technique (MAP), the Widom scaling relation (WSR), and the critical isotherm analysis (CIA). In addition, an independent analysis of the critical behavior is presented in terms of the magnetocaloric effect (MCE). It shows in accordance with conclusion from magnetization data analysis. The estimated critical exponent values are found to be consistent and comparable to those predicted by the mean field model. This result points out to the ferromagnetic exchange interaction of long-range type.

  15. Study on glass-forming ability and hydrogen storage properties of amorphous Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0, 4) alloys

    SciTech Connect

    Lv, Peng; Wang, Zhong-min Zhang, Huai-gang; Balogun, Muhammad-Sadeeq; Ji, Zi-jun; Deng, Jian-qiu; Zhou, Huai-ying

    2013-12-15

    Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0, 4) amorphous alloys were prepared by rapid solidification, using a melt-spinning technique. X-ray diffraction and differential scanning calorimetry analysis were employed to measure their microstructure, thermal stability and glass-forming ability, and hydrogen storage properties were studied by means of PCTPro2000. Based on differential scanning calorimetry results, their glass-forming ability and thermal stability were investigated by Kissinger method, Lasocka curves and atomic cluster model, respectively. The results indicate that glass-forming ability, thermal properties and hydrogen storage properties in the Mg-rich corner of Mg–Ni–La–Co system alloys were enhanced by Co substitution for La. It can be found that the smaller activation energy (ΔΕ) and frequency factor (υ{sub 0}), the bigger value of B (glass transition point in Lasocka curves), and higher glass-forming ability of Mg–Ni–La–Co alloys would be followed. In addition, atomic structure parameter (λ), deduced from atomic cluster model is valuable in the design of Mg–Ni–La–Co system alloys with good glass-forming ability. With an increase of Co content from 0 to 4, the hydrogen desorption capacity within 4000 s rises from 2.25 to 2.85 wt.% at 573 K. - Highlights: • Amorphous Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0 and 4) alloys were produced by melt spinning. • The GFA and hydrogen storage properties were enhanced by Co substitution for La. • With an increase of Co content, the hydrogen desorption capacity rises at 573 K.

  16. Wetting behavior of molten In-Sn alloy on bulk amorphous and crystalline Cu{sub 40}Zr{sub 44}Al{sub 8}Ag{sub 8}

    SciTech Connect

    Ma, G. F.; Zhang, H. F.; Li, H.; Hu, Z. Q.

    2007-10-29

    Using the sessile-drop method, the wettability of the molten In-Sn alloy on bulk amorphous and crystalline Cu{sub 40}Zr{sub 44}Al{sub 8}Ag{sub 8} alloy was studied at different temperatures. It was found that the equilibrium contact angle of In-Sn alloy melt on bulk amorphous substrate was smaller than that of the crystalline one. An intermetallic compound existed at the interface of In-Sn alloy on amorphous Cu{sub 40}Zr{sub 44}Al{sub 8}Ag{sub 8}, while no intermediate reaction layer was formed at the interface of In-Sn alloy on crystalline Cu{sub 40}Zr{sub 44}Al{sub 8}Ag{sub 8} in the temperature range studied.

  17. Influence of the microstructure on the corrosion behavior of magnetron sputter-quenched amorphous metallic alloys

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Khanna, S. K.; Williams, R. M.; Landel, R. F.

    1983-01-01

    The microstructure and corrosion behavior of magnetron sputter deposited amorphous metallic films of (Mo6ORu40)82B18 under varying sputtering atmospheres have been investigated. The microstructural details and topology of the films have been studied by scanning electron microscopy and correlated with the deposition conditions. By reducing the pressure of pure argon gas, the characteristic features of rough surface and columnar growth full of vertical voids can be converted into a mirror-smooth finish with very dense deposits. Films deposited in the presence of O2 or N2 exhibit columnar structure with vertical voids. Film deposited in pure argon at low pressure show remarkably high corrosion resistance due to the formation of a uniform passive surface layer. The influence of the microstructure and surface texture on the corrosion behavior is discussed.

  18. Combined measurements of modulus and length and their correlation for different amorphous alloys

    SciTech Connect

    Porscha, B.; Neuhaeuser, H.

    1995-03-15

    Combined measurements of length and modulus change on the same specimen of Ni{sub 78}Si{sub 8}B{sub 14}, Cu{sub 64}Ti{sub 36} and Co{sub 66}Fe{sub 4}(MoSiB){sub 30} are presented. These properties are sensitive to different aspects of structural changes during relaxation in the amorphous state. The change of length is mainly sensitive to the topological long range relaxation. The change of the eigenfrequency is mainly sensitive to atomic rearrangements changing the chemical short range order. The results of the correlation between the effect of relaxation of frequency versus that of length can be described as follows: the observed structural relaxation in the amorphous states of each material can be divided up into two regimes. The first regime (I) with a prevailing change of eigenfrequency is attributed to short range rearrangements of the chemically different atomic species in the material; the second regime (II) with a larger amount of length change is interpreted as a long range topological relaxation with enhanced loss of free volume. This interpretation is supported by a comparison of the diffusion coefficients at the characteristic transition temperature {Tc} between the regimes I and II. It shows that the average diffusion path lengths of the possible diffusors below the characteristic temperature are in the order of 2 to 5 next neighbor distances, i.e., diffusion is only possible in a short range changing the species of neighboring atoms. Above {Tc}, the average diffusion path lengths are in the order of 5 to 50 next neighbor distances suggesting long range relaxation rearrangements by a diffusion process preferentially connected with the annihilation of free volume.

  19. Formation of metastable structures and amorphous phases in Pu-based systems using the sputtering technique

    NASA Astrophysics Data System (ADS)

    Rizzo, H. F.; Massalski, T. B.; Echeverria, A. W.

    1989-05-01

    The triode sputtering technique with a split-target arrangement was used to obtain metastable crystalline and amorphous phases in ten binary systems of Pu with Si, Al, V, Fe, Co, Pd, Ta, Re, Os, and Ir. In addition to metastable extensions of solid solubility occurring from the binary sides of some systems, wide ranges of metallic glass formation have been observed in several systems. Extended bcc solid solution ranges were observed in Pu-Ta and Pu-V systems. Unlike in the case of many liquid-quenched alloys, the ranges of amorphous phase formation obtained with sputtering appear to have little to do with the form of the corresponding phase diagram. However, the extent of the observed ranges on the Pu-rich side was found to obey approximately the atomic size mismatch relationship. The nearest neighbor distances (NNDs) evaluated with X-ray diffraction show many unusual deviations from an assumed Vegard’s Law, which can be interpreted in relation to the changing electronic configuration of the Pu atom when present in different environments. Exposure of several amorphous alloys to severe oxidation environments did not results in observable corrosion.

  20. Phase separation and crystallization process of amorphous Fe{sub 78}B{sub 12}Si{sub 9}Ni{sub 1} alloy

    SciTech Connect

    Mukhgalin, V. V.; Lad’yanov, V. I.

    2015-08-17

    The influence of the melt heat treatment on the structure and crystallization process of the rapidly quenched amorphous Fe{sub 78}B{sub 12}Si{sub 9}Ni{sub 1} alloys have been investigated by means of x-ray diffraction, DSC and TEM. Amorphous phase separation has been observed in the alloys quenched after the preliminary high temperature heat treatment of the liquid alloy (heating above 1400°C). Comparative analysis of the pair distribution functions demonstrates that this phase separation accompanied by a changes in the local atomic arrangement. It has been found that crystallization process at heating is strongly dependent on the initial amorphous phase structure - homogeneous or phase separated. In the last case crystallization goes through the formation of a new metastable hexagonal phase [a=12.2849(9) Ǻ, c=7.6657(8) Ǻ]. At the same time the activation energy for crystallization (Ea) reduces from 555 to 475 kJ mole{sup −1}.

  1. Synthesis and photocatlytic performance of nano-sized TiO{sub 2} materials prepared by dealloying Ti–Cu–Pd amorphous alloys

    SciTech Connect

    Jiang, Jing; Zhu, Shengli; Xu, Wence; Cui, Zhenduo; Yang, Xianjin

    2015-05-15

    Highlights: • TiO{sub 2} nanospindles were synthesized by dealloying Ti–Cu–Pd amorphous alloy. • Pd significantly enhanced the exposure of high-energy (0 0 1) facet of TiO{sub 2}. • TiO{sub 2} with high-energy (0 0 1) facet showed good photocatalytic activity. - Abstract: TiO{sub 2} nanospindles with exposed (0 0 1) facet were synthesized through a simple dealloying reaction. The rutile photocatalysts were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope, inductively coupled plasma optical emission spectrometry and ultraviolet–visible spectrophotometer. A Rhodamine B dye (RhB) was used to detect the photocatalytic activity of TiO{sub 2} under full light irradiation. The presence of Pd in the original amorphous alloy reduced the surface free energy of TiO{sub 2}, stabilized the (0 0 1) facet. The Pd8-TiO{sub 2} sample exhibited the largest crystal size along the direction which is perpendicular to the (0 0 1) facet. The photocatalytic degradation rate of RhB was improved due to the Pd addition in the original amorphous alloy. This indicated that the exposure of (0 0 1) facets could enhance the activity of TiO{sub 2} photocatalyst. In addition, the presence of isolated Pd atoms on the surface of TiO{sub 2} would be another probable reason for the improvement of photocatalytic activity.

  2. Amorphous magnetic wires used in digitizers based on reflections in delay lines

    NASA Astrophysics Data System (ADS)

    Hristoforou, E.; Chiriac, H.; Neagu, Maria

    1996-05-01

    In this paper we report results on the response of a digitizer based on reflections in magnetostrictive delay lines consisting of magnetic amorphous wires. We tested Fe77.5Si7.5B15 amorphous wires in the as-cast condition and after stress-current annealing. The proposed digitizer has an exponential response with respect to the force applied at the sensing point.

  3. First-principles study of crystalline and amorphous AlMgB14-based materials

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.; Turchi, P. E. A.; Veprek, S.; Shevchenko, V. I.; Leszczynski, Jerzy; Gorb, Leonid; Hill, Frances

    2016-05-01

    We report first-principles investigations of crystalline and amorphous boron and M1xM2yXzB14-z (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called "BAM" materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm-1, whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100-1250 cm-1. The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B12 units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  4. Effect of the Temperature on the Friction and Wear Properties of Bulk Amorphous Alloy

    NASA Astrophysics Data System (ADS)

    Segu, Dawit Zenebe; Hwang, Pyung; Kim, Seock-Sam

    2014-07-01

    The present paper report the results of an experimental investigation of the temperature effect on the sliding friction and wear properties of the bulk metallic glass (BMG). To improve the friction and wear properties of the BMG, the disk specimens were developed in the alloy system of Fe67.6C7.1Si3.3B5.5P8.7Cr2.3Mo2.6Al2Co1.0 using hot metal and industrial ferro-alloys. The friction and wear test was performed using flat-on-flat contact configuration of unidirectional tribometer and Si3N4 ceramic disk used as a counterpart. The worn surfaces of the BMG were observed by using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The results indicated that the friction and wear properties of the BMG depend on the glass transition and the formation of protective oxide film. The friction coefficient decreased with increasing temperature, while it increased slightly when the temperature passed the glass transition temperature (Tg). The worn specimens were exposed to abrasion, adhesion, oxidation and plastic deformation. In addition, obvious surface flow characteristics was accompany during wear test.

  5. Structure of amorphous Ge8Sb2Te11 : GeTe-Sb2Te3 alloys and optical storage

    NASA Astrophysics Data System (ADS)

    Akola, J.; Jones, R. O.

    2009-04-01

    The amorphous structure of Ge8Sb2Te11 , an alloy used in the Blu-ray Disc, the de facto successor to digital versatile disk (DVD) optical storage, has been characterized by large-scale (630 atoms, 0.4 ns) density-functional/molecular-dynamics simulations using the new PBEsol approximation for the exchange-correlation energy functional. The geometry and electronic structure agree well with available x-ray diffraction data and photoelectron measurements. The total coordination numbers are Ge: 4.0, Sb: 3.7, and Te: 2.9, and the Ge-Ge partial coordination number is 0.7. Most atoms (particularly Sb) prefer octahedral coordination but 42% of Ge atoms are “tetrahedral.” Structural details, including ring statistics, local coordination, and cavities (12% of total volume), are strikingly similar to those of Ge2Sb2Te5 , which is used in DVD-random access memory. The presence of less than 10% Sb atoms leads to significant changes from GeTe.

  6. Atomic simulation of mechanical behavior of Mg in a super-lattice of nanocrystalline Mg and amorphous Mg-Al alloy

    SciTech Connect

    Song, H. Y.; An, M. R.; Li, Y. L. Deng, Q.

    2014-12-07

    The mechanical properties of a super-lattice architecture composed of nanocrystalline Mg and Mg-Al amorphous alloy are investigated using molecular dynamics simulation. The results indicate that deformation mechanism of nanocrystalline Mg is obviously affected by the amorphous boundary spacing and temperature. The strength of the material increases with the decrease of amorphous boundary spacing, presenting a Hall-Petch effect at both 10 K and 300 K. A stress platform and following stiffness softening, as well as a linear strengthening in the plastic stage, are observed when the amorphous boundary spacing below 8.792 nm at 10 K. The implying reason may be that the amorphous boundary acts as the dislocations emission and absorption source. However, the second stress peak is not observed for the models at 300 K. Instead, the flow stress in plastic stage is a nearly constant value. The simulation demonstrates the emergence of the new grain, accompanied by the deformation twins and stacking faults associated with the plastic behaviors at 300 K. The general conclusions derived from this work may provide a guideline for the design of high-performance hexagonal close-packed metals.

  7. A High-Performance Corrosion-Resistant Iron-Based Amorphous Metal - The Effects of Composition, Structure and Environment on Corrosion Resistance

    SciTech Connect

    Farmer, J.; Haslam, J.; Day, D.; Lian, T.; Saw, C.; Hailey, P.; Choi, J.S.; Rebak, R.; Yang, N.; Bayles, R.; Aprigliano, L.; Payer, J.; Perepezko, J.; Hildal, K.; Lavernia, E.; Ajdelsztajn, L.; Branagan, D.; Beardsley, B.

    2007-07-01

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of high-performance Ni-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal also makes it an effective neutron absorber, and suitable for criticality control applications, as discussed in companion publications. Corrosion data for SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) is discussed here. (authors)

  8. Structural and thermal investigations of an amorphous GaSe9 alloy using EXAFS, cumulant expansion, and reverse Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Siqueira, M. C.; Maia, R. N. A.; Araujo, R. M. T.; Machado, K. D.; Stolf, S. F.

    2015-02-01

    In this article, we investigated structural and thermal properties of an amorphous alloy of the Ga-Se system. The amorphous GaSe9 alloy was produced by mechanical alloying and it was studied using EXAFS spectroscopy and cumulant expansion method. We also made reverse Monte Carlo simulations using the total structure factor S(K) obtained from x-ray diffraction and the EXAFS χ(k) oscillations on Se and Ga K edges as input data. Several parameters, such as average coordination numbers and interatomic distances, structural and thermal disorders, asymmetry of the partial distribution functions gij(r), and Einstein and Debye temperatures, were determined. The gi j E ( r ) functions were reconstructed from the cumulants C1, C2, and C3 obtained from the Einstein model, and they were compared to the gi j RMC ( r ) functions obtained from the simulations. The simulations also furnished the partial bond angle distribution functions Θijℓ(cosθ), which describe the angular distribution of bonds between first neighbors, and give information about the kind of structural units present in the alloy.

  9. Structural and thermal investigations of an amorphous GaSe{sub 9} alloy using EXAFS, cumulant expansion, and reverse Monte Carlo simulations

    SciTech Connect

    Siqueira, M. C.; Maia, R. N. A.; Araujo, R. M. T.; Machado, K. D.; Stolf, S. F.

    2015-02-07

    In this article, we investigated structural and thermal properties of an amorphous alloy of the Ga–Se system. The amorphous GaSe{sub 9} alloy was produced by mechanical alloying and it was studied using EXAFS spectroscopy and cumulant expansion method. We also made reverse Monte Carlo simulations using the total structure factor S(K) obtained from x-ray diffraction and the EXAFS χ(k) oscillations on Se and Ga K edges as input data. Several parameters, such as average coordination numbers and interatomic distances, structural and thermal disorders, asymmetry of the partial distribution functions g{sub ij}(r), and Einstein and Debye temperatures, were determined. The g{sub ij}{sup E}(r) functions were reconstructed from the cumulants C{sub 1}, C{sub 2}, and C{sub 3} obtained from the Einstein model, and they were compared to the g{sub ij}{sup RMC}(r) functions obtained from the simulations. The simulations also furnished the partial bond angle distribution functions Θ{sub ijℓ}(cosθ), which describe the angular distribution of bonds between first neighbors, and give information about the kind of structural units present in the alloy.

  10. Vanadium-base alloys for fusion reactor applications

    SciTech Connect

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  11. Prediction of vibration modes and thermal conductivity for amorphous ZnO-based materials

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Ting; Roy, Anindya; Falk, Michael L.

    2015-03-01

    Amorphous materials, due to their distinct physical and chemical properties, have been widely used in photovoltaics, thermoelectrics and integrated circuits. Because the thermal conductivity is critical to the performance of such devices, the thermal transport in amorphous materials has received considerable attention in the last decade. So far, a number of experimental studies and theoretical models have reported the vibration modes and thermal conductivities for amorphous Si and SiO2. However, the applicability of these vibration mode analyses and thermal conductivity models for other amorphous materials has not been studied. In this work, we employ the molecular dynamics (MD) simulations and Allen-Feldman (AF) theory to investigate the vibration modes and thermal conductivity of amorphous ZnO-based materials. ZnO is basis of a promising class of n-type semiconductors for thermoelectric application. Additionally, from this work, the contribution of individual vibrational modes to the thermal conductivity can be characterized. These results are expected to guide the interpretation of thermal transport in amorphous ZnO-based materials and the optimization for their performance with different applications.

  12. Progress in ODS Alloys: A Synopsis of a 2010 Workshop on Fe- Based ODS Alloys

    SciTech Connect

    Kad, Bimal; Dryepondt, Sebastien N; Jones, Andy R.; Vito, Cedro III; Tatlock, Gordon J; Pint, Bruce A; Tortorelli, Peter F; Rawls, Patricia A.

    2012-01-01

    In Fall 2010, a workshop on the role and future of Fe-based Oxide Dispersion Strengthened (ODS) alloys gathered together ODS alloy suppliers, potential industrial end-users, and technical experts in relevant areas. Presentations and discussions focused on the current state of development of these alloys, their availability from commercial suppliers, past major evaluations of ODS alloy components in fossil and nuclear energy applications, and the technical and economic issues attendant to commercial use of ODS alloys. Significant progress has been achieved in joining ODS alloys, with creep resistant joints successfully made by inertia welding, friction stir welding and plasma-assisted pulse diffusion bonding, and in improving models for the prediction of lifetime components. New powder and alloy fabrication methods to lower cost or improve endproduct properties were also described. The final open discussion centered on challenges and pathways for further development and large-scale use of ODS alloys.

  13. Nanocrystallization in spark plasma sintered Fe{sub 48}Cr{sub 15}Mo{sub 14}Y{sub 2}C{sub 15}B{sub 6} bulk amorphous alloy

    SciTech Connect

    Singh, Ashish; Harimkar, Sandip P.; Katakam, Shravana; Dahotre, Narendra B.; Ilavsky, Jan

    2013-08-07

    Spark plasma sintering (SPS) is evolving as an attractive process for the processing of multi-component Fe-based bulk amorphous alloys and their in-situ nanocomposites with controlled primary nanocrystallization. Extended Q-range small angle neutron scattering (EQ-SANS) analysis, complemented by x-ray diffraction and transmission electron microscopy, was performed to characterize nanocrystallization behavior of SPS sintered Fe-based bulk amorphous alloys. The SANS experiments show significant scattering for the samples sintered in the supercooled region indicating local structural/compositional changes associated with the profuse nucleation of nanoclusters (∼4 nm). For the samples spark plasma sintered near and above crystallization temperature (>653 °C), the SANS data show the formation of interference maximum indicating the formation and growth of (Fe,Cr){sub 23}C{sub 6} crystallites. The SANS data also indicate the evolution of bimodal crystallite distribution at higher sintering temperatures (above T{sub x1}). The growth of primary nanocrystallites results in impingement of concentration gradient fields (soft impingement effect), leading to non-random nucleation of crystallites near the primary crystallization.

  14. Electrical properties of amorphous selenium based photoconductive devices for application in x-ray image detectors

    NASA Astrophysics Data System (ADS)

    Belev, Gueorgui Stoev

    In the last 10-15 years there has been a renewed interest in amorphous Se (a-Se) and its alloys due to their application as photoconductor materials in the new fully digital direct conversion flat panel x-ray medical image detectors. For a number of reasons, the a-Se photoconductor layer in such x-ray detectors has to be operated at very high electric fields (up to 10 V mum-1) and one of the most difficult problems related to such applications of a-Se is the problem of the dark current (the current in the absence of any radiation) minimization in the photoconductor layer. This PhD work has been devoted to researching the possibilities for dark current minimization in a-Se x-ray photoconductors devices through a systematic study of the charge transport (carrier mobility and carrier lifetimes) and dark currents in single and multilayered a-Se devices as a function of alloying, doping, deposition condition and other fabrication factors. The results of the studies are extensively discussed in the thesis. We have proposed a new technological method for dark current reduction in single and multilayered a-Se based photoconductor for x-ray detector applications. The new technology is based on original experimental findings which demonstrate that both hole transport and the dark currents in a-Se films are a very strong function of the substrate temperature (Tsubstrate) during the film deposition process. We have shown that the new technique reduces the dark currents to approximately the same levels as achievable with the previously existing methods for dark current reduction. However, the new method is simpler to implement, and offers some potential advantages, especially in cases when a very high image resolution (20 lp/mm) and/or fast pixel readout (>30 s-1) are needed. Using the new technology we have fabricated simple single and double (ni-like) photoconductor layers on prototype x-ray image detectors with CCD (Charge Coupled Device) readout circuits. Dark currents in

  15. Optimization of Iron Cobalt-based Nanocomposite Alloys for High Induction and Increased Resistivity

    NASA Astrophysics Data System (ADS)

    Shen, Shen

    FeCo-based nanocrystalline soft magnetic materials are promising to provide high saturation induction, high Curie temperature and excellent soft magnetic properties for electric vehicle and high frequency power conversion applications. The increasing operation frequency of various inductive applications requires nanocomposite alloys with higher resistivity to suppress power losses. In this thesis, the method of measuring as-cast and annealed resistivity of melt-spun ribbon alloys by obtaining alloy densities was established. Archimedes method with deionized water as a medium was used to determine the density of crystalline alloys. A gas pycnometer using dry Helium gas as the medium exhibited improved accuracy in measuring the density of amorphous ribbon alloys compared to the conventional Archimedes method using a liquid medium. This method was applied to previously developed HITPERM (FeCoZrBCu) and HTX002 (FeCoBSiCu) type of alloys as well as carbon-containing (FeCoBCCu) alloys to guide composition adjustments pursuing for improved magnetic properties. In the HITPERM type of alloys, the composition dependence of as-cast resistivity was studied and simulated by Mott's two-current model with a rigid-band assumption which provided guidance for further adjusting alloy composition looking for higher resistivity. An alloy designed with the Fe:Co ratio for maximum as-cast resistivity and Hf as glass former exhibits low power loss values being approximately 1/4 of those measured on the alloy with the original HITPERM composition for a range of frequencies. The Al and Si additions were found effective to achieve a high resistivity of 151.9 muO·cm in the as-cast alloys but also lead to embrittlement of melt-spun ribbons. Composition adjustments on the HTX002 type of alloys which are castable in air and available for larger-scale production were also explored. Increasing the ferromagnetic late transition metal content by reducing glass formers was found effective to achieve

  16. A Hydrogen-Deuterium Exchange Study on Nickel-based Binary-Ternary Amorphous and Crystalline Membranes

    NASA Astrophysics Data System (ADS)

    Adibhatla, Anasuya

    Hydrogen is a major role player in current global sustainable energy scenario. Research around the world is carried out to harness hydrogen from all possible sources. One of these sources is water gas shift reaction after the coal gasification process. Sustainable infrastructure can be viable in countries like USA and Australia, making this process viable. Various methods are used to harness this hydrogen from the water gas. One of these methods is the use of inorganic membranes based on Pd, Ag, Ni, Zr and other transition metals. Pd addition to the membranes makes the membranes more expensive for commercial use. Various bulk properties like hydrogen permeation and absorption are studied on Pd and Pd-based alloys. Alternate alloys based on Ni, V, Ta etc are being studied to substitute the use of Pd making this technology more cost efficient. A current balance in research in this area is fund to exist by coating the non-precious metal membranes with Pd to improve the surface interaction with hydrogen. The nature of membranes used for hydrogen separation is important aspect for the overall performance. Crystalline materials provide better bulk properties, however, are not durable under high temperature and hydrogen pressure. In this research, non-Pd coated Ni-based amorphous membranes were made by melt spin technique, which have been studied for their surface properties. Gas phase H2-D2 exchange reaction has been carried out on the membrane surface. This provides a measure of catalytic activity of the above mentioned membranes. More studies included the crystallographic phase change determination, bulk hydrogen solubility measurements, surface conduction measurements and surface morphological studies. During this research, it has been observed that crystalline materials provide more surface activity for hydrogen than their amorphous counterparts. Ni64Zr36 alloy has been shown to exhibit similar kinetic rates as metallic Ni. Also, microkinetic analysis was performed

  17. Fabric cutting application of FeAl-based alloys

    SciTech Connect

    Sikka, V.K.; Blue, C.A.; Sklad, S.P.; Deevi, S.C.; Shih, H.R.

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  18. Impact of the hydrogen content on the photoluminescence efficiency of amorphous silicon alloys

    SciTech Connect

    Kistner, J.; Schubert, M. B.

    2013-12-07

    This paper analyzes the impact of hydrogen on the photoluminescence (PL) efficiency of the three wide gap silicon alloys: silicon carbide (a-SiC{sub x}), silicon nitride (a-SiN{sub x}): silicon oxide (a-SiO{sub x}). All three materials behave similarly. The progression of the PL efficiency over the Si content splits into two regions. With decreasing Si content, the PL efficiency increases until a maximum is reached. With a further decrease of the Si content, the PL efficiency declines again. A comprehensive analysis of the sample structure reveals that the PL efficiency depends on the degree of passivation of Si and Y atoms (Y = C, N, O) with hydrogen. For samples with a high Si content, an effective passivation of incorporated Y atoms gives rise to an increasing PL efficiency. The PL efficiency of samples with a low Si content is limited due to a rising amount of unpassivated Si defect states. We find that a minimum amount of 0.2 H atoms per Si atom is required to maintain effective luminescence.

  19. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles.

    PubMed

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-19

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO₂.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles. PMID:25757694

  20. Mechanically alloyed Ni-base alloys for heat-resistant applications

    SciTech Connect

    Wilson, R.K.; Fischer, J.J.

    1995-12-31

    INCONEL alloys MA 754 and MA 758 are nickel-base oxide dispersion-strengthened (ODS) alloys made by mechanical alloying (MA). Commercial use of Ma Ni-base alloys to date has been predominantly in aerospace applications of alloy MA 754 as turbine engine vanes. Both alloys are suitable for industrial heat treating components and other heat resistant alloy applications. Field trials and commercial experience in such applications of MA alloys are being gained while high temperature property characterization and new product form development continue. Hot isostatic pressing (HIP) is the standard consolidation method for billets from which large bar and plate are produced for industrial applications of MA. This paper describes production of standard mill shapes from HIP billets, and it presents information on current and potential uses of MA alloys in applications such as: skid rails for use in high temperature walking beam furnaces, heat treating furnace components, components for handling molten glass, and furnace tubes. The paper includes comparison of the properties obtained in alloy MA 754 (20% Cr) and alloy MA 758 (30% Cr).

  1. Changes in cluster magnetism and suppression of local superconductivity in amorphous FeCrB alloy irradiated by Ar+ ions

    NASA Astrophysics Data System (ADS)

    Okunev, V. D.; Samoilenko, Z. A.; Szymczak, H.; Szewczyk, A.; Szymczak, R.; Lewandowski, S. J.; Aleshkevych, P.; Malinowski, A.; Gierłowski, P.; Więckowski, J.; Wolny-Marszałek, M.; Jeżabek, M.; Varyukhin, V. N.; Antoshina, I. A.

    2016-02-01

    We show that cluster magnetism in ferromagnetic amorphous Fe67Cr18B15 alloy is related to the presence of large, D=150-250 Å, α-(Fe Cr) clusters responsible for basic changes in cluster magnetism, small, D=30-100 Å, α-(Fe, Cr) and Fe3B clusters and subcluster atomic α-(Fe, Cr, B) groupings, D=10-20 Å, in disordered intercluster medium. For initial sample and irradiated one (Φ=1.5×1018 ions/cm2) superconductivity exists in the cluster shells of metallic α-(Fe, Cr) phase where ferromagnetism of iron is counterbalanced by antiferromagnetism of chromium. At Φ=3×1018 ions/cm2, the internal stresses intensify and the process of iron and chromium phase separation, favorable for mesoscopic superconductivity, changes for inverse one promoting more homogeneous distribution of iron and chromium in the clusters as well as gigantic (twice as much) increase in density of the samples. As a result, in the cluster shells ferromagnetism is restored leading to the increase in magnetization of the sample and suppression of local superconductivity. For initial samples, the temperature dependence of resistivity ρ(T)~T2 is determined by the electron scattering on quantum defects. In strongly inhomogeneous samples, after irradiation by fluence Φ=1.5×1018 ions/cm2, the transition to a dependence ρ(T)~T1/2 is caused by the effects of weak localization. In more homogeneous samples, at Φ=3×1018 ions/cm2, a return to the dependence ρ(T)~T2 is observed.

  2. New analysis of the small-angle-magnetization-rotation method for magnetostriction measurements on amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Severino, A. M.; Missell, F. P.

    1987-09-01

    The small-angle-magnetization-rotation (SAMR) method for measuring the saturation magnetostrictin λ s has been reanalyzed, taking into account the underlying domain structure of the amorphous ribbon. Although the condition for determining λ s reamins unchenged, the modifications introduced allow one to understand many additional features of the experimental data. With the appropriate modifications, the SAMR method can be used to study stress relaxation in amorphous alloys. Examples are given Fe-based and Co-based alloys.

  3. Laser surface treatment of amorphous metals

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  4. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    SciTech Connect

    Guzman, D.; Ordonez, S.; Fernandez, J.F.; Sanchez, C.; Serafini, D.; Rojas, P.A.; Aguilar, C.; Tapia, P.

    2011-04-15

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{sub 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.

  5. Fabrication and Characterization of Melt-Extracted Co-Based Amorphous Wires

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Xing, Dawei; Wang, Xiaodong; Sun, Jianfei

    2011-04-01

    Amorphous Co68.15Fe4.35Si12.25B15.25 wires with smooth surface and circular cross section were fabricated by melt extraction technology using a copper wheel with a knife-edge cross section angle of 60 deg. The effect of some process parameters such as wheel circumference velocity, molten alloy feed rate, and temperature on the geometry and weight, i.e., melt extracted layer thickness, of wire was examined carefully. An optimum process parameter to produce high-quality circular wires was presented. A high resolution CCD video camera recorder was used to monitor the changing of the surface shape of molten alloy contacting the wheel tip under different conditions. It was found that the mechanism of the wire formation during the optimum process condition was controlled by the momentum mechanism, while in the low wheel speed region, heat transfer turned out to be a dominant factor. Some characteristics of the circular wires such as amorphous nature and tensile strength were also studied.

  6. Low-temperature magnetization of amorphous and nanocrystalline Fe 76.5- xU xCu 1Si 13.5B 9 alloys

    NASA Astrophysics Data System (ADS)

    Duša, O.; Kováč, J.; Konč, M.; Švec, T.; Kavečanský, V.

    1996-03-01

    The low-temperature magnetization of amorphous and nanocrystalline Fe 76.5- xU xCu 1Si 13.5B 9 alloys ( x = 0-11) has been studied in the 4.2-300 K range. All examined magnetic parameters (exchange integral J, range of exchange interactions < r2>, magnetic moment per Fe atom, μFe, spin wave stiffness constant D) are markedly influenced by the uranium substitution for iron. Both the μFe and D are found to increase with decreasing Fe content in amorphous alloys for x = 0 up to about 4. The noncollinear spin structures as a result of competing interactions are supposed to explain this behaviour. Some samples (with U contents of 2-6 at%) annealed for 1 h at 813 K appear to be nanocrystalline. Uranium seems to inhibit grain growth in the investigated FeUCuSiB system, just as Nb does in FeNbCuSiB nanocrystalline alloys.

  7. In situ X-Ray Absorption Spectro-Electrochemical Study of Amorphous Tin-Based Composite Oxide Material

    SciTech Connect

    Mansour, A. N.; Mukerjee, S.; Yang, X. Q.; McBreen, J.

    1998-11-01

    We have measured the XAFS spectra of a sample of tin-based composite oxide (TCO) material with a nominal composition of Sn{sub 1.0}B{sub 0.56}P{sub 0.40}Al{sub 0.42}O{sub 3.47} during the discharge and charge cycles in an ''in situ'' configuration. Our results confirm the amorphous nature of TCO and show that Sn in TCO is coordinated with 3 oxygen atoms at a distance of 2.12 {angstrom}. Upon discharging, initially, Li interacts with the electrochemically active Sn-O center forming metallic Sn in the form of clusters containing just a few atoms. Upon further discharge, Li alloys with Sn forming initially highly dispersed forms of Li{sub 2}Sn{sub 5} and/or LiSn and then Li{sub 7}Sn{sub 3}, Li{sub 5}Sn{sub 2}, Li{sub 13}Sn{sub 5}, or Li{sub 7}Sn{sub 2}. The true nature of the formed alloys could be significantly different from that of the corresponding crystalline phases. Upon charging, metallic Sn is produced with a Sn-Sn distance intermediate to those of gray and white Sn.

  8. Modeling Physical Stability of Amorphous Solids Based on Temperature and Moisture Stresses.

    PubMed

    Zhu, Donghua Alan; Zografi, George; Gao, Ping; Gong, Yuchuan; Zhang, Geoff G Z

    2016-09-01

    Isothermal microcalorimetry was utilized to monitor the crystallization process of amorphous ritonavir (RTV) and its hydroxypropylmethylcellulose acetate succinate-based amorphous solid dispersion under various stressed conditions. An empirical model was developed: ln(τ)=ln(A)+EaRT-b⋅wc, where τ is the crystallization induction period, A is a pre-exponential factor, Ea is the apparent activation energy, b is the moisture sensitivity parameter, and wc is water content. To minimize the propagation of errors associated with the estimates, a nonlinear approach was used to calculate mean estimates and confidence intervals. The physical stability of neat amorphous RTV and RTV in hydroxypropylmethylcellulose acetate succinate solid dispersions was found to be mainly governed by the nucleation kinetic process. The impact of polymers and moisture on the crystallization process can be quantitatively described by Ea and b in this Arrhenius-type model. The good agreement between the measured values under some less stressful test conditions and those predicted, reflected by the slope and R(2) of the correlation plot of these 2 sets of data on a natural logarithm scale, indicates its predictability of long-term physical stability of amorphous RTV in solid dispersions. To further improve the model, more understanding of the impact of temperature and moisture on the amorphous physical stability and fundamentals regarding nucleation and crystallization is needed. PMID:27185539

  9. Mechanism of Dissolution-Induced Nanoparticle Formation from a Copovidone-Based Amorphous Solid Dispersion.

    PubMed

    Harmon, Paul; Galipeau, Kendra; Xu, Wei; Brown, Chad; Wuelfing, W Peter

    2016-05-01

    Amorphous solid dispersions (ASDs) have been increasingly used to maximize human exposures from poorly soluble drug candidates. One well-studied advantage of ASDs is the increased amorphous drug solubility compared to crystalline forms. This provides more rapid dissolution rates. An additional advantage of ASDs is that the dissolution process of the ASD particle may also rapidly transform much of the drug present in the ASD particle to small (<1 μm) amorphous drug nanoparticles which will have fast dissolution rates. This work examines the mechanism by which this nanoparticle formation occurs by studying an ASD consisting of 70-80% copovidone, 20% anacetrapib (a low solubility lipophilic drug), and 0-10% TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate, a surfactant). Nanoparticle formation is found to derive from a rapid amorphous drug domain formation within the ASD particle, driven by copovidone dissolution from the particle. The role of surfactant in the ASD particle is to prevent an otherwise rapid, local drug domain aggregation event, which we term "hydrophobic capture". Surfactant thus allows the amorphous drug domains to escape hydrophobic capture and diffuse to bulk solution, where they are reported as nanoparticles. This view of surfactant and nanoparticle formation is compared to the prevailing view in the literature. The work here clarifies the different roles that surfactant might play in increasing nanoparticle yields and extending the useful drug loading ranges in copovidone-based ASDs. PMID:27019407

  10. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    SciTech Connect

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  11. Embrittlement and conditions of the optimization of magnetic properties in the amorphous alloy Co69Fe3.7Cr3.8Si12.5B11 in the absence of a viscous-brittle transition

    NASA Astrophysics Data System (ADS)

    Kekalo, I. B.; Mogil'nikov, P. S.

    2016-07-01

    The influence of the holding time upon annealing on the temperature of the viscous-brittle transition (temperature of embrittlement) T f in a cobalt-based amorphous alloy of the composition Co69Fe3.7Cr3.8Si12.5B11 with a very low saturation magnetostriction λs (<10-7) has been studied. It has been established that the dependence of the embrittlement temperature T f on the of time of holding t a can be described by an Arrhenius equation and that the embrittlement at the annealing temperatures above and below 300°C is described by different kinetic parameters. In the alloy under study, irrespective of the holding time, embrittlement occurs in a very narrow range of annealing temperatures, which does not exceed 5 K. Based on the experimental data on the evolution of the hysteresis magnetic properties upon the isochronous annealings and upon the isothermal holding, the regime of heat treatment that ensures a very high (about 50000) magnitude of the permeability µ5 ( H = 5 mOe, f = 1 kHz) without the transition of the alloy into a brittle state has been determined.

  12. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    SciTech Connect

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  13. Vector magnetic properties of Fe-based amorphous sheets under alternating flux condition

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Todaka, T.; Enokizono, M.

    2012-04-01

    This paper presents measured vector magnetic properties of Fe-based amorphous sheets under alternating flux conditions in arbitrary direction. It is well known that amorphous material has usually isotropic magnetic property; however it is changeable by heat-treatment and shows complicated aspects. In this paper, the relationship between the magnetic flux density and field strength vector and iron loss under alternating flux conditions is measured by using a vector magnetic property measurement system. Moreover, the iron losses depending on the exciting frequency are discussed. The results show a weak anisotropy in plane and the frequency dependence of the iron losses shows different tendency in each direction.

  14. Cast Fe-base cylinder/regenerator housing alloy

    NASA Technical Reports Server (NTRS)

    Larson, F.; Kindlimann, L.

    1980-01-01

    The development of an iron-base alloy that can meet the requirements of automotive Stirling engine cylinders and regenerator housings is described. Alloy requirements are as follows: a cast alloy, stress for 5000-hr rupture life of 200 MPa (29 ksi) at 775 C (1427 F), oxidation/corrosion resistance comparable to that of N-155, compatibility with hydrogen, and an alloy cost less than or equal to that of 19-9DL. The preliminary screening and evaluation of ten alloys are described.

  15. The Corrosion Resistance of Fe-Based Amorphous Metals: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 and Other Compositions

    SciTech Connect

    Farmer, J; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Rebak, R; Payer, J; Blue, C; Peters, W; Branagan, D

    2007-07-09

    Several Fe-based amorphous metals were developed with good corrosion resistance. These materials have been produced as melt-spun ribbons, ingots, and thermal-spray coatings. Cyclic polarization has been conducted in several aggressive environments, at ambient temperature, as well as temperatures approaching the boiling points of the test solutions. The hypothesis that the corrosion resistance of iron-based amorphous metals can be enhanced through application of heuristic principles related to the additions of chromium, molybdenum, tungsten has been tested and found to have merit. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature.

  16. Nano-scratch behavior of a bulk Zr-10Al-5Ti-17.9Cu-14.6Ni amorphous alloy

    SciTech Connect

    Wang, J. G.; Choi, B. W.; Nieh, T. G.; Liu, C. T.

    2000-04-01

    The tribological behavior of a Zr-10Al-5Ti-17.9Cu-14.6Ni (at.%) bulk amorphous alloy, in both the as-cast and annealed states, was investigated using nano-scratch tests, including ramping load scratch and multiple sliding wear techniques. The crystallization sequence of the alloy was also characterized. Mechanical properties, such as Young's modulus, hardness, friction coefficient, and tribological wear were measured. These properties were found to vary with microstructure. In general, an increase in annealing temperature results in an increase in hardness, which in turn produces a decrease in friction coefficient but an increase in wear resistance. Samples having a structure consisting of supercooled liquid matrix with dispersed nanocrystalline particles exhibit the best wear performance. (c) 2000 Materials Research Society.

  17. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  18. Two-current model of the composition dependence of resistivity in amorphous (Fe{sub 100-x}Co{sub x}){sub 89-y}Zr{sub 7}B{sub 4}Cu{sub y} alloys using a rigid-band assumption

    SciTech Connect

    Shen, S.; Ohodnicki, P. R.; Kernion, S. J.; McHenry, M. E.

    2012-11-15

    Composition dependence of resistivity is studied in amorphous (Fe{sub 100−x}Co{sub x}){sub 89−y}Zr{sub 7}B{sub 4}Cu{sub y} (0 ≤ x ≤ 50, y = 0, 1) alloys. The two-current model proposed by Mott for crystalline materials is extended to a disordered amorphous system where s-d scattering is dominant in electron conduction. A rigid-band assumption is made due to the small atomic number difference between Fe and Co. Band structures with a constant density of states (DOS), parabolic distributed DOS, and Gaussian distributed DOS were investigated to fit experimental data. The Gaussian distributed DOS was found to simulate the resistivity maximum and magnetic moment maximum in the Fe-rich region. The basic concepts presented here can potentially provide insight into the optimization of FeCo-based HITPERM alloys for applications at increased frequencies.

  19. Advances in amorphous and nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Hasegawa, Ryusuke

    2012-10-01

    A new amorphous alloy has been recently introduced which shows a saturation magnetic induction Bs of 1.64 T which is compared with Bs=1.57 T for a currently available Fe-based amorphous alloy and decreased magnetic losses. Such a combination is rare but can be explained in terms of induced magnetic anisotropy being reduced by the alloy's chemistry and its heat treatment. It has been found that the region of magnetization rotation in the new alloy is considerably narrowed, resulting in reduced exciting power in the magnetic devices utilizing the material. Efforts to increase Bs also have been made for nanocrystalline alloys. For example, a nanocrystalline alloy having a composition of Fe80.5Cu1.5Si4B14 shows Bs exceeding 1.8 T. The iron loss at 50 Hz and at 1.6 T induction in a toroidal core of this material is 0.46 W/kg which is 2/3 that of a grain-oriented silicon steel. At 20 kHz/0.2 T excitation, the iron loss is about 60% of that in an Fe-based amorphous alloy which is widely used in power electronics. Another example is a Fe85Si2B8P4Cu1 nanocrystalline alloy with a Bs of 1.8 T, which is reported to exhibit a magnetic core loss of about 0.2 W/kg at 50 Hz and at 1.5 T induction. This article is a review of these new developments and their impacts on energy efficient magnetic devices.

  20. Fabrication and hyperthermia effect of magnetic functional fluids based on amorphous particles

    NASA Astrophysics Data System (ADS)

    Yang, Chuncheng; Bian, Xiufang; Qin, Jingyu; Guo, Tongxiao; Zhao, Shuchun

    2015-03-01

    An experimental study conducted on the preparation and hyperthermia effect of magnetic functional fluids based on Fe73.5Nb3Cu1Si13.5B9 amorphous particles, CoFe2O4 nanoparticles and Fe3O4 nanoparticles dispersed in water is presented. Scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and vibrating sample magnetometer methods have been used to characterize the morphology, structure and magnetic property of the amorphous particles. It is disclosed that the Fe73.5Nb3Cu1Si13.5B9 particles are still amorphous after being milled for 48 h. Moreover, the saturation magnetization of metallic glass particles is approximately 75% and 50% larger than that of CoFe2O4 nanoparticles and Fe3O4 nanoparticles, respectively. The hyperthermia experiment results show that when alternating electrical current is 150 A, the temperature of the functional fluids based on amorphous particles could rise to 33 °C in 1500 s. When the current is 300 A, the final stable temperature could reach to 60 °C. This study demonstrates that the Fe73.5Nb3Cu1Si13.5B9 magnetic functional fluids may have potential on biomedical applications.

  1. High-Performance Corrosion-Resistant Iron-Based Amorphous Metals: The Effects of Composition, Structure and Environment on Corrosion Resistance

    SciTech Connect

    Farmer, J; Choi, J S; Haslam, J; Lian, T; Day, S; Yang, N; Blue, C; Peters, W; Bayles, R; Lewandowski, J; Perepezko, J; Hildal, K; Lavernia, E; Ajdelsztajn, A; Grave, O; Aprigliano, L; Kaufman, L; Boudreau, J; Branagan, D J; Beardsley, B

    2006-04-11

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative thermal phase stability, microstructure, mechanical properties, damage tolerance, and corrosion resistance. Some alloy additions are known to promote glass formation and to lower the critical cooling rate [F. Guo, S. J. Poon, Applied Physics Letters, 83 (13) 2575-2577, 2003]. Other elements are known to enhance the corrosion resistance of conventional stainless steels and nickel-based alloys [A. I. Asphahani, Materials Performance, Vol. 19, No. 12, pp. 33-43, 1980] and have been found to provide similar benefits to iron-based amorphous metals. Many of these materials can be cast as relatively thick ingots, or applied as coatings with advanced thermal spray technology. A wide variety of thermal spray processes have been developed by industry, and can be used to apply these new materials as coatings. Any of these can be used for the deposition of the formulations discussed here, with varying degrees of residual porosity and crystalline structure. Thick protective coatings have now been made that are fully dense and completely amorphous in the as-sprayed condition. An overview of the High-Performance Corrosion Resistant Materials (HPCRM) Project will be given, with particular emphasis on the corrosion resistance of several different types of iron-based amorphous metals in various environments of interest. The salt fog test has been used to compare the performance of various wrought alloys, melt-spun ribbons, arc-melted drop-cast ingots, and thermal-spray coatings for their susceptibility to corrosion in marine environments. Electrochemical tests have also been performed in seawater. Spontaneous breakdown of the passive film and localized corrosion require that the open-circuit corrosion potential exceed the critical potential. The resistance to localized corrosion is seawater has been

  2. Stress corrosion crack tip microstructure in nickel-based alloys

    SciTech Connect

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content.

  3. Cast iron-base alloy for cylinder/regenerator housing

    NASA Technical Reports Server (NTRS)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  4. Microstructural Characterization of Co-Based ODS Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Qu, Xuanhui; He, Xinbo; Din, Rafi-ud; Liu, Hengsan; Qin, Mingli; Zhu, Hongmin

    2012-11-01

    Co-based ODS alloys, strengthened by nanosized oxide dispersion and γ' precipitates, are potential high-temperature structural materials. The characteristics of the mechanically alloyed powder and the microstructural evolution of the Co-based ODS alloys were investigated. The results revealed that mechanical alloying had induced the formation of supersaturated solid solution in immiscible Co-Al-W-based alloys, originating mainly from extensive grain boundary region, high dislocation density, and ample point defect. Chemical compositions of mechanically alloyed Co-Al-W-based ODS alloys easily deviate from the γ/γ' two-phase region, leading to the existence of Al x Co, Co3W, Co7W6, and W phases in addition to the γ and γ' phases. Nonuniform distribution of alloying elements brings about the differences in morphologies and sizes of γ' precipitates. Microstructural formation process is impelled by spinodal decomposition mode, and spinodal decomposition behavior has been accelerated in the fine-grained alloy because of the presence of short-circuited diffusion paths for atomic movement.

  5. Calculation of core loss and copper loss in amorphous/nanocrystalline core-based high-frequency transformer

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojing; Wang, Youhua; Zhu, Jianguo; Guo, Youguang; Lei, Gang; Liu, Chengcheng

    2016-05-01

    Amorphous and nanocrystalline alloys are now widely used for the cores of high-frequency transformers, and Litz-wire is commonly used as the windings, while it is difficult to calculate the resistance accurately. In order to design a high-frequency transformer, it is important to accurately calculate the core loss and copper loss. To calculate the core loss accurately, the additional core loss by the effect of end stripe should be considered. It is difficult to simulate the whole stripes in the core due to the limit of computation, so a scale down model with 5 stripes of amorphous alloy is simulated by the 2D finite element method (FEM). An analytical model is presented to calculate the copper loss in the Litz-wire, and the results are compared with the calculations by FEM.

  6. Polarized electroabsorption spectra and light soaking of solar cells based on hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Wang, Qi; Schiff, E. A.; Guha, S.; Yang, J.

    1998-03-01

    We present grazing-incidence measurements of polarized electroabsorption spectra in p-i-n solar cells based on hydrogenated amorphous silicon (a-Si:H). We find a significantly stronger polarization dependence in the present measurements compared with earlier work based on electroabsorption detected using coplanar electrodes on a-Si:H thin films. We do not find any significant dependence of the polarized electroabsorption upon light soaking, although this effect was found in previous work with coplanar electrodes.

  7. Synthesis and characterization of mechanically alloyed aluminum-based compounds as high energy density materials

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoying

    2006-12-01

    A new type of metastable reactive powders for potential use as high energy density materials in propellants, explosives, and pyrotechnics was developed. These powders are intended to replace aluminum typically added to energetic formulations to increase reaction enthalpy and temperature. The new materials are metastable aluminum-based alloys, which enable achievement of substantially reduced ignition temperatures and accelerated bulk burn rates compared to aluminum. Titanium and lithium were used as alloying components. The materials properties and characteristics leading to their enhanced combustion performance were investigated. The powders were prepared using mechanical alloying and characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive X-ray spectrometer (SEM/EDX), and thermal analysis. Detailed ignition measurements were performed to identify the processes affecting ignition for the prepared metastable powders. Al-Ti alloys were prepared with compositions ranging from Al0.95 Ti0.05 to Al0.75Ti0.25. Mechanically alloyed powders comprised solid solution of Ti and Al. Upon their heating, a number of subsolidus exothermic transitions were detected and assigned to formation of different modifications of Al3Ti. Three distinguishable oxidation steps were observed for the prepared alloys. The products formed at different oxidation stages were quantitatively analyzed by XRD. Ignition of mechanically alloyed Al-Ti powders was investigated experimentally for heating rates ranging from 3·103 to 2·10 4 K/s. It was shown that ignition was triggered by the exothermic formation of a metastable L12 phase of Al3Ti. Al-Li alloys were synthesized with a fixed bulk composition of Al 0.7Li0.3. At short milling times, an intermetallic LiAl delta-phase was readily produced. At longer milling times, the LiAl phase disappears and a solid solution of Li in Al (alpha-phase) formed with as much as 10 at % of dissolved Li. Continuing milling

  8. Development of High Quality 1.36 eV Amorphous SiGe:H Alloy by RF Glow Discharge under Helium Dilution

    NASA Astrophysics Data System (ADS)

    Hazra, Sukti; Middya, Abdul; Rath, Jatindra; Basak, Subhashis; Ray, Swati

    1995-11-01

    The use of 1.35 eV amorphous silicon-germanium (a-SiGe:H) alloy as the second/third intrinsic layer along with 1.85 eV front layer in double/triple tandem solar cells is believed to be the best combination for the maximum power output for multijunction cells. In this study high quality low-band-gap (1.36 eV) a-SiGe:H alloy has been developed by RF glow discharge optimizing the deposition parameters and helium dilution of source gases. It has been observed that the structural, electronic properties and defect densities of alloy films developed under the deposition condition which is the transition from low-discharge-power to high-discharge-power regime, become optimum. In the present case this deposition condition is a combination of chamber pressure 0.8 Torr and RF power 60 mW/cm2. The properties of the alloy films developed under helium dilution improve and defect density decreases with the increase of deposition rate up to 120 Å/min. The 1.36 eV alloy film prepared under this condition has very low defect density ( 3.2×1016 cm-3 eV-1). The analysis of spectral response of Pd/a-SiGe:H Schottky barrier solar cells reveals that the hole transport properties improve due to increase of RF power from 15 to 60 mW/cm2 and also due to increase of growth rate from 51 to 120 Å/min.

  9. A MHO-based magnetic hysteresis model for amorphous materials

    NASA Astrophysics Data System (ADS)

    Ma, Lianwei; Shen, Yu; Li, Jinrong; Zhao, Xinlong

    2014-12-01

    A magnetic hysteretic operator (MHO) is proposed in this paper. Based on the constructed MHO, the input space of neural networks is expanded from one-dimension to two-dimension using the expanded space method so that the one-to-multiple mapping of magnetic hysteresis is transformed into one-to-one mapping. Based on the expanded input space, a neural network is employed to identify magnetic hysteresis. The result of an experimental example suggests the proposed approach is effective.

  10. Radiation-induced crystalline-to-amorphous transition in intermetallic compounds of the Cu-Ti alloy system

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.; Devanathan, R. ); Sabochick, M.J. . Computer Applications Div.)

    1992-02-01

    Recent progress in molecular-dynamics studies of radiation-induced crystalline-to-amorphous transition in the ordered intermetallic compounds of the Cu-Ti system is discussed. The effect of irradiation was simulated by the generation of Frenkel pairs,which resulted in both the formation of stable point defects and chemical disorder upon defect recombination. The thermodynamic, structural and mechanical responses of the compounds during irradiation were determined by monitoring changes in the system potential energy, volume expansion, pair correlation function, diffraction patterns, and elastic constants. It was found that the intermetallics Cu{sub 4}Ti{sub 3}, CuTi, and CuTi{sub 2} could be rendered amorphous by the creation of Frenkel pairs, but Cu{sub 4}Ti could not, consistent with experimental observations during electron irradiation. However, the simulations showed that Cu{sub 4}Ti did become amorphous when clusters of Frenkel pairs were introduced, indicating that this compound may be susceptible to amorphization by heavy-ion bombardment. A generalization of the Lindemann criterion was used to develop a thermodynamic description of solid-state amorphization as a disorder- induced melting process.

  11. Graphene as a transparent electrode for amorphous silicon-based solar cells

    SciTech Connect

    Vaianella, F. Rosolen, G.; Maes, B.

    2015-06-28

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  12. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-01

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles.The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For

  13. Variation of the electronic densities of states as a function of impurity concentration in amorphous bismuth alloys

    NASA Astrophysics Data System (ADS)

    Mata-Pinzon, Zaahel; Valladares, Ariel Alberto; Valladares, Alexander; Valladares, Renela Maria

    2014-03-01

    The properties of materials are strongly related to their atomic topology, especially when we compare properties related to the ordered and disordered phases. Using Density Functional Theory methods on 64-atom supercells we obtain the structure and calculate the electronic density of states (eDOS) as a function of the concentration of lead, thallium or antimony in an amorphous bismuth supercell. This is done to investigate how the eDOS affects the superconducting transition temperature (Tc), taking into account the measurements made by Shier and Ginsberg[2] on contaminated amorphous bismuth thin films. Supported by CONACYT and DGAPA (UNAM).

  14. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  15. Unusual high Bs for Fe-based amorphous powders produced by a gas-atomization technique

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Bito, M.; Kageyama, J.; Shimizu, Y.; Abe, M.; Makino, A.

    2016-05-01

    Fe-based alloy powders with a high Fe content of about 81 at.% were produced by a gas-atomization technique. Powders of Fe81Si1.9B5.7P11.4 (at.%) alloy showed a good glass forming ability and exhibited unusual high saturation magnetic flux density of 1.57 T. The core-loss property at a frequency of 100 kHz for the compacted core made of the Fe81Si1.9B5.7P11.4 powder is evaluated to be less than 500 kW/m3 under a maximum induction of 100 mT. Moreover, good DC-superposition characteristic of the core was also confirmed. These results suggest that the present Fe-based alloy powder is promising for low-loss magnetic-core materials and expected to contribute in miniaturization of electric parts in the near future.

  16. Enhanced Giant Magnetoimpedance Effect in Rapid Heat-Treated Fe-Based Amorphous Ribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Dong, Juan; Feng, Er-Xi; Luo, Cai-Qin; Liu, Qing-Fang; Wang, Jian-Bo

    2013-03-01

    An enhanced giant magnetoimpedance (GMI) effect of Fe-based amorphous ribbons is obtained by rapid heat treatment. The structural investigations on the ribbon reveal the presence of two phases, i.e. a fine grained Fe3Si phase and a residual amorphous phase on rapid heat treatment. The soft magnetic property is improved by rapid heat treatment; the crystal size and grain size of Fe3Si decrease. The maximum magnetoimpedance ratio obtained in the present study is 81% at 10 MHz, and the optimized heat-treated rate is 200°C/min. Separated GMI curves are observed after the simultaneous rapid heat treatment and magnetic field annealing. This suggests that tailoring of the nanocrystalline microstructures induced by optimum rapid heat treatment conditions can result in an excellent GMI effect.

  17. Improved Photo-Induced Stability in Amorphous Metal-Oxide Based TFTs for Transparent Displays.

    PubMed

    Koo, Sang-Mo; Ha, Tae-Jun

    2015-10-01

    In this paper, we investigate the origin of photo-induced instability in amorphous metal-oxide based thin-film transistors (oxide-TFTs) by exploring threshold voltage (Vth) shift in transfer characteristics. The combination of photo irradiation and prolonged gate bias stress enhanced the shift in Vth in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs. Such results stem from the extended trapped charges at the localized defect states related to oxygen vacancy which play a role in a screening effect on the electric field induced by gate voltage. We also demonstrate the chemically clean interface in oxide-TFTs by employing oxygen annealing which reduces the density of trap states, thereby resulting in improved photo-induced stability. We believe that this work stimulates the research society of transparent electronics by providing a promising approach to suppress photo-induced instability in metal-oxide TFTs. PMID:26726416

  18. An alternative system for mycotoxin detection based on amorphous silicon sensors

    NASA Astrophysics Data System (ADS)

    Caputo, D.; de Cesare, G.; De Rossi, P.; Fanelli, C.; Nascetti, A.; Ricelli, A.; Scipinotti, R.

    2007-05-01

    In this work we investigate, for the first time, the performances of a system based on hydrogenated amorphous silicon photosensors for the detection of Ochratoxin A. The sensor is a n-type/intrinsic/p-type amorphous silicon stacked structure deposited on a glass substrate. The mycotoxin is deposited on a thin layer chromatographic plate and aligned with the sensor. An ultraviolet radiation excites the ochratoxin A, whose fluorescence produces a photocurrent in the sensor. The photocurrent value is proportional to the deposited mycotoxin quantity. An excellent linearity of the detector response over more than two orders of magnitude of ochratoxin A amount is observed. The minimum detected mycotoxin quantity is equal to 0.1ng, suggesting that the presented detection system could be a good candidate to perform rapid and analytical ochratoxin A analysis in different kind of samples.

  19. Effects of Effective Dendrite Size on Dynamic Tensile Properties of Ti-Based Amorphous Matrix Composites

    NASA Astrophysics Data System (ADS)

    Jeon, Changwoo; Park, Jaeyeong; Kim, Choongnyun Paul; Kim, Hyoung Seop; Lee, Sunghak

    2016-04-01

    In this study, dynamic tensile properties of dendrite-containing Ti-based amorphous matrix composites were examined, and effects of dendrite size on dynamic deformation were investigated. The composites contained 73 to 76 vol pct of dendrites whose effective sizes were varied from 63 to 103 μm. The dynamic tensile test results indicated that the ultimate tensile strength increased up to 1.25 GPa, whereas the elongation decreased to 1 pct, although the overall strength and elongation trends followed those of the quasi-static tensile test. According to the observation of dynamic tensile deformation behavior, very few deformation bands were observed beneath the fracture surface in the composite containing large dendrites. In the composite containing small dendrites, deformation bands initiated inside small dendrites propagated into adjacent dendrites through the amorphous matrix, and were crossly intersect perpendicularly in widely deformed areas, which beneficially worked for elongation as well as strength.

  20. Investigation of the stability and 1.0 MeV proton radiation resistance of commercially produced hydrogenated amorphous silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters or fluences below 1(exp 14) cm(exp -2); fluences above 1(exp 14) cm(exp -2) require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  1. Investigation of the Stability and 1.0 MeV Proton Radiation Resistance of Commercially Produced Hydrogenated Amorphous Silicon Alloy Solar Cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below 1E14 sq cm fluences above 1E14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed In dark I-V measurements. The current mechanism were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  2. High-rate ( similar to 50-A/s) deposition of ZnO films for amorphous silicon alloy solar-cell back-reflector application

    SciTech Connect

    Banerjee, A.; Wolf, D.; Yang, J.; Guha, S. )

    1991-08-01

    Back reflectors have been fabricated by the deposition of ZnO films on textured Ag films. High deposition rates of {similar to}50 A/s have been achieved by the dc magnetron sputtering technique. The ZnO target used has been prepared in our laboratory. Amorphous silicon alloy solar cells have been deposited on the ZnO/textured Ag back reflector. Control samples have been prepared by the deposition of identical cells on the same back reflector, but in which the ZnO films have been prepared by a low-rate {similar to}5-A/s rf sputtering process. The short-circuit current density, which has been used as the primary test parameter for evaluating the back reflectors, is slightly superior in the case of the high-rate ZnO back reflector. The high-rate deposition process is, therefore, attractive for large-volume production application.

  3. Temperature and field-induced magnetization flips in amorphous Er{endash}Fe alloys evidenced by x-ray magnetic circular dichroism

    SciTech Connect

    Garcia, L.M.; Pizzini, S.; Rueff, J.P.; Vogel, J.; Galera, R.M.; Fontaine, A.; Kappler, J.P.; Krill, G.; Goedkoop, J.

    1996-04-01

    Magnetic properties of amorphous Er{sub 1{minus}{ital x}}Fe{sub {ital x}} alloys with {ital x}{approx_equal}0.7 have been studied. Macroscopic characterization has been performed by measuring temperature- and field-dependent magnetization. Applying a magnetic field the compensation temperature first decreases, but increases again at larger fields. This {open_quote}{open_quote}exotic{close_quote}{close_quote} behavior has been interpreted in terms of the sperimagnetic character of both subnetworks. The suggested scheme has been checked by measuring x-ray circular magnetic dichroism at the Er {ital M}{sub 5}-edge. Using this atom-sensitive technique we have been able to detect temperature-induced as well as field-induced flips of the Er-subnetwork with respect to the direction of the applied field. {copyright} {ital 1996 American Institute of Physics.}

  4. Hydrogen-induced phase separation in amorphous Cu0.5Ti0.5 alloys. I. Room-temperature experiments

    NASA Astrophysics Data System (ADS)

    Rodmacq, B.; Maret, M.; Laugier, J.; Billard, L.; Chamberod, A.

    1988-07-01

    The influence of hydrogen on the structure of an amorphous Cu0.5Ti0.5 alloy has been studied by means of x-ray and neutron scattering. These experiments include large-angle x-ray and neutron scattering and small-angle neutron scattering with hydrogen-deuterium substitution. The results indicate that large hydrogen contents (hydrogen-to-metal ratio of 0.84) induce a phase separation into Cu and TiHx regions on a scale of about 10-15 Å. Experiments on samples loaded with hydrogen by electrolysis or from the gas phase show that such a phase separation does not depend on the method of hydrogen loading. The results of a computer simulation with nearest-neighbor Cu-Ti permutations reproduce the main features of the diffraction data and confirm the large change of chemical ordering between Cu and Ti atoms upon hydrogen absorption.

  5. Amorphous alumina oxidation protective coatings for Zircaloy based on a compositional gradient layer system

    NASA Astrophysics Data System (ADS)

    Park, Sang Tae

    Waterside corrosion of the Zircaloy cladding encasing the uranium oxide pellets is one of the primary factors limiting high "burn up" of nuclear fuel in pressurized water reactors (PWRs). High "burn up" can significantly impact plant safety and economics. Amorphous aluminum oxide coatings with aluminum-based compositional gradient layers (CGLs) were fabricated to develop ceramic coating corrosion protection systems for Zircaloy. Aluminum films were deposited on Zircaloy substrates by electron-beam evaporation, and two-step heat treatments were performed at near the melting temperature of aluminum. Amorphous alumina coatings by rf magnetron sputtering were overcoated on the CGL structures. Morphological and compositional studies were completed using field emission scanning electron microscopy (FE SEM), energy dispersive x-ray analysis (EDX), and auger electron spectroscopy (AES). The AES depth profiles of the annealed coatings showed that gradient compositions of Al, Zr, and O were obtained. Glancing angle x-ray diffraction (GAXRD) analysis showed that a variety of intermetallic and oxide phases (such as Al3Zr, Al2Zr3, Al2O3, ZrO2 and Zr3O) were formed in the coatings during processing. The intermetallic layers improved the adhesion property of the alumina overcoating to Zircaloy substrate, and functioned as oxidation resistant layers. In spite of the successful construction of the compositional gradient layer system with a good adhesion and thermal stability, and the report about the stability of pure alumina and amorphous ceramics in hydrothermal conditions, the amorphous alumina coatings in our study were not stable under nuclear reactor conditions of subcritical water at 350°C and 20.1 MPa (3000 psi). We investigated the behavior of amorphous alumina thin films deposited on Zircaloy substrates in the near-supercritical water. When the coatings were exposed to the subcritical conditions, hydrothermally grown well-faceted crystallite formation was observed

  6. Surface modification of nickel based alloys for improved oxidation resistance

    SciTech Connect

    Jablonski, Paul D.; Alman, David E.

    2005-02-01

    The present research is aimed at the evaluation of a surface modification treatment to enhance the high temperature stability of nickel-base superalloys. A low Coefficient Thermal Expansion (CTE ~12.5x10-6/°C) alloy based on the composition (in weight %) of Ni-22Mo-12.5Cr was produced by Vacuum Induction Melting and Vacuum Arc Melting and reduced to sheet by conventional thermal-mechanical processing. A surface treatment was devised to enhance the oxidation resistance of the alloys at high temperature. Oxidation tests (in dry and wet air; treated and untreated) were conducted 800°C to evaluate the oxidation resistance of the alloys. The results were compared to the behavior of Haynes 230 (Ni-22Cr) in the treated and untreated conditions. The treatment was not very effective for Haynes 230, as this alloy had similar oxidation behavior in both the treated and untreated conditions. However, the treatment had a significant effect on the behavior of the low CTE alloy. At 800°C, the untreated Ni-12.5Cr alloy was 5 times less oxidation resistant than Haynes 230. However, in the treated condition, the Ni-12.5Cr alloy had comparable oxidation resistance to the Haynes 230 alloy.

  7. Reversible amorphous-crystalline phase changes in a wide range of Se(1-x)Te(x) alloys studied using ultrafast differential scanning calorimetry.

    PubMed

    Vermeulen, Paul A; Momand, Jamo; Kooi, Bart J

    2014-07-14

    The reversible amorphous-crystalline phase change in a chalcogenide material, specifically the Se1-xTex alloy, has been investigated for the first time using ultrafast differential scanning calorimetry. Heating rates and cooling rates up to 5000 K/s were used. Repeated reversible amorphous-crystalline phase switching was achieved by consecutively melting, melt-quenching, and recrystallizing upon heating. Using a well-conditioned method, the composition of a single sample was allowed to shift slowly from 15 at. %Te to 60 at. %Te, eliminating sample-to-sample variability from the measurements. Using Energy Dispersive X-ray Spectroscopy composition analysis, the onset of melting for different Te-concentrations was confirmed to coincide with the literature solidus line, validating the use of the onset of melting Tm as a composition indicator. The glass transition Tg and crystallization temperature Tc could be determined accurately, allowing the construction of extended phase diagrams. It was found that Tm and Tg increase (but Tg/Tm decrease slightly) with increasing Te-concentration. Contrarily, the Tc decreases substantially, indicating that the amorphous phase becomes progressively unfavorable. This coincides well with the observation that the critical quench rate to prevent crystallization increases about three orders of magnitude with increasing Te concentration. Due to the employment of a large range of heating rates, non-Arrhenius behavior was detected, indicating that the undercooled liquid SeTe is a fragile liquid. The activation energy of crystallization was found to increase 0.5-0.6 eV when the Te concentration increases from 15 to 30 at. % Te, but it ceases to increase when approaching 50 at. % Te. PMID:25028022

  8. Cr{sub 2}Nb-based alloy development

    SciTech Connect

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A.

    1996-08-01

    Alloys of Cr-Cr{sub 2}Nb with exceptionally high strength at 1200{degrees}C have been developed. However, these compositions suffer from limited ductility and toughness at room temperature. Despite improvements from processing modifications, as-fabricated defects still limit room temperature mechanical behavior. In contrast, an alloy system with only a small mismatch of the coefficients of thermal expansion of the two phases, Cr-Cr{sub 2}Zr, showed good fabricability. However, these alloys are weaker than Cr-Cr{sub 2}Nb compositions at high temperatures and have poor oxidation resistance. Silicide coatings can provide high-temperature oxidation and sulfidation protection of these alloys. Improvements in room temperature mechanical properties of Laves-phase-strengthened alloys will rely on further development based on increasing the ductility of the matrix phase by impurity control and compositional modifications.

  9. Synthesis of aluminum-based scandium-yttrium master alloys

    NASA Astrophysics Data System (ADS)

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.

    2015-07-01

    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  10. Permeation characteristics of some iron and nickel based alloys

    SciTech Connect

    Mitchell, D.J.; Edge, E.M.

    1985-06-15

    The permeation characteristics of deuterium in several iron and nickel based alloys were measured by the gas phase breakthrough technique in the temperature range 100 to 500 /sup 0/C with applied pressures ranging from 10 Pa to 100 kPa. The restriction of the gas flux imposed by surface oxides was modeled in order to evaluate the effects of surface oxide retardation of the gas flux on the effective values of the deuterium permeabilities and diffusivities in the alloys. The most permeable alloys were 430 and 431 stainless steels. The next most permeable alloy was Monel K-500, which exceeded the permeability of pure Ni by more than a factor of five at room temperature. The alloys with permeabilities less than pure Ni were, in order of decreasing permeability: the Inconels 625, 718, and 750, the Fe-Ni-Co glass-sealing alloys Kovar and Ceramvar, and the 300-series stainless steels. Deuterium trapping within the alloys appeared to influence the values of bulk diffusivities, which were not correlated with either the permeabilities or the chemical compositions of the alloys.

  11. Optical exchange spring effect in RF-annealed Fe-based amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Setoodeh, V.; Hosseini, S. I.; Ghanaatshoar, M.; Shokri, B.

    2013-01-01

    We report the surface exchange spring behavior in Fe-based amorphous ribbons which is detected by the magneto-optical Kerr effect. To realize this effect at the surface of FeSiB, the radio frequency (RF) radiation is used to change the magnetic phase of its outermost atomic surface layers. The RF radiation produced by a capacitively coupled parallel plate plasma reactor creates a nanometric hard magnetic layer on the surface of Fe-based ribbons and leaves the magnetically soft volume without any substantial modification.

  12. Surface characterization and catalytic CO + H 2 reaction on Fe 82.2B 17.8 amorphous alloy

    NASA Astrophysics Data System (ADS)

    Kisfaludi, G.; Lázár, K.; Schay, Z.; Guczi, L.; Fetzer, Cs.; Konczos, G.; Lovas, A.

    1985-09-01

    Fe 82.2B 17.8 amorphous ribbon has been used as a catalyst for the Fischer-Tropsch-type reaction of CO+H 2. Specific activity has been found to be at least an order of magnitude higher than that of either the crystallized ribbon of identical composition or the supported iron catalyst. Before and after the catalytic tests the ribbons were characterized by XRD, XPS, UPS and Mössbauer spectroscopy in transmission and in conversion electron modes. Conversion electron Mössbauer spectroscopy and UPS proved that the surface of the amorphous ribbons is being partially crystallized during 8000 min reaction time at a maximum reaction temperature of 560 K. The superior catalytic activity has been explained by stabilization of the small iron particles and Fe 2O 3 by boron atoms at the surface and by suppressed carbide formation.

  13. Thermal and structural stability of cosputtered amorphous Ta(x)Cu(1-x) alloy thin films on GaAs

    NASA Technical Reports Server (NTRS)

    Oh, J. E.; Woolam, J. A.; Aylesworth, K. D.; Sellmyer, D. J.; Pouch, J. J.

    1986-01-01

    The characteristics of thin films of Ta-Cu, prepared over a wide range of compositions by cosputter deposition onto GaAs and fused quartz substrates, are studied by X-ray diffraction and van der Pauw resistivity measurement. Results show films to be amorphous over the range of 55-95 at. pct, and show Ta(93)Cu(7) barriers to be effective in preventing Au in-diffusion, with a 3000-A layer remaining unpenetrated after an annealing at 700 C for 20 min. Diffusion of Ga and/or As into amorphous 93 at. pct Ta is found to be more rapid than that of Au, and interfacial reactions were shown to form compounds including Ta3Au, CuAu, TaAs2, and Ga3Cu7 above 700 C.

  14. Wear Resistant Amorphous and Nanocomposite Steel Coatings

    SciTech Connect

    Branagan, Daniel James; Swank, William David; Haggard, Delon C; Fincke, James Russell; Sordelet, D.

    2001-10-01

    In this article, amorphous and nanocomposite thermally deposited steel coatings have been formed by using both plasma and high-velocity oxy-fuel (HVOF) spraying techniques. This was accomplished by developing a specialized iron-based composition with a low critical cooling rate (?104 K/s) for metallic glass formation, processing the alloy by inert gas atomization to form micron-sized amorphous spherical powders, and then spraying the classified powder to form coatings. A primarily amorphous structure was formed in the as-sprayed coatings, independent of coating thickness. After a heat treatment above the crystallization temperature (568°C), the structure of the coatings self-assembled (i.e., devitrified) into a multiphase nanocomposite microstructure with 75 to 125 nm grains containing a distribution of 20 nm second-phase grain-boundary precipitates. Vickers microhardness testing revealed that the amorphous coatings were very hard (10.2 to 10.7 GPa), with further increases in hardness after devitrification (11.4 to 12.8 GPa). The wear characteristics of the amorphous and nanocomposite coatings were determined using both two-body pin-on-disk and three-body rubber wheel wet-slurry sand tests. The results indicate that the amorphous and nanocomposite steel coatings are candidates for a wide variety of wear-resistant applications.

  15. Nitrogen-atomized, nickel-based, corrosion-resistant alloys

    NASA Astrophysics Data System (ADS)

    Rizzo, Frank J.

    1996-04-01

    Nitrogen gas atomization has been used for many years to produce iron-based powder-metal materials such as stainless and tool steels. However, it is more typical to use argon atomization with nickel-based alloys because it avoids the formation of nitrides that, in some cases, can be detrimental to the mechanical properties of these materials. In this article, two nickel-based materials— alloy 625 and alloy 690—normally used for applications where corrosion resistance is of primary importance were evaluated in their nitrogen-atomized powder metal form. Nitrogen atomization uncovered attributes of these nickel alloys that are not present in their conventionally produced counterparts or in argon-atomized versions of the same compositions.

  16. Brazing ZrO{sub 2} ceramic to Ti–6Al–4V alloy using NiCrSiB amorphous filler foil: Interfacial microstructure and joint properties

    SciTech Connect

    Cao, J.; Song, X.G.; Li, C.; Zhao, L.Y.; Feng, J.C.

    2013-07-15

    Reliable brazing of ZrO{sub 2} ceramic and Ti–6Al–4V alloy was achieved using NiCrSiB amorphous filler foil. The interfacial microstructure of ZrO{sub 2}/Ti–6Al–4V joints was characterized by scanning electron microscope, energy dispersive spectrometer and micro-focused X-ray diffractometer. The effects of brazing temperature on the interfacial microstructure and joining properties of brazed joints were investigated in detail. Active Ti of Ti–6Al–4V alloy dissolved into molten filler metal and reacted with ZrO{sub 2} ceramic to form a continuous TiO reaction layer, which played an important role in brazing. Various reaction phases including Ti{sub 2}Ni, Ti{sub 5}Si{sub 3} and β-Ti were formed in brazed joints. With an increasing of brazing temperature, the TiO layer thickened gradually while the Ti{sub 2}Ni amount reduced. Shear test indicated that brazed joints tend to fracture at the interface between ZrO{sub 2} ceramic and brazing seam or Ti{sub 2}Ni intermetallic layer. The maximum average shear strength reached 284.6 MPa when brazed at 1025 °C for 10 min. - Graphical Abstract: Interfacial microstructure of ZrO{sub 2}/TC4 joint brazed using NiCrSiB amorphous filler foil was: ZrO{sub 2}/TiO/Ti{sub 2}Ni + β-Ti + Ti{sub 5}Si{sub 3}/β-Ti/Widmanstätten structure/TC4. - Highlights: • Brazing of ZrO{sub 2} ceramic and Ti-6Al-4V alloy was achieved. • Interfacial microstructure was TiO/Ti{sub 2}Ni + β + Ti{sub 5}Si{sub 3}/β/Widmanstätten structure. • The formation of TiO produced the darkening effect of ZrO{sub 2} ceramic. • The highest joining strength of 284.6MPa was obtained.

  17. The influence of glass coating on the single domain wall potential in amorphous glass-coated Fe-based microwires

    NASA Astrophysics Data System (ADS)

    Varga, Rastislav; Zhukov, Arcady; Ipatov, Michail; Maria Blanco, Juan; Gonzalez, Julian; Zhukova, Valentina; Vojtanik, Pavol

    2006-09-01

    The effect of the glass coating on the single domain wall potential in amorphous glass-coated Fe-based microwire has been studied by the switching field distribution technique. The thermoactivated mechanism model is used to describe the thermally activated switching through the complex energy barrier in amorphous FeSiB microwires. Glass removal leads to the increase of the probability of the thermally activated switching pointing to the decrease of the energy barrier.

  18. Exploratory Investigation of Advanced-Temperature Nickel-Base Alloys

    NASA Technical Reports Server (NTRS)

    Freche, John C.; Waters, William J.

    1959-01-01

    An investigation was conducted to provide an advanced-temperature nickel-base alloy with properties suitable for aircraft turbine blades as well as for possible space vehicle applications. An entire series of alloys that do not require vacuum melting techniques and that generally provide good stress-rupture and impact properties was evolved. The basic-alloy composition of 79 percent nickel, 8 percent molybdenum, 6 percent chromium, 6 percent aluminum, and 1 percent zirconium was modified by a series of element additions such as carbon, titanium, and boron, with the nickel content adjusted to account for the additives. Stress-rupture, impact, and swage tests were made with all the alloys. The strongest composition (basic alloy plus 1.5 percent titanium plus 0.125 percent carbon) displayed 384- and 574-hour stress-rupture lives at 1800 F and 15,000 psi in the as-cast and homogenized conditions, respectively. All the alloys investigated demonstrated good impact resistance. Several could not be broken in a low-capacity Izod impact tester and, on this basis, all compared favorably with several high-strength high-temperature alloys. Swaging cracks were encountered with all the alloys. In several cases, however, these cracks were slight and could be detected only by zyglo examination. Some of these compositions may become amenable to hot working on further development. On the basis of the properties indicated, it appears that several of the alloys evolved, particularly the 1.5 percent titanium plus 0.125 percent carbon basic-alloy modification, could be used for advanced- temperature turbine blades, as well as for possible space vehicle applications.

  19. Surface segregations in platinum-based alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamakawa, Shunsuke; Asahi, Ryoji; Koyama, Toshiyuki

    2014-04-01

    A phase-field model that describes the radial distributions of the ordered-disordered phase and surface segregation in a single-alloy nanoparticle is introduced to clarify the overall behavior of surface segregation of various Pt-based alloy nanoparticles. One of the obstacles to apply a platinum-transition metal alloy as a cathode electro-catalyst of a polymer electrolyte fuel cell is the need to ensure the retention of the designed surface composition in an alloy nanoparticle against the alloy combinations, a particle size, and heat treatment. From the results of calculations for CrPt, FePt, CoPt, NiPt, CuPt, PdPt, IrPt, and AuPt binary nanoparticles with diameters below 10 nm at 973.15 K, the compositional variation within a single particle was found to depend on the balance between the atomic interaction within particles and the surface free energy. In addition, the obtained specific steady-state composition of the surface varied significantly with alloy combination and particle diameter. Based on the general tendencies of a binary system to exhibit segregation, attempts to control the amount of platinum segregation on the surface using a ternary-alloy system were examined.

  20. Permeability of hydrogen isotopes through nickel-based alloys

    SciTech Connect

    Edge, E.M.; Mitchell, D.J.

    1983-04-01

    Permeabilities and diffusivities of deuterium in several nickel-based alloys were measured in this investigation. Measurements were made by the gas-phase breakthrough technique in the temperature range 200 to 450/sup 0/C with applied pressures ranging from 1 to 100 kPa. The results were extrapolated to predict the permeabilities (K) of the alloys at room temperature. The alloy with the smallest deuterium permeability is Carpenter 49, for which K = 4.3 x 10/sup -18/ mol s/sup -1/ m/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The permeability of deuterium in Kovar or Ceramvar is about 80% greater than that for Carpenter 49. Premeabilities of Inconel 625, Inconel 718, Inconel 750 and Monel K-500 are all equal to about 5 x 10/sup -17/ mol m/sup -1/ s/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The validity (from a statistical standpoint) of the extrapolation of the permeabilities to room temperature is considered in detail. Published permeabilities of stainless steels and nickel-iron alloys are also reviewed. The greatest differences in permeabilities among the nickel-based alloys appear to be associated with the tendency for some alloys to form protective oxide layers. Permeabilities of deuterium through laminates containing copper are smaller than for any of the iron-nickel alloys.

  1. Microstructures and oxidation behavior of some Molybdenum based alloys

    SciTech Connect

    Ray, Pratik Kumar

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  2. Cladding burst behavior of Fe-based alloys under LOCA

    DOE PAGESBeta

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; Massey, Caleb P.

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. Themore » most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.« less

  3. Cladding burst behavior of Fe-based alloys under LOCA

    SciTech Connect

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; Massey, Caleb P.

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. The most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.

  4. METHOD FOR ANNEALING AND ROLLING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Picklesimer, M.L.

    1959-07-14

    A fabrication procedure is presented for alpha-stabilized zirconium-base alloys, and in particular Zircaloy-2. The alloy is initially worked at a temperature outside the alpha-plus-beta range (810 to 970 deg ), held at a temperature above 970 deg C for 30 minutes and cooled rapidly. The alloy is then cold-worked to reduce the size at least 20% and annealed at a temperature from 700 to 810 deg C. This procedure serves both to prevent the formation of stringers and to provide a randomly oriented crystal structure.

  5. Nanomoulding with amorphous metals.

    PubMed

    Kumar, Golden; Tang, Hong X; Schroers, Jan

    2009-02-12

    Nanoimprinting promises low-cost fabrication of micro- and nano-devices by embossing features from a hard mould onto thermoplastic materials, typically polymers with low glass transition temperature. The success and proliferation of such methods critically rely on the manufacturing of robust and durable master moulds. Silicon-based moulds are brittle and have limited longevity. Metal moulds are stronger than semiconductors, but patterning of metals on the nanometre scale is limited by their finite grain size. Amorphous metals (metallic glasses) exhibit superior mechanical properties and are intrinsically free from grain size limitations. Here we demonstrate direct nanopatterning of metallic glasses by hot embossing, generating feature sizes as small as 13 nm. After subsequently crystallizing the as-formed metallic glass mould, we show that another amorphous sample of the same alloy can be formed on the crystallized mould. In addition, metallic glass replicas can also be used as moulds for polymers or other metallic glasses with lower softening temperatures. Using this 'spawning' process, we can massively replicate patterned surfaces through direct moulding without using conventional lithography. We anticipate that our findings will catalyse the development of micro- and nanoscale metallic glass applications that capitalize on the outstanding mechanical properties, microstructural homogeneity and isotropy, and ease of thermoplastic forming exhibited by these materials. PMID:19212407

  6. Directionally solidified iron-base eutectic alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    Pseudobinary eutectic alloys with nominal compositions of Fe-25Ta-22Ni-10Cr and Fe-15.5Nb-14.5Ni-6.0Cr were directionally solidified at 0.5 centimeter per hour. Their microstructure consisted of the fcc, iron solid-solution, matrix phase reinforced by about 41-volume-percent, hcp, faceted Fe2Ta fibers and 41-volume-percent, hcp, Fe2Nb lamellae for the tantalum- and niobium-containing alloys, respectively. The microstructural stability under thermal cycling and the temperature dependence of tensile properties were investigated. These alloys showed low elevated-temperature strength and were not considered suitable for application in aircraft-gas-turbine blades although they may have applicability as vane materials.

  7. Fe-based long range ordered alloys

    DOEpatents

    Liu, C.T.

    Malleable long range ordered alloys with high critical ordering temperatures exist in the V(Co,Fe)/sub 3/ and V(Co,Fe,Ni)/sub 3/ system. The composition comprising by weight 22 to 23% V, 35 to 50% Fe, 0 to 22% Co and 19 to 40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22 to 23% V, 35 to 45% Fe, 0 to 10% Co, 25 to 35% Ni; 22 to 23% V, 28 to 33% Ni and the remainder Fe; and 22 to 23% V, 19 to 22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  8. Fe-based long range ordered alloys

    DOEpatents

    Liu, Chain T; Inouye, Henry; Schaffhauser, Anthony C.

    1980-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Co,Fe).sub.3 and V(Co,Fe,Ni).sub.3 system having the composition comprising by weight 22-23% V, 35-50% Fe, 0-22% Co and 19-40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22-23% V, 35-45% Fe, 0-10% Co, 25-35% Ni; 22-23% V, 28-33% Ni and the remainder Fe; and 22-23% V, 19-22% Ni, 19-22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  9. An important factor powerfully influencing the Al Ni-based alloys' glass-forming ability

    NASA Astrophysics Data System (ADS)

    Bo, Zhang; Xiufang, Bian; Chunxia, Fu; Na, Han; Jiankun, Zhou; Weimin, Wang

    2005-12-01

    In order to get better glass-forming abilities (GFAs), Ni atoms are partially replaced by Cu and Co atoms in Al84Ni12Zr4 alloys. Thermal analysis shows that the reduced crystallization temperature Trx has no direct correlation with the GFA of the alloys. However, it is notable that prepeaks have been found in the total structure factors of the amorphous Al84Ni(12-x)Zr4Cux and Al84Ni(12-x)Zr4Cox alloys. In addition, the results prove that the intensity of the prepeaks influences the GFA powerfully. The amorphous alloys with larger intensity of the prepeak show better GFA. The influence of prepeaks on the GFA can be explained by the atomic configuration difference among the liquid, crystal and glass states.

  10. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  11. Conditions for a carrier multiplication in amorphous-selenium based photodetector

    SciTech Connect

    Masuzawa, Tomoaki; Kuniyoshi, Shingo; Onishi, Masanori; Kato, Richika; Saito, Ichitaro; Okano, Ken; Yamada, Takatoshi; Koh, Angel T. T.; Chua, Daniel H. C.; Shimosawa, Tatsuo

    2013-02-18

    Amorphous selenium is a promising candidate for high sensitivity photodetector due to its unique carrier multiplication phenomenon. More than 10 carriers can be generated per incident photon, which leads to high photo-conversion efficiency of 1000% that allows real-time imaging in dark ambient. However, application of this effect has been limited to specific devices due to the lack in material characterization. In this article, mechanism of carrier multiplication has been clarified using time-of-flight secondary ion mass spectroscopy and Raman spectroscopy. A prototype photodetector achieved photo conversion efficiency of 4000%, which explains the signal enhancement mechanism in a-Se based photodetector.

  12. Amorphous alloy catalysis: VII. Activation and surface characterization of an amorphous Cu-Ti alloy catalyst precursor in the dehydrogenation of 2-propanol and comparison with Cu-Zr

    SciTech Connect

    Katona, T.; Molnar, A.

    1995-05-01

    The activation and catalytic properties of Cu-Ti and Cu-Zr metallic glass precursors in the dehydrogenation of 2-propanol differ substantially. In contrast with Cu-Zr, Cu-Ti can only be activated with HF solution. The pretreatment of Cu-Ti results in catalysts with BET and copper surface areas one order of magnitude smaller than those of Cu-Zr under the same conditions. Cu-Ti exhibits decreasing catalytic activity, while Cu-Zr displays stable activity in the course of the reaction. Crystallization of the metallic glasses prior to HF treatment results in a weaker reactivity toward hydrogen fluoride for both alloys. Scanning electron micrographs of the alloys reveal that HF etching results in surfaces with deep grooves, and copper-rich flakes, a Raney-Cu-like catalyst. Auger electron spectroscopic studies show copper enrichment in the surface region on both alloys after HF treatment. On the surface of Cu-Ti, mostly Cu(II) is detected, whereas Cu(O) and Cu(II) coexist on Cu-Zr. 54 refs., 11 figs., 2 tabs.

  13. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  14. The metallography of a nickel base casting alloy.

    PubMed

    Lewis, A J

    1975-10-01

    Three groups of tensile test pieces were produced using a nickel base partial denture casting alloy and employing induction fusion in each case. The first group was produced fro new metal, the second from metal which had been recast four times, and the third from new overheated metal. Samples of alloy were cut from each group, and together with a piece from an original ingot, were mounted, polished, etched, and examined under a metallurgical microscope. PMID:1108851

  15. Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy.

    PubMed

    Sun, Zhimei; Zhou, Jian; Blomqvist, Andreas; Johansson, Börje; Ahuja, Rajeev

    2009-02-20

    On the basis of ab initio molecular dynamics simulations, large voids mainly surrounded by Te atoms are observed in molten and amorphous Ge2Sb2Te5, which is due to the clustering of two- and threefold coordinated Te atoms. Furthermore, pressure shows a significant effect on the clustering of the under coordinated Te atoms and hence the formation of large voids. The present results demonstrate that both vacancies and Te play an important role in the fast reversible phase transition process. PMID:19257687

  16. Super-cooled and amorphous lipid-based colloidal dispersions for the delivery of phytosterols.

    PubMed

    Ribeiro, H S; Gupta, R; Smith, K W; van Malssen, K F; Popp, A K; Velikov, K P

    2016-07-01

    Super-cooled and amorphous lipid-based colloids are highly desirable delivery systems because of their ability to encapsulate compounds in a soluble or in a non-crystalline state. In this study, we demonstrate the preparation and characterization of super-cooled and amorphous lipid-based nanoscale colloidal dispersions containing high concentrations of phytosterols (PSs). PSs are highly hydrophobic natural bioactive compounds that are known to significantly reduce blood cholesterol levels in humans, but are insoluble in water and are poorly soluble in common lipids such as triacylglycerols (TAGs). Using the ultrahigh pressure homogenization of pre-heated dispersions, followed by temperature quenching, colloidal dispersions with varying concentrations of PSs in the lipid phase are prepared. Long and medium chain TAGs in combination with a non-ionic surfactant are used. The particle size, morphology and stability are analysed by dynamic and static light scattering, electron microscopy, and X-ray diffraction. Rapid temperature quenching enables the formation of stable colloidal dispersions of 10 wt% PSs, more than five times the equilibrium solubility at room temperature. Super-cooled emulsions are formed using liquid TAG, whereas amorphous particles are formed in the case of solid TAG. In both cases, the complete suppression of the crystallization of both PSs and lipids is observed due to the nanoscale confinement. The colloidal dispersions are stable for at least four months. The insights of this work will help understand the colloid formation and particle morphology control in the development of delivery systems for hydrophobic bio-actives such as drugs, cosmeceuticals, nutraceuticals, nutritional and agricultural nanoscale formulations. PMID:27174457

  17. Growth and characterization of group IV-based alloys on silicon

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Durvasulu

    Group IV based alloys have recently received much attention because of the possibility of tailoring the band gap with respect to that of silicon. Significant results have already been achieved with the Sisb1-xGesbx/Si system. But a major drawback is the large lattice mismatch and thermal instability. Hence, alternate material systems, such as Si-Ge-C alloys, are under active investigation. The research presented here focuses on the growth and characterization of Sisb1-x-yGesbxCsby and Sisb1-yCsby films. Group IV alloys were grown on silicon substrates by atmospheric-pressure chemical vapor deposition (APCVD), molecular beam epitaxy (MBE), and ultrahigh-vacuum chemical vapor deposition (UHV-CVD) employing novel precursor molecules. The films were characterized extensively using Rutherford backscattering spectrometry, secondary ion mass spectrometry, transmission electron microscopy, and Fourier transform infrared spectroscopy. Sisb1-x-yGesbxCsby films grown by APCVD between 600 to 700sp°C had compositions in the range: 0.2 < x < 0.5 and 0 < y < 0.12. Layers with less than 3 at. % C were of device quality and defect-free. Increase in carbon led to the formation of a bilayer structure, initial crystalline growth followed by amorphous growth: this behavior was attributed to carbon floating on the surface. Periodic interruptions of the Sisb1-x-yGesbxCsby growth by deposition of a thin Si layer prevented amorphous growth. Sisb1-x-yGesbxCsby/Si heterostructures (0.1 < x < 0.4; 0 < y < 0.045) were deposited by MBE at 450 to 550sp°C, using two different sources for carbon: graphite and silicon carbide (SiC). Introduction of carbon using graphite resulted in non-homogeneous incorporation and rough film growth morphology. Use of Sb surfactant led to abrupt interfaces with more homogeneous incorporation of the elements. Using SiC as the carbon source, led to stabilization of the surface morphology without the need for Sb surfactant. Sisb1-yCsby films (0.04 < y < 0.2) were

  18. Metastable structures in drop tube processed niobium based alloys

    NASA Astrophysics Data System (ADS)

    Evans, N. D.; Bayuzick, R. J.; Kenik, E. A.

    Analytical electron microscopy has been employed to reveal metastable structures in near eutectic niobium-germanium alloys which were processed in a 100 meter drop tube. Drop masses were generally 300 to 400-mg, with undercooling as much as 0.14-Tm prior to recalescence. Specimens which were slightly hypoeutectic and undercooled 0.10 below the liquidus prior to recalescence contain β cells which grew with solute rejection, and an intercellular metastable α + Nb5Ge3 eutectic. When deep undercooling was followed by Rapid Solidification Processing (RSP) via splatting onto a copper block, cellular β formed with solute entrapment, though the high cooling rate of RSP did not prevent the formation of Nb5Ge3 precipitates from the Ge enriched β. In one specimen, an amorphous Nb-Ge phase has been identified.

  19. Fabrication and characterization of monolithically integrated microchannel plates based on amorphous silicon

    PubMed Central

    Franco, Andrea; Geissbühler, Jonas; Wyrsch, Nicolas; Ballif, Christophe

    2014-01-01

    Microchannel plates are vacuum-based electron multipliers for particle—in particular, photon— detection, with applications ranging from image intensifiers to single-photon detectors. Their key strengths are large signal amplification, large active area, micrometric spatial resolution and picosecond temporal resolution. Here, we present the first microchannel plate made of hydrogenated amorphous silicon (a-Si:H) instead of lead glass. The breakthrough lies in the possibility of realizing amorphous silicon-based microchannel plates (AMCPs) on any kind of substrate. This achievement is based on mastering the deposition of an ultra-thick (80–120 μm) stress-controlled a-Si:H layer from the gas phase at temperatures of about 200°C and micromachining the channels by dry etching. We fabricated AMCPs that are vertically integrated on metallic anodes of test structures, proving the feasibility of monolithic integration of, for instance, AMCPs on application-specific integrated circuits for signal processing. We show an electron multiplication factor exceeding 30 for an aspect ratio, namely channel length over aperture, of 12.5:1. This result was achieved for input photoelectron currents up to 100 pA, in the continuous illumination regime, which provides a first evidence of the a-Si:H effectiveness in replenishing the electrons dispensed in the multiplication process. PMID:24698955

  20. Photosensor application of amorphous InZnO-based thin film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Po-Tsun; Chou, Yi-Teh; Teng, Li-Feng

    2010-03-01

    Thin film transistor (TFT) device structure with transparent conductive oxide semiconductor is proposed for the photosensor application. The adoption of TFT-based photosensor device also is promising to be integrated with pixel-array circuits in a flat panel display and realize the system-on-panel (SoP) concept. The photosensitive TFT device can be applied to sense the ambient light brightness and then give the feedback to the backlight system adjusting the backlight intensity for the power-saving green displays. In this work, we studied the photosensitivity of amorphous indium zinc oxide (a-IZO) TFT to ultraviolet light. The a-IZO-based semiconductors have been paid much attention due to their uniform amorphous phase and high field-effect carrier mobility characteristics. The obvious threshold voltage shift was observed after light illumination, and exhibited slow recovery while returning to initial status after removing the light source. This mechanism for the photoreaction is well explained by the dynamic equilibrium of charge exchange reaction between O2(g) and O2- in the backchannel region of IZO-based films. An electrical trigger using charge pumping method is used to confirm the proposed mechanism and accelerate photoreaction recoverability for the first time. Using knowledge of photoreaction behavior, an operation scheme of photosensing elements consist of a-IZO TFTs is also demonstrated in this paper.

  1. Annealing characteristics of amorphous silicon alloy solar cells irradiated with 1.00 MeV protons

    NASA Technical Reports Server (NTRS)

    Abdulaziz, Salman S.; Woodyard, James R.

    1991-01-01

    Amorphous Si:H and amorphous Si sub x, Ge sub (1-x):H solar cells were irradiated with 1.00 MeV proton fluences in the range of 1.00E14 to 1.25E15 cm (exp -2). Annealing of the short circuit current density was studied at 0, 22, 50, 100, and 150 C. Annealing times ranged from an hour to several days. The measurements confirmed that annealing occurs at 0 C and the initial characteristics of the cells are restored by annealing at 200 C. The rate of annealing does not appear to follow a simple nth order reaction rate model. Calculations of the short-circuit current density using quantum efficiency measurements and the standard AM1.5 global spectrum compare favorably with measured values. It is proposed that the degradation in J sub sc with irradiation is due to carrier recombination through the fraction of D (o) states bounded by the quasi-Fermi energies. The time dependence of the rate of annealing of J sub sc does appear to be consistent with the interpretation that there is a thermally activated dispersive transport mechanism which leads to the passivation of the irradiation induced defects.

  2. Optimization of the high frequency magneto-impedance effect in Co-based amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Ortiz, V.; Eggers, T.; Phan, M. H.

    The magnetic field dependence of the impedance, known as magneto-impedance (MI), was measured as a function of excitation frequency in Co-based amorphous ribbons. An optimization of the MI profile on the high frequency regime (100 MHz - 1000 MHz) was attempted through annealing techniques. Current annealing was performed with different annealing amplitudes ranging from 200 mA up to 1 A. Field annealing was also performed by raising the temperature of the sample through Joule heating and applying an external magnetic field of 55 Oe transversal to the ribbon. It was found that annealing at low current improved the MI response at lower frequencies, between 100 MHz and 300 MHz. On the other hand annealing at higher amplitude, past the Curie temperature (Tc) favored higher frequencies. These findings provide good guidance toward the optimization of the MI response of Co-based amorphous ribbons for high-frequency sensor applications. This project is supported by the NSF REU Grant # DMR - 1263066: REU Site in Applied Physics at USF.

  3. Metallurgical characterization of experimental Ag-based soldering alloys

    PubMed Central

    Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros

    2014-01-01

    Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945

  4. Influence of the chemical composition of rapidly quenched amorphous alloys (Ni, Fe, Cr)-B-Si on its crystallization process

    NASA Astrophysics Data System (ADS)

    Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.

    2016-04-01

    This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.

  5. Atomic packing and diffusion in Fe{sub 85}Si{sub 2}B{sub 9}P{sub 4} amorphous alloy analyzed by ab initio molecular dynamics simulation

    SciTech Connect

    Wang, Yaocen; Takeuchi, Akira; Makino, Akihiro; Liang, Yunye; Kawazoe, Yoshiyuki

    2015-05-07

    In the work reported in this paper, ab initio molecular dynamics simulation was performed on Fe{sub 85}Si{sub 2}B{sub 9}P{sub 4} amorphous alloy. Preferred atomic environment of the elements was analyzed with Voronoi polyhedrons. It showed that B and P atoms prefer less neighbors compared with Fe and Si, making them structurally incompatible with Fe rich structure and repulsive to the formation of α-Fe. However, due to the low bonding energy of B and P caused by low coordination number, the diffusion rates of them were considerably large, resulting in the requirement of fast annealing for achieving optimum nano-crystallization for its soft magnetic property. The simulation work also indicates that diffusion rate in amorphous alloy is largely determined by bonding energy rather than atomic size.

  6. The role of stoichiometric vacancy periodicity in pressure-induced amorphization of the Ga{sub 2}SeTe{sub 2} semiconductor alloy

    SciTech Connect

    Abdul-Jabbar, N. M.; Kalkan, B.; MacDowell, A. A.; Huang, G.-Y.; Gronsky, R.; Bourret-Courchesne, E. D.; Wirth, B. D.

    2014-08-04

    We observe that pressure-induced amorphization of Ga{sub 2}SeTe{sub 2} (a III-VI semiconductor) is directly influenced by the periodicity of its intrinsic defect structures. Specimens with periodic and semi-periodic two-dimensional vacancy structures become amorphous around 10–11 GPa in contrast to those with aperiodic structures, which amorphize around 7–8 GPa. The result is an instance of altering material phase-change properties via rearrangement of stoichiometric vacancies as opposed to adjusting their concentrations. Based on our experimental findings, we posit that periodic two-dimensional vacancy structures in Ga{sub 2}SeTe{sub 2} provide an energetically preferred crystal lattice that is less prone to collapse under applied pressure. This is corroborated through first-principles electronic structure calculations, which demonstrate that the energy stability of III-VI structures under hydrostatic pressure is highly dependent on the configuration of intrinsic vacancies.

  7. In situ X-ray diffraction study of structural evaluation in Fe73Cu1.5Nd3Si13.5B9 amorphous alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Li, Gong; Xu, Tao; Gao, Yunpeng; Liu, Riping

    2008-04-01

    The thermodynamics structural relaxation of Fe73Cu1.5Nd3Si13.5B9 amorphous alloy from room temperature to 400°C has been investigated by measuring the structure factor with in situ X-ray diffraction. The structural information of the atomic configuration such as radial distribution function (RDF) and neighbor atomic distance was gained by Fourier transformation. The research result shows that the amorphous structure remains stable in the temperature range of 30 to 400°C but exhibits distinct changes in local atomic configuration with the increase of temperature. The quantitative determination of the neighbor atomic distance suggests that the degree of short-range order changes by the temperature altering the second nearest neighbor local atomic configuration of the amorphous when structural relaxation occurs.

  8. Iron and iron-based alloys for temporary cardiovascular applications.

    PubMed

    Francis, A; Yang, Y; Virtanen, S; Boccaccini, A R

    2015-03-01

    In the last decade, biodegradable metals have emerged as a topic of interest for particular biomedical applications which require high strength to bulk ratio, including for cardiovascular stents. The advantages of biodegradable materials are related to the reduction of long term risks associated with the presence of permanent metal implants, e.g. chronic inflammation and in-stent restenosis. From a structural point of view, the analysis of the literature reveals that iron-based alloys used as temporary biodegradable stents have several advantages over Mg-based alloys in terms of ductility and strength. Efforts on the modification and tunability of iron-based alloys design and compositions have been mainly focused on controlling the degradation rate while retaining the mechanical integrity within a reasonable period. The early pre-clinical results of many iron-based alloys seem promising for future implants developments. This review discusses the available literature focusing mainly on: (i) Fe and Fe-based alloys design and fabrication techniques; (ii) in vitro and in vivo performance; (iii) cytotoxicity and cell viability tests. PMID:25716025

  9. Magnetic sensor technology based on giant magneto-impedance effect in amorphous wires

    NASA Astrophysics Data System (ADS)

    Wang, X.; Teng, Y.; Wang, C.; Li, Q.

    2012-12-01

    This project focuses on giant magneto-impedance (GMI) effect that found in the soft magnetic amorphous wires in recent years, when AC current through the amorphous wire, induced voltage in the wires would change sensitively with a small external magnetic field along the wire vertical imposed changes. GMI magnetic sensor could compensate for the shortcomings of the traditional magnetic sensors and detect weak magnetic field, meanwhile the characteristics of high stability, high sensitivity, high resolution, fast response and low power consumption, which makes it becoming the focus of extensive research at home and abroad and being new mode of the next age of the physical geography observation. The emphasis of the project is the research on the high sensitivity amorphous wire detector and the low noise capability circuit design. In this paper, it is analyzed the theory of the Amorphous Wire Giant-Magneto-Impedance (AWGMI) effect and its influence factors in details, and expatiated the sensor principle based on AWGMI. On the basis of AWGMI, the experimental system of the micro-magnetic sensor is designed, which is composed of the detecting signals, processing and collecting data, display and transmitting data circuit and corresponding functional software etc. The properties of this kind of micro-magnetic sensor are studied by experiments, such as its linearity, sensitivity, frequency response, noise, stability and temperature properties and so on, especially analyzed the relation of the drive signals with all kinds of characteristics. The results show that there is no direct relationship between the frequency of the drive signals and linear property of the sensor. But with the increase of its frequency, some fluctuation appears on the characteristic curves; the direct relation is found between the frequency of the drive signal and sensitivity, with the increase of the frequency, AWGMI effect increases monotonously. It leads to the amplitude of the output voltage

  10. Magnetic and Electrical Characteristics of Cobalt-Based Amorphous Materials and Comparison to a Permalloy Type Polycrystalline Material

    NASA Technical Reports Server (NTRS)

    Wieserman, William R.; Schwarze, Gene E.; Niedra, Janis M.

    2005-01-01

    Magnetic component designers are always looking for improved soft magnetic core materials to increase the efficiency, temperature rating and power density of transformers, motors, generators and alternators, and energy density of inductors. In this paper, we report on the experimental investigation of commercially available cobalt-based amorphous alloys which, in their processing, were subjected to two different types of magnetic field anneals: A longitudinal magnetic field anneal or a transverse magnetic field anneal. The longitudinal field annealed material investigated was Metglas 2714A. The electrical and magnetic characteristics of this material were investigated over the frequency range of 1 to 200 kHz and temperature range of 23 to 150 C for both sine and square wave voltage excitation. The specific core loss was lower for the square than the sine wave voltage excitation for the same maximum flux density, frequency and temperature. The transverse magnetic field annealed core materials include Metglas 2714AF and Vacuumschmelze 6025F. These two materials were experimentally characterized over the frequency range of 10 to 200 kHz for sine wave voltage excitation and 23 C only. A comparison of the 2174A to 2714AF found that 2714AF always had lower specific core loss than 2714A for any given magnetic flux density and frequency and the ratio of specific core loss of 2714A to 2714AF was dependent on both magnetic flux density and frequency. A comparison was also made of the 2714A, 2714AF, and 6025F materials to two different tape thicknesses of the polycrystalline Supermalloy material and the results show that 2714AF and 6025F have the lowest specific core loss at 100 kHz over the magnetic flux density range of 0.1 to 0.4 Tesla.

  11. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    SciTech Connect

    Ha, Tae-Jun

    2014-10-15

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (V{sub th}). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger V{sub th} shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  12. The resistance of selected high strength alloys to embrittlement by a hydrogen environment. [iron and cobalt base alloys

    NASA Technical Reports Server (NTRS)

    Benson, R. B., Jr.

    1974-01-01

    Selected high strength iron base and cobalt base alloys were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature. These alloys were strengthened initially by cold working which produced strain induced martensite and fcc mechanical twins in an fcc matrix. Heat treatment of the cobalt base alloy after cold working produced carbide precipitates with retention of an hcp epsilon phase which increased the yield strength level. High strength alloys can be produced which have some resistance to degradation of mechanical properties by a hydrogen environment under certain conditions.

  13. Formation of amorphous materials

    DOEpatents

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  14. Microstructure and Corrosion Resistance of Plasma Sprayed Fe-Based Alloy Coating as an Alternative to Hard Chromium

    NASA Astrophysics Data System (ADS)

    Lu, Wenhuan; Wu, Yuping; Zhang, Jingjing; Hong, Sheng; Zhang, Jianfeng; Li, Gaiye

    2011-09-01

    Fe-based alloy coating (FAC) was prepared from Fe-based amorphous metallic powders on low-carbon steel by plasma spray. The microstructures and corrosion resistances (salt spray and electrochemical tests) of the FAC and the reference hard chromium coatings (HCC) were investigated. The results indicated that the as-sprayed FAC consisted of amorphous phase, nanocrystalline grains, and borides. Both the FAC and HCC adhered well to the low-carbon steel substrate, but there are micro-cracks and pores located in FAC, which disappeared after the sealing treatment. After 60 days (1440 h) of corrosion tests by salt spray, the weight loss of FAC was about 10% of the HCC, but that of the sealed FAC (SFAC) was only about 4% of HCC. The electrochemical tests indicated that the HCC had the lowest E corr (-629 mV) and highest I corr (63.2 mA/m2). Correspondingly, the SFAC possessed the highest E corr (-321 mV) and lowest I corr (6.97 mA/m2). These suggested that the resistance to corrosion sequence ( R) among these coatings was R SFAC > R FAC > R HCC. Therefore, this Fe-based alloy coating could be applied as a good alternative material to hard chromium in corrosion environments.

  15. Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode

    PubMed Central

    Masuzawa, Tomoaki; Saito, Ichitaro; Yamada, Takatoshi; Onishi, Masanori; Yamaguchi, Hisato; Suzuki, Yu; Oonuki, Kousuke; Kato, Nanako; Ogawa, Shuichi; Takakuwa, Yuji; Koh, Angel T. T.; Chua, Daniel H. C.; Mori, Yusuke; Shimosawa, Tatsuo; Okano, Ken

    2013-01-01

    Amorphous-selenium (a-Se) based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized. PMID:24152932

  16. Durable pd-based alloy and hydrogen generation membrane thereof

    DOEpatents

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  17. The effect of aluminium on the metallography of a nickel base removable partial denture casting alloy.

    PubMed

    Lewis, A J

    1978-12-01

    Three special nickel-chromium alloys were prepared in which the aluminum levels were adjusted both above and below that of a commercial nickel base dental casting alloy. Tensile and metallographic evaluation of representative samples of the alloys were made and the changes in the properties of the alloys are reported. PMID:285671

  18. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    SciTech Connect

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  19. Far-Infrared and Raman Spectroscopy Investigation of Phonon Modes in Amorphous and Crystalline Epitaxial GeTe-Sb2Te3 Alloys

    PubMed Central

    Bragaglia, V.; Holldack, K.; Boschker, J. E.; Arciprete, F.; Zallo, E.; Flissikowski, T.; Calarco, R.

    2016-01-01

    A combination of far-infrared and Raman spectroscopy is employed to investigate vibrational modes and the carrier behavior in amorphous and crystalline ordered GeTe-Sb2Te3 alloys (GST) epitaxially grown on Si(111). The infrared active GST mode is not observed in the Raman spectra and vice versa, indication of the fact that inversion symmetry is preserved in the metastable cubic phase in accordance with the Fm3 space group. For the trigonal phase, instead, a partial symmetry break due to Ge/Sb mixed anion layers is observed. By studying the crystallization process upon annealing with both the techniques, we identify temperature regions corresponding to the occurrence of different phases as well as the transition from one phase to the next. Activation energies of 0.43 eV and 0.08 eV for the electron conduction are obtained for both cubic and trigonal phases, respectively. In addition a metal-insulator transition is clearly identified to occur at the onset of the transition between the disordered and the ordered cubic phase. PMID:27340085

  20. Investigation of amorphous RuMoC alloy films as a seedless diffusion barrier for Cu/ p-SiOC:H ultralow- k dielectric integration

    NASA Astrophysics Data System (ADS)

    Jiao, Guohua; Liu, Bo; Li, Qiran

    2015-08-01

    Ultrathin RuMoC amorphous films prepared by magnetron co-sputtering with Ru and MoC targets in a sandwiched scheme Si/ p-SiOC:H/RuMoC/Cu were investigated as barrier in copper metallization. The evolution of final microstructure of RuMoC alloy films show sensitive correlation with the content of doped Mo and C elements and can be easily controlled by adjusting the sputtering power of the MoC target. There was no signal of interdiffusion between the Cu and SiOC:H layer in the sample of Cu/RuMoC/ p-SiOC:H/Si, even annealing up to 500 °C. Very weak signal of oxygen have been confirmed in the RuMoC barrier layer both as-deposited and after being annealed, and a good performance on preventing oxygen diffusion has been proved. Leakage current and resistivity evaluations also reveal the excellent thermal reliability of this Si/ p-SiOC:H/RuMoC/Cu film stack at the temperatures up to 500 °C, indicating its potential application in the advanced barrierless Cu metallization.

  1. Far-Infrared and Raman Spectroscopy Investigation of Phonon Modes in Amorphous and Crystalline Epitaxial GeTe-Sb2Te3 Alloys

    NASA Astrophysics Data System (ADS)

    Bragaglia, V.; Holldack, K.; Boschker, J. E.; Arciprete, F.; Zallo, E.; Flissikowski, T.; Calarco, R.

    2016-06-01

    A combination of far-infrared and Raman spectroscopy is employed to investigate vibrational modes and the carrier behavior in amorphous and crystalline ordered GeTe-Sb2Te3 alloys (GST) epitaxially grown on Si(111). The infrared active GST mode is not observed in the Raman spectra and vice versa, indication of the fact that inversion symmetry is preserved in the metastable cubic phase in accordance with the Fm3 space group. For the trigonal phase, instead, a partial symmetry break due to Ge/Sb mixed anion layers is observed. By studying the crystallization process upon annealing with both the techniques, we identify temperature regions corresponding to the occurrence of different phases as well as the transition from one phase to the next. Activation energies of 0.43 eV and 0.08 eV for the electron conduction are obtained for both cubic and trigonal phases, respectively. In addition a metal-insulator transition is clearly identified to occur at the onset of the transition between the disordered and the ordered cubic phase.

  2. Thin-film amorphous silicon alloy research partnership. Phase 2, Annual technical progress report, 2 February 1996--1 February 1997

    SciTech Connect

    Guha, S

    1997-06-01

    This is Phase II of a 3-phase, 3-year program. It is intended to expand, enhance, and accelerate knowledge and capabilities for developing high-performance, two-terminal multijunction amorphous Si alloy modules. We discuss investigations on back reflectors to improve cell performance and investigate uniformity in performance over a 1-sq.-ft. area. We present results on component cell performance, both in the initial and in the light-degraded states, deposited over a 1-sq.-ft. area. The uniformity in deposited is investigated by studying the performance of subcells deposited over the entire area. We also present results on the performance of triple- junction cells and modules. The modules use grid-lines and encapsulants compatible with our production technology. We discuss the novel laser-processing technique that has bee developed at United Solar to improve energy-conversion efficiency and reduce manufacturing costs. We discuss in detail the optimization of the processing steps, and the performance of a laser-processed, triple- junction device of 12.6 cm{sup 2} area is presented. We also present experimental results on investigations of module reliability.

  3. Urchin-Like Amorphous Ni2B Alloys: Efficient Antibacterial Materials and Catalysts for Hydrous Hydrazine Decomposition to Produce H2.

    PubMed

    Deng, Miao; Fu, Shi Yan; Yang, Fan; Wu, Ping; Tong, Dong Ge

    2016-03-01

    Urchin-like amorphous Ni2B alloys were successfully prepared for the first time from a mixture of Ni(NH3)6(2+) and polyvinyl alcohol (PVA) via a solution plasma process (SPP). The as-synthesized samples were characterized by X-ray powder diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), selected-area electron diffraction patterns (SAED) and nitrogen adsorption-desorption isotherms. In the performance test, the obtained Ni-B urchins showed great antibacterial activities, comparable with those of amikacin and kanamycin, especially towards Pseudomonas aeruginosa (P. aeruginosa). Meanwhile, the magnetic properties of Ni-B urchins are enhanced in comparison with those of conventional Ni-B. During hydrous hydrazine (N2H4) decomposition, the dehydrogenation performance of Ni-B urchins is superior to those of Raney Ni and conventional Ni-B. The enhanced catalytic performance of Ni-B urchins is attributed to their high surface area of active species nickel and the enhanced intrinsic activity resulting from their unique structure. PMID:27455647

  4. Far-Infrared and Raman Spectroscopy Investigation of Phonon Modes in Amorphous and Crystalline Epitaxial GeTe-Sb2Te3 Alloys.

    PubMed

    Bragaglia, V; Holldack, K; Boschker, J E; Arciprete, F; Zallo, E; Flissikowski, T; Calarco, R

    2016-01-01

    A combination of far-infrared and Raman spectroscopy is employed to investigate vibrational modes and the carrier behavior in amorphous and crystalline ordered GeTe-Sb2Te3 alloys (GST) epitaxially grown on Si(111). The infrared active GST mode is not observed in the Raman spectra and vice versa, indication of the fact that inversion symmetry is preserved in the metastable cubic phase in accordance with the Fm3 space group. For the trigonal phase, instead, a partial symmetry break due to Ge/Sb mixed anion layers is observed. By studying the crystallization process upon annealing with both the techniques, we identify temperature regions corresponding to the occurrence of different phases as well as the transition from one phase to the next. Activation energies of 0.43 eV and 0.08 eV for the electron conduction are obtained for both cubic and trigonal phases, respectively. In addition a metal-insulator transition is clearly identified to occur at the onset of the transition between the disordered and the ordered cubic phase. PMID:27340085

  5. Corrosion Resistances of Iron-Based Amorphous Metals with Yttrium and Tungsten Additions in Hot Calcium Chloride Brine & Natural Seawater: Fe48Mo14CR15Y2C15B6 and Variants

    SciTech Connect

    Farmer, J; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Yang, N; Blue, C; Peter, W; Payer, J; Perepezko, J; Hildal, K; Branagan, D J; Beardsley, M B; Aprigliano, L

    2006-10-12

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of stainless steels and Ni-based Alloy C-22 (UNS No. N06022), based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Electrochemical studies of the passive film stability of SAM1651 are reported here. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). Yttrium-containing SAM1651, also known as SAM7 (Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0}), has a critical cooling rate (CCR) of approximately 80 Kelvin per second, while yttrium-free SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) has a higher critical cooling rate of approximately 600 Kelvin per second. SAM1651's low CCR enables it to be rendered as a completely amorphous material in practical materials processes. While the yttrium enables a low CCR to be achieved, it makes the material relatively difficult to atomize, due to increases in melt viscosity. Consequently, the powders have irregular shape, which makes pneumatic conveyance during thermal spray deposition difficult. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying, due to the formation of deleterious intermetallic phases which depletes the matrix of key alloy elements, whereas SAM1651 can be applied as coatings with the same corrosion resistance as a fully-dense completely amorphous melt-spun ribbon, provided that its amorphous

  6. (Fe,Si,Al)-based nanocrystalline soft magnetic alloys for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Daniil, Maria; Osofsky, Michael S.; Gubser, Donald U.; Willard, Matthew A.

    2010-04-01

    In this work Al and Si are substituted for Fe in a (Fe,Si,Al)-Nb-B-Cu alloy with the goal of improving its magnetic properties at 77 K. The x-ray diffraction patterns for a series of five alloys annealed at 823 K shows a Fe3(Si,Al) ordered phase with some residual amorphous phase. The lowest coercivity at room temperature was observed for the alloy with composition Fe68Si15.5Al3.5Nb3B9Cu1. At cryogenic temperatures, the saturation magnetization of 99.3 A m2/kg, coercivity of 0.45 A/m, and resistivity of 122 μΩ cm for the Fe63Si17.5Al6Nb3B9Cu1 alloy, compare favorably to commercial alloys at 77 K.

  7. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  8. Cr{sub 2}Nb-based alloy development

    SciTech Connect

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A.; Easton, D.S.; Heatherly, L.

    1996-06-01

    The objective of this work is to develop a new generation of structural materials based on intermetallic alloys for use at high temperatures in advanced fossil energy conversion systems. Target applications of such ultrahigh strength alloys include hot components (for example, air heat exchangers) in advanced energy conversion systems and heat engines. However, these materials may also find use as wear-resistant parts in coal handling systems (for example, nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. One potential class of such alloys is that based on Cr-Cr{sub 2}Nb alloys. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for initial development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), and excellent high-temperature strength (at 1000 to 1250{degrees}C). This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions.

  9. Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting

    NASA Astrophysics Data System (ADS)

    Liang, Yanhui; Sun, Xuping; Asiri, Abdullah M.; He, Yuquan

    2016-03-01

    It is highly attractive, but still remains challenging, to develop noble metal-free bifunctional electrocatalysts efficient for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media. In this letter, we describe the rapid electroless deposition of amorphous Ni-B nanoparticle film on Ni foam (Ni-B/Ni foam) by alternative dipping of Ni foam into Ni precursor and reducing solutions. This Ni-B/Ni foam acts as an efficient and durable 3D catalytic electrode for water splitting, affording 100 mA cm-2 at 360 mV overpotential for the OER and 20 mA cm-2 at 125 mV overpotential for the HER in 1.0 M KOH, and its two-electrode electrolyzer demands a cell voltage of 1.69 V to afford 15 mA cm-2 water-splitting current. Moreover, the catalyst loading can be easily tuned and this alternately dipping deposition technique works universally for other conductive substrates.

  10. Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting.

    PubMed

    Liang, Yanhui; Sun, Xuping; Asiri, Abdullah M; He, Yuquan

    2016-03-29

    It is highly attractive, but still remains challenging, to develop noble metal-free bifunctional electrocatalysts efficient for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media. In this letter, we describe the rapid electroless deposition of amorphous Ni-B nanoparticle film on Ni foam (Ni-B/Ni foam) by alternative dipping of Ni foam into Ni precursor and reducing solutions. This Ni-B/Ni foam acts as an efficient and durable 3D catalytic electrode for water splitting, affording 100 mA cm(-2) at 360 mV overpotential for the OER and 20 mA cm(-2) at 125 mV overpotential for the HER in 1.0 M KOH, and its two-electrode electrolyzer demands a cell voltage of 1.69 V to afford 15 mA cm(-2) water-splitting current. Moreover, the catalyst loading can be easily tuned and this alternately dipping deposition technique works universally for other conductive substrates. PMID:26891459

  11. Fundamental studies of defect generation in amorphous silicon alloys grown by remote plasma-enhanced chemical-vapor deposition. Final subcontract report, 1 July 1989--31 December 1992

    SciTech Connect

    Lucovsky, G.

    1993-08-01

    This report describes research to reduce the intrinsic bonding defects in amorphous and microcrystalline Si alloys by controlling the bonding chemistry and the microstructure via the deposition process reactions. The specific approach was to use remote plasma-enhanced, chemical-vapor deposition (PECVD) and reactive magnetron sputtering to limit the multiplicity of deposition inaction pathways, and thereby gain increased control over the thin-film chemistry and microstrucre. The research included (1) the deposition of amorphous and microcrystalline Si alloy materials by the PECVD process and by reactive magnetron sputtering, and (2) the evaluation of the material properties of these films for potential applications in PV devices. The focus of the research was on pining a fundamental understanding of the relationships between deposition reaction pathways, the bonding of dopant and alloy atoms, and the electrical provides of importance for PV applications. This involved studying the factors that contribute to defect generation and to defect removal and/or neutralization. In addition to the experimental studies, the research also included theoretical and modeling studies aimed at understanding the relationships between local atomic arrangements of Si and alloy atoms, and the electrical, optical, vibrational, and defect properties.

  12. Crystallization Kinetics of Fe76.5- x C6.0Si3.3B5.5P8.7Cu x ( x = 0, 0.5, and 1 at. pct) Bulk Amorphous Alloy

    NASA Astrophysics Data System (ADS)

    Jung, Hyo Yun; Stoica, Mihai; Yi, Seonghoon; Kim, Do Hyang; Eckert, Jürgen

    2015-06-01

    The influence of Cu on crystallization kinetics of Fe76.5- x C6.0Si3.3B5.5P8.7Cu x ( x = 0, 0.5, and 1 at. pct) bulk amorphous alloys was investigated by isothermal and isochronal differential scanning calorimetry combined with X-ray diffraction. The thermal analysis revealed that the crystallization of the amorphous matrix proceeds through at least two exothermic events. The Cu-free glassy alloy forms by primary crystallization the metastable Fe23C6 phase, while upon 0.5 at. pct Cu addition the primary crystallized phase is α-Fe. The activation energy for crystallization, calculated using both Kissinger and Ozawa methods, decreases from about 500 kJ/mol to about 330 kJ/mol. Further increase of Cu addition to 1 at. pct promotes the concomitant crystallization of several phases, as α-Fe, FeB, Fe3C, and Fe2P. In order to understand the crystallization behavior of the alloys as a function of Cu content, the Avrami exponent n, evaluated from the Johnson-Mehl-Avrami equation, was in details analyzed. The current study reveals that the minor Cu addition plays a crucial role at the initial stage of the crystallization. Among the studied alloys, the glassy samples with 0.5 at. pct Cu addition have the optimum compositional condition for the single α-Fe formation with a high nucleation rate.

  13. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications. Part II, nickel base alloys.

    SciTech Connect

    Mizia, Ronald E.; Michael, Joseph Richard; Williams, David Brian; Dupont, John Neuman; Robino, Charles Victor

    2004-06-01

    The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was {approx}2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid {gamma} + Ni{sub 5}Gd eutectic-type reaction at {approx}1270 C. The solidification temperature ranges of the alloys varied from {approx}100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at {approx}1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques.

  14. Preparation of a novel Ni/Co-based alloy gradient coating on surface of the crystallizer copper alloy by laser

    NASA Astrophysics Data System (ADS)

    Chen, Suiyuan; Liang, Jing; Liu, Changsheng; Sun, Kai; Mazumder, Jyoti

    2011-12-01

    A high wear-resistant gradient coating made of Ni/Co-based alloys on the surface of a Cu alloy substrate was synthesized using a YAG laser induced in situ reaction method. The coating consists of three layers: the first is a Ni-based alloy layer, the second and third are Co-based alloy layers. The microhardness increases gradually from 98 HV in the Cu alloy substrate to the highest level of 876 HV in the third layer. The main phase of the Co-based alloy layer is CoCr2(Ni,O)4, coexisting with the Fe13Mo2B5, Cr(Co(Mo, and FeCr0.29Ni0.16C0.06 phases. Wear tests indicate that the gradient coating has good bond strength and wear properties with a wear coefficient of 0.31 (0.50 for the Cu alloy substrate). Also, the wear loss of the coating is only 0.01 g after it has been abraded for 60 min, which is only one fifth of that of the Cu alloy of the crystallizer. Wear tests of the gradient coating reveal good adhesive friction and wear properties when sliding against steel under dry conditions. This novel technique may have good application to make an advanced coating on the surface of the Cu alloy crystallizer in a continuous casting process.

  15. Wear response of a Zn-base alloy in the presence of SiC particle reinforcement: A comparative study with a copper-base alloy

    SciTech Connect

    Prasad, B.K.; Das, S.; Modi, O.P.; Jha, A.K.; Dasgupta, R.; Yegneswaran, A.H.

    1999-12-01

    An attempt has been made in this study to examine the effects produced by the reinforcement of (10 wt%) SiC particles on the sliding wear behavior of a Zn-base alloy. The matrix alloy was also subjected to identical test conditions to assess the influence of the SiC dispersoid phase. The wear characteristics of the (Zn-base alloy) composite and the matrix alloy were also compared with those of a Cu-base alloy (i.e., an aluminum bronze) in order to understand the scope of exploiting the Zn-base alloy matrix/composite as a substitute material for the latter (Cu-base) alloy. It has been observed that low frictional heat generated at the lower sliding speed (0.42 m/s) enabled the Zn-base (matrix) alloy to perform better than the composite material, while the Cu-base alloy showed intermediate wear resistance. On the contrary, the trend changed at a higher sliding speed (4.62 m/s) when high frictional heating caused the wear behavior of the Cu-base alloy to be superior to that of the Zn-base (matrix) alloy. The composite in this case performed better than the matrix alloy. The wear behavior of the specimens has been explained in terms of factors like microcracking tendency and thermal stability introduced by the SiC dispersoid phase and lubricating, load bearing, and low melting characteristics of microconstituents like {alpha} and {eta} in the (Zn-base) alloy system and the thermal stability of the Cu-base alloy. It seems that the predominance of one set of parameters over the other actually controls the overall performance of a material. Once again, it is the test conditions that ultimately allow a particular set of factors to govern the other and influence the response of the specimens accordingly. The observed wear behavior of the samples has been substantiated further with their wear surface characteristics.

  16. Phase selection and nanocrystallization in Cu-free soft magnetic FeSiNbB amorphous alloy upon rapid annealing

    NASA Astrophysics Data System (ADS)

    Morsdorf, L.; Pradeep, K. G.; Herzer, G.; Kovács, A.; Dunin-Borkowski, R. E.; Povstugar, I.; Konygin, G.; Choi, P.; Raabe, D.

    2016-03-01

    Nucleation of soft magnetic Fe3Si nanocrystals in Cu-free Fe74.5Si15.5Nb3B7 alloy, upon rapid (10 s) and conventional (30 min) annealing, was investigated using x-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, and atom probe tomography. By employing rapid annealing, preferential nucleation of Fe3Si nanocrystals was achieved, whereas otherwise there is simultaneous nucleation of both Fe3Si and undesired Fe-B compound phases. Analysis revealed that the enhanced Nb diffusivity, achieved during rapid annealing, facilitates homogeneous nucleation of Fe3Si nanocrystals while shifting the secondary Fe-B crystallization to higher temperatures resulting in pure soft magnetic nanocrystallization with very low coercivities of ˜10 A/m.

  17. Investigation of the microstructure, mechanical properties and thermal stability of nanocomposite coatings based on amorphous carbon

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Litovchenko, I. Y.; Korotaev, A. D.; Borisov, D. P.

    2015-10-01

    The Ti-C-Ni-Cr and Ti-C-Ni-Cr-Al-Si nanocomposite coatings based on amorphous carbon and the nanosized particles were synthesized by magnetron method. The results of the microstructure features and mechanical properties investigations of these coatings are presented. The thermal stability of microstructure and properties of these coatings at tempering up to 900°C were investigated. These coatings have a high (11-18 GPa) hardness, low (μ < 0.2) the coefficient of friction and high thermal stability of the microstructure and properties up to 700°C. The features of elastically stressed state of nanosized particles in these coatings were founded. A high local internal stresses in the TiC nanoscale particles do not observed.

  18. Semiconducting properties of amorphous GaZnSnO thin film based on combinatorial electronic structures

    SciTech Connect

    Kim, B. K.; Park, J. S.; Kim, D. H.; Chung, K. B.

    2014-05-05

    Semiconducting properties and electronic structures of amorphous GaZnSnO (GZTO) thin films are investigated with respect to metal cationic composition. An increase of the cationic Sn ratio resulted in an increase of the carrier concentration and a decrease of the mobility of the films. Combinatorial analysis revealed that the electrical characteristics of GZTO films are strongly correlated to changes in electronic structure. The increase in carrier concentration is related to the generation of vacancies by the changes of oxygen coordination around the cationic metal and the shallow band edge state below the conduction band. On the other hand, the decrease of mobility can be explained by the deep band edge state, and the difference between the experimental conduction band and simulated conduction band by the combinatorial electronic structure based on the chemical composition.

  19. Enhanced GMI effect in NiZn-ferrite-modified Fe-based amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojun; Du, Jinlu; Zhu, Zengtai; Wang, Jianbo; Liu, Qingfang

    2015-06-01

    A thin NiZn-ferrite layer was fabricated on the free surface of a Fe-based amorphous ribbon by radio frequency magnetron sputtering, and the giant magnetoimpedance (GMI) effect was measured at different magnetic fields and frequencies. An enhanced GMI effect has been observed in the NiZn-ferrite-modified ribbon at all measured frequencies. The largest GMI ratio up to 80 % is about 2.6 times as large as that of the ribbon without any coating. This enhanced GMI effect is mainly explained in terms of induced stress, the transformation of the domain structure and the magnetic flux path in the modified ribbon. The results obtained are of significant importance in developing strong-signal magnetic sensors.

  20. High mechanical endurance RRAM based on amorphous gadolinium oxide for flexible nonvolatile memory application

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbin; Tu, Hailing; Wei, Feng; Shi, Zhitian; Xiong, Yuhua; Zhang, Yan; Du, Jun

    2015-05-01

    In this paper, we use amorphous Gd2O3 as the switching layer for fabricated RRAM devices with novel high performance, excellent flexibility, and mechanical endurance properties as potential candidate memory for flexible electronics applications. The obtained Cu/Gd2O3/Pt devices on flexible polyethylene terephthalate (PET) substrates show bipolar switching characteristics, low voltage operation (<2 V) and long retention time (>106 s). No performance degradation occurs, and the stored information is not lost after the device has been bent to different angles and up to 104 times in the bending tests. Based on temperature-dependent switching characteristics, the formation of Cu conducting filaments stemming from electrochemical reactions is believed to be the reason for the resistance switching from a high resistance state to a low resistance state. The studies of the integrated experiment and mechanism lay the foundation for the development of high-performance flexible RRAM.